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ABSTRACT 

In this paper we develop a model which represents the addressing 
of resources by processes executing on a virtual machine. The model 
distinguishes two maps: the ~-map which represents the map visible to 
the operating system software running on the virtual machine, and 
the f-map which is invisible to that software but which is manipulated 
by the virtual machine monitor running on the real machine. The ~-map 
maps process names into resource names and the f-map maps virtual 
resource names into real resource names. Thus, a process running on 
a virtual machine addresses its resources under the composed map f o ~. 
In recursive operation, f maps from one virtual machine level to another 
and we have f o f o ... o f o ~. 

The model is used to describe and characterize previous virtual 
machine designs. We also introduce and illustrate a general approach 
for implementing virtual machines which follows directly from the 
model. This design, the Hardware Virtualizer, handles all process 
exceptions directly within the executing virtual machine without 
software intervention. All resource faults (VM-faults) generated 
by a virtual machine are directed to the appropriate virtual machine 
monitor without the knowledge of processes on the virtual machine 
@egardless of the level of recursion). 
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INTRODUCTION 

Virtual machine (VM) systems are a major development in computer 

systems design I. By providing an efficient facsimile of one or more 

complete computer systems, virtual machines have extended the multi- 

access, multi-programming, multi-processlng systems of the past 

decade to be multi-environment systems as well. Thus, many of the 

advantages in ease of system use previously enjoyed only by appli- 

cation programmers have been made available to systems programmers. 

Some of these advantages include support of the following 

activities concurrently with production uses of the system: 

2 
• improving and testing the operating system software 

i 
• running hardware diagnostic check-out software 

running different operating systems or versions of 

an operating system 3'4 

• running with a virtual configuration which is 

different from the real system, e.g., more memory 

or processors, different I/0 devices 5 

• measuring operating systems 6'7 

• adding hardware enhancements to a configuration 

without requiring a recoding of the existing 

3 
operating system(s) 
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providing a high degree of reliability and security/privacy 

for those applications which demand it 8'9'I0. 

While several virtual machine systems have been constructed 

on contemporary machines 3'7'II'12'13'14 the majority of today's 

computer systems do not and cannot support virtual machines 15. 

The few virtual machine systems currently operatlonal, e.g. CP-67, 

utilize awkward and inadequate techniques because of unsuitable 

architectures. 

Recent proposals of computer architectures specifically 

designed for virtual machines, i.e., virtualizable architectures, 

have suffered from two weaknesses. Either they have been unable 

to support modern complex operating systems directly on the virtual 

machines 16'17 or they have been unable to avoid all of the tradi- 

tional awkwardness associated with virtual machine support 18. 

A new proposal 19 called the Hardware Virtualizer ~, avoids 

the weaknesses of the p\revlous designs while at the same time 

incorporating their strong points. Thus, the Hardware Virtualizer 

applies to the complete range of conventional computer systems 

and eliminates the awkwardness and overhead of significant software 

intervention. The Hardware Virtualizer may either be added to an 

existing computer system design or incorporated directly into a 

future system design. 
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In this paper, we develop a model which represents the mapping 

and addressing of resources by a process executing on a virtual 

machine. By deriving properties of the model, we can clarify and 

contrast existing virtual machine systems. However, the most 

important result of the model is that its proper interpretation 

implies the Hardware Virtualizer as the direct natural implementa- 

tion of the virtual machine model. We develop some of the character- 

istics of the Hardware Virtualizer and then illustrate the operation 

through the use of a concrete example. 

MODEL OF A PROCESS RUNNING ON A VlRTUAL MACHINE 

In order to derive the underlying architectural principles 

for virtual machines, we develop a model that represents the 

execution of a process on a virtual machine. Since we want these 

principles to be applicable to the complete range of conventional 

computer systems- - fromminicomputers, through current general 

purpose third generation systems, and including certain future 

(possibly fourth generation) machines -- it is necessary to produce 

a model which reflects the common points of all of these systems. 

The model should not depend on the particular map structures 

visible to the software of the machine under discussion. Features 

such as memory relocation or supervisor state are characteristics 

of the existing system and occur whether or not we are discussing 

virtual machines. 
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To introduce virtual machines we must define a different, 

independent mapping structure which captures the notions common 

to all virtual computer systems. The unifying theme is the 

concept of a virtual machine configuration and a set of virtual 

resources. These resources, e.g., the amount of main memory in 

the virtual machine, are a feature of all virtual machines regard- 

less of the particular virtual processor's form of memory reloca- 

tion, etc. Thus, the key point is the relationship between the 

resources in the configuration of the virtual machine and those 

in the configuration of the real (host) machine. Only after this 

relationship has been fully understood need we treat the complexities 

introduced by the existence of any additional mapping structure. 

The resource map f 

We develop a model of virtual machlne resource mapping by 

defining the set of resources V = (Vo, Vl, ...,v m) present in the 

virtual machine configuration and the set of resources 

R = (ro, rl, ..., r n) present in the real (host) configuration. 

[Resource spaces, both real and virtual, are always represented 

as squares in the figures.] The sets V and R contain all main 

memory names, addressable processor registers, I/O devices, etc. 

However, in the discussion which follows, for simplicity, we treat 

all resource names as if they are memory names. As Lauer and Snow 16 

have observed, memory locations can be used to reference other 

resource names such as processor registers, e.g., DEC PDP-10, 

or I/O devices, e.g., DEC PDP-ii. Therefore, no generality is 
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lost by treating all resource names as memory names. 

Since we assume no a priori correspondence between virtual 

and real names, we must incorporate a way of associating virtual 

names with real names during execution of the virtual machine. To 

this end, we define, for each moment of time, a function 

f: V --~R U (t} 

such that if y c V and z E R then 

f(y) =~z if z is the real name for virtual name y 

if y does not have a corresponding real name 

The value f(y) = t causes a trap or fault to some fault handling 

procedure in the machine whose resource set is R, i.e.,the machine 

R. For clarity we always term this event a VM-fault, never an 

exception. 

We call the function f a resource map, virtual machine map, 

or f-map. The software on the real machine R which sets up the 

f-map and (normally) receives control on a VM-fault is called 

the virtual machine monitor (VMM). 

The model imposes no requirement that the f-map be a page map, 

relocation-bounds (R-B) map, or be of any other form. However, when 

speaking of virtual machines we normally restrict our attention to 

those cases where both the virtual machine is a faithful replica 
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of the real machine and the performance of the virtual system can be 

made comparable to the real one. 

Recurslon 

The resource map model developed above extends directly to 

recurslon by interpreting V and R as two adjacent levels of virtual 

resources. Then the real physical machine is level 0 and the f-map 

maps level n+l to level n. 

Recursion for virtual systems is not only a matter of conceptual 

elegance or a consideration of logical closure 16'17 it is also a 
P 

capability of considerable practical Interest 18'20. In its simplest 

form, the motivation for virtual machine recurslon is that although 

it makes sense to run conventional operating systems on the virtual 

machine, in order to test the VMM software on a VM, it is also 

necessary to be able to run at least a second level virtual machine. 

In the discussion which follows, we use a PL/I - style 

qualified name tree-namlng convention in which a virtual machine 

at level n has n syllables in its name 18'19. 

This tree-name is used as a subscript for both the virtual resource 

space, e.g., Vi.i, and corresponding f-map, e.g., fl.l" 

Thus, if 

fl: V I ---, R 

fl.l: Vl.l ---~Vl 

80 



Then a level 2 virtual resource name y is mapped into fl(fl.l(y)) or 

fl o fl.l(y). See Figure la. 

In this function, fl o fl.l' we identify two possible faults: 

(i) The level 2 resource ~irtual machin~ fault to the VMM 

of level I, i.e., fl.l(y) = t. See Figure lb. 

(2) The level i resource (virtual machine) fault to the VMM 

of level 0 (the real machine), i.e., fl o fl.l(y) = t. 

See Figure Ic. 

In general, a composed f-map may cause either fault• However, 

there exists a class of maps, called inclusive maps, which can 

only cause the first fault (level 2 fault). The relocation-bounds 

map (R-B map) is inclusive but the page map is not. The inclusive 

property implies the possibility of simple recursive implementation 16'19. 

For the general case of level n recursion, we have n-level 

virtual name y being mapped into 

fl o fl i o ... o fl i (y)" 
• • • • • • 

See Figure id. 

The present model may be used to describe the 

proposals of Lauer and Snow 16 and of Lauer and Wyeth 17 for single 

state recursive virtual machines. In the former case, the map is 

f = R-B; in the latter case, it is f = segmentation. See discussion 

of Table I below. 

*"o" is the conventional function composit~n operator of mathematics• 
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The processma P 

The model as currently developed represents only the mapping 

of resources in a computer system. This machinery is sufficient 

to discuss virtualization of certain mini-computers, e.g., DEC 

PDP-8, which do not exhibit any local mapping structure. However, 

most current (third generation) general purpose systems have addi- 

tional software-visible hardware maps. This additional structure 

may be as simple as supervisor/problem states (IBM System/360) 

and relocation-bounds registers (DEC PDP-10 and Honeywell 6000), 

or as complex as segmentation-paging-ringS I (Multics - Honeywell 

6180). In future fourth generation systems, the maps will likely 

be even more complex and might feature a formal implementation of 

the process model 22'23 in hardware-flrmware. 

The crucial point about each of these hardware (supported) 

maps is that they are software visible. In certain systems, the 

visibility extends to non-prlvileged software 15. However, in all 

cases the maps are visible to privileged software 18. 

Typically, an operating system on one of these machines will 

alter the map information before dispatching a user process. The 

map modification might be as simple as setting the processor mode 

to problem state or might be as complex as changing the process's 

address space by switching its segment table. In either case, 

however, the subsequent execution of the process and access to 

resources by it will be affected by the current local map. 
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Therefore, in order to faithfully model the running of processes on 

a virtual machine, we must introduce the local mapping structure into 

the model. 

We develop a model of the software-vlslble hardware map by 

defining the set of process names P = {P0' Pi''"' PJ} to be the 

set of names addressable by a process executing on the computer 

system. [Process spaces are always represented as circles in the 

figures.] Let R = {r0, rl,... , rn } be the set of (real) resource 

names, as before. 

Then, for the active process, we provide a way of associating 

process names with resource names during process execution. To this 

end, via all of the software visible hardware mapping structure, 

e.g., supervisor/problem state, segment table, etc., we define, for 

each moment of time, a function 

~: P ---dR U {e} 

such that if x ~ P, y E R, then 

~(x) =~ y if y is the resource name for process name x 

L e if x does not have a corresponding resource. 

The value ~(x) = e causes an exception to occur to some exception 

handling procedure, presumably to a privileged procedure of the 

operating system on this machine. To avoid confusion with VM-faults 

(see above), process traps will always be called exceptions. 
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We call the function 4 a process map or 4-map. The term process 

map is applied regardless of what form the 4-map takes. In future 

(fourth generation) systems, 4 might actually represent the firmware 

implementation of processes, although this is not necessary. The 

important point about 4 is that unlike f, which is an inter-level 

maP, 4 is a local or intra-level map and does not cross a level of 

resource mapping. 

Running a virtual machine: f o 

Running a process on a virtual machine means running a process on a 

configuration with virtual resources. Thus, if a process P= {P0' p i'''"PJ } 

runs on the virtual machine V = {v0, Vl,... , Vm } then 

4: P ---*V U {e} 

as before, with virtual resource names, V, substituted for real ones 

in the resource range of the map. 

The virtual resource names, in turn, are mapped into their real 

equivalents by the map, f:V --~R. Thus, a process name x corresponds 

to a real resource f (4(x)). In general, process names are mapped into 

real resource names under the (composed) map 

f o 4: P ---~ R U {t} U {e}. 

This (composed) map can fail to take a process name into a real 

resource name in one of two ways. In the event of a process name 

exception (Figure 2a), control is given, without VMM knowledge or 

intervention, to the privileged software of the operating syste~ 
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Figure 2 Process Exception and VM-fault 
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within the same level. A virtual name fault, however, causes control 

to pass to a process in a lower level virtual machine, without the 

operating system's knowledge or intervention (Figure 2b). While 

this fault handling software in the VMM is not subject to an f-map 

since it is running on the real machine, it is subject to its 

~-map just as any other process on the machine. 

The ~-map may be combined with the recursive f-map result to 

produce the "general" composed map 

fl o fl.l o ... o fl.l ... i.I o ~. 

Thus, for virtual machines, regardless of the level of recursion, 

there is only one application of the ~-map followed by n applications 

of an f-map. This is an important result that comes out of the for- 

malism of distinguishing the f and ~ maps. Thus, in a system with 

a complex ~-map but with a simple f-map, n-level recursion may be 

easy and inexpensive to implement. 

In the model presented, f-maps map resources of level n+l into 

resources of level n. It is equally possible to define an f-map in 

which resources of level n+l are mapped into process names of level 

n (which are then mapped into resource names of level n). This new 

f-map is called a Type II f-map to distinguish it from the Type I 

f-map which is discussed in this paper 19'24. 
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Interpretation of the model 

The model is very important for illustrating the existence of 

two very different basic maps in virtual machines. Previous works 

have not clearly distinguished the difference or isolated the maps 

adequately. The key point is that f and ~ are two totally different 

maps and serve different functions. There is no a priori require- 

ment that f or ~ be of a particular form or that there be a fixed 

relationship between them. The ~-map is the interface seen by 

an executing program whereas the f-map is the interface seen by 

the resources. In order to add virtual machines to an existing 

computer system, ~ is already defined and only f must be added. 

The choice of whether the f-map is R-B, paging, etc., depends upon 

how the resources of the virtual machines are to be used. In any 

case, the f-map must be made recursive whereas ~ need not be. 

If a new machine is being designed, then neither ~ nor f is 

yet defined. ~ may be chosen to idealize the structures seen by 

the programmer whereas f may be chosen to optimize the utilization 

of resources in the system. Such a "decoupled" view of system design 

might lead to systems with ~ = segmentation and f = paging. 

Another intrinsic distinction between the maps is that the 

f-map supports levels of resource allocation between virtual machines, 

while the ~-map establishes layers (rings, master/slave mode) of 

privilege within a single virtual machine. 
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The virtual machine model may be used to analyze and characterize 

19 
different virtual machines and architectures . As can be seen from 

Table I, none of the existing or previously proposed systems provides 

direct support of completely general virtual machines. CP-67 has a 

non-trivlal ~-map but no direct hardware support of the f-map; the 

approach of Lauer and Snow provides direct hardware support 

of the f-map but has a trivial ~-map, i.e., ~ = identity. Therefore, 

CP-67 must utilize software plus the layer relationship of the ~-map 

to simulate levels, whereas Lauer and Snow must utilize software plus 

the level relationship of the f-map to simulate layers.* 

The Gagliardi-Goldberg "Venice Proposal" (VP~ 8 supports both the 

layer and level relationships explicitly. However, since the VP does 

not directly provide hardware support for f (it supports ~ and f o ~), 

certain software intervention is still required. 

In the next section, we shall discuss a design, called the Hardware 

Virtualizer (HV), which eliminates the weaknesses of the previous 

designs. As can be seen from Table I, the HV is based directly upon 

the virtual machine model which we have developed. 

*This is not to suggest that the Lauer and Snow approach is inferior. 

It is only less general in that it will not support modern operating 

systems running directly on the individual virtual machines. 
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HARDWARE VIRTUALIZER (HV) 

Despite the value of the virtual machine model in providing 

insight into existing and proposed systems, perhaps its most important 

result is that it implies a natural means of implementing virtual 

machines in all conventional computer systems. Since the f-map and 

~-map are distinct and (possibly) different in a virtual computer 

system, they should be represented by independent constructs. When 

a process running on a virtual machine references a resource via a 

process name, the required real resource name should be obtained by 

a dynamic composition of the f-map and ~-map at execution time. 

Furthermore, the result should hold regardless of recursion or the 

particular form of f and ~. We call a hardware-firmware device which 

implements the above functionality a Hardware Vlrtualizer (HV). The 

HV may be conceptually thought of as either an extension to an existing 

system or an integral part of the design of a new one. 

HV design an~ requirements 

The design of a Hardware Virtualizer must consider the following 

points: 

(i) 

(2) 

(3) 

(4) 

The database to store f 

A mechanism to invoke f 

The mechanics of map composition 

The action on a VM-fault. 

In the discussion which follows, we shall develop the basis for 

a Hardware Virtualizer design somewhat independently of the particular 
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form of the f-map or #-map under consideration. We assume that the 

~-map is given (it could be the identity map) and we discuss the 

additional structure associated with the f-map. Although we shall 

refer to certain particular f-map structures, such as the R-B or 

paging form of memory map, the actual detailed examples are postponed 

until later. 

Database to represent f 

The VMM at level n must create and malntain a database which 

represents the f-map relationship between two adjacent levels of virtual 

machine resources, namely level n + 1 to level n. This database must 

be stored so that it is invisible to the virtual machine, i.e., level 

n + i, includlng the most privileged software. Let us assume that for 

18 
economic reason the database must be stored In main memory. Then 

f may not be in the (virtual) memory of level n + i, but it must be 

in the (virtual) memory of level n. 

The only requirement on where the f-map is stored in level n memory 

is that it be possible for the HV to locate it by applying a deterministic 

algorithm from the beginning (ROOT) of level n memory. The f-maps 

corresponding to different virtual machines at the same level may be 

16 18 
identified either implicitly or explicitly . For explicit 

identification, we assume a Virtual Machine Table (VMTAB), the ith 

entry of which points to the Virtual Machine Control Block (VMCB) 

of virtual machine i (supported at level n). See Figure 3. 
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J 

VMTAB VMCB PAGE TABLE 
- ~ i  MEMORY MAP - i  ~ 
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I ~° " ~  I I STATUS ] 

VMCB • 'MEMORY MAP "-1,~1 PAGE TABLE 
PROCESSOR MAP I i 
I /0 MAP ! I 
STATUS I I ,  

Figure 3 The VMTAB and VMCB's 
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The VMCB provides the representation of the f-map for the virtual 

machine. It contains the memory map, processor map, 

and I/0 map. In addition, there may be other status and/or 

accounting data for the virtual machine. The specific form of the 

VMCB is dependent upon the f-map actually used, e.g., R-B, paging, etc. 

Additional information possibly kept in the VMCB includes capability 

information for the virtual processor indicating particular features 

and instructions, present or absent. These capability bits include, 

for example, scientific instruction set or virtual machine instruction 

set (recurslon). If recursion is supported, then the VMCB must include 

sufficient information to automatically restart a higher level virtual 

machine on a lower level VM-fault (Figure ic). 

Mechanism to invoke f 

In order to invoke the f-map, the HV requires an additional 

register and one instruction formanipulatlng it. The register is the 

virtual machine identifier register (VMID) which contains the "tree 

name" of the virtual machine currently executing. The VMID is a multi- 

syllabic register, whose syllables identify all of the f-maps which must 

*As noted earlier, mapping of I/0 and other resources may be treated 

as a special case of the mapping of memory. Under these circum- 

stances, the VMCB reduces to the memory map component. 
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be composed together in order to yield a real resource name. The 

new instruction is LVMID (load VMID) which appends a new syllable 

to the VMID register. This instruction should more accurately be 

called append VMID but LVMID is retained for historical reasons. 

For the hardware virtualizer design to be successful, the VMID 

register (and the LVMID instruction) must have four crucial properties 18'19. 

(i) The VMID register absolute contents may neither be read 

nor written by software. 

(2) The VMID of the real machine is the null identifier. 

(3) Only the LVMID instruction may append syllables to 

the VMID. 

(4) Only a VM-fault (or an instruction which terminates the operation 

of a virtual machine) may remove syllables from the VMID. 

Figure 4 sketches the operation of the LVMID instruction while 

avoiding implementation details related to a specific choice of map. 

In the flowchart, we use the VMID as a subscript to indicate the current 

control block, VMCB [VMID]. Thus SYLLABLE, the operand of the LVMID 

instruction, is stored in the NEXT SYLLABLE field of the current 

VMCB. SYLLABLE is appended to the VMID and this new virtual machine 

is activated. If the NEXT SYLLABLE field of the new VMCB is NULL, 

indicating that this level of machine was not previously active, then 

the LVMID instruction completes and execution continues within this 

virtual machine. Otherwise, if it is not null, the lower level was 

previously active and was suspended due to a VM-fault at a still lower 

95 



START LVMID SYLLABLE 

VM CAPABILITY EXCEPTION 

FETCH 
SYLLABLE 

NO L E V E L  

YES 

VMCB [VMID] • NEXT__ S Y L L A B L E ~  SYLLABLE 
(Store SYLLABLE in NEXT __SYLLABLE 
field of current VMCB ) 

J - | ~ , ~ S Y L L A B L E  

I 

~ LEVEL,~-  LEVEL + 1 I 
I I 

1 

PROCESSOR REGISTERS 
AND MEMORY MAP LOADED FROM 
VMCB [VMID] 

I ~ VMCB [VMID] • NEXT SYLLABLE 

NO ¢#,r  I : 

YES 
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Figure 4 LVMID Instruction 

96 



level. In this case, execution of the LVMID instruction continues by 

appending the NEXTSYLLABLE field of the new VMCB to the VMID. 

Map composer 

A map composer is needed to provide the dynamic composition of 

the ~-map (possibly Indentity) and the active f-maps on each access 

to a resource. The ~-map is known and the active f-maps, i.e., the 

VMCB's, are determined from the VMID register. Figure 5 sketches the 

map composition mechanism while avoiding implementation details related 

to specific choice of maps. As can be seen, the composer accepts a 

process name P and develops a real resource name R or causes a VM- 

fault. 

VM-fault 

A VM-fault occurs when there does not exist a valid mapping 

between two adjacent levels of resources. As shown in Figure 5, a 

VM-fault causes control to be passed to the VMM superior to the leve] 

which caused the fault. This is done by removing the appropriate 

number of syllables from the VMID. 
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Performance assumptions 

The performance of the Hardware Virtualizer depends strongly 

upon the specific f-map, ~-map, and HV implementation technique 

used. However, there are basic reasons why processes can execute 

on a virtual machine with efficiency approaching that of the 

real machine. Most current systems which employ memory mapping (in 

the ~-map) make design assumptions concerning program behavior. 

We will observe that these assumptions are applicable to virtual 

machines as well. 

From the initial notion of "program locality", Madnick 25 

has generalized and identified two specific aspects of locality. 

(i) Temporal locality 

If the logical addresses ~al, a2, ...> are referenced 

during the time interval t-T to t, there is a high 

probability that these same logical addresses will 

be referenced during the time interval t to t+~ 5. 

(2) Spatial locality 

If the logical address a is referenced at time t, there 

is a high probability that a logical address in the 

range a-A to a+A will be referenced at time t + 125 . 

In modern operating systems, because of the cost to "start up" a 

process or to change the ~-map, it is likely that the scheduler and 

dispatcher will enforce an additional locality: 

(3) Process locality 

If the ~-map value of the process executing at time 

t is ~,, then there is a high probability that it will 
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be $, at time t + i. 

Virtual machines and the Hardware Virtuallzer add a new notion. 

(4) Virtual machine locality 

If the VMID of the currently executing virtual machine 

at time t is Xl.X 2 ..... Xn_l.Xn, then there is a high 

probability that the VMID will be Xl.X 2 ..... Xn_l.X n 

at time t + i. Furthermore the VMID may change only 

on a VM-fault or an LVMID instruction. 

Combining all of these locality notions, we determine that 

with proper implementation, multi-level recurslve virtual machines 

need not have significantly different performance from real machines. 

Another way of phrasing this observation is: 

Temporal and spatial locality are name invarlant. 

Regardless of what a block of memory is called, or how many times it 

gets renamed (via composed f-maps) there is still an intrinsic probability 

of reference to it by an executing program. Thus, a virtual machine 

supported by a map composer and associative store should enjoy com- 

parable performance to the real machinE. 9 

If the f-map and ~-map are sufficiently simple then the assoclator 

may not be needed. For example, if f = R-B, ~ = identity, then it may 

be sufficient for the HV to provide "invisible scratchpad registers" 

to maintain statically composed R-B values which are altered only on 

a level change 16'19. 
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If ~ involves paging or segmentation, then the real machine 

26 
itself probably required an associator for performance reasons. The 

HV associator will replace it. If the f-map is simple, e.g., f = R-B, 

then the HV associator will be very similar; if f includes paging it 

will be somewhat different. The choice of whether to include the VMID 

or level as part of the search key of the associator can be made for 

price-performance reasons. 

Interpretation of the HV 

As indicated earlier, the Hardware Virtualizer can serve as 

the central mechanism in the design of a new computer system or as 

an expansion to an existing computer system. In the latter case, we 

assume a computer system M with a given ~-map. The HV construction, 

i.e., additional data structures, new instruction (LVMID), VM-fault 

etc., defines a new machine M' with added functionality. The Hardware 

Virtualizer guarantees that M' is a recursive virtual machine capable 

of supporting a hierarchy of M' machines with M machines as terminal 

nodes where desired. 

EXAMPLE OF A HARDWARE VIRTUALIZER 

In order to clarify the operation of the Hardware Virtualizer, 

we demonstrate one example of its use. In the example, we present 

some features of a typical third generation architecture, indicate 

the extensions introduced by the Hardware Virtualizer, and then 

illustrate the execution of some instructions. Many other examples 
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have been developed in greater detail, including those for very complex 

(fourth generation) architectures 19 but the principles involved are the 

same. 

Existing Architecture 

This example is developed around a canonical third generation 

computer system, similar to the Honeywell 6000, DEC PDP-10, or IBM 

System/360. The salient features of the architecture are (i) the 

privileged/non-privileged mode distinction (master/slave, supervisor/problem, 

etc.) as part of the instruction counter (IC), (2) a single relocation- 

bounds register (R-B) whose absolute contents may be loaded in privileged 

mode, and (3) some fixed locations in main memory where the old and new 

R-B and IC registers are swapped on a process exception. 

To simplify the example we will assume the R-B register is active, 

even in privileged mode. Furthermore, all instructions will be assumed 

to be executing in privileged mode. Since mode violations are local 

process exceptions and are treated identically to R-B violations, there 

is no need to illustrate them both. The example illustrates execution 

of central processor instructions only. The extension of the example to 

include a homogeneous treatment of I/O is possible 17'19 but introduces 

additional issues of both mechanisms and policies that are best 

treated in a subsequent paper. Thus, in this example, the R-B map is 

the ~-map. 
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Extensions to Architecture 

The Hardware Virtualizer requires extensions to the third 

generation architecture. We will illustrate the modifications 

introduced by the addition of a page f-map (in the memory domain). 

We will assume 1000-word pages. (See Figure 6) The modifications 

include: 

(I) database to store f - Some fixed known location, say 

0, in the memory of level n points 

to the virtual machine table (VMTAB) 

which describes the virtual machines 

of level n + i. In this example, 

each virtual machine control block 

(VMCB) illustrates a memory map (page 

table) and a processor map. The 

processor map includes storage for 

level n + l's IC and R-B. Also 

included but not illustrated is the 

level n+2 NEXT SYLLABLE which is stored 

whenever level n + I issues an LVMID 

instruction. 

(2) a mechanism to 
invoke f 

- A multi-syllable VMID register and a LVMID 

instruction are added. When a virtual 

machine is activated, its IC and R-B are 

loaded from its control block (VMCB). 
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(3) a composer 

(4) the action on a 
VM-fault 

- A hardware-flrmware composer supported 

with scratchpad memory and associator 

(for performance reasons) is added. We 

do not discuss the details of the 

implementation. 

- The IC and R-B are stored in their VMCB, 

the appropriate syllable(s) are removed 

from the VMID and control passes to a 

fixed known location, say i, in the VMM. 

Note that this example illustrates a Type I f-map in which resources 

of level n + 1 are mapped into resources of level n. Thus, the relocation- 

bounds register value of level n does not enter into the mapping. In this 

example when LVMID is executed,relocation is coincidentally zero, but 

need not be. 

The example 

Figure 6 shows the state of main memory in our hypothetical hardware 

virtuallzed machine. We show VMCB's together with a number of instructions 

and data. For purposes of illustration, we assume the existence of a simple 

instruction, LOAD, that accesses memory. Figure 6 also shows the three 

registers~ VMID, R-Be and ICe but their values are not indicated. Instead, 

Table II shows six sets of values for VMID, R-B, and IC. For each set, 

we identify the instruction which is executed and the evaluation sequence 

used in developing an absolute physical memory address. The table entry 
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Figure 6 Hardware Virtualizer Example: Main Memory 
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TABLE II - HARDWARE VIRTUALIZER EXAMPLE: EVALUATION SEQUENCES 

LINE VMID 

NULL 

i.I 

R-B 

0-14 

1-3  

1 - 3  

2-4 

0 -5  

2 -2  

IC 

2000 

2100 

2101 

1100 

3200 

Ii00 

EVALUATION SEQUENCE 

IC is 2000 
@(2000) - 2000 

Fetch inst: LVMID 2800 
@(2800) = 2800 

Append 1 to VMID 

IC is 2100 
@(2100) = 3100 
fl(3100) = 4100 

Fetch inst: LOAD 128 
@(128) = 1128 
fli128 = 6128 

Load 999 

IC is 2101 
¢(2101) = 3101 
fl(3101) = 4101 

Fetch inst: LOAD 3500 
@(3500) = e 

IC is ii00 
¢(i100) = 3100 
f2(3100) = 9100 

Fet£h inst: LOAD i00 
¢(100) = 2100 
f2(2100) = t 

IC is 3200 
@(3200) = 3200 
fi(3200) = 4200 

Fetch inst: LVMID 1300 
@(1300) = 1300 
fl(1300) = 6300 

Append 1 to VMID 

IC is ii00 
@(ii00) = 3100 
fl I (3100) = 2100 
f~[2100) = 5100 

Fetch inst: LOAD 500 
@(50o) = 2500 
fi.i(2500) = t 

VMID AFTER 
EVAL. SE~. 

1 

NULL 

I.i 

1 

POINT 
ILLUSTRATED 

LVMID 
instruction 

Virtual 
Machine 
instruction 
execution 

Process 
exception 
in 
virtual 
machine 

Virtual 
Machine 
fault 
and 
different 
VMID 

LVMID 
with 
recursion 

Recursive 
instruction 
execution 
and 
VM-fault 
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includes indication of a process exception, VM-fault, and any change to 

the VMID. The R-B register values are represented as r-b where r is 

the relocation (in thousands of words) and b is the amount of con- 

tiguous allocation (in thousands of words). 

The six lines of Table II divide into three sets, Lines 1-3, 4, 

and 5-6. Within these sets, Lines 1-3 execute consecutively and 

Lines 5-6 also execute consecutively. 

Referring to Figure 6 and Table II, let us step through the 

first several evaluation sequences. In Linei, we are in the VMM 

running on the real machine. All control blocks have been set up and 

it is time to activate virtual machine i. The instruction counter value 

is 2000. Since the R-B map is 0-14, we add zero to 2000 and obtain 

~(2000) = 2000. The VMID is NULL. Therefore, the resource name 2000 

is a real resource and we fetch the instruction at physical location 

2000, LVMID 2800. We apply the R-B map to 2800 and eventually fetch i 

which is loaded into the VMID register. 

Virtual machine i is now activated and its IC and R-B registers 

are loaded from VMCBi. Thus, IC is now 2100 and R-B is 1-3. Even 

though the memory of virtual machine i is 5000 words (as can be seen from 

its page table) the R-B register limits this active process to addressing 

only 3000 words. This limit was presumably set by the operating system 

of virtual machine I because the active process is a standard 
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(non-monltor) user. 

Now we are in Line 2 and the IC is 2100. To apply the ~-map, we 

add i000, checking that 2100 is less than 3000, and obtain ~(2100) = 3100. 

Since the VMID is i, we must apply fl to map the virtual resource 3100 

to its real equivalent. The page table, pointed at by VMCBi, indicates 

that virtual page 3 is at location 4000. Therefore, fl(3100) = 4100 

and the LOAD 128 instruction is fetched. 

The other sequences may be evaluated in the same manner. Line 3 

illustrates a process exception to the local exception handler of VMi, 

Line 5 illustrates activation of recurslon, and Lines 4 and 6 illustrate 

VM-faults to the fault handler of their respectiveVMMs. 

It should be noted that we have added a paged f-map which is 

invisible to software at level n. The pre-existing R-B ~-map remains 

visible at level n. Thus, operating systems which are aware of the R-B 

map but unaware of the page map may be run on the virtual machine without 

any alterations. 

Note that the addition of an R-B f-map instead of the paged f-map 

is possible. This new R-B f-map would be distinct from and an addition 

to the existing R-B ~-map; it would also have to satisfy the recursion 

19 
properties of f-maps . Similarly, a paged f-map added to a machine 

such as the IBM 360/67 would be distinct from the existing paged ~-map. 
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CONCLUSION 

In this paper we have developed a model which represents the 

addressing of resources by processes executing on a virtual machine. 

The model distinguishes two maps: (i) the ~-map which maps process 

names into resource names, and (2) the f-map which maps virtual 

resource names into real resource names. The ~-map is an intra- 

level map, visible to (at least) the privileged software of a given 

virtual machine and expressing a relationship within a single level. 

The f-map is an inter-level map, invisible to all software of the 

virtual machine and establishing a relationship between the resources 

of two adjacent levels of virtual machines. Thus, running a process 

on a virtual machine consists of running it under the composed map 

f o ~. 

Application of the model provides a description and interpretation 

of previous virtual machine designs. However, the most important result 

is the Hardware Virtualizer which emerges as the natural implementation 

of thevlrtual machine model. The Hardware virtualizer design handles 

all process exceptions directly within the executing virtual machine 

without software intervention. All resource faults (VM-faults) generated by 

a virtual machine are directed to the appropriate virtual machine monitor 

without the knowledge of processes on the virtual machine (regardless 

of the level of recursion). 
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A number of virtual machine problems, both theoretical and 

practical must still be solved. However, the virtual machine model 

and the Hardware Virtualizer should provide a firm foundation for 

subsequent work in the field. 
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