
ARCHITECTURE OF VIRTUAL MACHINES*

by R. P. Goldberg

Honeywell Information Systems, Inc.
Billerica, Massachusetts

and
Harvard University

Cambridge, Massachusetts

ABSTRACT

In this paper we develop a model which represents the addressing
of resources by processes executing on a virtual machine. The model
distinguishes two maps: the ~-map which represents the map visible to
the operating system software running on the virtual machine, and
the f-map which is invisible to that software but which is manipulated
by the virtual machine monitor running on the real machine. The ~-map
maps process names into resource names and the f-map maps virtual
resource names into real resource names. Thus, a process running on
a virtual machine addresses its resources under the composed map f o ~.
In recursive operation, f maps from one virtual machine level to another
and we have f o f o ... o f o ~.

The model is used to describe and characterize previous virtual
machine designs. We also introduce and illustrate a general approach
for implementing virtual machines which follows directly from the
model. This design, the Hardware Virtualizer, handles all process
exceptions directly within the executing virtual machine without
software intervention. All resource faults (VM-faults) generated
by a virtual machine are directed to the appropriate virtual machine
monitor without the knowledge of processes on the virtual machine
@egardless of the level of recursion).

This work was sponsored in part by the Electronic Systems Division,
U.S. Air Force, Hanscom Field, Bedford, Massachusetts under Contract
Number F19628-70-C-0217.

This is the preliminary version of a paper to be presented at the AFIPS
National Computer Conference, New York, New York, June 4-8, 1973.

Second edition of Proceedings, July, 1973

74

INTRODUCTION

Virtual machine (VM) systems are a major development in computer

systems design I. By providing an efficient facsimile of one or more

complete computer systems, virtual machines have extended the multi-

access, multi-programming, multi-processlng systems of the past

decade to be multi-environment systems as well. Thus, many of the

advantages in ease of system use previously enjoyed only by appli-

cation programmers have been made available to systems programmers.

Some of these advantages include support of the following

activities concurrently with production uses of the system:

2
• improving and testing the operating system software

i
• running hardware diagnostic check-out software

running different operating systems or versions of

an operating system 3'4

• running with a virtual configuration which is

different from the real system, e.g., more memory

or processors, different I/0 devices 5

• measuring operating systems 6'7

• adding hardware enhancements to a configuration

without requiring a recoding of the existing

3
operating system(s)

75

providing a high degree of reliability and security/privacy

for those applications which demand it 8'9'I0.

While several virtual machine systems have been constructed

on contemporary machines 3'7'II'12'13'14 the majority of today's

computer systems do not and cannot support virtual machines 15.

The few virtual machine systems currently operatlonal, e.g. CP-67,

utilize awkward and inadequate techniques because of unsuitable

architectures.

Recent proposals of computer architectures specifically

designed for virtual machines, i.e., virtualizable architectures,

have suffered from two weaknesses. Either they have been unable

to support modern complex operating systems directly on the virtual

machines 16'17 or they have been unable to avoid all of the tradi-

tional awkwardness associated with virtual machine support 18.

A new proposal 19 called the Hardware Virtualizer ~, avoids

the weaknesses of the p\revlous designs while at the same time

incorporating their strong points. Thus, the Hardware Virtualizer

applies to the complete range of conventional computer systems

and eliminates the awkwardness and overhead of significant software

intervention. The Hardware Virtualizer may either be added to an

existing computer system design or incorporated directly into a

future system design.

76

In this paper, we develop a model which represents the mapping

and addressing of resources by a process executing on a virtual

machine. By deriving properties of the model, we can clarify and

contrast existing virtual machine systems. However, the most

important result of the model is that its proper interpretation

implies the Hardware Virtualizer as the direct natural implementa-

tion of the virtual machine model. We develop some of the character-

istics of the Hardware Virtualizer and then illustrate the operation

through the use of a concrete example.

MODEL OF A PROCESS RUNNING ON A VlRTUAL MACHINE

In order to derive the underlying architectural principles

for virtual machines, we develop a model that represents the

execution of a process on a virtual machine. Since we want these

principles to be applicable to the complete range of conventional

computer systems- - fromminicomputers, through current general

purpose third generation systems, and including certain future

(possibly fourth generation) machines -- it is necessary to produce

a model which reflects the common points of all of these systems.

The model should not depend on the particular map structures

visible to the software of the machine under discussion. Features

such as memory relocation or supervisor state are characteristics

of the existing system and occur whether or not we are discussing

virtual machines.

77

To introduce virtual machines we must define a different,

independent mapping structure which captures the notions common

to all virtual computer systems. The unifying theme is the

concept of a virtual machine configuration and a set of virtual

resources. These resources, e.g., the amount of main memory in

the virtual machine, are a feature of all virtual machines regard-

less of the particular virtual processor's form of memory reloca-

tion, etc. Thus, the key point is the relationship between the

resources in the configuration of the virtual machine and those

in the configuration of the real (host) machine. Only after this

relationship has been fully understood need we treat the complexities

introduced by the existence of any additional mapping structure.

The resource map f

We develop a model of virtual machlne resource mapping by

defining the set of resources V = (Vo, Vl, ...,v m) present in the

virtual machine configuration and the set of resources

R = (ro, rl, ..., r n) present in the real (host) configuration.

[Resource spaces, both real and virtual, are always represented

as squares in the figures.] The sets V and R contain all main

memory names, addressable processor registers, I/O devices, etc.

However, in the discussion which follows, for simplicity, we treat

all resource names as if they are memory names. As Lauer and Snow 16

have observed, memory locations can be used to reference other

resource names such as processor registers, e.g., DEC PDP-10,

or I/O devices, e.g., DEC PDP-ii. Therefore, no generality is

78

lost by treating all resource names as memory names.

Since we assume no a priori correspondence between virtual

and real names, we must incorporate a way of associating virtual

names with real names during execution of the virtual machine. To

this end, we define, for each moment of time, a function

f: V --~R U (t}

such that if y c V and z E R then

f(y) =~z if z is the real name for virtual name y

if y does not have a corresponding real name

The value f(y) = t causes a trap or fault to some fault handling

procedure in the machine whose resource set is R, i.e.,the machine

R. For clarity we always term this event a VM-fault, never an

exception.

We call the function f a resource map, virtual machine map,

or f-map. The software on the real machine R which sets up the

f-map and (normally) receives control on a VM-fault is called

the virtual machine monitor (VMM).

The model imposes no requirement that the f-map be a page map,

relocation-bounds (R-B) map, or be of any other form. However, when

speaking of virtual machines we normally restrict our attention to

those cases where both the virtual machine is a faithful replica

V9

of the real machine and the performance of the virtual system can be

made comparable to the real one.

Recurslon

The resource map model developed above extends directly to

recurslon by interpreting V and R as two adjacent levels of virtual

resources. Then the real physical machine is level 0 and the f-map

maps level n+l to level n.

Recursion for virtual systems is not only a matter of conceptual

elegance or a consideration of logical closure 16'17 it is also a
P

capability of considerable practical Interest 18'20. In its simplest

form, the motivation for virtual machine recurslon is that although

it makes sense to run conventional operating systems on the virtual

machine, in order to test the VMM software on a VM, it is also

necessary to be able to run at least a second level virtual machine.

In the discussion which follows, we use a PL/I - style

qualified name tree-namlng convention in which a virtual machine

at level n has n syllables in its name 18'19.

This tree-name is used as a subscript for both the virtual resource

space, e.g., Vi.i, and corresponding f-map, e.g., fl.l"

Thus, if

fl: V I ---, R

fl.l: Vl.l ---~Vl

80

Then a level 2 virtual resource name y is mapped into fl(fl.l(y)) or

fl o fl.l(y). See Figure la.

In this function, fl o fl.l' we identify two possible faults:

(i) The level 2 resource ~irtual machin~ fault to the VMM

of level I, i.e., fl.l(y) = t. See Figure lb.

(2) The level i resource (virtual machine) fault to the VMM

of level 0 (the real machine), i.e., fl o fl.l(y) = t.

See Figure Ic.

In general, a composed f-map may cause either fault• However,

there exists a class of maps, called inclusive maps, which can

only cause the first fault (level 2 fault). The relocation-bounds

map (R-B map) is inclusive but the page map is not. The inclusive

property implies the possibility of simple recursive implementation 16'19.

For the general case of level n recursion, we have n-level

virtual name y being mapped into

fl o fl i o ... o fl i (y)"
• • • • • •

See Figure id.

The present model may be used to describe the

proposals of Lauer and Snow 16 and of Lauer and Wyeth 17 for single

state recursive virtual machines. In the former case, the map is

f = R-B; in the latter case, it is f = segmentation. See discussion

of Table I below.

*"o" is the conventional function composit~n operator of mathematics•

81

(c)

• t . t

(a)

Vl . 1 V i R

fi.1 I "

Vl. 1 V I R

° t

• f °

V l . l V 1 R

(d)

f i 1 . t

V 1 !

0 0 0

• t ° t

V! R

Figure i Recursive f-map

82

The processma P

The model as currently developed represents only the mapping

of resources in a computer system. This machinery is sufficient

to discuss virtualization of certain mini-computers, e.g., DEC

PDP-8, which do not exhibit any local mapping structure. However,

most current (third generation) general purpose systems have addi-

tional software-visible hardware maps. This additional structure

may be as simple as supervisor/problem states (IBM System/360)

and relocation-bounds registers (DEC PDP-10 and Honeywell 6000),

or as complex as segmentation-paging-ringS I (Multics - Honeywell

6180). In future fourth generation systems, the maps will likely

be even more complex and might feature a formal implementation of

the process model 22'23 in hardware-flrmware.

The crucial point about each of these hardware (supported)

maps is that they are software visible. In certain systems, the

visibility extends to non-prlvileged software 15. However, in all

cases the maps are visible to privileged software 18.

Typically, an operating system on one of these machines will

alter the map information before dispatching a user process. The

map modification might be as simple as setting the processor mode

to problem state or might be as complex as changing the process's

address space by switching its segment table. In either case,

however, the subsequent execution of the process and access to

resources by it will be affected by the current local map.

83

Therefore, in order to faithfully model the running of processes on

a virtual machine, we must introduce the local mapping structure into

the model.

We develop a model of the software-vlslble hardware map by

defining the set of process names P = {P0' Pi''"' PJ} to be the

set of names addressable by a process executing on the computer

system. [Process spaces are always represented as circles in the

figures.] Let R = {r0, rl,... , rn } be the set of (real) resource

names, as before.

Then, for the active process, we provide a way of associating

process names with resource names during process execution. To this

end, via all of the software visible hardware mapping structure,

e.g., supervisor/problem state, segment table, etc., we define, for

each moment of time, a function

~: P ---dR U {e}

such that if x ~ P, y E R, then

~(x) =~ y if y is the resource name for process name x

L e if x does not have a corresponding resource.

The value ~(x) = e causes an exception to occur to some exception

handling procedure, presumably to a privileged procedure of the

operating system on this machine. To avoid confusion with VM-faults

(see above), process traps will always be called exceptions.

84

We call the function 4 a process map or 4-map. The term process

map is applied regardless of what form the 4-map takes. In future

(fourth generation) systems, 4 might actually represent the firmware

implementation of processes, although this is not necessary. The

important point about 4 is that unlike f, which is an inter-level

maP, 4 is a local or intra-level map and does not cross a level of

resource mapping.

Running a virtual machine: f o

Running a process on a virtual machine means running a process on a

configuration with virtual resources. Thus, if a process P= {P0' p i'''"PJ }

runs on the virtual machine V = {v0, Vl,... , Vm } then

4: P ---*V U {e}

as before, with virtual resource names, V, substituted for real ones

in the resource range of the map.

The virtual resource names, in turn, are mapped into their real

equivalents by the map, f:V --~R. Thus, a process name x corresponds

to a real resource f (4(x)). In general, process names are mapped into

real resource names under the (composed) map

f o 4: P ---~ R U {t} U {e}.

This (composed) map can fail to take a process name into a real

resource name in one of two ways. In the event of a process name

exception (Figure 2a), control is given, without VMM knowledge or

intervention, to the privileged software of the operating syste~

85

j . . - v " e " t

P V R

(a)

• e f ~..- . . ---t

P V R
(b)

Figure 2 Process Exception and VM-fault

86

within the same level. A virtual name fault, however, causes control

to pass to a process in a lower level virtual machine, without the

operating system's knowledge or intervention (Figure 2b). While

this fault handling software in the VMM is not subject to an f-map

since it is running on the real machine, it is subject to its

~-map just as any other process on the machine.

The ~-map may be combined with the recursive f-map result to

produce the "general" composed map

fl o fl.l o ... o fl.l ... i.I o ~.

Thus, for virtual machines, regardless of the level of recursion,

there is only one application of the ~-map followed by n applications

of an f-map. This is an important result that comes out of the for-

malism of distinguishing the f and ~ maps. Thus, in a system with

a complex ~-map but with a simple f-map, n-level recursion may be

easy and inexpensive to implement.

In the model presented, f-maps map resources of level n+l into

resources of level n. It is equally possible to define an f-map in

which resources of level n+l are mapped into process names of level

n (which are then mapped into resource names of level n). This new

f-map is called a Type II f-map to distinguish it from the Type I

f-map which is discussed in this paper 19'24.

87

Interpretation of the model

The model is very important for illustrating the existence of

two very different basic maps in virtual machines. Previous works

have not clearly distinguished the difference or isolated the maps

adequately. The key point is that f and ~ are two totally different

maps and serve different functions. There is no a priori require-

ment that f or ~ be of a particular form or that there be a fixed

relationship between them. The ~-map is the interface seen by

an executing program whereas the f-map is the interface seen by

the resources. In order to add virtual machines to an existing

computer system, ~ is already defined and only f must be added.

The choice of whether the f-map is R-B, paging, etc., depends upon

how the resources of the virtual machines are to be used. In any

case, the f-map must be made recursive whereas ~ need not be.

If a new machine is being designed, then neither ~ nor f is

yet defined. ~ may be chosen to idealize the structures seen by

the programmer whereas f may be chosen to optimize the utilization

of resources in the system. Such a "decoupled" view of system design

might lead to systems with ~ = segmentation and f = paging.

Another intrinsic distinction between the maps is that the

f-map supports levels of resource allocation between virtual machines,

while the ~-map establishes layers (rings, master/slave mode) of

privilege within a single virtual machine.

88

The virtual machine model may be used to analyze and characterize

19
different virtual machines and architectures . As can be seen from

Table I, none of the existing or previously proposed systems provides

direct support of completely general virtual machines. CP-67 has a

non-trivlal ~-map but no direct hardware support of the f-map; the

approach of Lauer and Snow provides direct hardware support

of the f-map but has a trivial ~-map, i.e., ~ = identity. Therefore,

CP-67 must utilize software plus the layer relationship of the ~-map

to simulate levels, whereas Lauer and Snow must utilize software plus

the level relationship of the f-map to simulate layers.*

The Gagliardi-Goldberg "Venice Proposal" (VP~ 8 supports both the

layer and level relationships explicitly. However, since the VP does

not directly provide hardware support for f (it supports ~ and f o ~),

certain software intervention is still required.

In the next section, we shall discuss a design, called the Hardware

Virtualizer (HV), which eliminates the weaknesses of the previous

designs. As can be seen from Table I, the HV is based directly upon

the virtual machine model which we have developed.

*This is not to suggest that the Lauer and Snow approach is inferior.

It is only less general in that it will not support modern operating

systems running directly on the individual virtual machines.

89

8

Izl

I--.I
l >

I- I

o9

0

0
H

I--I

H

o ~

o

r~ e-. E-~

6..I 0 ~-I

0

o

II
40

o o

o
o~
~J

0
.,-4
40

o

o
0J ~J

oJ

o

~J

o 0

o

o

o

0 . 3
q3
W ~ tU

o

o

o

t~ h-I 00 ~ v

i.--i ~

~ .l.J m
m o

m o

o

Ill

m

o ' ~

0 • m

Z~ ° ~
• ~ o

0~'0 o aJ'~ m

m
~ ,.c , o o

m

m

0J I
4o

~ ~ ~ 0
• ~ o~ 0"I'I

~ 0~0 ~

I
o

~ m rn
o ~

$.; • o

I ~o

o

0
~.~

V

~J
u~
o

i.-I o

~ o I!1
V

,~-4 r-I

r--I " 0
~0 ,-.t

v-4

o

v-I

~ o ~

~ v

)0

~ o ~
~ v

HARDWARE VIRTUALIZER (HV)

Despite the value of the virtual machine model in providing

insight into existing and proposed systems, perhaps its most important

result is that it implies a natural means of implementing virtual

machines in all conventional computer systems. Since the f-map and

~-map are distinct and (possibly) different in a virtual computer

system, they should be represented by independent constructs. When

a process running on a virtual machine references a resource via a

process name, the required real resource name should be obtained by

a dynamic composition of the f-map and ~-map at execution time.

Furthermore, the result should hold regardless of recursion or the

particular form of f and ~. We call a hardware-firmware device which

implements the above functionality a Hardware Vlrtualizer (HV). The

HV may be conceptually thought of as either an extension to an existing

system or an integral part of the design of a new one.

HV design an~ requirements

The design of a Hardware Virtualizer must consider the following

points:

(i)

(2)

(3)

(4)

The database to store f

A mechanism to invoke f

The mechanics of map composition

The action on a VM-fault.

In the discussion which follows, we shall develop the basis for

a Hardware Virtualizer design somewhat independently of the particular

91

form of the f-map or #-map under consideration. We assume that the

~-map is given (it could be the identity map) and we discuss the

additional structure associated with the f-map. Although we shall

refer to certain particular f-map structures, such as the R-B or

paging form of memory map, the actual detailed examples are postponed

until later.

Database to represent f

The VMM at level n must create and malntain a database which

represents the f-map relationship between two adjacent levels of virtual

machine resources, namely level n + 1 to level n. This database must

be stored so that it is invisible to the virtual machine, i.e., level

n + i, includlng the most privileged software. Let us assume that for

18
economic reason the database must be stored In main memory. Then

f may not be in the (virtual) memory of level n + i, but it must be

in the (virtual) memory of level n.

The only requirement on where the f-map is stored in level n memory

is that it be possible for the HV to locate it by applying a deterministic

algorithm from the beginning (ROOT) of level n memory. The f-maps

corresponding to different virtual machines at the same level may be

16 18
identified either implicitly or explicitly . For explicit

identification, we assume a Virtual Machine Table (VMTAB), the ith

entry of which points to the Virtual Machine Control Block (VMCB)

of virtual machine i (supported at level n). See Figure 3.

92

ROOT J
J

!

J

VMTAB VMCB PAGE TABLE
- ~ i MEMORY MAP - i ~

J PROCESSOR MAP I
I ~° " ~ I I STATUS]

VMCB • 'MEMORY MAP "-1,~1 PAGE TABLE
PROCESSOR MAP I i
I /0 MAP ! I
STATUS I I ,

Figure 3 The VMTAB and VMCB's

93

The VMCB provides the representation of the f-map for the virtual

machine. It contains the memory map, processor map,

and I/0 map. In addition, there may be other status and/or

accounting data for the virtual machine. The specific form of the

VMCB is dependent upon the f-map actually used, e.g., R-B, paging, etc.

Additional information possibly kept in the VMCB includes capability

information for the virtual processor indicating particular features

and instructions, present or absent. These capability bits include,

for example, scientific instruction set or virtual machine instruction

set (recurslon). If recursion is supported, then the VMCB must include

sufficient information to automatically restart a higher level virtual

machine on a lower level VM-fault (Figure ic).

Mechanism to invoke f

In order to invoke the f-map, the HV requires an additional

register and one instruction formanipulatlng it. The register is the

virtual machine identifier register (VMID) which contains the "tree

name" of the virtual machine currently executing. The VMID is a multi-

syllabic register, whose syllables identify all of the f-maps which must

*As noted earlier, mapping of I/0 and other resources may be treated

as a special case of the mapping of memory. Under these circum-

stances, the VMCB reduces to the memory map component.

94

be composed together in order to yield a real resource name. The

new instruction is LVMID (load VMID) which appends a new syllable

to the VMID register. This instruction should more accurately be

called append VMID but LVMID is retained for historical reasons.

For the hardware virtualizer design to be successful, the VMID

register (and the LVMID instruction) must have four crucial properties 18'19.

(i) The VMID register absolute contents may neither be read

nor written by software.

(2) The VMID of the real machine is the null identifier.

(3) Only the LVMID instruction may append syllables to

the VMID.

(4) Only a VM-fault (or an instruction which terminates the operation

of a virtual machine) may remove syllables from the VMID.

Figure 4 sketches the operation of the LVMID instruction while

avoiding implementation details related to a specific choice of map.

In the flowchart, we use the VMID as a subscript to indicate the current

control block, VMCB [VMID]. Thus SYLLABLE, the operand of the LVMID

instruction, is stored in the NEXT SYLLABLE field of the current

VMCB. SYLLABLE is appended to the VMID and this new virtual machine

is activated. If the NEXT SYLLABLE field of the new VMCB is NULL,

indicating that this level of machine was not previously active, then

the LVMID instruction completes and execution continues within this

virtual machine. Otherwise, if it is not null, the lower level was

previously active and was suspended due to a VM-fault at a still lower

95

START LVMID SYLLABLE

VM CAPABILITY EXCEPTION

FETCH
SYLLABLE

NO L E V E L

YES

VMCB [VMID] • NEXT__ S Y L L A B L E ~ SYLLABLE
(Store SYLLABLE in NEXT __SYLLABLE
field of current VMCB)

J - | ~ , ~ S Y L L A B L E

I

~ LEVEL,~- LEVEL + 1 I
I I

1

PROCESSOR REGISTERS
AND MEMORY MAP LOADED FROM
VMCB [VMID]

I ~ VMCB [VMID] • NEXT SYLLABLE

NO ¢#,r I :

YES

f INSTRUCTION

Figure 4 LVMID Instruction

96

level. In this case, execution of the LVMID instruction continues by

appending the NEXTSYLLABLE field of the new VMCB to the VMID.

Map composer

A map composer is needed to provide the dynamic composition of

the ~-map (possibly Indentity) and the active f-maps on each access

to a resource. The ~-map is known and the active f-maps, i.e., the

VMCB's, are determined from the VMID register. Figure 5 sketches the

map composition mechanism while avoiding implementation details related

to specific choice of maps. As can be seen, the composer accepts a

process name P and develops a real resource name R or causes a VM-

fault.

VM-fault

A VM-fault occurs when there does not exist a valid mapping

between two adjacent levels of resources. As shown in Figure 5, a

VM-fault causes control to be passed to the VMM superior to the leve]

which caused the fault. This is done by removing the appropriate

number of syllables from the VMID.

97

START
COMPOSER)

I FETCH PROCESS I NAME P

APPLY ~-MAP:

MAF~ING

R4 al (P)

PROCESS EXCEPTION

V ~ VMID

L'4---LEVEL

~ Y E S

I

GET VMC8 EV3 J APPLY f-MAP: f(R)

I - f (R)]

JR IS THE ~ COMPOSITION ~ REAL RESOURCE J - ~.~ COMPLETION .J

I I
I

START VM- FAULT

V CLJ I NULL

L,4.~ L-- I

L = 0 ~ _ YES

• NO

il

VMCB EV'3 • NEXT-SYLLABLE~NULL

Figure 5 Hap Composition and VM-fault

9 8

LEVEL: L

VMID4-- V

VM--FAULT COMPLETION

Performance assumptions

The performance of the Hardware Virtualizer depends strongly

upon the specific f-map, ~-map, and HV implementation technique

used. However, there are basic reasons why processes can execute

on a virtual machine with efficiency approaching that of the

real machine. Most current systems which employ memory mapping (in

the ~-map) make design assumptions concerning program behavior.

We will observe that these assumptions are applicable to virtual

machines as well.

From the initial notion of "program locality", Madnick 25

has generalized and identified two specific aspects of locality.

(i) Temporal locality

If the logical addresses ~al, a2, ...> are referenced

during the time interval t-T to t, there is a high

probability that these same logical addresses will

be referenced during the time interval t to t+~ 5.

(2) Spatial locality

If the logical address a is referenced at time t, there

is a high probability that a logical address in the

range a-A to a+A will be referenced at time t + 125 .

In modern operating systems, because of the cost to "start up" a

process or to change the ~-map, it is likely that the scheduler and

dispatcher will enforce an additional locality:

(3) Process locality

If the ~-map value of the process executing at time

t is ~,, then there is a high probability that it will

99

be $, at time t + i.

Virtual machines and the Hardware Virtuallzer add a new notion.

(4) Virtual machine locality

If the VMID of the currently executing virtual machine

at time t is Xl.X 2 Xn_l.Xn, then there is a high

probability that the VMID will be Xl.X 2 Xn_l.X n

at time t + i. Furthermore the VMID may change only

on a VM-fault or an LVMID instruction.

Combining all of these locality notions, we determine that

with proper implementation, multi-level recurslve virtual machines

need not have significantly different performance from real machines.

Another way of phrasing this observation is:

Temporal and spatial locality are name invarlant.

Regardless of what a block of memory is called, or how many times it

gets renamed (via composed f-maps) there is still an intrinsic probability

of reference to it by an executing program. Thus, a virtual machine

supported by a map composer and associative store should enjoy com-

parable performance to the real machinE. 9

If the f-map and ~-map are sufficiently simple then the assoclator

may not be needed. For example, if f = R-B, ~ = identity, then it may

be sufficient for the HV to provide "invisible scratchpad registers"

to maintain statically composed R-B values which are altered only on

a level change 16'19.

i00

If ~ involves paging or segmentation, then the real machine

26
itself probably required an associator for performance reasons. The

HV associator will replace it. If the f-map is simple, e.g., f = R-B,

then the HV associator will be very similar; if f includes paging it

will be somewhat different. The choice of whether to include the VMID

or level as part of the search key of the associator can be made for

price-performance reasons.

Interpretation of the HV

As indicated earlier, the Hardware Virtualizer can serve as

the central mechanism in the design of a new computer system or as

an expansion to an existing computer system. In the latter case, we

assume a computer system M with a given ~-map. The HV construction,

i.e., additional data structures, new instruction (LVMID), VM-fault

etc., defines a new machine M' with added functionality. The Hardware

Virtualizer guarantees that M' is a recursive virtual machine capable

of supporting a hierarchy of M' machines with M machines as terminal

nodes where desired.

EXAMPLE OF A HARDWARE VIRTUALIZER

In order to clarify the operation of the Hardware Virtualizer,

we demonstrate one example of its use. In the example, we present

some features of a typical third generation architecture, indicate

the extensions introduced by the Hardware Virtualizer, and then

illustrate the execution of some instructions. Many other examples

i01

have been developed in greater detail, including those for very complex

(fourth generation) architectures 19 but the principles involved are the

same.

Existing Architecture

This example is developed around a canonical third generation

computer system, similar to the Honeywell 6000, DEC PDP-10, or IBM

System/360. The salient features of the architecture are (i) the

privileged/non-privileged mode distinction (master/slave, supervisor/problem,

etc.) as part of the instruction counter (IC), (2) a single relocation-

bounds register (R-B) whose absolute contents may be loaded in privileged

mode, and (3) some fixed locations in main memory where the old and new

R-B and IC registers are swapped on a process exception.

To simplify the example we will assume the R-B register is active,

even in privileged mode. Furthermore, all instructions will be assumed

to be executing in privileged mode. Since mode violations are local

process exceptions and are treated identically to R-B violations, there

is no need to illustrate them both. The example illustrates execution

of central processor instructions only. The extension of the example to

include a homogeneous treatment of I/O is possible 17'19 but introduces

additional issues of both mechanisms and policies that are best

treated in a subsequent paper. Thus, in this example, the R-B map is

the ~-map.

102

Extensions to Architecture

The Hardware Virtualizer requires extensions to the third

generation architecture. We will illustrate the modifications

introduced by the addition of a page f-map (in the memory domain).

We will assume 1000-word pages. (See Figure 6) The modifications

include:

(I) database to store f - Some fixed known location, say

0, in the memory of level n points

to the virtual machine table (VMTAB)

which describes the virtual machines

of level n + i. In this example,

each virtual machine control block

(VMCB) illustrates a memory map (page

table) and a processor map. The

processor map includes storage for

level n + l's IC and R-B. Also

included but not illustrated is the

level n+2 NEXT SYLLABLE which is stored

whenever level n + I issues an LVMID

instruction.

(2) a mechanism to
invoke f

- A multi-syllable VMID register and a LVMID

instruction are added. When a virtual

machine is activated, its IC and R-B are

loaded from its control block (VMCB).

103

(3) a composer

(4) the action on a
VM-fault

- A hardware-flrmware composer supported

with scratchpad memory and associator

(for performance reasons) is added. We

do not discuss the details of the

implementation.

- The IC and R-B are stored in their VMCB,

the appropriate syllable(s) are removed

from the VMID and control passes to a

fixed known location, say i, in the VMM.

Note that this example illustrates a Type I f-map in which resources

of level n + 1 are mapped into resources of level n. Thus, the relocation-

bounds register value of level n does not enter into the mapping. In this

example when LVMID is executed,relocation is coincidentally zero, but

need not be.

The example

Figure 6 shows the state of main memory in our hypothetical hardware

virtuallzed machine. We show VMCB's together with a number of instructions

and data. For purposes of illustration, we assume the existence of a simple

instruction, LOAD, that accesses memory. Figure 6 also shows the three

registers~ VMID, R-Be and ICe but their values are not indicated. Instead,

Table II shows six sets of values for VMID, R-B, and IC. For each set,

we identify the instruction which is executed and the evaluation sequence

used in developing an absolute physical memory address. The table entry

104

0

VM-FAUL T
LOCATION

LOCAL PROCESS
EXCEPTION
LOCATION

3
VM-FAULT
LOCATION (VM!)
LOCAL PROCESS
EXCEPTION (VMI) ~---
LOCATION

6

8

9

I0

II

I
"1

VM'OI I. "-BI I 'cl i
f l f 2

.-1"--------.-__...........__•.. VMTAB VMCBI PAGE TBL. VMCB2
, [i i i 1 - ' r ~ , I 2l___~ L ~,~, ;,oo i ' ~ [I~-,"~-~,1

I ~" 2~.~.~....~~

PAGE TBL.
~ 8
I II

2 -

3 9

4 13

5 12

2ooo I LVMZD 2800 I

2800 I I I f l . I

I ~ VMTAB VMCB I

--I- I ~,~_,, _

I 4,oo [~ D ,28 I
, ,o, I LOAD 3500 I
. ,oo I LV.,D ,,oo I

~,oo I LOAD , ~ I

PAGE TBL.

63001 ' I

[I
I I
I I

9100 I LOAD I00 I

Ii 'VM I. I

-VM 2

,VM I

Figure 6 Hardware Virtualizer Example: Main Memory

10B

TABLE II - HARDWARE VIRTUALIZER EXAMPLE: EVALUATION SEQUENCES

LINE VMID

NULL

i.I

R-B

0-14

1-3

1 - 3

2-4

0 -5

2 -2

IC

2000

2100

2101

1100

3200

Ii00

EVALUATION SEQUENCE

IC is 2000
@(2000) - 2000

Fetch inst: LVMID 2800
@(2800) = 2800

Append 1 to VMID

IC is 2100
@(2100) = 3100
fl(3100) = 4100

Fetch inst: LOAD 128
@(128) = 1128
fli128 = 6128

Load 999

IC is 2101
¢(2101) = 3101
fl(3101) = 4101

Fetch inst: LOAD 3500
@(3500) = e

IC is ii00
¢(i100) = 3100
f2(3100) = 9100

Fet£h inst: LOAD i00
¢(100) = 2100
f2(2100) = t

IC is 3200
@(3200) = 3200
fi(3200) = 4200

Fetch inst: LVMID 1300
@(1300) = 1300
fl(1300) = 6300

Append 1 to VMID

IC is ii00
@(ii00) = 3100
fl I (3100) = 2100
f~[2100) = 5100

Fetch inst: LOAD 500
@(50o) = 2500
fi.i(2500) = t

VMID AFTER
EVAL. SE~.

1

NULL

I.i

1

POINT
ILLUSTRATED

LVMID
instruction

Virtual
Machine
instruction
execution

Process
exception
in
virtual
machine

Virtual
Machine
fault
and
different
VMID

LVMID
with
recursion

Recursive
instruction
execution
and
VM-fault

106

includes indication of a process exception, VM-fault, and any change to

the VMID. The R-B register values are represented as r-b where r is

the relocation (in thousands of words) and b is the amount of con-

tiguous allocation (in thousands of words).

The six lines of Table II divide into three sets, Lines 1-3, 4,

and 5-6. Within these sets, Lines 1-3 execute consecutively and

Lines 5-6 also execute consecutively.

Referring to Figure 6 and Table II, let us step through the

first several evaluation sequences. In Linei, we are in the VMM

running on the real machine. All control blocks have been set up and

it is time to activate virtual machine i. The instruction counter value

is 2000. Since the R-B map is 0-14, we add zero to 2000 and obtain

~(2000) = 2000. The VMID is NULL. Therefore, the resource name 2000

is a real resource and we fetch the instruction at physical location

2000, LVMID 2800. We apply the R-B map to 2800 and eventually fetch i

which is loaded into the VMID register.

Virtual machine i is now activated and its IC and R-B registers

are loaded from VMCBi. Thus, IC is now 2100 and R-B is 1-3. Even

though the memory of virtual machine i is 5000 words (as can be seen from

its page table) the R-B register limits this active process to addressing

only 3000 words. This limit was presumably set by the operating system

of virtual machine I because the active process is a standard

107

(non-monltor) user.

Now we are in Line 2 and the IC is 2100. To apply the ~-map, we

add i000, checking that 2100 is less than 3000, and obtain ~(2100) = 3100.

Since the VMID is i, we must apply fl to map the virtual resource 3100

to its real equivalent. The page table, pointed at by VMCBi, indicates

that virtual page 3 is at location 4000. Therefore, fl(3100) = 4100

and the LOAD 128 instruction is fetched.

The other sequences may be evaluated in the same manner. Line 3

illustrates a process exception to the local exception handler of VMi,

Line 5 illustrates activation of recurslon, and Lines 4 and 6 illustrate

VM-faults to the fault handler of their respectiveVMMs.

It should be noted that we have added a paged f-map which is

invisible to software at level n. The pre-existing R-B ~-map remains

visible at level n. Thus, operating systems which are aware of the R-B

map but unaware of the page map may be run on the virtual machine without

any alterations.

Note that the addition of an R-B f-map instead of the paged f-map

is possible. This new R-B f-map would be distinct from and an addition

to the existing R-B ~-map; it would also have to satisfy the recursion

19
properties of f-maps . Similarly, a paged f-map added to a machine

such as the IBM 360/67 would be distinct from the existing paged ~-map.

108

CONCLUSION

In this paper we have developed a model which represents the

addressing of resources by processes executing on a virtual machine.

The model distinguishes two maps: (i) the ~-map which maps process

names into resource names, and (2) the f-map which maps virtual

resource names into real resource names. The ~-map is an intra-

level map, visible to (at least) the privileged software of a given

virtual machine and expressing a relationship within a single level.

The f-map is an inter-level map, invisible to all software of the

virtual machine and establishing a relationship between the resources

of two adjacent levels of virtual machines. Thus, running a process

on a virtual machine consists of running it under the composed map

f o ~.

Application of the model provides a description and interpretation

of previous virtual machine designs. However, the most important result

is the Hardware Virtualizer which emerges as the natural implementation

of thevlrtual machine model. The Hardware virtualizer design handles

all process exceptions directly within the executing virtual machine

without software intervention. All resource faults (VM-faults) generated by

a virtual machine are directed to the appropriate virtual machine monitor

without the knowledge of processes on the virtual machine (regardless

of the level of recursion).

109

A number of virtual machine problems, both theoretical and

practical must still be solved. However, the virtual machine model

and the Hardware Virtualizer should provide a firm foundation for

subsequent work in the field.

ACKNOWLEDGMENTS

The author would like to thank his colleagues at both MIT and

Harvard for the numerous discussions about virtual machines over the

years. Special thanks are due to Dr. U. O. Gagllardi who supervised

the author's Ph.D. research. In particular, it was Dr. Gagliardi who

first suggested the notion of a nested virtual machine fault structure

and associated virtual machine identifier (VMID) register functionality.

REFERENCES

1 J P BUZEN U O GAGLIARDI
The evolution of virtual machine architecture
Proceedings AFIPS National Computer Conference 1973

2 M BERTHAUD M JACOLIN P POTIN H SAVARY
Coupling virtual machines and system construction
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual Computer
Systems Cambridge Massachusetts 1973

3 R A MEYER L H SEAWRIGHT
A virtual machine time-sharing system
IBM Systems Journal Vol 9 No 3 1970

4 R P PARMELEE
Virtual machines: some unexpected applications
Proceedings IEEE International Computer Society Conference
Boston Massachusetts 1971

Ii0

5

7

9

i0

J M WINETT
Virtual machines for developing systems software
Proceedings IEEE International Computer Society Conference
Boston Massachusetts 1971

V CASAROSA C PAOLI
VHM: a virtual hardware monitor
Proceedings ACM SIGARCH-SlGOPS Workshop on Virtual Computer
Systems Cambridge Massachusetts 1973

D D KEEFE
Hierarchical control programs for systems evaluation
IBM Systems Journal Vol 7 No 2 1968

J P BUZEN P P CHEN R P GOLDBERG
Virtual machine techniques for improving software reliability
Proceedings IEEE Symposium on Computer Software Reliability New York 1973

C R ATTANASIO
Virtual machines and data security
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual Computer
Systems Cambridge Massachusetts 1973

S E MADNICK J J DONOVAN
Virtual machine approach to information system security and isolation
Proceedings ACM SIGARCH-SIGOPS Workshop on Virtual Computer
Systems Cambridge Massachusetts 1973

ii R ADAIR R U BAYLES L W COMEAU R J CREASY
A virtual machine system for the 360/40
IBM Cambridge Scientific Center Report No G320-2007 1966

12 R J SRODAWA L A BATES
An efficient virtual machine implementation
Proceedings AFIPS National Computer Conference 1973

13 K FUCHI H TANAKA Y NAMAGO T YUBA
A program simulator by partial interpretation
Proceeding ACM SIGOPS Second Symposium on Operating
Systems Principles Princeton New Jersey 1969

14 IBM CORPORATION
IBM virtual machine facility/370: planning guide
Publication Number GC20-1801-0 1972

15 R P GOLDBERG
Hardware requirements for virtual machine systems
Proceedings Hawaii International Conference on System Sciences
Honolulu Hawaii 1971

iii

16 H C LAUER C R SNOW
Is supervlsor-state necessary?
Proceedings ACM AICA International Computing Symposium Venice Italy 1972

17 H C LAUER D WYETH
A recursive virtual machine architecture
Proceedings ACM SIGARCH-SlGOPS Workshop on Virtual Computer
Systems Cambridge Massachusetts 1973

18 U O GAGLIARDI R P GOLDBERG
Virtualizable architectures
Proceedings ACM AICA International Computing Symposium Venice Italy 1972

19 R P GOLDBERG
Architectural principles for virtual computer systems
Ph.D. Thesis Division of Engineering and Applied Physics Harvard
University Cambridge Massachusetts 1972

20 R P GOLDBERG
Virtual machine systems
MIT Lincoln Laboratory Report No MS-2687 (also 28L-0036) Lexington
Massachusetts 1969

21 M D SCHROEDER J H SALTZER
A hardware architecture for implementing protection rings
Communications of the ACM Vol 15 No 3 1972

22 INFOTECH
The fourth generation
Maidenhead, England 1972

23 B H LISKOV
The design of the VENUS operating system
Communications of the ACMVol 15 No 3 1972

24 R P GOLDBERG
Virtual Machines: semantics and examples
Proceedings IEEE International Computer Society
Conference Boston Massachusetts 1971

25 S E MADNICK
Storage hierarchy systems
Ph.D. Thesis Department of Electrical Engineering
MIT Cambridge Massachusetts 1972

26 M D SCHROEDER
Performance of the GE-645 associative memory while Multics is
in operation
Proceedings ACM SIGOPS Workshop on System Performance Evaluation Cambridge
Massachusetts 1971

112

