# Library Coq.Numbers.NatInt.NZMulOrder

Require Import NZAxioms.

Module NZMulOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
Open Local Scope NatIntScope.

Theorem NZmul_lt_pred :
forall p q n m : NZ, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).

Theorem NZmul_lt_mono_pos_l : forall p n m : NZ, 0 < p -> (n < m <-> p * n < p * m).

Theorem NZmul_lt_mono_pos_r : forall p n m : NZ, 0 < p -> (n < m <-> n * p < m * p).

Theorem NZmul_lt_mono_neg_l : forall p n m : NZ, p < 0 -> (n < m <-> p * m < p * n).

Theorem NZmul_lt_mono_neg_r : forall p n m : NZ, p < 0 -> (n < m <-> m * p < n * p).

Theorem NZmul_le_mono_nonneg_l : forall n m p : NZ, 0 <= p -> n <= m -> p * n <= p * m.

Theorem NZmul_le_mono_nonpos_l : forall n m p : NZ, p <= 0 -> n <= m -> p * m <= p * n.

Theorem NZmul_le_mono_nonneg_r : forall n m p : NZ, 0 <= p -> n <= m -> n * p <= m * p.

Theorem NZmul_le_mono_nonpos_r : forall n m p : NZ, p <= 0 -> n <= m -> m * p <= n * p.

Theorem NZmul_cancel_l : forall n m p : NZ, p ~= 0 -> (p * n == p * m <-> n == m).

Theorem NZmul_cancel_r : forall n m p : NZ, p ~= 0 -> (n * p == m * p <-> n == m).

Theorem NZmul_id_l : forall n m : NZ, m ~= 0 -> (n * m == m <-> n == 1).

Theorem NZmul_id_r : forall n m : NZ, n ~= 0 -> (n * m == n <-> m == 1).

Theorem NZmul_le_mono_pos_l : forall n m p : NZ, 0 < p -> (n <= m <-> p * n <= p * m).

Theorem NZmul_le_mono_pos_r : forall n m p : NZ, 0 < p -> (n <= m <-> n * p <= m * p).

Theorem NZmul_le_mono_neg_l : forall n m p : NZ, p < 0 -> (n <= m <-> p * m <= p * n).

Theorem NZmul_le_mono_neg_r : forall n m p : NZ, p < 0 -> (n <= m <-> m * p <= n * p).

Theorem NZmul_lt_mono_nonneg :
forall n m p q : NZ, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.

Theorem NZmul_le_mono_nonneg :
forall n m p q : NZ, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.

Theorem NZmul_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n * m.

Theorem NZmul_neg_neg : forall n m : NZ, n < 0 -> m < 0 -> 0 < n * m.

Theorem NZmul_pos_neg : forall n m : NZ, 0 < n -> m < 0 -> n * m < 0.

Theorem NZmul_neg_pos : forall n m : NZ, n < 0 -> 0 < m -> n * m < 0.

Theorem NZlt_1_mul_pos : forall n m : NZ, 1 < n -> 0 < m -> 1 < n * m.

Theorem NZeq_mul_0 : forall n m : NZ, n * m == 0 <-> n == 0 \/ m == 0.

Theorem NZneq_mul_0 : forall n m : NZ, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.

Theorem NZeq_square_0 : forall n : NZ, n * n == 0 <-> n == 0.

Theorem NZeq_mul_0_l : forall n m : NZ, n * m == 0 -> m ~= 0 -> n == 0.

Theorem NZeq_mul_0_r : forall n m : NZ, n * m == 0 -> n ~= 0 -> m == 0.

Theorem NZlt_0_mul : forall n m : NZ, 0 < n * m <-> (0 < n /\ 0 < m) \/ (m < 0 /\ n < 0).

Theorem NZsquare_lt_mono_nonneg : forall n m : NZ, 0 <= n -> n < m -> n * n < m * m.

Theorem NZsquare_le_mono_nonneg : forall n m : NZ, 0 <= n -> n <= m -> n * n <= m * m.

Theorem NZsquare_lt_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n < m * m -> n < m.

Theorem NZsquare_le_simpl_nonneg : forall n m : NZ, 0 <= m -> n * n <= m * m -> n <= m.

Theorem NZmul_2_mono_l : forall n m : NZ, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.

End NZMulOrderPropFunct.