CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Coq Basics; Inductive Definitions
September 4, 2013
Language vs. Logic

• A language has “syntax” and “semantics”

• A “logic” is also a language
 • There is a lot more about this … “Curry-Howard correspondence”

• A programming language has
 • “computation” terms and values
 • often with “executable” semantics

• A logic has
 • “computation” terms and values (with slow “executable” semantics)
 • predicates and assertions (about computation terms & values)
 • inference rules & proofs on why an assertion is true
The Big Picture

Object Language:
Predicate Logic [Reynolds Chapter 1]

Meta Language:
Set Theory [Reynolds Appendix]

Object Language:
Imp [Reynolds Chapter 2]

Meta Language:
Set Theory [Reynolds Appendix]

Formal semantics is always about studying the meanings of an object language in a meta language!

Like a compiler or an interpreter.
Developing the world’s most general programming language is hard!

Developing a rich mechanized meta logic to bootstrap the “world” is more feasible

Object Language:
x86 Machine Lang & Model & Devices

Semantic “interpretations”

Mechanized Meta Logic:
Predicate Logic ++ Inductive & CoInductive Definitions [See CiC in Coq]

“Meta-Meta” Language: Set Theory [Reynolds Appendix] ++
What makes a good “Meta Logic”?

A good meta-logic should be simple & expressive. It has:

• “computation” terms and values (with slow “executable” semantics)
• predicates and assertions (about computation terms & values)
• inference rules & proofs on why an assertion is true

plus a way to introduce user-defined “terms” and “predicates”

• inductive data types & recursive functions
• inductive predicates & inductive proofs

plus a way to reason about blackbox or infinite objects

• coinductive data types (e.g., objects), predicates, and proofs
1.2 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are variables, and whose interior nodes are operators whose arguments are its children. Abstract syntax trees are classified into a variety of sorts corresponding to different forms of syntax. A variable is an unknown, or indeterminate, standing for an unspecified, or generic, piece of syntax of a specified sort. Ast’s may be combined by an operator, which has both a sort and an arity, a finite sequence of sorts specifying the number and sorts of its arguments. An operator of sort s and arity s_1, \ldots, s_n combines $n \geq 0$ ast’s of sort s_1, \ldots, s_n, respectively, into a compound ast of sort s. As a matter of terminology, a nullary operator is one that takes no arguments, a unary operator takes one, a binary operator two, and so forth.
AST Examples

For example, consider a simple language of expressions built from numbers, addition, and multiplication. The abstract syntax of such a language would consist of a single sort, `Expr`, and three operators that generate the forms of expression: `num[n]` is a nullary operator of sort `Expr` whenever $n \in \mathbb{N}$; `plus` and `times` are binary operators of sort `Expr` whose arguments are both of sort `Expr`. The expression $2 + (3 \times x)$, which involves a variable, x, would be represented by the ast

```
plus(num[2]; times(num[3]; x))
```

of sort `Expr`, under the assumption that x is also of this sort.\(^1\)
Formal Definition of AST

Let S be a finite set of sorts. Let $\{O_s\}_{s \in S}$ be an S-indexed family of operators, o, of sort s with arity $\text{ar}(o) = (s_1, \ldots, s_n)$. Let $\{X_s\}_{s \in S}$ be an S-indexed family of variables, x, of sort s. The family $A[X] = \{A[X]_s\}_{s \in S}$ of ast's of sort s is defined as follows:

1. A variable of sort s is an ast of sort s: if $x \in X_s$, then $x \in A[X]_s$.

2. Operators combine ast's: if o is an operator of sort s such that $\text{ar}(o) = (s_1, \ldots, s_n)$, and if $a_1 \in A[X]_{s_1}, \ldots, a_n \in A[X]_{s_n}$, then $o(a_1; \ldots; a_n) \in A[X]_s$.

It follows from this definition that the principle of structural induction may be used to prove that some property, P, holds of every ast. To show $P(a)$ holds for every $a \in A[X]$, it is enough to show:

1. If $x \in X_s$, then $P_s(x)$.

2. If $o \in O_s$ and $\text{ar}(o) = (s_1, \ldots, s_n)$, then if $a_1 \in P_{s_1}$ and ... and $a_n \in P_{s_n}$, then $o(a_1; \ldots; a_n) \in P_s$.