CS 430/530
Formal Semantics

Zhong Shao

Yale University
Department of Computer Science

Inductive Definitions; Coq Basics
January 21, 2025

Language vs. Logic
A language has “syntax” and “semantics”

A “logic” is also a language
There is a lot more about this ... “Curry-Howard correspondence”
A programming language has
“‘computation” terms and values

often with “executable” semantics

A logic has

“‘computation” terms and values (with slow “executable” semantics)
predicates and assertions (about computation terms & values)

inference rules & proofs on why an assertion is true

The Big Picture

Object Language: Object Language:
Predicate Logic [Reynolds Chapter 1] Imp [Reynolds Chapter 2]
semantic “interpretations” l semantic “interpretations” l
Meta Language: Meta Language:
Set Theory [Reynolds Appendix] Set Theory [Reynolds Appendix]

Formal semantics is always about studying the
meanings of an object language in a meta language!

Like a compiler or an interprefter.

The Big Picture (cont’'d)

Developing the world’s most general programming language is hard!

Developing a rich mechanized meta logic to bootstrap the “world” is more feasible

o B

Object Language:

Java Haskell

||

Predicate Logic ++ Inductive & Colnductive Definitions [See CiC in Coq]

!

“Meta-Meta” Language: Set Theory [Reynolds Appendix] ++

x86 Machine Lang & Model & Devices

e =
|

semantic “interpretations” l

Mechanized Meta Logic:

What makes a good “Meta Logic™?

A good meta-logic should be simple & expressive. It has:

« “computation” terms and values (with slow “executable” semantics)
« predicates and assertions (about computation terms & values)

* inference rules & proofs on why an assertion is true

plus a way to introduce user-defined “terms” and “predicates”

 inductive data types & recursive functions

* inductive predicates & inductive proofs

plus a way to reason about blackbox or infinite objects

e coinductive data types (e.g., objects), predicates, and proofs

Inductive Data Types

1.2 Abstract Syntax Trees

Abstract syntax trees are classified into a variety of sorts corre-
sponding to different forms of syntax. A variable is an unknown, or indeter-
minate, standing for an unspecified, or generic, piece of syntax of a specified
sort. Ast’s may be combined by an operator, which has both a sort and an
arity, a finite sequence of sorts specifying the number and sorts of its argu-
ments. An operator of sort s and arity sy, ...,8, combines n > 0 ast’s of sort

Sl,. . .,Sn,

ively, into a compound ast of sort s. As a matter of termi-
nology, a erator is one that takes no arguments, erator
takes one perator two, and so forth.

AST Examples

For example, consider a simple language of expressions built from num-
bers, addition, and multiplication. The abstract syntax of such a language

would consist of a sinW and three operators that generate the
forms of expression: is a nullary operator of sort Expr whenever

n € N; PISIERGIEENes are binary OEerators ii i

are both of sort Expr. The expression
x, would be represented by the ast

of sort Expr, under the assumption that x is also of this sort.!

ort Expr whose arguments
*"which involves a variable,

Formal Definition of AST

Let S be a finite set of sorts. Let { O; }¢scs be an S-indexed family of

operators, o, of sort s with arity ar(o) = (sq,...,5,). Let { Xs }scs be an S-
indexed family of variables, x, of sort s. The famil f

ast’s of sort s is defined as follows:

It follows from this definition that the principle o ma
Wﬁ property, P, holds of every ast. To sho

it is enough to show:

1. If x € X,, then Py(x).

*

