
Shared-Variable Concurrency

Reynolds Chapter 8; adapted from slides prepared by Xinyu Feng (USTC)

Shared-Variable Concurrency

Parallel Composition (or Concurrency Composition)

Syntax:
(comm) c ::= . . . | c0 ‖ c1 | . . .

Note we allow nested parallel composition, e.g.,
(c0 ; (c1 ‖ c2)) ‖ c3.

Operational Semantics:

(c0, σ) −→ (c′0, σ
′)

(c0 ‖ c1, σ) −→ (c′0 ‖ c1, σ
′)

(c1, σ) −→ (c′1, σ
′)

(c0 ‖ c1, σ) −→ (c0 ‖ c′1, σ
′)

(Skip ‖ Skip, σ) −→ (Skip, σ)

(ci , σ) −→ (abort, σ′), i ∈ {0, 1}
(c0 ‖ c1, σ) −→ (abort, σ′)

We have to use small-step semantics (instead of big-step
semantics) to model concurrency.

Shared-Variable Concurrency

Interference

Example:

y := x + 1 ;
x := y + 1

‖
y := x + 1 ;
x := x + 1

Suppose initially σ x = σ y = 0. What are the possible results?

(1)y = 1, x = 2; (2)y = 1, x = 3; (3)y = 3, x = 3; (4)y = 2, x = 3

Two commands c0 and c1 are said to interfere if:

(fv(c0) ∩ fa(c1)) ∪ (fv(c1) ∩ fa(c0)) , ∅

If c0 and c1 interfere, we say there are race conditions (or races) in
c0 ‖ c1.

When c0 and c1 do not interfere, nor terminate by failure, the
concurrent composition c0 ‖ c1 is determinate.

Shared-Variable Concurrency

Another Example

A benign race:

k := −1;

(newvar i := 0 in while i ≤ n ∧ k = −1 do
if f(i) ≥ 0 then k := i else i := i + 2

‖ newvar i := 1 in while i ≤ n ∧ k = −1 do
if f(i) ≥ 0 then k := i else i := i + 2)

A problematic version:

k := −1;

(newvar i := 0 in while i ≤ n ∧ k = −1 do
if f(i) ≥ 0 then print(i) ; print(f(i)) else i := i + 2

‖ newvar i := 1 in while i ≤ n ∧ k = −1 do
if f(i) ≥ 0 then print(i) ; print(f(i)) else i := i + 2)

Shared-Variable Concurrency

Conditional Critical Regions

We could use a critical region to achieve mutual exclusive access
of shared variables.

Syntax:
(comm) c ::= await b then ĉ

where ĉ is a sequential command (a command with no await and
parallel composition).

Semantics:

~b�boolexp σ = true (ĉ, σ) −→∗ (Skip, σ′)
(await b then ĉ, σ) −→ (Skip, σ′)

~b�boolexp σ = false
(await b then ĉ, σ) −→ (Skip ; await b then ĉ, σ)

The second rule gives us a “busy-waiting” semantics. If we
eliminate that rule, the thread will be blocked when the condition
does not hold.

Shared-Variable Concurrency

Achieving Mutual Exclusion

k := −1;

(newvar i := 0 in while i ≤ n ∧ k = −1 do
(if f(i) ≥ 0 then (await busy = 0 then busy := 1) ;

print(i) ; print(f(i)) ; busy := 0
else i := i + 2)

‖ newvar i := 1 in while i ≤ n ∧ k = −1 do
(if f(i) ≥ 0 then (await busy = 0 then busy := 1) ;

print(i) ; print(f(i)) ; busy := 0
else i := i + 2))

Shared-Variable Concurrency

Atomic Blocks

A syntactic sugar:

atomic{c} def
= await true then c

We may also use the short-hand notation 〈c〉.

Semantics:
(c, σ) −→∗ (Skip, σ′)

(atomic{c}, σ) −→ (Skip, σ′)

It gives the programmer control over the size of atomic actions.

Reynolds uses crit c instead of atomic{c}.

Shared-Variable Concurrency

Deadlock

await busy0 = 0
then busy0 := 1;

await busy1 = 0
then busy1 := 1;

. . .

busy0 := 0;
busy1 := 0;

‖

await busy1 = 0
then busy1 := 1;

await busy0 = 0
then busy0 := 1;

. . .

busy0 := 0;
busy1 := 0;

Shared-Variable Concurrency

Fairness

k := −1;

(newvar i := 0 in while k = −1 do
if f(i) ≥ 0 then k := i else i := i + 2

‖ newvar i := 1 in while k = −1 do
if f(i) ≥ 0 then k := i else i := i + 2)

Suppose f(i) < 0 for all even number i. Then there’s an infinite
execution in the form of:

. . . −→ (c1 ‖ c′, σ1) −→ (c2 ‖ c′, σ2) −→ . . . −→ (cn ‖ c′, σn) −→ . . .

An execution of concurrent processes is unfair if it does not
terminate but, after some finite number of steps, there is an
unterminated process that never makes a transition.

Shared-Variable Concurrency

Fairness — More Examples

A fair execution of the following program would always terminate:

newvar y := 0 in (x := 0;((while y = 0 do x := x + 1) ‖ y := 1))

Stronger fairness is needed to rule out infinite execution of the
following program:

newvar y := 0 in
(x := 0;
((while y = 0 do x := 1 − x) ‖ (await x = 1 then y := 1))

)

Shared-Variable Concurrency

Trace Semantics

Can we give a denotational semantics to concurrent programs?
The domain-based approach is complex. Here we use transition
traces to model the execution of programs.

Execution of (c0, σ0) in a concurrent setting:

(c0, σ0) −→ (c1, σ
′
0), (c1, σ1) −→ (c2, σ

′
1), . . . , (cn−1, σn−1) −→ (Skip, σ′n−1)

The gap between σ′i and σi+1 reflects the intervention of the
environment (other threads).

It could be infinite if (c0, σ0) does not terminate:

(c0, σ0) −→ (c1, σ1), (c1, σ
′
1) −→ (c2, σ2), . . .

We omit the commands to get a transition trace:

(σ0, σ
′
0), (σ1, σ

′
1), . . . , (σn−1, σ

′
n−1)

or (σ0, σ
′
0), (σ1, σ

′
1), . . .

Shared-Variable Concurrency

Interference-Free Traces

A trace (σ0, σ
′
0), (σ1, σ

′
1), . . . , (σn−1, σ

′
n−1) (or

(σ0, σ
′
0), (σ1, σ

′
1), . . .) is said to be Interference-Free iff

∀i. σ′i = σi+1.

Shared-Variable Concurrency

Operations over Traces

We use τ to represent individual transition traces, and T for a set
of traces.

ε empty trace

τ1++τ2
def
= concatenation of τ1 and τ2

τ1 if τ1 is infinite.

T1 ;T2
def
= {τ1++τ2 | τ1 ∈ T1 and τ2 ∈ T2}

T 0 def
= {ε}

T n+1 def
= T ;T n

T ∗
def
=

∞⋃
n=0
T n

T ω def
= {τ0++τ1++ . . . | τi ∈ T }

Note the difference between T ∗ and T ω.
Shared-Variable Concurrency

Trace Semantics — First Try

T ~x := e� =
{
(σ,σ′) | σ′ = σ{x { ~e�intexp σ}

}
T ~Skip� =

{
(σ,σ) | σ ∈ Σ

}
T ~c0 ; c1� = T ~c0� ;T ~c1�

T ~if b then c1 else c2� = (B~b� ;T ~c1�) ∪ (B~¬b� ;T ~c2�)
where B~b� = {(σ,σ) | ~b�boolexp σ = true}

T ~while b do c� = ((B~b� ;T ~c�)∗ ;B~¬b�) ∪ (B~b� ;T ~c�)ω

Shared-Variable Concurrency

Trace Semantics (cont’d)

How to give semantics to newvarx := e in c?

Definition: local-global(x, e, τ, τ̂) iff the following are true (suppose
τ = (σ0, σ

′
0), (σ1, σ

′
1), . . . and τ̂ = (σ̂0, σ̂

′
0), (σ̂1, σ̂

′
1), . . .):

they have the same length;

for all x′ , x, σi x′ = σ̂i x′ and σ′i x′ = σ̂′i x′;

for all i, σi+1 x = σ′i x;

for all i, σ̂i x = σ̂′i x;

σ0 x = ~e�intexp σ̂0.

T ~newvarx := e in c� =
{
τ̂ | τ ∈ T ~c� and local-global(x, e, τ, τ̂)

}

Shared-Variable Concurrency

Fair Interleaving

We view a trace τ as a function mapping indices to the
corresponding transitions.

Definition: fair-merge(τ1, τ2, τ) iff there exist functions
f ∈ dom(τ1)→ dom(τ) and g ∈ dom(τ2)→ dom(τ) such that the
following are true:

f and g are monotone injections:

i < j =⇒ (f i < f j) ∧ (g i < g j)

ran(f) ∩ ran(g) = ∅ and ran(f) ∪ ran(g) = dom(τ);

∀i. τ1(i)=τ(f i) ∧ τ2(i)=τ(g i)

Then Tfair~c1 ‖ c2� ={
τ | ∃τ1 ∈ Tfair~c1�, τ2 ∈ Tfair~c2�. fair-merge(τ1, τ2, τ)

}
Shared-Variable Concurrency

Unfair Interleaving

Definition: unfair-merge(τ1, τ2, τ) if one of the following are true:

fair-merge(τ1, τ2, τ)

τ1 is infinite and there exist τ′2 and τ′′2 such that τ2 = τ′2++τ′′2
and fair-merge(τ1, τ

′
2, τ)

τ2 is infinite, and there exist τ′1 and τ′′1 such that τ1 = τ′1++τ′′1
and fair-merge(τ′1, τ2, τ)

Tunfair~c1 ‖ c2�

=
{
τ | ∃τ1 ∈ Tunfair~c1�, τ2 ∈ Tunfair~c2�. unfair-merge(τ1, τ2, τ)

}

Shared-Variable Concurrency

Trace Semantics for await

T ~await b then c� =
(B~¬b� ;T ~Skip�)∗ ;
{(σ,σ′) | ~b�boolexp σ = true

and there exist σ′0, σ1, σ
′
1, . . . , σn such that

(σ,σ′0), (σ1, σ
′
1), . . . , (σn, σ

′) ∈ T ~c�}
∪(B~¬b� ;T ~Skip�)ω

Shared-Variable Concurrency

Trace Semantics (cont’d)

The semantics is equivalent to the following:

T ~c� def
=

{(σ0, σ
′
0), . . . , (σn, σ

′
n) |

there exist c0, . . . , cn such that c0 = c,
∀i ∈ [0, n − 1]. (ci , σi) −→ (ci+1, σ

′
i),

and (cn, σn) −→ (Skip, σ′n)}
∪{(σ0, σ

′
0), (σ1, σ

′
1), . . . |

there exist c0, c1, . . . such that c0 = c,
and for all i, (ci , σi) −→ (ci+1, σ

′
i)}

Shared-Variable Concurrency

Problem with This Semantics

The trace semantics we just defined is not abstract enough.
It distinguishes the following programs (which should be viewed
equivalent):

x := x +1

x := x +1 ; Skip

Skip ; x := x +1

Also consider the following two programs:

x := x +1 ; x := x +1

(x := x +1 ; x := x +1) choice x := x +2

Shared-Variable Concurrency

Stuttering and Mumbling

τ ≺ τ τ ≺ (σ,σ), τ (σ,σ′), (σ′, σ′′), τ ≺ (σ,σ′′), τ

τ ≺ τ′ τ′ ≺ τ′′

τ ≺ τ′′
τ ≺ τ′

(σ,σ′), τ ≺ (σ,σ′), τ′

T †
def
= {τ | τ ∈ T or ∃τ′ ∈ T . τ′ ≺ τ}

T ∗~c� def
= (T ~c�)†

Shared-Variable Concurrency

Stuttering and Mumbling (cont’d)

The new semantics T ∗~c� is equivalent to the following:

T ~c� def
=

{(σ0, σ
′
0), . . . , (σn, σ

′
n) |

there exist c0, . . . , cn such that c0 = c,
∀i ∈ [0, n − 1]. (ci , σi) −→

∗ (ci+1, σ
′
i),

and (cn, σn) −→∗ (Skip, σ′n)}
∪{(σ0, σ

′
0), (σ1, σ

′
1), . . . |

there exist c0, c1, . . . such that c0 = c,
∀i. (ci , σi) −→

∗ (ci+1, σ
′
i),

and for infinitely many i ≥ 0, (ci , σi) −→
+ (ci+1, σ

′
i)}

Shared-Variable Concurrency

