Shared-Variable Concurrency

Reynolds Chapter 8; adapted from slides prepared by Xinyu Feng (USTC)

Shared-Variable Concurrency

Parallel Composition (or Concurrency Composition)

Syntax:
(comm)c:=...|cllci|...

Note we allow nested parallel composition, e.g.,
(cos(ctlle2)) l cs.
Operational Semantics:

(co, o) — (C('), o) (c1, 0) — (¢, o)
(collcr, o) — (cyllcr, o) (collc, o) — (collcq, o)

(ci,) — (abort, o’), i€{0,1}
(Skip || Skip, o) — (Skip, o) (co |l €1, o) — (abort, o)

We have to use small-step semantics (instead of big-step
semantics) to model concurrency.

Shared-Variable Concurrency

Interference

Example:

y =x+1;
x:=y+1

y =x+1;
X:=x+1

Suppose initially o x = oy = 0. What are the possible results?
My=1,x=2,2)y=1,x=3; B)y=3,x=3, (4)y=2,x=3
Two commands ¢y and ¢y are said to interfere if:

(fv(co) N fa(er)) U (fv(cq) N fa(co)) # 0

If cp and ¢y interfere, we say there are race conditions (or races) in
Co |l c1-

When ¢y and ¢ do not interfere, nor terminate by failure, the
concurrent composition ¢y || ¢y is determinate.

Shared-Variable Concurrency

Another Example

A benign race:
k = -1;

(newvar i := 0inwhilei<nAk =-1do
if f(i) >0thenk :=ielsei:=i+2

|| newvar i :=1inwhilei<nAk=-1do
if f(i) >0thenk :=ielsei:=i+2)

A problematic version:
k :=-1;

(newvar j :=0inwhilei<nAk =-1do
if f(i) > 0 then print(i) ; print(f(i/)) else i := i + 2

|| newvar i:=1inwhilei<nAk=-1do
if (i) > 0 then print(i) ; print(f(/)) else i := i + 2)

Shared-Variable Concurrency

Conditional Critical Regions

We could use a critical region to achieve mutual exclusive access
of shared variables.

Syntax:
(comm) c¢ ::= await b then C

where ¢ is a sequential command (a command with no await and
parallel composition).

Semantics:

[bllboolexp o = true (&, o) —* (Skip, o)
(await b then ¢, o) — (Skip, o)

[b]booiexp o = false
(await b then &, o) — (Skip ; await b then ¢, o)

The second rule gives us a “busy-waiting” semantics. If we
eliminate that rule, the thread will be blocked when the condition
does not hold.

Shared-Variable Concurrency

Achieving Mutual Exclusion

k.=-1;

(newvar j :=0inwhilei<nAk =-1do
(if f(i) > 0 then (await busy = 0 then busy :=1);
print(i) ; print(f(i)) ; busy := 0
elsei:=i+2)
|| newvar i:=1inwhilei<nAk=-1do
(if f(i) > 0 then (await busy = 0 then busy := 1) ;
print(/) ; print(f(i)) ; busy := 0
elsei:=i+2))

Shared-Variable Concurrency

Atomic Blocks

A syntactic sugar:

atomic{c} def await true then ¢

We may also use the short-hand notation (c).

Semantics:
(c, o) —* (Skip, o)

(atomic{c}, o) — (Skip,o”)

It gives the programmer control over the size of atomic actions.

Reynolds uses crit ¢ instead of atomic{c}.

Shared-Variable Concurrency

Deadlock

await busy0 =0
then busy0 := 1;

await busy1 =0
then busy1 :=1;

busy0 := 0;
busy1 := 0;

await busy1 =0
then busy1 :=1;

await busy0 =0
then busy0 := 1;

busy0 := 0;
busy1 .= 0;

Shared-Variable Concurrency

Fairness

k.= -1;

(newvar i := 0 in while k = -1 do
if f(i) >0thenk :=ielsei:=i+2

|| newvar i := 1 in while k = -1 do
if f(i) >0thenk :=ielsei:=i+2)

Suppose f(i) < 0 for all even number i. Then there’s an infinite
execution in the form of:

..—(crlIcyo) — (e2ll¢’yo2) — ... — (el Cyop) — ...

An execution of concurrent processes is unfair if it does not
terminate but, after some finite number of steps, there is an
unterminated process that never makes a transition.

Shared-Variable Concurrency

Fairness — More Examples

A fair execution of the following program would always terminate:
newvar y :=0in (x :=0;((whiley =0dox:=x+1) ||y :=1))
Stronger fairness is needed to rule out infinite execution of the
following program:
newvar y := 0 in
(x :=0;
((whiley =0do x :=1 - x) || (await x = 1 then y := 1))

)

Shared-Variable Concurrency

Trace Semantics

Can we give a denotational semantics to concurrent programs?
The domain-based approach is complex. Here we use transition
traces to model the execution of programs.

Execution of (cp, 070) in a concurrent setting:
(co,00) — (c1,09). (c1,01) — (€2,07%),. .., (Cra,0n1) — (SKip, o7, 1)

The gap between o} and o4 reflects the intervention of the
environment (other threads).

It could be infinite if (cp, 09) does not terminate:

(co,00) — (c1,071), (c1,07) — (C2,02), ...

We omit the commands to get a transition trace:

(0-07 OJO)& (0-1’0—(])’ sy (O'n—1, 0—;1_1)

or (0'0,0'6), (o1,0%),...

Shared-Variable Concurrency

Interference-Free Traces

Atrace (00, 0), (01,0%), ..., (Tn1,07,4) (OF
(00,0%), (01,0%),...) is said to be Interference-Free iff
Vi.o} = oi.

Shared-Variable Concurrency

Operations over Traces

We use 1 to represent individual transition traces, and 7 for a set
of traces.

€ empty trace

def .
T1+72 = concatenation of 1 and o
71 if 71 is infinite.

def
T1:;T2 = {T1+712 | 71 € T3 and 12 € T2}

70 =e
1 def Lqn
T =9;7T
7-'* dgf U Tn
n=0
qgo % {rorT1+... | T, €T}

Note the difference between 7" and 7.

Shared-Variable Concurrency

Trace Semantics — First Try

Tlx :=el = {(0', ') | 0 = o{x~ [ellintexp 0'}}
T [Skip] ={(o,0) | ceX}
Tlcosenl =T lcoll ;T leqd

T [if b then ¢y else cx]| = (Bl[bl; T [ci]) U (BI-bl ;T [ca0)
where B[b] = {(0,0) | [bllboolexp o = true}

7 [while b do c] = ((8Ib1; 7 Lcl)*; BI-bI) U (BLb]; T [cl)”

Shared-Variable Concurrency

Trace Semantics (cont’d)

How to give semantics to hewvarx := e in ¢?
Definition: local-global(x, e, 7, 7) iff the following are true (suppose
7 = (00,0%),(01,0%),... and T = (0°0,(76),((f1,0'4),...):

@ they have the same length;

o forall X’ # x, oix’ = ¢ x’ and U,f x = oA-If x';

H . _ /e
o foralli, ojyq x = ol X;
o foralli,dix = o-,fx;

@ 00X = [[ellintexp T0-

7 [newvarx := einc] = {% | 7 € T[c] and local-global(x, e, 7, %)}

Shared-Variable Concurrency

Fair Interleaving

We view a trace 7 as a function mapping indices to the
corresponding transitions.

Definition: fair-merge(t1, 72, 7) iff there exist functions
f € dom(71) — dom(7) and g € dom(r2) — dom(7) such that the
following are true:

@ fand g are monotone injections:
i<j= (fi<fj)rn(gi<gj)

e ran(f) nran(g) = 0 and ran(f) U ran(g) = dom(t);
o Vi.ti(i)=1(fi) A 12(i)=7(g)

Then Tirllcy |l c2ll =

{r | 3ty € Tarlc1]l, 72 € Trarlcz]l. fairmerge(ry, T2, 7))

Shared-Variable Concurrency

Unfair Interleaving

Definition: unfair-merge(t1, 12, 7) if one of the following are true:
o fair-merge(t1,712,7)
@ 74 is infinite and there exist 7, and 7 such that 7o = 7,+7,
and fair-merge(t+,1,,7)
@ 72 is infinite, and there exist 7} and 7/ such that 7y = 7} +7/
and fair-merge(t}, 72, 1)

T untairllct 1| c2]
= {t | 311 € Tuntairl[C1]l, T2 € Tunmair[c21l. unfair-merge(ty, 2, 7)}

Shared-Variable Concurrency

Trace Semantics for await

T [[await b then c] =
(BI[-bl; T [Skipl)*;
{(0', 0',) | [[b]]boolexpo' = true
and there exist 0-6, 01,0%,...,0p such that
(0,0%),(01,0%),...,(0n, ") € Tl
U(BI-b] ; T[Skip])*

Shared-Variable Concurrency

Trace Semantics (cont’d)

The semantics is equivalent to the following:

Tlel &
{(0-07 0’6)7 sy (O-fb 0-;7) I
there exist ¢y, ..., ¢, such that ¢y = ¢,
Vie [0, n-— 1]. (C,',O',') — (C'FH,O';),
and (cp,0n) — (Skip,o7),)}
U{(o0, %), (071,07%), ... |
there exist ¢g, ¢1,... such that ¢g = ¢,
and for all i, (¢i, i) — (Ci1,07)}

Shared-Variable Concurrency

Problem with This Semantics

The trace semantics we just defined is not abstract enough.
It distinguishes the following programs (which should be viewed

equivalent):
X = x+1
x := x+1; Skip
Skip; x := x+1

Also consider the following two programs:

X:=X+1;x:=x+1

(x :=x+1;x := x+1) choice x := x+2

Shared-Variable Concurrency

Stuttering and Mumbling

T<T 7 < (0y0),7 (o,0"), (07, 0"),t < (0,0"),7
<17 <71’ T<T1
<71’ (o,0"), 7 < (0,07),7

T dZEf{TITE‘TorEIT’e‘T.T’<T}

7lel = (7Tel)’

Shared-Variable Concurrency

Stuttering and Mumbling (cont'd)

The new semantics 7 *[c] is equivalent to the following:

Tle) &
{(0-0’ 0—(,))a HR] (O—fb 0-;1) |
there exist ¢p, ..., ¢, such that ¢y = ¢,
Vie[0,n—1].(cjoi) —" (cina,07),
and (¢, on) —* (SKip, o)}
U{(00,0%), (071,07%),... |
there exist ¢g, ¢y,... such that cg = ¢,
Yi. (C,',O',‘) —* (C,'+1,O';),
and for infinitely many i > 0, (cj, o) —* (cy1,07)}

Shared-Variable Concurrency

