The Simple Imperative Language

```
intexp ::= 0|1|...
    var
    -intexp | intexp+intexp| intexp-intexp|....
boolexp ::= true|false
    | intexp = intexp | intexp < intexp | intexp \leq intexp | ...
    | \negboolexp | boolexp ^ boolexp | boolexp \vee boolexp | ...
        (no quantified terms)
comm ::= var:= intexp
    skip
    comm ; comm
    if boolexp then comm else comm
    while boolexp do comm
    (may fail to terminate)
```


Denotational Semantics of SIL

$$
\begin{aligned}
\llbracket-\rrbracket_{\text {intexp }} \in \text { intexp } & \rightarrow \boldsymbol{\Sigma} \rightarrow \mathbf{Z} \\
\llbracket-\rrbracket_{\text {boolexp }} \in \text { boolexp } & \rightarrow \boldsymbol{\Sigma} \rightarrow \mathbf{B} \\
\llbracket-\rrbracket_{\text {comm }} \in \text { comm } & \rightarrow \boldsymbol{\Sigma} \rightarrow \boldsymbol{\Sigma}_{\perp}
\end{aligned}
$$

$$
\Sigma=\operatorname{var} \rightarrow \mathbf{Z}
$$

(simpler than $\llbracket-\rrbracket_{\text {assert }}$)
$\Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\}$ (divergence)

Denotational Semantics of SIL

$$
\begin{array}{rlr}
\llbracket-\rrbracket_{\text {intexp }} \in \text { intexp } & \rightarrow \Sigma \rightarrow \mathbf{Z} & \Sigma=\text { var } \rightarrow \mathbf{Z} \\
\llbracket-\rrbracket_{\text {boolexp }} \in \text { boolexp } & \rightarrow \Sigma \rightarrow \mathbf{B} & \\
\llbracket-\rrbracket_{\text {comm }} \in \operatorname{comm} & \rightarrow \Sigma \rightarrow \Sigma_{\perp} & \Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\} \text { (divergence) } \\
\llbracket v:=e \rrbracket_{\text {comm }} \sigma & =\left[\sigma \mid v: \llbracket e \rrbracket_{\text {intexp }} \sigma\right] \\
& \llbracket \mathrm{x}:=\mathrm{x} * 6 \rrbracket_{\text {comm }}[\mathrm{x}: 7] \\
& =\left[\mathrm{x}: 7 \mid \mathrm{x}: \llbracket \mathrm{x} * 6 \rrbracket_{\text {intexp }}[\mathrm{x}: 7]\right] \\
& =[\mathrm{x}: 7 \mid \mathrm{x}: 42] \\
& =[\mathrm{x}: 42]
\end{array}
$$

Denotational Semantics of SIL

$$
\begin{array}{rlr}
\llbracket-\rrbracket_{\text {intexp }} \in \text { intexp } & \rightarrow \Sigma \rightarrow \mathbf{Z} & \Sigma=\text { var } \rightarrow \mathbf{Z} \\
\llbracket-\rrbracket_{\text {boolexp }} \in \text { boolexp } & \rightarrow \Sigma \rightarrow \mathbf{B} & \\
\llbracket-\rrbracket_{\text {comm }} \in \text { comm } & \rightarrow \Sigma \rightarrow \Sigma_{\perp} & \Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\} \text { (divergence) } \\
\llbracket v:=e \rrbracket_{\text {comm }} \sigma & =\left[\sigma \mid v: \llbracket e \rrbracket_{\text {intexp }} \sigma\right] \\
& \llbracket \mathrm{x}:=\mathrm{x} * 6 \rrbracket_{\text {comm }}[\mathrm{x}: 7] \\
& =\left[\mathrm{x}: 7 \mid \mathrm{x}: \llbracket \mathrm{x} * 6 \rrbracket_{\text {intexp }}[\mathrm{x}: 7]\right] \\
& =[\mathrm{x}: 7 \mid \mathrm{x}: 42] \\
& =[\mathrm{x}: 42]
\end{array}
$$

\llbracket skip $\rrbracket_{\text {comm }} \sigma=\sigma$

Denotational Semantics of SIL

$$
\begin{aligned}
& \llbracket-\rrbracket_{\text {intexp }} \in \operatorname{intexp} \rightarrow \boldsymbol{\Sigma} \rightarrow \mathbf{Z} \\
& \llbracket-\rrbracket_{\text {boolexp }} \in \text { boolexp } \rightarrow \boldsymbol{\Sigma} \rightarrow \mathbf{B} \\
& \llbracket-\rrbracket_{\text {comm }} \in \operatorname{comm} \rightarrow \Sigma \rightarrow \Sigma_{\perp} \\
& \Sigma=\operatorname{var} \rightarrow \mathbf{Z} \\
& \text { (simpler than } \llbracket-\rrbracket_{\text {assert }} \text {) } \\
& \Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\} \text { (divergence) } \\
& \llbracket v:=e \rrbracket_{\text {comm }} \sigma=\left[\sigma \mid v: \llbracket e \rrbracket_{\text {intexp }} \sigma\right] \\
& \llbracket \mathrm{x}:=\mathrm{x} * 6 \rrbracket_{\text {comm }}[\mathrm{x}: 7] \\
& =\left[\mathrm{x}: 7 \mid \mathrm{x}: \llbracket \mathrm{x} * 6 \rrbracket_{\text {intexp }}[\mathrm{x}: 7]\right] \\
& =[x: 7 \mid x: 42] \\
& =[\mathrm{x}: 42] \\
& \llbracket \text { skip } \rrbracket_{\text {comm }} \sigma=\sigma \\
& \llbracket c ; c^{\prime} \rrbracket_{\text {comm }} \sigma=\llbracket c^{\prime} \rrbracket_{\text {com }}\left(\llbracket c \rrbracket_{\text {com }} \sigma\right)
\end{aligned}
$$

Denotational Semantics of SIL

$$
\begin{aligned}
& \llbracket-\rrbracket_{\text {intexp }} \in \text { intexp } \rightarrow \Sigma \rightarrow \mathbf{Z} \\
& \llbracket-\rrbracket_{\text {boolexp }} \in \text { boolexp } \rightarrow \boldsymbol{\Sigma} \rightarrow \mathbf{B} \\
& \llbracket-\rrbracket_{\text {comm }} \in \mathrm{comm} \rightarrow \Sigma \rightarrow \Sigma_{\perp} \\
& \Sigma=\operatorname{var} \rightarrow \mathbf{Z} \\
& \text { (simpler than } \llbracket-\rrbracket_{\text {assert }} \text {) } \\
& \Sigma_{\perp} \stackrel{\text { def }}{=} \Sigma \cup\{\perp\} \text { (divergence) } \\
& \llbracket v:=e \rrbracket_{\text {comm }} \sigma=\left[\sigma \mid v: \llbracket e \rrbracket_{\text {intexp }} \sigma\right] \\
& \llbracket \mathrm{x}:=\mathrm{x} * 6 \rrbracket_{\mathrm{comm}}[\mathrm{x}: 7] \\
& =\left[\mathrm{x}: 7 \mid \mathrm{x}: \llbracket \mathrm{x} * 6 \rrbracket_{\text {intexp }}[\mathrm{x}: 7]\right] \\
& =[x: 7 \mid x: 42] \\
& =[x: 42] \\
& \llbracket \mathrm{skip} \rrbracket_{\text {comm }} \sigma=\sigma \\
& \llbracket c ; c^{\prime} \rrbracket_{c o m m} \sigma \stackrel{\mathrm{NOT}!}{=} \llbracket c^{\prime} \rrbracket_{c o m m}(\underbrace{\left(\llbracket c \rrbracket_{c o m m} \sigma\right.}_{=\perp \text { if } c \text { fails to terminate }})
\end{aligned}
$$

Semantics of Sequential Composition

We can extend $f \in S \rightarrow T_{\perp}$ to $f_{\Perp} \in S_{\perp} \rightarrow T_{\perp}$:

$$
f_{\Perp} x \stackrel{\text { def }}{=} \begin{cases}\perp, & \text { if } x=\perp \\ f x, & \text { otherwise }\end{cases}
$$

This defines $\quad(-)_{\Perp} \in\left(S \rightarrow T_{\perp}\right) \rightarrow S_{\perp} \rightarrow T_{\perp}$
(a special case of the Kleisli monadic operator).

So

$$
\begin{aligned}
\llbracket-\rrbracket_{c o m m} & \in c o m m \rightarrow \Sigma \rightarrow \Sigma_{\perp} \\
\Rightarrow \llbracket c^{\prime} \rrbracket_{c o m m} & \in \Sigma \rightarrow \Sigma_{\perp} \\
\Rightarrow\left(\llbracket c^{\prime} \rrbracket_{c o m m}\right)_{\Perp} & \in \Sigma_{\perp} \rightarrow \Sigma_{\perp} \\
\llbracket c ; c^{\prime} \rrbracket_{c o m m} \sigma & =\left(\llbracket c^{\prime} \rrbracket_{c o m m}\right)_{\Perp}\left(\llbracket c \rrbracket_{c o m m} \sigma\right)
\end{aligned}
$$

Semantics of Conditionals

$\llbracket i f ~ b$ then c_{0} else $c_{1} \rrbracket \rrbracket_{\text {comm }} \sigma= \begin{cases}\llbracket c_{0} \rrbracket \rrbracket_{\text {comm }} \sigma, & \text { if } \llbracket b \rrbracket_{\text {boolexp }} \sigma=\text { true } \\ \llbracket c_{1} \rrbracket \text { comm } \sigma, & \text { if } \llbracket b \rrbracket_{\text {boolexp }} \sigma=\text { false }\end{cases}$
Example：
【if $\mathrm{x}<0$ then x ：＝－x else skip $\rrbracket_{\text {comm }}[\mathrm{x}:-3]$

$$
\begin{aligned}
& =\llbracket \mathrm{x}:=-\mathrm{x} \rrbracket_{\text {comm }}[\mathrm{x}:-3], \quad \text { since } \llbracket \mathrm{x}<0 \rrbracket_{\text {boolexp }}[\mathrm{x}:-3]=\text { true } \\
& =\left[\mathrm{x}:-3 \mid \mathrm{x}: \llbracket-\mathrm{x} \rrbracket_{\text {intexp }}[\mathrm{x}:-3]\right] \\
& =[\mathrm{x}: 3]
\end{aligned}
$$

【if $\mathrm{x}<0$ then x ：$=-\mathrm{x}$ else skip】 $]_{\text {com }}[\mathrm{x}: 5]$

$$
\begin{aligned}
& =\llbracket \text { skip } \rrbracket_{\text {comm }}[\mathrm{x}: 5], \quad \text { since } \llbracket x<0 \rrbracket_{\text {boolexp }}[\mathrm{x}: 5]=\text { false } \\
& =[\mathrm{x}: 5]
\end{aligned}
$$

Problems with the Semantics of Loops

Idea: define the meaning of while b do c as that of

```
if b then (c ; while b do c) else skip
```

But the equation
\llbracket while b do $c \rrbracket_{c o m m} \sigma$
$=\llbracket$ if b then (c; while b do c) else skip $\rrbracket_{c o m m} \sigma$
$=\left\{\left(\llbracket \text { while } b \text { do } c \rrbracket_{\text {comm }}\right)_{\Perp}\left(\llbracket c \rrbracket_{\text {comm }} \sigma\right), \quad\right.$ if $\llbracket b \rrbracket_{\text {boolexp }} \sigma=$ true otherwise
is not syntax directed and sometimes has infinitely many solutions:
$\llbracket w h i l e ~ t r u e ~ d o ~ x: ~=x+1 \rrbracket ~ c o m m=\lambda \sigma: \Sigma \cdot \sigma^{\prime} \quad$ is a solution for any σ^{\prime}.

Partially Ordered Sets

A relation ρ is reflexive on $S \quad$ iff $\quad \forall x \in S . x \rho x$

transitive	iff	$x \rho y \& y \rho z \Rightarrow x \rho z$
antisymmetric	iff	$x \rho y \& y \rho x \Rightarrow x=y$
symmetric	iff	$x \rho y \Rightarrow y \rho x$

\sqsubseteq is reflexive on P \& transitive
$\Rightarrow \sqsubseteq$ is a preorder on P
\sqsubseteq is a preorder on P \& antisymmetric $\Rightarrow \sqsubseteq$ is a partial order on P
P with a partial order \sqsubseteq on $P \quad \Rightarrow$ a poset P
P with I_{P} as a partial order on $P \quad \Rightarrow$ a discretely ordered P
$f \in P \rightarrow P^{\prime} \& \forall x, y \in P .\left(x \sqsubseteq y \Rightarrow f x \sqsubseteq^{\prime} f y\right) \Rightarrow f$ is monotone from P to P^{\prime}
$y \in P: \forall X \subseteq P . \forall x \in X . x \sqsubseteq y \quad \Rightarrow y$ is an upper bound of X

Least Upper Bounds

y is a lub of $X \subseteq P$ if y is an upper bound of X and $\forall z \in P$. $(z$ is an upper bound of $X \Rightarrow y \sqsubseteq z)$
If P is a poset and $X \subseteq P$, there is at most one lub $\sqcup X$ of X.
$\sqcup\}=\perp$ - the least element of P (when it exists).
Let $\mathcal{X} \subseteq \mathcal{P} P$ such that $\sqcup X$ exists for every $X \in \mathcal{X}$. Then

$$
\sqcup\{\sqcup X \mid X \in \mathcal{X}\}=\sqcup \bigcup \mathcal{X}
$$

if either of these lubs exists. In particular

$$
\bigcup_{i=0}^{\infty} \bigcup_{j=0}^{\infty} x_{i j}=\bigsqcup\left\{x_{i j} \mid i \in \mathbf{N} \text { and } j \in \mathbf{N}\right\}=\bigcup_{j=0}^{\infty} \bigcup_{i=0}^{\infty} x_{i j}
$$

if $\sqcup_{i=0}^{\infty} x_{i j}$ exist for all j, or $\sqcup_{j=0}^{\infty} x_{i j}$ exist for all i.

Domains

A chain is a countably infinite non-decreasing sequence $x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots$ The limit of a chain C is its lub $\sqcup C$ when it exists.
A chain C is interesting if $\sqcup C \notin C$.
(Chains with finitely many distinct elements are uninteresting.)
A poset P is a predomain (or complete partial order - cpo)
if P contains the limits of all its chains.
A predomain P is a domain (or pointed cpo) if P has a least element \perp.
In semantic domains, \sqsubseteq is an order based on information content:
$x \sqsubseteq y(x$ approximates y, y is a refinement of $x)$
if x yields the same results as y in all contexts when it terminates, but may diverge in more contexts.

Lifting

Any set S can be viewed as a predomain with discrete partial order $\sqsubseteq=I_{S}$.

The lifting P_{\perp} of a predomain P is the domain $D=P \cup\{\perp\}$ where $\perp \notin P$, and $x \sqsubseteq_{D} y$ if $x=\perp$ or $x \sqsubseteq_{P} y$.

D is a flat domain if $D-\{\perp\}$ is discretely ordered by \sqsubseteq.

Continuous Functions

If P and P^{\prime} are predomains, $f \in P \rightarrow P^{\prime}$ is a continuous function from P to P^{\prime} if it maps limits to limits:

$$
f\left(\sqcup\left\{x_{i} \mid x_{i} \in C\right\}\right)=\bigsqcup^{\prime}\left\{f x_{i} \mid x_{i} \in C\right\} \text { for every chain } C \subseteq P
$$

Continuous functions are monotone: consider chains $x \sqsubseteq y \sqsubseteq y \ldots$

There are non-continuous monotone functions:
Let $P \supseteq$ the interesting chain $C=\left(x_{0} \sqsubseteq x_{1} \sqsubseteq \ldots\right)$ with a limit x in P, and $P^{\prime}=\{\perp, \top\}$ with $\perp \sqsubseteq^{\prime} T$. Then

$$
f=\left\{\left[x_{i}, \perp\right] \mid x_{i} \in C\right\} \cup\{[x, \top]\}
$$

is monotone but not continuous: $\sqcup^{\prime}\left\{f x_{i} \mid x_{i} \in C\right\}=\perp \neq \mathrm{T}=f(\sqcup C)$

Monotone vs Continuous Functions

If $f \in P \rightarrow P^{\prime}$ is monotone, then f is continuous
iff $f\left(\bigsqcup_{i} x_{i}\right) \sqsubseteq \bigsqcup_{i}^{\prime}\left(f x_{i}\right)$ for all interesting chains $x_{i}(i \in \mathbf{N})$ in P.

Proof
[1ex] For uninteresting chains:

$$
\text { if } \bigsqcup_{i} x_{i}=x_{n} \text {, then } \bigsqcup_{i}^{\prime}\left(f x_{i}\right)=f x_{n}=f\left(\bigsqcup_{i} x_{i}\right) \text {. }
$$

[1ex] For interesting chains: prove the opposite approximation:

$$
\begin{aligned}
\left(\forall i \in \mathbf{N} . x_{i} \sqsubseteq \bigsqcup_{j} x_{j}\right) & \Rightarrow\left(\forall i \in \mathbf{N} . f x_{i} \sqsubseteq f\left(\bigsqcup_{j} x_{j}\right)\right) \\
& \Rightarrow \bigsqcup_{i}^{\prime}\left(f x_{i}\right) \sqsubseteq f\left(\bigsqcup_{i} x_{i}\right)
\end{aligned}
$$

The (Pre)domain of Continuous Functions

Pointwise ordering on functions in $P \rightarrow P^{\prime}$ where P^{\prime} is a predomain:

$$
f \sqsubseteq \rightarrow g \Longleftrightarrow \forall x \in P . f x \sqsubseteq^{\prime} g x
$$

Proposition:

If both P and P^{\prime} are predomains, then the set $\left[P \rightarrow P^{\prime}\right.$] of continuous functions from P to P^{\prime} with partial order $\sqsubseteq_{\rightarrow}$ is a predomain with

$$
\bigsqcup f_{i}=\lambda x \in P . \bigsqcup^{\prime}\left(f_{i} x\right)
$$

If P^{\prime} is a domain, then $\left[P \rightarrow P^{\prime}\right.$] is a domain with $\perp_{\rightarrow}=\lambda x \in P . \perp^{\prime}$

The (Pre)domain of Continuous Functions: Proof

To prove $\left[P \rightarrow P^{\prime}\right]$ is a predomain:
Let f_{i} be a chain in $\left[P \rightarrow P^{\prime}\right]$, and $f=\lambda x \in P . \sqcup^{\prime} f_{i} x$. ($\sqcup^{\prime} f_{i} x$ exists because $f_{0} x \sqsubseteq^{\prime} f_{1} x \sqsubseteq^{\prime} \ldots$ since $f_{0} \sqsubseteq_{\rightarrow} f_{1} \sqsubseteq \rightarrow \ldots$ and \bar{P}^{\prime} is a predomain)
$f_{i} \sqsubseteq_{\rightarrow} f$ since $\forall x \in P . f_{i} x \sqsubseteq^{\prime} f x$; hence f is an upper bound of $\left\{f_{i}\right\}$. If g is such that $\forall i \in \mathbf{N} . f_{i} \sqsubseteq_{\rightarrow} g$, then $\forall x \in P . f_{i} x \sqsubseteq^{\prime} g x$, hence $\forall x \in P$. $f x \sqsubseteq^{\prime} g x$, i.e. $f \sqsubseteq_{\leftrightarrows} g$.
$\Rightarrow f$ is the limit of $f_{i} \ldots$ but is f continuous so it is in $\left[P \rightarrow P^{\prime}\right]$?
Yes: If x_{j} is a chain in P, then

$$
f\left(\bigsqcup_{j} x_{j}\right)=\bigsqcup_{i}^{\prime} f_{i}\left(\bigsqcup_{j} x_{j}\right)=\bigsqcup_{i}^{\prime} \bigsqcup_{j}^{\prime} f_{i} x_{j}=\bigsqcup_{j}^{\prime} \bigsqcup_{i}^{\prime} f_{i} x_{j}=\bigsqcup_{j}^{\prime} f x_{j}
$$

Some Continuous Functions

For predomains $P, P^{\prime}, P^{\prime \prime}$,

- if $f \in P \rightarrow P^{\prime}$ is a constant function, then $f \in\left[P \rightarrow P^{\prime}\right]$
- $I_{P} \in[P \rightarrow P]$
- if $f \in\left[P \rightarrow P^{\prime}\right]$ and $g \in\left[P^{\prime} \rightarrow P^{\prime \prime}\right]$, then $g \cdot f \in\left[P \rightarrow P^{\prime \prime}\right]$

■ if $f \in\left[P \rightarrow P^{\prime}\right]$, then $(-\cdot f) \in\left[\left[P^{\prime} \rightarrow P^{\prime \prime}\right] \rightarrow\left[P \rightarrow P^{\prime \prime}\right]\right]$

- if $f \in\left[P^{\prime} \rightarrow P^{\prime \prime}\right]$, then $(f \cdot-) \in\left[\left[P \rightarrow P^{\prime}\right] \rightarrow\left[P \rightarrow P^{\prime \prime}\right]\right]$

Strict Functions and Lifting

If D and D^{\prime} are domains, $f \in D \rightarrow D^{\prime}$ is strict if $f \perp=\perp^{\prime}$.

If P and P^{\prime} are predomains and $f \in P \rightarrow P^{\prime}$, then the strict function

$$
f_{\perp} \stackrel{\text { def }}{=} \lambda x \in P_{\perp} \cdot \begin{cases}x x, & \text { if } x \in P \\ \perp^{\prime}, & \text { if } x=\perp\end{cases}
$$

is the lifting of f to $P_{\perp} \rightarrow P_{\perp}^{\prime}$; if P^{\prime} is a domain, then the strict function

$$
f_{\Perp} \stackrel{\text { def }}{=} \lambda x \in P_{\perp} \cdot \begin{cases}f x, & \text { if } x \in P \\ \perp^{\prime}, & \text { if } x=\perp\end{cases}
$$

is the source lifting of f to $P_{\perp} \rightarrow P^{\prime}$.
If f is continuous, so are f_{\perp} and f_{\Perp}.
$(-)_{\perp}$ and $(-)_{\Perp}$ are also continuous.

Least Fixed-Point

If $f \in S \rightarrow S$, then $x \in S$ is a fixed-point of f if $x=f x$.

Theorem [Least Fixed-Point of a Continuous Function]

If D is a domain and $f \in[D \rightarrow D$],
then $x \stackrel{\text { def }}{=} \bigcup_{i=0}^{\infty} f^{i} \perp$ is the least fixed-point of f. Proof:
x exists because $\perp \sqsubseteq f \perp \sqsubseteq \ldots f^{i} \perp \sqsubseteq f^{i+1} \perp \sqsubseteq \ldots$ is a chain. x is a fixed-point because

$$
f x=f\left(\bigsqcup_{i=0}^{\infty} f^{i} \perp\right)=\bigsqcup_{i=0}^{\infty} f\left(f^{i} \perp\right)=\bigcup_{i=1}^{\infty} f^{i} \perp=\bigcup_{i=0}^{\infty} f^{i} \perp=x
$$

For any fixed-point y of $f, \perp \sqsubseteq y \Rightarrow f \perp \sqsubseteq f y=y$, by induction $\forall i \in \mathbf{N} . f^{i} \perp \sqsubseteq y$, therefore $x=\sqcup\left(f^{i} \perp\right) \sqsubseteq y$.

The Least Fixed-Point Operator

Let

$$
\mathbf{Y}_{D}=\lambda f \in[D \rightarrow D] . \bigsqcup_{i=0}^{\infty} f^{i} \perp
$$

Then for each $f \in[D \rightarrow D], \mathbf{Y}_{D} f$ is the least fixed-point of f.

$$
\mathbf{Y}_{D} \in[[D \rightarrow D] \rightarrow D]
$$

Semantics of Loops

The semantic equation
\llbracket while b do $c \rrbracket_{\text {comm }} \sigma$

$$
= \begin{cases}\left(\llbracket \text { while } b \text { do } c \rrbracket_{c o m m}\right)_{\Perp}\left(\llbracket c \rrbracket_{c o m m} \sigma\right), & \text { if } \llbracket b \rrbracket_{b o o l e x p} \sigma=\text { true } \\ \sigma, & \text { otherwise }\end{cases}
$$ implies that \llbracket while b do $c \rrbracket_{\text {comm }}$ is a fixed-point of

$F \stackrel{\text { def }}{=} \lambda f \in\left[\Sigma \rightarrow \Sigma_{\perp}\right] \cdot \lambda \sigma \in \Sigma . \begin{cases}f_{\Perp}\left(\llbracket c \rrbracket \rrbracket_{c o m m} \sigma\right), & \text { if } \llbracket b \rrbracket_{\text {boolexp }} \sigma=\text { true } \\ \sigma, & \text { otherwise }\end{cases}$
We pick the least fixed-point:

$$
\llbracket \text { while } b \text { do } c \rrbracket_{c o m m} \stackrel{\text { def }}{=} \mathbf{Y}_{\left[\Sigma \rightarrow \Sigma_{\perp}\right]} F
$$

Semantics of Loops: Intuition

$w_{0} \stackrel{\text { def }}{=}$ while true do skip
$\llbracket w_{0} \rrbracket_{\text {comm }}=\perp$ $w_{i+1} \stackrel{\text { def }}{=}$ if b then $\left(c ; w_{i}\right)$ else skip $\llbracket w_{i+1} \rrbracket$ comm $=F \llbracket w_{i} \rrbracket_{c o m m}$
The loop while b do c behaves like w_{i} from state σ if the loop evaluates the condition $n \leq i$ times:

$$
\llbracket w_{i} \rrbracket_{c o m m} \sigma= \begin{cases}\llbracket \text { while } b \text { do } c \rrbracket_{c o m m} \sigma, & \text { if } n \leq i \\ \perp, & \text { if } n>i\end{cases}
$$

or the loop fails to terminate:

$$
\llbracket \text { while } b \text { do } c \rrbracket_{c o m m} \sigma=\perp=\llbracket w_{i} \rrbracket_{c o m m} \sigma .
$$

So

$$
\begin{aligned}
& \forall \sigma \in \Sigma . \llbracket \text { while } b \text { do } c \rrbracket_{c o m m} \sigma=\bigsqcup_{n=0}^{\infty} \llbracket w_{n} \rrbracket_{c o m m} \sigma \\
& \Rightarrow \llbracket \text { while } b \text { do } c \rrbracket_{c o m m}=\mathbf{Y}_{\left[\Sigma \rightarrow \Sigma_{\perp}\right]} F
\end{aligned}
$$

Variable Declarations

Syntax:

$$
\text { comm }::=\text { newvar var }:=\text { intexp in comm }
$$

Semantics:

$$
\begin{aligned}
& \llbracket \text { newvar } v:=e \text { in } c \rrbracket_{\text {comm }} \sigma \\
& \stackrel{\text { def }}{=} \\
& = \begin{cases}[-\mid v: \sigma v])_{\Perp}\left(\llbracket c \rrbracket_{\text {comm }}\left[\sigma \mid v: \llbracket e \rrbracket_{\text {intexp }} \sigma\right]\right) \\
{\left[\sigma^{\prime} \mid v: \sigma v\right],} & \text { if } \sigma^{\prime}=\perp\end{cases} \\
& \quad \text { whererwise } \sigma^{\prime}=\llbracket c \rrbracket_{\text {comm }}\left[\sigma \mid v: \llbracket e \rrbracket_{\text {intexp }} \sigma\right]
\end{aligned}
$$

newvar $v:=e$ in c binds v in c, but not in e :

$$
F V(\text { newvar } v:=e \text { in } c)=(F V(c)-\{v\}) \cup F V(e)
$$

Problems with Substitutions

Only variables are allowed on the left of assignment
\Rightarrow substitution cannot be defined as for predicate logic:

$$
(x:=x+1) / x \rightarrow 10=10:=10+1
$$

We have to require $\delta \in \operatorname{var} \rightarrow$ var; then

$$
\begin{aligned}
(v:=e) / \delta & =(\delta v):=\left(e /\left(c_{\mathrm{var}} \cdot \delta\right)\right) \\
\left(c_{0} ; c_{1}\right) / \delta & =\left(c_{0} / \delta\right) ;\left(c_{1} / \delta\right)
\end{aligned}
$$

(newvar $v:=e$ in $c) / \delta=$ newvar $u:=\left(e /\left(c_{\text {var }} \cdot \delta\right)\right)$ in $(c /[\delta \mid v: u])$ where $u \notin\{\delta w \mid w \in F V(c)-\{v\}\}$

Assigned Variables

Hence it is useful to know which variables are assigned to:

$$
\begin{aligned}
F A(v:=e) & =\{v\} \\
F A\left(c_{0} ; c_{1}\right) & =F A\left(c_{0}\right) \cup F A\left(c_{1}\right) \\
& \cdots \\
F A(\text { newvar } v:=e \text { in } c) & =F A(c)-\{v\}
\end{aligned}
$$

Note that

$$
F A(c) \subseteq F V(c)
$$

Coincidence Theorem for Commands

The meaning of a command now depends not only on the mapping of its free variables:

$$
\llbracket c \rrbracket_{c o m m} \sigma v=\sigma v
$$

if $\llbracket c \rrbracket_{c o m m} \sigma \neq \perp$ and $v \notin F V(c)$
(i.e. all non-free variables get the values they had before c was executed).

Coincidence Theorem:

(a) If $\sigma u=\sigma^{\prime} u$ for all $u \in F V(c)$, then $\llbracket c \rrbracket_{c o m m} \sigma=\perp=\llbracket c \rrbracket_{c o m m} \sigma^{\prime}$ or $\forall v \in F V(c) . \llbracket c \rrbracket_{c o m m} \sigma v=\llbracket c \rrbracket_{c o m m} \sigma^{\prime} v$.
(b) If $\llbracket c \rrbracket_{c o m m} \sigma \neq \perp$, then $\llbracket c \rrbracket_{c o m m} \sigma v=\sigma v$ for all $v \notin F A(c)$.

More Trouble with Substitutions

Recall that for predicate logic $\llbracket-\rrbracket\left(\llbracket-\rrbracket_{\text {intexp }} \sigma \cdot \delta\right)=\llbracket-/ \delta \rrbracket \sigma$.
The corresponding property for commands: $\llbracket-\rrbracket(\sigma \cdot \delta)=\llbracket-/ \delta \rrbracket \sigma \cdot \delta$; fails in general due to aliasing:

$$
\begin{aligned}
(x:=x+1 ; y:=y * 2) /[x: z \mid y: z] & =(z:=z+1 ; z:=z * 2) \\
{[x: 2 \mid y: 2] } & =[z: 2] \cdot[x: z \mid y: z]
\end{aligned}
$$

but

$$
\begin{array}{rlrl}
\llbracket \mathrm{x}:=\mathrm{x}+1 ; \mathrm{y}:=\mathrm{y} * 2 \rrbracket \operatorname{comm}[\mathrm{x}: 2 \mid \mathrm{y}: 2] & & =[\mathrm{x}: 3 \mid \mathrm{y}: 4] \\
(\llbracket \mathrm{z}:=\mathrm{z}+1 ; \mathrm{z}:=\mathrm{z} * 2 \rrbracket \operatorname{comm}[\mathrm{z}: 2]) \cdot[\mathrm{x}: \mathrm{z} \mid \mathrm{y}: \mathrm{z}] & =[\mathrm{z}: 6] \cdot[\mathrm{x}: \mathrm{z} \mid \mathrm{y}: \mathrm{z}] \\
& =[\mathrm{x}: 6 \mid \mathrm{y}: 6]
\end{array}
$$

Substitution Theorem for Commands:
If $\delta \in \operatorname{var} \longrightarrow v a r$ and δ is an injection from a set $V \supseteq F V(c)$, and σ and σ^{\prime} are such that $\sigma^{\prime} v=\sigma(\delta v)$ for all $v \in V$, then $\left(\llbracket c \rrbracket_{c o m m}\right) \sigma^{\prime} v=\left(\llbracket c / \delta \rrbracket_{c o m m} \sigma \cdot \delta\right) v$ for all $v \in V$.

Abstractness of Semantics

Abstract semantics are an attempt to separate the important properties of a language (what computations can it express) from the unimportant (how exactly computations are represented).

The more terms are considered equal by a semantics, the more abstract it is.

A semantic function $\llbracket-\rrbracket_{1}$ is at least as abstract as $\llbracket-\rrbracket_{0}$ if $\llbracket-\rrbracket_{1}$ equates all terms that $\llbracket-\rrbracket_{0}$ does:

$$
\forall c . \llbracket c \rrbracket_{0}=\llbracket c^{\prime} \rrbracket_{0} \Rightarrow \llbracket c \rrbracket_{1}=\llbracket c^{\prime} \rrbracket_{1}
$$

Soundness of Semantics

If there are other means of observing the result of a computation, a semantics may be incorrect if it equates too many terms.
$\mathcal{C}=$ the set of contexts: terms with a hole \bullet.
A term c can be placed in the hole of a context C, yielding term $C[c]$ (not subtitution — variable capture is possible)

Example: if $C=$ newvar $\mathrm{x}:=1$ in \bullet, then $C[\mathrm{x}:=\mathrm{x}+1]=$ newvar $\mathrm{x}:=1$ in $\mathrm{x}:=\mathrm{x}+1$.
$\mathcal{O}=$ terms \rightarrow outcomes: the set of observations.
A semantic function $\llbracket-\rrbracket$ is sound iff

$$
\forall c, c^{\prime} . \llbracket c \rrbracket=\llbracket c^{\prime} \rrbracket \Rightarrow \forall O \in \mathcal{O} . \forall C \in \mathcal{C} . O(C[c])=O\left(C\left[c^{\prime}\right]\right)
$$

Fully Abstract Semantics

Recap:
$\llbracket-\rrbracket_{1}$ is at least as abstract as $\llbracket-\rrbracket_{0}$ if $\llbracket-\rrbracket_{1}$ equates all terms that $\llbracket-\rrbracket_{0}$ does:

$$
\forall c . \llbracket c \rrbracket_{0}=\llbracket c^{\prime} \rrbracket_{0} \Rightarrow \llbracket c \rrbracket_{1}=\llbracket c^{\prime} \rrbracket_{1}
$$

$\llbracket-\rrbracket$ is sound iff

$$
\forall c, c^{\prime} . \llbracket c \rrbracket=\llbracket c^{\prime} \rrbracket \Rightarrow \forall O \in \mathcal{O} . \forall C \in \mathcal{C} \cdot O(C[c])=O\left(C\left[c^{\prime}\right]\right)
$$

A semantics is fully abstract iff

$$
\forall c, c^{\prime} . \llbracket c \rrbracket=\llbracket c^{\prime} \rrbracket \Leftrightarrow \forall O \in \mathcal{O} \cdot \forall C \in \mathcal{C} \cdot O(C[c])=O\left(C\left[c^{\prime}\right]\right)
$$

i.e. iff it is a "most abstract" sound semantics.

Full Abstractness of Semantics for SIL

Consider observations $O_{\sigma, v} \in \mathcal{O} \stackrel{\text { def }}{=} c o m m \rightarrow \mathbf{Z}_{\perp}$ observing the value of variable v after executing from state σ :
$O_{\sigma, v}(c)=\left\{\begin{array}{ll}\perp, & \text { if } \llbracket c \rrbracket_{c o m m} \sigma=\perp \\ \llbracket c \rrbracket_{c o m m} \sigma v, & \text { otherwise }\end{array}\right\}=((-) v)_{\perp}\left(\llbracket c \rrbracket_{c o m m} \sigma\right)$
$\llbracket-\rrbracket_{\text {comm }}$ is fully abstract (with respect to observations \mathcal{O}):

- $\llbracket-\rrbracket_{\text {comm }}$ is sound: By compositionality, if $\llbracket c \rrbracket_{\text {comm }}=\llbracket c^{\prime} \rrbracket_{c o m m}$, then $\llbracket C[c] \rrbracket_{\text {comm }}=\llbracket C\left[c^{\prime} \rrbracket \rrbracket_{\text {comm }}\right.$ for any context C (induction); hence $O(C[c])=O\left(C\left[c^{\prime}\right]\right)$ for any observation O.
- $\llbracket-\rrbracket_{\text {comm }}$ is most abstract: Consider the empty context $C=\bullet$; if $O_{\sigma, v}(c)=O_{\sigma, v}\left(c^{\prime}\right)$ for all $v \in \operatorname{var}, \sigma \in \Sigma$, then $\llbracket c \rrbracket=\llbracket c^{\prime} \rrbracket$.

Observing Termination of Closed Commands

Suffices to observe if closed commands terminate:
If $\llbracket c \rrbracket_{\text {comm }} \neq \llbracket c^{\prime} \rrbracket_{\text {comm }}$, construct a context that distinguishes c and c^{\prime}.
Suppose $\llbracket c \rrbracket_{\text {comm }} \sigma \neq \llbracket c^{\prime} \rrbracket_{\text {comm }} \sigma$ for some σ.
Let $\left\{v_{i} \mid i \in 1\right.$ to $\left.n\right\} \stackrel{\text { def }}{=} F V(c) \cup F V\left(c^{\prime}\right)$,
and κ_{i} be constants such that $\llbracket \kappa_{i} \rrbracket_{\text {intexp }} \sigma^{\prime}=\sigma v_{i}$.

Then by the Coincidence Theorem

$$
\llbracket c \rrbracket_{\text {comm }}\left[\sigma^{\prime} \mid v_{i}: \kappa_{i}{ }^{i \in 1 \text { to } n}\right] \neq \llbracket c^{\prime} \rrbracket_{c o m m}\left[\sigma^{\prime} \mid v_{i}: \kappa_{i}{ }^{i \in 1 \text { to } n}\right]
$$

for any state σ^{\prime}.

Observing Termination Cont'd

Consider then the context C closing both c and c^{\prime} :

$$
C \stackrel{\text { def }}{=} \text { newvar } v_{1}:=\kappa_{1} \text { in } \ldots \text { newvar } v_{n}:=\kappa_{n} \text { in } \bullet
$$

$C[c]$ and $C\left[c^{\prime}\right]$ may not both diverge from any initial state σ^{\prime}, since

$$
\llbracket C[c] \rrbracket_{\text {comm }} \sigma^{\prime}=\left(\left[-\mid v_{i}: \sigma^{\prime} v_{i}{ }^{i \in 1 \text { to } n}\right]\right)_{\Perp} \llbracket c \rrbracket_{\text {comm }}\left[\sigma^{\prime} \mid v_{i}: \kappa_{i}{ }^{i \in 1 \text { to } n}\right]
$$

and $C[c]=\perp=C\left[c^{\prime}\right]$ is only possible if

$$
\llbracket c \rrbracket_{\text {comm }}\left[\sigma^{\prime} \mid v_{i}: \kappa_{i}{ }^{i \in 1} \text { to } n\right]=\perp=\llbracket c^{\prime} \rrbracket_{\text {comm }}\left[\sigma^{\prime} \mid v_{i}: \kappa_{i}{ }^{i \in 1 \text { to } n}\right],
$$

but by assumption and Coincidence the initial state [$\sigma^{\prime} \mid v_{i}: \kappa_{i}{ }^{i \in 1 \text { to } n] ~ d i s t i n g u i s h e s ~} c$ and c^{\prime}.

Observing Termination Cont'd

If only one of $C[c]$ and $C\left[c^{\prime}\right]$ terminates, then the restricted observations on C distinguishes between them.

If both $C[c]$ and $C\left[c^{\prime}\right]$ terminate, then $\llbracket c \rrbracket_{\text {comm }} \sigma \neq \perp \neq \llbracket c^{\prime} \rrbracket_{\text {comm }} \sigma$, hence $\llbracket c \rrbracket \sigma v=\llbracket \kappa \rrbracket \sigma^{\prime} \neq \llbracket c^{\prime} \rrbracket \sigma v$ for some v.
Then for context

$$
D \stackrel{\text { def }}{=} C[(\bullet ; \text { while } v=\kappa \text { do skip })]
$$

we have $\llbracket D[c] \rrbracket_{\text {comm }} \sigma^{\prime}=\perp \neq \llbracket D\left[c^{\prime}\right] \rrbracket_{\text {com }} \sigma^{\prime}$,
$\Rightarrow O_{\sigma, v}(D[c]) \neq O_{\sigma, v}\left(D\left[c^{\prime}\right]\right)$.

