Constructive Logic and Classical Logic

Antonis Stampoulis

November 9, 2011

Is P= NP?

» True
» False

» Currently unknown

Is P= NP?

» Prove P = NP
» Prove P # NP
» Neither P = NPor P # NP are provable

Godel’s incompleteness theorem

For any interesting axiomatic system, there are sentences of
the system ¢ for which there is no proof of ¢ or of ¢ within
the system.

v

v

v

Constructive logic

Reject the fact that every sentence is either true or false

Perceive truth in terms of existence of proof:
@ is true = there is a proof of ¢
@ is false = a proof of ¢ leads to contradiction

Corresponds to mathematical practice

Philosophically: no extrinsic notion of truth

Constructive logic

Based on these ideas, the rules of logic codify what counts as valid
justification for a sentence.

Rules of Constructive Logic

Judgements

¢ prop (valid proposition)
't ¢ true (¢ has a proof)

Propositions

Gu=T | Lot Ada| 1V 2|1 D oo

[::= ¢, true, -+, ¢, true

Rules

Intro: direct evidence for a connective
Elim: use the existence of the proof to prove something else
indirectly

Rules

t el
Structural d)L
'+ ¢ true
Truth _— no elim rule
I'E T true
'+ L true
False no intro rule

[' - ¢ true

Rules

'+ ¢ true I' F ¢ true

Conjuction
I'= @1 A ¢ true
I'F @1 A ¢y true I'E ¢y A @5 true
' F ¢y true [' F ¢y true
. . 't ¢y true ' F ¢ true
Disjunction

I'E ¢1 V @ true ' ¢y V ¢ true

I'F ¢y V ¢y true
I', ¢ true - ¢ true I', ¢ true - ¢ true

I' - ¢ true

Rules

I', ¢, true - ¢ true
'k qbl D) ng true

Implication

' ¢1 D ¢y true '+ ¢ true
I' F ¢y true

Propositions as types

The outermost connective of ¢ specifies the form of a valid
proof

e.g. a proof of @1 V ¢4: choose left or right, and provide a
witness

correspondence with terms of a programming language
proofs as terms, propositions as types

proving and programming is the same!

Term assignment

@1 true, --- , @, true - ¢ true
becomes

TGy, o, Tyt O

Rules

oel
Structural L
'Fxz:9¢
Truth T Te— no elim rule
CEO:T
'Ep: L
False no intro rule

['Fabortp: ¢

Rules

I'Ep i I'Fpy: g I'Ep:or Ao

Conjuction
F}_<p1,p2>1¢1/\¢2 F"fSthQﬁl
PEpidiAgs
I'Fsndp: ¢
. . I'Epton L' py:go
Disjunction

I'Finlp: o1V @o I'Finrp: ¢1V ¢

FEp:giVoy Tix:igibp o T, xigabpyio
['F case(p; z.py; 2.py) © &

Rules

Lyz:gibp:gs
CEXz:¢r1.p: d1 D o

Implication

I'Epy:d1 D oo I'Eopy: gy
I'Epypy: g2

Propositions-as-types correspondence
AKA Curry-Howard Isomorphism

Proposition | Type
T unit
1 void
O1 N o T1 X Ty
o1V P2 T+ T2
¢1 D P2 T — T2
Va.¢ ?

Jx.¢

What about reduction?

When we view p as programs, we can evaluate them based on
their operational semantics. What does this evaluation
correspond to?

What about reduction?

When we view p as programs, we can evaluate them based on
their operational semantics. What does this evaluation
correspond to?

| OV ol A
CEAz: g1t 1D o | A .
T Az grt) o TR/ ;6

Soundness

» Is there a proof of | ?

Soundness

» Is there a proof of | ?

» If only neutral/canonical terms, easy

Soundness

» Is there a proof of | ?
» If only neutral/canonical terms, easy

» Show that terms can always be reduced to canonical terms
(normalization)

Soundness

» soundness is thus justified by strong/weak normalization

» reduction procedures (like hereditary substitutions)
correspond to cut elimination procedures

Classical Logic

A classical proof

Theorem
Ja, b € R.irrational(a) A irrational(b) A rational(a®)

Proof.

Consider \/5\@ This number is either rational or irrational.
Suppose it is rational: then a = v/2, b = /2 gives the required

result. Suppose it is not: then a = \/5\/5, b = /2 gives the
required result, as a® = 2. [

v

Example from Lecture Notes on Classical Logic, William Lovas and Frank Pfenning

Classical Logic

» weaken notion of truth of ¢: instead of existence of proof for
¢, existence of refutation for —¢

» a classically valid proposition ¢ is irrefutable constructively

» symmetry between truth and falsity (false is existence of
proof for —¢)

Definition of Classical Logic

» could just add a classical axiom (e.g. excluded middle or
double negation) to constructive logic

» instead: proper judgemental system to bring out the
symmetry

Judgements of Classical Logic

A; T'F ¢ true the proposition ¢ is provable
A; T'F ¢ false the proposition ¢ is refutable
A; T H# a contradiction has been derived

A = ¢y false, - - - , ¢, false
[::= ¢, true,--- , ¢, true

Rules

Truth rules: direct proof
Falsity rules: direct refutation
Contradiction rules: indirect proofs and refutations

Rules

¢ true € I’
Structural _—
A; T ¢ true
Truth _——
m A;T'F T true
False no proof

¢ false € A
A; T+ ¢ false

no refutation

A;T'F L false

Rules

AT ¢y true A; T ¢g true

Congjuncti
onjunetion A; T'F ¢ A ¢g true
AT F ¢y false A; T F ¢y false
AT ¢y A ¢ false AT F ¢y A ¢ false
o] A; T ¢y true A; T ¢q true
Disjunction

AT F @1V g true AT F @1V ¢g true

AT F ¢y false A; T ¢ false
A; T'F @1 V ¢y false

Rules

A; T, ¢ true F ¢y true
A;T F ¢y D ¢ true

Implication

A; T ¢y true A; T ¢q false
A; 'k le D) ng false

A;T = ¢ false A;T'F ¢ true
AT F —¢ true A; T+ —¢ false

Negation

Rules

A;T F ¢ true A;T F ¢ false

A, u false; T - #

AT H#

A; T, ztrue - #

A; T ¢ false

A;T'F ¢ true

Term assignment

A; ' ¢ true becomes A; T'Fp:o¢

A; '+ ¢ false becomes A; I'F k¢

A; T H# becomes A; I' F (throw p to k) prog
A; T'F k#p (in Harper)

A —U1'¢1, 7un+¢m
=10 ¢17 axn:an

Rules

z:pel u+¢peA
Structural —_— —_—
AT Ez:¢ AT Fu=¢
Truth W no refutation
False no proof

A; T abort — + 1

Rules

A§F|_p13¢1 A§P|_p23¢2
Ay T'E <p1,p2>1¢1/\¢2

Conjunction

AT EE=+ ¢ AT E k=g
AT Ffst— k= 1 A o AT Fsnd—; k= 1 A @9

. . AT Ep i n
Disjunction -
A;T Finl py 2 1 V ¢
JAN B T AT E R+ ¢ AT by =+ o

A;T Finr py : @1 V o A; T'F case(—; ks k) + 1 V o

Rules

AL, o it ¢
AT E AT ¢p1.py - 61 D o

Implication

AT Epcon AT F by + ¢y
AT (= py)ik+ 01D ¢

ATEp:o ATHE=o
A; T F not(p) + —¢ A; T F not(k) : ¢

Negation

Rules

AT FEE=o A;TEp:o
A;T F (throw p to k) prog

A, u-+ ¢; Tk (throw p to k) prog
AT (Cu+ ¢p.throwpto k) : ¢

A;T z: ¢ (throw p to k) prog
A;TH (letz: ¢ = — in throw pto k) + ¢

Example

Proofof (p A (¢ AN 6)) D (O N @)

Aw: (oA (Y AD)).
Cu=+0Ao.
throw w to (fst—;
letx: ¢ = —in
throw w to (snd—;
lety: Y AN =—in
throw y to (snd—;
let z: 0 =—in
throw (2,) to u)))

Dynamics

throw (p;, py) to (fst—; k) — throw p, to k
throw (p;, py) to (snd—; k) —> throw p, to k
throw inl p, to (case(k;; k2)) — throw p, to k;
throw inr p, to (case(ky; k2)) — throw p, to ky
throw not(k) to not(p) — throw pto k

throw Az : ¢.py to (— py; k) — throw py[p, /1] to k

Dynamics

throw p, to (let x: ¢ = — in throw p, to k) —
throw [p,/2]p, to [p,/alk:

throw (Cu =+ ¢.throw p, to ky) to ky —>
throw [k /u|py to [k /u]ky

p canonical

(throw p to halt) initial (throw p to halt) final

Another example

Peirce’s Law: ((¢ D ¢) D ¢) D ¢

Another example

Peirce’s Law: ((¢ D) D @) D ¢

Af:((0D¢) D 9).
Cu-= ¢.
throw f (Az : ¢.throw z to u) to u

Another example

Excluded Middle: ¢ V —¢

Another example

Excluded Middle: ¢ V —¢

Cu—+ oV —op.

throw inr(not(let z: ¢ = — in throw inl z to u)) to u

Another example

Excluded Middle: ¢ V —¢

Cu—+ oV —op.

throw inr(not(let z: ¢ = — in throw inl z to u)) to u

throw em to case(k; not(p,)) —* throw p, to k;

Double-Negation Translation

Every constructive proof is also a valid classical proof.

Double-Negation Translation
Every constructive proof is also a valid classical proof.

What about the inverse?

Double-Negation Translation

Classical ‘ Constructive
A; T'F ¢ true | A%, IT'* B =—¢* true
A; T'F ¢ false | =A*; T F —¢* true

A; T'H# A% ™ F L true
T _—
1= = 1
(P1 A d2)” = GNP
(Pr1Vd2)" = 1V o3
(91 D ¢2)" = ¢7 D3
(—e)" = ¢

Double-Negation Translation

» Computational meaning?

Double-Negation Translation

» Computational meaning?

» CPS translation

Double-Negation Translation

» Computational meaning?
» CPS translation

» Meaning of classical axioms?

