EquivProgram Equivalence


Require Export Imp.

Behavioral Equivalence

In the last chapter, we studied a simple transformation on arithmetic expressions. Our transformation was correct because it preserved the value of the expressions given as input.
For Imp programs, correct transformations will be those that preserve the behavior of programs. In order to study those, we must first define the notion of program equivalence.

Definitions

For aexps and bexps with variables, the definition we want is clear. We say that two aexps or bexps are behaviorally equivalent if they evaluate to the same result in every state.

Definition aequiv (a1 a2 : aexp) : Prop :=
  (st:state),
    aeval st a1 = aeval st a2.

Definition bequiv (b1 b2 : bexp) : Prop :=
  (st:state),
    beval st b1 = beval st b2.

For commands, the situation is a little more subtle. We can't simply say "two commands are behaviorally equivalent if they evaluate to the same ending state whenever they are started in the same initial state," because some commands (in some starting states) don't terminate in any final state at all! What we need instead is this: two commands are behaviorally equivalent if, for any given starting state, they either both diverge or both terminate in the same final state. A compact way to express this is "if the first one terminates in a particular state then so does the second, and vice versa."

Definition cequiv (c1 c2 : com) : Prop :=
  (st st' : state),
    (c1 / st st') (c2 / st st').

Are these two programs equivalent?
    X ::= 1;;
    Y ::= 2
and
    Y ::= 2;;
    X ::= 1
(1) Yes
(2) No
(3) Not sure

What about these?
    X ::= 1;;
    Y ::= 2
and
    X ::= 2;;
    Y ::= 1
(1) Yes
(2) No
(3) Not sure

What about these?
    WHILE 1 ≤ X DO
      X ::= X + 1
    END
and
    WHILE 2 ≤ X DO
      X ::= X + 1
    END
These?
    WHILE TRUE DO
      WHILE FALSE DO X ::= X + 1 END
    END
and
    WHILE FALSE DO
      WHILE TRUE DO X ::= X + 1 END
    END

Examples


Theorem aequiv_example:
  aequiv (AMinus (AId X) (AId X)) (ANum 0).
Proof.
  intros st. simpl. omega.
Qed.

Theorem bequiv_example:
  bequiv (BEq (AMinus (AId X) (AId X)) (ANum 0)) BTrue.
Proof.
  intros st. unfold beval.
  rewrite aequiv_example. reflexivity.
Qed.

For examples of command equivalence, let's start by looking at some trivial program transformations involving SKIP:

Theorem skip_left: c,
  cequiv
     (SKIP;; c)
     c.
Proof.
  (* WORK IN CLASS *) Admitted.

Similarly, here is a simple transformations that simplifies IFB commands:

Theorem IFB_true_simple: c1 c2,
  cequiv
    (IFB BTrue THEN c1 ELSE c2 FI)
    c1.
Proof.
  intros c1 c2.
  split; intros H.
  Case "".
    inversion H; subst. assumption. inversion H5.
  Case "".
    apply E_IfTrue. reflexivity. assumption. Qed.

Of course, few programmers would be tempted to write a conditional whose guard is literally BTrue. A more interesting case is when the guard is equivalent to true:
Theorem: If b is equivalent to BTrue, then IFB b THEN c1 ELSE c2 FI is equivalent to c1.
Proof:
  • () We must show, for all st and st', that if IFB b THEN c1 ELSE c2 FI / st st' then c1 / st st'.
    Proceed by cases on the rules that could possibly have been used to show IFB b THEN c1 ELSE c2 FI / st st', namely E_IfTrue and E_IfFalse.
    • Suppose the final rule rule in the derivation of IFB b THEN c1 ELSE c2 FI / st st' was E_IfTrue. We then have, by the premises of E_IfTrue, that c1 / st st'. This is exactly what we set out to prove.
    • On the other hand, suppose the final rule in the derivation of IFB b THEN c1 ELSE c2 FI / st st' was E_IfFalse. We then know that beval st b = false and c2 / st st'.
      Recall that b is equivalent to BTrue, i.e. forall st, beval st b = beval st BTrue. In particular, this means that beval st b = true, since beval st BTrue = true. But this is a contradiction, since E_IfFalse requires that beval st b = false. Thus, the final rule could not have been E_IfFalse.
  • () We must show, for all st and st', that if c1 / st st' then IFB b THEN c1 ELSE c2 FI / st st'.
    Since b is equivalent to BTrue, we know that beval st b = beval st BTrue = true. Together with the assumption that c1 / st st', we can apply E_IfTrue to derive IFB b THEN c1 ELSE c2 FI / st st'.
Here is the formal version of this proof:

Theorem IFB_true: b c1 c2,
     bequiv b BTrue
     cequiv
       (IFB b THEN c1 ELSE c2 FI)
       c1.
Proof.
  intros b c1 c2 Hb.
  split; intros H.
  Case "".
    inversion H; subst.
    SCase "b evaluates to true".
      assumption.
    SCase "b evaluates to false (contradiction)".
      rewrite Hb in H5.
      inversion H5.
  Case "".
    apply E_IfTrue; try assumption.
    rewrite Hb. reflexivity. Qed.

Similarly:

Theorem IFB_false: b c1 c2,
  bequiv b BFalse
  cequiv
    (IFB b THEN c1 ELSE c2 FI)
    c2.
Proof.
  (* FILL IN HERE *) Admitted.

For WHILE loops, we can give a similar pair of theorems. A loop whose guard is equivalent to BFalse is equivalent to SKIP, while a loop whose guard is equivalent to BTrue is equivalent to WHILE BTrue DO SKIP END (or any other non-terminating program). The first of these facts is easy.

Theorem WHILE_false : b c,
     bequiv b BFalse
     cequiv
       (WHILE b DO c END)
       SKIP.
Proof.
  intros b c Hb. split; intros H.
  Case "".
    inversion H; subst.
    SCase "E_WhileEnd".
      apply E_Skip.
    SCase "E_WhileLoop".
      rewrite Hb in H2. inversion H2.
  Case "".
    inversion H; subst.
    apply E_WhileEnd.
    rewrite Hb.
    reflexivity. Qed.

To prove the second fact, we need an auxiliary lemma stating that WHILE loops whose guards are equivalent to BTrue never terminate:
Lemma: If b is equivalent to BTrue, then it cannot be the case that (WHILE b DO c END) / st st'.
Proof: Suppose that (WHILE b DO c END) / st st'. We show, by induction on a derivation of (WHILE b DO c END) / st st', that this assumption leads to a contradiction.
  • Suppose (WHILE b DO c END) / st st' is proved using rule E_WhileEnd. Then by assumption beval st b = false. But this contradicts the assumption that b is equivalent to BTrue.
  • Suppose (WHILE b DO c END) / st st' is proved using rule E_WhileLoop. Then we are given the induction hypothesis that (WHILE b DO c END) / st st' is contradictory, which is exactly what we are trying to prove!
  • Since these are the only rules that could have been used to prove (WHILE b DO c END) / st st', the other cases of the induction are immediately contradictory.

Lemma WHILE_true_nonterm : b c st st',
     bequiv b BTrue
     ~( (WHILE b DO c END) / st st' ).
Proof.
  (* WORK IN CLASS *) Admitted.

Theorem WHILE_true: b c,
     bequiv b BTrue
     cequiv
       (WHILE b DO c END)
       (WHILE BTrue DO SKIP END).
Proof.
  (* FILL IN HERE *) Admitted.

Theorem loop_unrolling: b c,
  cequiv
    (WHILE b DO c END)
    (IFB b THEN (c;; WHILE b DO c END) ELSE SKIP FI).
Proof.
  (* WORK IN CLASS *) Admitted.

The Functional Equivalence Axiom

Finally, let's look at simple equivalences involving assignments. For example, we might expect to be able to show that X ::= AId X is equivalent to SKIP. However, when we try to show it, we get stuck in an interesting way.

Theorem identity_assignment_first_try : (X:id),
  cequiv (X ::= AId X) SKIP.
Proof.
   intros. split; intro H.
     Case "".
       inversion H; subst. simpl.
       replace (update st X (st X)) with st.
       constructor.
       (* Stuck... *) Abort.

Here we're stuck. The goal looks reasonable, but in fact it is not provable! If we look back at the set of lemmas we proved about update in the last chapter, we can see that lemma update_same almost does the job, but not quite: it says that the original and updated states agree at all values, but this is not the same thing as saying that they are = in Coq's sense!
What's going on?
  • States are function from ids to values
  • Functions are equal when their definitions are syntactically the same (modulo simplification)
  • Here we have two functions that behave the same on all inputs but are not syntactically the same.
This problem is actually quite general. If we try to prove other simple facts, such as
    cequiv (X ::= X + 1;;
            X ::= X + 1)
           (X ::= X + 2)
or
    cequiv (X ::= 1;; Y ::= 2)
           (y ::= 2;; X ::= 1)
  
we'll get stuck in the same way: we'll have two functions that behave the same way on all inputs, but cannot be proven to be eq to each other.
The reasoning principle we would like to use in these situations is called functional extensionality:
x, f x = g x  

f = g
Although this principle is not derivable in Coq's built-in logic, it is safe to add it as an additional axiom.

Axiom functional_extensionality : {X Y: Type} {f g : X Y},
    ((x: X), f x = g x) f = g.

With the benefit of this axiom we can prove our theorem.

Theorem identity_assignment : (X:id),
  cequiv
    (X ::= AId X)
    SKIP.
Proof.
   intros. split; intro H.
     Case "".
       inversion H; subst. simpl.
       replace (update st X (st X)) with st.
       constructor.
       apply functional_extensionality. intro.
       rewrite update_same; reflexivity.
     Case "".
       inversion H; subst.
       assert (st' = (update st' X (st' X))).
          apply functional_extensionality. intro.
          rewrite update_same; reflexivity.
       rewrite H0 at 2.
       constructor. reflexivity.
Qed.

Properties of Behavioral Equivalence

We now turn to developing some of the properties of the program equivalences we have defined.

Behavioral Equivalence is an Equivalence

First, we verify that the equivalences on aexps, bexps, and coms really are equivalences — i.e., that they are reflexive, symmetric, and transitive. The proofs are all easy.

Lemma refl_aequiv : (a : aexp), aequiv a a.
Proof.
  intros a st. reflexivity. Qed.

Lemma sym_aequiv : (a1 a2 : aexp),
  aequiv a1 a2 aequiv a2 a1.
Proof.
  intros a1 a2 H. intros st. symmetry. apply H. Qed.

Lemma trans_aequiv : (a1 a2 a3 : aexp),
  aequiv a1 a2 aequiv a2 a3 aequiv a1 a3.
Proof.
  unfold aequiv. intros a1 a2 a3 H12 H23 st.
  rewrite (H12 st). rewrite (H23 st). reflexivity. Qed.

Lemma refl_bequiv : (b : bexp), bequiv b b.
Proof.
  unfold bequiv. intros b st. reflexivity. Qed.

Lemma sym_bequiv : (b1 b2 : bexp),
  bequiv b1 b2 bequiv b2 b1.
Proof.
  unfold bequiv. intros b1 b2 H. intros st. symmetry. apply H. Qed.

Lemma trans_bequiv : (b1 b2 b3 : bexp),
  bequiv b1 b2 bequiv b2 b3 bequiv b1 b3.
Proof.
  unfold bequiv. intros b1 b2 b3 H12 H23 st.
  rewrite (H12 st). rewrite (H23 st). reflexivity. Qed.

Lemma refl_cequiv : (c : com), cequiv c c.
Proof.
  unfold cequiv. intros c st st'. apply iff_refl. Qed.

Lemma sym_cequiv : (c1 c2 : com),
  cequiv c1 c2 cequiv c2 c1.
Proof.
  unfold cequiv. intros c1 c2 H st st'.
  assert (c1 / st st' c2 / st st') as H'.
    SCase "Proof of assertion". apply H.
  apply iff_sym. assumption.
Qed.

Lemma iff_trans : (P1 P2 P3 : Prop),
  (P1 P2) (P2 P3) (P1 P3).
Proof.
  intros P1 P2 P3 H12 H23.
  inversion H12. inversion H23.
  split; intros A.
    apply H1. apply H. apply A.
    apply H0. apply H2. apply A. Qed.

Lemma trans_cequiv : (c1 c2 c3 : com),
  cequiv c1 c2 cequiv c2 c3 cequiv c1 c3.
Proof.
  unfold cequiv. intros c1 c2 c3 H12 H23 st st'.
  apply iff_trans with (c2 / st st'). apply H12. apply H23. Qed.

Behavioral Equivalence is a Congruence

Less obviously, behavioral equivalence is also a congruence. That is, the equivalence of two subprograms implies the equivalence of the larger programs in which they are embedded:
aequiv a1 a1'  

cequiv (i ::= a1) (i ::= a1')
cequiv c1 c1'
cequiv c2 c2'  

cequiv (c1;;c2) (c1';;c2')
...and so on.
(Note that we are using the inference rule notation here not as part of a definition, but simply to write down some valid implications in a readable format. We prove these implications below.)
These properties allow us to reason that a large program behaves the same when we replace a small part with a new small part that behaves the same.

Theorem CAss_congruence : i a1 a1',
  aequiv a1 a1'
  cequiv (CAss i a1) (CAss i a1').
Proof.
  intros i a1 a2 Heqv st st'.
  split; intros Hceval.
  Case "".
    inversion Hceval. subst. apply E_Ass.
    rewrite Heqv. reflexivity.
  Case "".
    inversion Hceval. subst. apply E_Ass.
    rewrite Heqv. reflexivity. Qed.

Theorem CWhile_congruence : b1 b1' c1 c1',
  bequiv b1 b1' cequiv c1 c1'
  cequiv (WHILE b1 DO c1 END) (WHILE b1' DO c1' END).
Proof.
  (* WORK IN CLASS *) Admitted.

Theorem CSeq_congruence : c1 c1' c2 c2',
  cequiv c1 c1' cequiv c2 c2'
  cequiv (c1;;c2) (c1';;c2').
Proof.
  (* FILL IN HERE *) Admitted.

Theorem CIf_congruence : b b' c1 c1' c2 c2',
  bequiv b b' cequiv c1 c1' cequiv c2 c2'
  cequiv (IFB b THEN c1 ELSE c2 FI) (IFB b' THEN c1' ELSE c2' FI).
Proof.
  (* FILL IN HERE *) Admitted.

For example, here are two equivalent programs and a proof of their equivalence...

Example congruence_example:
  cequiv
    (* Program 1: *)
    (X ::= ANum 0;;
     IFB (BEq (AId X) (ANum 0))
     THEN
       Y ::= ANum 0
     ELSE
       Y ::= ANum 42
     FI)
    (* Program 2: *)
    (X ::= ANum 0;;
     IFB (BEq (AId X) (ANum 0))
     THEN
       Y ::= AMinus (AId X) (AId X) (* <--- changed here *)
     ELSE
       Y ::= ANum 42
     FI).
Proof.
  apply CSeq_congruence.
    apply refl_cequiv.
    apply CIf_congruence.
      apply refl_bequiv.
      apply CAss_congruence. unfold aequiv. simpl.
        symmetry. apply minus_diag.
      apply refl_cequiv.
Qed.

Case Study: Constant Folding

A program transformation is a function that takes a program as input and produces some variant of the program as its output. Compiler optimizations such as constant folding are a canonical example, but there are many others.

Soundness of Program Transformations

A program transformation is sound if it preserves the behavior of the original program.
We can define a notion of soundness for translations of aexps, bexps, and coms.

Definition atrans_sound (atrans : aexp aexp) : Prop :=
  (a : aexp),
    aequiv a (atrans a).

Definition btrans_sound (btrans : bexp bexp) : Prop :=
  (b : bexp),
    bequiv b (btrans b).

Definition ctrans_sound (ctrans : com com) : Prop :=
  (c : com),
    cequiv c (ctrans c).

The Constant-Folding Transformation

An expression is constant when it contains no variable references.
Constant folding is an optimization that finds constant expressions and replaces them by their values.

Fixpoint fold_constants_aexp (a : aexp) : aexp :=
  match a with
  | ANum nANum n
  | AId iAId i
  | APlus a1 a2
      match (fold_constants_aexp a1, fold_constants_aexp a2) with
      | (ANum n1, ANum n2) ⇒ ANum (n1 + n2)
      | (a1', a2') ⇒ APlus a1' a2'
      end
  | AMinus a1 a2
      match (fold_constants_aexp a1, fold_constants_aexp a2) with
      | (ANum n1, ANum n2) ⇒ ANum (n1 - n2)
      | (a1', a2') ⇒ AMinus a1' a2'
      end
  | AMult a1 a2
      match (fold_constants_aexp a1, fold_constants_aexp a2) with
      | (ANum n1, ANum n2) ⇒ ANum (n1 × n2)
      | (a1', a2') ⇒ AMult a1' a2'
      end
  end.

Example fold_aexp_ex1 :
    fold_constants_aexp
      (AMult (APlus (ANum 1) (ANum 2)) (AId X))
  = AMult (ANum 3) (AId X).
Proof. reflexivity. Qed.

Note that this version of constant folding doesn't eliminate trivial additions, etc. — we are focusing attention on a single optimization for the sake of simplicity. It is not hard to incorporate other ways of simplifying expressions; the definitions and proofs just get longer.

Example fold_aexp_ex2 :
    fold_constants_aexp
      (AMinus (AId X) (APlus (AMult (ANum 0) (ANum 6)) (AId Y)))
  = AMinus (AId X) (APlus (ANum 0) (AId Y)).
Proof. reflexivity. Qed.

Not only can we lift fold_constants_aexp to bexps (in the BEq and BLe cases), we can also find constant boolean expressions and reduce them in-place.

Fixpoint fold_constants_bexp (b : bexp) : bexp :=
  match b with
  | BTrueBTrue
  | BFalseBFalse
  | BEq a1 a2
      match (fold_constants_aexp a1, fold_constants_aexp a2) with
      | (ANum n1, ANum n2) ⇒ if beq_nat n1 n2 then BTrue else BFalse
      | (a1', a2') ⇒ BEq a1' a2'
      end
  | BLe a1 a2
      match (fold_constants_aexp a1, fold_constants_aexp a2) with
      | (ANum n1, ANum n2) ⇒ if ble_nat n1 n2 then BTrue else BFalse
      | (a1', a2') ⇒ BLe a1' a2'
      end
  | BNot b1
      match (fold_constants_bexp b1) with
      | BTrueBFalse
      | BFalseBTrue
      | b1'BNot b1'
      end
  | BAnd b1 b2
      match (fold_constants_bexp b1, fold_constants_bexp b2) with
      | (BTrue, BTrue) ⇒ BTrue
      | (BTrue, BFalse) ⇒ BFalse
      | (BFalse, BTrue) ⇒ BFalse
      | (BFalse, BFalse) ⇒ BFalse
      | (b1', b2') ⇒ BAnd b1' b2'
      end
  end.

Example fold_bexp_ex1 :
    fold_constants_bexp (BAnd BTrue (BNot (BAnd BFalse BTrue)))
  = BTrue.
Proof. reflexivity. Qed.

Example fold_bexp_ex2 :
    fold_constants_bexp
      (BAnd (BEq (AId X) (AId Y))
            (BEq (ANum 0)
                 (AMinus (ANum 2) (APlus (ANum 1) (ANum 1)))))
  = BAnd (BEq (AId X) (AId Y)) BTrue.
Proof. reflexivity. Qed.

To fold constants in a command, we apply the appropriate folding functions on all embedded expressions.

Fixpoint fold_constants_com (c : com) : com :=
  match c with
  | SKIP
      SKIP
  | i ::= a
      CAss i (fold_constants_aexp a)
  | c1 ;; c2
      (fold_constants_com c1) ;; (fold_constants_com c2)
  | IFB b THEN c1 ELSE c2 FI
      match fold_constants_bexp b with
      | BTruefold_constants_com c1
      | BFalsefold_constants_com c2
      | b'IFB b' THEN fold_constants_com c1
                     ELSE fold_constants_com c2 FI
      end
  | WHILE b DO c END
      match fold_constants_bexp b with
      | BTrueWHILE BTrue DO SKIP END
      | BFalseSKIP
      | b'WHILE b' DO (fold_constants_com c) END
      end
  end.

Example fold_com_ex1 :
  fold_constants_com
    (* Original program: *)
    (X ::= APlus (ANum 4) (ANum 5);;
     Y ::= AMinus (AId X) (ANum 3);;
     IFB BEq (AMinus (AId X) (AId Y)) (APlus (ANum 2) (ANum 4)) THEN
       SKIP
     ELSE
       Y ::= ANum 0
     FI;;
     IFB BLe (ANum 0) (AMinus (ANum 4) (APlus (ANum 2) (ANum 1))) THEN
       Y ::= ANum 0
     ELSE
       SKIP
     FI;;
     WHILE BEq (AId Y) (ANum 0) DO
       X ::= APlus (AId X) (ANum 1)
     END)
  = (* After constant folding: *)
    (X ::= ANum 9;;
     Y ::= AMinus (AId X) (ANum 3);;
     IFB BEq (AMinus (AId X) (AId Y)) (ANum 6) THEN
       SKIP
     ELSE
       (Y ::= ANum 0)
     FI;;
     Y ::= ANum 0;;
     WHILE BEq (AId Y) (ANum 0) DO
       X ::= APlus (AId X) (ANum 1)
     END).
Proof. reflexivity. Qed.

Soundness of Constant Folding

Now we need to show that what we've done is correct.

Theorem fold_constants_aexp_sound :
  atrans_sound fold_constants_aexp.
Proof.
  unfold atrans_sound. intros a. unfold aequiv. intros st.
  aexp_cases (induction a) Case; simpl;
    (* ANum and AId follow immediately *)
    try reflexivity;
    (* APlus, AMinus, and AMult follow from the IH
       and the observation that
              aeval st (APlus a1 a2) 
            = ANum ((aeval st a1) + (aeval st a2)) 
            = aeval st (ANum ((aeval st a1) + (aeval st a2)))
       (and similarly for AMinus/minus and AMult/mult) *)

    try (destruct (fold_constants_aexp a1);
         destruct (fold_constants_aexp a2);
         rewrite IHa1; rewrite IHa2; reflexivity). Qed.

Theorem fold_constants_bexp_sound:
  btrans_sound fold_constants_bexp.
Proof.
  unfold btrans_sound. intros b. unfold bequiv. intros st.
  bexp_cases (induction b) Case;
    (* BTrue and BFalse are immediate *)
    try reflexivity.
  Case "BEq".
    (* Doing induction when there are a lot of constructors makes
       specifying variable names a chore, but Coq doesn't always
       choose nice variable names.  We can rename entries in the
       context with the rename tactic: rename a into a1 will
       change a to a1 in the current goal and context. *)

    rename a into a1. rename a0 into a2. simpl.
    remember (fold_constants_aexp a1) as a1' eqn:Heqa1'.
    remember (fold_constants_aexp a2) as a2' eqn:Heqa2'.
    replace (aeval st a1) with (aeval st a1') by
       (subst a1'; rewrite fold_constants_aexp_sound; reflexivity).
    replace (aeval st a2) with (aeval st a2') by
       (subst a2'; rewrite fold_constants_aexp_sound; reflexivity).
    destruct a1'; destruct a2'; try reflexivity.
      (* The only interesting case is when both a1 and a2 
         become constants after folding *)

      simpl. destruct (beq_nat n n0); reflexivity.
  Case "BLe".
    (* FILL IN HERE *) admit.
  Case "BNot".
    simpl. remember (fold_constants_bexp b) as b' eqn:Heqb'.
    rewrite IHb.
    destruct b'; reflexivity.
  Case "BAnd".
    simpl.
    remember (fold_constants_bexp b1) as b1' eqn:Heqb1'.
    remember (fold_constants_bexp b2) as b2' eqn:Heqb2'.
    rewrite IHb1. rewrite IHb2.
    destruct b1'; destruct b2'; reflexivity. Qed.

Theorem fold_constants_com_sound :
  ctrans_sound fold_constants_com.
Proof.
  unfold ctrans_sound. intros c.
  com_cases (induction c) Case; simpl.
  Case "SKIP". apply refl_cequiv.
  Case "::=". apply CAss_congruence. apply fold_constants_aexp_sound.
  Case ";;". apply CSeq_congruence; assumption.
  Case "IFB".
    assert (bequiv b (fold_constants_bexp b)).
      SCase "Pf of assertion". apply fold_constants_bexp_sound.
    destruct (fold_constants_bexp b) eqn:Heqb;
      (* If the optimization doesn't eliminate the if, then the result
         is easy to prove from the IH and fold_constants_bexp_sound *)

      try (apply CIf_congruence; assumption).
    SCase "b always true".
      apply trans_cequiv with c1; try assumption.
      apply IFB_true; assumption.
    SCase "b always false".
      apply trans_cequiv with c2; try assumption.
      apply IFB_false; assumption.
  Case "WHILE".
    (* FILL IN HERE *) Admitted.

Proving That Programs Are Not Equivalent

Suppose that c1 is a command of the form X ::= a1;; Y ::= a2 and c2 is the command X ::= a1;; Y ::= a2', where a2' is formed by substituting a1 for all occurrences of X in a2. For example, c1 and c2 might be:
       c1  =  (X ::= 42 + 53;; 
               Y ::= Y + X)
       c2  =  (X ::= 42 + 53;; 
               Y ::= Y + (42 + 53))
Clearly, this particular c1 and c2 are equivalent. Is this true in general?
Here, formally, is the function that substitutes an arithmetic expression for each occurrence of a given variable in another expression:

Fixpoint subst_aexp (i : id) (u : aexp) (a : aexp) : aexp :=
  match a with
  | ANum nANum n
  | AId i'if eq_id_dec i i' then u else AId i'
  | APlus a1 a2APlus (subst_aexp i u a1) (subst_aexp i u a2)
  | AMinus a1 a2AMinus (subst_aexp i u a1) (subst_aexp i u a2)
  | AMult a1 a2AMult (subst_aexp i u a1) (subst_aexp i u a2)
  end.

Example subst_aexp_ex :
  subst_aexp X (APlus (ANum 42) (ANum 53)) (APlus (AId Y) (AId X)) =
  (APlus (AId Y) (APlus (ANum 42) (ANum 53))).
Proof. reflexivity. Qed.

And here is the property we are interested in, expressing the claim that commands c1 and c2 as described above are always equivalent.

Definition subst_equiv_property := i1 i2 a1 a2,
  cequiv (i1 ::= a1;; i2 ::= a2)
         (i1 ::= a1;; i2 ::= subst_aexp i1 a1 a2).

Sadly, the property does not always hold.
Theorem: It is not the case that, for all i1, i2, a1, and a2,
         cequiv (i1 ::= a1;; i2 ::= a2)
                (i1 ::= a1;; i2 ::= subst_aexp i1 a1 a2).
Proof: Suppose, for a contradiction, that for all i1, i2, a1, and a2, we have
      cequiv (i1 ::= a1;; i2 ::= a2
             (i1 ::= a1;; i2 ::= subst_aexp i1 a1 a2).
Consider the following program:
         X ::= APlus (AId X) (ANum 1);; Y ::= AId X
Note that
         (X ::= APlus (AId X) (ANum 1);; Y ::= AId X)
         / empty_state  st1,
where st1 = { X 1, Y 1 }.
By our assumption, we know that
        cequiv (X ::= APlus (AId X) (ANum 1);; Y ::= AId X)
               (X ::= APlus (AId X) (ANum 1);; Y ::= APlus (AId X) (ANum 1))
so, by the definition of cequiv, we have
        (X ::= APlus (AId X) (ANum 1);; Y ::= APlus (AId X) (ANum 1))
        / empty_state  st1.
But we can also derive
        (X ::= APlus (AId X) (ANum 1);; Y ::= APlus (AId X) (ANum 1))
        / empty_state  st2,
where st2 = { X 1, Y 2 }. Note that st1 st2; this is a contradiction, since ceval is deterministic!

Theorem subst_inequiv :
  ¬ subst_equiv_property.
Proof.
  unfold subst_equiv_property.
  intros Contra.

  (* Here is the counterexample: assuming that subst_equiv_property
     holds allows us to prove that these two programs are
     equivalent... *)

  remember (X ::= APlus (AId X) (ANum 1);;
            Y ::= AId X)
      as c1.
  remember (X ::= APlus (AId X) (ANum 1);;
            Y ::= APlus (AId X) (ANum 1))
      as c2.
  assert (cequiv c1 c2) by (subst; apply Contra).

  (* ... allows us to show that the command c2 can terminate 
     in two different final states: 
        st1 = {X |-> 1, Y |-> 1} 
        st2 = {X |-> 1, Y |-> 2}. *)

  remember (update (update empty_state X 1) Y 1) as st1.
  remember (update (update empty_state X 1) Y 2) as st2.
  assert (H1: c1 / empty_state st1);
  assert (H2: c2 / empty_state st2);
  try (subst;
       apply E_Seq with (st' := (update empty_state X 1));
       apply E_Ass; reflexivity).
  apply H in H1.

  (* Finally, we use the fact that evaluation is deterministic
     to obtain a contradiction. *)

  assert (Hcontra: st1 = st2)
    by (apply (ceval_deterministic c2 empty_state); assumption).
  assert (Hcontra': st1 Y = st2 Y)
    by (rewrite Hcontra; reflexivity).
  subst. inversion Hcontra'. Qed.