
G.P. Picco (Ed.): MA 2001, LNCS 2240, pp. 135-151, 2001.
© Springer-Verlag Berlin Heidelberg 2001

An Efficient Mailbox-Based Algorithm for Message
Delivery in Mobile Agent Systems*

Xinyu Feng1, Jiannong Cao2, Jian Lü1, and Henry Chan2

1 State Key Laboratory for Novel Software Technology
Dept. of Computer Science, Nanjing Univ.

Nanjing, China
fxy@softlab.nju.edu.cn, lj@nju.edu.cn

2 Internet Computing and E-Commerce Lab
Dept. of Computing, Hong Kong Polytechnic Univ.

Hung Hom, Kowloon, Hong Kong
{csjcao | cshchan}@comp.polyu.edu.hk

Abstract. Agent mobility presents challenges to the design of efficient message
transport protocols for mobile agent communications. A practical mobile agent
communication protocol should provide location transparency to the
programmer and thus need to keep track of the movement of an agent. In
addition, because of the asynchronous nature of message passing and agent
migration, how to guarantee the delivery of messages to highly mobile agents is
still an active research topic in mobile agent systems. In this paper we propose
an efficient mailbox-based algorithm for inter-mobile agent communications.
The algorithm decentralizes the role of the origin (home) host in locating an
agent. Furthermore, by separating the mailbox from its owner agent, the
algorithm can be made adaptive and is efficient in terms of location updating
and message delivery. In the cases that mobile agents migrate frequently but
seldom communicate, our algorithm turns out to be preferable.

1. Introduction

In recent years, mobile agent computing has emerged as a new paradigm in
developing applications in various areas including telecommunications, networking /
distributed systems, and e-commerce. Mobile agents are active, autonomous objects
or object clusters, which are able to move between locations in a so-called mobile
agent system. A mobile agent system is a distributed abstraction layer that provides
security of the underlying system on one hand and the concepts and mechanisms for
mobility and communication on the other hand [1, 2].

Mobile agents used in various applications need to communicate with each other
for different purposes such as exchanging information and/or co-operation [3, 4].
Although process communication has been a cliché in the research of distributed
systems, agent mobility poses a number of problems in designing message delivery

* This research is partially supported by Hong Kong Polytechnic University Research Grant A-

PC53.

136 X. Feng et al.

mechanisms for effective and efficient communications between mobile agents. Since
a mobile agent has its autonomy to move from host to host, it is unreasonable, if not
impossible, to require that agents have a priori knowledge about their communication
partners’ locations before they send messages. Therefore, the first requirement of a
practical mobile agent communication protocol is to allow mobile agents to
communicate in a location transparent way, i.e., an agent can send messages to other
agents without knowing where they reside. On the other hand, the asynchronous
nature of message passing and agent migration may cause the loss of messages being
sent to an agent on its move. Thus, a reliable agent communication mechanism should
also guarantee the delivery of messages to highly mobile agents. Besides, the agent
location tracking and message routing algorithm should not introduce too much
overhead or offset any of the merits of mobile agent technology.

Many currently available mobile agent systems do not provide solutions to these
problems and leave the hard nuts to agent programmers [1, 5]. Although there are
several protocols proposed trying to provide location transparency and reliable inter-
agent communication [7~10], they either handle it in a way too complicated to be
efficient in practical systems, or use home-registration and rely too much on agent
home, which is improper when a disconnected execution is needed.

The mailbox-based algorithm proposed in this paper adopts a hybrid approach
combining the registration and forwarding schemes to locate mobile agents and
deliver messages. Using the algorithm, messages can be delivered in a reliable and
location transparent way. By forwarding the message at most once, the algorithm
resolves the problem that messages keep chasing their highly mobile target agents.
Unlike the home registration method used in mobile computing, e.g., Mobile IP [11],
the algorithm decentralizes the role of the origin (home) host in locating an agent.
This reduces the reliance on a single host, so that the agent’s ability to support
disconnected operation, considered as an important advantage of mobile agent
technology [12], can be achieved in a real sense. Furthermore, by separating the
mailbox from its owner agent, the algorithm can be made adaptive and is efficient in
terms of location updating and message delivery.

The remaining of this paper is organized as follows. Section 2 presents a brief
review of related work. Section 3 describes our mailbox-based algorithm in detail and
also presents a proof of its properties. In Section 4 we analyse the performance of the
proposed algorithm. Section 5 describes the simulation results and discusses the
relationship between the communication overhead and mailbox migration frequency.
The final section provides some concluding remarks.

2. Related Work

To communicate with a remote mobile agent, we must find the location of the agent
and route the message to it. A naming scheme is needed to identify agents in a unique
fashion. The name should not change whenever the agent migrates to other hosts and
it is up to the tracking algorithm to map the name to the agent’s current address. The
routing process can be done either in parallel with agents tracking [9] or in a second
phase after the address has been got [7].

An Efficient Mailbox-Based Algorithm for Message Delivery 137

 The usual way to name an agent [7, 9] is to append the address of an agent’s origin
host (i.e. agent home) with its title (a free form string used to refer to this agent). Thus
it is impossible for agents born at different agent platforms to have the same name.
For agents created at the same host, the origin host is responsible to manage the name
space to ensure that each agent has a unique title. In this paper we adopt this naming
scheme.

There are three basic schemes for locating agents, namely searching, logging and
registration [5]. In the searching approach, we either send an agent to visit every host
that the target agent might reside in or broadcast locating messages to these hosts [8].
The overhead is unaffordable when the network is large. The logging method locates
the mobile agent by following the trail information indicating its next destination, left
in every host the agent has ever visited [9]. If the trail information is lost or if one of
the hosts is down, the target agent would no longer be found. With the registration
scheme, an agent needs to update its location in a predefined directory server (e.g., its
home host) that allows agent to be registered, deregistered or located. The directory
server can be either a central node, which may become the bottleneck of the system
performance and/or a single point of failure, or the agent’s home host, which follows
the idea of Mobile IP [11].

Two common methods for message routing are forwarding and locate-and-
transfer. Under the forwarding scheme (also called path-extension), locating a
receiver agent and delivering a message to it are both done in a single phase. They are
combined into one operation where an agent moved to a new host informs the
previous resident host where it moves so that messages can be forwarded along the
extended path. The disadvantage is that messages may take multi-hops before they
reach the target agents. The performance is worsened when messages are large in size.
On the other hand, locate-and-transfer locates the target agent first and then transfers
the message directly to it. However, the message sender may get outdated address in
cases that the receiver agent migrates frequently.

The Mobile IP [11] is the protocol designed for IP packets routing to mobile
devices. A mobile host registers its care-of-address with its home host and it is the
home host that forwards the IP packets to it. Although this home registration and
forwarding method is easy to implement and has less location registration overhead, it
is inappropriate in mobile agent systems. Since all the correspondents of an agent
must find its address form its home host, the agent home host may be a performance
bottleneck when a larger number of agents, each with many correspondents, are
originated from that same host. Besides, the agent home host may sometimes break
off from the network after the agent is dispatched. Disconnected computing cannot be
supported under this scheme.

Among the mobile agent systems and programming environments that are
currently available, few provides practical and efficient algorithms for mobile agent
communications. In Mole [1] there is no solution to location transparent remote
communication. An agent must give the current address of its correspondent explicitly
in order to send a message. Aglets [5, 6] attempts to provide location-transparency via
Aglet proxy, but the system does not provide APIs to support Aglet tracking. To

138 X. Feng et al.

obtain the receiver’s proxy, Aglets programmers must implement tracking mechanism
by themselves.1

The Mogent system [7] proposed a reliable inter-agent communication algorithm.
All the agents need to register their locations with their homes. Before sending a
message to another agent, the sender agent queries the recipient’s current address
from the target agent's home host. If the target agent is currently moving across the
network, the reply to the location query is pending until the target agent registers its
new location. Before an agent can move, it needs to ask for permission from the home
host. If there are messages on their way targeting at the agent, the agent need to wait
until these messages arrive. It is the responsibility of the agent home to synchronize
the migration of the agents and the message passing. In this way, reliable message
delivery can be guaranteed and no message forwarding is needed. However, the
algorithm depends so much on the agent home that the agent cannot move and
communicate if their home is down or disconnected.

Murphy and Picco [8] present a broadcast-based mobile agent communication
scheme which is similar to a distributed snapshot. The scheme guarantees transparent
and reliable inter-agent communication, and can also provide multicast
communication to a group of agents. However, to search for the message recipient, it
requires to contact every node in the network that has been visited by at least one
agent, and thus generates an amount of traffic that is comparable to a broadcast. Same
as in the “searching” scheme mentioned above, the traffic overhead is unaffordable
when there are a large number of hosts and agents in the network.

In [9] a hierarchical infrastructure is proposed to name agents and to route
messages. All the hosts in the network are organized into a tree. The agent moves
along the nodes of the tree and on every node leaves a pointer to the next one in the
path. Messages are forwarded along the same path according to these pointers.
However, the hierarchy cannot always be easily constructed, especially in the Internet
environment. Instead of sending the messages or agents directly to their targets,
unnecessary hops need be taken along the tree. Besides, under this scheme, messages
may be missed by their recipient agents and need to keep chasing the recipient.

A resending-based TCP-like message delivery mechanism, called MStream, for
mobile agent communications is introduced in [10]. The mechanism assumes that
losses and failures are possible in the network. MStream is the communication end-
point that can be moved from host to host. When an MStream moves, a Location
Manager will broadcast its new location to all other MStreams. If a message is sent to
an outdated address of the target MStream, it will be retransmitted several times
before the sender sends it to the Location Manager to be forwarded to the new
destination. The paper does not mention how to avoid multiple forwarding for highly
mobile agents.

Our mailbox-based algorithm adopts a hybrid approach combining the registration
and forwarding schemes. It realizes location-transparency and ensures the message
delivery. Under this communication scheme, most of the messages are sent to their
recipients directly and others are forwarded at most once before they reach the

1 In the latest release of Aglets system, namely ASDK V1.1 Beta3 [6], the MASIF interface

MAFFinder was implemented over Java RMI. With the cooperation of the finder and the
aglet server, the proxy of a remote aglet can be obtained in a location transparent way.
However, there is no guarantee for message delivery. If the target aglet moves away, the
message sending procedure will fail and an AgletNotFoundException will be thrown.

An Efficient Mailbox-Based Algorithm for Message Delivery 139

receiver agents. Besides, the movement of agents can be separated from that of their
mailboxes, thus, by deciding adaptively when to move the mailbox to its owner agent,
we can reduce the traffic overhead greatly. The details of our algorithm will be
discussed in the next section.

3. The Adaptive Mailbox-Based Routing Algorithm

As we have discussed in Section 2, the home registration and forwarding method
adopted by Mobile IP cannot be borrowed blindly by mobile agent systems. One
possible solution to reducing the dependence of agent communication on agents’
home hosts is to decentralize the role of the home host in locating a target agent. The
responsibility of agent tracking is distributed to all the hosts (called “past hosts”
hereafter) on the path traveled by the migrating agent. The location of the migrating
agent is kept by all the past hosts. Once the agent has arrived at a new host, it
multicasts its location to all the past hosts. This can reduce the agent tracking cost.
However, the location updating cost can be too much to be acceptable if the agent
visits a great number of hosts during its life cycle. As a matter of fact, in many
applications, agents migrate from one host to another without communicating with
others. In these cases, it is superfluous for agents to multicasting their locations to all
past hosts. If we can find an adaptive way to avoid the superfluous address
registration, the traffic overhead will be decreased considerably. As we will see, our
mailbox-based algorithm can accomplish this goal by detaching the mailbox from its
owner whenever possible.

3.1 System Model and Assumptions

In our system model, we assume that mobile agent communication is largely based on
asynchronous messages. This is reasonable because, when mobile agents roaming the
Internet, it is undesirable that two agents use synchronous communication to talk to
each other [13], due to the large and unpredicted delays on the Internet, which can
easily become several seconds.

A mailbox is a message buffer used to store incoming messages. Every mobile
agent in the system is allocated a mailbox. Incoming messages sent to the agent are
inserted into the mailbox first. Two modes of message delivery can be supported:
Push and Pull. In the push mode, messages stored in the mailbox will be delivered to
the mobile agent, while with the pull mode, the agent fetches messages from its
mailbox any time it decides to do so. In this paper, we use the pull mode. A mobile
agent is automatically initialized to check its mailbox whenever necessary. If the
mailbox contains any messages, these messages are delivered. Otherwise, either a
synchronous or an asynchronous receive operation can be implemented - the mobile
agent can continue its execution or is suspended until a new message arrives. We
assume that the send operation is always asynchronous (a synchronous send can
always be simulated by letting the sending agent, after it has put the message in the
message system, change to a receiver and wait for an acknowledgement).

140 X. Feng et al.

Fig. 1. Receiver and its mailbox residing at different hosts

As shown in Figure 1, in our algorithm, the mailbox can be detached from its
owner agent in the sense that an agent and its mailbox can reside at different hosts. An
agent can migrate to a new host while leaving its mailbox at a previous past host.
When an agent MA sends a message to another agent MB , MA sends the message to the
host where MB’s mailbox currently resides (Step (1) in Figure 1). The agent MB sends a
request to its mailbox to fetch message (Steps (2) and (3) in Figure 1). Since the
location of mailbox is unchanged, location updating is avoided and a considerable
message passing cost can be saved. In location updating, the meaning of “past hosts”
is also changed. It no longer refers to the hosts on the path of the migrating agent, but
the hosts where the mailbox once resided, which may be much fewer in number. Thus
the number of hosts that keep the agent’s location information is decreased and the
overhead of location updating is further reduced.

An address table is maintained in every host to record current addresses of
mailboxes that have ever resided at this host. A “valid” tag is associated with every
entry of the table to show whether the corresponding mailbox address is outdated.
Another field in an entry is a blocked message queue, which is used to temporarily
keep the messages sent to the corresponding mailbox if the “valid” tag is false, i.e. the
mailbox is moving on its way to a new host.

We assume that our algorithm is built on a set of low-level location-dependent
communication mechanisms, which can be directly implemented above standard
network protocols using asynchronous and point-to-point messages [14]. It is assumed
that these mechanisms abstract away the network failure for our high level location-
independent algorithm. They also maintain the FIFO order of message delivery,
which is critical to the proper execution of our algorithm. As Murphy and Picco
indicated in [8], their algorithm also requires the FIFO property, which can be
implemented straightforwardly in a mobile agent server by associating a queue that
contains messages that must be transmitted to a remote server.

3.2 The Algorithm

The algorithm works in two phases, location-updating and message-routing. In the
location-updating phase, if the agent decides to migrate with its mailbox, it will first
de-register its mailbox address and then reregister the new address with all the past
hosts after it reaches the new destination host. In the message-routing phase,

An Efficient Mailbox-Based Algorithm for Message Delivery 141

messages are sent to the recipient’s address cached by the sender. If the recipient has
been moved to another host, the messages will be forwarded to the current address.
The algorithm is presented more formally in pseudo code in the rest of this section.

Fig. 2. Mailbox migration and registration

Location Updating. Before moving, the agent determines whether to migrate its
mailbox to the new host. It sends a “MVMB” message to its mailbox host if it decides
to do so. The “MVMB” message contains the address of the destination host that the
agent is to migrate to (Step (1) in Figure 2). The pseudo code of this operation is
shown in the function OnMigration_Agent().

OnMigration_Agent(){ //executed by agents before moving
 if(fetchMailbox()){
 // the agent decides to go with its mailbox
 String nextAddr = itinerary.getNextHost();
 sendMsgToMailBox(“MVMB”, getMBAddress(), nextAddr);
 //the underlying location-dependent primitive
 }
 migrateTo(nextAddr);
 //migrate to the target host, Step (2)’ in
Figure2
}

On receiving the “MVMB” message, the mailbox host executes the function
ProcessMVMBMsg_MB(). It sends “DEREGISTER” messages to all the hosts on
its path, including the local host (Step (2) in Figure 2). After it has collected the
“REPLY” messages from all the hosts, or when time out, it migrates the specified
mailbox to the destination host (Step (4) in Figure 2).

ProcessMVMBMsg_MB(msg){ //executed by mailbox
 path = getPath();
 for(every host on the path) //including the local
host

142 X. Feng et al.

 SendMsgToMAP(“DEREGISTER”, everyHost, localHost);
 wait until all REPLY msgs from these hosts arrive or
 time-out;
 targetHost = msg.getContent();
 //get the address of target host
 migrateTo(targetHost);
}

On arriving at the new host, the agent starts executing the function
OnArrival_Agent() by checking whether its mailbox has been moved to the
new host with it. If not, it does not need to register its new address. Otherwise it sends
a “REGISTER” message to every past host where its mailbox has resided (Step (5) in
Figure 2).

OnArrival_Agent() //executed by the agent
{
 if (migrated without mailbox)
 return; //do nothing
 setMBAddress(localAddress);
 //update the address of its mailbox
 append the localhost into its mailbox’s path;
 for (every host on the path of the mailbox)
 SendMsgToMAP(“REGISTER”, everyhost, localAddress);
}

The mobile agent platform (MAP) in a host is responsible of processing all the
control messages. Its operation is illustrated in MessageProcessing_MAP()
shown below.

MessageProcessing_MAP(msg) //executed by MAP
{
 switch(msg.getKind()){
 case DEREGISTER:
 AddressEntry entry =
 addressTable.getAddr(msg.getSender());
 entry.VALID = false;
 sendMsgToMailBox(“REPLY”, msg.getContent(),
 null); //step (3) in
Figure 2.
 case REGISTER:
 AgentID sender = msg.getSender();
 AddressEntry entry =
addressTable.getAddr(sender);
 if (entry == null){
 // REGISTER msg is from the local host, create a
 //new entry in address table for sender’s
address.
 entry = new AddressEntry(sender);
 insert entry into the local address table;
 }

An Efficient Mailbox-Based Algorithm for Message Delivery 143

 entry.VALID = true;
 entry.address = msg.getContent();
 while(there are messages in the block queue for
 sender){
 Message blockedMsg =
 entry.blockQueue.getNextMsg();
 sendMsgToMAP(“AGENTMSG”, entry.address,
 blockedMsg);
 sendMsgToMAP(“UPDATE”,sender_of_blockedMsg,
 entry.address);
 //update the address cached by the sender
 } //end of while
 entry.blockQueue.clear();
 } //end of switch
}

Fig. 3. Message forwarding after mailbox leaves

Message Routing. Figure 3 illustrates the message forwarding process. Suppose
agent MA wants to send a message to agent MB. Referring to the function
SendMessage_Agents(), MA first checks whether the address of MB’s mailbox
has been cached locally. If so, it sends the message to the cached address. Otherwise
it sends the message to MB’s home host (Step (1) in Figure3).

SendMessage_Agents(Message msg){
 //executed by mobile agent
 if (the receiver’s address is in cache){
 sendMsgToMAP(“AGENTMSG”, address in cache, msg);
 }else{
 String homeAddress = msg.getReceiver().getHome();
 SendMsgToMAP(“AGENTMSG”, homeAddress, msg);
 }
}

When a host receives a message destined to an agent M, it checks whether M’s
mailbox is currently resided locally. If so, it inserts the message to M’s mailbox

144 X. Feng et al.

directly. Otherwise the message is forwarded to the M’s current address recorded in
the local address table. See the function MessageRouting_MAP() for details.

MessageRouting_MAP(agentMsg){
 AgentID receiver = the target agent of agentMsg;
 if (the receiver’s mailbox is local){
 insert agentMsg to the mailbox;
 }else{
 AddressEntry entry =
 addressTable.getAddress(receiver);
 if (entry.VALID){
 sendMsgToMAP(“AGENTMSG”, entry.address,
agentMsg);
 //Step (2) in Figure 3
 sendMsgToMAP(“UPDATE”,agentMsg.getSender(),
 entry.address); // Step (2)’ in
figure3
 }else{ //valid tag is false: receiver is migrating
 entry.blockQueue.insert(agentMsg);
 //insert the message to the block queue;
 }
 }
}

Agent MA caches the new address of agent MB contained in the incoming
“UPDATE” message. Next time when MA sends messages to MB, it will send the
message to this new address.

3.3 Properties of the Algorithm

Before proving the correctness of our algorithm, we give a formal definition of the
path of an agent mailbox.

Definition. Path(mb) is a sequence <h0, h1, … hi ,… hn> of hosts where the mailbox
mb has been inhabited. For all hi, hj in the path, hi is visited by mb earlier than hj if 0 �
i < j � n. The host h0, is the home of mb’s owner agent, and hn is the host where mb is
currently located.

Theorem1 shows that our algorithm can provide location transparency from the
point of view of a sender agent.

Theorem1. With the proposed algorithm, a sender agent can send its messages
without knowing where the target agent is located.

Proof. According to the function “SendMessage_Agent()”, when the sender agent
wants to send a message to another, it will check if it has cached the receiver’s
address. If there is the receiver’s address in its cache, it will send the message to this
address without caring about whether it is outdated. Otherwise it will get the
receiver’s home address from its ID and send the message to its home. In both cases,
the sender need not specify the current location of the receiver when it wants to send a
message. QED

An Efficient Mailbox-Based Algorithm for Message Delivery 145

The following lemmas and theorem2 show the effectiveness of our algorithm, i.e.,
it can guarantee the delivery of messages. Besides, the message will be forwarded at
most once so that it will not chase its recipient.

Lemma1. Suppose a mailbox mb is currently located at host hj and Path(mb) is <
h0, h1, …hi ,… hj >. For all hi in Path(mb), if hi was not down, mb must have received
the REPLY message from hi before it leaves hj.

Proof. If mb wants to leave hj, it must send DEREGISTER messages to all the
hosts in Path(mb). Since hi is not down and it is assumed that the underlying location
dependent communication mechanisms can shield the network failure, hi will at last
receive the DEREGISTER message and send a REPLY message to mb. According to
the function ProcessMVMBMsg_MB(), mb cannot leave hj until it collects all the
REPLY messages from all the hosts in Path(mb) or when time out. Since we need not
worry about network failure, we can conclude that the REPLY message from hi will
arrive at mb before mb leaves. QED

Lemma2. For all hi in Path(mb), the valid tag of mb’s address in the address table
is true only if the address reflects exactly the current location of mb, i.e., the address
kept in the address table is not outdated.

Proof. Suppose the address of mb kept in hi’s address table is hj. If the valid tag is
true, from the function MessageProcessing_MAP() we can conclude that hi must have
received mb’s REGISTER message from hj, and the DEREGISTER message has not
arrived yet. So the REPLY message has not been sent out from hi. From lemma1 we
know that mb is still at hj and cannot leave until it has colleted all the REPLY
messages from hosts in Path(mb), including hi. So the address hj kept in the address
table reflects the current location of mb. QED

Theorem2. All the messages can be delivered to their recipients’ mailboxes by
being forwarded at most once.

Proof. Suppose a sender agent S is sending a message m to a receiver agent R., and
R’s mailbox MBR is located at host hj. Let Path(MBR) be < h0, h1, …hi ,… hj >. Without
loss of generality, we assume that R’s address kept in the cache of S is hi and 0 � i � j
(if there is no record of R’s address in the cache of S, the message will be sent to R’s
home, which is h0 in Path(MBR)).

S will obtain R’s address, namely hi, from its address cache and send the message
m directly to hi. When m arrives at hi, 3 cases could happen:

Case 1: i = j. The message m will be directly inserted into MBR without being
forwarded. No matter where R resides, it can get m from its mailbox later.

Case 2: i < j and hi has not received MBR’s DEREGISTER message from hj. In this
case, m will be processed before R’s DEREGISTER message. To deliver m to R, hi

will check its address table and find R’s address is hj and the valid tag is “true”. So m
is forwarded to hj. Since m is processed earlier than R’s DEREGISTER message, m is
forwarded to hj earlier than the REPLY to the DEREGISTER message. The FIFO
property can guarantee that m arrives at hj earlier than the REPLY message. From
Lemma1 we can conclude that MBR cannot migrate to other hosts during the
transmission of m. After m arrives at hj, it will be inserted into MBR. So R can receive
m later from MBR and m is forwarded only once.

Case 3: i < j and hi has received MBR’s DEREGISTER message from hj, i.e., MBR

has left for hj+1. The host hi checks the valid tag of MBR’s address. If it is “true”, the
address of MBR kept in the address table must be hj+1 (warranted by Lemma2) and m is

146 X. Feng et al.

forwarded to MBR in the same way discussed in the second case. If the valid tag is
“false”, we can conclude that MBR is on its way to hj+1. The message m will be put into
the blocked message queue. It won’t be forwarded until MBR reaches hj+1 and its
REGISTER message arrives at hi. After the REGISTER message arrives, m will be
forwarded to hj+1. As discussed in the second case, MBR will not leave during the
transmission of m, since m will arrive at hj+1 earlier than the REPLY message.
Therefore, in this case, m is also forwarded only once and R can get m later from MBR.

From the above discussion of all the three cases, we can conclude that all the
messages can be delivered to their recipients’ mailboxes by being forwarded at most
once. QED

4. Performance Analysis

In this section we formulate the traffic cost of the location updating and message
delivery of the proposed algorithm in terms of the number of messages required. To
simplify the problem, we ignore the differences in the distances between hosts. Here
we introduce 3 decision variables: x, x0 and x1, which are defined as follows:

The location updating cost and message delivery cost can be formulated as follows:

()()ctrlmbctrlupdate CNCxxC 1310 ++= (1)

() ()ctrlmsgctrlmsgmsgdelivery CCxCCxCC ++++= 1
(2)

where Cctrl and Cmsg denote communication traffic of a control message and an agent
message, respectively. Since control messages, such as “MVMB”, “REGISTER” and
“UPDATE” messages may be much shorter in length than agent messages, they should
not be counted in the same way. Nmb denotes the number of hosts in Path(mb). As
discussed in section 3, when an agent is leaving and decides to take its mailbox along
with it to the new host (x0 is 1), it sends “MVMB” message to its mailbox if the mailbox
does not reside at the same host (x1 is 1). The cost is denoted by the first term in
parentheses of Formulation (1). Then it sends “DEREGISTER” messages to the Nmb

hosts in Path(mb), collects Nmb “REPLY” messages and sends Nmb+1 “REGISTER”
messages on arriving at the next destination (the second term in the parentheses of
Formulation (1)).





=
0

1
x0

The agent will move with its mailbox.

Otherwise





=
0

1
x1

The agent and its mailbox reside at different hosts.

Otherwise

Otherwise



=
0

1 The agent has left and messages should be forwarded to its new location.
x

An Efficient Mailbox-Based Algorithm for Message Delivery 147

When an agent sends a message to another agent, it sends the message to the
receiver’s location cached in its address table (first term in Formulation (2)). If the
sender’s knowledge about the receiver’s location is out of date, the message has to be
forwarded to the new location and the “UPDATE” message is returned to the sender.
The cost is denoted by the second term of Formulation (2). If the receiver wants a
message from its mailbox and it resides at a different host with its mailbox, it sends a
control message to its mailbox and the mailbox returns the corresponding message to
it (the third term of Formulation (2)).

From these two formulae, we can see that if an agent migrates without taking its
mailbox (x0 is 0), the location updating cost is 0. By deciding the value of x0 to adjust
location updating cost, our algorithm works in an adaptive way. There are two
extreme cases.
1. The first one is that the mailbox never moves during the life cycle of its owner

agent. In this condition, the mailbox always resides at the home of its owner.
Messages is sent to the receiver’s home and the receiver get the messages from its
home. It is similar to the home registration and forwarding method. In this
condition, the location updating cost is 0. But the message delivery cost is
expensive (2Cmsg+Cctrl) and the home must be kept linked during agents’ life cycle.

2. The other extreme case is that the mailbox is bound to its owner and they are
always migrating together. Under this condition x1 is always 0 and the message
delivery is less expensive, but the location updating cost Cupdate, as shown in
Formulation (1), is (3Nmb+1)Cctrl since x0 is always 1.
To save the totle traffic cost, which includes the location updating and message

delivery cost, compromise must be made between the two extremes according to
specific applications. To determine whether moving with its mailbox or not, an agent
can consider factors such as the number of messages it will receive in the next host
and the distance between its next destination host and the current location of its
mailbox. If an agent seldom receives messages from others in the next host, it doesn’t
need to take its mailbox to the new host. On the other hand, if an agent will receive
messages frequently from others and the next host is far away from the host its
mailbox currently resides at, it will be expensive to leave the mailbox unmoved and to
fetch messages from the remote host. In this case the agent should migrate to the new
host together with its mailbox.

5. Simulations and Observations

To evaluate the performance of the algorithm as formulated in Section 4 under
various conditions, our algorithm is implemented in a simulated mobile agent
environment. In our simulations we assume that the traffic cost for every agent
message (Cmsg) is 1 unit and the control message cost (Cctrl) is one fourth that of Cmsg.
The cost is recorded automatically each time a message is sent out. We also assume
that whenever an agent migrates, it will hop to a host different to all the hosts it has
ever visited.

The first senario of our simulation involves one agent only. It migrates from one
host to another without communication. The cost of the register, deregister and reply
messages is recorded. We use the term “migration ratio” to denote the ratio of the
mailbox migration number to the agents migration number. Figure 4 shows the

148 X. Feng et al.

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Migration Ratio

U
pd

at
in

g
C

os
t p

er
M

ig
ra

tio
n

20 hops 60 hops 100 hops

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.2 0.4 0.6 0.8 1
Migration Ratio

D
el

iv
er

y
C

os
t P

er
 A

ge
nt

M
es

sa
ge

move interval of 30
move interval of 10
move interval of 6

average traffic costs per agent migration under different migration ratio and total hops
numbers. We can see that as the migration ratio increases, the average traffic cost
increases quickly. Since Nmb increases as the migration ratio rising, this result can be
predicted from Formula (1) in Section 4.

As we have discussed in Section 4, message delivery is expensive if the mailbox
stays at the agent’s home host. Then what’s the relation between the cost of the
message delivery and the mailbox migration ratio? Result shown in Figure 5 can
answer this question. This time a sender keeps sending messages and the interval of
two messages is randomly set. The total number of messages is 600. The receiver
receives several messages on every host and migrates to another. The migration
intervals are set to 30, 10 and 6 messages respectively and the corresponding traffic
costs under each interval and each migration ratio are recorded. As we can see, the
average delivery cost per agent message is the highest when the migration ratio is 0,
i.e., the mailbox stays at its owner’s home all the time during the agent’s life cycle.
The cost decreases as the migration ratio increases. It reaches the lowest point when
the migration ratio is 1. The mailbox is bound with its owner under this condition and
the agent can get the message directly from its mailbox. We can also oberve that
under the same migration ratio, the average delivery cost is a little higher when the
move interval becomes shorter. The result is reasonable because the more frequently
the mailbox migrates, the more messages must be forwarded.

Fig. 4. Effect of Migration Ratio on the Updating Cost

Fig. 5. Effect of Migration Ratio on the Message Delivery Cost

An Efficient Mailbox-Based Algorithm for Message Delivery 149

1

1.5

2

2.5

3

3.5

4

0 4 8 12 16 20
Threshold Values

T
ot

al
 C

os
t p

er
 A

ge
nt

M
es

sa
ge

100 msgs 300 msgs 500 msgs

From figure 4 and 5 we can observe that the average location updating cost and
message delivery cost varies in opposite directions as the migration ratio rises. There
must be an optimal point on which the total traffic cost is the lowest. We introduce a
sender agent and a receiver agent in our third simulation senario. As in the second
one, the sender keeps sending messages at random intervals. The moving intervals of
the receiver are also randomly set. They vary from 0 to 19 messages (inclusive).
Whether the receiver migrates with its mailbox or not is determined by the moving
interval and a pre-set threshold value. Before moving, the receiver estimates the
number of messages it will receive in the next host (the number is generated by a
random number generator in our simulation). If the number is less than the threshold
value, the receiver will migrate without its mailbox. Otherwise the mailbox will be
taken along. The total number of messages are set to 100, 300 and 500 respectively.
The average total cost is shown in figure 6. We can see that the costs are higher in two
extreme conditions. Since the moving intervals distribute evenly between 0 and 19, it
reaches the lowest point when the threshold value is almost half of the highest
interval, i.e. 8 or 12 messages. From this example we can conclude that by
determining properly whether the agent will take its mailbox along, the
communication overhead can be decreased considerablely.

Fig. 6. There is an optimal point if the threshold value is properly set.

6. Conclusions and Future Work

We have proposed a mailbox-based approach to designing mobile agent
communication protocols. In our design, a mobile agent and its mailbox can be
separated in the sense that they can reside in different hosts. An agent can migrate to a
new host while leaving its mailbox in a previously located host. This helps overcome
the high location updating cost. An agent can decide whether to take with its mailbox
along with it according to the number of messages in the network and its movement
area. One of the two extreme cases of our algorithm is similar to the home forwarding
scheme. If the decision is properly made, as shown by our simulation results, the
lowest total traffic cost which is less than that of both extremes can be obtained.

A mailbox-based protocol still follows the registration-and-forwarding scheme but
can be made to overcome many of the drawbacks. It can route the messages in a

150 X. Feng et al.

reliable and location transparent way. By forwarding the message at most once, the
protocol avoids the problem that messages may chase forever its target agent that
migrates frequently. Unlike the home registration method used in mobile computing,
e.g., Mobile IP, the mailbox-based protocol decentralize the role of the home host and
reduce the reliance on it, so that mobile agent’s capability of supporting disconnected
operations can be realized in real. Furthermore, the protocols are adaptive and can
decrease the overhead of location registration by deciding whether a mobile agent will
migrate with its mailbox.

Although in our algorithm the dependence and workload of the agent home have
been distributed to all the hosts on the agent migration path, the agent home still has
to work as a location server, especially when it’s the first time that an agent sends a
message to another born on it. To let the algorithm work even when some hosts on the
agent migration path including the agent home are down or disconnected, one
dedicated location server can be introduced in our framework. Since it is queried only
when disconnection or system failure occurs, the dedicated location server will not be
the performance bottleneck as a central one. Security issues should also be considered
in our future work. Because the sender agent may accept “UPDATE” message from
any host on the receiver migration path as discussed in Section 3, it is vulnerable to
the address spoofing attack. Specifically a Bad Guy could simply send a bogus
“UPDATE” message to the sender and cause all the messages to be sent to the Bad
Buy instead of the receiver. To prevent such attacks, authentication schemes must be
adopted.

References

1. M. Straßer, J. Baumann, F. Hohl, Mole - A Java Based Mobile Agent System In: Special
Issues in Object-Oriented Programming, Workshop Reader ECOOP’96, p327-334,
dpunkt.verlag, 1996

2. A. Pham and A. Karmouch, “Mobile Software Agents: An Overview”, IEEE
Communications magazine, Vol. 36, No. 7, July 1998, pp.26-37

3. Jiannong Cao, G.H. Chan, W. Jia, and T. Dillon, "Checkpointing and Rollback of Wide-
Area Distributed Applications Using Mobile Agents", Proc. IEEE 2001 International
Parallel and Distributed Processing Symposium (IPDPS2001) (IEEE Computer Society
Press), April 2001, San Francisco, USA

4. Timothy K. Shih, "Agent Communication Network - A Mobile Agent Computation Model
for Internet Applications", Proc. 1999 IEEE Int’l Symp on Computers and
Communications, 1999. pp.425-431

5. D.B.Lange and M.Oshima, Programming and deploying Java mobile agents with Aglets.
Addison-Wesley, 1998

6. http://www.trl.ibm.com/aglets/index.html
7. Tao Xianping, Jian Lu, et al. Communication Mechanism in Mogent System. In: Journal

of Software 2000, 11(8): 1060~1065, P.R. China
8. Amy Murphy and Gian Pietro Picco, Reliable Communication for Highly Mobile Agents.

In: Agent Systems and Architectures/Mobile Agents (ASA/MA)’99, pages 141-150, October
1999

9. Van Belle, W., Verelst, K., D’Hondt, T., Location transparent routing in mobile agent
systems merging name lookups with routing. In: Proceedings of the Seventh IEEE
Workshop on Future Trends of Distributed Computing Systems (pp. 207-212). 1999

An Efficient Mailbox-Based Algorithm for Message Delivery 151

10. Mudumbai Ranganathan, Marc Bednarek, and Doug Montgomery, A Reliable Message
Delivery Protocol for Mobile Agents. In: Agent Systems, Mobile Agents, and Applications,
Lecture Notes in Computer Science, No. 1882, Springer-Verlag (D), pp.206-220,
September 2000

11. Charles. E Perkins. IP Mobility Support RFC2002. October 1996
12. D. Chess, C. Harrison, A. Kershenbaum. Mobile Agents: Are They a Good Idea? In:

Mobile Object Systems: Towards the Programmable Internet, Lecture Notes in Computer
Science, No 1222, Springer-Verlag (D), pp.25-45, February 1997

13. K. Verelst, "A Study of Communication Models for Mobile Multi-agent Systems", Ph.D
Thesis. Department of Informatics, Vrije University of Brussel, Brussels, Belgium. May
1999

14. Peter Sewell, Pawel T. Wojciechowski and Benjamin C. Pierce. Location-Independent
Communication for Mobile Agents: a Two-Level Architecture. Technical Report 462,
Computer Laboratory, University of Cambridge, April 1999

	Introduction
	Related Work
	The Adaptive Mailbox-Based Routing Algorithm
	System Model and Assumptions
	The Algorithm
	Properties of the Algorithm

	Performance Analysis
	Simulations and Observations
	Conclusions and Future Work
	References

