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Software certification is a promising approach to producing programs which are virtually free of bugs.
It requires the construction of a formal proof which establishes that the code in question will behave
according to its specification – a higher-level description of its functionality. The construction of such
formal proofs is carried out in tools called proof assistants. Advances in the current state-of-the-art proof
assistants have enabled the certification of a number of complex and realistic systems software.

Despite such success stories, large-scale proof development is an arcane art that requires significant
manual effort and is extremely time-consuming. The widely accepted best practice for limiting this ef-
fort is to develop domain-specific automation procedures to handle all but the most essential steps of
proofs. Yet this practice is rarely followed or needs comparable development effort as well. This is due
to a profound architectural shortcoming of existing proof assistants: developing automation procedures
is currently overly complicated and error-prone. It involves the use of an amalgam of extension languages,
each with a different programming model and a set of limitations, and with significant interfacing prob-
lems between them.

This thesis posits that this situation can be significantly improved by designing a proof assistant with
extensibility as the central focus. Towards that effect, I have designed a novel programming language called
VeriML, which combines the benefits of the different extension languages used in current proof assistants
while eschewing their limitations. The key insight of the VeriML design is to combine a rich program-
ming model with a rich type system, which retains at the level of types information about the proofs
manipulated inside automation procedures. The effort required for writing new automation procedures
is significantly reduced by leveraging this typing information accordingly.

I show that generalizations of the traditional features of proof assistants are a direct consequence of the
VeriML design. Therefore the language itself can be seen as the proof assistant in its entirety and also as
the single language the user has to master. Also, I show how traditional automation mechanisms offered
by current proof assistants can be programmed directly within the same language; users are thus free to
extend them with domain-specific sophistication of arbitrary complexity.

In this dissertation I present all aspects of the VeriML language: the formal definition of the language;
an extensive study of its metatheoretic properties; the details of a complete prototype implementation;
and a number of examples implemented and tested in the language.
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Chapter 1

Introduction

Computer software is ubiquitous in our society. The repercussions of software errors are becoming in-
creasingly more severe, leading to huge financial losses every year [e.g. Zhivich and Cunningham, 2009]
and even resulting in the loss of human lives [e.g. Blair et al., 1992, Lions et al., 1996]. A promising re-
search direction towards more robust software is the idea of certified software [Shao, 2010]: software that
comes together with a high-level description of its behavior – its specification. The software itself is related
to its specification through an unforgeable formal proof that includes all possible details, down to some
basic mathematical axioms. Recent success stories in this field include the certified optimizing C compiler
[Leroy, 2009] and the certified operating system kernel seL4 [Klein et al., 2009].

The benefit of formal proofs is that they can be mechanically checked for validity using a small com-
puter program, owing to the high level of detail that they include. Their drawback is that they are hard
to write, even when we utilize proof assistants – specialized tools that are designed to help in formal proof
development. We argue that this is due to a profound architectural shortcoming of current proof assis-
tants: though extending a proof assistant with domain-specific sophistication is of paramount importance
for large-scale proof development [e.g. Chlipala et al., 2009, Morrisett et al., 2012], developing such ex-
tensions (in the form of proof-producing procedures) is currently overly complex and error-prone.

This dissertation is an attempt to address this shortcoming of formal proof development in current
systems. Towards that end, I have designed and developed a new programming language called VeriML,
which serves as a novel proof assistant. The main benefit of VeriML is that it includes a rich type system
which provides helpful information and robustness guarantees when developing new proof-producing
procedures for specialized domains. Furthermore, users can register such procedures to be utilized trans-
parently by the proof assistant, so that the development of proofs and further procedures can be signifi-
cantly simplified. Though an increasing number of trivial details can be omitted in this way from proofs
and proof procedures, the type system ensures that this does not eschew logical soundness – the resulting
proofs are as trustworthy as formal proofs with full details. This leads to a truly extensible proof assistant
where domain-specific sophistication can be built up in layers.

1.1 Problem description

Formal proof development is a complicated endeavor. Formal proofs need to contain all possible details,
down to some basic logical axioms. Contrast this with the informal proofs of normal mathematical
practice: one needs to only point out the essential steps of the argument at hand. The person reading
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the proof needs to convince themselves that these steps are sufficient and valid, relying on their intuition
or even manually reconstructing some missing parts of the proof (e.g. when the proof mentions that
a certain statement is trivial, or that ‘other cases follow similarly’). This is only possible if they are
sufficiently familiar with the specific domain of the proof. Thus the distinguishing characteristic is that
the receiver of an informal proof is expected to possess certain sophistication, whereas the receiver of
formal proof is an absolutely skeptical agent that only knows of certain basic reasoning principles.

Proof assistants are environments that provide users with mechanisms for formal proof development,
which bring this process closer to writing down an informal proof. One such mechanism is tactics: func-
tions that produce proofs under certain circumstances. Alluding to a tactic is similar to suggesting a
methodology in informal practice, such as ‘use induction on x’. Tactics range from very simple, corre-
sponding to basic reasoning principles, to very sophisticated, corresponding to automated proof discovery
for large classes of problems.

When working on a large proof development, users are faced with the choice of either using the
already existing tactics to write their proofs, or to develop their own domain-specific tactics. The latter
choice is often suggested as advantageous [e.g. Morrisett et al., 2012], as it leads to more concise proofs
that omit details, which are also more robust to changes in the specifications – similar to informal proofs
that expect a certain level of domain sophistication on the part of the reader. But developing new tactics
comes with its own set of problems, as tactics in current proof assistants are hard to write. The reason is
that the workflow that modern proof assistants have been designed to optimize is developing new proofs,
not developing new tactics. For example, when a partial proof is given, the proof assistant informs the
user about what remains to be proved; thus proofs are usually developed in an interactive dialog with
the proof assistant. Similar support is not available for tactics and would be impossible to support using
current tactic development languages. Tactics do not specify under which circumstances they are supposed
to work, the type of arguments they expect, what proofs they are supposed to produce and whether the
proofs they produce are actually valid. Formally, we say that tactic programming is untyped. This hurts
composability of tactics and also allows a large potential for bugs that occur only on particular invocations
of tactics. This lack of information is also what makes interactive development of tactics impossible.

Other than tactics, proof assistants also provide mechanisms that are used implicitly and ubiquitously
throughout the proof. These aim to handle trivial details that are purely artifacts of the high level of rigor
needed in a formal proof, but would not be mentioned in an informal proof. Examples are the conversion
rule, which automates purely computational arguments (e.g. determining that 5! = 120), and unification
algorithms, which aim to infer details of the terms used in a proof that can be easily determined from the
context (e.g. determining that the generic addition symbol+ refers to natural number addition when used
as 5+ x). The mechanism of the conversion rule is even integrated with the base proof checker, in order
to keep formal proofs feasible in terms of size. We refer to these mechanisms as small-scale automation in
order to differentiate them from large-scale automation which is offered by explicit reference to specific
automation tactics and development of further ones, following Asperti and Sacerdoti Coen [2010].

Small-scale automation mechanisms usually provide their own ways for adding domain-specific exten-
sions to them; this allows users to provide transparent automation for the trivial details of the domain at
hand. For example, unification mechanisms can be extended through first-order lemmas; and the conver-
sion rule can support the development of automation procedures that are correct by construction. Still,
the programming model that is supported for these extensions is inherrently quite limited. In the case of
the conversion rule this is because of its tight coupling with the core of the proof assistant; in the case of
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unification, this because of the very way the automation mechanism work. On the other hand, the main
cost in developing such extensions is in proving associated lemmas; therefore it significantly benefits from
the main workflow of current proof assistants for writing proofs.

Contrasting this distinction between small-scale and large-scale automation with the practice of infor-
mal proof reveals a key insight: the distinction between what constitutes a trivial detail that is best left
implicit and what constitutes an essential detail of a proof is very thin; and it is arbitrary at best. Further-
more, as we progress towards more complex proofs in a certain domain, or from one domain A to a more
complicated one B, which presupposes domain A (e.g. algebra and calculus), it is crucial to omit more de-
tails. Therefore, the fact that small-scale automation and large-scale automation are offered through very
different means is a liability in as far as it precludes moving automation from one side to the other. Users
can develop the exact automation algorithms they have in mind as a large-scale automation tactic; but
there is significant re-engineering required if they want this to become part of the ‘background reasoning’
offered by the small-scale automation mechanisms. They will have to completely rewrite those algorithms
and even change the data structures they use, in order to match the limitations of the programming model
for small-scale automation. In cases where such limitations would make the algorithms suboptimal, the
only alternative is to extend the very implementation of the small-scale automation mechanisms in the
internals of the proof assistant. While this has been attempted in the past, it is obviously associated with
a large development cost and raises the question whether the overall system is still logically sound.

Overall, users are faced with a choice between multiple mechanisms when trying to develop automa-
tion for a new domain. Each mechanism has its own programming model and a set of benefits, issues
and limitations. In many cases, users have to be proficient in multiple of these mechanisms in order to
achieve the desired result in terms of verbosity in the resulting proof, development cost, robustness and ef-
ficiency. The fact that significant issues exist in interfacing between the various mechanisms and languages
involved, further limits the extensibility and reusability of the automation that users develop.

In this dissertation, we propose a novel architecture for proof assistants, guided from the following
insights. First, development of proof-producing procedures such as tactics should be a central focal point
for proof assistants, just as development of proofs is of central importance in current proof assistants. Sec-
ond, the distinction between large-scale automation and small-scale automation should be de-emphasized
in light of their similarities: the involved mechanisms are in essence proof-producing procedures, which
work under certain circumstances and leverage different algorithms. Third, that writing such proof-
producing procedures in a single general-purpose programming model coupled with a rich type system,
directly offers the benefits of the traditional proof assistant architecture and generalizes them.

Based on these insights, we present a novel language-based architecture for proof assistants. We propose
a new programming language, called VeriML, which focuses on the development of typed proof-producing
procedures. Proofs, as well as other logic-related terms such as propositions, are explicitly represented and
manipulated in the language; their types precisely capture the relationships between such terms (e.g. a
proof which proves a specific proposition). We show how this language enables us to support the tradi-
tional workflows of developing proofs and tactics in current proof assistants, utilizing the information
present in the type system to recover and extend the benefits associated with these workflows. We also
show that small-scale automation mechanisms can be implemented within the language, rather than be
hardcoded within its internal implementation. We demonstrate this fact through an implementation of
the conversion rule within the language; we show how it can be made to behave identically to a hardcoded
conversion rule. In this way we solve the long-standing problem of enabling arbitrary user extensions to
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conversion while maintaining logical soundness, by leveraging the rich type system of the language. Last,
we show that once domain-specific automation is developed it can transparently benefit the development
of not only proofs, but further tactics and automation procedures as well. Overall, this results in a style of
formal proof that comes one step closer to informal proof, by increasing the potential for omitting details,
while maintaining the same guarantees with respect to logical soundness.

1.2 Thesis statement

The thesis statement that this dissertation establishes follows.

A type-safe programming language combining typed manipulation of logical terms with a
general-purpose side-effectful programming model is theoretically possible, practically imple-
mentable, viable as an alternative architecture for a proof assistant and offers improvements
over the current proof assistant architectures.

By ‘logical terms’ we refer to the terms of a specific higher-order logic, such as propositions and proofs.
The logic that we use is called λHOL and is specified as a type system in Chapter 3. By ‘manipulation’
we mean the ability to introduce logical terms, pass them as arguments to functions, emit them as results
from functions and also pattern match on their structure programmatically. By ‘typed manipulation’ we
mean that the logical-level typing information of logical terms is retained during such manipulation. By
‘type-safe’ we mean that subject reduction holds for the programming language. By ‘general-purpose side-
effectful programming model’ we mean a programming model that includes at the very least datatypes,
general recursion and mutable references. We choose the core ML calculus to satisfy this requirement. We
demonstrate theoretical possibility by designing a type system and operational semantics for this program-
ming language and establishing its metatheory. We demonstrate practical implementability through an
extensive prototype implementation of the language, which is sufficiently efficient in order to test various
examples in the language. We demonstrate viability as a proof assistant by implementing a set of examples
tactics and proofs in the language. We demonstrate the fact that this language offers improvements over
current proof assistant architectures by showing that it enables user-extensible static checking of proofs
and tactics and utilizing such support in our examples. We demonstrate how this support simplifies com-
plex implementations of similar examples in traditional proof assistants.

1.3 Summary of results

In this section I present the technical results of my dissertation research.

1. Formal design of VeriML. I have developed a type system and operational semantics supporting a
combination of general-purpose, side-effectful programming with first-class typed support for log-
ical term manipulation. The support for logical terms allows specifying the input-output behavior
of functions that manipulate logical terms. The language includes support for pattern matching
over open logical terms, as well as over variable environments. The type system works by leverag-
ing contextual type theory for representing open logical terms as well as the variable environments
they depend on. I also show a number of extensions to the core language, such as a simple staging
construct and a proof erasure procedure.

4



2. Metatheory. I have proved a number of metatheoretic results for the above language.

Type safety ensures that a well-typed expression of the language evaluates to a well-typed value of
the same type, in the case where evaluation is successful and terminates. This is crucial in
ensuring that the type that is statically assigned to an expression can be trusted. For example,
it follows that expressions whose static type claims that a proof for a specific proposition will
be created indeed produce such a proof upon successful evaluation.

Type safety for static evaluation ensures that the extension of the language with the staging con-
struct for static evaluation of expressions obeys the same safety principle.

Compatibility of normal and proof-erasure semantics establishes that every step in the evalua-
tion of a source expression that has all proof objects erased corresponds to a step in the evalu-
ation of the original source expression. This guarantees that even if we choose not to generate
proof objects while evaluating expressions of the language, valid proof objects of the right
type always exist. Thus, if users are willing to trust the type checker and runtime system of
VeriML, they can use the optimized semantics where no proof objects get created.

Collapsing transformation of contextual terms establishes that under reasonable limitations with
respect to the definition and use of contextual variables, a contextual term can be transformed
into one that does not mention such contextual variables. This proof provides a way to trans-
form proof expressions inside tactics into static proof expressions evaluated statically, at the time
that the tactic is defined, using staging.

3. Prototype implementation. I have developed a prototype implementation of VeriML in OCaml,
which is used to type check and evaluate a wide range of examples. The prototype has an extensive
feature set over the pure language as described formally, supporting type inference, surface syntax
for logical terms and VeriML code, special tactic syntax and translation to simply-typed OCaml
code.

4. Extensible conversion rule. We showcase how VeriML can be used to solve the long-standing
problem of a user-extensible conversion rule. The conversion rule that we describe combines the
following characteristics: it is safe, meaning that it preserves logical soundness; it is user-extensible,
using a familiar, generic programming model; and, it does not require metatheoretic additions to the
logic, but can be used to simplify the logic instead. Also, we show how this conversion rule enables
receivers of a formal proof to choose the exact size of the trusted core of formal proof checking; this
choice is traditionally only available at the time that a logic is designed. We believe this is the first
technique that combines these characteristics leading to a safe and user-extensible static checking
technique for proofs.

5. Static proof expressions. I describe a method that enables discovery and proof of required lem-
mas within tactics. This method requires minimal programmer annotation and increases the static
guarantees provided by the tactics, by removing potential sources of errors. I showcase how the
same method can be used to separate the proof-related aspect of writing a new tactic from the
programming-related aspect, leading to increased separation of concerns.

6. Dependently typed programming. I also show how static proof expressions can be useful in tradi-
tional dependently-typed programming (in the style of Dependent ML [Xi and Pfenning, 1999] and
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Agda [Norell, 2007]), exactly because of the increased separation of concerns between the program-
ming and the proof-related aspects. By combining this with the support for writing automation
tactics within VeriML, we show how our language enables a style of dependently-typed program-
ming where the extra proof obligations are generated and resolved within the same language.

7. Technical advances in metatheoretic techniques. The metatheory for VeriML that I have de-
veloped includes a number of technical advances over developments for similar languages such as
Delphin or Beluga. These are:

– Orthogonality between logic and computation. The theorems that we prove about the computa-
tional language do not depend on specifics of the logic language, save for a number of standard
theorems about it. These theorems establish certain substitution and weakening lemmas for
the logic language, as well as the existence of an effective pattern matching procedure for terms
of this language. This makes the metatheory of the computational language modular with re-
spect to the logic language, enabling us to extend or even replace the logic language in the
future.

– Hybrid deBruijn variable representation. We use a concrete variable representation for vari-
ables of the logic language instead of using the named approach for variables. This elucidates
the definitions of the various substitution forms, especially wih respect to substitution of a
polymorphic context with a concrete one; it also makes for precise substitution lemma state-
ments. It is also an efficient implementation technique for variables and enables subtyping
based on context subsumption. Using the same technique for variable representation in the
metatheory and in the actual implementation of the language decreases the trust one needs
to place in their correspondence. Last, this representation opens up possibilities for further
extensions to the language, such as multi-level contextual types and explicit substitutions.

– Pattern matching. We use a novel technique for type assignment to patterns that couples our
hybrid variable representation technique with a way to identify relevant variables of a pattern,
based on our notion of partial variable contexts. This leads to a simple and precise induc-
tion principle, used in order to prove the existence of deterministic pattern matching – our
key theorem. The computational content of this theorem leads to a simple pattern matching
algorithm.

8. Implementations of extended conversion rules. We describe our implementation of the tradi-
tional conversion rule in VeriML as well as various extensions to it, such as congruence closure
and arithmetic simplification. Supporting such extensions has prompted significant metatheoretic
and implementation additions to the logic in past work. The implementation of such algorithms
in itself in existing proof assistants has required a mix of techniques and languages. We show how
the same extensions can be achieved without any metatheoretic additions to the logic or special im-
plementation techniques by using our computational language. Furthermore, our implementations
are concise, utilize language features such as mutable references and require a minimal amount of
manual proof from the programmer.

Part of the results of this dissertation have previously been published in Stampoulis and Shao [2010]
(ICFP 2010) and in Stampoulis and Shao [2012a] (POPL 2012). The latter publication is also accompanied
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by an extensive Technical Report [Stampoulis and Shao, 2012b]where the interested reader can find fully
detailed proofs of the main technical results that we present in Chapters 3 through 6.
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Chapter 2

Informal overview

In this chapter I am going to present a high-level picture of the architecture of modern proof assistants,
covering the basic notions involved and identifying a set of issues with this architecture. I will then present
the high-level ideas behind VeriML and how they address the issues. I will show the correspondences
between the traditional notions in a proof assistant and their counterpart in VeriML, as well as the new
possibilities that are offered. Last, I will give a brief overview of the constructs of the language.

2.1 Proof assistant architecture

2.1.1 Preliminary notions

Formal logic. A formal logic is a mathematical system that defines a collection of objects; a collection
of statements describing properties of these objects, called propositions; as well as the means to establish
the validity of such statements (under certain hypotheses), called proofs or derivations. Derivations are
composed by using axioms and logical rules. Axioms are a collection of propositions that are assumed
to be always valid; therefore we always possess valid proofs for them. Logical rules describe under what
circumstances a collection of proofs for certain propositions (the premises) can be used to establish a proof
for another proposition (the consequence). A derivation is thus a recording of a number of logical steps,
claiming to establish a proposition; it is valid if every step is an axiom or a valid application of a logical
rule1.

Proof object; proof checker. A mechanized logic is an implementation of a specific formal logic as a
computer system. This implementation at the very least consists of a way to represent the objects, the
propositions and the derivations of the logic as computer data, and also of a procedure that checks whether
a claimed proof is indeed a valid proof for a specific proposition, according to the logical rules. We refer
to the machine representation of a specific logical derivation as the proof object; the computer code that
decides the validity of proof objects is called the proof checker. We use this latter term in order to signify
the trusted core of the implementation of the logic: bugs in this part of the implementation might lead to
invalid proofs being admitted, destroying the logical soundness of the overall system.

1. Note that these definitions are not normative and can be generalized in various ways, but they will suffice for the purposes
of our discussion.
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Figure 2.1: Basic architecture of proof assistants

Proof assistant. A mechanized logic automates the process of validating formal proofs, but does not
help with actually developing such proofs. This is what a proof assistant is for. Examples of proof assis-
tants include Coq [Barras et al., 2012], Isabelle [Paulson, 1994], HOL4 [Slind and Norrish, 2008], HOL-
Light [Harrison, 1996], Matita [Asperti et al., 2007], Twelf [Pfenning and Schürmann, 1999], NuPRL
[Constable et al., 1986], PVS [Owre et al., 1996] and ACL2 [Kaufmann and Strother Moore, 1996]. Each
proof assistant supports a different logic, follows different design principles and offers different mecha-
nisms for developing proofs. For the purposes of our discussion, the following general architecture for a
proof assistant will suffice and corresponds to many of the above-mentioned systems. A proof assistant
consists of a logic implementation as described above, a library of proof-producing functions and a language
for writing proof scripts and proof-producing functions. We will give a basic description of the latter two
terms below and present some notable examples of such proof assistants as well as important variations in
the next section.

Proof-producing functions. The central idea behind proof assistants is that instead of writing proof
objects directly, we can make use of specialized functions that produce such proof objects. By choosing
the right functions and composing their results, we can significantly cut down on the development effort
for large proofs. We refer to such functions as proof-producing functions and we characterize their defini-
tion as follows: functions that manipulate data structures involving logical terms, such as propositions and
proofs, and produce other such data structures. This definition is deliberately very general and can refer
to a very large class of functions. They range from simple functions that correspond to logical reasoning
principles to sophisticated functions that perform automated proof search for a large set of problems uti-
lizing complicated data structures and algorithms. Users are not limited to a fixed set of proof-producing
functions, as most proof assistants allow users to write new proof-producing functions using a suitable
language.

A conceptually simple class of proof-producing functions are decision procedures: functions that can
decide the provability of all the propositions of a particular, well-defined theory. For example, Gaussian
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elimination corresponds to a decision procedure for systems of linear equations2. Automated theorem
provers are functions that attempt to discover proofs for arbitrary propositions, taking into account new
definitions and already-proved theorems; the main difference with decision procedures being that the class
of propositions they can handle is not defined a priori but is of an ad hoc nature. Automated provers might
employ sophisticated algorithms and data structures in order to discover such proofs. Another example
is rewriters, functions that simplify terms and propositions into equivalent ones, while also producing a
proof witnessing this equivalence.

A last important class of proof-producing functions are tactics. A tactic is a proof-producing function
that works on incomplete proofs: a specific data structure which corresponds to a ‘proof-in-development’
where some parts might still be missing. A tactic accepts an incomplete proof and transforms it into
another potentially still incomplete proof; furthermore, it provides some justification why the transfor-
mation is valid. The resulting incomplete proof is expected to be simpler to complete than the original
one. Every missing part is characterized by a set of hypotheses and by its goal – the proposition we need
to prove in order to fill it in; we refer to the overall description of the missing parts as the current proof
state. Examples of tactics are: induction principles – where a specific goal is changed into a set of goals
corresponding to each case of an inductive type with extra induction hypotheses; decision procedures and
automated provers as described above; and higher-order tactics for applying a tactic everywhere – e.g.,
given an automated prover, try to finish an incomplete proof by applying the prover to all open goals.
The notion of tactics is a very general one and can encompass most proof-producing functions that are of
interest to users3. Tactics thus play a central role in many current proof assistants.

Proof scripts. If we think of proof objects as a low-level version of a formal proof, then proof scripts are
their high-level equivalent. A proof script is a program which composes several proof-producing functions
together. When executed, a proof script emits a proof object for a specific proposition; the resulting proof
object can then be validated through the proof checker, as shown in Figure 2.1. This approach to proof
scripts and their validation procedure is the heart of many modern proof assistants.

Proof scripts are written in a language that is provided as part of the proof assistant and follows one
of two styles: the imperative style or the declarative style. In the imperative style, the focus is placed on
which proof-producing functions are used: the language is essentially special syntax for directly calling
proof-producing functions and composing their results. In the declarative style, the focus is placed on
the intermediate steps of the proof: the language consists of human-readable reasoning steps (e.g. split
by these cases, know that a certain proposition holds, etc.). A default proof-producing function is used
to justify each such step, but users can explicitly specify which proof-producing function is used for each
step. In general, the imperative style is significantly more concise than the declarative style, at the expense
of being ‘write-only’ – meaning that it is usually hard for a human to follow the logical argument made in
an imperative proof script after it has been written.

In both cases, the amount of detail that needs to be included in a proof script directly depends on
the proof-producing functions that are available. This is why it is important to be able to write new
proof-producing functions. When we work in a specific domain, we might need functions that better cor-

2. More accurately: for propositions that correspond to systems of linear equations.

3. In fact, the term ‘tactic’ is more established than ‘proof-producing function’ and is often used even in cases where the latter
term would be more accurate. We follow this tradition in later chapters of this dissertation, using the two terms interchangeably.
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respond to the reasoning principles for that domain; we can even automate proof search for a large class
of propositions of that domain through a specialized algorithm. In this way we can cover cases where
the generic proof search strategies (offered by the existing proof procedures) do not perform well. One
example would be deciding whether two polynomials are equivalent by attempting to use normal arith-
metic properties in a fixed order, until the two polynomials take the same form – instead of a specialized
equivalence checking procedure.

In summary, a proof assistant enables users to develop valid formal proofs for certain propositions, by
writing proof scripts, utilizing an extensible set of proof-producing functions and validating the resulting
proof objects through a proof checker. In the next section we will see examples of such proof assistants as
well as additions to this basic architecture. As we will argue in detail below, the main drawback of current
proof assistants is that the language support available for writing proof-producing functions is poor. This
hurts the extensibility of current proof assistants considerably. The main object of the language presented
in this dissertation is to address exactly this fact.

2.1.2 Variations

LCF family

The Edinburgh LCF system [Gordon et al., 1979]was the first proof assistant that introduced the idea of a
meta-language for programming proof-producing functions and proof scripts. A number of modern proof
assistants, most notably HOL4 [Slind and Norrish, 2008] and HOL-Light [Harrison, 1996], follow the
same design ideas as the original LCF system other than the specific logic used (higher-order logic instead
of Scott’s logic of computable functions). Furthermore, ML, the meta-language designed for the original
LCF system became important independently of this system; modern dialects of this language, such as
Standard ML, OCaml and F# enjoy wide use today. An interesting historical account of the evolution of
LCF is provided by Gordon [2000].

The unique characteristic of proof assistants in the LCF family is that the same language, namely ML,
is used both for the implementation of the proof assistant and by the user. The design of the programming
constructs available in ML was very much guided by the needs of writing proof-producing functions and
are thus very well-suited to this task. For example, a notion of algebraic data types is supported so that we
can encode sophisticated data structures such as the logical propositions and the ‘incomplete proofs’ that
tactics manipulate; general recursion and pattern matching provide a good way to work with these data
structures; higher-order functions are used to define tacticals – functions that combine tactics together;
exceptions are used in proof-producing functions that might fail; and mutable references are crucial in
order to implement various efficient algorithms that depend on an imperative programming model.

Proof scripts are normal ML expressions that return values of a specific proof data type. We can use
decision procedures, tactics and tacticals provided by the proof assistant as part of those proof scripts or
we can write new functions more suitable to the domain we are interested in. We can also define further
classes of proof-producing functions along with their associated data structures: for example, we can define
an alternate notion of incomplete proofs and an associated notion of tactics that are better suited to the
declarative proof style, if we prefer that style instead of the imperative style offered by the proof assistant.

The key technical breakthrough of the original Edinburgh LCF system is its approach to ensuring
that only valid proofs are admitted by the system. Having been developed in a time where memory space
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was limited, the approach of storing large proof objects in memory and validating them post-hoc as we de-
scribed in the previous section was infeasible. The solution was to introduce an abstract data type of valid
proofs. Values of this type can only be introduced through a fixed set of constructor functions: each func-
tion consumes zero or more valid proofs, produces another valid proof and is in direct correspondence
to an axiom or rule of the original logic4. Expressions having the type of valid proofs are guaranteed to
correspond to a derivation in the original logic when evaluated – save for failing to evaluate successfully
(i.e. if they go into an infinite loop or throw an exception). This correspondence is direct in the case
where such expressions are formed by combining calls to the constructor functions. The careful design
of the type system of ML guarantees that such a correspondence continues to hold even when using all
the sophisticated programming constructs available. Formally, this guarantee is a direct corollary of the
type-safety theorem of the ML language, which establishes that any expression of a certain type evaluates
to a value of that same type, or fails as described above.

The ML type system is expressive enough to describe interesting data structures as well as the signa-
tures of functions such as decision procedures and tactics, describing the number and type of arguments
they expect. For example, the type of a decision procedure can specify that it expects a proposition as an
input argument and produces a valid proof as output. Yet, we cannot specify that the resulting proof actu-
ally proves the given proposition. The reason is that all valid proofs are identified at the level of types. We
cannot capture finer distinctions of proofs in the type system, specifying for example that a proof proves
a specific proposition, or a proposition that has a specific structure. All other logical terms (e.g. propo-
sitions, natural numbers, etc.) are also identified. Thus the signatures that we give to proof-producing
functions do not fully reflect the input-output relationships of the logical terms involved. Because of the
identification of the types of logical terms, we say that proof-producing functions are programmed in an
essentially untyped manner. By extension, the same is true of proof scripts.

This is a severe limitation. It means that no information about logical terms is available at the time
when the user is writing functions or proof scripts, information which would be useful to the user and
could also be used to prevent errors at the time of function or proof script definition – statically. Instead,
all logic-related errors, such as proving the wrong proposition or using a tactic in a case where it does not
apply, will only be caught when (and if) evaluation reaches that point – dynamically. This is a profound
issue especially in the case of proof-producing functions, where logic-related errors might be revealed
unexpectedly at a particular invocation of the function. Also, in the case of imperative proof scripts, this
limitation precludes us from knowing how the proof state evolves – as no information about the input
and output proof state of the tactics used is available statically. The user has to keep a mental model of the
evolution of proof state in order to write proof scripts that evaluate successfully.

Overall, the architecture of proof assistants in this family is remarkably simple yet leads to a very exten-
sible and flexible proof development style. Users have to master a single language where they can mix
development of proofs and development of specialized proof-producing functions, employing a general-
purpose programming model. The main shortcoming is that all logic-related programming (whether it be

4. This is the main departure compared to the picture given in the previous section, as the logic implementation does not
include explicit proof objects. Instead, proof object generation is essentially combined with proof checking, rendering the full
details of the proof object irrelevant. We only need to retain information about the proposition that it proves in order to be able
to form further valid proofs. Based on this correspondence, it is easy to see that the core of the proof checker is essentially the
set of valid proof constructor functions.
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proof scripts or proof-producing functions) is essentially done in an untyped manner.

Isabelle

Isabelle [Paulson, 1994] is a widely used proof assistant which evolved from the LCF tradition. The main
departure from the LCF design is that instead of being based on a specific logic, its logical core is a logical
framework instead. Different logics can then be implemented on top of this basic logical framework. The
proof checker is then understood as the combination of the implementation of the base logical framework
and of the definition of the particular logic we work with. Though this design allows for flexibility in
choosing the logic to work with, in practice the vast majority of developments in Isabelle are done using
an encoding of higher-order logic, similar to the one used in HOL4 and HOL-Light. This combination is
referred to as Isabelle/HOL [Nipkow et al., 2002].

The main practical benefit that Isabelle offers over proof assistants following the LCF tradition is
increased interactivity when developing proof scripts. Though interactivity support is available in some
LCF proof assistants, it is emphasized more in the case of Isabelle. The proof assistant is able to run a
proof script up to a specified point and inform the user of the proof state at that point – the remaining
goals that need to be proved and the hypotheses at hand. The user can then continue developing the proof
script based on that information. Proof scripts are therefore developed in a dialog with the proof assistant
where the evolution of proof state is clearly shown to the user: the user starts with the goal they want
to prove, chooses an applicable tactic and gets immediate feedback about the new subgoals they need to
prove. This process continues until a full proof script is developed and no more subgoals remain.

This interactivity support is made possible in Isabelle by following a two-layer architecture. The
first layer consists of the implementation of the proof assistant in the classic LCF style, including the
library of tactics and other proof-producing functions, using a dialect of ML. It also incorporates the
implementation of a higher-level language which is specifically designed for writing proof scripts; and of a
user interface providing interactive development support for this language as described above. The second
layer consists of proof developments done using the higher-level language. Unless otherwise necessary,
users work at this layer.

The split into two layers de-emphasizes the support for writing new proof-producing functions using
ML. Writing a new tactic comes with the extra overhead of having to learn the internal layer of the proof
assistant. This difficulty is added on top of the issues with the development of proof-producing functions
as in the normal LCF case. Rather than writing their own specialized tactics to automate domain-specific
details, users are thus more likely to use already-existing tactics for proving these details. This leads to
longer proof scripts that are less robust to small changes in the definitions involved.

In Isabelle, this issue is minimized through the use of a powerful simplifier – an automation mechanism
that rewrites propositions into simpler forms. It makes use of a rule for higher-order unification which is
part of the core logical theory of Isabelle. We can think of the simplifier as a specific proof-producing
function which is utilized by most other tactics and decision procedures. Users can extend the simplifier
by registering rewriting first-order lemmas with it. The lemmas are proved normally using the interactive
proof development support. This is an effective way to add domain-specific automation with a very
low cost to the user, while making use of the primary workload that Isabelle was designed to optimize.
We refer to the simplifier as a small-scale automation mechanism: it is used ubiquitously and implicitly
throughout the proof development process. We thus differentiate similar mechanisms from the large-scale
automation offered through the use of tactics.
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Still, the automation support that can be added through the simplifier is quite limited when compared
to the full ML programming model available when writing new tactics. As mentioned above, we can only
register first-order lemmas with the simplifier. These correspond roughly to the Horn clauses composing
a program in a logic programming language such as Prolog. The simplifier can then be viewed as an
interpreter for that language, performing proof search over such rules using a fixed strategy. In the cases
where this programming model cannot capture the automation we want to support (e.g. when we want
to use an efficient algorithm that uses imperative data structures), we have to fall back to developing a new
tactic.

Coming back to proof scripts, there is one subtle issue that we did not discuss above. As we mentioned,
being able to evaluate proof scripts up to some point is a considerable benefit. Even with this support,
proof scripts still leave something to be desired, which becomes more apparent by juxtaposing them with
proof objects. Every sub-part of a proof object corresponds to a derivation in itself and has a clearly
defined set of prerequisites and conclusions, based on the logical rules. Proof scripts, on the other hand,
do not have a similar property. Every sub-part of a proof script critically depends on the proof state
precisely before that sub-part begins. This proof state cannot be determined save for evaluating the proof
script up to that point; there is no way to identify the general circumstances under which that sub-part of
the proof script applies. This hurts the composability of proof scripts, precluding isolation of interesting
parts to reuse in other situations.

Coq

Coq [Bertot et al., 2004] is considered to be the current state-of-the-art proof assistant stemming from the
LCF tradition. It has a wide variety of features over proof assistants such as HOL and Isabelle: it uses
CIC [Coquand and Huet, 1988, Werner, 1994] as its logical theory, which is a version of Martin-Löf type
theory [Martin-Löf, 1984] and enables the encoding of mathematical results that are not easily expressible
in HOL; it supports the extraction of computational content out of proofs, resulting in programs that are
correct by construction, by exploiting the Curry-Howard isomorphism; and it supports a rich notion
of inductive and coinductive datatypes. Since our main focus is the extensibility of proof assistants with
respect to automation for new domains, we will not focus on these features, as they do not directly affect
the extensibility. We will instead focus on the support for a specialized tactic development language,
called LTac; the inclusion of a conversion rule in the core logical theory; and the combined use of these
features for a proof technique called proof-by-reflection. As we will see, Coq allows various languages
for developing tactics and other automation procedures; Figure 2.2 summarizes these, shows how they
are combined into the basic architecture of Coq, and compares between them. The comparison is based
around three factors:

– convenience, based on the presence of pattern matching and other specialized constructs specifi-
cally tailored to writing proof-producing procedures vs. the requirement to use general-purpose
constructs through encodings

– the presence of types that can capture logical errors inside tactics statically, and

– expressivity, depending on whether a full programming model with side-effects and data types can
be used.
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Figure 2.2: Programming languages available for writing automation procedures in the Coq architecture

The basic architecture of Coq follows the basic description of the previous section, as well as the two-
layer architecture described for Isabelle. The implementation layer of the proof assistant is programmed
in ML. It includes an explicit notion of proof objects along with a proof checker for validating them; the
implementation of basic proof-producing functions and tactics; and the implementation of the user-level
language along with an interface for it. Proof scripts written in this language make calls to tactics and
ultimately produce proof objects which are then validated. Interactive support is available for developing
the proof scripts.

The user-level language for proof development is called LTac [Delahaye, 2000, 2002]. It includes sup-
port not only for writing proof scripts, but also for writing new tactics at a higher level than writing
them directly in ML. LTac provides constructs for pattern matching on propositions (in general on logi-
cal terms) and on the current proof state. Defining recursive functions and calling already defined tactics
is also allowed. In this way, the overhead of writing new tactics is lowered significantly. Thus developing
new domain-specific tactics as part of a proof development effort is re-emphasized and is widely regarded
to be good practice [Chlipala, 2007, 2011, Morrisett et al., 2012]. Yet LTac has its fair share of problems.
First of all, the programming model supported is still limited compared to writing tactics in ML: there is
no provision for user-defined data structures or for mutable references. Also, LTac is completely untyped
– both with respect to the logic (just as writing tactics in ML is), but also with respect to the limited data
structure support that there is. There is no support for interactive development of tactics in the style
supported for proof scripts; such support would be impossible to add without having access to some typ-
ing information. Therefore programming tactics using LTac is at least as error-prone as developing them
using ML. The untyped nature of the language makes LTac tactics brittle with respect to small changes
in the involved logical definitions, posing significant problems in the maintenance and adaptation of tac-
tics. Furthermore, LTac is interpreted. The interpretation overhead considerably limits the performance
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of tactics written using it. Because of these reasons, developing LTac tactics is often avoided despite the
potential benefits that it can offer [Nanevski et al., 2010].

Another variation of the basic architecture that is part of the Coq proof assistant is the inclusion of a
conversion rule in its logical core. Arguments that are based solely on computation of functions defined
in the logic, such as the fact that 1+ 1 = 2, are ubiquitous throughout formal proofs. If we record all
the steps required to show that such arguments are valid as part of the proof objects, their size soon
becomes prohibitively large. It has been argued that such arguments should not be recorded in formal
proofs but rather should be automatically decided through computation – a principle that has been called
the Poincaré principle [Barendregt and Geuvers, 1999]. Coq follows this idea through the conversion rule
– a small-scale automation mechanism that implicitly decides exactly such computational equivalences.
The implementation of the conversion rule needs to be part of the trusted proof checker. Also, because
of the tight integration into the logical core, it is important to make sure that the equivalences decided
by the conversion rule cannot jeopardize the soundness of the logic. Proving this fact is one of the main
difficulties in establishing the soundness of the CIC logic that Coq is based on.

At the same time, extensions to the equivalences that can be decided through the conversion rule are
desirable. The reason is straightforward: since these equivalences are decided automatically and implicitly,
users do not have to explicitly allude to a tactic in order to prove them and thus the proof scripts can
be more concise5. If we view these equivalences as trivial steps of a proof, deciding them implicitly
corresponds accurately to the informal practice of omitting them from our proofs. Therefore we would
like the conversion rule to implicitly decide other trivial details, such as simple arithmetic simplifications,
equational reasoning steps, rearrangement of logical connectives, etc. Such extensions to the conversion
rule supported by Coq have been proposed [Blanqui et al., 1999, 2010] and implemented as part of the
CoqMT project [Strub, 2010]. Furthermore, the NuPRL proof assistant Constable et al. [1986] is based
on a different variant of Martin-Löf type theory which includes an extensional conversion rule. This
enables arbitrary decision procedures to be added to conversion, at the cost of having to include all of
them in the trusted core of the system.

In general, extensions to the conversion rule come at a significant cost: considerable engineering effort
is required in order to change the internals of the proof assistant; the trusted core of the system needs
to be expanded by the new conversion rule; and the already complex metatheoretic proofs about the
soundness of the CIC logic need to be adapted. It is especially telling that the relatively small extension
of η-conversion, a form of functional extensionality, took several years before it was considered logically
safe to add to the base Coq system [Barras et al., 2012]. Because of these costs, user extensions to the
conversion rule are effectively impossible.

Still, the conversion rule included in Coq is powerful enough to support another way in which au-
tomation procedures can be written, through the technique called proof-by-reflection [Boutin, 1997]. The
main idea is to program automation procedures directly within the logic and then utilize the conversion
rule in order to evaluate them. As described earlier, the conversion rule can decide whether two logi-
cal terms are equivalent up to evaluation – in fact, it is accurate to consider the implementation of the
conversion rule as a partial evaluator for the functional language contained within the logic. We refer to
this language as Gallina, from the name of the language used to write out proof objects and other logical

5. A further benefit of an extended conversion rule is that it allows more terms to be typed. This is true in CIC because of the
inclusion of dependent types in the logical theory. We will focus on a logic without dependent types, so we will not explore the
consequences of this in this section. We refer the reader to Section 3.2 and 7.1 for more details.
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terms in Coq. The technique works as follows: we reflect the set of propositions we want to decide as an
inductive datatype in the logic; we develop the decision procedure in Gallina, as a function that works
over terms of that datatype; and we prove that the decision procedure is sound – that is, when the decision
procedure says that such an ‘inductive proposition’ is true, the original proposition it corresponds to is
also provable. Now, a simple proof object which just calls the Gallina decision procedure on an inductive
proposition can serve as a proof for the original proposition, because the conversion rule will implicitly
evaluate the procedure call. Usually, a wrapper LTac tactic is written that finds the inductive proposition
corresponding to the current goal and returns such a proof object for it.

The proof-by-reflection technique leads to decision procedures that are correct by construction. There
is a clear specification of the proof that the decision procedure needs to provide in each case – the propo-
sition corresponding to the inductive proposition at hand. Thus programming using proof-by-reflection
is typed with respect to logical terms, unlike programming decision procedures directly in ML. For this
reason decision procedures developed in this style have much better maintainability characteristics. The
bulk of the development of a decision procedure in this style is proving its soundness; this has a clear
statement and can be proved through normal proof scripts, making use of the interactive proof support.
Last, it can lead to fairly efficient decision procedures. This is true both because large proof objects do
not need to be generated thanks to the conversion rule, and also because we can use a fast bytecode- or
compilation-based backend as the evaluation engine of the conversion rule [Grégoire and Leroy, 2002,
Grégoire, 2003]. This latter choice of course adds considerable complexity to the trusted core.

On the other hand, the technique is quite involved and is associated with a high overhead, as is appar-
ent from its brief description above. Reflecting the propositions of the logic as an inductive type within
the logic itself, as well as the encoding and decoding functions required, is a costly and tedious process.
This becomes a problem when we want to reflect a large class of propositions, especially if this class in-
cludes propositions with binding structure, such as quantified formulas. The biggest problem is that the
programming model supported for writing functions in Gallina is inherrently limited. Non-termination,
as arising from general recursion, and any other kind of side-effectful operation is not allowed as part
of Gallina programs. Including such side-effects would destroy the logical soundness of the system be-
cause the conversion rule would be able to prove invalid equivalences. Thus when we want to encode
an algorithm that uses imperative data structures we are left with two choices: we either re-engineer the
algorithm to work with potentially inefficient functional data structures; or we implement the algorithm
in ML and use a reflective procedure to validate the results of the algorithm – adding a third language into
the mix. Various tactics included in Coq utilize this latter option.

A last Coq feature of note is the inclusion of a unification engine as part of the type inference algorithm
for logical terms. It has recently been shown that this engine can be utilized to provide transparent
automation support, through a mechanism called canonical structures [Gonthier et al., 2011]. Matita
[Asperti et al., 2007], a proof assistant similar to Coq, offers the related mechanism of unification hints
[Asperti et al., 2009]. This technique requires writing the automation procedure as a logic program.
Therefore the issues we argued above for the Isabelle simplifier and for proof-by-reflection also hold for
this technique.

2.1.3 Issues

We will briefly summarize the issues with the current architecture of proof assistants that we have identi-
fied in the discussion above. As we mentioned in the introduction, we perceive the support for extending
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the available automation to be lacking in current proof assistants – both with respect to small-scale and to
large-scale automation. This ultimately leads to long proof scripts that include more details than necessary
and limit the scalability of the overall proof development process. More precisely, the issues we have seen
are the following.

1. Proof-producing functions such as tactics and decision procedures are programmed in an essentially
untyped manner. We cannot specify the circumstances under which they apply and what proofs
they are supposed to return. Programming such functions is thus error prone and limits their
maintainability and composability.

2. No helpful information is offered to the user while developing such functions, for example in a
form similar to the interactive development of proof scripts.

3. Though proof scripts can be evaluated partially in modern proof assistants, we cannot isolate sub-
parts of proof scripts in order to reuse them in other situations. This is due to their implicit de-
pendence on the current proof state which is only revealed upon evaluation. There is no way to
identify their general requirements on what the proof state should be like.

4. The programming model offered through small-scale automation mechanisms is limited and is not
a good target for many automation algorithms that employ mutable data structures.

5. The small-scale automation mechanisms such as the conversion rule are part of the core imple-
mentation of the proof assistant. This renders user extensions to their functionality practically
impossible.

6. Users have to master a large set of techniques and different programming models in order to provide
the domain-specific automation they desire.

2.2 A new architecture: VeriML

In this dissertation we propose a new architecture for proof assistants that tries to address the problems
identified above. The new architecture is based on a new programming language called VeriML, which is
used as a proof assistant. The essence behind the new architecture is to move the proof checker inside the
type system of the meta-language, so that proof-producing functions are verified once and forall, at the time of
their definition – instead of validating the proof objects that they produce every time they are invoked. We
present the basic idea of this architecture in juxtaposition to the traditional proof assistant architecture in
Figure 2.3. VeriML addresses the problems identified above as follows:

1. VeriML allows type-safe programming of proof-producing functions. This is achieved through a
rich type system, allowing us to specify the relationships between input and output logical terms
accurately.

2. VeriML offers rich information while developing proof-producing functions in the form of assump-
tions and current proof goals, similar to what is offered in interactive proof assistants for proof
scripts.
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Figure 2.3: Comparison of architecture between current proof assistants and VeriML

3. Proof scripts are typed, because the functions they use are typed. Therefore they can be decomposed
just like proof objects; their type makes evident the situations under which they apply and the
proposition that they prove.

4. The extra typing allows us to support small-scale automation mechanisms that are extensible through
the full VeriML programming model. We demonstrate this through a new approach to the conver-
sion rule, where arbitrary functions of a certain type can be added to it. The type of these functions
specifies that they return a valid proof of the equivalence they claim, thus making sure that logical
soundness is not jeopardized.

5. Small-scale automation mechanisms are implemented as normal VeriML code; new mechanisms
can be implemented by the user. We regain the benefits of including them in the core of the proof
assistant through two simple language constructs: proof-erasure and staging support. Proof-erasure
enables us to regain and generalize the reduction in proof object size; staging enables us to use such
mechanisms ubiquitously and implicitly, not only for checking proof scripts, but tactics as well.

6. There is a single programming model that users have to master which is general-purpose and allows
side-effectful programming constructs such as non-termination, mutable references and I/O.

Furthermore, the language can potentially be used for other applications that mix computation and proof,
which cannot easily be supported by current proof assistants. One such example is certifying compilation
or certifying static analysis.
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VeriML is a computational language that manipulates logical terms of a specific logic. It includes a core
language inspired by ML (featuring algebraic datatypes, polymorphism, general recursion and mutable
references), as well as constructs to introduce and manipulate logical terms. Rich typing information
about the involved logical terms is maintained at all times. The computational language is kept separate
from the logical language: logical terms are part of the computational language but computational terms
never become part of the logical terms directly. This separation ensures that soundness of the logic is
guaranteed and is independent of the specifics of the computational language.

Let us now focus on the rich typing information available for logical terms. First, we can view the
rules for formation of propositions and domain objects, as well as the logical rules utilized for constructing
proof objects as a type system. Each logical term can thus be assigned a type, which is a logical term in
itself – for example, a proof object has the proposition it proves as its type. Viewing this type system as an
‘object’ language, the computational language provides constructs to introduce and manipulate terms of
this object language; their computational-level type includes their logical-level type. An example would
be an automated theorem prover that accepts a proposition P as an argument (its type specifying that P
needs to be a well-formed proposition) and returns a proof object which proves that specific proposition
(its type needs to be exactly P ). Since the type of one term of the object language might depend on another
term of the same language, this is a form of dependently typed programming.

The computational language treats these logical terms as actual runtime data: it provides a way to look
into their structure through a pattern matching construct. In this way, we can implement the automated
theorem prover by looking into the possible forms of the proposition P and building an appropriate proof
object for each case. In each branch, type checking ensures that the type of the resulting proof object
matches the expected type, after taking into account the extra information coming from that branch.
Thus pattern matching is dependently typed as well.

The pattern-matching constructs, along with the core ML computational constructs, allow users to
write typed proof-producing functions. Based on their type, we clearly know under which situations they
apply and what their consequences are, at the point of their definition. Furthermore, while writing such
functions, the user can issue queries to the VeriML type checker in order to make use of the available type
information. In this way, they will learn of the hypotheses at hand and the goals that need to be proved
at yet-unwritten points of the function. This extends the benefit of interactive proof development offered
by traditional proof assistants to the case of proof-producing functions.

Typed proof scripts arise naturally by composing such functions together. They are normal VeriML
expressions whose type specifies that they yield a proof of a specific proposition upon successful eval-
uation; for this reason we also refer to them as proof expressions. The evolution of proof state in these
scripts is captured explicitly in their types. Thus, we know the hypotheses and goals that their sub-parts
prove, enabling us to reuse and compose proof scripts. Interactive development of proof scripts is offered
by leaving parts of proof scripts unspecified, and querying the VeriML type checker. The returned type
information corresponds exactly to the information given by a traditional interactive proof assistant.

An important point is that despite the types assigned to tactics and proof scripts, the presence of side-
effects such as non-termination means that their evaluation can still fail. Thus, proof scripts need to be
evaluated in order to ensure that they evaluate successfully to a proof object. Type safety ensures that if
evaluation is indeed successful, the resulting proof object will be a valid proof, proving the proposition
that is claimed from the type system.
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Small-scale automation. We view the type checker as a ‘behind-the-scenes’ process that gives helpful
information to the user and prevents a large class of errors when writing proofs and proof-producing
functions. This mitigates the problems (1), (2), (3) identified above that current proof assistants have. But
what about support for small-scale automation? Our main intuition is to view small-scale automation
mechanisms as normal proof-producing functions, with two extra concerns – which are traditionally mixed
together. The first concern is that these mechanisms apply ubiquitously, transparently to the user, taking
care of details that the user should not have to think about. The second concern is that in some cases, as in
the case of the conversion rule supported in Coq, these mechanisms are used for optimization purposes:
by including them in the trusted core of the proof assistant, we speed up proof object generation and
checking.

With respect to the first concern, we view small-scale automation as another phase of checking, similar
to typing, as presented in Figure 2.4. Just like typing, it should happen ‘behind-the-scenes’ and offer
helpful information to the user: when we allude to a fact that holds trivially, small-scale automation
should check if that fact indeed holds and provide sufficient proof. This is similar to a second phase of
type checking, save for the fact that it should be extensible. This checking should apply both in the case
of developing a proof and in the case of developing a proof-producing function – otherwise the function
could fail at exactly those points that were deemed too trivial to explicitly prove. The user should be able
to provide their own small-scale automation procedures, tailored to their domain of interest. This view
generalizes the notion of what small-scale automation should be about in proof assistants; we believe it
better reflects the informal practice of omitting details.

Based on this idea, we can say that the main distinction between small-scale automation and large-
scale automation is only a matter of the phase when they are evaluated. Small-scale automation should
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be evaluated during a phase similar to type-checking, so that we know its results at the definition time
of a proof script or a proof-producing function. Other than that, both should be implemented through
exactly the same code. We introduce such a phase distinction by adding a static evaluation phase. This
phase occurs after type checking but before normal runtime evaluation. We annotate calls to the small-
scale automation mechanisms to happen during this phase through a simple staging construct. Other than
this annotation, these calls are entirely normal calls to ordinary proof-producing functions. We can even
hide such calls from the user by employing some simple syntactic sugar. Still the user is able to use the
same annotations for new automation mechanisms that they develop.

The second concern that small-scale automation addresses, at least in the case of the conversion rule,
is keeping the proof object size tractable. We view the conversion rule as a trusted procedure that is
embedded within the proof checker of the logic, one that decides equivalences as mentioned. The fact
that we trust its implementation is exactly why we can omit the proof of those equivalences from the
proof objects. We can therefore say that the conversion rule is a special proof-producing procedure that
does not produce a proof – because we trust that such a proof exists.

Consider now the implementation of the conversion rule as a function in VeriML. We can ascribe a
strong type to this function, where we specify that if this function says that two propositions are equiv-
alent, it should in fact return a proof object of that equivalence. Because of the type safety of VeriML,
we know that if a call to this function evaluates successfully, such a proof object will indeed be returned.
But we can take this one step further: the proof object does not even need to be generated yet is guaran-
teed to exist because of type safety. We say that VeriML can be evaluated under proof-erasure semantics to
formally describe this property. Therefore, we can choose to evaluate the conversion rule under proof-
erasure, resulting in the same space savings as in the traditional approach. Still the same semantics can be
used for further extensions for better space and time savings. By this account, it becomes apparent that
the conversion rule can be removed from the trusted core of the system and from the core logical theory
as shown in Figure 2.4, without losing any of the benefits that the tight integration provides.

Overall, we can view VeriML as an evolution of the tradition of the LCF family, informed by the fea-
tures of the current state-of-the-art proof assistants. In the LCF family, both the logic and the logic-
manipulating functions are implemented within the same language, ML. In VeriML, the implementation
of the logic becomes part of the base computational language. Logic-manipulating functions can thus
be given types that include the information gathered from the type system of the logic, in order to re-
flect the properties of the logical terms involved. This information enables interactive development of
proof scripts and proof-producing functions and also leads to a truly extensible approach to small-scale
automation, generalizing the benefits offered by current proof assistants in both cases.

2.3 Brief overview of the language

In this section, we will give a brief informal overview of the main features of VeriML. We will present
them mostly through the development of a procedure that proves propositional tautologies automatically.
We assume some familiarity with functional programming languages in the style of ML or Haskell.
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A simple propositional logic

In order to present the programming constructs available in VeriML in detail, we will first need to be more
concrete with respect to what our logic actually is – what propositions and proofs we will manipulate and
produce. For the purposes of our discussion, we will choose a very simple propositional logic which we
briefly present here. Through this logic, we can state and prove simple arguments of the form:

1. If it is raining and I want to go outside, I need to get my umbrella.

2. It is raining.

3. I want to go outside.

4. Therefore, I need to get my umbrella.

This logic consists of two classes of terms: propositions and proofs. Propositions are either atomic
propositions (e.g. “it is raining”), denoted as A, which state a fact and are not further analyzable, or are
combinations of other propositions through logical connectives: conjunction, denoted as ∧; disjunction,
denoted as ∨; and implication, denoted as ⊃. We use capital letters P,Q, R to refer to propositions. The
propositions of our logic are formed through the following grammar:

P ::= P1 ∧ P2 | P1 ∨ P2 | P1 ⊃ P2 | A

Proofs are evidence that certain propositions are valid. We will give precise rules for a specific form
that such evidence might take; we will therefore describe a formal proof system. Every rule has some
premises and one consequence. The premises describe what proofs are required. By filling in a proof
for each required premise, we get a proof for the consequence. We write rules in a vertical style, where
premises are described in the top and the consequence in the bottom, divided by an horizontal line. Proofs
therefore have a bottom-up tree-like structure, with the final consequence as the root of the tree at the very
bottom of the proof. Proofs can also make use of hypotheses, which are the set of leaves of this tree. A
hypothesis corresponds to an assumption that a proof of a certain proposition exists.

Every connective is associated with two sets of logical rules: a set of introduction rules, which describe
how we can form a proof of a proposition involving that connective, and a set of elimination rules, which
describe what further proofs we can construct when we have a proof about that connective at hand. The
logical rules for conjuction are the simplest ones:

...
P

...
Q

P ∧Q
∧INTRO

...
P ∧Q

P
∧ELIM1

...
P ∧Q

Q
∧ELIM2

The content of these rules is as follows. The introduction rules says that to form a proof of a conjunction,
we need two proofs as premises, whose consequences are the two propositions involved. Inversely, the
elimination rules say that out of a proof of a conjunction, we can extract a proof of either proposition,
using the corresponding rule.

23



P
...

Q

P ⊃Q
⊃INTRO

...
P ⊃Q

...
P

Q
⊃ELIM

Introduction of implication is a little bit more complicated: it is proved through a proof of the proposition
Q, where we can make use of an extra hypothesis for P – that is, an assumption that we have a proof of
proposition P . This is what the notation in the introduction rule stands for. Elimination of implication
corresponds to the well-known modus ponens reasoning principle.

The rules about disjunction follow. The introduction rules are straightforward; the elimination rule
says that given a proof of P ∨Q, if we can prove a third proposition R starting with either a proof of P or
a proof of Q as hypotheses, then we have a proof of R without any extra hypotheses.

...
P

P ∨Q
∨INTRO1

...
Q

P ∨Q
∨INTRO2

P
...
R

Q
...
R

...
P ∨Q

R
∨ELIM

Based on these rules, we can form simple proofs of propositional tautologies. For example, we can
prove that P ⊃ (P ∧ P ) as follows.

P P

P ∧ P

P ⊃ (P ∧ P )

Logical terms as data

In VeriML, logical terms such as propositions and proofs are a type of data – similar to integers, strings
and lists. We therefore have constant expressions in order to introduce them, just as we have constant
expressions such as 1, 2, and "hello world" for normal data types. We use 〈P 〉 as the constant expression
for a proposition P , thus differentiating the computational expression from the normal logical term.

Unlike normal types like integers, the type of these constant expressions is potentially different based
on the logical term we introduce. In the case of proofs, we assign its consequence –the proposition that it
proves– as its type. Therefore logical terms have types that involve further logical terms. We denote the
type corresponding to the logical term P as (P ). Therefore, the constant expression corresponding to the
proof given in the previous section will be written and typed as follows. Note that we use a shaded box for
types; this is meant as an annotation which users of the language do not have to write, but is determined
through the type checker.

* P P
P ∧ P

P ⊃ P ∧ P

+

: (P ⊃ P ∧ P )
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Propositions get assigned a special logical term, the sort Prop. Other than this, they should be perceived
as normal data. For example, we can form a list of propositions, as follows:

[〈P ⊃Q〉 ; 〈P ∧Q ∨R〉] : (Prop) list

Dependent functions and tuples

Let us now consider our motivating example: writing a procedure that automatically proves propositional
tautologies – propositions that are always valid, without any hypotheses. What should the type of this
procedure be? We want to specify the fact that it accepts a proposition and produces a proof of that
proposition. The type of the result is thus dependent on the input of the function. We introduce names
in the types so as to be able to track such dependencies, allowing us to give the following type to our
tautology prover:

tautology : (P : Prop)→ (P )

Similarly, we can have dependent tuples – tuples where the type of the second component might depend
on the first component. In this way we can form a pair of a proposition together with a proof for this
proposition and use such pairs in order to create lists of proofs:























*

P ⊃ P, P
P ⊃ P

+

;

*

P ⊃ P ∧ P,

P P
P ∧ P

P ⊃ P ∧ P

+























: (P : Prop,X : P ) list

Pattern matching on terms

Our automated prover is supposed to prove a proposition – but in order to do that, it needs to know what
that proposition actually is. In order to be able to write such functions, VeriML includes a construct for
pattern matching over logical terms. Let us consider the following sketch of our tautology prover:

tautology : (P : Prop)→ (P )
tautology P = match P with

Q ∧R 7→ let X = tautology 〈Q 〉 in
let Y = tautology 〈 R 〉 in
· · ·

|Q ∨R 7→ · · ·

We pattern match on the input proposition P in order to see its topmost connective. In the conjunc-
tion case, we recursively try to find a proof for the two propositions involved. In the disjunction case, we
need to try finding a proof for either of them. Our prover will not always be successful in finding a proof,
since not all propositions are provable. Therefore we can refine the type of our prover so that it optionally
returns a proof – through the use of the familiar ML option type. The new sketch looks as follows, where
we use monadic syntax for presentation purposes:
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tautology : (P : Prop)→ (P ) option
tautology P = match P with

Q ∧R 7→ do X ← tautology 〈Q 〉 ;
Y ← tautology 〈 R 〉 ;
return · · ·1

|Q ∨R 7→ (do X ← tautology 〈Q 〉 ;
return · · ·2) ||

(do Y ← tautology 〈 R 〉 ;
return · · ·3)

What do the variables X and Y stand for? The evaluation of the recursive calls such as tautology Q
will result in a proof which will have Q as the consequence and an arbitrary set of hypotheses. Thus X
is a variable that stands for a proof of Q; it will be replaced by an actual proof once the call to tautology

is evaluated6. Though we can write the type of X as (Q), another way to write it is X :

...
Q , reflecting

the fact that X can be viewed as a proof of Q. The above description of the nature of X is quite similar
to a hypotheses of Q used inside a proof. Yet there is a difference: hypotheses stand for closed proofs, that
is, proofs without additional hypotheses; whereas X stands for an open proof, which can have arbitrary
additional hypotheses. This is why we refer to X as a meta-variable. We can use such meta-variables inside
proofs, in which case we can perceive them as holes that are later filled in with the actual proofs.

Let us now focus on the missing parts. By issuing a query to the VeriML typechecker for this incom-
plete program, we will get back the following information:

P,Q, R : (Prop)

X : (Q)

Y : (R)

· · ·1 : (Q ∧R)

P,Q, R : (Prop)

X : (Q)

· · ·2 : (Q ∨R)

P,Q, R : (Prop)

Y : (R)

· · ·3 : (Q ∨R)

The typechecker informs us of the proofs that we have at hand in each case and of the type of the
VeriML expression that we need to fill in. When we fill them in, the typechecker will also make sure that
the proofs indeed follow the rules of the logic and have the right consequences, based on their required
type. In this way many errors can be caught early. The rich information contained in these types and
the ability to use them to check the proofs enclosed in functions such as tautology is one of the main
departures of VeriML compared to traditional proof assistants, where all the proofs inside such functions
show up as having the same type.

6. The astute reader will notice that we are being a bit imprecise here in the interest of presentation. More accurately, the call
to tautology will result in a constant expression enclosing a proof with Q as a consequence, and an arbitrary set of hypotheses.
As written in the code example, X is a variable that stands for such a constant. Instead, we should write 〈X 〉 ← tautology Q,
making the fact that X refers to the proof enclosed within the returned constant apparent.
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We note that the typechecker has taken into account the information for each particular branch in
order to tell what proof needs to be filled in. We thus say that pattern matching is dependent. Based on
the provided information, it is easy to fill in the missing expressions:

· · ·1 =
*X :

...
Q Y :

...
R

Q ∨R

+

· · ·2 =
*X :

...
Q

Q ∨R

+

· · ·3 =
*Y :

...
R

Q ∨R

+

If we made a typo when filling in · · ·1, such as:

· · ·1 =
*

X X

Q ∨R

+

the type checker would be able to inform us of the error and decline the definition of tautology.

Contextual terms

The previous sketch of the automated prover still lacks two things: support for logical implication as
well as (perhaps more importantly) a base case. In fact, both of these are impossible to implement in a
meaningful way based on what we have presented so far, because of a detail that we have been glossing
over: hypotheses contexts.

Consider the implication introduction rule given above.

P
...

Q

P ⊃Q
⊃INTRO

The premise of the rule calls for a proof of Q under the assumption that P holds. So far, we have been
characterizing proofs solely based on the proposition that they prove, so we cannot capture the require-
ment for an extra assumption. Essentially, we have been identifying all proofs of the same proposition
that depend on different hypotheses. This is clearly inadequate: consider the difference between a proof
of P with no hypotheses and a proof of P with a hypothesis of P .

In order to fix this issue, we will introduce a context of hypotheses Φ. We can reformulate our logical
rules so that they correspond to hypothetical judgements, where the dependence on hypotheses is clearly
recorded. We write Φ ` P for a proof where the context of hypotheses is Φ and the consequence is P . The
new formulation of the implication rules is as follows; the other rules are re-formulated similarly.

Φ, P `Q

Φ `Q
⊃INTRO

Φ ` P ⊃Q Φ ` P

Φ `Q
⊃ELIM

Furthermore, we will make two changes to the computational constructs we have seen. First, the
types of the proofs will not simply be their consequence, but will record the hypotheses context as well,
reflecting the new judgement form Φ ` P . We can also say that the type of proofs are now contextual
terms instead of simple logical terms – that is, they are logical terms with their context (the hypothesis
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context they depend on) explicitly recorded. Second, we will add dependent functions over contexts which
are similar to the dependent functions over logical terms that we have seen so far. We will use this latter
feature in order to write code that works under any context Φ, just like our tautology prover.

Based on these, we give the new sketch of our prover with the implication case added:

tautology : (Φ : context)→ (P : Prop)→ (Φ ` P) option
tautology Φ P = match P with

Q ∧R 7→ do X ← tautology Φ 〈Q 〉 ;
Y ← tautology Φ 〈 R 〉 ;
return · · ·1

|Q ∨R 7→ (do X ← tautology Φ 〈Q 〉 ;
return · · ·2) ||

(do Y ← tautology Φ 〈 R 〉 ;
return · · ·3)

|Q ⊃ R 7→ do X ← tautology (Φ, Q) 〈 R 〉 ;

return
*

X : Φ, Q ` R

Φ `Q ⊃ R

+

A similar problem becomes apparent if we inspect the propositions that we have been constructing
in VeriML under closer scrutiny: we have been using the names P , Q, etc. for atomic propositions –
but where do those names come from? The answer is that those come from a variables context, similar
to how proofs for assumptions come from a hypotheses context. In the logic that VeriML is based on,
these contexts are mixed together. In order to be able to precisely track the contexts that propositions and
proofs depend on, all logical terms in VeriML are contextual terms, as are their types.

Pattern matching on contexts

The prover described above is still incomplete, since it has no base case for atomic propositions. For such
propositions, the only thing that we can do is to search our hypotheses to see if we already possess a proof
for them. Now that the hypotheses context is explicitly represented, we can view it as data that we can
look into, just as we did for logical terms. VeriML therefore has a further pattern matching construct for
matching over contexts.

We will write a function findHyp that tries to find whether a specific hypothesis exists in the current
context, by looking through the context for an exact match. Note the use of the variable H in the first
inner branch: the pattern will match if the current element of the context is a hypothesis which matches
the desired proposition H exactly. Contrast this with the last branch, where we use a wildcard pattern to
match any other hypothesis.
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findHyp : (Φ : context)→ (H : Prop)→ (Φ `H ) option
findHyp ΦH = match Φwith

; 7→ None
| (Φ′, H ′) 7→ match H ′ with

H 7→ return
*

Φ′, H `H

+

| _ 7→ findHyp Φ′ 〈H 〉
Furthermore, we add a case at the end of our prover in order to handle atomic propositions using this

function.

tautology Φ P = match P with
· · ·
| P 7→ findHyp Φ 〈 P 〉

With this, the first working version of our prover is complete. We can now write a simple proof script
in order to prove the tautology P ⊃ P ∧ P , as follows:

let tauto1 : ( ` P ⊃ P ∧ P) = tautology ; 〈P ⊃ P ∧ P 〉

This will return the proof object for the proposition we gave earlier. Through type inference the VeriML
type checker can tell what the arguments to tautology should be, so users would leave them as implicit
arguments in an actual proof script.

It is easy to modify our tautology prover to be more open-ended, by allowing the use of functions
other than findHyp to handle the base cases. We can do this thanks to the support for higher-order func-
tions of the ML core of our language. Consider the following auto function. Most of the branches are
identical to tautology, save for the base case which makes a call to another proving function, supplied as
an input argument.

auto :
�

(Φ : context)→ (P : Prop)→ (Φ ` P) option
�

→ (Φ : context)→ (P : Prop)→ (Φ ` P) option
auto baseprover Φ P = match P with

· · · (same as tautology) · · ·
| P 7→ baseprover Φ 〈 P 〉

We can now use different base provers in combination with auto. For example, we can combine
auto with an arithmetic theorem prover: a function arith that can handle goals of the form Φ ` P where
all hypothesis in Φ and the desired consequence in P are atomic propositions involving arithmetic. In
this way, the arithmetic prover is extended into a prover that can handle propositions involving both
arithmetic and logical connectives – with the logical reasoning handled by auto. By combining functions
in this way, we construct proof expressions that compute proofs for the desired propositions.

Mixing imperative features

Our prover so far has been purely functional. Even though we are manipulating terms such as proposi-
tions and contexts, we still have access to the full universe of data structures that exist in a normal ML
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implementation – such as integers, algebraic data types (e.g. lists that we saw above), mutable references
and arrays. We can include logical terms as parts of such data structures without any special provision.
One simple example would be a memoized version of our prover, which keeps a cache of the propositions
that it has already proved, along with their proofs.

tautologyCache : (Φ : context, P : Prop,Φ ` P) option array
memoizedTautology : (Φ : context)→ (P : Prop)→ (Φ ` P) option
memoizedTautology Φ P =

let entry = hash 〈Φ, P 〉 in
match tautologyCache[entry]with

Some 〈Φ, P,X 〉 7→ Some 〈X 〉
| 7→ do X ← tautology Φ 〈 P 〉 ;

tautologyCache[entry] := 〈Φ, P,X 〉 ;
return 〈X 〉

Staging

Let us now assume that we have developed our prover further, to be able to prove more tautologies
compared to the rudimentary prover given above. Suppose we want to write a function that performs
a certain simplification on a given proposition and returns a proof that the transformed proposition is
equivalent to the original one. It will have the following type:

simplify : (P : Prop)→ (Q : Prop, ; ` P ⊃Q ∧Q ⊃ P)

Consider a simple case of this function:

simplify P = match P with
Q ∧R⊃O 7→ 〈Q ⊃ R⊃O, · · · 〉

If we query the VeriML typechecker about the type of the missing part, we will learn the proposition
that we need to prove:

P,Q, R,O : (Prop)

· · · : ((Q ∧R⊃O)⊃ (Q ⊃ R⊃O))∧ ((Q ⊃ R⊃O)⊃ (Q ∧R⊃O))

How do we fill in this missing part? One option is to replace it by a complete proof. But we already
have a tautology prover that is able to handle this proposition, so we would rather avoid the manual effort.
The second option would be to replace this part with a call to the tautology prover: · · · = tautology _ _,
where we have left both arguments implicit as they can be easily inferred from the typing context. Still,
this would mean that every time the tactic is called and that branch is reached, the same call to the prover
would need to be evaluated. Furthermore, we would not know whether the prover was indeed successful
in proving this proposition until we reach that branch – which might never happen if it is a branch not
exercised by a test case! The third option is to separate this proposition into a lemma, similar to what we
did for tauto1, and prove it prior to writing the simplify function. This option is undesirable too, because
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the statement of the lemma itself is not interesting; furthermore it is much more verbose than the call to
the prover itself. Having to separate such uninteresting proof obligations generated by functions such as
simplify as lemmas would soon become tedious.

In VeriML we can solve this issue through the use of staging. We can annotate expressions so that
they are staged – they are evaluated during a phase of evaluation that happens after typing but before
runtime. These expressions can be inside functions as well, yet they are still evaluated at the time that
these functions are defined. Through this approach, we get the benefits of the separation into lemmas
approach but with the conciseness of the direct call to the prover. The example code would look as
follows. We use brackets as the staging annotation for expressions.

simplify P = match P with
Q ∧R⊃O 7→ 〈Q ⊃ R⊃O,{tautology _ _}〉

After type checking, this expression is made equivalent to the following, where the missing arguments
are filled in based on the typing information.

simplify P = match P with
Q ∧R⊃O 7→ 〈Q ⊃ R⊃O,{tautology ; S}〉

where S = ((Q ∧R⊃O)⊃ (Q ⊃ R⊃O))∧ ((Q ⊃ R⊃O)⊃ (Q ∧R⊃O))

After the static evaluation phase, the staged expression gets replaced by the proof that is returned by
the tautology prover.

simplify P = match P with
Q ∧R⊃O 7→ 〈Q ⊃ R⊃O,X 〉

where X =

...

; ` S
where S = ((Q ∧R⊃O)⊃ (Q ⊃ R⊃O))∧ ((Q ⊃ R⊃O)⊃ (Q ∧R⊃O))

Proof erasure

The last feature of VeriML that we will consider is proof erasure. Based on the type safety of the language,
we know that expressions of a certain type will indeed evaluate to values of the same type, if successful.
For example, consider an expression that uses functions such as tautology in order to prove a proposition
P : if the expression does evaluate to a result (instead of diverging or throwing an exception), that result
will be a valid proof of P .

We have said that we are able to pattern match on logical terms such as propositions and proofs.
If we relax this so that we cannot pattern match on proof terms, type safety can give us the further
property of proof-erasure: if we delete all proofs from our VeriML expressions and proceed to evaluate
these expressions normally, their runtime behavior is exactly the same as before the deletion – other than
the space savings of not having to realize the proofs as data in the computer memory. Therefore, even
if we do not generate these proofs, valid proof objects are still guaranteed to exist. Relaxing the pattern
matching construct as such is not a serious limitation, as we are not interested in the particular structure
of a proof but only on its existence.
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For purposes of our discussion, we will show what the proof-erased version of the prover we have
written above would look like.

tautology : (Φ : context)→ (P : Prop)→ unit option
tautology Φ P = match P with

Q ∧R 7→ do tautology ΦQ ;
tautology Φ R ;
return ()

|Q ∨R 7→ (do tautology ΦQ ;
return ()) ||

(do tautology Φ R ;
return ())

|Q ⊃ R 7→ do tautology (Φ, Q) R ;
return ()

This code looks very similar to what we would write in a normal ML function that did not need to
produce proofs. This equivalence is especially evident if we keep in mind that unit option is essentially the
boolean type, monadic composition corresponds to boolean AND, monadic return to boolean true and
the || operation to boolean OR.

The space savings associated with proof erasure are considerable, especially in the case of functions
that are used ubiquitously in order to produce proofs, such as the small-scale automation mechanisms that
we mentioned earlier in this chapter. Still, full proof erasure means that we have to completely trust
the VeriML implementation. Instead we will use proof erasure selectively, e.g. in order to evaluate the
functions comprising the conversion rule, enlarging the trusted base only by the proof-erased versions
of those functions. Yet a receiver of a VeriML proof can choose to re-evaluate these functions without
proof erasure and get complete proofs without missing parts. Therefore the trusted base of our system
is not decided at the design time of the logic we are going to use, but at the sites of the receivers of the
proofs. This allows a wide range of possibilities in choosing between the level of rigor required and the
cost associated with proof checking, and is a significant advancement from the traditional way of handling
proofs as certificates sent to a third party.

Last, we would like to briefly comment on the fact that the combination of proof erasure with the
staging annotation is very powerful, as it allows us to extend the notion of what constitutes a valid proof.
Take the following sketch of a proof as an example:

*

...
(x + y)2 > 0 {arith _ _} : (x + y)2 = x2+ 2xy + y2

x2+ 2xy + y2 > 0

+

In this proof, we use the automated arithmetic prover arith to validate a simple algebraic identity. By using
proof erasure for this call, no proof object for this identity is ever generated – yet we are still guaranteed
that a proof that uses only the initial logical rules (plus axioms of arithmetic) exists. Furthermore, this
identity is validated statically: if we use the above proof inside a function such as tautology to fill in
the proof obligations (as we did for · · ·1 earlier), we will still know that the whole proof is valid at the
time that the function is defined. This is due to staging the call to the arith function. This process
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roughly corresponds to extending the available logical rules with calls to proof-producing functions; yet
we maintain the property that we can statically validate these “extended” proofs. The fact that no evidence
needs to be produced, means that we can effectively hide these trivial details – both in terms of user effort
required, and of the cost of validating them.

Yet the automation functions handling these trivial details are developed in VeriML, which means that
we can develop better versions of them in the same language to handle further details or further domains.
Thus our approach to small-scale automation departs from the traditional approach of hardcoding fixed
small-scale automation mechanisms in the core implementation of the proof assistant; it enables instead
layered development of increasingly more sophisticated small-scale automation, in a manner resembling
the informal practice of acquiring further intuition.
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Chapter 3

The logic λHOL: Basic framework

In this chapter we will present the details of the λHOL logic that VeriML uses.

3.1 The base λHOL logic

The logic that we will use is a simple type-theoretic higher-order logic with explicit proof objects. This
logic was first introduced in Barendregt and Geuvers [1999] and can be seen as a shared logical core
between CIC [Coquand and Huet, 1988, Bertot et al., 2004] and the HOL family of logics as used in proof
assistants such as HOL4 [Slind and Norrish, 2008], HOL-Light [Harrison, 1996] and Isabelle/HOL
[Nipkow et al., 2002]. It is a constructive logic yet admits classical axioms.

The logic is composed of the following classes:

– The objects of the domain of discourse, denoted d : these are the objects that the logic reasons
about, such as natural numbers, lists and functions between such objects.

– The propositions, denoted as P : these are the statements of the logic. As this is a higher-order logic,
propositions themselves are objects of the domain of discourse d , having a special Prop type. We
use P instead of d when it is clear from the context that a domain object is a proposition.

– The kinds, denoted K: these are the types that classify the objects of the domain of discourse,
including the Prop type for propositions.

– The sorts, denoted s , which are the classifiers of kinds.

– The proof objects, denoted π, which correspond to a linear representation of valid derivations of
propositions.

– The variables context, denoted Φ, which is a list of variables along with their type.

– The signature, denoted Σ, which is a list of axioms, each one corresponding to a constant and its
type.

The syntax of these classes is given in Figure 3.1, while the typing judgements of the logic are given in
Figures 3.2 and 3.3. We will now comment on the term formers and their associated typing rules.

The proposition P1 → P2 denotes logical implication whereas the kind former K1 → K2 is inhab-
ited by total functions between domain objects. Both use the standard forms of lambda abstraction and
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(sorts) s ::= Type | Type′

(kinds) K ::= Prop | cK | K1→K2
(dom.obj. and prop.) d , P ::= P1→ P2 | ∀x : K.P | λx : K.d | d1 d2 | x | cd

(proof objects) π ::= λx : P.π | π π′ | λx : K.π | π d | x | cπ
(variable contexts) Φ ::= • | Φ, x : Type | Φ, x : K | Φ, x : P

(constant signature) Σ ::= • | Σ, cK : Type | Σ, cd : K | Σ, cπ : P

Figure 3.1: The base syntax of the logic λHOL

function application as their introduction and elimination rules. In the case of the proposition P1→ P2,
the typing rules for the proof objects λx : P1.π and π1 π2 correspond exactly to the introduction and
elimination rules for logical implication as we gave them in Section 2.3; the proof objects are simply a
way to record the derivation as a term instead of a tree. The proposition ∀x : K.P denotes universal
quantification. As K includes a domain former for propositions and functions yielding propositions, we
can quantify over propositions and predicates. This is why λHOL is a higher-order logic – for example, it
is capable of representing natural number induction as the proposition:

∀P : Nat→ Prop.P 0→ (∀n : Nat, P n→ P (succ n))→∀n : Nat, P n

When a quantified formula ∀x.P is instantiated with an object d using the rule ∀ELIM, we get a proof of
P[d/x]. The notation [d/x] represents standard capture-avoiding substitution, defined in Figure 3.4.

There are three different types of constants; their types are determined from the signature context.
Constants denoted as cK correspond to the domains of discourse such as natural numbers (written as Nat),
ordinals (written as Ord) and lists (written as List). Constant domain objects, denoted as cd are used for
constructors of these domains (for example, zero : Nat and succ : Nat → Nat for natural numbers); for
functions between objects (for example, plus : Nat → Nat → Nat for the addition function of natural
numbers); for predicates (e.g. le : Nat → Nat → Prop for representing when one natural number is
less-than-or-equal to another); and for logical connectives, which are understood as functions between
propositions (e.g. logical conjunction, represented as and : Prop→ Prop→ Prop). Constant proof objects,
denoted as cπ, correspond to axioms. The constants above get their expected meaning by adding their
corresponding set of axioms to the signature – for example, logical conjunction has the following axioms:

andIntro : ∀P1, P2 : Prop.P1→ P2→ and P1 P2
andElim1 : ∀P1, P2 : Prop.and P1 P2→ P1
andElim2 : ∀P1, P2 : Prop.and P1 P2→ P2

Our logic supports inductive definitions of domains and predicates, in a style similar to CIC. We do
not represent them explicitly in the logic, opting instead for viewing such definitions as generators of a
number of ‘safe to add’ constants. The logic we have presented – along with the additions made below – is
a subset of CIC. It has been shown in Werner [1994] that CIC is a consistent logic; thus it is understood
that the logic we present is also consistent, when the signature Σ is generated only through such inductive
definitions. We will present more details about inductive definitions after we make some extensions to
the core of the logic that we have presented so far.
A simple example of a proof object for commutativity of conjunction follows.

λP : Prop.λQ : Prop.λH : ∧ P Q.
andIntro Q P (andElim2 P Q H ) (andElim1 P Q H )
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`Σwf well-formedness of signatures
`Σ Φwf well-formedness of contexts
Φ `Σ K : Type well-formedness for kinds
Φ `Σ d : K kinding of domain objects
Φ `Σ π : P valid logical derivations of proof objects proving a proposition

`Σwf

` •wf
`Σwf cK : Type 6∈Σ
`Σ, cK : Type wf

`Σwf • `Σ K : Type cd : _ 6∈Σ
`Σ, cd : K wf

`Σwf • `Σ P : Prop cπ : _ 6∈Σ
`Σ, cπ : P wf

`Σ Φwf

` •wf

` Φwf

` Φ, x : Type wf

` Φwf Φ `K : Type

` Φ, x : K wf

` Φwf Φ ` P : Prop

` Φ, x : P wf

Φ `Σ K : Type

Φ ` Prop : Type

cK : Type ∈Σ
Φ `Σ cK : Type

Φ `K1 : Type Φ `K2 : Type

Φ `K1→K2 : Type

Φ `Σ d : K

Φ ` P1 : Prop Φ ` P2 : Prop

Φ ` P1→ P2 : Prop

Φ `K : Type Φ, x : K ` P : Prop

Φ ` ∀x : K.P : Prop

Φ `K : Type Φ, x : K ` d : K′

Φ ` λx : K.d : K→K′
Φ ` d1 : K′→K Φ ` d2 : K′

Φ ` d1 d2 : K

x : K ∈Φ
Φ ` x : K

cd : K ∈Σ
Φ `Σ cd : K

Figure 3.2: The typing rules of the logic λHOL
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Φ `Σ π : P

Φ ` P : Prop Φ, x : P `π : P ′

Φ ` λx : P.π : P → P ′
→INTRO

Φ `π1 : P ′→ P Φ `π2 : P ′

Φ `π1 π2 : P
→ELIM

Φ `K : Type Φ, x : K `π : P

Φ ` λx : K.π : ∀x : K.P
∀INTRO

Φ `π : ∀x : K.P Φ ` d : K
Φ `π d : P[d/x]

∀ELIM
x : P ∈Φ
Φ ` x : P

VAR

cπ : P ∈Σ
Φ `Σ cπ : P

CONSTANT

Figure 3.3: The typing rules of the logic λHOL (continued)

fv(d )

fv(P1→ P2) = fv(P1)∪ fv(P2)
fv(∀x : K.P ) = fv(P ) \ {x}
fv(λx : K.d ) = fv(d ) \ {x}
fv(d1 d2) = fv(d1)∪ fv(d2)
fv(x) = {x}
fv(cd ) = ;

d[d ′/x]

(P1→ P2)[d/x] = P1[d/x]→ P2[d/x]
(∀y : K.P )[d/x] = ∀y : K.P[d/x] when fv(P )∩ fv(d ) = ; and x 6= y
(λy : K.d ′)[d/x] = λy : K.d ′[d/x] when fv(d ′)∩ fv(d ) = ; and x 6= y
(d1 d2)[d/x] = d1[d/x] d2[d/x]
(x)[d/x] = d
(y)[d/x] = y
(cd )[d/x] = cd

Figure 3.4: Capture avoiding substitution
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Based on the typing rules, it is simple to show that it proves the proposition:

∀P : Prop.∀Q : Prop.and P Q→ and Q P

3.2 Adding equality

The logic we have presented so far is rather weak when it comes to reasoning about the total functions
inhabiting K1→K2. For example, we cannot prove that the standard β-reduction rule:

(λx : K.d ) d ′ = d[d ′/x]

Moreover, consider the case where we have a proof of a proposition such as P (1+ 1). We need to be able
to construct a proof of P (2) out of this, yet the logic we have presented so far does not give us this ability.

There are multiple approaches for adding rules to logics such as λHOL in order to make equality be-
have in the expected way. In order to understand the differences between these approaches, it is important
to distinguish two separate notions of equality in a logic: definitional equality and propositional equality.
Definitional equality relates terms that are indistinguishable from each other in the logic. Proving that
two definitionally equal terms are equal is trivial through reflexivity, since they are viewed as exactly the
same terms. We will use d1 ≡ d2 to represent definitional logic. Propositional equality is an actual pred-
icate of the logic. Terms are proved to be propositionally equal using the standard axioms and rules of
the logic. In λHOL we would represent propositional equality through propositions of the form d1 = d2.
With this distinction in place, we will give a brief summary of the different approaches below.

Explicit equality. In the HOL family of logics, as used in systems like HOL4 [Slind and Norrish, 2008]
and Isabelle/HOL [Nipkow et al., 2002], definitional equality is just syntactic equality. Any equal-
ity further than that is propositional equality and needs to be proved using the logic. The logic
includes a rule where propositions that can be proved equal can replace each other as the type of
proof objects. Any such rewriting needs to be witnessed in the resulting proof objects. A sketch of
the typing rule for this axiom is the following:

Φ `π : P Φ `π′ : P = P ′

Φ ` convπ π′ : P ′

The advantage of this approach is that a type checker for it only has to check proofs that contain all
the required details about why terms are equal. It is therefore extremely simple, keeping the trusted
base of our logic as simple as possible. Still, it has a big disadvantage: the proof objects are very
large, as even trivial equalities need to be painstakingly proved. It is possible that this is one of the
reasons why systems based on this logic do not generate proof objects by default, even though they
all support them.

Intensional type theories. Systems based on Martin-Löf intensional type theory, such as Coq [Barras
et al., 2012] and Agda [Norell, 2007], have an extended notion of definitional equality. In these sys-
tems, definitional equality includes terms that are identical up to evaluation of the total functions
used inside the logical terms. In order to make sure that the soundness of the logic is not compro-
mised, this notion of evaluation needs to be decidable. As we have said, terms that are definitionally
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equal are indistinguishable, so their equality does not need to be witnessed inside proof objects,
resulting in a big reduction in their size.

The way that this is supported in such type theories is to define an equality relation R based on some
fixed, confluent rewriting system. In Coq and Agda this includes β-conversion and ι-conversion
(evaluation of total recursive functions), pattern matching and unfolding of definitions. This equal-
ity relation is then understood as the definitional equality, by adding the following conversion rule
to the logic:

Φ `π : P1 P1 ≡R P2

Φ `π : P2

The benefit of this approach is that trivial arguments based on computation, which would nor-
mally not be “proved” in standard mathematical discourse, actually do not need to be proved and
witnessed in the proof objects. Therefore the logic follows what is called the Poincaré principle
(e.g. in Barendregt and Geuvers [1999]). One disadvantage of this approach is that our trusted base
needs to be bigger, since a type-checker for such a logic needs to include a decision procedure for the
relation R.

Extensional type theories. In extensional type theories like NuPRL [Constable et al., 1986], the notion
of definitional equality and propositional equality are identified. That means that anything that can
be proved equal in the logic is seen implicitly as equal. A typing rule that sketches this idea would
be the following:

Φ `π : P1 Φ `π′ : P1 = P2

Φ `π : P2

The advantage of this approach is that the size of proof objects is further reduced, bringing them
even closer to normal mathematical practice. Still, theories with this approach have a big disadvan-
tage: type-checking proof objects becomes undecidable. It is easy to see why this is so from the
above typing rule, as the π′ proof object needs to be reconstructed from scratch during type check-
ing time – that is, type checking depends on being able to decide whether two arbitrary terms are
provably equal or not, an undecidable problem in any meaningful logic. Implementations of such
theories deal with this by only implementing a set of decision procedures that can decide on such
equalities, but all of these procedures become part of the trusted base of the system.

We should note here that type theories such as CIC and NuPRL support a much richer notion of
domain objects and kinds, as well as a countable hierarchy of universes above the Type sort that we sup-
port. For example, kinds themselves can be computed through total functions. In these cases, the chosen
approach with respect to equality also affects which terms are typable. Our logic is much simpler and
thus we will only examine equality at the level of domain objects. Still, we believe that the techniques
we develop are applicable to these richer logics and to cases where equality at higher universes such as the
level of kinds K is also available.

We want λHOL to have the simplest possible type checker, so we choose the explicit equality version.
We will see how to recover and extend the benefits of the conversion rule through VeriML in Section 7.1.
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Syntax extensions

(dom.obj. and prop.) d , P ::= · · · | d1 = d2
(proof objects) π ::= refl d | convπ π′ | subst (x : K.P )π | congLam (x : K.π)

| congForall (x : K.π) | beta (x : K.d ) d ′

Φ `Σ d : K

Φ ` d1 : K Φ ` d2 : K
Φ ` d1 = d2 : Prop

Φ `Σ π : P

Φ ` d : K
Φ ` refl d : d = d

Φ `π : P Φ ` P : Prop Φ `π′ : P = P ′

Φ ` convπ π′ : P ′

Φ, x : K ` P : Prop Φ `π : d1 = d2 Φ ` d1 : K
Φ ` subst (x : K.P )π : P[d1/x] = P[d2/x]

Φ, x : K `π : d1 = d2

Φ ` congLam (x : K.π) : (λx : K.d1) = (λx : K.d2)

Φ, x : K `π : P1 = P2 Φ, x : K ` P1 : Prop

Φ ` congForall (x : K.π) : (∀x : K.P1) = (∀x : K.P2)

Φ ` (λx : K.d ) : K→K′ Φ ` d ′ : K
Φ ` beta (x : K.d ) d ′ : ((λx : K.d ) d ′) = (d[d ′/x])

Figure 3.5: The logic λHOLE : syntax and typing extensions for equality
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(sorts) s ::= Prop | Type | Type′

(logical terms) t ::= s | x | c | ∀x : t1.t2 | λx : t1.t2 | t1 t2 | t1 = t2 | refl t
| conv t1 t2 | subst (x : tk .tP ) t | congLam (x : tk .t )
| congForall (x : tk .t ) | beta (x : tk .t1) t2

(variable contexts) Φ ::= • | Φ, x : t
(constant signature) Σ ::= • | Σ, c : t

Figure 3.6: The syntax of the logic λHOL given as a PTS

We therefore extend our logic with a built-in propositional equality predicate, as well as a set of equality
axioms. The extensions required to the logic presented so far are given in Figure 3.5. We sometimes refer
to λHOL together with these extensions as λHOLE in order to differentiate with a version that we will
present later which includes the conversion rule; that version is called λHOLC .

Most of the typing rules of the new axioms are standard. We have an explicit axiom for β-reduction
through the proof object constructor beta. α-equivalence is handled informally at this level by implicitly
identifying terms that are equal up to renaming of bound variables; this will be changed in the next section.
Note that some rules seem to omit certain premises, such as the fact that P2 is a proposition in the case of
congForall. The reason is that these premises are always true based on the existing ones; in the example at
hand, the fact that P1 = P2 implies that their type is identical, thus P2 is a proposition just like P1 is.

The given set of axioms is enough to prove other expected properties of equality, such as symmetricity:

symmK : ∀a : K.∀b : K.a = b → b = a
symmK = λa : K.λb : K.λH : a = b . conv(refl a) (subst (x : K.x = a)H )

3.3 λHOL as a Pure Type System

Our presentation of λHOL above separates the various different types of logical terms into distinct classes.
This separation results in duplicating various typing rules – for example, quantification, logical implica-
tion and function kinds share essentially the same type and term formers. This needlessly complicates the
rest of our development. We will now present λHOL as a Pure Type System [Barendregt, 1992] which
is the standard way to describe typed lambda calculi. Essentially the syntactic classes of all logical terms
given above are merged into one single class, denoted as t . We give the new syntax in Figure 3.6 and the
new typing rules in Figure 3.7. Note that we use t1→ t2 as syntactic sugar for ∀x : t1.t2 when x does not
appear free in t2.

A PTS is characterized by three parameters: the set of sorts, the set of axioms and the set of rules. These
parameters are instantiated as follows for λHOL:

S = {Prop, Type, Type′}
A = {(Prop,Type), (Type,Type′)}
R = {(Prop,Prop,Prop), (Type,Type,Type), (Type,Prop,Prop)}

Terms sorted1 under Prop represent proofs, under Type represent objects (including propositions) and un-
der Type′ represent the domains of discourse (e.g. natural numbers). The axiom (Prop,Type) corresponds

1. That is, terms typed under a term whose sort is the one we specify.
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`Σwf well-formedness of signatures
`Σ Φwf well-formedness of contexts
Φ `Σ t : t ′ typing of logical terms

`Σwf

` •wf
`Σwf • `Σ t : s

`Σ, x : t wf

`Σ Φwf

` •wf
` Φwf Φ ` t : s

` Φ, x : t wf

Φ `Σ t : t ′

(s , s ′) ∈A
Φ ` s : s ′

Φ ` t1 : s Φ, x : t1 ` t2 : s ′ (s , s ′, s ′′) ∈R
Φ ` ∀x : t1.t2 : s ′′

Φ ` t1 : ∀x : t .t ′ Φ ` t2 : t

Φ ` t1 t2 : t ′[t2/x]

Φ, x : t1 ` t2 : t ′ Φ ` ∀x : t1.t ′ : s

Φ ` λx : t1.t2 : ∀x : t1.t ′
x : t ∈Φ
Φ ` x : t

c : t ∈Σ
Φ `Σ c : t

Φ ` t1 : t Φ ` t2 : t Φ ` t : Type

Φ ` t1 = t2 : Prop

Φ ` t : t ′ Φ ` t ′ : Type

Φ ` refl t : t = t

Φ ` t1 : t Φ ` t : Prop Φ ` t2 : t = t ′

Φ ` conv t1 t2 : t ′

Φ ` tk : Type Φ, x : tk ` tP : Prop Φ ` t : ta = tb Φ ` ta : tk

Φ ` subst (x : tk .tP ) t : tP [ta/x] = tP [tb/x]

Φ ` tk : Type Φ, x : tk ` t : t1 = t2

Φ ` congLam (x : tk .t ) : (λx : tk .t1) = (λx : tk .t2)

Φ ` tk : Type Φ, x : tk ` t : t1 = t2 Φ, x : tk ` t1 : Prop

Φ ` congForall (x : tk .t ) : (∀x : tk .t1) = (∀x : tk .t2)

Φ ` (λx : ta .t1) : ta→ tb Φ ` ta→ tb : Type Φ ` t2 : ta

Φ ` beta (x : ta .t1) t2 : ((λx : ta .t1) t2) = (t1[t2/x])

Figure 3.7: The typing rules of the logic λHOL in PTS style
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to the fact that propositions are objects of the domain of discourse, while the axiom (Type,Type′) is essen-
tially what allows us to introduce constants and variables for domains. The rules are understood as logical
implication, function formation between objects and logical quantification, respectively. Based on these
parameters, it is evident that λHOL is similar to System Fω, which is usually formulated as S = {?,�},
A= {(?,�)}, R= {(?,?,?), (�,�,�), (�,?,?)}. λHOL is a straightforward extension with an extra sort
above � – that is, Type′ above Type – allowing us to have domains other than the universe of propositions.
Furthermore, λHOL extends the basic PTS system with the built-in explicit equality as presented above,
as well as with the signature of constants Σ.

The substitution lemma

The computational language of VeriML assumes a simple set of properties that need to hold for the type
system of the logic language. The most important of these is the substitution lemma, stating that sub-
stituting terms for variables of the same type yields well-typed terms. We will prove a number of such
substitution lemmas for different notions of ‘term’ and ‘variable’. As an example, let us state the substitu-
tion lemma for logical terms of λHOL in the PTS version of the logic.

Lemma 3.3.1 (Substitution) If Φ, x : t ′T , Φ′ ` t : tT and Φ ` t ′ : t ′T then Φ, Φ′[t ′/x] ` t[t ′/x] : tT [t
′/x].

The proof of the lemma is a straightforward induction on the typing derivation of the term t . The most
important auxiliary lemma it depends on is that typing obeys the weakening structural rule, that is:

Lemma 3.3.2 (Weakening) If Φ ` t : tT then Φ, x : t ′T ` t : tT .

The substitution lemma can alternatively be stated for a list of substitutions of variables to terms, covering
the whole context. This alternative statement is technically advantageous in terms of how the proof is
carried through and also how the lemma can be used. The lemma is stated as follows:

Lemma 3.3.3 (Simultaneous substitution) If x1 : t1, x2, t2, · · · , xn : tn ` t : tT and for all i with 1≤ i ≤
n, Φ′ ` xi : ti , then Φ′ ` t[t1, t2, · · · , tn/x1, x2, · · · , xn].

We can view the list of (xi , ti ) variable-term pairs as a well-typed substitution covering the context Φ. We
will give a more precise definition of this notion in the following section.

For the rest of our development, we will switch to a different variable representation, which will
allow us to state these lemmas more precisely, by removing the dependence on variable names and the
requirement for implicit α-renaming in the definition of substitution. Thus we will not go into more
details of these proofs as stated here.

3.4 λHOL using hybrid deBruijn variables

So far, we have used names to represent variables in λHOL. Terms that are equivalent up to α-renaming
are deemed to be exactly the same and are used interchangeably. An example of this shows up in the def-
inition of capture-avoiding substitution in Figure 3.4: constructs that include binders, such as λy : K.d ,
are implicitly α-renamed so that no clashes with the variables of the subsitutend are introduced. We are
essentially relying on viewing terms as representatives of their α-equivalence classes; our theorems would

43



also reason up to this equivalence. It is a well-known fact [Aydemir et al., 2008] that when formally prov-
ing such theorems about languages with binding in proof assistants, identifying terms up to α-equivalence
poses a large number of challenges. This is usually addressed by choosing a concrete variable representation
technique where the non-determinism of choosing variable names is removed and thus all α-equivalent
terms are represented in the same way.

We have found that using a similar concrete variable representation technique is advantageous for our
development, even though our proofs are done on paper. The main reason is that the addition of contex-
tual terms, contextual variables and polymorphic contexts introduces a number of operations which are
hard to define in the presence of named variables, as they trigger complex sets of α-renamings. Using a
concrete representation, these operations and the renamings that are happening are made explicit. Fur-
thermore, we use the same concrete representation in our implementation of VeriML itself, so the gap
between the formal development and the actually implemented code is smaller, increasing our confidence
in the overall soundness of the system.

The concrete representation technique that we use is a novel, to the best of our knowledge, combi-
nation of the techniques of de Bruijn indices, de Bruijn levels [De Bruijn, 1972] and the locally nameless
approach [McKinna and Pollack, 1993]. The former two techniques replace all variables by numbers,
whereas the locally nameless approach introduces a distinction between bound and free variables and
handles them differently. Let us briefly summarize these approaches before presenting our hybrid repre-
sentation. A table comparison is given in Table 3.1. DeBruijn indices correspond to the number of binders
above the current variable reference where the variable was bound. DeBruijn levels are the “inverse” num-
ber, corresponding to how many binders we have to cross until we reach the one binding the variable we
are referring to, if we start at the top of the term. Both treat free variables by considering the context as a
list of variable binders. In both cases, when performing the substitution (λy.t )[t ′/x], we need to shift the
variable numbers in t ′ in order for the resulting term to be well-formed – the free variables in the indices
case or the bound variables in the levels case. In the indices case, the introduction of the new binder alters
the way to refer to the free variables (the free variable represented by index n in t ′ will be represented by
n+ 1 under the λ-abstraction), as the identities of free variables directly depend on the number of bound
variables at a point. In the levels case, what is altered is the way we refer to bound variables within t ′

– the ‘allocation policy’ for bound variables in a way. For example the lambda term t ′ = λx.x that was
represented as λ.n outside the new binder is now represented as λ.n+1. This is problematic: substitution
is not structurally recursive and needs to be reasoned about together with shifting. This complicates both
the statements and proofs of related lemmas.

The locally nameless approach addresses this problem by explicitly separating free from bound vari-
ables. Free variables are represented normally using names whereas deBruijn indices are reserved for
representing bound variables. In this way the identities of free variables are preserved when a new binder
is introduced and no shifting needs to happen. We still need two auxiliary operations: freshening, in or-
der to open up a term under a binder into a term that has an extra free variable by replacing the dangling
bound variable, and binding, which is the inverse operation, turning the last-introduced free variable into
a bound variable, so as to close a term under a binder. Under this approach, not all α-equivalent terms are
identified, as using different names for free variables in the context still yields different terms.

We merge these approaches in a new technique that we call hybrid deBruijn variables: following the
locally nameless approach, we separate free variables from bound variables and use deBruijn indices for
bound variables (denoted as bi in Table 3.1); but also, we use deBruijn levels for free variables instead of
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Example of performing the substitution:
(λy : x. f y a)[(λz : x.z) y/a]

Free variables context:
x : Type, g : x→ x→ x, y : x, a : x

Named representation (λy : x.g y a)[(λz : x.z) y/a]
(λw : x.g w a)[(λz : x.z) y/a] =α
λw : x.g w ((λz : x.z) y) ⇒

deBruijn indices (λ(3).3 0 1)[(λ(3).0) 1/0]
λ(3).3 0 (shiftFree ((λ(3).0) 1)) ⇒
λ(3).3 0 ((λ(4).0) 2) ⇒

deBruijn levels (λ(0).1 4 3)[(λ(0).4) 2/3]
λ(0).1 4 (shiftBound ((λ(0).4) 2)) ⇒
λ(0).1 4 ((λ(0).5) 2) ⇒

Locally nameless (λ(x).g 0 a)[(λ(x).0) y/a]
λ(x).g 0 ((λ(x).0) y) ⇒

Hybrid deBruijn (λ(v0).v1 b0 v3)[(λ(v0).b0) v2/v3]
λ(v0).v1 b0 ((λ(v0).b0) v2) ⇒

Table 3.1: Comparison of variable representation techniques

s ::= Prop | Type | Type′

t ::= s | c | vi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2
| conv t1 t2 | subst ((tk ).tP ) t | refl t | congLam ((tk ).t )
| congForall ((tk ).t ) | beta ((tk ).t1) t2

Σ ::= • | Σ, c : t
Φ ::= • | Φ, t
σ ::= • | σ , t

Figure 3.8: The logic λHOL with hybrid deBruijn variable representation: Syntax

names (denoted as vi ). In this way, all α-equivalent terms are identified. Furthermore, terms preserve
their identity under additions to the end of the free variables context. Such additions are a frequent
operation in VeriML, so this representation is advantageous from an implementation point of view. A
similar representation technique where terms up to any weakening of the context are identified (not just
additions to the end of the context) by introducing a distinction between used and unused variable names
has been discovered independently by Pollack et al. [2011] and Pouillard [2011].

Let us now proceed to the presentation of λHOL using our hybrid representation technique. We
give the new syntax of the language in Figure 3.8, the new typing rules in Figures 3.9 and 3.10 and the
definition of syntactic operations in Figures 3.11, 3.12 and 3.13.

As expected, the main change to the syntax of terms and of the context Φ is that binding structures
do not carry variable names any longer. For example, instead of writing λx : t1.t2 we now write λ(t1).t2.
In the typing rules, the main change is that extra care needs to be taken when going into a binder or
when enclosing a term with a binder. This is evident for example in the rules ΠTYPE and ΠINTRO. When

45



`Σwf

` •wf
SIGEMPTY

`Σwf • `Σ t : s (c : _) 6∈Σ
`Σ, c : t wf

SIGCONST

`Σ Φwf

` •wf
CTXEMPTY

` Φwf Φ ` t : s

` Φ, t wf
CTXVAR

Φ ` σ : Φ′

` Φwf

Φ ` • : •
SUBSTEMPTY

Φ ` σ : Φ′ Φ ` t : t ′ ·σ
Φ ` σ , t : (Φ′, t ′)

SUBSTVAR

Φ `Σ t : t ′

c : t ∈Σ
Φ `Σ c : t

CONSTANT
Φ.i = t

Φ ` vi : t
VAR

(s , s ′) ∈A
Φ ` s : s ′

SORT

Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s ′ (s , s ′, s ′′) ∈R

Φ `Π(t1).t2 : s ′′
ΠTYPE

Φ ` t1 : s Φ, t1 ` dt2e|Φ| : t ′ Φ `Π(t1).
�

t ′
�

|Φ|+1 : s ′

Φ ` λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|+1

ΠINTRO

Φ ` t1 :Π(t ).t ′ Φ ` t2 : t

Φ ` t1 t2 :
�

t ′
�

|Φ| · (idΦ, t2)
ΠELIM

Φ ` t1 : t Φ ` t2 : t Φ ` t : Type

Φ ` t1 = t2 : Prop
EQTYPE

Figure 3.9: The logic λHOL with hybrid deBruijn variable representation: Typing Judgements
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Φ ` t1 : t Φ ` t1 = t1 : Prop

Φ ` refl t1 : t1 = t1

EQREFL
Φ ` t : t1 Φ ` t1 : Prop Φ ` t ′ : t1 = t2

Φ ` conv t t ′ : t2

EQELIM

Φ ` tk : Type Φ, tk ` dtP e|Φ| : Prop Φ ` t : ta = tb Φ ` ta : tk

Φ ` subst ((tk ).tP ) t : tP · (idΦ, ta) = tP · (idΦ, tb )
EQSUBST

Φ ` tk : Type Φ, tk ` dte|Φ| : t1 = t2

Φ ` congLam ((tk ).t ) : (λ(tk ).bt1c|Φ|+1) = (λ(tk ).bt2c|Φ|+1)
EQLAM

Φ ` tk : Type Φ, tk ` dte|Φ| : t1 = t2 Φ, tk ` t1 : Prop

Φ ` congForall ((tk ).t ) : (∀(tk ).bt1c|Φ|+1) = (∀(tk ).bt2c|Φ|+1)
EQFORALL

Φ ` (λ(ta).t1) : ta→ tb Φ ` ta→ tb : Type Φ ` t2 : ta

Φ ` beta ((ta).t1) t2 : ((λ(ta).t1) t2) = dt1e|Φ| · (idΦ, t2)
EQBETA

Figure 3.10: The logic λHOL with hybrid deBruijn variable representation: Typing Judgements (contin-
ued)

we cross a binder, the just-bound variable b0 needs to be converted into a fresh free variable. This is
what the freshening operation dtenm does, defined in Figure 3.11. The two arguments are as follows: n
represents which bound variable to replace and is initially 0 when we leave it unspecified; m is the current
number of free variables (the length of the current context), so that the next fresh free variable vm is
used as the replacement of the bound variable. Binding is the inverse operation and is used when we are
re-introducing a binder, capturing the last free variable and making it a bound variable. The arguments
are similar: n represents which bound variable to replace with and m represents the level of the last free
variable.

As is evident in the above discussion, the operations of freshening and binding have particular assump-
tions about the terms they are applied to. For example, freshening needs to be applied to a term with one
“dangling” bound variable, whereas binding needs to be applied to a closed term. In order to state such
assumptions precisely, we define the notion of free and bound variable limits in Figure 3.12. We say that
a term t obeys the limit of n free variables, and write t < f n when t does not contain any free variable
higher than vn−1. Bound variable limits are similar.

We have also changed the way we denote and perform substitutions. We have added simultaneous
substitutions as a new syntactic class. We denote them as σ and refer to them simply as substitutions from
now on. They represent lists of terms to substitute for the variables in a Φ context. Notice that the lack
of variable names requires that both Φ and σ are ordered lists rather than sets. The order of a substitution
σ needs to match the order of the context that it corresponds to. This is made clear in the definition of
the operation of applying a substitution to a term, written as t · σ and given in Figure 3.13. In essence,
substitution application is a simple structural recursion, the only interesting case2 being the replacement

2. As a notational convenience, we mark such interesting cases with a star.
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Freshening: dtenm

dsenm = s
dcenm = c

∗ dvie
n
m = vi

∗ dbne
n
m = vm

dbie
n
m = bi

d(λ(t1).t2)e
n
m = λ(dt1e

n
m).dt2e

n+1
m

dt1 t2e
n
m = dt1e

n
m dt2e

n
m

dΠ(t1).t2)e
n
m = Π(dt1e

n
m).(dt2e

n+1
m )

dt1 = t2e
n
m = dt1e

n
m = dt2e

n
m

dconv t1 t2e
n
m = conv dt1e

n
m dt2e

n
m

drefl tenm = refl dte
dsubst (tk .tP ) tenm = subst (dtke

n
m .dtP e

n+1
m ) dtenm

dcongLam (tk .t )enm = congLam (dtke
n
m .dten+1

m )
dcongForall (tk .t )enm = congForall (dtke

n
m .dten+1

m )
dbeta (tk .t1) t2e

n
m = beta (dtke

n
m .dt1e

n+1
m ) dt2e

n
m

Binding: btcnm

bscnm = s
bccnm = c

∗
�

vm−1
�n

m = bn
∗ bvic

n
m = vi

bbic
n
m = bi

b(λ(t1).t2)c
n
m = λ(bt1c

n
m).bt2c

n+1
m

bt1 t2c
n
m = bt1c

n
m bt2c

n
m

bΠ(t1).t2)c
n
m = Π(bt1c

n
m).bt2c

n+1
m

bt1 = t2c
n
m = bt1c

n
m = bt2c

n
m

bconv t1 t2c
n
m = conv bt1c

n
m bt2c

n
m

brefl tcnm = refl btcnm
bsubst (tk .tP ) tcnm = subst (btkc

n
m .btP c

n+1
m ) btcnm

bcongLam (tk .t )cnm = congLam (btkc
n
m .btcn+1

m )
bcongForall (tk .t )cnm = congForall (btkc

n
m .btcn+1

m )
bbeta (tk .t1) t2c

n
m = beta (btkc

n
m .bt1c

n+1
m ) bt2c

n
m

Figure 3.11: The logic λHOL with hybrid deBruijn variable representation: Freshening and Binding
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Free variable limits for terms:
t < f n

s < f n
c < f n
vi <

f n ⇐ n > i
bi <

f n
(λ(t1).t2)<

f n ⇐ t1 <
f n ∧ t2 <

f n
t1 t2 <

f n ⇐ t1 <
f n ∧ t2 <

f n
· · ·

Free var. limits for substitutions:
σ < f n

•< f n
(σ , t )< f n ⇐ σ < f n ∧ t < f n

Bound var. limits for terms:
t <b n

s <b n
c <b n
vi <

b n
bi <

b n ⇐ n > i
(λ(t1).t2)<

b n ⇐ t1 <
b n ∧ t2 <

b n+ 1
t1 t2 <

b n ⇐ t1 <
b n ∧ t2 <

b n
· · ·

Bound var. limits for substitutions:
σ <b n

•<b n
(σ , t )<b n ⇐ σ <b n ∧ t <b n

Figure 3.12: The logic λHOL with hybrid deBruijn variable representation: Variable limits
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Substitution application: t ·σ

s ·σ = s
c ·σ = c

∗ vi ·σ = σ .i
bi ·σ = bi
(λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ)
(t1 t2) ·σ = (t1 ·σ) (t2 ·σ)
(Π(t1).t2) ·σ = Π(t1 ·σ).(t2 ·σ)
(t1 = t2) ·σ = (t1 ·σ) = (t2 ·σ)
(conv t1 t2) ·σ = conv (t1 ·σ) (t2 ·σ)
(refl t ) ·σ = refl (t ·σ)
(subst (tk .tP ) t ) ·σ = subst (tk ·σ .tP ·σ) (t ·σ)
(congLam (tk .t )) ·σ = congLam (tk ·σ .t ·σ)
(congForall (tk .t )) ·σ = congForall (tk ·σ .t ·σ)
(beta (tk .t1) t2) ·σ = beta (tk ·σ .t1 ·σ) (t2 ·σ)

Substitution application: σ ·σ ′

• ·σ = •
(σ ′, t ) ·σ = (σ ′ ·σ), (t ·σ)

Identity substitution: idΦ

id• = •
idΦ, t = idΦ, v|Φ|

Figure 3.13: The logic λHOL with hybrid deBruijn variable representation: Substitution Application and
Identity Substitution

50



of the i -th free variable with the i -th term of the substitution. It is evident that substitution cannot be
applied to terms that use more free variables than there are in the substitution. It is simple to extend
substitution application to work on substitutions as well. This operation is written as σ ·σ ′.

When using names, typing rules such as ΠELIM made use of substitution of a single term for the last
variable in the context. Since we only have full substitutions, we use the auxiliary definition of the identity
substitution idΦ for a context Φ given in Figure 3.13 to create substitutions changing just the last variable
of the context. Therefore where we previously used t[t ′/x] we now use t · (idΦ, t ′).

Also in Figure 3.9 we have added a new typing judgement in order to classify substitutions, denoted as
Φ′ ` σ : Φ and stating that the substitution σ covers the context Φ whereas the free variables of the terms
in σ come from the context Φ′. The interesting case is the SUBSTVAR rule. An initial attempt to this rule
could be:

Φ′ ` σ : Φ Φ′ ` t : t ′

Φ′ ` (σ , t ) : (Φ, t ′)
SUBSTVAR?

However, this version of the rule is wrong in cases where the type of a variable in the context Φmentions
a previous variable, as in the case: Φ = x : Type, y : x. If the substitution instantiates x to a concrete kind
like Nat then a term substituting y should have the same type. Thus the actual SUBSTVAR rule expects a
term whose type matches the type of the variable in the context after the substitution has been applied.
Indeed it matches the wrong version given above when no variable dependence exists in the type t ′.

Metatheory

We are now ready to state and prove the substitution lemma, along with a number of important auxiliary
lemmas and corollaries3.

Lemma 3.4.1 (Identity substitutions are well-typed)

` Φwf Φ′ =Φ, t1, t2, · · · , tn ` Φ′ wf

Φ′ ` idΦ : Φ

Proof. By structural induction on Φ. �

Lemma 3.4.2 (Interaction between freshening and substitution application)

t < f m σ < f m′ |σ |= m

dt ·σem′ = dtem · (σ , vm′)

Proof. By structural induction on t . �

Lemma 3.4.3 (Interaction between binding and substitution application)

t < f m+ 1 σ < f m′ |σ |= m
�

t · (σ , vm′)
�

m′+1 = btcm+1 ·σ

3. The interested reader can find more detailed versions of these proofs in our published Technical Report [Stampoulis and
Shao, 2012b].
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Proof. By structural induction on t . �

Lemma 3.4.4 (Substitutions are associative) (t ·σ) ·σ ′ = t · (σ ·σ ′)

Proof. By structural induction on t . �

Theorem 3.4.5 (Substitution)

Φ ` t : t ′ Φ′ ` σ : Φ

Φ′ ` t ·σ : t ′ ·σ

Proof. By structural induction on the typing derivation for t . We prove three representative cases.

Case ΠTYPE.






Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s ′ (s , s ′, s ′′) ∈R

Φ `Π(t1).t2 : s ′′







By induction hypothesis for t1 we get:
Φ′ ` t1 ·σ : s .
By induction hypothesis for Φ, t1 ` dt2e|Φ| : s ′ and Φ′, t1 ·σ ` (σ , v|Φ′|) : (Φ, t1) we get:
Φ′, t1 ·σ ` dt2e|Φ| · (σ , v|Φ′|) : s ′ · (σ , v|Φ′|).
We have s ′ = s ′ · (σ , v|Φ′|) trivially.
Also, we have that dt2e|Φ| · (σ , v|Φ′|) = dt2 ·σe|Φ′|.
Thus by application of the same typing rule we get:
Φ′ `Π(t1 ·σ).(t2 ·σ) : s ′′.
This is the desired, since (Π(t1).t2) ·σ =Π(t1 ·σ).(t2 ·σ).

Case ΠINTRO.






Φ ` t1 : s Φ, t1 ` dt2e|Φ| : t ′ Φ `Π(t1).
�

t ′
�

|Φ|+1 : s ′

Φ ` λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|+1







Similarly to the above.
From the induction hypothesis for t1 and t2 we get:
Φ′ ` t1 ·σ : s and Φ′, t1 ·σ ` dt2 ·σe|Φ′| : t ′ · (σ , v|Φ′|)
From the induction hypothesis for Π(t1).

�

t ′
�

we get:
Φ′ ` (Π(t1).

�

t ′
�

|Φ|+1) ·σ : s ′, or equivalently

Φ′ `Π(t1 ·σ).(
�

t ′
�

|Φ+1| ·σ) : s ′, which further rewrites to

Φ′ `Π(t1 ·σ).
�

t ′ · (σ , v|Φ′|)
�

|Φ′|+1
: s ′.

We can now apply the same typing rule to get:
Φ′ ` λ(t1 ·σ).(t2 ·σ) :Π(t1 ·σ).

�

t ′ · (σ , v|Φ′|)
�

|Φ′|+1
.

We have Π(t1 · σ).
�

t ′ · (σ , v|Φ′|)
�

|Φ′|+1
= Π(t1 · σ).((

�

t ′
�

|Φ|+1) · σ) = (Π(t1).
�

t ′
�

|Φ|+1) · σ , thus this is the

desired result.
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Case ΠELIM.






Φ ` t1 :Π(t ).t ′ Φ ` t2 : t

Φ ` t1 t2 :
�

t ′
�

|Φ| · (idΦ, t2)







By induction hypothesis for t1 and t2 we get:
Φ′ ` t1 ·σ :Π(t ·σ).(t ′ ·σ).
Φ′ ` t2 ·σ : t ·σ .
By application of the same typing rule we get:
Φ′ ` (t1 t2) ·σ :

�

t ′ ·σ
�

|Φ′| · (idΦ′ , t2 ·σ).
We have that

�

t ′ ·σ
�

|Φ′| · (idΦ′ , t2 ·σ) = (
�

t ′
�

|Φ| · (σ , v|Φ′|)) · (idΦ′ , t2 ·σ) =
�

t ′
�

|Φ| · ((σ , v|Φ′|) · (idΦ′ , t2 ·σ)).
But (σ , v|Φ′|) · (idΦ′ , t2 ·σ) = σ , (t2 ·σ).
Thus we only need to show that

�

t ′
�

|Φ| · (σ , (t2 ·σ)) is equal to (
�

t ′
�

|Φ| · (idΦ, t2)) ·σ .
This follows directly from the fact that idΦ ·σ = σ . Thus we have the desired result. �

Lemma 3.4.6 (Substitution lemma for substitutions)

Φ′ ` σ : Φ Φ′′ ` σ ′ : Φ′

Φ′′ ` σ ·σ ′ : Φ

Proof. By structural induction on the typing derivation of σ and using the main substitution theorem
for terms. �

Lemma 3.4.7 (Types are well-typed) If Φ ` t : t ′ then either t ′ = Type′ or
Φ ` t ′ : s .

Proof. By structural induction on the typing derivation for t and use of the substitution lemma in cases
where t ′ involves a substitution, as for example in the ΠELIM case. �

Lemma 3.4.8 (Weakening)

Φ ` t : t ′ Φ′ =Φ, t1, t2, · · · , tn ` Φ′ wf

Φ′ ` t : t ′

Proof. Simple application of the substitution theorem using σ = idΦ. �
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Chapter 4

The logic λHOL: Extension variables

In this chapter we will present an extension to the λHOL logic which is necessary in order to support
manipulation of logical terms through the computational layer of VeriML. We will add two new kinds of
variables in λHOL: meta-variables, which are used so that VeriML can manipulate open logical terms in-
habiting specific contexts; and context variables, which are necessary so that we can manipulate contexts
themselves, as well as open terms that inhabit any context – through combination with the meta-variables
support. We refer to both of these new kinds of variables as extension variables. We will describe this addi-
tion to λHOL in two steps in the interests of presentation, introducing meta-variables first in Section 4.1
and then adding context variables in Section 4.2. In both cases we will present the required metatheoretic
proofs in detail.

4.1 λHOL with metavariables

We have mentioned in Chapter 2 that VeriML works over contextual terms instead of normal logical
terms, because we want to be able to work with open terms in different contexts. The need for open
terms naturally arises even if we ultimately want to produce closed proofs for closed propositions. For
example, we want to be able to pattern match against the body of quantified propositions like ∀x : Nat.P .
In this case, P is an open term even if the original proposition was closed. Similarly, if we want to produce
a proof of the closed proposition P1 → P2, we need an open proof object of the form P1 `? : P2. In a
similar case in Section 2.3, we used the following notation for producing the proof of P1→ P2:

X

Φ ` P1→ P2

Using the more precise notation which we use in this chapter, that includes proof objects, we would write
the same derivation as:

X : (Φ, P1 ` P2)

Φ ` λ(P1).X : P1→ P2

The variable X that we use here is not a simple variable. It stands for a proof object that only makes
sense in the Φ, P1 environment – we should not be allowed to use it in an environment that does not
include P1. It is a meta-variable: a special kind of variable which is able to ‘capture’ variables from the
current context in a safe way, when it is substituted by a term t . The type of this meta-variable needs to
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Syntax extensions

(Logical terms) t ::= · · · | Xi/σ
(Contextual terms) T ::= [Φ] t
(Meta-contexts) Ψ ::= • | Ψ, T

(Meta-substitutions) σΨ ::= • | σΨ, T

Substitution application:
t ·σ = t ′

(Xi/σ
′) ·σ = Xi/(σ

′ ·σ)

Freshening: dtenm and dσenm

dXi/σe
n
m = Xi/(

 

σn
m

£

)

d•enm = •
dσ , tenm = (dσenm), dte

n
m

Binding: btcnm and bσcnm

bXi/σc
n
m = Xi/(

�

σn
m

�

)

b•cnm = •
bσ , tcnm = (bσcnm), btc

n
m

Figure 4.1: Extension of λHOL with meta-variables: Syntax and Syntactic Operations

contain both the information about the expected environment where t will make sense in addition to the
type of the term. Types of metavariables are therefore contextual terms: a package of a context Φ together
with a term t , which we will write as [Φ] t and denote as T in the rest of our development. The variable
X above will therefore be typed as:

X : [Φ, P1]P2

The notational convention that we use is that the [·] bracket notation associates as far to the right as
possible, taking precedence over constructors of logical terms. An instantiation for the variable X would
be a term t with the following typing derivation:

Φ, P1 ` t : P2

If we define this derivation as the typing judgement for the contextual term [Φ, P1] t , we can use contex-
tual terms in order to represent instantiations of meta-variables too (instead of just their types)1. Thus an
instantiation for the variable X is the contextual term [Φ, P1] t with the following typing:

` [Φ, P1] t : [Φ, P1]P2

We use capital letters for metavariables in order to differentiate them from normal variables. Since they
stand for contextual terms, we also occasionally refer to them as contextual variables.

Let us now see how the λHOL logic can be extended in order to properly account for meta-variables,
enabling us to use them inside logical terms. The extensions required to the language we have seen so far
are given in Figures 4.1 (syntax and syntactic operations) and 4.2 (typing judgements). The main addition
to the logical terms is a way to refer to metavariables Xi . These come from a new context of meta-
variables represented as Ψ and are instantiated with contextual terms T through meta-substitutions σΨ.
All metavariables are free, as we do not have binding constructs for metavariables within the logic. We
represent them using deBruijn levels, similar to how we represent normal logical variables. We have made

1. It would be enough to instantiate variables with logical terms t , as the context they depend on will theoretically be evident
from the type of the meta-variable they are supposed to instantiate. This choice poses unnecessary technical challenges so we opt
to instantiate metavariables with contextual terms instead.
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Ψ; Φ ` t : t ′

Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ′

Ψ; Φ `Xi/σ : t ′ ·σ
METAVAR

`Ψwf

` •wf
METACEMPTY

`Ψwf Ψ ` [Φ] t : [Φ] s

` (Ψ, [Φ] t )wf
METACVAR

Ψ ` T : T ′

Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
CTXTERM

Ψ ` σΨ :Ψ′

Ψ ` • : •
METASEMPTY

Ψ ` σΨ :Ψ′ Ψ ` T : T ′ ·σΨ
Ψ ` (σΨ, T ) : (Ψ′, T ′)

METASVAR

Figure 4.2: Extension of λHOL with meta-variables: Typing rules

this choice so that future extensions to our proofs are simpler2; we will use the name-based representation
instead when it simplifies our presentation.

To use a meta-variable Xi inside a logical term t , we need to make sure that when it gets substituted
with a contextual term T = [Φ′] t ′, the resulting term t[T /Xi] will still be properly typed. The variables
that t ′ contains need to make sense in the same context Φ that is used to type t . We could therefore require
that the meta-variable is only used in contexts Φ that exactly match Φ′, but this limits the cases where we
can actually use meta-variables. We will opt for a more general choice instead: we require a mapping
between the variables that t ′ refers to and terms that make sense in the context Φ where the metavariable
is used. This mapping is provided by giving an explicit substitution when using the variable Xi , leading
to the new form Xi/σ included in the logical terms shown in Figure 4.1; the requirement that σ maps
the variables of context Φ′ to terms in the current context is captured in the corresponding typing rule
METAVAR of Figure 4.2. The most common case for σ will in fact be the identity substitution (where the
contexts Φ and Φ′ match, or Φ′ is a prefix of Φ), in which case we usually write Xi instead of Xi/idΦ.

Extending the operations of substitution application, freshening and binding is straightforward; in
the latter two cases, we need to extend those operations to work on substitutions as well. The original
typing judgements of λHOL are adapted by adding the new Ψ context. This is ignored save for the new

2. Specifically, we are interested in adding meta-n-variables to the logic language. We can view normal logical variables as
meta-0-variables and the meta-variables we add here as meta-1-variables; similarly, we can view logical terms t as meta-0-terms
and contextual terms T as meta-1-terms; and so on. We carry out the same proofs for both levels, leading us to believe that an
extension to n levels by induction would be a simple next step.
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t ·σΨ = t ′

s ·σΨ = s
c ·σΨ = c
vi ·σΨ = vi
bi ·σΨ = bi
(λ(t1).t2) ·σΨ = λ(t1 ·σΨ).(t2 ·σΨ)
(t1 t2) ·σΨ = (t1 ·σΨ) (t2 ·σΨ)
(Π(t1).t2) ·σΨ = Π(t1 ·σΨ).(t2 ·σΨ)
(t1 = t2) ·σΨ = (t1 ·σΨ) = (t2 ·σΨ)
(conv t1 t2) ·σΨ = conv (t1 ·σΨ) (t2 ·σΨ)
(refl t ) ·σΨ = refl (t ·σΨ)
(subst (tk .tP ) t ) ·σΨ = subst (tk ·σΨ.tP ·σΨ) (t ·σΨ)
(congLam (tk .t )) ·σΨ = congLam (tk ·σΨ.t ·σΨ)
(congForall (tk .t )) ·σΨ = congForall (tk ·σΨ.t ·σΨ)
(beta (tk .t1) t2) ·σΨ = beta (tk ·σΨ.t1 ·σΨ) (t2 ·σΨ)

∗ (Xi/σ) ·σΨ = t ′ · (σ ·σΨ) when σΨ.i = [_] t ′

σ ·σΨ = σ ′

• ·σΨ = •
(σ , t ) ·σΨ = σ ·σΨ, t ·σΨ

Φ ·σΨ =Φ′

• ·σΨ = •
(Φ, t ) ·σΨ = Φ ·σΨ, t ·σΨ

T ·σΨ = T ′

∗ ([Φ] t ) ·σΨ = [Φ ·σΨ] (t ·σΨ)

Figure 4.3: Extension of λHOL with meta-variables: Meta-substitution application

METAVAR rule. Well-formedness conditions for theΨ context are similar to the ones forΦ, whereas typing
for contextual terms Ψ ` T : T ′ is as suggested above.

Substitutions for metavariables are lists of contextual terms and are denoted as σΨ. We refer to them
as metasubstitutions. Their typing rules in Figure 4.2 are similar to normal substitutions. Of interest is
the definition of meta-substitution application t · σΨ, given in Figure 4.3. Just as application of normal
substitutions, this is mostly a structural recursion. The interesting case is when t = Xi/σ . In this case,
we extract the i -th contextual term T = [Φ] t ′ out of the metasubstitution σΨ. t ′ is then applied to a
substitution σ ′ = σ ·σΨ. It is important to note that σ ′ could not simply be equal to σ , as the substitution
σ itself could contain further uses of metavariables. Also, the Φ context is not needed in the operation
itself, so we have elided it in the definition.

Metatheory

Since we extended the logical terms with the new construct Xi/σ , we need to make sure that the lemmas
that we have proved so far still continue to hold and were not rendered invalid because of the extension.
Furthermore, we will state and prove a new substitution lemma, capturing the fact that metasubstitution
application to logical terms still yields well-typed terms in the new meta-variables environment.

In order to avoid redoing the proofs for the lemmas we have already proved, we follow an approach to-
wards extending our existing proofs that resembles the open recursion solution to the expression problem.
All our proofs, in their full detail as published in our Technical Report [Stampoulis and Shao, 2012b], are
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based on structural induction on terms of a syntactical class or on typing derivations. Through the exten-
sion, such induction principles are generalized, by adding some new cases and possibly by adding mutual
induction. For example, structural induction on typing derivations of logical terms Φ ` t : t ′ is now
generalized to mutual induction on typing derivations of logical terms Ψ; Φ ` t : t ′ and of substitutions
Ψ; Φ ` σ : Φ′. The first part of the mutual induction matches exactly the existing proof, save for the
addition of the new case for t =Xi/σ ; this case actually is what introduces the requirement to do mutual
induction on substitutions too. We did our proofs to a level of detail with enough individual lemmas so
that all our proofs do not perform nested induction but utilize existing lemmas instead. Therefore, we
only need to prove the new cases of the generalized induction principles in order to conclude that the
lemmas still hold for the extension. Of course, lemma statements need to be slightly altered to account
for the extra environment.

Lemma 4.1.1 (Extension of Lemma 3.4.1) (Identity substitutions are well-typed)

Ψ ` Φwf Φ′ =Φ, t1, t2, · · · , tn Ψ ` Φ′ wf

Ψ; Φ′ ` idΦ : Φ

Proof. The original proof was by structural induction on Φ, where no new cases were added. The new
proof is thus identical as before. �

Lemma 4.1.2 (Extension of Lemma 3.4.2) (Interaction between freshening and substitution application)

1.
t < f m σ < f m′ |σ |= m

dt ·σem′ = dtem · (σ , vm′)
2.
σ ′ < f m σ < f m′ |σ |= m
�

σ ′ ·σ
�n

m′ =
�

σ ′
�n

m · (σ , vm′)

Proof. Because of the extension, structural induction on t needs to be generalized to mutual induction
on the structure of t and of σ ′. Part 1 of the lemma is proved as before, with the addition of the following
extra case for t =Xi/σ

′. We have:

�

(Xi/σ
′) ·σ

�n
m′ =

�

Xi/(σ
′ ·σ)

�n
m′ (by definition)

=Xi/
�

σ ′ ·σ
�n

m′ (by definition)

=Xi/(
�

σ ′
�n

m · (σ , vm′)) (using mutual induction hypothesis for part 2)

= (
�

Xi/σ
′�n

m) · (σ , vm′) (by definition)

The second part of the proof is proved similarly, by structural induction on σ ′. �

Lemma 4.1.3 (Extension of Lemma 3.4.3) (Interaction between binding and substitution application)

1.
t < f m+ 1 σ < f m′ |σ |= m
�

t · (σ , v ′m)
�

m′+1
= btcm+1 ·σ

2.
σ ′ < f m+ 1 σ < f m′ |σ |= m
�

σ ′ · (σ , vm′)
�n

m′+1 =
�

σ ′
�n

m+1 ·σ

Proof. Similar to the above. �
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Lemma 4.1.4 (Extension of Lemma 3.4.4) (Substitutions are associative)
1. (t ·σ) ·σ ′ = t · (σ ·σ ′)
2. (σ1 ·σ) ·σ ′ = σ1 · (σ ·σ ′)

Proof. Similar to the above. �

Theorem 4.1.5 (Extension of Theorem 3.4.5) (Substitution)

1.
Ψ; Φ ` t : t ′ Ψ; Φ′ ` σ : Φ

Ψ; Φ′ ` t ·σ : t ′ ·σ
2.
Ψ; Φ′ ` σ : Φ Ψ; Φ′′ ` σ ′ : Φ′

Ψ; Φ′′ ` σ ·σ ′ : Φ

Proof. We have proved the second part of the lemma already as Lemma 3.4.6. For the first part, we need
to account for the new typing rule.

Case METAVAR.




Ψ.i = T T = [Φ0] t0 Ψ; Φ ` σ0 : Φ0

Ψ; Φ `Xi/σ0 : t0 ·σ0





Applying the second part of the lemma for σ = σ0 and σ ′ = σ we get:
Ψ; Φ′ ` σ0 ·σ ′ : Φ0.
By applying the same typing rule for t =Xi/(σ0 ·σ) we get:
Ψ; Φ′ `Xi/(σ0 ·σ ′) : t0 · (σ0 ·σ ′).
By associativity of substitution application, this is the desired result. �

Lemma 4.1.6 (Meta-context weakening)

1.
Ψ;Φ ` t : t ′

Ψ,T1, · · · ,Tn ; Φ ` t : t ′
2.

Ψ;Φ ` σ : Φ′

Ψ,T1, · · · ,Tn ; Φ ` σ : Φ′
3.

Ψ ` Φwf

Ψ,T1, · · · ,Tn ` Φwf

4.
Ψ ` T : T ′

Ψ,T1, · · · ,Tn ` T : T ′

Proof. Trivial by structural induction on the typing derivations. �

Lemma 4.1.7 (Extension of Lemma 3.4.7) (Types are well-typed)
If Ψ; Φ ` t : t ′ then either t ′ = Type′ or Ψ; Φ ` t ′ : s .

Proof. By induction on typing for t , as before.

Case METAVAR.




Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ′

Ψ; Φ `Xi/σ : t ′ ·σ





By inversion of well-formedness for Ψ and meta-context weakening, we get:
Ψ `Ψ.i : [Φ′] s
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By typing inversion we get:
Ψ; Φ′ ` t ′ : s .
By application of the substitution theorem for t ′ and σ we get Ψ; Φ ` t ′ ·σ : s , which is the desired result.
�

Lemma 4.1.8 (Extension of Lemma 3.4.8) (Weakening)

1.
Ψ; Φ ` t : t ′ Φ′ =Φ, t1, t2, · · · , tn Ψ ` Φ′ wf

Ψ; Φ′ ` t : t ′

2.
Ψ; Φ ` σ : Φ′′ Φ′ =Φ, t1, t2, · · · , tn Ψ ` Φ′ wf

Ψ; Φ′ ` σ : Φ′′

Proof. The new case for the first part is proved similarly to the above. The proof of the second part is
entirely similar to the first part (use substitution theorem for the identity substitution). �

We have now extended all the lemmas that we had proved for the original version of λHOL. We will now
proceed to prove a new theorem about application of meta-substitutions, similar to the normal substitu-
tion theorem 4.1.5. We first need some important auxiliary lemmas.

Lemma 4.1.9 (Interaction of freshen and metasubstitution application)

1.
Ψ ` σΨ :Ψ′

dtenm ·σΨ = dt ·σΨe
n
m

2.
Ψ ` σΨ :Ψ′

dσenm ·σΨ = dσ ·σΨe
n
m

Proof. The first part is proved by induction on t . The interesting case is the t = Xi/σ case, where we
have the following.

dXi/σe
n
m ·σΨ = (Xi/dσe

n
m) ·σΨ

= σΨ.i · (dσenm ·σΨ)

= σΨ.i · dσ ·σΨe
n
m (based on part 2)

= t ′ · dσ ·σΨe
n
m (assuming σΨ.i = [Φ] t ′)

=
�

t ′ · (σ ·σΨ)
�n

m (since t ′ does not include bound variables)

= dσΨ.i · (σ ·σΨ)e
n
m

= dXi/σ ·σΨe
n
m

The second part is proved trivially using induction on σ . �

Lemma 4.1.10 (Interaction of bind and metasubstitution application)

1.
Ψ ` σΨ :Ψ′

btcnm ·σΨ = bt ·σΨc
n
m

2.
Ψ ` σΨ :Ψ′

bσcnm ·σΨ = bσ ·σΨc
n
m
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Proof. Similar to the above. �

Lemma 4.1.11 (Substitution and metasubstitution application distribute)
1. (t ·σ) ·σΨ = (t ·σΨ) · (σ ·σΨ)
2. (σ ·σ ′) ·σΨ = (σ ·σΨ) · (σ ′ ·σΨ)

Proof. Similar to the above. �

Lemma 4.1.12 (Application of metasubstitution to identity substitution)
idΦ ·σΨ = idΦ·σΨ

Proof. By induction on Φ. �

Theorem 4.1.13 (Meta-substitution application)

1.
Ψ; Φ ` t : t ′ Ψ′ ` σΨ :Ψ

Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ
2.
Ψ; Φ ` σ : Φ′ Ψ′ ` σΨ :Ψ

Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ
3.
Ψ ` Φwf Ψ′ ` σΨ :Ψ

Ψ′ ` Φ ·σΨ wf

4.
Ψ ` T : T ′ Ψ′ ` σΨ :Ψ

Ψ′ ` T ·σΨ : T ′ ·σΨ

Proof. All parts proceed by structural induction on the typing derivations. Here we will give some
representative cases.

Case ΠELIM.






Φ ` t1 :Π(t ).t ′ Φ ` t2 : t

Φ ` t1 t2 :
�

t ′
�

|Φ| · (idΦ, t2)







By induction hypothesis for t1 we get:
Ψ′; Φ ·σΨ ` t1 ·σΨ :Π(t ·σΨ).(t ′ ·σΨ).
By induction hypothesis for t2 we get:
Ψ′; Φ ·σΨ ` t2 ·σΨ : t ·σΨ.
By application of the same typing rule we get:
Ψ′; Φ ·σΨ ` (t1 t2) ·σΨ :

�

t ′ ·σΨ
�

|Φ| · (idΦ, t2 ·σΨ).
We need to prove that (

�

t ′
�

|Φ| · (idΦ, t2)) ·σΨ =
�

t ′ ·σΨ
�

|Φ| · (idΦ·σΨ , t2 ·σΨ).

(
�

t ′
�

|Φ| · (idΦ, t2)) ·σΨ = (
�

t ′
�

|Φ| ·σΨ) · ((idΦ, t2) ·σΨ) (by Lemma 4.1.11)

= (
�

t ′ ·σΨ
�

|Φ|) · ((idΦ, t2) ·σΨ) (by Lemma 4.1.9)

= (
�

t ′ ·σΨ
�

|Φ|) · (idΦ ·σΨ, t2 ·σΨ) (by definition)

=
�

t ′ ·σΨ
�

|Φ| · (idΦ·σΨ , t2 ·σΨ) (by Lemma 4.1.12)

61



Case METAVAR.




Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ′

Ψ; Φ `Xi/σ : t ′ ·σ





Assuming that σΨ.i = [Φ′′] t , we need to show that Ψ′; Φ ·σΨ ` t · (σ ·σΨ) : (t ′ ·σ) ·σΨ
Equivalently from Lemma 4.1.11 we can instead show
Ψ′; Φ ·σΨ ` t · (σ ·σΨ) : (t ′ ·σΨ) · (σ ·σΨ)
Using the second part of the lemma for σ we get: Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ
Furthermore we have that Ψ′ ` σΨ.i :Ψ.i ·σΨ.
From hypothesis we have that Ψ.i = [Φ′] t ′

Thus the above typing judgement is rewritten as Ψ′ ` σΨ.i : [Φ′ ·σΨ] t ′ ·σΨ
By inversion we get that Φ′′ =Φ′ ·σΨ, thus σΨ.i = [Φ′ ·σΨ] t ; and that
Ψ′; Φ′ ·σΨ ` t : t ′ ·σΨ.
Now we use the main substitution theorem 4.1.5 for t and σ ·σΨ and get:
Ψ′; Φ ·σΨ ` t · (σ ·σΨ) : (t ′ ·σΨ) · (σ ·σΨ)

Case SUBSTVAR.




Φ ` σ : Φ′ Φ ` t : t ′ ·σ

Φ ` σ , t : (Φ′, t ′)





By induction hypothesis and use of part 1 we get:
Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ
Ψ′; Φ ·σΨ ` t ·σΨ : (t ′ ·σ) ·σΨ
By use of Lemma 4.1.11 in the typing for t ·σΨ we get that:
Ψ′; Φ ·σΨ ` t ·σΨ : (t ′ ·σΨ) · (σ ·σΨ)
By use of the same typing rule we get:
Ψ′; Φ ·σΨ ` (σ ·σΨ, t ·σΨ) : (Φ′ ·σΨ, t ′ ·σΨ) �

4.2 λHOL with extension variables

Most functions in VeriML work with logical terms that live in an arbitrary context. This is for example
true for automated provers such as the tautology prover presented in Section 2.3, which need to use
recursion to prove propositions in extended contexts. Thus, even if the original context is closed, recursive
calls work over terms living in extensions of the context; and the prover needs to handle all such extensions
– it needs to be able to handle all possible contexts. The metavariables that we have seen so far do not allow
this possibility, as they depend on a fully-specifiedΦ context. In this section we will see a further extension
of λHOL with parametric contexts. Contexts can include context variables that can be instantiated with an
arbitrary context. We can see context variables as placeholders for applying the weakening lemma. Thus
this extension internalizes the weakening lemma within the λHOL calculus, just as the extension with
metavariables internalizes the substitution theorem. We denote context variables with lowercase letters,
e.g. φ, in order to differentiate from the Φ context.

Let us sketch an example of the use of parametric contexts. Consider the case where we want to
produce a proof of x > 0 → x ≥ 1 in some unspecified context Φ. This context needs to include a
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definition of x as a natural number in order for the proposition to make sense. We can assume that we
have a metavariable X standing for a proof with the following context and type:

X : [x : Nat, φ, h : x > 0] x ≥ 1

we can produce a proof for [x : Nat, φ] x > 0→ x ≥ 1 with:

X : [x : Nat, φ, h : x > 0] x ≥ 1

x : Nat, φ ` (λh : x > 0.X ) : x > 0→ x ≥ 1

The context variable φ can be instantiated with an arbitrary context, which must be well-formed under
the initial x : Nat, context. We capture this information into the type of φ as follows:

φ : [x : Nat] ctx

A possible instantiation of φ is φ = [h : x > 5]. By applying the substitution of φ for this instantiation
we get the following derivation:

X : [x : Nat, h : x > 5, h ′ : x > 0] x ≥ 1

x : Nat, h : x > 5 ` (λh ′ : x > 0.X ) : x > 0→ x ≥ 1

As is evident, the substitution of a context variable for a specific context might involve a series of α-
renamings in the context and terms, as we did here so that the newly-introduced h variable does not clash
with the already existing h variable.

We will now cover the extensions required to λHOL as presented so far in order to account properly
for parametric contexts. The main ideas of the extension are the following:

1. Both context variables and meta-variables should be typed through the same environment and
should be instantiated through the same substitutions, instead of having separate environments
and substitutions for context- and meta-variables.

2. The deBruijn levels used for normal free variables should be generalized to parametric deBruijn
levels: instead of being constant numbers they should be sums involving variables |φ| standing for
the length of as-yet-unspecified contexts.

We have arrived at an extension of λHOL that follows these ideas after working out the proofs for a variety
of alternative ways to support parametric contexts. The solution that we present here is characterized both
by clarity in the definitions and the lemma statements as well as by conceptually simple proofs that can
be carried out using structural recursion. Intuitively, the main reason is that parametric deBruijn levels
allow for a clean way to perform the necessary α-renamings when instantiating a parametric context with
a concrete context, by simply substituting the length variables for the concrete length. Other solutions –
e.g. keeping free variables as normal deBruijn levels and shifting them up when a parametric context is
instantiated – require extra knowledge about the initial parametric context upon instantiation, destroying
the property that meta-substitution application is structurally recursive. The justification for the first
key idea noted above is technically more subtle: by separating meta-variables from context variables into
different contexts, the relative order of their introduction is lost. This leads to complications when a
meta-variable depends on a parametric context which depends on another meta-variable itself and requires
various side-conditions to the statements of lemmas that add significant technical complexity.
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(Logical terms) t ::= s | c | vL | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2
| conv t1 t2 | subst ((tk ).tP ) t | refl t | congLam ((tk ).t )
| congForall ((tk ).t ) | beta ((tk ).t1) t2
| Xi/σ*

(Parametric deBruijn levels) L ::= 0 | Lõ 1 | Lõ |φi |*
(Contexts) Φ ::= · · · | Φ, φi

(Substitutions) σ ::= · · · | σ , id(φi )
(Extension contexts) Ψ ::= • | Ψ, K
(Extension terms) T ::= [Φ] t | [Φ]Φ′*
(Extension types) K ::= [Φ] t | [Φ] ctx

(Extension substitutions) σΨ ::= • | σΨ, T

Figure 4.4: Extension of λHOL with parametric contexts: Syntax

Substitution length: |σ |= L

| • | = 0
|σ , t | = |σ |õ 1
|σ , id(φi )| = |σ |õ |φi |

Context length: |σ |= L

| • | = 0
|Φ, t | = |Φ|õ 1
|Φ, φi | = |Φ|õ |φi |

Substitution access: σ .L= t

(σ , t ).L = t when |σ |= L
(σ , t ).L = σ .L otherwise
(σ , id(φi )).L = σ .L

Context access: Φ.L= t

(Φ, t ).L = t when |Φ|= L
(Φ, t ).L = Φ.L otherwise
(Φ, φi ).L = Φ.L

Substitution application:
t ·σ = t ′

vL ·σ = σ .L

Substitution application:
σ ′ ·σ = σ ′′

(σ ′, id(φi )) ·σ = σ ′ ·σ , id(φi )

Identity substitution:
idΦ = σ

id• = •
idΦ, t = idΦ, v|Φ|
idΦ,φi

= idΦ, id(φi )

Partial identity substitution:
id[Φ]Φ′ = σ

id[Φ]• = •
id[Φ]Φ′, t = id[Φ]Φ′ , v|Φ|õ|Φ′|
id[Φ]Φ′,φi

= id[Φ]Φ′ , id(φi )

Figure 4.5: Extension of λHOL with parametric contexts: Syntactic Operations (Length and access of
substitutions and contexts; Substitution application; Identity substitution and partial identity substitu-
tion)
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Level comparison: L< L′

L < L′õ 1 when L= L′ or L< L′

L < L′õ |φi | when L= L′ or L< L′

Variable limits: t < f L

s < f L
c < f L
vL <

f L′ ⇐ L< L′

bi <
f L

(λ(t1).t2)<
f L ⇐ t1 <

f L∧ t2 <
f L

t1 t2 <
f L ⇐ t1 <

f L∧ t2 <
f L

· · ·

Variable limits: σ < f L

•< f L
σ , t < f L ⇐ σ < f L∧ t < f L
σ , id(φi )<

f L ⇐ σ < f L∧ L= L′õ |φi |õ · · ·

Figure 4.6: Extension of λHOL with parametric contexts: Variable limits

Freshening (terms): dtenL = t ′

dbne
n
L = vL

dbie
n
L = bi

Freshening (subst.): dσenL = σ
′

d•enL = •
dσ , tenL = dσenL , dtenL
�

σ , id(φi )
�n

L = dσenL , id(φi )

Binding (terms): btcnL = t ′
�

vL′
�n

L = bn when L= L′õ 1
�

vL′
�n

L = vL′ otherwise

Binding (subst.): bσcnL = σ
′

b•cnL = •
bσ , tcnL = bσcnL , btcnL
�

σ , id(φi )
�n

L = bσcnL , id(φi )

Figure 4.7: Extension of λHOL with parametric contexts: Syntactic Operations (Freshening and binding)

Environment subsumption:
Φ⊆ Φ′

Φ⊆ Φ
Φ⊆ Φ′, t ⇐ Φ⊆ Φ′
Φ⊆ Φ′, φi ⇐ Φ⊆ Φ′

Substitution subsumption:
σ ⊆ σ ′

σ ⊆ σ
σ ⊆ σ ′, t ⇐ σ ⊆ σ ′
σ ⊆ σ ′, id(φi ) ⇐ σ ⊆ σ ′

Figure 4.8: Extension of λHOL with parametric contexts: Subsumption
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Ψ `Σ Φwf

Ψ ` •wf
CTXEMPTY

Ψ ` Φwf Ψ; Φ ` t : s

Ψ ` (Φ, t )wf
CTXVAR

Ψ ` Φwf Ψ.i = [Φ] ctx

Ψ ` (Φ, φi )wf
CTXCVAR

Ψ; Φ ` σ : Φ′

Ψ; Φ ` • : •
SUBSTEMPTY

Ψ; Φ ` σ : Φ′ Ψ; Φ ` t : t ′ ·σ
Ψ; Φ ` (σ , t ) : (Φ′, t ′)

SUBSTVAR

Ψ; Φ ` σ : Φ′ Ψ.i = [Φ′] ctx (Φ′, φi )⊆ Φ
Ψ; Φ ` (σ , id(φi )) : (Φ

′, φi )
SUBSTCVAR

Figure 4.9: Extension of λHOL with parametric contexts: Typing

We present the extension of λHOL in a series of figures: Figure 4.4 gives the extension to the syntax;
Figures 4.5 through 4.7 give the syntactic operations; Figure 4.8 defines the new relation of subsumption
for contexts and substitutions; Figures 4.9 and 4.10 give the new typing rules; and Figure 4.11 gives the
new syntactic operation of extension substitution application. We will now describe these in more detail.

First of all, instead of having just metavariables Xi as in the previous section, we now also have context
variables φi . These are free variables coming from the same context as metavariables Ψ. We refer to both
metavariables and context variables as extension variables and to the context Ψ as the extension context.
Note that even though we use different notation for the two kinds of variables this is mostly a presenta-
tion convenience; we use Vi to mean either kind. Extension variables are typed through extension types
– which in the case of metavariables are normal contextual terms. Context variables stand for contexts
that assume a given context prefix Φ, as in the case of the informal example of φ above. We write their
type as [Φ] ctx, specifying the prefix they assume Φ and the fact that they stand for contexts. The instan-
tiations of extension variables are extension terms T , lists of which form extension substitutions denoted
as σΨ. In the case of metavariables, an instantiation is a contextual term [Φ] t as we saw it in the previous
section, its type matching the contextual type [Φ] t ′ (rule EXTCTXTERM in in Figure 4.10). In the case of
a context variable φi : [Φ] ctx an instantiation a context Φ′ that extends the prefix Φ (rule EXTCTXINST in
Figure 4.10). We denote partial contexts such as Φ′ as [Φ]Φ′ repeating the information about Φ just as we
did for instantiations of metavariables.

In order to be able to use context parameters, we extend the contexts Φ in Figure 4.4 so that they
can mention such variables. Well-formedness for contexts is similarly extended in Figure 4.9 with the
rule CTXCVAR. Notice that we are only allowed to use a context variable when its prefix exactly matches
the current context; this is unlike metavariables where we allow them to be used in different contexts by
specifying a substitution. This was guided by practical reasons, as we have not found cases where the extra
flexibility of being able to provide a substitution is needed; still, it might be a useful addition in the future.

As described earlier, free logical variables are now indexed by parametric deBruijn levels L instead
of natural numbers. This is reflected in the new syntax for logical terms which includes the form vL
instead of vi in Figure 4.4. The new syntactic class of parametric deBruijn levels represents the number of
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Ψ; Φ ` t : t ′

c : t ∈Σ
Ψ; Φ `Σ c : t

CONSTANT
Φ.L= t

Ψ; Φ ` vL : t
VAR

(s , s ′) ∈A
Ψ; Φ ` s : s ′

SORT

Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : s ′ (s , s ′, s ′′) ∈R

Ψ; Φ `Π(t1).t2 : s ′′
ΠTYPE

Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : t ′ Ψ; Φ `Π(t1).
�

t ′
�

|Φ|õ1 : s ′

Ψ; Φ ` λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|õ1

ΠINTRO

Ψ; Φ ` t1 :Π(t ).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
�

t ′
�

|Φ| · (idΦ, t2)
ΠELIM

Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ′

Ψ; Φ `Xi/σ : t ′ ·σ
METAVAR

`Ψwf

` •wf
EXTCEMPTY

`Ψwf Ψ ` Φwf

` (Ψ, [Φ] ctx)wf
EXTCMETA

`Ψwf Ψ ` [Φ] t : [Φ] s

` (Ψ, [Φ] t )wf
EXTCCTX

Ψ ` T : K

Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
EXTCTXTERM

Ψ ` Φ, Φ′ wf

Ψ ` [Φ]Φ′ : [Φ] ctx
EXTCTXINST

Ψ ` σΨ :Ψ′

Ψ ` • : •
EXTSEMPTY

Ψ ` σΨ :Ψ′ Ψ ` T : K ·σΨ
Ψ ` (σΨ, T ) : (Ψ′, K)

EXTSVAR

Figure 4.10: Extension of λHOL with parametric contexts: Typing (continued)

67



L ·σΨ
0 ·σΨ = 0
(Lõ 1) ·σΨ = (L ·σΨ)õ 1

∗ (Lõ |φi |) ·σΨ = (L ·σΨ)õ |Φ′| when σΨ.i = [_]Φ′

t ·σΨ
∗ vL ·σΨ = vL·σΨ
(Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [_] t

σ ·σΨ
• ·σΨ = •
(σ , t ) ·σΨ = σ ·σΨ, t ·σΨ

∗ (σ , id(φi )) ·σΨ = σ ·σΨ, id[Φ]Φ′ when σΨ.i = [Φ]Φ′

Φ ·σΨ
• ·σΨ = •
(Φ, t ) ·σΨ = Φ ·σΨ, t ·σΨ

∗ (Φ, φi ) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [_]Φ′

T ·σΨ
([Φ] t ) ·σΨ = [Φ ·σΨ] (t ·σΨ)
([Φ]Φ′) ·σΨ = [Φ ·σΨ] (Φ′ ·σΨ)

K ·σΨ
([Φ] t ) ·σΨ = [Φ ·σΨ] (t ·σΨ)
([Φ] ctx) ·σΨ = [Φ ·σΨ] ctx

σΨ ·σ ′Ψ
• ·σ ′Ψ = •
(σΨ, T ) ·σ ′Ψ = σΨ ·σ ′Ψ, T ·σ ′Ψ

Figure 4.11: Extension of λHOL with parametric contexts: Extension substitution application
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variables from the current context that we have to skip over in order to reach the variable we are referring
to. When the current context mentions a context variableφi , we need to skip over an unspecified number
of variables – or rather, as many variables as the length of the instantiation ofφi . We denote this length as
|φi |. Thus, instead of numbers, levels can be seen as first-order polynomials over the |φi | variables. More
precisely, they are polynomials that only use noncommutative addition that we denote as õ, reflecting
the fact that contexts are ordered. It is easy to see that rearranging the uses of |φi | variables inside level
polynomials we would lose the connection to the context they refer to.

Substitutions are extended similarly in Figure 4.4 to account for context variables, using the place-
holder id(φi ) to stand for the identity substitution once φi gets instantiated. Notice that since φi is
instantiated with a partial context [Φ]Φ′, the identity substitution expanded in the place of id(φi ) will
similarly be a partial identity substitution, starting with the variable coming afterΦ. We define this as a new
syntactic operation in Figure 4.5. The new typing rule for substitutions SUBSTCVAR given in Figure 4.9
requires that we can only use the identity substitution placeholder for φi if the current context includes
φi . We make this notion of inclusion precise through the relation of context subsumption, formalized in
Figure 4.8, where it is also defined for substitutions so that it can be used in some lemma statements.

The change to parametric levels immediately changes many aspects of the definition of λHOL: for
example, accessing the L-th element of a context or a substitution is not directly intuitively clear anymore,
as L is more than a number and contexts or substitutions are more than lists of terms. We have adapted
all such operations, including relations such as level comparisons (e.g. L< L′) and operations such as level
addition (e.g. LõL′ = L′′). We only give some of these here: substitution and context length and accessing
operations in Figure 4.5; level comparison and variable limits in Figure 4.6; and freshening and binding in
Figure 4.7.

Last, the most important new addition to the language is the operation of applying an extension
substitution σΨ, given in Figure 4.11 and especially the case for instantiating a context variable. To see
how this works, consider the following example: we have the context variable φ0 : [x : Nat] ctx and the
contextual term:
T = [x : Nat, φ0, y : Nat]plus x y
represented as T = [Nat, φ0, Nat]plus v0 v1õ|φ0|.
We instantiate φ0 through the extension substitution:
σΨ = (φ0 7→ [x : Nat] y : Nat, z : Nat )
represented as σΨ = ( [Nat]Nat, Nat ). The steps are as follows:

([Nat, φ0, Nat]plus v0 v1õ|φ0|) ·σΨ = [(Nat, φ0, Nat) ·σΨ] (plus v0 v1õ|φ0|) ·σΨ
= [Nat, Nat, Nat, Nat] (plus v0 v1õ|φ0|) ·σΨ
= [Nat, Nat, Nat, Nat]plus v0 v1õ(|φ0|·σΨ)

= [Nat, Nat, Nat, Nat]plus v0 v1õ2

= [Nat, Nat, Nat, Nat]plus v0 v3

Though not shown in the example, identity substitution placeholders id(φi ) are expanded to identity
substitutions, similarly to how contexts are expanded in place of φi variables.

69



Metatheory

We will now extend the metatheoretic results we have for λHOL to account for the additions and adjust-
ments presented here. The auxiliary lemmas that we proved in the previous section are simple to extend
using the proof techniques we have shown. We will rather focus on auxiliary lemmas whose proofs are
rendered interesting because of the new additions, and also on covering the new cases for the main substi-
tution theorems.

Lemma 4.2.1 (Identity substitution leaves terms unchanged)

1.
t < f L |Φ|= L

t · idΦ = t
2.
σ < f L |Φ|= L

σ · idΦ = σ

Proof. Part 1 is proved by induction on t < f L. The interesting case is vL′ , with L′ < L. In this case we
have to prove idΦ.L′ = vL′ . This is done by induction on L′ < L.
When L = L′õ 1 we have by inversion of |Φ| = L that Φ = Φ′, t and |Φ′| = L′. Thus idΦ = idΦ′ , vL′ and
hence the desired result.
When L= L′õ |φi |, similarly.
When L= L∗õ 1 and L′ < L∗, we have that Φ= Φ∗, t and |Φ∗|= L∗. By (inner) induction hypothesis we
get that idΦ∗ .L

′ = vL′ . From this we get directly that idΦ.L′ = vL′ .
When L= L∗õ |φi | and L′ < L∗, entirely as the previous case.
Part 2 is trivial to prove by induction and use of part 1 in cases σ = • or σ = σ ′, t . In the case σ =
σ ′, id(φi ) we have: σ ′ < f L thus by induction σ ′ · idΦ = σ ′, and furthermore (σ ′, id(φi )) · idΦ = σ . �

Theorem 4.2.2 (Extension of Theorem 4.1.5) (Substitution)

1.
Ψ; Φ ` t : t ′ Ψ; Φ′ ` σ : Φ

Ψ; Φ′ ` t ·σ : t ′ ·σ
2.
Ψ; Φ′ ` σ : Φ Ψ; Φ′′ ` σ ′ : Φ′

Ψ; Φ′′ ` σ ·σ ′ : Φ

Proof. Part 1 is identical as before; all the needed lemmas are trivial to adjust, so the new form of indexes
does not change the proof at all. Similarly for part 2, save for extending the previous proof by the new
case for substitutions.

Case SUBSTCVAR.




Ψ; Φ′ ` σ : Φ0 Ψ.i = [Φ0] ctx (Φ0, φi )⊆ Φ
′

Ψ; Φ′ ` (σ , id(φi )) : (Φ0, φi )





By induction hypothesis for σ , we get: Ψ; Φ′′ ` σ ·σ ′ : Φ0.
We need to prove that (Φ0, φi )⊆ Φ′′.
By induction on (Φ0, φi ) ⊆ Φ′ and repeated inversions of the typing of σ ′ we arrive at a σ ′′ ⊆ σ ′ such
that:
Ψ; Φ′′ ` σ ′′ : Φ0, φi
By inversion of this we get that (Φ0, φi )⊆ Φ′′.
Thus, using the same typing rule, we get:
Ψ; Φ′′ ` (σ ·σ ′, id(φi )) : (Φ0, φi ), which is the desired. �
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Lemma 4.2.3 (Interaction of extensions substitution and element access)
1. (σ .L) ·σΨ = (σ ·σΨ).L ·σΨ
2. (Φ.L) ·σΨ = (Φ ·σΨ).L ·σΨ

Proof. By induction on L and taking into account the implicit assumption that L< |σ | or L< |Φ|. �

Lemma 4.2.4 (Extension of Lemma 4.1.11) (Substitution and extension substitution application distribute)
1. (t ·σ) ·σΨ = (t ·σΨ) · (σ ·σΨ)
2. (σ ·σ ′) ·σΨ = (σ ·σΨ) · (σ ′ ·σΨ)

Proof. Part 1 is identical as before. Part 2 is trivial to prove for the new case of σ . �

Lemma 4.2.5 (Extension substitutions are associative)
1. (L ·σΨ) ·σ ′Ψ = L · (σΨ ·σ ′Ψ)
2. (t ·σΨ) ·σ ′Ψ = t · (σΨ ·σ ′Ψ)
3. (Φ ·σΨ) ·σ ′Ψ =Φ · (σΨ ·σ

′
Ψ)

4. (σ ·σΨ) ·σ ′Ψ = σ · (σΨ ·σ
′
Ψ)

5. (T ·σΨ) ·σ ′Ψ = T · (σΨ ·σ ′Ψ)
6. (K ·σΨ) ·σ ′Ψ =K · (σΨ ·σ ′Ψ)
7. (Ψ ·σΨ) ·σ ′Ψ =Ψ · (σΨ ·σ

′
Ψ)

Proof.

Part 1 By induction on L. The interesting case is L= L′õφi . In that case we have:

(L ·σΨ) ·σ
′
Ψ = (L

′ ·σΨ) ·σ
′
Ψõ |Φ

′| ·σ ′Ψ (assuming σΨ.i = [Φ]Φ′)

= (L′ ·σΨ) ·σ
′
Ψõ |Φ

′ ·σ ′Ψ|
= L′ · (σΨ ·σ

′
Ψ)õ |Φ

′ ·σ ′Ψ| (by induction hypothesis)

This is the desired, since (σΨ ·σ ′Ψ).i = [Φ ·σΨ]Φ
′ ·σ ′Ψ.

Part 2 By induction on t . The interesting case is t =Xi/σ . The left-hand-side is then equal to:

(σΨ.i · (σ ·σΨ)) ·σ
′
Ψ = (t · (σ ·σΨ)) ·σ

′
Ψ (assuming σΨ.i = [Φ] t )

= (t ·σ ′Ψ) · ((σ ·σΨ) ·σ
′
Ψ) (through Lemma 4.2.4)

= (t ·σ ′Ψ) · (σ · (σΨ ·σ
′
Ψ)) (through part 4)

The right-hand side is written as:

(Xi/σ) · (σΨ ·σ
′
Ψ) = ((σΨ ·σ

′
Ψ).i) · (σ · (σΨ ·σ

′
Ψ))

= ((σΨ.i) ·σ ′Ψ) · (σ · (σΨ ·σ
′
Ψ))

= ([Φ ·σ ′Ψ] (t ·σ
′
Ψ)) · (σ · (σΨ ·σ

′
Ψ))

= (t ·σ ′Ψ) · (σ · (σΨ ·σ
′
Ψ))
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Part 3 By induction on Φ. When Φ=Φ, φi and assuming σΨ.i = [Φ]Φ′ we have that the left-hand side
is equal to:

(Φ ·σΨ) ·σ
′
Ψ, Φ′ ·σ ′Ψ =Φ · (σΨ ·σ

′
Ψ), Φ

′ ·σ ′Ψ (by induction hypothesis)

Also, we have that (σΨ ·σ ′Ψ).i = [Φ ·σ
′
Ψ]Φ

′ ·σ ′Ψ
3.

The right-hand-side is also equal to Φ · (σΨ ·σ ′Ψ), Φ
′ ·σ ′Ψ.

Rest Similarly as above. �

Theorem 4.2.6 (Extension of Theorem 4.1.13) (Extension substitution application)

1.
Ψ; Φ ` t : t ′ Ψ′ ` σΨ :Ψ

Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ
2.
Ψ; Φ ` σ : Φ′ Ψ′ ` σΨ :Ψ

Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ
3.
Ψ ` Φwf Ψ′ ` σΨ :Ψ

Ψ′ ` Φ ·σΨ wf

4.
Ψ ` T : K Ψ′ ` σΨ :Ψ

Ψ′ ` T ·σΨ : K ·σΨ
5.
Ψ′ ` σΨ :Ψ Ψ′′ ` σ ′Ψ :Ψ′

Ψ′′ ` σΨ ·σ
′
Ψ :Ψ

Proof. We extend our previous proof as follows.

Case VAR.




Φ.L= t

Ψ; Φ ` vL : t





We have (Φ ·σΨ).(L ·σΨ) = (Φ.L) ·σΨ = t ·σΨ from Lemma 4.2.3. Thus using the same rule for vL·σΨ we
get the desired result.

Case SUBSTCVAR.




Ψ; Φ ` σ : Φ′ Ψ.i = [Φ′] ctx Φ′, φi ⊆ Φ

Ψ; Φ ` (σ , id(φi )) : (Φ
′, φi )





In this case we need to prove that Ψ′; Φ ·σΨ ` (σ ·σΨ, idσΨ.i ) : (Φ
′ ·σΨ, σΨ.i).

By induction hypothesis for σ we get that Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.
Also, we have that Ψ′ ` σΨ.i :Ψ.i ·σΨ.
Since Ψ.i = [Φ′] ctx this can be rewritten as: Ψ′ ` σΨ.i : [Φ′ ·σΨ] ctx.
By typing inversion get σΨ.i = [Φ′ ·σΨ]Φ′′ for some Φ′′ and:
Ψ′ ` [Φ′ ·σΨ]Φ′′ : [Φ′ ·σΨ] ctx.
Now proceed by induction on Φ′′ to prove that
Ψ′; Φ ·σΨ ` (σ ·σΨ, idσΨ.i ) : (Φ

′ ·σΨ, σΨ.i).
When Φ′′ = •, trivial.
When Φ′′ = Φ′′′, t , have Ψ′; Φ · σΨ ` σ · σΨ, id[Φ′·σΨ]Φ′′′ : (Φ′ · σΨ, Φ′′′) by induction hypothesis. We
can append v|Φ′·σΨ|õ|Φ′′′| to this substitution and get the desired, because (|Φ′ ·σΨ|, |Φ′′′|)< |Φ ·σΨ|. This is

3. Typing will require that Φ ·σ ′Ψ =Φ · (σΨ ·σ
′
Ψ)
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because (Φ′, φi )⊆ Φ thus (Φ′ ·σΨ, Φ′′′, t )⊆ Φ and (|Φ′ ·σΨ|õ |Φ′′′|õ 1)≤ |Φ|.
When Φ′′ = Φ′′′, φ j , have Ψ′; Φ · σΨ ` σ · σΨ, id[Φ′·σΨ]Φ′′′ : (Φ′ · σΨ, Φ′′′). Now we have that Φ′, φi ⊆ Φ,
which also means that (Φ′ ·σΨ, Φ′′′, φ j )⊆ Φ ·σΨ. Thus we can apply the typing rule for id(φ j ) to get that
Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ , id(φ j ) : (Φ

′ ·σΨ, Φ′′′, φ j ), which is the desired.

Case CTXCVAR.




Ψ ` Φwf Ψ.i = [Φ] ctx

Ψ ` (Φ, φi )wf





By induction hypothesis we get Ψ′ ` Φ ·σΨ wf.
Also, we have that Ψ′ ` σΨ.i :Ψ.i ·σΨ.
Since Ψ.i = [Φ] ctx the above can be rewritten as Ψ′ ` σΨ.i : [Φ ·σΨ] ctx.
By inversion of typing get that σΨ.i = [Φ ·σΨ]Φ′ and that Ψ′ ` Φ ·σΨ, Φ′ wf. This is exactly the desired
result.

Case EXTCTXINST.




Ψ ` Φ, Φ′ wf

Ψ ` [Φ]Φ′ : [Φ] ctx





By use of part 3 we get Ψ′ ` Φ ·σΨ, Φ′ ·σΨ wf.
Thus by the same typing rule we get exactly the desired.

Case EXTSVAR.




Ψ′ ` σΨ :Ψ Ψ′ ` T : K ·σΨ
Ψ′ ` (σΨ, T ) : (Ψ, K)





By induction hypothesis we get Ψ′′ ` σΨ ·σ ′Ψ :Ψ.
By use of part 4 we get Ψ′′ ` T ·σ ′Ψ : (K ·σΨ) ·σ ′Ψ.
This is equal to K · (σΨ ·σ ′Ψ) by use of Lemma 4.2.5. Thus we get the desired result by applying the same
typing rule. �

4.3 Constant schemata in signatures

The λHOL logic as presented so far does not allow for polymorphism over kinds. For example, it does
not support lists List α : Type of an arbitrary α : Type kind, or types for its associated constructor ob-
jects. Similarly, in order to define the elimination principle for natural numbers, we need to provide one
constant in the signature for each individual return kind that we use, with the following form:

elimNatK : K→ (Nat→K→K)→ (Nat→K)

Another similar case is the proof of symmetricity for equality given in Section 3.2, which needs to be
parametric over the kind of the involved terms. One way to solve this issue would be to include the
PTS rule (Type′,Type,Type) in the logic; but it is well known that this leads to inconsistency because of
Girard’s paradox [Girard, 1972, Coquand, 1986, Hurkens, 1995]. This in turn can be solved by supporting
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Syntax:

(Signature) Σ ::= • | Σ, c : [Φ] t
(Logical terms) t ::= c/σ | · · ·

`Σwf

` •wf
SIGEMPTY

`Σwf •; • `Σ [Φ] t : [Φ] s (c : _) 6∈Σ
`Σ, c : [Φ] t wf

SIGCONST

Φ `Σ t : t ′

the rule CONSTANT is replaced by:

c : [Φ′] t ′ ∈Σ Ψ; Φ ` σ : Φ′

Ψ; Φ `Σ c/σ : t ′ ·σ
CONSTSCHEMA

Figure 4.12: Extension to λHOL with constant-schema-based signatures: Syntax and typing

a predicative hierarchy of Type universes. We will consider a different alternative instead: viewing the
signature Σ as a list of constant schemata instead of a (potentially infinite) list of constants. Each schema
expects a number of parameters, just as elimNat above needs the return kind K as a parameter; every
instantiation of the schema can then be viewed as a different constant. Therefore this change does not
affect the consistency of the system, as we can still view the signature of constant schemata as a signature
of constants.

This description of constant schemas corresponds exactly to the way that we have defined and used
meta-variables above. We can see the context that a meta-variable depends on as a context of parameters
and the substitution required when using the meta-variable as the instantiation of those parameters. There-
fore, we can support constant schematas by changing the signature Σ to be a context of meta-variables
instead of a context of variables. We give the new syntax and typing rules for Σ in Figure 4.12. We give
an example of using constant schemata for the definition of polymorphic lists in Figure 4.13, where we
also provide constants for primitive recursion and induction over lists. We use named variables for pre-
sentation purposes. We specify the substitutions used together with the constant schemata explicitly; in
the future we will omit these substitutions as they are usually trivial to infer from context. Our version of
λHOL supports inductive definitions of kinds and propositions that generate a similar list of constants.

It is trivial to adapt the metatheory lemmas we have proved so far in order account for this change. In-
tuitively, we can view the variable-basedΣ context as a special variable contextΦΣ that is always prepended
to the actual Φ context at hand; the metavariable-basedΣ is a similar special metavariable contextΨΣ. The
adaptation needed is therefore exactly equivalent to moving from the CONSTANT rule that corresponds
to the VAR rule for using a variable out of a Φ context, to the CONSTSCHEMA rule corresponding to the
METAVAR rule for using a metavariable out of Ψ. Since we have proved that all our lemmas still hold in
the presence of the METAVAR rule, they will also hold in the presence of CONSTSCHEMA. With the for-
mal description of constant schemata in place, we can make the reason why the consistency of the logic
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List : [α : Type]Type
nil : [α : Type]List/(α)
cons : [α : Type]α→ List/(α)→ List/(α)
elimList : [α : Type, T : Type]

T → (α→ List/(α)→ T → T )→ (List/(α)→ T )
elimListNil : [α : Type, T : Type]

∀ fn : T .∀ fc : α→ List/α→ T → T .
elimList/(α, T ) fn fc nil/α= fn

elimListCons : [α : Type, T : Type]
∀ fn : T .∀ fc : α→ List/α→ T → T .∀t : α.∀l : List/α.
elimList/(α, T ) fn fc (cons/α t l ) =

fc t l (elimList/(α, T ) fn fc l )
indList : [α : Type, P : List/α→ Type]

P nil/α→ (∀t : α.∀l : α.P l → P (cons/α t l ))→
∀l : List/α.P l

Figure 4.13: Definition of polymorphic lists in λHOL through constant schemata

is not influenced precise: extension terms and their types, where the extra dependence on parameters is
recorded, are not internalized within the logic – they do not become part of the normal logical terms.
Thus [Type]Type is not a Type, therefore Type is not predicative and Girard’s paradox cannot be encoded.

4.4 Named extension variables

We have only considered the case where extension variables Xi and φi are free. This is enough in order
to make use of extension variables in λHOL, as the logic itself does not include constructs that bind these
kinds of variables. Our computational language, on the other hand, will need to be able to bind extension
variables. We thus need to extend λHOL so that we can use such bound extension variables in further
logical terms.

In the interests of avoiding needlessly complicating our presentation, we will use named extension
variables instead in our description of the computational language, which follows in Chapter 6. As men-
tioned earlier in Section 4.1, our original choice of using hybrid deBruijn variables for extension vari-
ables is not as integral as it is for normal variables; we made it having future extensions in mind (such
as meta-N-variables) and in order to be as close as possible to the variable representation we use in our
implementation. We will thus not discuss the extension with bound extension variables further, as using
named extension variables masks the distinction between free and bound variables. The extension closely
follows the definitions and proofs for normal variables and their associated freshening and binding oper-
ations, generalizing them to the case where we bind multiple extension variables at once. The interested
reader can find the full details of this extension in our published Technical Report [Stampoulis and Shao,
2012b].

We show the new syntax that uses named extension variables in Figure 4.14 and the new typing rules in
Figure 4.15. The main change is that we have included variable names in extension contexts and extension
substitutions. We use V for extension variables when it is not known whether they are metavariables X
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(Logical terms) t ::= X /σ
(Parametric deBruijn levels) L ::= 0 | Lõ 1 | Lõ |φ|

(Contexts) Φ ::= · · · | Φ, φ
(Substitutions) σ ::= · · · | σ , id(φ)

(Extension variables) V ::= X | φ
(Extension terms) T ::= [Φ] t | [Φ]Φ′
(Extension types) K ::= [Φ] t | [Φ] ctx

(Extension contexts) Ψ ::= • | Ψ, V : K
(Extension substitutions) σΨ ::= • | σΨ, T /V

Figure 4.14: λHOL with named extension variables: Syntax

or context variables φ. Furthermore, instead of using integers to index into contexts and substitutions
we use names. The connection with the formulation where extension variables are deBruijn indices is
direct. Last, we will sometimes use the standard substitution notation T ′[T /V ] to denote the operation
T ′ · (idΨ, T /V ), when the exact Ψ context needed is easily inferrable from the context.
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Ψ `Σ Φwf

Ψ ` Φwf Ψ.φ= [Φ] ctx

Ψ ` (Φ, φ)wf
CTXCVAR

Ψ; Φ ` σ : Φ′

Ψ; Φ ` σ : Φ′ Ψ.φ= [Φ′] ctx (Φ′, φ)⊆ Φ
Ψ; Φ ` (σ , id(φ)) : (Φ′, φ)

SUBSTCVAR

Ψ; Φ ` t : t ′

Ψ.X = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ′

Ψ; Φ `X /σ : t ′ ·σ
METAVAR

`Ψwf

` •wf
EXTCEMPTY

`Ψwf Ψ ` Φwf

` (Ψ, φ : [Φ] ctx)wf
EXTCMETA

`Ψwf Ψ ` [Φ] t : [Φ] s

` (Ψ, X : [Φ] t )wf
EXTCCTX

Ψ ` σΨ :Ψ′

Ψ ` • : •
EXTSEMPTY

Ψ ` σΨ :Ψ′ Ψ ` T : K ·σΨ
Ψ ` (σΨ, T /V ) : (Ψ′, V : K)

EXTSVAR

Figure 4.15: λHOL with named extension variables: Typing
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Chapter 5

The logic λHOL: Pattern matching

Having presented λHOL with extension variables, we are ready to proceed to the main operation through
which λHOL terms are manipulated in VeriML: pattern matching. We will first describe the procedure
and metatheoretic proofs for matching a scrutinee against a pattern in Section 5.1. In Section 5.2, we will
present an approach that enables us to use the same pattern matching procedure when the scrutinee is not
closed with respect to extension variables.

5.1 Pattern matching

In Section 2.3 we noted the central importance that pattern matching constructs have in VeriML. We
presented two constructs: one for matching over contextual terms and one for matching over contexts.
Having seen the details of extension terms in the previous chapter, it is now clear that these two constructs
are in fact a single construct for pattern matching over extension terms T . In this section we will give
the details of what patterns are, how unification of a pattern against a term works and prove the main
metatheoretic result about this procedure.

Informally we can say that a pattern is the ‘skeleton’ of a term, where some parts are specified and some
parts are missing. We name each missing subterm using unification variables. An example is the following
pattern for a proposition, where we denote unification variables by prefixing them with a question mark:

?P ∧ (∀x : Nat.?Q)

A pattern matches a term when we can find a substitution for the missing parts so that the pattern is
rendered equal to the given term. For example, the above pattern matches the term (∀x : Nat.x + x ≥
x)∧ (∀x : Nat .x ≥ 0) using the substitution:

?P 7→ (∀x : Nat.x + x ≥ x), ?Q 7→ x ≥ 0

As the above example suggests, unification variables can be used in patterns under the binding con-
structs of the λHOL logic. Because of this, if we view unification variables as typed variables, their type
includes the information about the variables context of the missing subterm, in addition to its type. It is
therefore evident that unification variables are a special kind of meta-variables; and that we can view the
substitution returned from pattern matching as being composed from contextual terms to be substituted
for these (unification) meta-variables. The situation for matching contexts against patterns that include
context unification variables is similar. Therefore we can view patterns as a special kind of extension
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terms where the extension variables used are viewed as unification variables. We will place further restric-
tions on what terms are allowed as patterns, resulting in a new typing judgement that we will denote as
Ψ P̀ T : K . Based on these, we can formulate pattern matching for λHOL as follows. Assuming a pattern
TP and an extension term T (the scrutinee) with the following typing:

Ψu P̀ TP : K and • ` T : K

where the extension context Ψu describes the unification variables used in TP , pattern matching is a
procedure which decides whether a substitution σΨ exists so that:

• ` σΨ :Ψu and TP ·σΨ = T

We will proceed as follows.

1. First, we will define the typing judgement for patterns Ψ P̀ T : K . This will be mostly identical to
the normal typing for terms, save for certain restrictions so that pattern matching is decidable and
deterministic.

2. Then, we will define an operation to extract the relevant variables out of typing derivations; it will
work by isolating the partial context that gets used in a given derivation. This is useful for two
reasons: first, to ensure that all the defined unification variables get used in a pattern; otherwise,
pattern matching would not be deterministic as unused variables could be instantiated with any
arbitrary term. Second, isolating the partial context is crucial in stating the induction principle
needed for the pattern matching theorem that we will prove.

3. Using this operation, we will define an even more restrictive typing judgement for patterns, which
requires all unification variables defined to be relevant, ruling out in this way variables that are not
used. A sketch of its formal definition is as follows:

Ψ, Ψu P̀ TP : K relevant
�

Ψ, Ψu P̀ TP : K
�

= · · · ,Ψu

Ψ `?P Ψu > TP : K

Let us explain this rule briefly. First, Ψ represents the normal extension variables whereas Ψu
represents the newly-defined unification variables. The judgement Ψ ?̀

P Ψu > TP : K is understood
as: “in extension context Ψ, the introduction of the unification variables Ψu renders TP a valid
pattern of extension type K”. The second premise of this rule uses the operation that extracts
relevant variables out of a derivation in order to make sure that all unification variables are relevant.
We will prove a substitution theorem for this rule, with the following formal statement:

Ψ `?P Ψu > TP : K Ψ′ ` σΨ :Ψ

Ψ′ `?P Ψu ·σΨ > TP ·σΨ : K ·σΨ
SUBSTITUTION LEMMA

This theorem extends the extension substitution theorem 4.2.6 so as to apply to the case of patterns
as well.

4. Based on these, we will prove the fact that pattern matching is decidable and deterministic. We will
carry out the proof in a constructive manner; its computational counterpart will be the pattern
matching algorithm that we will use. Therefore the pattern matching algorithm will be sound and
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complete directly by construction. The algorithm thus produces a substitution σΨ of instantiations
to the unification variables making the pattern and the scrutinee match, when one such substitution
exists; or fails, when there is no such substitution. We write TP ∼ T = σΨ for an execution of
this algorithm between the pattern TP and the scrutinee T , when it results in a substitution σΨ.
Formally, the statements of the related theorems we will prove are as follows.

• `?P Ψu > TP : K • ` T : K

∃≤1σΨ.( • ` σΨ :Ψu TP ·σΨ = T )
PATTERN MATCHING

DETERMINISM AND DECIDABILITY

• `?P Ψu > TP : K • ` T : K TP ∼ T = σΨ
• ` σΨ :Ψu TP ·σΨ = T

PATTERN MATCHING

ALGORITHM SOUNDNESS

• `?P Ψu > TP : K • ` T : K
∃σΨ.( • ` σΨ :Ψu TP ·σΨ = T )

TP ∼ T = σΨ

PATTERN MATCHING

ALGORITHM COMPLETENESS

Pattern typing

In Figures 5.1 and 5.2 we give the details of pattern typing. The typing judgements use the extension
context Ψ, Ψu , composed from the normal extension variable context Ψ and the context of unification
variables Ψu . We will define the “actual” pattern matching process only between a ‘closed’ pattern and
a closed extension term, so the case will be that Ψ = •, as presented above. Yet being able to mention
existing variables from an Ψ context will be useful in order to describe patterns that exactly match a
yet-unspecified term. It is thus understood that even if a pattern depends on extension variables in a non-
emptyΨ context, those will have been substituted by concrete terms by the time that the “actual” pattern
matching happens.

The two kinds of variables are handled differently in the pattern typing rules themselves. For exam-
ple, the rule for using an exact context variable PCTXCVAREXACT is different than the rule for using a
unification context variable PCTXCVARUNIFY. The difference is subtle: the latter rule does not allow
existing unification variables to inform the well-formedness of the Φ context; in other words, a unifica-
tion context variable cannot be used in a pattern after another unification context variable has already
been used. Consider the pattern φ0, φ1, where φ1 : [φ0] ctx. Any non-empty context could be matched
against this pattern, yet the exact point of the split between which variables belong to the φ0 context and
which to φ1 is completely arbitrary. This would destroy determinacy of pattern matching thus this form
is disallowed using this rule.

Metavariables typing in patterns is similarly governed by two rules: PMETAVAREXACT and PMETAVARUNIF.
The former is the standard typing rule for metavariables save for a sort restriction which we will comment
on shortly. The latter is the rule for using a unification variable. The main restriction that it has is that the
substitution σ used must be the identity substitution – or more accurately, the identity substitution for
a prefix of the current context. If arbitrary substitutions were allowed, matching a pattern Xi/σ against
a term t would require finding an inverse substitution σ−1 and using t · σ−1 as the instantiation for Xi ,
so that t · σ−1 · σ = t . This destroys determinacy of pattern matching, as multiple inverse substitutions
might be possible; but it also destroys decidability if further unification variables are allowed inside σ , as
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Ψ P̀ Ψu wf

Ψ P̀ •wf
UVAREMPTY

Ψ P̀ Ψu wf Ψ, Ψu P̀ [Φ] t : [Φ] s

Ψ P̀ (Ψu , [Φ] t )wf
UVARMETA

Ψ P̀ Ψu wf Ψ, Ψu P̀ Φwf

Ψ P̀ (Ψu , [Φ] ctx)wf
UVARCTX

Ψ, Ψu P̀ T : K

Ψ, Ψu ; Φ P̀ t : t ′ Ψ, Ψu ; Φ ` t ′ : s

Ψ, Ψu P̀ [Φ] t : [Φ] t ′
PEXTCTXTERM

Ψ, Ψu P̀ Φ, Φ′ wf

Ψ, Ψu P̀ [Φ]Φ
′ : [Φ] ctx

PEXTCTXINST

Ψ, Ψu P̀ Φwf

Ψ, Ψu P̀ •wf
PCTXEXPTY

Ψ, Ψu P̀ Φwf Ψ, Ψu ; Φ P̀ t : s

Ψ, Ψu P̀ (Φ, t )wf
PCTXVAR

Ψ, Ψu P̀ Φwf i < |Ψ| (Ψ, Ψu ).i = [Φ] ctx

Ψ, Ψu P̀ (Φ, φi )wf
PCTXCVAREXACT

Ψ P̀ Φwf i ≥ |Ψ| (Ψ, Ψu ).i = [Φ] ctx

Ψ, Ψu P̀ (Φ, φi )wf
PCTXCVARUNIF

Ψ, Ψu ; Φ P̀ σ : Φ′

Ψ, Ψu ; Φ P̀ • : •
PSUBSTEMPTY

Ψ, Ψu ; Φ P̀ σ : Φ′ Ψ, Ψu ; Φ P̀ t : t ′ ·σ
Ψ, Ψu ; Φ P̀ (σ , t ) : (Φ′, t ′)

PSUBSTVAR

Ψ, Ψu ; Φ P̀ σ : Φ′ (Ψ, Ψu ).i = [Φ
′] ctx Φ′, φi ⊆ Φ

Ψ, Ψu ; Φ P̀ (σ , id(φi )) : (Φ
′, φi )

PSUBSTCVAR

Figure 5.1: Pattern typing for λHOL
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Ψ, Ψu ; Φ P̀ t : t ′

c : t ∈Σ •; • ` t : s s 6= Prop

Ψ, Ψu ; Φ P̀ c : t
PCONSTANT

Φ.L= t Ψ, Ψu ; Φ ` t : s s 6= Prop

Ψ, Ψu ; Φ P̀ vL : t
PVAR

(s , s ′) ∈A
Ψ, Ψu ; Φ P̀ s : s ′

PSORT
Ψ, Ψu ; Φ P̀ t1 : s Ψ, Ψu ; Φ, t1 P̀ dt2e|Φ| : s ′ (s , s ′, s ′′) ∈R

Ψ, Ψu ; Φ P̀ Π(t1).t2 : s ′′
PΠTYPE

Ψ, Ψu ; Φ P̀ t1 : s
Ψ, Ψu ; Φ, t1 P̀ dt2e|Φ| : t ′ Ψ, Ψu ; Φ P̀ Π(t1).

�

t ′
�

|Φ|õ1 : s ′ s ′ 6= Prop

Ψ, Ψu ; Φ P̀ λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|õ1

PΠINTRO

Ψ, Ψu ; Φ P̀ t1 :Π(t ).t ′ Ψ, Ψu ; Φ P̀ t2 : t Ψ, Ψu ; Φ P̀ Π(t ).t
′ : s ′ s ′ 6= Prop

Ψ, Ψu ; Φ P̀ t1 t2 :
�

t ′
�

|Φ| · (idΦ, t2)
PΠELIM

Ψ, Ψu ; Φ P̀ t1 : t Ψ, Ψu ; Φ P̀ t2 : t Ψ, Ψu ; Φ P̀ t : Type

Ψ, Ψu ; Φ P̀ t1 = t2 : Prop
PEQTYPE

(Ψ, Ψu ).i = T
T = [Φ′] t ′ i < |Ψ| Ψ, Ψu ; Φ P̀ σ : Φ′ Ψ, Ψu ` t ′ : s ′ s 6= Prop

Ψ, Ψu ; Φ P̀ Xi/σ : t ′ ·σ
PMETAVAREXACT

(Ψ, Ψu ).i = T T = [Φ′] t ′

i ≥ |Ψ| Ψ, Ψu ; Φ P̀ σ : Φ′ Φ′ ⊆ Φ σ = idΦ′ Ψ, Ψu ` t ′ : s ′ s 6= Prop

Ψ, Ψu ; Φ P̀ Xi/σ : t ′ ·σ
PMETAVARUNIF

Figure 5.2: Pattern typing for λHOL (continued)
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Assuming Ψ `Ψu wf:

T =Vi

Xi = [Φ]Xi/idΦ when (Ψ, Ψu ).i = [Φ] t ′

φi = [Φ]φi when (Ψ, Ψu ).i = [Φ] ctx
idΨu

id• = •
idΨ′u , K = idΨ′u , V|Ψ|+|Ψ′u |

Ψu ·σΨ
• ·σΨ = •
(Ψ′u , K) ·σΨ = Ψ′u ·σΨ, K · (σΨ, idΨ′u )

Figure 5.3: Syntactic operations for unification contexts

the problem becomes equivalent to higher-order unification, which is undecidable [Dowek, 2001]. Pre-
fixes of the identity substitution for the current context can be used to match against scrutinees that only
mention specific variables. For example we can use a pattern like Xi/• in order to match against closed
terms.

Last, many pattern typing rules impose a sort restriction. The reason is that we want to disallow
pattern matching against proof objects, so as to render the exact structure of proof objects computation-
ally irrelevant. We cannot thus look inside proof objects: we are only interested in the existence of a
proof object and not in its specific details. This will enable us to erase proof objects prior to evaluation
of VeriML programs. By inspection of the rules it is evident that Prop-sorted terms are not well-typed
as patterns; these terms are exactly the proof objects. The only Prop-sorted pattern that is allowed is the
unification variable case, which we can understand as a wildcard rule for matching any proof object of a
specific proposition.

We will need some metatheoretic facts about pattern typing: first, the fact that pattern typing implies
normal typing; and second, the equivalent of the extension substitution theorem 4.2.6 for patterns. We
will first need two definitions that lift identity substitutions and extension substitution application to
unification contexts Ψu typed in a context Ψ, given in Figure 5.3. In the same figure we give an operation
to include extension variables Vi as extension terms, by expanding them to the existing forms such as
[Φ]Vi/idΦ and [Φ]Vi . We remind the reader that Vi stands for either kind of an extension variable, that
is, either for a meta-variable Xi or for a context variable φi .

Lemma 5.1.1 (Pattern typing implies normal typing)

1.
Ψ P̀ Ψu wf

`Ψ, Ψu wf
2.
Ψ, Ψu P̀ T : K

Ψ, Ψu ` T : K
3.
Ψ, Ψu P̀ Φwf

Ψ, Ψu ` Φwf

4.
Ψ, Ψu P̀ σ : Φ

Ψ, Ψu ` σ : Φ
5.
Ψ, Ψu ; Φ P̀ t : t ′

Ψ, Ψu ; Φ ` t : t ′
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Proof. Trivial by induction on the typing derivations, as every pattern typing rule is a restriction of an
existing normal typing rule. �

Theorem 5.1.2 (Extension substitution application preserves pattern typing)
Assuming Ψ′ ` σΨ :Ψ and σ ′Ψ = σΨ, idΨu

,

1.
Ψ, Ψu ; Φ P̀ t : t ′

Ψ′, Ψu ·σΨ; Φ ·σ ′Ψ P̀ t ·σ ′Ψ : t ′ ·σ ′Ψ
2.

Ψ, Ψu ; Φ P̀ σ : Φ′

Ψ′, Ψu ·σΨ; Φ ·σ ′Ψ P̀ σ ·σ
′
Ψ : Φ′ ·σ ′Ψ

3.
Ψ, Ψu P̀ Φwf

Ψ′, Ψu ·σΨ P̀ Φ ·σ
′
Ψ wf

4.
Ψ, Ψu P̀ T : K

Ψ′, Ψu ·σΨ P̀ T ·σ ′Ψ : K ·σ ′Ψ
5.
Ψ P̀ Ψu wf

Ψ P̀ Ψu ·σΨ wf

Proof. In most cases proceed similarly as before. The cases that deserve special mention are the ones that
place extra restrictions compared to normal typing.

Case PCTXCVARUNIF.




Ψ P̀ Φwf i ≥ |Ψ| (Ψ, Ψu ).i = [Φ] ctx

Ψ, Ψu P̀ (Φ, φi )wf





We need to prove that Ψ′, Ψu ·σΨ P̀ Φ ·σ ′Ψ, φi ·σ ′Ψ wf.
We have that φi ·σ ′Ψ =φi−|Ψ|+|Ψ′|.
By induction hypothesis for Φ, with Ψu = •, we get:
Ψ P̀ Φ ·σΨ wf from which Ψ P̀ Φ ·σ ′Ψ wf directly follows.
We have i − |Ψ|+ |Ψ′| ≥ |Ψ′| because of i ≥ |Ψ|.
Last, we have that (Ψ′, Ψu ·σΨ).(i − |Ψ|+ |Ψ′|) = [Φ ·σ ′Ψ] ctx.
Thus using the same rule PCTXCVARUNIF we arrive at the desired.

Case PMETAVARUNIF.




(Ψ, Ψu ).i = T T = [Φ′] t ′ i ≥ |Ψ| Ψ, Ψu ; Φ P̀ σ : Φ′ Φ′ ⊆ Φ σ = idΦ′

Ψ, Ψu ; Φ P̀ Xi/σ : t ′ ·σ





Similar as above. Furthermore, we need to show that idΦ′ · σ ′Ψ = idΦ′·σ ′Ψ , which follows trivially by
induction on Φ′.

Case PVAR.




Φ.L= t Ψ, Ψu ; Φ ` t : s s 6= Prop

Ψ, Ψu ; Φ P̀ vL : t





We give the proof for this rule as an example of accounting for the sort restriction; other rules are proved
similarly. By induction hypothesis for t we get:
Ψ′, Ψu ·σΨ; Φ ·σ ′Ψ ` t ·σ ′Ψ : s ·σ ′Ψ
But s ·σ ′Ψ = s so the restriction s 6= Prop still holds. �
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The statement of the above lemma might be surprising at first. One could expect it to hold for the general
case where Ψ′ ` σΨ : (Ψ, Ψu ). This stronger statement is not true however, if we take into account the
restrictions we have placed: for example, substituting a unification variable for a proof object will result
in a term that is not allowed as a pattern. The statement we have proved is in fact all we need, as we will
use it only in cases where we are substituting the base Ψ context; the unification variables will only be
substituted by new unification variables that are well-typed in the resulting Ψ′ context. This becomes
clearer if we consider a first sketch of the pattern typing rule used in the computational language:

Ψ ` T : K Ψ P̀ Ψu wf Ψ, Ψu P̀ TP : K · · ·

Ψ · · · `match T with TP 7→ · · ·

Type-safety of the computational language critically depends on the fact that applying a substitution σΨ
for the currentΨ context yields expressions that are typable using the same typing rule. This fact is exactly
what can be proved using the lemma as stated.

Relevant typing

We will now proceed to define the notion of relevant variables and partial contexts. We say that a variable
is relevant for a term if it is used either directly in the term or indirectly in its type. A partial context bΨ
is a context where only the types for the relevant variables are specified; the others are left unspecified,
denoted as ?. We will define an operation relevant (Ψ; · · · ) for derivations that isolates the partial context
required for the relevant variables of the judgement. For example, considering the derivation resulting in:

φ0 : [] ctx, X1 : [φ0]Type, X2 : [φ0]X1, X3 : [φ0]X1 `X3 : [φ0]X1

the resulting partial context will be:

bΨ=φ0 : [] ctx, X1 : [φ0]Type, X2 : ?, X3 : [φ0]X1

where the variable X2 was unused in the derivation and is therefore left unspecified in the resulting partial
context.
The typing rule for patterns in the computational language will require that all unification variables are
relevant in order to ensure determinacy as noted above. Non-relevant variables can be substituted by
arbitrary terms, thus pattern-matching would have an infinite number of valid solutions if we allowed
them. Thus a refined sketch of the pattern match typing rule is:

Ψ ` T : K Ψ P̀ Ψu wf Ψ, Ψu P̀ TP : K
?, ?, · · · , ?,Ψu v relevant

�

Ψ, Ψu P̀ TP : K
�

· · ·

Ψ · · · `match T with TP 7→ · · ·

In this, the symbolv is used to mean that one partial context is less-specified than another one. Therefore,
in the new restriction placed by the typing rule, we require that all unification variables are used in a
pattern but normal extension variables can either be used or unused. Because of this extra restriction, we
will need to prove a lemma regarding the interaction of relevancy with extension substitution application,
so that the extension substitution lemma needed for the computational language will still hold.

We present the syntax and typing for partial contexts in Figure 5.4; these are entirely identical to nor-
mal Ψ contexts save for the addition of the case of an unspecified element. We present several operations
involving partial contexts in Figure 5.5; we use these to define the operation of isolating the relevant vari-
ables of a judgement in Figures 5.6 and 5.7. The rules are mostly straightforward. For example, in the
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bΨ ::= • | bΨ, K | bΨ, ?

` •wf

` bΨwf bΨ ` [Φ] t : [Φ] s

` (bΨ, [Φ] t )wf

` bΨwf bΨ ` Φwf

` (bΨ, [Φ] ctx)wf

` bΨwf

` (bΨ, ?)wf

Figure 5.4: Partial contexts (syntax and typing)

case of the rule METAVAR for using metavariables, the relevant variables are: the metavariable itself (by
isolating just that variable from the contextΨ through theΨb@i operation); the relevant variables used for
the substitution σ ; and the variables that are relevant for well-typedness of the type of the metavariable
[Φ′] t ′. The partial contexts so constructed are joined together through the Ψ ◦Ψ′ operation in order to
get the overall result. This is equivalent to taking the union of the set of relevant variables in informal
practice.

We are now ready to proceed to the metatheoretic proofs about isolating relevant variables.

Lemma 5.1.3 (More specified contexts preserve judgements)
Assuming bΨv bΨ′:

1.
bΨ ` T : K

bΨ′ ` T : K
2.
bΨ ` Φwf

bΨ′ ` Φwf
3.
bΨ; Φ ` t : t ′

bΨ′; Φ ` t : t ′
4.
bΨ; Φ ` σ : Φ′

bΨ′; Φ ` σ : Φ′

Proof. Simple by structural induction on the judgements. The interesting cases are the ones mentioning
extension variables, as for example when Φ=Φ′, φi , or t =Xi/σ . In both such cases, the typing rule has
a side condition requiring that bΨ.i = T . Since bΨv bΨ′, we have that bΨ′.i = bΨ.i = T . �

Lemma 5.1.4 (Relevancy is decidable)

1.
Ψ ` T : K

∃!bΨ.relevant (Ψ ` T : K) = bΨ
2.

Ψ ` Φwf

∃!bΨ.relevant (Ψ ` Φwf) = bΨ

3.
Ψ; Φ ` t : t ′

∃!bΨ.relevant
�

Ψ; Φ ` t : t ′
�

= bΨ
4.

Ψ; Φ ` σ : Φ′

∃!bΨ.relevant
�

Ψ; Φ ` σ : Φ′
�

= bΨ

Proof. The relevancy judgements are defined by structural induction on the corresponding typing
derivations. It is crucial to take into account the fact that ` Ψ wf and Ψ ` Φ wf are implicitly present in
any typing derivation that mentions such contexts; thus these derivations themselves, as well as their sub-
derivations, are structurally included in derivations likeΨ; Φ ` t : t ′. Furthermore, it is easy to see that all
the partial context joins used are defined, as in all cases the joined contexts are less-specified versions ofΨ.
This fact follows by induction on the derivation of the result of the relevancy operation and by inspecting
the base cases for the partial contexts returned. �
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Fully unspecified context:
unspecΨ = bΨ

unspec• = •
unspecΨ, K = unspecΨ, ?

Partial context solely specified at i :
Ψb@i = bΨ

(Ψ, K)b@i = unspecΨ, K when |Ψ|= i
(Ψ, K)b@i = (Ψb@i), ? when |Ψ|> i

Joining two partial contexts:
bΨ ◦ bΨ′ = bΨ′′

• ◦ • = •
(bΨ, K) ◦ (bΨ′, K) = (bΨ ◦ bΨ′), K
(bΨ, ?) ◦ (bΨ′, K) = (bΨ ◦ bΨ′), K
(bΨ, K) ◦ (bΨ′, ?) = (bΨ ◦ bΨ′), K
(bΨ, ?) ◦ (bΨ′, ?) = (bΨ ◦ bΨ′), ?

Context bΨ less specified than bΨ′:
bΨv bΨ′

• v •
(bΨ, K)v (bΨ′, K) ⇐ bΨv bΨ′

(bΨ, ?)v (bΨ′, K) ⇐ bΨv bΨ′

(bΨ, ?)v (bΨ′, ?) ⇐ bΨv bΨ′

Extension substitution application:
(assuming Ψ ` bΨu wf)

bΨ ·σΨ
• ·σΨ = •
(bΨu , K) ·σΨ = bΨu ·σΨ, K · (σΨ, id

bΨu
)

(bΨu , ?) ·σΨ = bΨu ·σΨ, ?

Figure 5.5: Partial contexts (syntactic operations)
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relevant (Ψ ` T : K) = bΨ

relevant

 

Ψ; Φ ` t : t ′ Ψ; Φ ` t ′ : s

Ψ ` [Φ] t : [Φ] t ′

!

= relevant
�

Ψ; Φ ` t : t ′
�

relevant

 

Ψ ` Φ, Φ′ wf

Ψ ` [Φ]Φ′ : [Φ] ctx

!

= relevant
�

Ψ ` Φ, Φ′ wf
�

relevant
�

Ψ ` Φwf
�

= bΨ

relevant

 

Ψ ` •wf

!

= unspecΨ

relevant

 

Ψ ` Φwf Ψ; Φ ` t : s

Ψ ` (Φ, t )wf

!

= relevant (Ψ; Φ ` t : s)

relevant

 

Ψ ` Φwf (Ψ).i = [Φ] ctx

Ψ ` (Φ, φi )wf

!

= relevant
�

Ψ ` Φwf
�

◦ (Ψb@i)

relevant
�

Ψ; Φ ` σ : Φ′
�

= bΨ

relevant

 

Ψ; Φ ` • : •

!

= relevant
�

Ψ ` Φwf
�

relevant

 

Ψ; Φ ` σ : Φ′ Ψ; Φ ` t : t ′ ·σ
Ψ; Φ ` (σ , t ) : (Φ′, t ′)

!

=

= relevant
�

Ψ; Φ ` σ : Φ′
�

◦ relevant
�

Ψ; Φ ` t : t ′ ·σ
�

relevant

 

Ψ; Φ ` σ : Φ′ Ψ.i = [Φ′] ctx Φ′, φi ⊆ Φ
Ψ; Φ ` (σ , id(φi )) : (Φ

′, φi )

!

= relevant
�

Ψ; Φ ` σ : Φ′
�

Figure 5.6: Relevant variables of λHOL derivations
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relevant
�

Ψ; Φ ` t : t ′
�

= bΨ

relevant

 

c : t ∈Σ
Ψ; Φ ` c : t

!

= relevant
�

Ψ ` Φwf
�

relevant

 

Φ.L= t

Ψ; Φ ` vL : t

!

= relevant
�

Ψ ` Φwf
�

relevant

 

(s , s ′) ∈A
Ψ; Φ ` s : s ′

!

= relevant
�

Ψ ` Φwf
�

relevant







Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : s ′ (s , s ′, s ′′) ∈R

Ψ; Φ `Π(t1).t2 : s ′′






=

= relevant
�

Ψ; Φ, t1 ` dt2e|Φ| : s ′
�

relevant







Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : t ′ Ψ; Φ `Π(t1).
�

t ′
�

|Φ|õ1 : s ′

Ψ; Φ ` λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|õ1






=

= relevant
�

Ψ; Φ, t1 ` dt2e|Φ| : t ′
�

relevant







Ψ; Φ ` t1 :Π(t ).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
�

t ′
�

|Φ| · (idΦ, t2)






=

= relevant
�

Ψ; Φ ` t1 :Π(t ).t ′
�

◦ relevant (Ψ; Φ ` t2 : t )

relevant

 

Ψ; Φ ` t1 : t Ψ; Φ ` t2 : t Ψ; Φ ` t : Type

Ψ; Φ ` t1 = t2 : Prop

!

=

= relevant (Ψ; Φ ` t1 : t ) ◦ relevant (Ψ; Φ ` t2 : t )

relevant

 

(Ψ).i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ′

Ψ; Φ `Xi/σ : t ′ ·σ

!

=

= relevant
�

Ψ ` [Φ′] t ′ : [Φ′] s
�

◦ relevant
�

Ψ; Φ ` σ : Φ′
�

◦ (Ψb@i)

Figure 5.7: Relevant variables of λHOL derivations (continued)
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Lemma 5.1.5 (Relevancy soundness)

1.

Ψ ` T : K
relevant (Ψ ` T : K) = bΨ

bΨ ` T : K
2.

Ψ ` Φwf
relevant (Ψ ` Φwf) = bΨ

bΨ ` Φwf

3.

Ψ; Φ ` t : t ′

relevant
�

Ψ; Φ ` t : t ′
�

= bΨ

bΨ; Φ ` t : t ′
4.

Ψ; Φ ` σ : Φ′

relevant
�

Ψ; Φ ` σ : Φ′
�

= bΨ

bΨ; Φ ` σ : Φ′

Proof. By induction on the typing derivations. �

Theorem 5.1.6 (Interaction of relevancy and extension substitution)
Assuming Ψ′ ` σΨ :Ψ, Ψ `Ψu wf and σ ′Ψ = σΨ, idΨu

,

1.
unspecΨ, bΨu v relevant

�

Ψ, Ψu ` T : K
�

unspecΨ′ , bΨu ·σΨ v relevant
�

Ψ′, Ψu ·σΨ ` T ·σ ′Ψ : K ·σ ′Ψ
�

2.
unspecΨ, bΨu v relevant

�

Ψ, Ψu ` Φwf
�

unspecΨ′ , bΨu ·σΨ v relevant
�

Ψ′, Ψu ·σΨ ` Φ ·σ
′
Ψ wf

�

3.
unspecΨ, bΨu v relevant

�

Ψ, Ψu ; Φ ` t : t ′
�

unspecΨ′ , bΨu ·σΨ v relevant
�

Ψ′, Ψu ·σΨ; Φ ·σ ′Ψ ` t ·σ ′Ψ : t ′ ·σ ′Ψ
�

4.
unspecΨ, bΨu v relevant

�

Ψ, Ψu ; Φ ` σ : Φ′
�

unspecΨ′ , bΨu ·σΨ v relevant
�

Ψ′, Ψu ·σΨ; Φ ·σ ′Ψ ` σ ·σ
′
Ψ : Φ′ ·σ ′Ψ

�

Proof. Proceed by induction on the typing judgements. We prove two interesting cases.

Case CTXCVAR.




Ψ, Ψu ` Φwf (Ψ, Ψu ).i = [Φ] ctx

Ψ, Ψu ` (Φ, φi )wf





We have that unspecΨ, bΨu v relevant
�

Ψ, Ψu ` Φ′ wf
�

◦ ((Ψ, Ψu )b@i).
We split cases based on whether i < |Ψ| or not.
In the first case, the desired follows trivially.
In the second case, we assume without loss of generality bΨ′u such that

unspecΨ, bΨ′u v relevant
�

Ψ, Ψu ` Φ′ wf
�

and

unspecΨ, bΨu = (unspecΨ, bΨ′u ) ◦ ((Ψ, Ψu )b@i)
Then by induction hypothesis we get:
unspecΨ′ , bΨ

′
u ·σΨ v relevant

�

Ψ′, Ψu ·σΨ ` Φ′ ·σ ′Ψ wf
�

Now we have that (Φ′, Xi ) ·σ ′Ψ =Φ
′ ·σ ′Ψ, Xi−|Ψ|+|Ψ′|. Thus:
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relevant
�

Ψ′, Ψu ·σΨ ` (Φ′, Xi ) ·σ ′Ψ wf
�

=
= relevant

�

Ψ′, Ψu ·σΨ ` (Φ′ ·σ ′Ψ, Xi−|Ψ|+|Ψ′|)wf
�

= relevant
�

Ψ′, Ψu ·σΨ ` Φ′ ·σ ′Ψ wf
�

◦ ((Ψ′, Ψu ·σΨ)b@(i − |Ψ|+ |Ψ′|))
Thus we have that:
(unspecΨ′ , bΨ

′
u ·σΨ) ◦ ((Ψ

′, Ψu ·σΨ)b@(i − |Ψ|+ |Ψ′|))v
v relevant

�

Ψ′, Ψu ·σΨ ` (Φ′, Xi ) ·σ ′Ψ wf
�

But (unspecΨ′ , bΨ
′
u ·σΨ) ◦ ((Ψ

′, Ψu ·σΨ)b@(i − |Ψ|+ |Ψ′|)) = unspecΨ′ , bΨu ·σΨ.

This is because (unspecΨ, bΨu ) = (unspecΨ, bΨ′u ) ◦ ((Ψ, Ψu )b@i), so the i -th element is the only one where

unspecΨ, bΨ′u might differ from unspecΨ, bΨu ; this will be the i − |Ψ|+ |Ψ′|-th element after σ ′Ψ is applied;
and that element is definitely equal after the join.

Case METAVAR.




(Ψ, Ψu ).i = T T = [Φ′] t ′ Ψ, Ψu ; Φ ` σ : Φ′

Ψ, Ψu ; Φ `Xi/σ : t ′ ·σ





We split cases based on whether i < |Ψ| or not. In case it is, the proof is trivial using part 4. We thus focus
on the case where i ≥ |Ψ|. We have that:
unspecΨ, bΨv relevant

�

Ψ, Ψu ` [Φ′] t : [Φ′] s
�

◦ relevant
�

Ψ, Ψu ; Φ ` σ : Φ′
�

◦
◦((Ψ, Ψu )b@i)

Assume without loss of generality bΨ1
u , bΨ′u , bΨ2

u such that

bΨ1
u =

bΨ′u ,

|Ψ|+|Ψu |−i times
︷ ︸︸ ︷

?, · · · , ? ,

unspecΨ, bΨ′u v relevant
�

(Ψ,Ψu )�i` [Φ′] t : [Φ′] s
�

,

unspecΨ, bΨ2
u v relevant

�

Ψ, Ψu ; Φ ` σ : Φ′
�

and last that bΨ= bΨ1
u ◦ bΨ

2
u ◦ ((Ψ, Ψu

b@i)).
By induction hypothesis for [Φ′] t ′ we get that:
unspecΨ′ , bΨ

′
u ·σΨ v relevant

�

Ψ′,Ψu ·σΨ ` [Φ′ ·σ ′Ψ] t ′ ·σ ′Ψ : [Φ′ ·σ ′Ψ] s ·σ ′Ψ
�

By induction hypothesis for σ we get that:
unspecΨ′ , bΨ

2
u ·σΨ v relevant

�

Ψ′, Ψu ·σΨ; Φ ·σ ′Ψ ` σ ·σ
′
Ψ : Φ′ ·σ ′Ψ

�

We combine the above to get the desired, using the properties of join and b@ as we did earlier. �

We will now combine the theorems 5.1.2 and 5.1.6 into a single result. We first define the combined
pattern typing judgement:

Ψ P̀ Ψu wf Ψ, Ψu P̀ TP : K unspecΨ,Ψu v relevant
�

Ψ, Ψu P̀ TP : K
�

Ψ `?P Ψu > TP : K

Then the combined statement of the two theorems is:
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cσΨ ::= • | cσΨ, T | cσΨ, ?

• ` • : •
• `cσΨ : bΨ • ` T : K ·cσΨ
• P̀ (cσΨ, T ) : (bΨ, K)

• P̀ cσΨ : bΨ

• P̀ (cσΨ, ?) : (bΨ, ?)

Figure 5.8: Partial substitutions (syntax and typing)

Theorem 5.1.7 (Extension substitution for combined pattern typing)

Ψ `?P Ψu > TP : K Ψ′ ` σΨ :Ψ

Ψ′ `?P Ψu ·σΨ > TP ·σΨ : K ·σΨ

Proof. Directly by typing inversion of typing for TP and application of theorems 5.1.2 and 5.1.6. �

Pattern matching procedure

We are now ready to define the pattern matching procedure. We will do this by proving that for closed
patterns and terms, there either exists a unique substitution making the pattern equal to the term, or no
such substitution exists – that is, that pattern matching is decidable and deterministic. The statement of
this theorem will roughly be:

If Ψu P̀ TP : K and • ` T : K then either there exists a unique σΨ such that
• ` σΨ :Ψu and TP ·σΨ = T or no such substitution exists.

Note that the first judgement should be understood as a judgement of the form Ψ, Ψu P̀ TP : K as seen
above, where the normal context Ψ is empty. The computational content of this proof is the pattern
matching procedure.

In order to do the proof of the pattern matching algorithm by induction, we need an equivalent lemma
to hold at the sub-derivations of patterns and terms representing the induction principle, such as:

If Ψu ; Φ P̀ tP : t ′ and •; Φ ` t : t ′ then either there exists a unique σΨ such that
• ` σΨ :Ψu and tP ·σΨ = t or no such substitution exists.

Such a lemma is not valid, for the simple reason that the Ψu variables that do not get used in tP can be
substituted by arbitrary terms. Our induction principle therefore needs to be refined so that only the
relevant partial context bΨu is taken into account. Also, the substitution established needs to be similarly
a partial substitution, only instantiating the relevant variables.

We thus define this notion in Figure 5.8 (syntax and typing) and provide the operations involving
partial substitutions in Figure 5.9. Note that applying a partial extension substitution cσΨ is entirely
identical to applying a normal extension substitution. It fails when an extension variable that is left
unspecified in cσΨ gets used, something that already happens from the existing definitions as they do not
account for this case. With these definitions, we are able to state a stronger version of the earlier induction
principle, as follows:
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Joining two partial substitutions:
cσΨ ◦cσΨ

′ =cσΨ
′′

• ◦ • = •
(cσΨ, T ) ◦ (cσΨ

′, T ) = (cσΨ ◦cσΨ
′), T

(cσΨ, ?) ◦ (cσΨ
′, T ) = (cσΨ ◦cσΨ

′), T
(cσΨ, T ) ◦ (cσΨ

′, ?) = (cσΨ ◦cσΨ
′), T

(cσΨ, ?) ◦ (cσΨ
′, ?) = (cσΨ ◦cσΨ

′), ?

Less specified substitution:
cσΨ vcσΨ

′

• v •
(cσΨ, T )v (cσΨ

′, T ) ⇐ cσΨ vcσΨ
′

(cσΨ, ?)v (cσΨ
′, T ) ⇐ cσΨ vcσΨ

′

(cσΨ, ?)v (cσΨ
′, ?) ⇐ cσΨ vcσΨ

′

Fully unspecified substitution:
unspec

bΨ =cσΨ
unspec• = ?
unspec

bΨ, ? = unspec
bΨ, ?

unspec
bΨ, K = unspec

bΨ, ?

Limiting to a partial context:
cσΨ|bΨ =cσΨ

′

(•)|• = •
(cσΨ, T )|

bΨ, ? = cσΨ|bΨ, ?
(cσΨ, T )|

bΨ, K = cσΨ|bΨ, T
(cσΨ, ?)|

bΨ, ? = cσΨ|bΨ, ?

Replacement of unspecified element at index:
cσΨ[i 7→ T ] =cσΨ

′

(cσΨ, ?)[i 7→ T ] = cσΨ, T when i = |cσΨ|
(cσΨ, ?)[i 7→ T ] = cσΨ[i 7→ T ], ? when i < |cσΨ|
(cσΨ, T ′)[i 7→ T ] = cσΨ[i 7→ T ], T ′ when i < |cσΨ|

Figure 5.9: Partial substitutions (syntactic operations)

If bΨu ; Φ P̀ tP : t ′ and •; Φ ` t : t ′ then either there exists a unique cσΨ such that
• `cσΨ : bΨu and tP ·cσΨ = t or no such substitution exists.

This induction principle will indeed be valid.
We are now ready to proceed with the proof of the above theorem. As we have mentioned earlier, we

will carry out the proof in a constructive manner; its computational content will be a pattern matching
algorithm! Yet for presentation purposes we will make a slight diversion from the expected order: we will
present the algorithm first and then proceed with the details of the proof out of which the algorithm is
extracted.

Pattern matching algorithm. We illustrate the algorithm in Figures 5.10 through 5.12 by presenting it
as a set of rules. If a derivation according to the given rules is not possible, the algorithm returns failure.
The rules work on typing derivations for patterns and terms. The matching algorithm for terms accepts
an input substitution cσΨ and produces an output substitution cσΨ

′. We denote this as /cσΨ .cσΨ
′. Most

of the rules are straightforward, though the notation is heavy. The premises of each rule explicitly note
which terms need to be syntactically equal and the recursive calls to pattern matching for sub-derivations.
In the consequence, we sometimes unfold the last step of the derivation (easily inferrable through typing
inversion), so as to assign names to the various subterms involved.

Of special note are the two rules for unification variables, which represent an important case splitting
in the proof that will follow. The essential reason why two rules are needed is the fact that patterns are
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�

Ψu P̀ T : K
�

∼
�

• ` T ′ : K
�

.cσΨ

�

Ψu ; Φ P̀ t : tT
�

∼
�

•; Φ ` t ′ : tT
�

/ unspecΨu
.cσΨ

�

Ψu P̀ [Φ] t : [Φ] tT
�

∼
�

• ` [Φ] t ′ : [Φ] tT
�

.cσΨ
�

Ψu P̀ Φ, Φ′ wf
�

∼
�

• ` Φ, Φ′′ wf
�

.cσΨ
�

Ψu P̀ [Φ]Φ
′ : [Φ] ctx

�

∼
�

• ` [Φ]Φ′′ : [Φ] ctx
�

.cσΨ

�

Ψu P̀ Φwf
�

∼
�

• ` Φ′ wf
�

.cσΨ

�

Ψu P̀ •wf
�

∼
�

• ` •wf
�

. unspecΨu

�

Ψu P̀ Φwf
�

∼
�

• ` Φ′ wf
�

.cσΨ
�

Ψu ; Φ P̀ t : s
�

∼
�

•; Φ′ ` t ′ : s
�

/cσΨ .cσΨ
′

�

Ψu P̀ (Φ, t )wf
�

∼
�

• ` (Φ′, t ′)wf
�

.cσΨ
′

�

Ψu P̀ Φ, φi wf
�

∼
�

• ` Φ, Φ′ wf
�

. unspecΨu
[i 7→ [Φ]Φ′]

Figure 5.10: Pattern matching algorithm for λHOL, operating on derivations (1/3)

allowed to be non-linear: that is, the same unification variable can be used multiple times. This is guided
by practical considerations and is an important feature of our pattern matching support. Our formulation
of pattern matching through partial contexts and substitutions allows such support without significantly
complicating our proofs compared to the case where only linear patterns would be allowed. The two rules
thus correspond to whether a unification variable is still unspecified or has already been instantiated at a
previous occurence. In the former case, we just need to check that the scrutinee only uses variables from
the allowed prefix of the current context (e.g. when our pattern corresponds to closed terms, we check
to see that the scrutinee t ′ does not use any variables); if that is the case, we instantiate the unification
variable as equal to the scrutinee. In the latter case we only need to check that the already-established
substitution for the unification variable Xi is syntactically equal to the scrutinee.

Proof of pattern matching determinism and decidability. Let us now return to the pattern matching
theorem we set out to prove in the beginning of this section. First, we will prove a couple of lemmas
about partial substitution operations.

Lemma 5.1.8 (Typing of joint partial substitutions)

• `cσΨ1 : bΨ1 • `cσΨ2 : bΨ2
bΨ1 ◦ bΨ2 = bΨ

′
cσΨ1 ◦cσΨ2 =cσΨ

′

• `cσΨ
′ : bΨ′
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(Ψ; Φ P̀ t : tT )∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ
′

�

Ψu ; Φ P̀ c : t
�

∼
�

•; Φ′ ` c : t ′
�

/cσΨ .cσΨ
�

Ψu ; Φ P̀ s : s ′
�

∼
�

•; Φ′ ` s : s ′′
�

/cσΨ .cσΨ

L ·cσΨ = L′
�

Ψu ; Φ P̀ vL : t
�

∼
�

•; Φ′ ` vL′ : t ′
�

/cσΨ .cσΨ

s = s∗
�

Ψu ; Φ P̀ t1 : s
�

∼
�

•; Φ′ ` t ′1 : s∗
�

/cσΨ .cσΨ
′

�

Ψu ; Φ, t1 P̀ dt2e|Φ| : s ′
�

∼
�

•; Φ′, t ′1 P̀

 

t ′2
£

|Φ′|
: s ′∗

�

/cσΨ
′ .cσΨ

′′

Ψu ; Φ P̀ t1 : s
Ψu ; Φ, t1 P̀ dt2e|Φ| : s ′

(s , s ′, s ′′) ∈R
Ψu ; Φ P̀ Π(t1).t2 : s ′′

∼

•; Φ ` t ′1 : s∗
•; Φ′, t ′1 `

 

t ′2
£

|Φ′|
: s ′∗

(s∗, s ′∗, s ′′∗ ) ∈R
•; Φ′ `Π(t ′1).t

′
2 : s ′′∗

/cσΨ .cσΨ
′′

�

Ψu ; Φ, t1 P̀ dt2e|Φ| : t ′
�

∼
�

•; Φ′, t ′1 `
 

t ′2
£

|Φ′|
: t ′′
�

/cσΨ .cσΨ
′

Ψu ; Φ P̀ t1 : s
Ψu ; Φ, t1 P̀ dt2e|Φ| : t ′

Ψu ; Φ P̀ Π(t1).
�

t ′
�

|Φ|õ1 : s ′

Ψu ; Φ P̀ λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|õ1

∼

•; Φ′ ` t ′1 : s∗
•; Φ′, t ′1 `

 

t ′2
£

|Φ′|
: t ′′

•; Φ′ `Π(t ′1).
�

t ′′
�

|Φ′|õ1 : s ′∗
•; Φ′ ` λ(t ′1).t

′
2 :Π(t ′1).

�

t ′′
�

|Φ′|õ1

/cσΨ .cσΨ
′

s = s ′ relevant
�

Ψu P̀ Φwf
�

= bΨ
�

Ψu ; Φ P̀ Π(ta).tb : s
�

∼
�

•; Φ `Π(t ′a).t
′
b : s ′

�

/cσΨ|bΨ .cσΨ
′

�

Ψu ; Φ P̀ t1 :Π(ta).tb
�

∼
�

•; Φ′ ` t ′1 :Π(t ′a).t
′
b

�

/cσΨ
′ .cσΨ1

relevant
�

Ψu ; Φ P̀ ta : s
�

= bΨ′
�

Ψu ; Φ P̀ t2 : ta
�

∼
�

•; Φ′ ` t ′2 : t ′a
�

/cσΨ
′|
bΨ′ .cσΨ2

Ψu ; Φ P̀ t1 :Π(ta).tb
Ψu ; Φ P̀ t2 : ta

Ψu ; Φ P̀ Π(ta).tb : s

Ψu ; Φ P̀ t1 t2 : dtb e|Φ| · (idΦ, t2)
∼

•; Φ′ ` t ′1 :Π(t ′a).t
′
b

•; Φ′ ` t ′2 : t ′a
•; Φ′ `Π(t ′a).t

′
b : s ′

•; Φ′ P̀ t ′1 t ′2 :
 

t ′b
£

|Φ′|
· (idΦ′ , t ′2)

/cσΨ .cσΨ1 ◦cσΨ2

Figure 5.11: Pattern matching algorithm for λHOL, operating on derivations (2/3)
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�

Ψu ; Φ P̀ t : tT
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ
′

�

Ψu ; Φ P̀ t : Type
�

∼
�

•; Φ′ ` t ′ : Type
�

/cσΨ .cσΨ
′

�

Ψu ; Φ P̀ t1 : t
�

∼
�

•; Φ′ ` t ′1 : t ′
�

/cσΨ
′ .cσΨ1

�

Ψu ; Φ P̀ t2 : t
�

∼
�

•; Φ′ ` t ′2 : t ′
�

/cσΨ
′ .cσΨ2

Ψu ; Φ P̀ t1 : t
Ψu ; Φ P̀ t2 : t
Ψu ; Φ P̀ t : Type

Ψu ; Φ P̀ t1 = t2 : Prop
∼

•; Φ ` t ′1 : t ′

•; Φ ` t ′2 : t ′

•; Φ ` t ′ : Type

•; Φ ` t ′1 = t ′2 : Prop
/cσΨ .cσΨ1 ◦cσΨ2

cσΨ.i =? Ψu .i = [Φ∗] tT t ′ < f |Φ∗ ·cσΨ|
�

Ψu ; Φ P̀ Xi/σ : tT ·σ
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ[i 7→ [Φ
∗ ·cσΨ] t ′]

cσΨ.i = [Φ∗] t t = t ′
�

Ψu ; Φ P̀ Xi/σ : tT
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ

Figure 5.12: Pattern matching algorithm for λHOL, operating on derivations (3/3)

Proof. By induction on the derivation of cσΨ1 ◦cσΨ2 = cσΨ
′ and use of typing inversion for cσΨ1 and cσΨ2.

�

Lemma 5.1.9 (Typing of partial substitution limitation)

• `cσΨ : bΨ • ` bΨ′ wf bΨ′ v bΨ

cσΨ|bΨ′ vcσΨ • `cσΨ|bΨ′ : bΨ
′

Proof. Trivial by induction on the derivation of cσΨ|bΨ′ =cσΨ
′. �

Let us now proceed to the main pattern matching theorem. To prove it we will assume well-sortedness
derivations are subderivations of normal typing derivations. That is, if Ψ; Φ P̀ t : t ′, with t ′ 6= Type′, the
derivation Ψ; Φ P̀ t ′ : s for a suitable s is a sub-derivation of the original derivation Ψ; Φ P̀ t : t ′. The
way we have stated the typing rules for λHOL this is actually not true, but an adaptation where the t ′ : s
derivation becomes part of the t : t ′ derivation is possible, thanks to Lemma 4.1.7. Furthermore, we
will use the quantifier ∃≤1 as a shorthand for either unique existence or non-existence, that is, ∃≤1x.P ≡
(∃!x.P )∨ (¬∃x.P )

Theorem 5.1.10 (Decidability and determinism of pattern matching)

1.
Ψu P̀ Φwf • ` Φ′ wf relevant

�

Ψu P̀ Φwf
�

= bΨu

∃≤1
cσΨ.
�

• `cσΨ : bΨu ∧ Φ ·cσΨ =Φ
′
�
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2.

Ψu ; Φ P̀ t : tT •; Φ′ ` t ′ : t ′T relevant
�

Ψu ; Φ P̀ t : t ′T
�

= bΨ′u
�

Ψu ; Φ P̀ tT : s ∧ •; Φ ` t ′T : s ∧ relevant
�

Ψu ; Φ P̀ tT : s
�

= bΨu

�

∨
�

tT = Type ∧ Ψu P̀ Φwf ∧ • ` Φwf ∧ relevant
�

Ψu P̀ Φwf
�

= bΨu

�

∃!cσΨ.
�

• `cσΨ : bΨu ∧ Φ ·cσΨ =Φ
′ ∧ tT ·cσΨ = t ′T

�

∃≤1
cσΨ
′.
�

• `cσΨ
′ : bΨ′u ∧ Φ ·cσΨ

′ =Φ′ ∧ tT ·cσΨ
′ = t ′T ∧ t ·cσΨ

′ = t ′
�

3.
Ψu P̀ T : K • ` T ′ : K relevant

�

Ψu P̀ T : K
�

=Ψu

∃≤1σΨ.
�

• ` σΨ :Ψu ∧ T ·σΨ = T ′
�

Proof.

Part 1 By induction on the well-formedness derivation for Φ.

Case PCTXEXPTY.




Ψu P̀ •wf





Trivially, we either have Φ′ = •, in which case unspecΨ is the unique substitution with the desired proper-
ties, or no substitution possibly exists.

Case PCTXVAR.




Ψu P̀ Φwf Ψu ; Φ P̀ t : s

Ψu P̀ (Φ, t )wf





We either have that Φ′ = Φ′, t ′ or no substitution possibly exists. By induction hypothesis get cσΨ such
that Φ ·cσΨ = Φ′ and • ` cσΨ : bΨu with bΨu = relevant

�

Ψu P̀ Φwf
�

. Furthermore by typing inversion
we get that •; Φ′ ` t ′ : s ′. We need s ′ = s otherwise no suitable substitution exists. Now we use part
2 to either get a cσΨ

′ which is obviously the substitution that we want, since (Φ, t ) · cσΨ
′ = Φ′, t ′ and

relevant
�

Ψu P̀ (Φ, t )wf
�

= relevant
�

Ψu ; Φ P̀ t : s
�

; or we get the fact that no such substitution possibly
exists. In that case, we again conclude that no substitution for the current case exists either, otherwise it
would violate the induction hypothesis.

Case PCTXCVARUNIF.




Ψu P̀ Φwf i ≥ |Ψ| Ψu .i = [Φ] ctx

Ψu P̀ (Φ, φi )wf





We either have Φ′ = Φ, Φ′′, or no substitution possibly exists (since Φ does not depend on unifica-
tion variables, so we always have Φ ·cσΨ = Φ). We now consider the substitution cσΨ = unspecΨu

[i 7→
[Φ]Φ′′]. We obviously have that (Φ, φi ) ·cσΨ = Φ, Φ′′, and also that • ` cσΨ : bΨu with bΨu = Ψu

b@i =
relevant

�

Ψ P̀ Φ, φi wf
�

. Thus this substitution has the desired properties.

Part 2 By induction on the typing derivation for t .
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Case PCONSTANT.




c : t ∈Σ •; • ` tT : s s 6= Prop

Ψu ; Φ P̀ c : tT





We have t ·cσΨ
′ = c ·cσΨ

′ = c . So for any substitution to satisfy the desired properties we need to have that
t ′ = c also; if this isn’t so, no cσΨ

′ possibly exists. If we have that t = t ′ = c , then we choose cσΨ
′ = cσΨ as

provided by assumption, which has the desired properties considering that:
relevant

�

Ψu ; Φ P̀ c : t
�

= relevant
�

Ψu ; Φ P̀ tT : s
�

= relevant
�

Ψu P̀ Φwf
�

(since tT comes from the definitions context and can therefore not contain extension variables).

Case PVAR.




Φ.L= tT Ψu ; Φ ` tT : s s 6= Prop

Ψu ; Φ P̀ vL : tT





Similarly as above. First, we need t ′ = vL′ , otherwise no suitable cσΨ
′ exists. From assumption we have

a unique cσΨ for relevant
�

Ψu ; Φ P̀ tT : s
�

. If L ·cσΨ = L′, then cσΨ has all the desired properties for cσΨ
′,

considering the fact that relevant
�

Ψu ; Φ P̀ vL : tT
�

= relevant
�

Ψu P̀ Φwf
�

and relevant (Ψ; Φ P̀ tT : s) =
relevant

�

Ψ P̀ Φwf
�

(since tT =Φ.i ). It is also unique, because an alternate cσΨ
′ would violate the assumed

uniqueness of cσΨ. If L ·cσΨ 6= L′, no suitable substitution exists, because of the same reason.

Case PSORT.




(s , s ′) ∈A

Ψu ; Φ P̀ s : s ′





Entirely similar to the case for PCONSTANT.

Case PΠTYPE.






Ψu ; Φ P̀ t1 : s Ψu ; Φ, t1 P̀ dt2e|Φ| : s ′ (s , s ′, s ′′) ∈R

Ψu ; Φ P̀ Π(t1).t2 : s ′′







First, we have either that t ′ =Π(t ′1).t
′
2, or no suitable cσΨ

′ exists. Thus by inversion for t ′ we get:
•; Φ′ P̀ t ′1 : s∗, •; Φ′, t ′1 P̀

 

t ′2
£

|Φ′|
: s ′∗, (s∗, s ′∗, s ′′) ∈R.

Now, we need s = s∗, otherwise no suitable cσΨ
′ possibly exists. To see why this is so, assume that a cσΨ

′

satisfying the necessary conditions exists, and s 6= s∗; then we have that t1 ·cσΨ
′ = t ′1, which means that

their types should also match, a contradiction.
We use the induction hypothesis for t1 and t ′1. We are allowed to do so because
relevant

�

Ψu ; Φ P̀ s ′′ : s ′′′
�

= relevant
�

Ψu ; Φ P̀ s : s ′′′′
�

and the other properties for cσΨ also hold trivially.
From that we either get a cσΨ

′ such that: • `cσΨ
′ : bΨ′u , t1 ·cσΨ

′ = t ′1, Φ ·cσΨ
′ =Φ′ for

bΨ′u = relevant
�

Ψu ; Φ P̀ t1 : s
�

; or that no such substitution exists. Since a partial substitution unifying t
with t ′ will also include a substitution that only has to do with bΨ′u , we see that if no cσΨ

′ is returned by
the induction hypothesis, no suitable substitution for t and t ′ actually exists.
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We can now use the induction hypothesis for t2 and cσΨ
′ with bΨ′′u such that:

bΨ′′u = relevant
�

Ψu ; Φ, t1 P̀ dt2e|Φ| : s ′
�

. The induction hypothesis is applicable since
relevant

�

Ψu ; Φ, t1 P̀ s ′ : s ′′′′′
�

= relevant
�

Ψu ; Φ P̀ t1 : s
�

and the other requirements trivially hold. Especially for s ′ and s ′∗ being equal, this is trivial since both
need to be equal to s ′′ (because of the form of our rule set R).
From that we either get a cσΨ

′′ such that • `cσΨ
′′ : bΨ′′u , dt2e|Φ| ·cσΨ

′′ =
 

t ′2
£

|Φ′|
, Φ ·cσΨ

′′ =Φ and t1 ·cσΨ
′′ = t ′1,

or that such cσΨ
′′ does not exist. In the second case we proceed as above, so we focus in the first case.

By use of properties of freshening we can deduce that (Π(t1).t2) ·cσΨ
′′ =Π(t ′1).(t

′
2), so the returned cσΨ

′′ has
the desired properties, if we consider the fact that
relevant

�

Ψu ; Φ P̀ Π(t1).t2 : s ′′
�

= relevant
�

Ψu ; Φ, t1 P̀ dt2e|Φ| : s ′
�

= bΨ′′u .

Case PΠINTRO.






Ψu ; Φ P̀ t1 : s Ψu ; Φ, t1 P̀ dt2e|Φ| : t3 Ψu ; Φ P̀ Π(t1).bt3c|Φ|õ1 : s ′ s ′ 6= Prop

Ψu ; Φ P̀ λ(t1).t2 :Π(t1).bt3c|Φ|õ1







We have that either t ′ = λ(t ′1).t
′
2, or no suitable cσΨ

′ exists. Thus by typing inversion for t ′ we get:
•; Φ′ P̀ t ′1 : s∗, •; Φ′, t ′1 P̀

 

t ′2
£

|Φ′|
: t ′3, •; Φ′ P̀ Π(t

′
1).bt3c|Φ′|õ1 : s ′∗.

By assumption we have that there exists a unique cσΨ such that • `cσΨ : bΨu , Φ·cσΨ =Φ′, (Π(t1).bt3c)·cσΨ =
Π(t ′1).

�

t ′3
�

, if relevant
�

Ψu ; Φ P̀ Π(t1).bt3c|Φ|õ1

�

= bΨu . From these we also get that s ′ = s ′∗.

From the fact that (Π(t1).bt3c)·cσΨ =Π(t ′1).
�

t ′3
�

, we get first of all that t1 ·cσΨ = t ′1, and also that t3 ·cσΨ = t ′3.
Furthermore, we have that relevant

�

Ψ; Φ P̀ Π(t1).bt3c : s ′
�

= relevant
�

Ψ; Φ, t1 P̀ t3 : s ′
�

.
From that we understand that cσΨ is a suitable substitution to use for the induction hypothesis for dt2e.
Thus from induction hypothesis we either get a unique cσΨ

′ with the properties:
• `cσΨ

′ : bΨ′u , dt2e ·cσΨ
′ =
 

t ′2
£

, (Φ, t1) ·cσΨ =Φ′, t ′1, t3 ·cσΨ = t ′3, if

relevant
�

Ψu ; Φ, t1 P̀ dt2e|Φ| : t3

�

= bΨu , or that no such substitution exists. We focus on the first case; in
the second case no unifying substitution for t and t ′ exists, otherwise the lack of existence of a suitable
cσΨ
′ would lead to a contradiction.

This substitution cσΨ
′ has the desired properties with respect to matching of t against t ′ (again using the

properties of freshening), and it is unique, because the existence of an alternate substitution with the same
properties would violate the uniqueness assumption of the substitution returned by induction hypothesis.

Case PΠELIM.






Ψu ; Φ P̀ t1 :Π(ta).tb Ψu ; Φ P̀ t2 : ta Ψu ; Φ P̀ Π(ta).tb : s s ′ 6= Prop

Ψu ; Φ P̀ t1 t2 : dtb e|Φ| · (idΦ, t2)







Again we have that either t ′ = t ′1 t ′2, or no suitable substitution possibly exists. Thus by inversion of
typing for t ′ we get:
•; Φ P̀ t ′1 :Π(t ′a).t

′
b , •; Φ P̀ t ′2 : t ′a , t ′T =

 

t ′b
£

|Φ′|
· (idΦ′ , t ′2)

Furthermore we have that Ψu ; Φ P̀ Π(ta).tb : s and •; Φ P̀ Π(t
′
a).t

′
b : s ′ for suitable s , s ′. We need s = s ′,

otherwise no suitable cσΨ
′ exists (because if t1 and t ′1 were matchable by substitution, their Π-types would

match, and also their sorts, which is a contradiction).
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We can use the induction hypothesis for Π(ta).tb and Π(t ′a).t
′
b , with the partial substitution cσΨ limited

only to those variables relevant in Ψu P̀ Φ wf. That is, if bΨ′u = relevant
�

Ψu ; Φ P̀ Π(ta).tb : s
�

then we
use the substitution cσΨ|bΨu

. In that case all of the requirements for cσΨ hold (the uniqueness condition also

holds for this substitution, using part 1 for the fact that Φ and Φ′ only have a unique matching substi-
tution), so we get from the induction hypothesis either a cσΨ

′ such that • ` cσΨ
′ : bΨu , Φ ·cσΨ = Φ′ and

(Π(ta).tb )·cσΨ =Π(t ′a).t
′
b , or that no such cσΨ

′ exists. In the second case, again we can show that no suitable
substitution for t and t ′ exists; so we focus in the first case.
We can now use the induction hypothesis for t1, using this cσΨ

′. From that, we get that either a cσΨ1 exists
for bΨ1 = relevant

�

Ψu ; Φ P̀ t1 :Π(ta).tb
�

such that t1 ·cσΨ1 = t ′1, or that no such cσΨ1 exists, in which case
we argue that no global cσΨ

′ exists for matching t with t ′ (because we could limit it to the bΨ1 variables and
yield a contradiction).
We now form cσΨ

′′ = cσΨ
′|
bΨ′′ for bΨ′′ = relevant

�

Ψ; Φ P̀ ta : s∗
�

. For cσΨ
′′, we have that • P̀ cσΨ

′′ : bΨ′′,
Φ ·cσΨ

′′ = Φ′ and ta ·cσΨ
′′ = ta . Also it is the unique substitution with those properties, otherwise the

induction hypothesis for ta would be violated.
Using cσΨ

′′ we can allude to the induction hypothesis for t2, which either yields a substitution cσΨ2 for
bΨ2 = relevant

�

Ψ; Φ P̀ t2 : ta
�

, such that t2 ·cσΨ2 = t ′2, or that no such substitution exists, which we prove
implies no global matching substitution exists.
Having now the cσΨ1 and cσΨ2 specified above, we consider the substitution cσΨ r =cσΨ1 ◦cσΨ2. This substi-
tution, if it exists, has the desired properties: we have that
bΨr = relevant

�

Ψu ; Φ P̀ t1 t2 : dtb e · (idΦ, t2)
�

=
= relevant

�

Ψ; Φ P̀ t1 :Π(ta).tb
�

◦ relevant
�

Ψ; Φ P̀ t2 : ta
�

and thus • ` cσΨ r : bΨr . Also, (t1 t2) ·cσΨ r = t ′1 t ′2, tT ·cσΨ r = t ′T , and Φ ·cσΨ r = Φ
′. It is also unique: if

another substitution had the same properties, we could limit it to either the relevant variables for t1 or t2
and get a contradiction. Thus this is the desired substitution.
If cσΨ r does not exist, then no suitable substitution for unifying t and t ′ exists. This is again because
we could limit any potential such substitution to two parts, cσΨ

′
1 and cσΨ

′
2 (for bΨ1 and bΨ2 respectively),

violating the uniqueness of the substitutions yielded by the induction hypotheses.

Case PEQTYPE.




Ψu ; Φ P̀ t1 : ta Ψu ; Φ P̀ t2 : ta Ψu ; Φ P̀ ta : Type

Ψu ; Φ P̀ t1 = t2 : Prop





Similarly as above. First assume that t ′ = (t ′1 = t ′2), with t ′1 : t ′a , t ′2 : t ′a and t ′a : Type. Then, by induction
hypothesis get a matching substitution cσΨ

′ for ta and t ′a . Use that cσΨ
′ in order to allude to the induction

hypothesis for t1 and t2 independently, yielding substitutions cσΨ1 and cσΨ2. Last, claim that the globally
required substitution must actually be equal to cσΨ r =cσΨ1 ◦cσΨ2.

Case PMETAVARUNIF.






Ψu .i = T T = [Φ∗] tT (i ≥ |Ψ|= 0) Ψu ; Φ P̀ σ : Φ∗ Φ∗ ⊆ Φ σ = idΦ∗
Ψu ; Φ P̀ Xi/σ : tT ·σ







We trivially have tT ·σ = tT . We split cases depending on whether cσΨ.i is unspecified or not.
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If cσΨ.i =?, then we split cases further depending on whether t ′ uses any variables higher than |Φ∗ ·cσΨ|−1
or not. That is, if t ′ < f |Φ∗ ·cσΨ| or not. In the case where this does not hold, it is obvious that there
is no possible cσΨ

′ such that (Xi/σ) ·cσΨ
′ = t ′, since cσΨ

′ must include cσΨ, and the term (Xi/σ) ·cσΨ
′ can

therefore not include variables outside the prefix Φ∗ ·cσΨ of Φ ·cσΨ. In the case where t ′ < f |Φ∗ ·cσΨ|, we
consider the substitution cσΨ

′ = cσΨ[i 7→ [Φ∗ ·cσΨ] t ′]. In that case we obviously have Φ ·cσΨ
′ = Φ′, tT ·

cσΨ
′ = tT , and also t ·cσΨ = t ′. Also, bΨ′ = relevant

�

Ψu ; Φ P̀ Xi/σ : tT ·σ
�

= (relevant
�

Ψu ; Φ∗ P̀ tT : s
�

) ◦
relevant (Ψ; Φ P̀ σ : Φ∗) ◦ (Ψb@i).
We need to show that • `cσΨ

′ : bΨ′. First, we have that relevant (Ψ; Φ P̀ σ : Φ∗) = relevant
�

Ψ P̀ Φwf
�

since
Φ∗ ⊆ Φ. Second, we have that relevant (Ψ; Φ P̀ tT : s) =
(relevant

�

Ψu ; Φ∗ P̀ tT : s
�

) ◦ relevant
�

Ψ P̀ Φwf
�

. Thus we have that bΨ′ = bΨ ◦ (Ψb@i). It is now trivial to
see that indeed • `cσΨ

′ : bΨ′.

If cσΨ.i = t∗, then we split cases on whether t∗ = t ′ or not. If it is, then obviously cσΨ is the desired unifying
substitution for which all the desired properties hold. If it is not, then no substitution with the desired
properties possibly exists, because it would violate the uniqueness assumption for cσΨ.

Part 3 By inversion on the typing for T .

Case PEXTCTXTERM.




Ψu ; Φ P̀ t : tT Ψu ; Φ ` tT : s

Ψu P̀ [Φ] t : [Φ] tT





By inversion of typing for T ′ we have: T ′ = [Φ] t ′, •; Φ P̀ t ′ : tT , •; Φ P̀ tT : s .
We thus have bΨu = relevant

�

Ψu ; Φ P̀ tT : s
�

= unspecΨu
(since Φ is also well-formed in the empty ex-

tension context), and the substitution cσΨ = unspecΨ is the unique substitution such that • ` cσΨ : bΨu ,
Φ ·cσΨ = Φ and tT ·cσΨ = tT . We can thus use part 2 for attempting a match between t and t ′, yield-
ing a cσΨ

′ such that • ` cσΨ
′ : bΨ′u with bΨ′u = relevant

�

Ψu ; Φ P̀ t : tT
�

and t · cσΨ
′ = t ′. We have that

relevant
�

Ψu ; Φ P̀ t : tT
�

= relevant
�

Ψu P̀ T : K
�

, thus bΨ′u =Ψ by assumption. From that we realize that
cσΨ
′ is a fully-specified substitution since • ` cσΨ

′ : Ψ, and thus this is the substitution with the desired
properties.
If unification between t and t ′ fails, it is trivial to see that no substitution with the desired substitution
exists, otherwise it would lead directly to a contradiction.

Case PEXTCTXINST.




Ψu P̀ Φ, Φ′ wf

Ψu P̀ [Φ]Φ
′ : [Φ] ctx





By inversion of typing for T ′ we have: T ′ = [Φ]Φ′′, • P̀ Φ, Φ′′ wf, • P̀ Φ wf. From part 1 we get a cσΨ
that matches Φ, Φ′ with Φ, Φ′′, or the fact that no such cσΨ exists. In the first case, as above, it is easy to
see that this is the fully-specified substitution that we desire. In the second case, no suitable substitution
exists.

�
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The above proof is constructive. Its computational content is a pattern matching algorithm for pat-
terns and closed terms – the algorithm we presented earlier. Notice that the rules presented in Figures 5.10
through 5.12 follow the inductive structure of the proof and make the same assumption about types-of-
types being subderivations. Based on the statement of the above theorem, it is evident that this algorithm
is sound (that is, if it finds a substitution, that substitution will be a matching substitution), and that it is
also complete: if a matching substitution exists, then the algorithm will find it. The formal statement of
soundness and completeness is as follows.

Lemma 5.1.11 (Pattern matching algorithm soundness and completeness)

1.

Ψu P̀ Φwf • ` Φ′ wf relevant
�

Ψu P̀ Φwf
�

= bΨu
�

Ψu P̀ Φwf
�

∼
�

• ` Φ′ wf
�

.cσΨ

• `cσΨ : bΨu Φ ·cσΨ =Φ
′

2.

Ψu P̀ Φwf • ` Φ′ wf relevant
�

Ψu P̀ Φwf
�

= bΨu

∃cσΨ.( • `cσΨ : bΨu Φ ·cσΨ =Φ
′ )

�

Ψu P̀ Φwf
�

∼
�

• ` Φ′ wf
�

.cσΨ

3.

Ψu ; Φ P̀ t : tT •; Φ′ ` t ′ : t ′T relevant
�

Ψu ; Φ P̀ t : t ′T
�

= bΨ′u
�

Ψu ; Φ P̀ tT : s •; Φ ` t ′T : s relevant
�

Ψu ; Φ P̀ tT : s
�

= bΨu

�

∨
�

tT = Type Ψu P̀ Φwf • ` Φwf relevant
�

Ψu P̀ Φwf
�

= bΨu

�

• `cσΨ : bΨu Φ ·cσΨ =Φ
′ tT ·cσΨ = t ′T

�

Ψu ; Φ P̀ t : tT
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ
′

• `cσΨ
′ : bΨ′u Φ ·cσΨ

′ =Φ′ tT ·cσΨ
′ = t ′T t ·cσΨ

′ = t ′

4.

Ψu ; Φ P̀ t : tT •; Φ′ ` t ′ : t ′T relevant
�

Ψu ; Φ P̀ t : t ′T
�

= bΨ′u
�

Ψu ; Φ P̀ tT : s •; Φ ` t ′T : s relevant
�

Ψu ; Φ P̀ tT : s
�

= bΨu

�

∨
�

tT = Type Ψu P̀ Φwf • ` Φwf relevant
�

Ψu P̀ Φwf
�

= bΨu

�

• `cσΨ : bΨu Φ ·cσΨ =Φ
′ tT ·cσΨ = t ′T

∃cσΨ
′.( • `cσΨ

′ : bΨ′u Φ ·cσΨ
′ =Φ′ tT ·cσΨ

′ = t ′T t ·cσΨ
′ = t ′ )

�

Ψu ; Φ P̀ t : tT
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ
′

5.

Ψu P̀ T : K • ` T ′ : K relevant
�

Ψu P̀ T : K
�

=Ψu
�

Ψu P̀ T : K
�

∼
�

• ` T ′ : K
�

.cσΨ

• ` σΨ :Ψu T ·σΨ = T ′

6.

Ψu P̀ T : K • ` T ′ : K relevant
�

Ψu P̀ T : K
�

=Ψu
∃cσΨ.( • ` σΨ :Ψu T ·σΨ = T ′ )
�

Ψu P̀ T : K
�

∼
�

• ` T ′ : K
�

.cσΨ

Proof. Valid by construction. �

102



(Annotated terms) t A ::= c | s | vL | bi | λ(t A
1 ).t

A
2 | Πs (t

A
1 ).t

A
2 | (t

A
1 : t A : s) t A

2
| t A

1 =t A t A
2 | Xi/σ

(Annotated contexts) ΦA ::= • | ΦA, (t A : s) | ΦA, φi
(Annotated extension terms) T A ::= [−] t A | [−]ΦA

Figure 5.13: Annotated λHOL terms (syntax)

Practical pattern matching. We can significantly simplify the presentation of the algorithm if instead
of working directly on typing derivations we work on annotated terms which we will define shortly.
We will not do this only for presentation purposes but for efficiency considerations too: the algorithm
described so far would require us to keep full typing derivations at runtime. Instead, we will extract the
information required by the algorithm from the typing derivations and make them available syntactically
at the level of terms. The result will be the new notion of annotated terms and an alternative formulation
of the algorithm that works directly on such terms.

We present the syntax of annotated terms and annotated contexts in Figure 5.13. The main changes
are:

1. the inclusion of sort information in Π-types,

2. type and sort information for functions in function application and

3. type information for the equality type.

Furthermore, each member of the context is annotated with its sort. Last, annotated extension terms do
not need the context information anymore – that information is only relevant for typing purposes. We
adapt the pattern matching rules so that they work on annotated terms instead in Figure 5.14. The algo-
rithm accepts Ψu as an implicit argument in order to know what the length of the resulting substitution
needs to be.

A well-typed annotated term t A is straightforward to produce from a typing derivation of a normal
term t ; the inverse is also true. In the rest, we will thus use the two kinds of terms interchangeably and
drop the A superscript when it is clear from context which kind we mean. For example, we will use the
algorithm of Figure 5.14 algorithm directly to decide pattern matching between a well-typed pattern t and
a scrutinee t ′. It is understood that these have been converted to annotated terms after typing as needed.
We give the exact rules for the conversion in Figure 5.15 as a type derivation-directed translation function.

We prove the following lemma about the correspondence between the two algorithms working on
derivations and annotated terms; then soundness and completeness for the new algorithm follows directly.

Lemma 5.1.12 (Correspondence between pattern matching algorithms)

1.

�

Ψu P̀ T : K
�

∼
�

• ` T ′ : K
�

.cσΨ ¹Ψu ` T : KºA= T A �

• ` T ′ : K
�A= T ′A

T A∼ T ′A .¹• `cσΨ :Ψuº
A

2.
¹Ψu ` T : KºA= T A �

• ` T ′ : K
�A= T ′A T A∼ T ′A .cσΨ

A

∃cσΨ.( ¹• `cσΨ :Ψuº
A=cσΨ

A �

Ψu P̀ T : K
�

∼
�

• ` T ′ : K
�

.cσΨ )
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T ∼ T ′ .cσΨ

t ∼ t ′ / unspecΨu
.cσΨ

[−] t ∼ [−] t ′ .cσΨ

Φ′ ∼ Φ′′ .cσΨ
[−]Φ′ ∼ [−]Φ′′ .cσΨ

Φ′ ∼ Φ′′ .cσΨ

• ∼ • . unspecΨu

s = s ′ Φ∼ Φ′ .cσΨ t ∼ t ′ /cσΨ .cσΨ
′

(Φ, (t : s))∼ (Φ′, (t ′ : s ′)) .cσΨ
′

�

Φ, φi
�

∼
�

Φ,Φ′
�

. unspecΨu
[i 7→ [−]Φ′]

t ∼ t ′ /cσΨ .cσΨ
′

c ∼ c /cσΨ .cσΨ s ∼ s /cσΨ .cσΨ

L ·cσΨ = L′

vL ∼ v ′L /cσΨ .cσΨ

s = s ′ t1 ∼ t ′1 /cσΨ .cσΨ
′ dt2e ∼

 

t ′2
£

/cσΨ
′ .cσΨ

′′

Πs (t1).t2 ∼Πs ′(t
′
1).t

′
2 /cσΨ .cσΨ

′′

dt2e ∼
 

t ′2
£

/cσΨ .cσΨ
′

λ(t1).t2 ∼ λ(t
′
1).t

′
2 /cσΨ .cσΨ

′

s = s ′ t ∼ t ′ /cσΨ .cσΨ
′

t1 ∼ t ′1 /cσΨ
′ .cσΨ1 t2 ∼ t ′2 /cσΨ

′ .cσΨ2 cσΨ1 ◦cσΨ2 =cσΨ
′′

((t1 : t : s) t2)∼
�

(t ′1 : t ′ : s ′) t ′2
�

/cσΨ .cσΨ
′′

t ∼ t ′ /cσΨ .cσΨ
′ t1 ∼ t ′1 /cσΨ

′ .cσΨ1 t2 ∼ t ′2 /cσΨ
′ .cσΨ2 cσΨ1 ◦cσΨ2 =cσΨ

′′

�

t1 =t t2
�

∼
�

t ′1 =t ′ t ′2
�

/cσΨ .cσΨ
′′

cσΨ.i =? t ′ < f |σ ·cσΨ|
Xi/σ ∼ t ′ /cσΨ .cσΨ[i 7→ [−] t ′]

cσΨ.i = t ′

Xi/σ ∼ t ′ /cσΨ .cσΨ

Figure 5.14: Pattern matching algorithm for λHOL, operating on annotated terms

104



¹• ` T : KºA= T A

¹Ψ; Φ ` t : tTº
A= t A

¹Ψ ` [Φ] t : [Φ] tTº
A= [−] t A

�

Ψ ` Φ, Φ′ wf
�A=ΦA, Φ′A

�

Ψ ` [Φ]Φ′ : [Φ] ctx
�A= [−]Φ′A

�

• ` Φwf
�A=ΦA

�

Ψ ` •wf
�A= •

�

Ψ ` Φwf
�A=ΦA

¹Ψ; Φ ` t : sºA= t A

�

Ψ ` (Φ, t )wf
�A= (ΦA, (t A : s))

�

Ψ ` Φwf
�A=ΦA

�

Ψ ` Φ, φi wf
�A= (ΦA, φi )

�

Ψ; Φ ` t : t ′
�A= t A

¹Ψ; Φ ` c : tºA= c
�

Ψ; Φ P̀ s : s ′
�A= s ¹Ψ; Φ P̀ vL : tºA= vL

¹Ψ; Φ P̀ t1 : sºA= t A
1

�

Ψ; Φ, t1 P̀ dt2e|Φ| : s ′
�A
=
 

t A
2

£

�

Ψ; Φ `Π(t1).t2 : s ′′
�A=Πs (t

A
1 ).t

A
2

¹Ψ; Φ ` t1 : sºA= t A
1

�

Ψ; Φ, t1 ` dt2e|Φ| : t ′
�A
= dt2e

A

�

Ψ; Φ ` λ(t1).t2 :Π(t1).
�

t ′
�

|Φ|õ1

�A
= λ(t A

1 ).t
A
2

¹Ψ; Φ ` t1 :Π(ta).tbº
A= t A

1 ¹Ψ; Φ ` t2 : taº
A= t A

2 ¹Ψ; Φ `Π(ta).tb : sºA= t A

�

Ψ; Φ ` t1 t2 : dtb e|Φ| · (idΦ, t2)
�A
= (t A

1 : t A : s) t A
2

¹Ψu ; Φ P̀ t : TypeºA= t A
¹Ψu ; Φ P̀ t1 : tºA= t A

1 ¹Ψu ; Φ P̀ t2 : tºA= t A
2

¹Ψu ; Φ P̀ t1 = t2 : PropºA= (t A
1 =t A t A

2 )

¹Ψu ; Φ P̀ Xi/σ : tT ·σº
A=Xi/σ

Figure 5.15: Conversion of typing derivations to annotated terms

105



3.

�

Ψu P̀ Φwf
�

∼
�

• ` Φ′ wf
�

.cσΨ ¹Ψu ` ΦwfºA=ΦA �

• ` Φ′ wf
�A=Φ′A

ΦA∼ Φ′A .¹• `cσΨ :Ψuº
A

4.
¹Ψu ` ΦwfºA=ΦA �

• ` Φ′ wf
�A=Φ′A ΦA∼ Φ′A=cσΨ

A

∃cσΨ.( ¹• `cσΨ :Ψuº
A .cσΨ

A �

Ψu P̀ Φwf
�

∼
�

• ` Φ′ wf
�

.cσΨ )

5.

�

Ψu ; Φ ` t : tT
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ
′

¹Ψu ; Φ ` t : tTº
A= t A

�

•; Φ′ ` t ′ : t ′T
�A
= t ′A

�

• `cσΨ : bΨ
�A
=cσΨ

A

t A∼ t ′A /cσΨ
A .
�

• `cσΨ
′ : bΨ′

�A

6.

¹Ψu ; Φ ` t : tTº
A= t A

�

•; Φ′ ` t ′ : t ′T
�A
= t ′A

�

• `cσΨ : bΨ
�A
=cσΨ

A t A∼ t ′A /cσΨ
A .cσΨ

′A

∃cσΨ.(
�

• `cσΨ
′ : bΨ′

�A
.cσΨ

′A �

Ψu ; Φ ` t : tT
�

∼
�

•; Φ′ ` t ′ : t ′T
�

/cσΨ .cσΨ
′ )

Proof. By structural induction on the derivation of the pattern matching result. We also need to use
Lemma 5.1.1. �

Lemma 5.1.13 (Soundness and completeness for practical pattern matching algorithm)

1.

Ψu P̀ T : K ¹Ψu ` T : KºA= T A

• ` T ′ : K
�

• ` T ′ : K
�A= T ′A relevant

�

Ψu P̀ T : K
�

=Ψu T ∼ T ′ . σA
Ψ

∃σΨ.( • ` σΨ :Ψu ¹• ` σΨ :Ψuº
A= σA

Ψ T ·σΨ = T ′ )

2.

Ψu P̀ T : K
¹Ψu ` T : KºA= T A • ` T ′ : K

�

• ` T ′ : K
�A= T ′A relevant

�

Ψu P̀ T : K
�

=Ψu
∃σΨ.( • ` σΨ :Ψu T ·σΨ = T ′ )

T ∼ T ′ .¹• ` σΨ :Ψuº
A

Proof. By combining Lemma 5.1.11, Lemma 5.1.12 and Lemma 5.1.1. �

Summary

Let us briefly summarize the results of this section. For the typing judgement we defined in the end of
Section 5.1, as follows:

Ψ P̀ Ψu wf Ψ, Ψu P̀ TP : K unspecΨ,Ψu v relevant
�

Ψ, Ψu P̀ TP : K
�

Ψ `?P Ψu > TP : K
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we have the following results:

Ψ `?P Ψu > TP : K Ψ′ ` σΨ :Ψ

Ψ′ `?P Ψu ·σΨ > TP ·σΨ : K ·σΨ
SUBSTITUTION LEMMA

• `?P Ψu > TP : K • ` T : K

∃≤1σΨ.( • ` σΨ :Ψu TP ·σΨ = T )
PATTERN MATCHING

DETERMINISM AND DECIDABILITY

• `?P Ψu > TP : K • ` T : K TP ∼ T = σΨ
• ` σΨ :Ψu TP ·σΨ = T

PATTERN MATCHING

ALGORITHM SOUNDNESS

• `?P Ψu > TP : K • ` T : K
∃σΨ.( • ` σΨ :Ψu TP ·σΨ = T )

TP ∼ T = σΨ

PATTERN MATCHING

ALGORITHM COMPLETENESS

5.2 Collapsing extension variables

Let us consider the following situation. We are writing a tactic such as the simplify tactic given in Sec-
tion 2.3 under the heading “Staging”, a sketch of which is (using the new notations for extension types):

simplify : (φ : ctx)→ (P : [φ]Prop)→ (Q : [φ]Prop, [φ]P ⊃Q ∧Q ⊃ P )
simplify P = match P with

Q ∧R⊃O 7→ 〈Q ⊃ R⊃O, · · · 〉

In order to fill the missing proof object (denoted as · · · ), we need to perform pattern matching on its
inferred type: the open proposition

[φ] ((Q ∧R⊃O)⊃ (Q ⊃ R⊃O))∧ ((Q ⊃ R⊃O)⊃ (Q ∧R⊃O))

in the extension context Ψ that includes φ, P, Q, R, O. Yet the pattern matching procedure presented
in the previous section is only applicable when the extension context is empty. Instead of changing our
pattern matching procedure, we notice that we can prove an equivalent first-order lemma instead where
only normal logical variables are used (and is therefore closed with respect to Ψ):

[P : Prop,Q : Prop, R : Prop,O : Prop] ((Q ∧R⊃O)⊃ (Q ⊃ R⊃O))∧ ((Q ⊃ R⊃O)⊃ (Q ∧R⊃O))

Then, by instantiating this lemma with the variables of the open Ψ at hand, we can get a proof of the
desired type. But is there always such an equivalent first-order lemma in the general case of extension
contexts Ψ and can we find it if one exists? This will be the subject of this section.

More formally, we want to produce a proof object for a proposition P at a point where the extension
variables context is Ψ. If we want to discover this proof object programmatically, we need to proceed
by pattern matching on P (as the scrutinee). A problem arises: P is not closed, so the pattern matching
methodology presented in the previous section does not apply – since only patterns are allowed to use
extension variables (as unification variables). That is, we need to solve the following problem:
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If Ψ, Ψu P̀ PP : [Φ]Prop and Ψ ` P : [Φ]Prop,
then there exists σΨ such that Ψ ` σΨ : (Ψ, Ψu ) and PP ·σΨ = P.

This is a significantly more complicated pattern matching problem, because P also contains meta-variables.
To solve it properly, we need to be able to have unification variables that match against meta-variables;
these unification variables will then be meta-2-variables.

In this section we will partially address this issue in a different way. We will show that under certain
restrictions about the current non-empty extension context Ψ and its usage, we can collapse terms from
Ψ to an empty extension context. A substitution exists that then transforms the collapsed terms into
terms of the original Ψ context. That is, we can get an equivalent term that is closed with respect to the
extension context and use our normal pattern matching procedure on that.

We will thus prove the following theorem for contextual terms:

Ψ; Φ ` t : t ′ collapsable
�

Ψ ` [Φ] t : [Φ] t ′
�

∃t↓, t ′↓,Φ↓,σ .( •; Φ↓ ` t↓ : t ′↓ Ψ; Φ ` σ : Φ↓ t↓ ·σ = t t ′↓ ·σ = t ′ )

Combined with the pattern matching algorithm given in the previous section, which applies whenΨ= •,
this will give us a way to perform pattern matching even when Ψ is not empty under the restrictions that
we will express as the “collapsable” operation.

Let us now see the details of the limitations in the applicability of our solution. Intuitively, we will
be able to collapse the extension variable context when all extension variables depend on contexts Φ
which are prefixes of some Φ′ context. The collapsable operation is actually a function that discovers
such a context, if it exists. Furthermore, all uses of extension variables should be used only with identity
substitutions. This restriction exists because there is no generic way of encoding the equalities that are
produced by non-identity substitutions. We present the full details of the collapsable function in Figures
5.16 and 5.17.

The actual collapsing transformation amounts to replacing all instances of meta-variables with normal
variables, instantiating all context variables with the empty context, and renaming normal variables ap-
propriately, so that both meta-variables and normal variables can refer to one identical Φ context. We can
define this transformation through a series of substitutions and meta-substitutions. Before we proceed to
see the details of the proof through which the transformation is defined, we need two auxiliary lemmas.

Lemma 5.2.1

1.
collapsable (Φ) /Φ′ .Φ′′

( Φ′ ⊆ Φ Φ′′ =Φ ) ∨ ( Φ⊆ Φ′ Φ′′ =Φ′ )
2.

collapsable (Ψ ` [Φ] t : [Φ] tT ) .Φ
′

Φ⊆ Φ′

3.
collapsable (Ψ ` [Φ0]Φ1 : [Φ0]Φ1) .Φ

′

Φ0,Φ1 ⊆ Φ
′

Proof. By structural induction on the derivation of collapsable (·). �
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collapsable (Ψ) /Φ .Φ′

collapsable (•) /Φ .Φ
collapsable (Ψ) /Φ .Φ′ collapsable (K) /Φ′ .Φ′′

collapsable (Ψ, K) /Φ .Φ′′

collapsable (K) /Φ′ .Φ′′

T = [Φ] t collapsable (T ) /Φ′ .Φ′′

collapsable ([Φ] t ) /Φ′ .Φ′′
collapsable (Φ) /Φ′ .Φ′′

collapsable ([Φ] ctx) /Φ′ .Φ′′

collapsable (T ) /Φ′ .Φ′′

collapsable (Φ) /Φ′ .Φ′′ collapsable (t ) /Φ′′

collapsable ([Φ] t ) /Φ′ .Φ′′
collapsable (Φ1, Φ2) /Φ

′ .Φ′′

collapsable ([Φ1]Φ2) /Φ
′ .Φ′′

collapsable (Ψ ` T : K) .Φ′

collapsable (Ψ) / • .Φ′ collapsable (K) /Φ′ .Φ′′ collapsable (T ) /Φ′′ .Φ′′

collapsable (Ψ ` T : K) .Φ′′

collapsable
�

Ψ ` Φwf
�

.Φ′

collapsable (Ψ) / • .Φ′ collapsable (Φ) /Φ′ .Φ′′

collapsable
�

Ψ ` Φwf
�

.Φ′′

Figure 5.16: Operation to decide whether λHOL terms are collapsable with respect to the extension
context
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collapsable (Φ) /Φ′ .Φ′′

collapsable (•) /Φ′ .Φ′
collapsable (Φ) /Φ′ .Φ′′ Φ=Φ′′ collapsable (t ) /Φ

collapsable (Φ, t ) /Φ′ . (Φ, t )

collapsable (Φ) /Φ′ .Φ′′ Φ⊂ Φ′′ collapsable (t ) /Φ′′

collapsable (Φ, t ) /Φ′ .Φ′′
collapsable (Φ) /Φ′ .Φ′′ Φ=Φ′′

collapsable
�

Φ, φi
�

/Φ′ . (Φ, φi )

collapsable (Φ) /Φ′ .Φ′′ Φ⊂ Φ′′

collapsable
�

Φ, φi
�

/Φ′ .Φ′′

collapsable (t ) /Φ′

collapsable (s) /Φ′ collapsable (c) /Φ′ collapsable (vL) /Φ
′

collapsable (t1) /Φ
′ collapsable (t2) /Φ

′

collapsable (λ(t1).t2) /Φ
′

collapsable (t1) /Φ
′ collapsable (t2) /Φ

′

collapsable (Π(t1).t2) /Φ
′

collapsable (t1) /Φ
′ collapsable (t2) /Φ

′

collapsable (t1 t2) /Φ
′

collapsable (t1) /Φ
′ collapsable (t2) /Φ

′

collapsable (t1 = t2) /Φ
′

σ ⊆ idΦ
collapsable

�

Xi/σ
�

/Φ′

Figure 5.17: Operation to decide whether λHOL terms are collapsable with respect to the extension
context (continued)

110



Lemma 5.2.2

1.
collapsable (Ψ) / • .Φ Φ⊆ Φ′

collapsable (Ψ) /Φ′ .Φ′
2.

collapsable (K) / • .Φ Φ⊆ Φ′

collapsable (K) /Φ′ .Φ′

3.
collapsable (T ) / • .Φ Φ⊆ Φ′

collapsable (T ) /Φ′ .Φ′
4.

collapsable (Φ0) / • .Φ Φ⊆ Φ′

collapsable (Φ0) /Φ
′ .Φ′

Proof. By structural induction on the derivation of collapsable (·). �

We are now ready to state and prove the main result of this section. Both the statement and proof are
technically involved, so we will give a high-level picture prior to the actual proof. The main theorem that
we will use later is a simple corollary of this result.

Theorem 5.2.3

`Ψwf collapsable (Ψ) / • .Φ0

∃Ψ1,σ1
Ψ,σ2

Ψ,Φ1,σ1,σ−1,σ i nv .
Ψ1 ` σ1

Ψ :Ψ • ` σ2
Ψ :Ψ1 Ψ1 ` Φ1 wf Ψ1; Φ1 ` σ1 : Φ0 ·σ1

Ψ Ψ1; Φ0 ·σ1
Ψ ` σ

−1 : Φ1

σ1 ·σ−1 = idΦ0·σ1
Ψ

Ψ; Φ0 ` σ i nv : Φ1 ·σ2
Ψ ∀t .Ψ; Φ0 ` t : t ′⇒ t ·σ1

Ψ ·σ
1 ·σ2

Ψ ·σ
i nv = t

∀T ∈Ψ1.(T = [Φ∗] t ∧Φ∗ ⊆ Φ1)

Explanation of involved terms. The main idea of the proof is to maintain a number of substitu-
tions to transform a term from the extension context Ψ to the empty context, by a series of context
changes. We assume that the collapsable operation has established that all extension variables depend
on prefixes of the context Φ0. For example, this operation will determine Φ0 for the extension context
Ψ = φ : ctx,A : [φ]Nat,B : [φ, x : Nat]Nat,T : [φ]Type, t : [φ]T to be Φ0 = φ, x0 : Nat. Then, the
substitutions and contexts defined by the theorem are:

Φ1 is a context that is composed of ‘collapsed’ versions of all extension variables, as well as any normal
variables required to type them. For the above example, this would be determined as Φ1 = A1 : Nat, x1 :
Nat, B1 : Nat, T 1 : Type, t 1 : T 1.

Ψ1 is an extension context where all extension variables depend on the Φ1 context. It has the same
metavariables asΨ, with the difference that all of them use prefixes of the Φ1 context and dependencies on
previous meta-variables are changed to dependencies on the Φ1 context. Context variables are also elided.
For the above example context we will therefore have Ψ1 = A′ : [Φ1]Nat,B ′ : [Φ1]Nat,T ′ : [Φ1]Type, t ′ :
[Φ1]T 1, where we use primed names for meta-variables to distinguish them from the normal ones of Ψ.

σ1
Ψ can be understood as a renaming of metavariables from the originalΨ context to theΨ1 context. Since

the two contexts have essentially the same metavariables, the renaming is simple to carry out. Context
variables are substituted with the empty context. This is fine since parametric contexts carry no informa-
tion. For the example context above, we will have that σ1

Ψ =φ 7→ •,A 7→A′,B 7→ B ′,T 7→ T ′, t 7→ t ′
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σ1 can be understood as a permutation from variables in Φ0 to variables in Φ1. The need for it arises from
the fact that collapsed versions of metavariables get interspersed with normal variables in Φ1. σ−1 is the
permutation for the inverse direction, that is from variables in Φ1 to variables in Φ0. For the example, we
have:
σ1 = x0 7→ x1

σ−1 =A1 7→A′, x1 7→ x0, B1 7→ B ′, T 1 7→ T ′, t 1 7→ t ′

σ2
Ψ carries out the last step, which is to replace the extension variables from Ψ1 with their collapsed ver-

sions in the Φ1 context. In the example, we would have that σ2
Ψ = A′ 7→ [Φ1]A1, B ′ 7→ [Φ1]B1, T ′ 7→

[Φ1]T 1, t ′ 7→ [Φ1] t 1.
σ i nv is the substitution that inverses all the others, yielding a term in the original Ψ extension context
from a closed collapsed term. In the example this would be σ i nv = A1 7→ A, x1 7→ x0, B1 7→ B , T 1 7→
T , t 1 7→ t .

Proof. By induction on the derivation of the relation collapsable (Ψ) / • .Φ0.

Case Ψ = •. We choose Ψ1 = •; σ1
Ψ = σ

2
Ψ = •; Φ

1 = •; σ1 = σ−1 = •; σ i nv = • Φ1 = • and the desired
trivially hold.

CaseΨ=Ψ′, [Φ]ctx. From the collapsable relation, we get: collapsable
�

Ψ′
�

/•.Φ′0, collapsable ([Φ] ctx)/
Φ′0 .Φ0. By induction hypothesis for Ψ′, get:
Ψ′1 ` σ ′1Ψ :Ψ′ • ` σ ′2Ψ :Ψ′1 Ψ′1 ` Φ′1 wf Ψ′1; Φ′1 ` σ ′1 : Φ′0 ·σ ′1Ψ Ψ′1; Φ′0 ·σ ′1Ψ ` σ

′−1 : Φ′1

σ ′1 ·σ ′−1 = idΦ′0·σ ′1Ψ
Ψ′; Φ′0 ` σ ′i nv : Φ′1 ·σ ′2Ψ ∀t .Ψ′; Φ′0 ` t : t ′⇒ t ·σ ′1Ψ ·σ

′1 ·σ ′2Ψ ·σ
′i nv = t

∀T ∈Ψ′1.T = [Φ∗] t ∧Φ∗ ⊆ Φ′1

By inversion of typing for [Φ] ctx we get that Ψ′ ` Φwf.
We fix σ1

Ψ = σ
′1
Ψ , [Φ′0 · σ ′1Ψ ]• which is a valid choice as long as we select Ψ1 so that Ψ′1 ⊆ Ψ1. This

substitution has correct type by taking into account the substitution lemma for Φ′0 and σ ′1Ψ .
For choosing the rest, we proceed by induction on the derivation of Φ′0 ⊆ Φ0.

If Φ0 =Φ′0 then:
We have Φ⊆ Φ′0 because of Lemma 5.2.1.
Choose Ψ1 =Ψ′1 ; σ2

Ψ = σ
′2
Ψ ; Φ1 =Φ′1 ; σ1 = σ ′1 ; σ−1 = σ ′−1; σ i nv = σ ′i nv .

Everything holds trivially, other than σ1
Ψ typing. This too is easy to prove by taking into account the

substitution lemma for Φ and σ ′1Ψ . Also, σ ′i nv typing uses extension variable weakening. Last, for the
cancellation part, terms that are typed under Ψ are also typed under Ψ′ so this part is trivial too.

If Φ0 = Φ′0, t then: (here we abuse notation slightly by identifying the context and substitutions from
induction hypothesis with the ones we already have: their properties are the same for the new Φ′0)
We have Φ=Φ0 =Φ′0, t because of Lemma 5.2.1 (Φ0 is not Φ′0 thus Φ0 =Φ).
First, choose Φ1 = Φ′1, t · σ ′1Ψ · σ

′1. This is a valid choice, because Ψ′; Φ′0 ` t : s ; by applying σ ′1Ψ we get
Ψ′1; Φ′0 ·σ ′1Ψ ` t ·σ ′1Ψ : s ; by applying σ ′1 we get Ψ′1; Φ′1 ` t ·σ ′1Ψ ·σ

′1 : s .
Thus Ψ′1 ` Φ′1, t ·σ ′1Ψ ·σ

′1 wf.
Now, choose Ψ1 =Ψ′1, [Φ1] t ·σ ′1Ψ ·σ

′1. This is well-formed because of what we proved above about the
substituted t , taking weakening into account. Also, the condition for the contexts inΨ1 being subcontexts
of Φ1 obviously holds.
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Choose σ2
Ψ = σ

′2
Ψ , [Φ1]v|Φ′1|. We have • ` σ2

Ψ :Ψ1 directly by our construction.
Choose σ1 = σ ′1, v|Φ′1|. We have that this latter term can be typed as:
Ψ1; Φ1 ` v|Φ′1| : t ·σ ′1Ψ ·σ

′1, and thus we have Ψ1; Φ1 ` σ1 : Φ′0 ·σ ′1Ψ , t ·σ ′1Ψ .
Choose σ−1 = σ ′−1, v|Φ′0·σ ′1Ψ |

. The desired properties obviously hold.

Choose σ i nv = σ ′i nv , v|Φ′0|, which is typed correctly since t ·σ ′1Ψ ·σ
′1 ·σ ′2Ψ ·σ

i nv = t .
Last, assume Ψ; Φ′0, t ` t∗ : t ′∗. We prove t∗ ·σ1

Ψ ·σ
1 ·σ2

Ψ ·σ
i nv = t∗.

First, t∗ is also typed under Ψ′ because t∗ cannot use the newly-introduced variable directly (even in
the case where it would be part of Φ0, there’s still no extension variable that has X|Ψ′| in its context).
Thus it suffices to prove t∗ ·σ ′1Ψ ·σ

1 ·σ2
Ψ ·σ

i nv = t∗.
Then proceed by structural induction on t∗. The only interesting case occurs when t∗ = v|Φ′0|, in
which case we have:
v|Φ′0| ·σ

′1
Ψ ·σ

1 ·σ2
Ψ ·σ

i nv = v|Φ′0·σ ′1Ψ |
·σ1 ·σ2

Ψ ·σ
i nv = v|Φ′1| ·σ

2
Ψ ·σ

i nv = v|Φ′1·σ2
Ψ|
·σ i nv = v|Φ′0|

If Φ0 =Φ′0, φi then:
By well-formedness inversion we get that Ψ.i = [Φ∗] ctx, and by repeated inversions of the collapsable
relation we get Φ∗ ⊆ Φ′0.
Choose Φ1 =Φ′1 ; Ψ1 =Ψ′1 ; σ2

Ψ = σ
′2
Ψ ; σ1 = σ ′1; σ−1 = σ ′−1; σ i nv = σ ′i nv .

Most desiderata are trivial. For σ1, note that (Φ′1, φi ) ·σ ′1Ψ = Φ
′1 ·σ ′1Ψ since by construction we have that

σ ′1Ψ always substitutes parametric contexts by the empty context.
For substitutions cancellation, we need to prove that for all t such that Ψ; Φ′0, φi ` t∗ : t ′∗, we have
t∗ · σ1

Ψ · σ
1 · σ2

Ψ · σ
i nv = t∗. This is proved directly by noticing that t∗ is typed also under Ψ′ (φi as the

just-introduced variable cannot refer to itself).

Case Ψ=Ψ′, [Φ] t . From the collapsable relation, we get:
collapsable

�

Ψ′
�

/ • .Φ′0, collapsable (Φ) /Φ′0 .Φ0, collapsable (t ) /Φ0.
By induction hypothesis for Ψ′, we get:
Ψ′1 ` σ ′1Ψ :Ψ′ • ` σ ′2Ψ :Ψ′1 Ψ′1 ` Φ′1 wf Ψ′1; Φ′1 ` σ ′1 : Φ′0 ·σ ′1Ψ Ψ′1; Φ′0 ·σ ′1Ψ ` σ

′−1 : Φ′1

σ ′1 ·σ ′−1 = idΦ′0·σ ′1Ψ
Ψ′; Φ′0 ` σ ′i nv : Φ′1 ·σ ′2Ψ ∀t .Ψ′; Φ′0 ` t : t ′⇒ t ·σ ′1Ψ ·σ

′1 ·σ ′2Ψ ·σ
′i nv = t

∀T ∈Ψ′1.T = [Φ∗] t ∧Φ∗ ⊆ Φ′1

Also from typing inversion we get: Ψ′ ` Φwf and Ψ′; Φ ` t : s .
We proceed similarly as in the previous case, by induction on Φ′0 ⊆ Φ0, in order to redefine Ψ′1, σ ′1Ψ , σ ′2Ψ ,
Φ′1, σ ′1, σ ′−1, σ i nv with the same properties but for Φ0 instead of Φ′0:
Ψ′1 ` σ ′1Ψ :Ψ′ • ` σ ′2Ψ :Ψ′1 Ψ′1 ` Φ′1 wf Ψ′1; Φ′1 ` σ ′1 : Φ0 ·σ ′1Ψ Ψ′1; Φ0 ·σ ′1Ψ ` σ

′−1 : Φ′1

σ ′1 ·σ ′−1 = idΦ0·σ ′1Ψ
Ψ′; Φ0 ` σ ′i nv : Φ′1 ·σ ′2Ψ ∀t .Ψ′; Φ0 ` t : t ′⇒ t ·σ ′1Ψ ·σ

′1 ·σ ′2Ψ ·σ
′i nv = t

∀T ∈Ψ′1.T = [Φ∗] t ∧Φ∗ ⊆ Φ′1

Now we have Φ⊆ Φ0 thus Ψ′; Φ0 ` t : s .
By applying σ ′1Ψ and then σ ′1 to t we getΨ′1; Φ′1 ` t ·σ ′1Ψ ·σ

′1 : s . We can now choose Φ1 =Φ′1, t ·σ ′1Ψ ·σ
′1.

Choose Ψ1 =Ψ′1, [Φ1] t ·σ ′1Ψ ·σ
′1. It is obviously well-formed.

Choose σ1
Ψ = σ

′1
Ψ , [Φ] t 1. We need Ψ1; Φ ·σ ′1Ψ ` t 1 : t ·σ ′1Ψ .

Assuming t 1 =X|Φ′1|/σ , we need t ·σ ′1Ψ ·σ
′1 ·σ = t ·σ ′1Ψ and Ψ1; Φ ·σ ′1Ψ ` σ : Φ1.

Therefore σ = σ ′−1 and σ1
Ψ = σ

′1
Ψ , [Φ]X|Φ′1|/σ

′−1 with the desirable properties.
Choose σ2

Ψ = σ
′2
Ψ , [Φ1]v|Φ′1|. We trivially have • ` σ2

Ψ :Ψ1.
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Choose σ1 = σ ′1, with typing holding obviously.
Choose σ−1 = σ−1, X|Ψ′1|/idΦ1 . Since σ1 does not use the newly introduced variable in Φ1, the fact that
σ−1 is its inverse follows trivially.
Choose σ i nv = σ ′i nv , X|Ψ′|/id(Φ). This is well-typed if we consider the substitutions cancellation fact.
It remains to prove that for all t∗ such that Ψ′,[Φ] t ; Φ0 ` t∗ : t ′∗, we have t∗ ·σ1

Ψ ·σ
1 ·σ2

Ψ ·σ
i nv = t∗.

This is done by structural induction on t∗, with the interesting case being t∗ = X|Ψ′|/σ∗. By inversion of
collapsable relation, we get that σ∗ = idΦ.
Thus (X|Ψ′|/idΦ) ·σ1

Ψ ·σ
1 ·σ2

Ψ ·σ
i nv = (X|Φ′1|/(idΦ ·σ

1
Ψ)) ·σ

1 ·σ2
Ψ ·σ

i nv = (X|Φ′1|/(idΦ·σ1
Ψ
)) ·σ1 ·σ2

Ψ ·σ
i nv =

(X|Φ′1|/(idΦ·σ1
Ψ
·σ1))·σ2

Ψ ·σ
i nv = (X|Φ′1|/(idΦ1))·σ2

Ψ ·σ
i nv = (v|Φ′1| ·(idΦ1 ·σ2

Ψ))·σ
i nv = (v|Φ′1| ·idΦ1·σ2

Ψ
)·σ i nv =

v|Φ′1·σ2
Ψ|
·σ i nv =X|Ψ′|/idΦ. �

Theorem 5.2.4

Ψ ` [Φ] t : [Φ] tT collapsable (Ψ ` [Φ] t : [Φ] tT ) .Φ∗
∃Φ′, t ′, t ′T ,σ .

• ` Φ′ wf • ` [Φ′] t ′ : [Φ′] t ′T Ψ; Φ ` σ : Φ′ t ′ ·σ = t t ′T ·σ = tT

Proof. Trivial application of Theorem 5.2.3. Set Φ′ =Φ1 ·σ2
Ψ, t ′ = t ·σ1

Ψ ·σ
1 ·σ2

Ψ, t ′T = tT ·σ1
Ψ ·σ

1 ·σ2
Ψ,

and also set σ = σ−1. �
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Chapter 6

The VeriML computational language

Having presented the details of the λHOL logic and its associated operations in the previous chapters, we
are now ready to define the core VeriML computational language. I will first present the basic constructs
of the language for introducing and manipulating λHOL logical terms. I will state the type safety theorem
for this language and prove it using the standard syntactic approach of Wright and Felleisen [1994]. I will
then present some extensions to the language that will be useful for the applications of VeriML we will
consider in the rest.

6.1 Base computation language

6.1.1 Presentation and formal definition

The core of VeriML is a functional language with call-by-value semantics and support for side-effects such
as mutable references in the style of ML. This core calculus is extended with constructs that are tailored to
working with terms of the λHOL logic. Specifically, we include constructs in order to be able to introduce
extension terms T – that is, contextual terms and contexts – and also to look into their structure through
pattern matching. The type K of an extension term T is retained at the level of VeriML computational
types. Types K can mention variables from the extension context Ψ and can therefore depend on terms
that were introduced earlier. Thus λHOL constructs available at the VeriML level are dependently typed.
We will see more details of this in the rest of this section.

Let us now present the formal details of VeriML, split into the ML core and the λHOL-related exten-
sions. Figure 6.1 defines the syntax of the ML core of VeriML; Figures 6.3 through 6.5 give the relevant
typing rules and Figure 6.8 gives the small-step operational semantics. This ML core supports the follow-
ing features: higher-order functional programming (through function types τ1 → τ2); general recursion
(through the fixpoint construct fix x : τ.e); algebraic data types (combining product types τ1 × τ2, sum
types τ1+ τ2, recursive types µα : k .τ and the unit type unit); mutable references ref τ; polymorphism
over types supporting full System F – also referred to as rank-N-polymorphism (through the ∀α : k .τ
type); and type constructors in the style of System Fω (by including arrows at the kind level k1→ k2 and
type constructors λα : k .τ at the type level). Data type definitions of the form:

data list α=Nil | Cons of α× list α

can be desugared to their equivalent using the base algebraic data type formers:
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(Kinds) k ::= ? | k→ k
(Types) τ ::= unit | τ1→ τ2 | τ1×τ2 | τ1+τ2 | µα : k .τ | ref τ

| ∀α : k .τ | λα : k .τ | τ1 τ2 | α
(Expressions) e ::= () | λx : τ.e | e e ′ | x | (e , e ′) | proji e | inji e

| case(e , x.e ′, x.e ′′) | fold e | unfold e | ref e | e := e ′ | !e
| l | Λα : k .e | e τ | fix x : τ.e

(Contexts) Γ ::= • | Γ, x : τ | Γ, α : k
(Values) v ::= () | λx : τ.e | (v, v ′) | inji v | fold v | l | Λα : k .e

(Evaluation contexts) E ::= • | E e ′ | v E | (E , e) | (v, E) | proji E | inji E
| case(E , x.e1, x.e2) | fold E | unfold E | ref E | E := e ′

| v := E | !E | E τ
(Stores) µ ::= • | µ, l 7→ v

(Store typing) M ::= • |M, l : τ

Figure 6.1: VeriML computational language: ML core (syntax)

(Kinds) k ::= · · · | ΠV : K .k
(Types) τ ::= · · · | (V : K)→ τ | (V : K)×τ | λV : K .τ | τ T

(Expressions) e ::= · · · | λV : K .e | e T | 〈 T , e 〉(V :K)×τ
| let 〈V , x 〉= e in e ′

| holmatch T returnV : K .τ withΨu .T ′ 7→ e ′
(Values) v ::= · · · | λV : K .e | 〈 T , e 〉(V :K)×τ

(Evaluation contexts) E ::= · · · | E T | 〈 T , E 〉(V :K)×τ | let 〈V , x 〉= E in e ′

Figure 6.2: VeriML computational language: λHOL-related constructs (syntax)

let list= λα : ?.µlist : ?.unit+α× list
let Nil= λα : ?.fold (inj1 ())
let Cons= λα : ?.λhd : α.λtl : list α.fold (inj2 (hd, tl))

We do not present features such as exception handling and the module system available in Standard ML
[Milner, 1997], but these are straightforward to add using the standard mechanisms. Typing derivations
are of the form Ψ; M; Γ ` J , where Ψ is a yet-unused extension variables context that will be used in
the λHOL-related extensions; M is the store typing, i.e. a context assigning types to locations in the
current store µ; and Γ is the context of computational variables, including type-level α and expression-
level x variables. The operational semantics work on machine states of the form (µ , e )which bundle the
current store µ with the current expression e . We formulate the semantics through evaluation contexts E
[Felleisen and Hieb, 1992]. All of these definitions are entirely standard [e.g. Pierce, 2002] so we will not
comment further on them.

The new λHOL-related constructs are dependently-typed tuples over λHOL extension terms, depen-
dently-typed functions, dependent pattern matching and type constructors dependent on λHOL terms.
We present their details in Figures 6.2 (syntax), 6.6 and 6.7 (typing) and 6.9 (operational semantics). We
will now briefly discuss these constructs.
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Ψ ` k wf

`Ψwf

Ψ ` ?wf
CKND-CTYPE

Ψ ` k wf Ψ ` k ′ wf

Ψ ` k→ k ′ wf
CKND-ARROW

Ψ; Γ ` τ : k

Ψ; Γ ` unit : ?
CTYP-UNIT

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1→ τ2 : ?
CTYP-ARROW

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1×τ2 : ?
CTYP-PROD

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1+τ2 : ?
CTYP-SUM

Ψ ` k wf Ψ; Γ, α : k ` τ : k

Ψ; Γ ` (µα : k .τ) : k
CTYP-REC

Ψ; Γ ` τ : ?

Ψ; Γ ` ref τ : ?
CTYP-REF

Ψ ` k wf Ψ; Γ, α : k ` τ : ?

Ψ; Γ ` (∀α : k .τ) : ?
CTYP-POLY

Ψ ` k wf Ψ; Γ, α : k ` τ : k ′

Ψ; Γ ` (λα : k .τ) : k→ k ′
CTYP-LAM

Ψ; Γ ` τ1 : k→ k ′ Ψ; Γ ` τ2 : k

Ψ; Γ ` τ1 τ2 : k ′
CTYP-APP

(α : k) ∈ Γ
Ψ; Γ ` α : k

CTYP-VAR

Ψ ` Γwf

Ψ ` •wf
CCTX-EMPTY

Ψ ` Γwf Ψ; Γ ` k wf

Ψ ` (Γ, α : k)wf
CCTX-TVAR

Ψ ` Γwf Ψ; Γ ` τ : ?

Ψ ` (Γ, x : τ)wf
CCTX-CVAR

Figure 6.3: VeriML computational language: ML core (typing, 1/3)
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`M wf

` •wf
STORE-EMPTY

`M wf •; • ` τ : ?

` (M, l : τ)
STORE-LOC

Ψ; M; Γ ` e : τ

Ψ; M; Γ ` () : unit
CEXP-UNIT

Ψ; M; Γ, x : τ ` e : τ′

Ψ; M; Γ ` λx : τ.e : τ→ τ′
CEXP-FUNI

Ψ; M; Γ ` e : τ→ τ′ Ψ; M; Γ ` e ′ : τ

Ψ; M; Γ ` e e ′ : τ′
CEXP-FUNE

(x : τ) ∈ Γ
Ψ; M; Γ ` x : τ

CEXP-VAR

Ψ; M; Γ ` e1 : τ1 Ψ; M; Γ ` e2 : τ2

Ψ; M; Γ ` (e1, e2) : τ1×τ2

CEXP-PRODI

Ψ; M; Γ ` e : τ1×τ2 i = 1 or 2

Ψ; M; Γ ` proji e : τi
CEXP-PRODE

Ψ; M; Γ ` e : τi i = 1 or 2

Ψ; M; Γ ` inji e : τ1+τ2

CEXP-SUMI

Ψ; M; Γ ` e : τ1+τ2 Ψ; M; Γ, x : τ1 ` e1 : τ Ψ; M; Γ, x : τ2 ` e2 : τ

Ψ; M; Γ ` case(e , x.e1, x.e2) : τ
CEXP-SUME

Ψ; Γ ` (µα : k .τ) : ? Ψ; M; Γ ` e : τ[µα : k .τ/α]

Ψ; M; Γ ` fold e :µα : k .τ
CEXP-RECI

Ψ; Γ ` (µα : k .τ) : ? Ψ; M; Γ ` e :µα : k .τ

Ψ; M; Γ ` unfold e : τ[µα : k .τ/α]
CEXP-RECE

Ψ; M; Γ, α : k ` e : τ

Ψ; M; Γ `Λα : k .e :Πα : k .τ
CEXP-POLYI

Ψ; M; Γ ` e :Πα : k .τ′ Ψ; Γ ` τ : k

Ψ; M; Γ ` e τ : τ′[τ/α]
CEXP-POLYE

Figure 6.4: VeriML computational language: ML core (typing, 2/3)
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Ψ; M; Γ ` e : τ

Ψ; M; Γ ` e : τ

Ψ; M; Γ ` ref e : ref τ
CEXP-NEWREF

Ψ; M; Γ ` e : ref τ Ψ; M; Γ ` e ′ : τ

Ψ; M; Γ ` e := e ′ : unit
CEXP-ASSIGN

Ψ; M; Γ ` e : ref τ
Ψ; M; Γ `!e : τ

CEXP-DEREF
(l : τ) ∈M

Ψ; M; Γ ` l : ref τ
CEXP-LOC

Ψ; M; Γ ` e : τ τ =β τ
′

Ψ; M; Γ ` e : τ′
CEXP-CONV

Ψ; M; Γ, x : τ ` e : τ

Ψ; M; Γ ` fix x : τ.e : τ
CEXP-FIX

Figure 6.5: VeriML computational language: ML core (typing, 3/3)

Ψ ` k wf

`Ψ, V : K wf Ψ, V : K ` k wf

Ψ `ΠV : K .k wf
CKND-ΠHOL

Ψ; Γ ` τ : k

Ψ, V : K ; Γ ` τ : ?

Ψ; Γ ` (V : K)→ τ : ?
CTYP-ΠHOL

Ψ, V : K ; Γ ` τ : ?

Ψ; Γ ` (V : K)×τ : ?
CTYP-ΣHOL

Ψ, V : K ; Γ ` τ : k

Ψ; Γ ` (λV : K .τ) : (ΠV : K .k)
CTYP-LAMHOL

Ψ; Γ ` τ :ΠV : K .k Ψ ` T : K

Ψ; Γ ` τ T : k[T /V ]
CTYP-APPHOL

Figure 6.6: VeriML computational language: λHOL-related constructs (typing)
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Ψ; M; Γ ` e : τ

Ψ, V : K ; M; Γ ` e : τ

Ψ; M; Γ ` (λV : K .e) : ((V : K)→ τ)
CEXP-ΠHOLI

Ψ; M; Γ ` e : (V : K)→ τ Ψ ` T : K

Ψ; M; Γ ` e T : τ[T /V ]
CEXP-ΠHOLE

Ψ; Γ ` (V : K)×τ : ? Ψ ` T : K Ψ; M; Γ ` e : τ[T /V ]

Ψ; M; Γ ` 〈 T , e 〉(V :K)×τ : ((V : K)×τ)
CEXP-ΣHOLI

Ψ; M; Γ ` e : (V : K)×τ Ψ, V : K ; M; Γ, x : τ ` e ′ : τ′

Ψ; Γ ` τ′ : ?
Ψ; M; Γ ` let 〈V , x 〉= e in e ′ : τ′

CEXP-ΣHOLE

Ψ ` T : K
Ψ, V : K ; Γ ` τ : ? Ψ `?P Ψu > TP : K Ψ, Ψu ; M; Γ ` e ′ : τ[TP/V ]

Ψ; M; Γ ` holmatch T returnV : K .τ
with Ψu . TP 7→ e ′

: τ[T /V ]+ unit
CEXP-HOLMATCH

Ψ; Γ ` (µα : k .τ) : k Ψ; M; Γ ` e : τ[µα : k .τ/α] a1 a2 · · · an ai = τi or Ti

Ψ; M; Γ ` fold e : (µα : k .τ) a1 a2 · · · an
CEXP-RECI

Ψ; Γ ` (µα : k .τ) : k Ψ; M; Γ ` e : (µα : k .τ) a1 a2 · · · an ai = τi or Ti

Ψ; M; Γ ` unfold e : τ[µα : k .τ/α] a1 a2 · · · an
CEXP-RECE

Figure 6.7: VeriML computational language: λHOL-related constructs (typing, continued)
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(µ , e )−→
�

µ , e ′
�

(µ , e )−→
�

µ′ , e ′
�

(E 6= •)
(µ , E[e] )−→

�

µ′ , E[e ′]
� OP-ENV

(µ , (λx : τ.e) v )−→ (µ , e[v/x] )
OP-BETA

�

µ , proji (v1, v2)
�

−→
�

µ , vi
� OP-PROJ

�

µ , case(inji v, x.e1, x.e2)
�

−→
�

µ , ei[v/x]
� OP-CASE

(µ , unfold (fold v) )−→ (µ , v )
OP-UNFOLD

¬(l 7→ _ ∈µ)
(µ , ref v )−→ ( (µ, l 7→ v) , l )

OP-NEWREF

l 7→ _ ∈µ
(µ , l := v )−→ (µ[l 7→ v] , () )

OP-ASSIGN
l 7→ v ∈µ

(µ , !l )−→ (µ , v )
OP-DEREF

(µ , (Λα : k .e) τ )−→ (µ , e[τ/α] )
OP-POLYINST

(µ , fix x : τ.e )−→ (µ , e[fix x : τ.e/x] )
OP-FIX

µ[l := v]

(µ, l ′ 7→ v ′)[l := v] = µ[l := v], l ′ 7→ v ′

(µ, l 7→ v ′)[l := v] = µ, l 7→ v

(l 7→ v) ∈µ

(l 7→ v) ∈ (µ, l 7→ v)
(l 7→ v) ∈ (µ, l ′ 7→ v ′)⇐ (l 7→ v) ∈µ

Figure 6.8: VeriML computational language: ML core (semantics)

(µ , e )−→
�

µ , e ′
�

(µ , (λV : K .e) T )−→ (µ , e[T /V ] )
OP-ΠHOL-BETA

�

µ , let 〈V , x 〉= 〈 T , v 〉 in e ′
�

−→
�

µ , (e ′[T /V ])[v/x]
� OP-ΣHOL-UNPACK

TP ∼ T = σΨ
�

µ , holmatch T withΨu .TP 7→ e ′
�

−→
�

µ , inj1 (e
′ ·σΨ)

� OP-HOLMATCH

TP ∼ T = fail
�

µ , holmatch T withΨu .TP 7→ e ′
�

−→ (µ , inj2 () )
OP-HOLNOMATCH

Figure 6.9: VeriML computational language: λHOL-related constructs (semantics)
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Dependent λHOL tuples. We use tuples over λHOL extension terms in order to incorporate such
terms inside our computational language expressions. These tuples are composed from a λHOL part T
and a computational part e . We write them as 〈 T , e 〉. The type that VeriML assigns to such tuples
includes the typing information coming from the logic. We will denote their type as K × τ for the time
being, with K being the λHOL type of T and τ being the type of e . The simplest case occurs when
the computational part is empty – more accurately when it is equal to the unit expression that carries no
information (e = ()). In this case, a λHOL tuple simply gives us a way to create a VeriML computational
value v out of a λHOL extension term T , for example:

v = 〈 [P : Prop]λx : P.x, () 〉 : ([P : Prop]P → P )× unit

Note that this construct works over extension terms T , not normal logical terms t , thus the use of the
contextual term inside v. Consider now the case where the computational part e of a λHOL tuple 〈 T , e 〉
is non-empty and more specifically is another λHOL tuple, for example:

v = 〈 [P : Prop]P → P, 〈 [P : Prop]λx : P.x, () 〉 〉

What type should this value have? Again using informal syntax, one possible type could be:

v = 〈 [P : Prop]P → P, 〈 [P : Prop]λx : P.x, () 〉 〉
: ([P : Prop]Prop)× ([P : Prop]P → P )× unit

While this is a valid type, it is perhaps not capturing our intention: if we view the value v as a package
of a proposition P together with its proof π, the fact that π actually proves the proposition P and not
some other proposition is lost using this type. We say that the tuple is dependent: the type of its second
component depends on the value of the first component. Thus the actual syntax for the type of λHOL
tuples given in Figure 6.2 is (V : K)×τ, where the variable V can be used to refer to the value of the first
component inside the type τ. The example would thus be typed as:

v = 〈 [P : Prop]P → P, 〈 [P : Prop]λx : P.x, () 〉 〉
: (X : [P : Prop]Prop)× ([P : Prop]X )× unit

We could also use dependent tuples to create a value that packages together the variable context that the
proposition depends on as well, by using the other kind of extension terms – contexts:

v = 〈 [P : Prop], 〈 [P : Prop]P → P, 〈 [P : Prop]λx : P.x, () 〉 〉 〉
: (φ : ctx)× (X : [φ]Prop)× ([φ]X )× unit

We have only seen the introduction form of dependent tuples. The elimination form is the binding
construct let 〈V , x 〉 = e in e ′ that simply makes the two components available in e ′. Combined with
the normal ML features, we can thus write functions that create λHOL terms at runtime – whose exact
value is only decided dynamically. An illustratory example is a function that takes a proposition P and a
number n as arguments and produces a conjunction P ∧ P ∧ · · · ∧ P of length 2n . In the rest, the λHOL
terms that we will be most interested in producing dynamically will be proof objects.

conjN : (([]Prop)× unit)→ int→ (([]Prop)× unit)
= λx : (([]Prop)× unit).λn : int.

if n = 0 then p
else let 〈 P, _ 〉= x in conjN 〈 []P ∧ P, () 〉 (n− 1)

122



Let us now see the formal details of the dependent tuples. The actual syntax that we use is 〈 T , e 〉(V :K)×τ
where the return type of the tuple is explicitly noted; this is because there are multiple valid types for tu-
ples as our example above shows. We usually elide the annotation when it can be easily inferred from
context. The type (V : K)× τ introduces a bound variable V that can be used inside τ as the kinding
rule CTYP-ΣHOL in Figure 6.6 shows. The typing rule for introducing a dependent tuple CEXP-ΣHOLI
in Figure 6.7 uses the λHOL typing judgement Ψ ` T : K in order to type-check the first component.
Thus the λHOL type checker is embedded within the type checker of VeriML. Furthermore it captures the
fact that typing for the second component e of the tuple depends on the value T of the first through the
substitution σΨ = idΨ, T /V . Note that applying an extension substitution to a computational kind, type
or expression applies it structurally to all the λHOL extension terms and kinds it contains. The elim-
ination rule for tuples CEXP-ΣHOLE makes its two components available in an expression e ′ yet not at
the type level – as the exact value of T is in the general case not statically available as our example above
demonstrates. These typing rules are standard for dependent tuples (also for existential packages, which
is just another name for the same construct).

As a notational convenience, we will use the following syntactic sugar:

〈 T 〉 = 〈 T , () 〉
(K) = (V : K)× unit
let 〈V 〉 = e in e ′ = let 〈V , _ 〉= e in e ′

〈 T1, T2, · · · ,Tn 〉 = 〈 T1, 〈 T2, · · · , 〈 Tn 〉 〉 〉

Dependent λHOL functions. Dependent functions are a necessary complement to dependent tuples.
They allow us to write functions where the type of the results depends on the values of the input. VeriML
supports dependent functions over λHOL extension terms. We denote their type as (V : K) → τ and
introduce them through the notation λV : K .e . For example, the type of an automated prover that
searches for a proof object for a given proposition is:

auto : (φ : ctx)→ (P : [φ]Prop)→ option ([φ]P)
We have used the normal ML option type as the prover might fail; the standard definition is:

data option α=None | Some of α
Another example is the computational function that lifts the modus-ponens logical rule to the computa-
tional level:

mp : (φ : ctx)→ (P : [φ]Prop)→ (Q : [φ]Prop)→
([φ]P →Q)→ ([φ]P )→ ([φ]Q)

mp = λφ.λP.λQ.λH1 : [φ]P →Q.λH2 : [φ]P. 〈 [φ]H1 H2 〉
The typing rules for dependent functions CEXP-ΠHOLI and CEXP-ΠHOLE are entirely standard as is the
small-step semantics rule OP-ΠHOLBETA. Note that the substitution T /V used in this rule is the one-
element σΨ extension substitution, applied structurally to the body of the function e .

Dependent λHOL pattern matching. The most important λHOL-related construct in VeriML is a
pattern matching construct for looking into the structure of λHOL extension terms. We can use this con-
struct to implement functions such as the auto automated prover suggested above, as well as the tautology
prover presented in Section 2.3. An example is as follows: (note that this is a formal version of the same
example as in Section 2.3)
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tautology : (φ : ctx)→ (P : [φ]Prop)→ option ([φ]Prop)
tautologyφ P =

holmatch P with
(Q : [φ]Prop, R : [φ]Prop).[φ]Q ∧R 7→

do X ← tautologyφ ([φ]Q) ;
Y ← tautologyφ ([φ]R) ;
return 〈 [φ]and I X Y 〉

| (Q : [φ]Prop, R : [φ]Prop).[φ]Q→ R 7→
do X ← tautology (φ, Q) ([φ, Q]R)

return 〈 [φ]λ(Q).X 〉
| (P : [φ]Prop).[φ]P 7→ findHypφ ([φ]P )

The variables in the parentheses represent the unification variables context Ψu , whereas the following
extension term is the pattern. Though we do not give the details of findHyp, this is mostly similar as
in Section 2.3; it works by using the same pattern matching construct over contexts. It is worth noting
that pattern matching is dependently typed too, as the result type of the overall construct depends on the
value of the scrutinee. In this example, the return type is a proof object of type P – the scrutinee itself.
Therefore each branch needs to return a proof object that matches the pattern itself.

In the formal definition of VeriML we give a very simple pattern matching construct that just matches
a term against one pattern; more complicated pattern matching constructs that match several patterns at
once are derived forms of this basic construct. We write this construct as:

holmatch T returnV : K .τ withΨu .TP 7→ e

The term T represents the scrutinee, Ψu the unification context, TP the pattern and e the body of the
match. The return clause specifies what the return type of the construct will be, using V to refer to T .
We omit this clause when it is directly inferrable from context. As the typing rule CEXP-HOLMATCH

demonstrates, the return type is an option type wrapping τ[T /V ] in order to capture the possibility of
pattern match failure. The operational semantics of the construct OP-HOLMATCH and OP-HOLNOMATCH

use the pattern matching algorithm TP ∼ T defined in Section 5.1; the latter rule is used when no matching
substitution exists.

Type-level λHOL functions. The last λHOL-related construct available in VeriML is functions over
λHOL terms at the type level, giving us type constructors over λHOL terms. This allows us to specify
type constructors such as the following:

type eqlist= λφ : ctx.λT : [φ]Type.list ((t1 : [φ]T )× (t2 : [φ]T )× ([φ] t1 = t2))

This type constructor expects a context and a type and represents lists of equality proofs for terms of
that specific context and type. Furthermore, in order to support recursive types that are indexed by
λHOL we adjust the typing rules for recursive type introduction and elimination CEXP-RECI and CEXP-
RECE. This allows us to define generalized algebraic data types (GADTs) in VeriML as supported in various
languages (e.g. Dependent ML [Xi and Pfenning, 1999] and Haskell [Peyton Jones et al., 2006]), through
the standard encoding based on explicit equality predicates [Xi et al., 2003]. An example is the vector data
type which is indexed by a λHOL natural number representing its length:
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data vector α n = Vnil :: vector α 0
| Vcons :: α→ vector α n′→ vector α (succ n′)

The formal counterpart of this definition is:

vector : ?→Πn : []Nat.?

= λα : ?.µvector : (Πn : []Nat.?).λn : []Nat.
([]n = 0)+
((n′ : []Nat)×α× (vector []n′)× ([]n = succ n′))

Notational conventions. Before we conclude our presentation of the base VeriML computational lan-
guage, let us present some notational conventions used in the rest of this dissertation. We use (V1 :
K1, V2 : K2, · · · , Vn : Kn)→ τ to denote successive dependent function types (V1 : K1)→ (V2 : K2)→
·· · (Vn : Kn)→ τ. Similarly we use (V1 : K1, V2 : K2, · · · , Vn : Kn) for the iterated dependent tuple type
(V1 : K1)× (V2 : K2)× · · · (Vn : Kn)× unit. We elide the context Φ in contextual terms [Φ] t when it is
easy to infer; similarly we omit the substitution σ in the form X /σ for using the metavariable X . Thus
we write (φ : ctx, T : Type, t : T )→ τ instead of (φ : ctx, T : [φ]Type, t : [φ]T /idφ)→ τ. Last, we
sometimes omit abstraction over contexts or types and arguments to functions that are determined by
further arguments. Thus the above type could be written as (t : T )→ τ instead; a function of this type
can be called with a single argument which determines both φ and T : [φ]Type.

6.1.2 Metatheory

We will now present the main metatheoretic proofs about VeriML, culminating in a type-safety theorem.
The usual informal description of type-safety is that well-typed programs do not go wrong. A special case
of this theorem is particularly revealing about what this theorem entails for VeriML: the case of programs
e typed as (P ), where P is a proposition. As discussed in the previous section, values v = 〈π 〉 having a
type of this form include a proof object π proving P . Expressions of such a type are arbitrary programs
that may use all VeriML features (functions, λHOL pattern matching, general recursion, mutable refer-
ences etc.) in order to produce a proof object; we refer to these expressions as proof expressions. Type
safety guarantees that if evaluation of a proof expression of type (P ) terminates, then it will result in a value
〈π 〉 where π is a valid proof object for the proposition P . Thus we do not need to check the proof object
produced by a proof expression again using a proof checker. Another way to view the same result is that
we cannot evade the λHOL proof checker embedded in the VeriML type system – we cannot cast a value
of a different type into a proof object type (P ) only to discover at runtime that this value does not include
a proper proof object. Of course the type safety theorem is much more general than just the case of proof
expressions, establishing that an expression of any type that terminates evalutes to a value of the same
type. A sketch of the formal statement of this theorem is as follows:

` e : τ e terminates

e −→∗ v ` v : τ
Type safety

As is standard, we split this proof into two main lemmas: preservation and progress.

` e : τ e −→ e ′

` e ′ : τ
Preservation

` e : τ e 6= v

∃e ′.e −→ e ′
Progress
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Compatibility of store with store typing:

∀l , v.(l 7→ v) ∈µ⇒∃τ.(l : τ) ∈M∧•; M; • ` v : τ
∀l ,τ.(l : τ) ∈M⇒∃v.(l 7→ v) ∈µ∧•; M; • ` v : τ

µ∼M

Store typing subsumption:

∀l ,τ.(l : τ) ∈M⇒ (l : τ) ∈M′

M⊆M′

β-equivalence for types τ
(used in CEXP-CONV) is the

compatible closure of the relation:

(λα : K.τ) τ′ =β τ[τ′/α]
(λV : K .τ) T =β τ[T /V ]

Canonical and neutral types:

(Canonical types) τc ::= unit | τc
1 → τc

2 | τ
c
1 ×τ

c
2 | τ

c
1 +τ

c
2 | ref τ

c | ∀α : k .τc

| λα : k .τc | τn | (V : K)→ τc | (V : K)×τc | λV : K .τc

(Neutral types) τn ::= α | µα : k .τc | τn
1 τ

c
2 | τ

n T

Figure 6.10: VeriML computational language: definitions used in metatheory

In a way, we have presented the bulk of the proof already: establishing the metatheoretic proofs for λHOL
and its extensions in Chapters 4 and 5 is the main effort required. We directly use these proofs in order to
prove type-safety for the new constructs of VeriML; and type-safety for the constructs of the ML core is
entirely standard [e.g. Pierce, 2002, Harper, 2011].

We give some needed definitions in Figure 6.10 and proceed to prove a number of auxiliary lemmas.

Lemma 6.1.1 (Distributivity of computational substitutions with extension substitution application)
1. (τ[τ′/α]) ·σΨ = τ ·σΨ[τ′ ·σΨ/α]
2. (e[τ/α]) ·σΨ = e ·σΨ[τ ·σΨ/α]
3. (e[e ′/x]) ·σΨ = e ·σΨ[e ′ ·σΨ/x]

Proof. By induction on the structure of τ or e . �

Lemma 6.1.2 (Normalization for types) For every type τ, there exists a canonical type τc such that τ =β τ
c .

Proof. The type and kind level of the computational language can be viewed as a simply-typed lambda
calculus, with all type formers other than λα : k .τ and λV : K .τ being viewed as constant applications.
Reductions of the form (λV : K .τ) T →β τ[T /V ] do not generate any new redeces of either form;
therefore normalization for STLC directly gives us the desired. �
Based on this lemma, we can view types modulo β-equivalence and only reason about their canonical
forms.

Lemma 6.1.3 (Extension substitution application for computational language)

1.
Ψ ` Γwf Ψ′ ` σΨ :Ψ

Ψ′ ` Γ ·σΨ wf
2.
Ψ ` k wf Ψ′ ` σΨ :Ψ

Ψ′ ` k ·σΨ wf
3.
Ψ; Γ ` τ : k Ψ′ ` σΨ :Ψ

Ψ′; Γ ·σΨ ` τ ·σΨ : k ·σΨ
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4.
Ψ; M; Γ ` e : τ Ψ′ ` σΨ :Ψ

Ψ′; M; Γ ·σΨ ` e ·σΨ : τ ·σΨ

Proof. By structural induction on the typing derivation for k, τ or e . We prove two representative cases.

Case CTYP-LAMHOL.




Ψ, V : K ; Γ ` τ : k

Ψ; Γ ` (λV : K .τ) : (ΠV : K .k)





By induction hypothesis for τ with the substitution σ ′Ψ = σΨ, V /V typed as
Ψ′, V : K ·σΨ ` (σΨ, V /V ) : (Ψ, V : K), we get:
Ψ′, V : K ·σΨ; Γ ·σ ′Ψ ` τ ·σ

′
Ψ : k ·σ ′Ψ

Note that V /V is stands either for ([Φ · σΨ]X /idΦ·σΨ)/X when V = X and K = [Φ] t ′; or for ([Φ ·
σΨ]φ)/φ when V = φ and K = [Φ] ctx, as is understood from the inclusion of extension variables into
extension terms defined in Figure 5.3.
From the fact thatΨ ` Γwf we get that Γ ·σ ′Ψ =Γ ·σΨ. We also have that τ ·σ ′Ψ = τ ·σΨ and k ·σ ′Ψ = k ·σΨ.
(Note that such steps are made more precise in our Technical report [Stampoulis and Shao, 2012b] through the
use of hybrid deBruijn variables for Ψ)
Thus:
Ψ′, V : K ·σΨ; Γ ·σΨ ` τ ·σΨ : k ·σΨ
Using the same typing rule CTYP-LAMHOL we get:
Ψ′; Γ ·σΨ ` (λV : K ·σΨ.τ ·σΨ) : (ΠV : K ·σΨ.k ·σΨ), which is the desired.

Case CEXP-ΠHOLE.




Ψ; M; Γ ` e : (V : K)→ τ Ψ ` T : K

Ψ; M; Γ ` e T : τ · (idΨ, T /V )





By induction hypothesis for e we have:
Ψ′; M; Γ ·σΨ ` e ·σΨ : (V : K ·σΨ)→ τ ·σΨ
Using the extension substitution theorem of λHOL (Theorem 4.2.6) for T we get:
Ψ′ ` T ·σΨ : K ·σΨ
Using the same typing rule we get:
Ψ′; M; Γ ·σΨ ` (e ·σΨ) (T ·σΨ) : (τ ·σΨ · (idΨ′ , T ·σΨ/V ))
Through properties of extension substitution application we have that:
σΨ · (idΨ′ , T ·σΨ/V ) = (idΨ, T /V ) ·σΨ thus this is the desired.

Case CEXP-HOLMATCH.














Ψ ` T : K Ψ, V : K ; Γ ` τ : ? Ψ `?P Ψu > TP : K Ψ, Ψu ; M; Γ ` e ′ : τ · (idΨ, TP/V )

Ψ; M; Γ ` holmatch T returnV : K .τ
withΨu .TP 7→ e ′

: τ · (idΨ, T /V )+ unit















We have:
Ψ′ ` T ·σΨ : K ·σΨ, through Theorem 4.2.6 for T
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Ψ′, V : K ·σΨ; Γ ·σΨ ` τ ·σΨ : ?, using part 3 for τ with σ ′Ψ = σΨ, V /V
Ψ′ ?̀P Ψu ·σΨ > TP ·σΨ : K ·σΨ, directly using the extension substitution application theorem for patterns
(Theorem 5.1.7)
Ψ′, Ψu · σΨ ` e ′ · (σΨ, idΨu

) : τ · (idΨ, TP/V ) · (σΨ, idΨu
), through induction hypothesis for e ′ with

σΨ = (σΨ, idΨu
) typed as Ψ′; Ψu ·σΨ ` (σΨ, idΨu

) : (Ψ, Ψu )
Ψ′, Ψu ·σΨ ` e ′ ·σΨ : τ · (idΨ′ , TP ·σΨ/V ), through properties of extension substitutions
Thus using the same typing rule we get:

Ψ′; M; Γ ·σΨ `
holmatch T ·σΨ
returnV : K ·σΨ.τ ·σΨ
withΨu ·σΨ.TP ·σΨ 7→ e ′ ·σΨ

: (τ ·σΨ) · (idΨ′ , (T ·σΨ)/V )+ unit

This is the desired since (τ ·σΨ) · (idΨ′ , (T ·σΨ)/V ) = (τ · (idΨ, T /V )) ·σΨ. �

Lemma 6.1.4 (Computational substitution)

1.
Ψ, Ψ′ ` Γ, α′ : k ′, Γ′ wf Ψ; Γ ` τ′ : k ′

Ψ, Ψ′ ` Γ, Γ′[τ′/α′]wf
2.
Ψ, Ψ′; Γ, α′ : k ′, Γ′ ` τ : k Ψ; Γ ` τ′ : k ′

Ψ, Ψ′; Γ, Γ′[τ′/α′] ` τ[τ′/α′] : k

3.
Ψ, Ψ′; M; Γ, α′ : k ′, Γ′ ` e : τ Ψ; Γ ` τ′ : k ′

Ψ, Ψ′; M; Γ, Γ′[τ′/α′] ` e[τ′/α′] : τ[τ′/α′]

4.
Ψ, Ψ′; M; Γ, x ′ : τ′, Γ′ ` e : τ Ψ; M; Γ ` e ′ : τ′

Ψ, Ψ′; M; Γ, Γ′ ` e[e ′/x ′] : τ

Proof. By structural induction on the typing derivations for Γ, τ or e . �

Theorem 6.1.5 (Preservation)

•; M; • ` e : τ (µ , e )−→
�

µ′ , e ′
�

µ∼M

∃M′.( •; M′; • ` e ′ : τ M⊆M′ µ′ ∼M′ )

Proof. By induction on the derivation of (µ , e )−→
�

µ′ , e ′
�

. In the following, when we don’t specify
a different µ′, we have that µ′ = µ. We present the λHOL-related constructs first; the cases for the ML
core follow.

Case OP-ΠHOL-BETA.
�

(µ , (λV : K .e) T )−→ (µ , e · (T /V ) )
�

By typing inversion we have:
•; M; • ` (λV : K .e) : (V : K)→ τ′, • ` T : K , τ = τ′ · (T /V )
By further typing inversion for λV : K .e we get:
V : K ; M; • ` e : τ′

For σΨ = (•, T /V ) (also written as σΨ = (T /V )) we have directly from typing for T : • ` (T /V ) : (V : K)
Using Lemma 6.1.3 for σΨ we get that:
•; M; • ` e · (T /V ) : τ′ · (T /V )
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Case OP-ΣHOL-UNPACK.
��

µ , let 〈V , x 〉= 〈 T , v 〉(V :K)×τ′′ in e ′
�

−→
�

µ , (e ′ · (T /V ))[v/x]
�
�

By inversion of typing we get:
•; M; • ` 〈 T , v 〉(V :K)×τ′′ : (V : K)×τ′; V : K ; M; x : τ′ ` e ′ : τ; •; • ` τ : ?
By further typing inversion for 〈 T , V : K 〉τ′′v we get:
τ′′ = τ′; • ` T : K ; V : K ; • ` τ′ : ?; •; M; • ` v : τ′ · (T /V )
First by Lemma 6.1.3 for e ′ with σΨ = T /V we get:
•; M; x : τ′ · (T /V ) ` e ′ · (T /V ) : τ · (T /V )
We trivially have that τ · (T /V ) = τ, thus this equivalent to:
•; M; x : τ′ · (T /V ) ` e ′ · (T /V ) : τ
Last by Lemma 6.1.4 for [v/x] we get the desired:
•; M; • ` (e ′ · (T /V ))[v/x] : τ

Case OP-HOLMATCH.




TP ∼ T = σΨ
�

µ , holmatch T withΨu .TP 7→ e ′
�

−→
�

µ , inj1 (e
′ ·σΨ)

�





By typing inversion we get:
• ` T : K , V : K ; • ` τ′ : ?, • ?̀

P Ψu > TP : K , Ψu ` e ′ : τ′ · (TP/V ), τ = τ
′ · (T /V )+ unit

Directly by soundness of pattern matching (Lemma 5.1.13) we get:
• ` σΨ :Ψu , TP ·σΨ = T
Through Lemma 6.1.3 for e ′ and σΨ we have:
• ` e ′ ·σΨ : τ′ · (TP/V ) ·σΨ
We can now use the typing rule CEXP-SUMI to get the desired, since:
(TP/V ) ·σΨ = (TP ·σΨ/V ) = (T /V )

Case OP-HOLNOMATCH.




TP ∼ T = fail
�

µ , holmatch T withΨu .TP 7→ e ′
�

−→ (µ , inj2 () )





Trivial using the typing rules CEXP-SUMI and CEXP-UNIT. Note: Though completeness for pattern
matching is not used for type-safety, it guarantees that the rule OP-HOLNOMATCH will not be used unless
no matching substitution exists.

Case OP-ENV.




(µ , e )−→
�

µ′ , e ′
�

(µ , E[e] )−→
�

µ′ , E[e ′]
�





By induction hypothesis for (µ , e ) −→
�

µ′ , e ′
�

we get a M′ such that M ⊆ M′, µ′ ∼ M′ and
•; M; • ` e ′ : τ. By inversion of typing for E[e] and re-application of the same typing rule for E[e ′]
we get that •; M′; • ` E[e ′] : τ.
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Case OP-BETA.
�

(µ , (λx : τ.e) v )−→ (µ , e[v/x] )
�

By inversion of typing we get: •; M; • ` λx : τ.e : τ′→ τ, •; M; • ` v : τ′

By further typing inversion for λx : τ.e we get: •; M; x : τ ` e : τ
By lemma 6.1.4 for [v/x] we get: •; M; • ` e[v/x] : τ

Case OP-PROJ.
�

�

µ , proji (v1, v2)
�

−→
�

µ , vi
�

�

By typing inversion we get: •; M; • ` (v1, v2) : τ1×τ2, τ = τi
By further inversion for (v1, v2) we have: •; M; • ` vi : τi

Case OP-CASE.
�

�

µ , case(inji v, x.e1, x.e2)
�

−→
�

µ , ei[v/x]
�

�

By typing inversion we get: •; M; • ` v : τi ; •; M; x : τi ` ei : τ
Using the lemma 6.1.4 for [v/x] we get: •; M; • ` ei[v/x] : τ

Case OP-UNFOLD.
�

(µ , unfold (fold v) )−→ (µ , v )
�

By typing inversion we get: •; • ` µα : k .τ′ : k; •; M; • ` fold v : (µα : k .τ′) a1 a2 · · · an ; every
ai = τi or Ti ; τ = τ

′[µα : k .τ′] a1 a2 · · · an
By further typing inversion for fold v we have •; M; • ` v : τ′[µα : k .τ/α] a1 a2 · · · an

Case OP-NEWREF.




¬(l 7→ _ ∈µ)

(µ , ref v )−→ ( (µ, l 7→ v) , l )





By typing inversion we get: •; M; • ` v : τ′

For M′ =M, l : τ and µ′ =µ, l 7→ v we have that µ′ ∼M′ and •; M′;• ` l : ref τ′.

Case OP-ASSIGN.




l 7→ _ ∈µ

(µ , l := v )−→ (µ[l 7→ v] , () )





By typing inversion get: •; M; • ` l : ref τ′; •; M; • ` v : τ′

Thus for µ′ =µ[l 7→ v] we have that µ′ ∼M. Obviously •; M;• ` () : unit.

Case OP-DEREF.
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l 7→ v ∈µ

(µ , !l )−→ (µ , v )





By typing inversion get: •; M; • ` l : ref τ
By inversion of µ∼M get:
•; M; • ` v : τ, which is the desired.

Case OP-POLYINST.
�

�

µ , (Λα : k .e) τ′′
�

−→
�

µ , e[τ′′/α]
�

�

By typing inversion we get: •; M; • `Λα : k .e :Πα : k .τ′; •; • ` τ′′ : k; τ = τ′[τ′′/α]
By further typing inversion for Λα : k .e we get: •; M; α : k ` e : τ′

Using Lemma 6.1.4 for e and [τ′′/α] we get: •; M; • ` e[τ′′/α] : τ′[τ′′/α]

Case OP-FIX.
�

(µ , fix x : τ.e )−→ (µ , e[fix x : τ.e/x] )
�

By typing inversion get: •; M; x : τ ` e : τ
By application of Lemma 6.1.4 for e and [fix x : τ.e/x] we get:
•; M; • ` e[fix x : τ.e/x] : τ �

Lemma 6.1.6 (Canonical forms) If •; M; • ` v : τ then:

If τ = · · · then exists · · · such that v = · · ·
(V : K)→ τ′ e ΛV : K .e
(V : K)×τ′ T , v ′




T , v ′
�

(V :K)×τ′′ with τ′ =β τ
′′

unit ()
τ1→ τ2 e λx : τ1.e
τ1×τ2 v1, v2 (v1, v2)
τ1+τ2 v ′ inj1 v ′ or inj2 v ′

(µα : k .τ′) a1 a2 · · · an v ′ fold v ′

ref τ′ l l
∀α : k .τ′ e Λα : k .e

Proof. Directly by typing inversion on the derivation for v. �

Theorem 6.1.7 (Progress)

•; M; • ` e : τ µ∼M e 6= v

∃µ′, e ′. (µ , e )−→
�

µ′ , e ′
�

Proof. By induction on the typing derivation for e . We do not consider cases where e = E[e ′′], without
loss of generality: by typing inversion we can get that e ′′ is well-typed under the empty context, so by
induction hypothesis we getµ′′, e ′′′ such that

�

µ , e ′′
�

−→
�

µ′′ , e ′′′
�

. Thus setµ′ =µ′′ and e ′ = E[e ′′′];
by OP-ENV get

�

µ , E[e ′′]
�

−→
�

µ , E[e ′′′]
�

. Most cases follow from use of canonical forms lemma
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(Lemma 6.1.6), typing inversion and application of the appropriate operational semantics rule. We give
the λHOL-related cases as a sample.

Case CEXP-ΠHOLE.




•; M; • ` v : (V : K)→ τ′ • ` T : K

•; M; • ` v T : τ′ · (T /V )





By use of canonical forms lemma we get that v = λV : K .e . Through typing inversion for v we get
V : K ; M; • ` e : τ′. Thus e · (T /V ) is well-defined (it does not depend on variables other than V ). Using
OP-ΠHOL-BETA we get e ′ = e · (T /V ) with the desired properties for µ′ =µ.

Case CEXP-ΣHOLE.














•; M; • ` v : (V : K)×τ′ V : K ; M; x : τ′ ` e ′′ : τ
•; • ` τ : ?

•; M; • ` let 〈V , x 〉= v in e ′′ : τ















Through canonical forms lemma we get that v =



T , v ′
�

(V :K)×τ′ . From typing of e ′ we have that e ′′ ·
(T /V ) is well-defined. Therefore using OP-ΣHOL-UNPACK we get e ′ = (e ′′ ·(T /V ))[v/x]with the desired
properties.

Case CEXP-HOLMATCH.














• ` T : K V : K ; • ` τ′ : ? • `?P •u > TP : K •u ; M; • ` e ′′ : τ′ · (TP/V )

•; M; • ` holmatch T returnV : K .τ′

with •u .TP 7→ e ′′
: τ′ · (T /V )+ unit















We split cases on whether TP ∼ T = σΨ or TP ∼ T = fail. In the first case rule OP-HOLMATCH applies,
taking into account the fact that e ′′ · σΨ is well-defined based on typing for e ′′. In the second case OP-
NOHOLMATCH directly applies. �

Theorem 6.1.8 (Type safety for VeriML)

•; M; • ` e : τ µ∼M e 6= v

∃µ′,M′, e ′.( (µ , e )−→
�

µ′ , e ′
�

•; M′; • ` e ′ : τ µ′ ∼M′ )

Proof. Directly by combining Theorem 6.1.5 and Theorem 6.1.7. �

6.2 Derived pattern matching forms

The pattern matching construct available in the above definition of VeriML is the simplest possible: it
allows matching a scrutinee against a single pattern. In this section, we will cover a set of increasingly
more complicated pattern matching forms and show how they are derived forms of the simple case. For
example, we will add support for multiple branches and for multiple simultaneous scrutinees. We will
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present each extension as typed syntactic sugar: every new construct will have its own typing rules and
operational semantics, yet we will give a syntax- or type-directed translation into the original VeriML
constructs. Furthermore, we will show that the translation respects the semantics of the new construct.
In this way, the derived forms are indistinguishable to programmers from the existing forms, as they can
be understood through their typing rules and semantics; yet our metatheoretic proofs such as type safety
do not need to be adapted.

The first extension is multiple branches support presented in Figure 6.11. This is a simple extension that
allows us to match the same scrutinee against multiple patterns, for example:

holMultMatch P with Q ∧R 7→ e1 |Q ∨R 7→ e2

The pattern matches are attempted sequentially, with no backtracking; the branch with the first pattern
that matches successfully is followed and the rest of the branches are forgotten. The pattern list is not
checked for coverage or for non-redundancy. The construct returns a type of the form τ+ unit; the unit
value is returned in the case where no pattern successfully matches, similarly to the base pattern matching
construct.

We show that our definitions of the typing rule and semantics for this construct are sensible by proving
that they correspond to the typing and semantics of its translated form.

Lemma 6.2.1 (Pattern matching with multiple branches is well-defined)

1.
Ψ; M; Γ `

�

holMultMatch T with
−−−−−−−→
Ψu .TP 7→ e ′

�

: τ′

Ψ; M; Γ `
�

holMultMatch T with
−−−−−−−→
Ψu .TP 7→ e ′

�

: τ′

2.
holMultMatch T with

−−−−−−→
Ψu .TP 7→ e −→ e ′

�

holMultMatch T with
−−−−−−→
Ψu .TP 7→ e

�

−→∗ e ′

Proof. Part 1 follows directly from typing; similarly part 2 is a direct consequence of the operational
semantics for the translated form. �

The second extension we will consider is more subtle; we will introduce it through an example. Con-
sider the case of a tactic that accepts a proposition and its proof as arguments; it then returns an equivalent
proposition as well as a proof of it.

tactic : (P : Prop, H : P )→ (P ′ : Prop, H ′ : P ′)
= λP : Prop.λH : P.holMultMatch P with

Q ∧R 7→ 〈 R∧Q, · · · 〉
Q ∨R 7→ 〈 R∨Q, · · · 〉

In each branch of the pattern match, we know that P is of the form Q ∧R or Q ∨R; yet the input proof
is still typed as H : P instead of H : Q ∧R or H : Q ∨R respectively. The reason is that pattern matching
only refines its return type but not the environment as well. We cannot thus directly deconstruct the
proof H in order to fill in the missing output proofs. Yet an easy workaround exists by abstracting again
over the input proof, owing to the fact that the matching construct does refine the return type based on
the pattern:
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Syntax

e ::= · · · | holMultMatch T returnV : K .τ with
−−−−−−−→
Ψu .TP 7→ e ′

Typing

Ψ ` T : K Ψ, V : K ; Γ ` τ : ?
∀i .( Ψ `?P Ψu,i > TP,i : K Ψ, Ψu,i ; M; Γ ` e ′i : τ · (idΨ, TP,i/V ) )

Ψ; M; Γ `









holMultMatch T
returnV : K .τ

with
−−−−−−−→
Ψu .TP 7→ e ′









: τ · (idΨ, T /V )+ unit

Semantics

TP,1 ∼ T = σΨ
holMultMatch T with (Ψu,1.TP,1 7→ e1 | · · · |Ψu,n .TP,n 7→ en)−→ inj1 (e1 ·σΨ)

TP,1 ∼ T = error
holMultMatch T with (Ψu,1.TP,1 7→ e1 | · · · |Ψu,n .TP,n 7→ en)−→

holMultMatch T with (Ψu,2.TP,2 7→ e2 | · · · |Ψu,n .TP,n 7→ en)

holMultMatch T with ()−→ inj2 ()

Translation

�

holMultMatch T with
−−−−−−→
Ψu .TP 7→ e

�

=
case(holmatch T withΨu,1.TP,1 7→ e1, x.inj1 x,

y.case(holmatch T withΨu,2.TP,2 7→ e2, x.inj1 x,
y. · · · (case(holmatch T with Tu,n .TP,n 7→ en , x.inj1 x, y.inj2 y))))

Figure 6.11: Derived VeriML pattern matching constructs: Multiple branches
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Syntax

e ::= · · · | holEnvMatchVs return τ withΨu .TP 7→ e ′

Typing

Ψ=Ψ0, Vs : K , Ψ1 Ψ; Γ ` τ : ? Ψ `?P Ψu > TP : K
σΨ = idΨ0

, TP/Vs , idΨ1
Ψ′ =Ψ0, Vs : K , Ψ1 ·σΨ

Ψ′, Ψu ; M; Γ ·σΨ ` e ′ : τ ·σΨ

Ψ; M; Γ `







holEnvMatchVs
return τ
withΨu .TP 7→ e ′






: τ ·σΨ+ unit

Semantics (e ·σΨ = e ′ when σΨ.Vs = T )

If T =V ′s : (holEnvMatchVs return τ withΨu .TP 7→ e ′) ·σΨ =
holEnvMatchV ′s return τ ·σΨ withΨu ·σΨ.TP ·σΨ 7→ e ′ ·σΨ

If T 6=V ′s : (holEnvMatchVs return τ withΨu .TP 7→ e ′) ·σΨ =
holmatch T returnVs .τ ·σΨ withΨu ·σΨ.TP ·σΨ 7→ e ′ ·σΨ

Translation

Ψ=Ψ0, Vs : K , Ψ1
�

Ψ; M; Γ ` holEnvMatchVs return τ withΨu .TP 7→ e : τ′
�

=
(holmatchVs returnVs : K .(Ψ)→ Γ→ τ withΨu .TP 7→ λΨ.λΓ.e) Ψ Γ

Figure 6.12: Derived VeriML pattern matching constructs: Environment-refining matching

tactic : (P : Prop, H : P )→ (P ′ : Prop, H ′ : P ′)
= λP : Prop.λH : P.

(holMultMatch P
return P ′ : Prop.(H : P ′)→ (P ′ : Prop, H ′ : P ′)with

Q ∧R 7→ λH : Q ∧R. 〈 R∧Q, · · · 〉
Q ∨R 7→ λH : Q ∨R. 〈 R∨Q, · · · 〉)H

More formally, we introduce environment-refining pattern matching: when the scrutinee of the pattern
matching is a variable V , all the types in the current context that depend on V get refined by the current
pattern. We introduce this construct in Figure 6.12. We only show the case of matching a scrutinee against
a single pattern; multiple patterns can be supported as above. We are mostly interested in the typing for
this construct. The construct itself does not have operational semantics, as it requires that the scrutinee
is a variable. Since the operational semantics only handle closed computational terms, an occurrence of
this construct is impossible. The only semantics that we define have to do with extension substitution
application: when the scrutinee variable Vs is substituted by a concrete term, the environment-refining
construct is replaced with the normal, non-refining pattern matching construct. Our definition of this
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construct follows the approach of Crary and Weirich [1999], yet both the typing and semantics are unsat-
isfyingly complex. A cleaner approach would be the introduction of a distinguished computational type
T ≈ T ′ reflecting the knowledge that the two extension terms unify, as well as casting constructs to make
explicit use of such knowledge [similar to Goguen et al., 2006]; still this approach is beyond the scope of
this section.

Lemma 6.2.2 (Pattern matching with environment refining is well-defined)

1.

Ψ; M; Γ `
�

holEnvMatch T withΨu .TP 7→ e ′
�

: τ′
�

Ψ; M; Γ ` holEnvMatch T withΨu .TP 7→ e ′ : τ′
�

= e ′′

Ψ; M; Γ ` e ′′ : τ′

2.

(holEnvMatch Vs withΨu .TP 7→ e) ·σΨ = e ′
�

Ψ; M; Γ ` holEnvMatch T withΨu .TP 7→ e ′ : τ′
�

= e ′′

e ′′ ·σΨ = e ′

Proof. Similarly as above; direct consequence of typing and extension substitution application. �
The last derived pattern matching form that we will consider is simultaneous matching of multiple

scrutinees against multiple patterns. The pattern match only succeeds if all scrutinees can be matched
against the corresponding pattern. This is an extension that is especially useful for comparing two terms
structurally:

holSimMatch P, Q with A∧B , A′ ∧B ′ 7→ e

We can also use it in combination with environment-refining matching in order to match a term whose
type is not yet specified:

λT : Type.λt : T .holSimMatch T , t with Nat, zero 7→ e

We present the details of this construct in Figure 6.13. Typing and semantics are straightforward; the
only subtle point is that the unification variables of one pattern become exact variables in the following
pattern, as matching one scrutinee against a pattern provides them with concrete instantiations.

Lemma 6.2.3 (Simultaneous pattern matching is well-defined)

1.
Ψ; M; Γ `

�

holSimMatch
−→
T with

−−−−→
(Ψu .TP ) 7→ e ′

�

: τ′

Ψ; M; Γ `
�

holSimMatch
−→
T with

−−−−→
(Ψu .TP ) 7→ e ′

�

: τ′

2.
holSimMatch

−→
T with

−−−−→
(Ψu .TP ) 7→ e −→ e ′

�

holSimMatch
−→
T with

−−−−→
(Ψu .TP ) 7→ e

�

−→∗ e ′

Proof. Similar to Lemma 6.2.1. �

In the rest we will freely use the holmatch construct to refer to combinations of the above derived con-
structs.
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Syntax

e ::= · · · | holSimMatch
−→
T return−−→V : K .τ with

−−−−→
(Ψu .TP ) 7→ e ′

Typing

∀i .Ψ ` Ti : Ki Ψ, V1 : K1, · · · , Vn : Kn ; Γ ` τ : ?
Ψ `?P Ψu,1 > TP,1 : K1 Ψ, Ψu,1 `

?
P Ψu,2 > TP,2 : K2 · · ·

Ψ, Ψu,1, · · · , Ψu,n ; M; Γ ` e ′ : τ · (idΨ, TP,1/V1, · · · , TP,n/Vn)

Ψ; M; Γ `











holSimMatch
−→
T

return−−→V : K .τ

with
−−−→
Ψu .TP 7→ e ′











: τ · (idΨ, T1/V1, · · · , Tn/Vn)+ unit

Semantics

TP,1 ∼ T1 = σ
1
Ψ · · · TP,n ∼ Tn = σ

n
Ψ

holSimMatch
−→
T with

−−−−−−→
(Ψu,1.TP,1) 7→ e −→ inj1 (e · (σ

1
Ψ, · · · , σn

Ψ))

TP,i ∼ Ti = error

holSimMatch
−→
T with

−−−−−−→
(Ψu,1.TP,1) 7→ e −→ inj2 ()

Translation

�

holSimMatch
−→
T with

−−−→
Ψu .TP 7→ e

�

=
holmatch T1 withΨu,1.TP,1 7→ do holmatch T2 withΨu,2.TP,2 7→ · · · 7→

(holmatch Tn withΨu,n .TP,n 7→ do e)

Figure 6.13: Derived VeriML pattern matching constructs: Simultaneous matching
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6.3 Staging

In the simplify example presented in Section 2.3 and also in Section 5.2, we mentioned that we want
to evaluate certain tactic calls at the time of definition of a new tactic. We use this in order to ‘fill in’
proof objects in the new tactic through existing automation code; furthermore, the proof objects are
created once and for all when the tactic is defined and not every time the tactic is invoked. We will
see more details of this feature of VeriML in Section 7.2, but for the time being it will suffice to say
that it is the combination of two features: a logic-level feature, which is the transformation of λHOL
open terms with respect to the extension context Ψ to equivalent closed terms, presented in Section 5.2;
and a computational-level feature, namely the ability to evaluate subexpressions of an expression during
a distinct evaluation stage prior to normal execution. This latter feature is supported by extending the
VeriML computational language with a staging construct and is the subject of this section.

We will start with an informal description of staging. Note that the application we are interested in is
not the normal use case of staging (namely, the ability to write programs that generate executable code).
Our description is thus more geared to the use case we have in mind. Similarly, the staging construct we
will add is quite limited compared to language extensions such as MetaML [Taha and Sheard, 2000] but
will suffice for our purposes.

Constant folding is an extremely common compiler optimization, where subexpressions composed
only from constants are replaced by their result at compilation time. A simple example is the following:

λn : int.n ∗ 10 ∗ 10  λn : int.n ∗ 100

The subexpression 10 ∗ 10 can trivially be replaced by 100 yielding an equivalent program, avoiding the
need to perform this multiplication at runtime. A more sophisticated version of the same optimization is
constant propagation, which takes into account definitions of variables to constant values:

λn : int.let x = 10 in n ∗ x ∗ x  λn : int.n ∗ 100

Now consider the case where instead of a primitive operation like multiplication, we call a user-defined
function with constant arguments, for example:

λn : int.n ∗ factorial(5)

We could imagine a similar optimization of evaluating the call to factorial at compilation time and re-
placing it with the result. Of course this optimization is not safe in the presence of side-effects and non-
termination, as it changes the evaluation order of the program. Still we can support such an optimization
if we make it a language feature: the user can annotate a particular constant subexpression to be evaluated
at compile-time and replaced by its result:

λn : int.n ∗ {factorial(5)}static  λn : int.n ∗ 120

Compile-time evaluation is thus a distinct static evaluation phase where annotated subexpressions are eval-
uated to completion; another way to view this is that the original expression e is evaluated to a residual
expression or dynamic expression ed with all the static subexpressions replaced; the residual expression ed
can then be evaluated normally to a value. We can also view this as a form of staged computation, where
the expression {factorial(5)}static produces code that is to be evaluated at the next stage – namely the
constant expression 120.

This feature is very useful in the case of VeriML if instead of integer functions like factorial we con-
sider proof expressions with constant arguments – for example a call to a decision procedure with a closed
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proposition as input. Note that we mean ‘closed’ with respect to runtime λHOL extension variables; it
can be open with respect to the normal logical variable environment.

λφ : ctx.λP : [φ]Prop.
let 〈V 〉 = {tautology [P ′ : Prop] ([P ′ : Prop]P → P )}static in
¬

[φ]V /[P/idφ]
¶

Here the call to tautology will be evaluated in the static evaluation phase, at the definition time of this
function. The residual program ed will be a function with a proof object instead:

λφ : ctx.λP : [φ]Prop.
let 〈V 〉 =




[P ′ : Prop]λH : P ′.H
�

in
¬

[φ]V /[P/idφ]
¶

The actual construct we will support is slightly more advanced: we will allow static expressions to be
bound to static variables and also for static expressions to depend on them. The actual staging construct
we support is therefore written as letstatic x = e in e ′, where x is a static variable and e can only mention
static variables. Returning to our analogy of the {·}static construct to constant folding, the letstatic con-
struct is the generalization of constant propagation. An example of its use would be to programmatically
construct a proposition and then its proof:

λφ : ctx.λP : [φ, x : Nat]Prop.
letstatic indProp = inductionPrincipleStatement Nat in
letstatic ind = inductionPrincipleProof Nat indProp in
· · ·

We now present the formal details of our staging mechanism. Figure 6.14 gives the syntax extensions
to expressions and contexts, adding the letstatic construct and the notion of static variables in the context
Γ denoted as x :s τ. Figure 6.15 gives the typing rules and figure 6.16 adapts the operational semantics; all
the syntactic classes used in the semantics are presented in Figure 6.14.

The typing rule CEXP-LETSTATIC for the letstatic construct reflects the fact that only static variables
are allowed in staged expressions e by removing non-static variables from the context through the con-
text limiting operation Γ|static. Through the two added typing rules we see that static evaluation has a
comonadic structure with the rule CEXP-STATICVAR corresponding to extraction and CEXP-LETSTATIC

corresponding to iterated extension over all static variables in the context.
The operational semantics is adapted as follows: we define a new small-step reduction relation −→s

between machine states, capturing the static evaluation stage where expressions inside letstatic are evalu-
ated. If this stage terminates, it yields a residual expression ed which is then evaluated using the normal
reduction relation −→. With respect to the first stage, residual expressions can thus be viewed as values.
Furthermore, we define static binding evaluation contexts S: these are the equivalent of evaluation con-
texts E for static evaluation. The key difference is that static binding evaluation contexts can also go under
non-static binders. The reason is that such binders do not influence static evaluation as we cannot refer to
their variables due to typing.

A subtle point of the semantics is that the static evaluation phase and the normal evaluation phase
share the same state. The store µ′ yielded by static evaluation needs to be retained in order to evaluate the
residual expression: (µ , e )−→∗s

�

µ′ , ed
�

−→∗
�

µ′′ , v
�

. This can be supported in an interpreter-based
evaluation strategy, but poses significant problems in a compilation-based strategy, as the compiler would
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(Expressions) e ::= · · · | letstatic x = e in e ′

(Contexts) Γ ::= · · · | Γ, x :s τ

v
(Values)

::= () | λx : τ.ed | (v, v ′) | inji v | fold v | l | Λα : k .ed
| λV : K .ed | 〈 T , ed 〉(V :K)×τ

ed
(Residual

expressions)

::= () | λx : τ.ed | ed e ′d | x | (ed , e ′d ) | proji ed | inji ed
| case(ed , x.e ′d , x.e ′′d ) | fold ed | unfold ed | ref ed | ed := e ′d
| !ed | l | Λα : k .ed | ed τ | fix x : τ.ed | λV : K .ed | ed T
| 〈 T , ed 〉(V :K)×τ | let 〈V , x 〉= ed in e ′d
| holmatch T returnV : K .τ withΨu .T ′ 7→ e ′d

S
(Static binding

evaluation
contexts)

::= Es[S] | letstatic x = • in e ′ | letstatic x = S in e ′

| λx : τ.S | case(ed , x.S, x.e2) | case(ed , x.ed , x.S)
| Λα : k .S | fix x : τ.S | λV : K .S | let 〈V , x 〉= ed in S
| holmatch T returnV : K .τ withΨu .T ′ 7→ S

Es
(Static

evaluation
contexts)

::= Es e ′ | ed Es | (Es , e) | (ed , Es ) | proji Es | inji Es
| case(Es , x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e ′

| ed := Es | !Es | Es τ | Es T | 〈 T , Es 〉(V :K)×τ
| let 〈V , x 〉= Es in e ′

E
(Dynamic

evaluation
contexts)

::= • | E ed | v E | (E , ed ) | (v, E) | proji E | inji E
| case(E , x.e ′d , x.e ′′d ) | fold E | unfold E | ref E | E := ed
| v := E | !E | E τ | E T | 〈 T , E 〉(V :K)×τ
| let 〈V , x 〉= E in ed

Figure 6.14: VeriML computational language: Staging extension (syntax)

Ψ; M; Γ ` e : τ

•; M; Γ|static ` e : τ Ψ; M; Γ, x :s τ ` e ′ : τ

Ψ; M; Γ ` letstatic x = e in e ′ : τ
CEXP-LETSTATIC

x :s τ ∈ Γ
Ψ; M; Γ ` x : τ

CEXP-STATICVAR

Γ|static =Γ
′ (Limiting a context to static variables)

•|static = •
(Γ, x :s t )|static = Γ|static, x : t
(Γ, x : t )|static = Γ|static
(Γ, α : k)|static = Γ|static

Figure 6.15: VeriML computational language: Staging extension (typing)
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(µ , e )−→s
�

µ , e ′
�

�

µ , ed
�

−→
�

µ′ , e ′d
�

�

µ , S[ed ]
�

−→s

�

µ′ , S[e ′d ]
� OP-STATICENV

(µ , S[letstatic x = v in e] )−→s (µ , S[e[v/x]] )OP-LETSTATICENV

(µ , letstatic x = v in e )−→s (µ , e[v/x] )OP-LETSTATICTOP

Figure 6.16: VeriML computational language: Staging extension (operational semantics)

need to yield an initial store together with the executable program. In practice, we get around this problem
by allowing expressions of only a small set of types to be statically evaluated (e.g. allowing λHOL tuples
but disallowing functions or mutable references); repeating top-level definitions during static and normal
evaluation (so that an equivalent global state is established in both stages); and last we assume that the
statically evaluated expressions preserve the global state. We will comment further on this issue when we
cover the VeriML implementation in more detail, specifically in Subsection 8.3.3. As these constraints are
not necessary for type-safety, we do not capture them in our type system; we leave their metatheoretic
study to future work.

Metatheory

We will now establish type-safety for the staging extension by proving progress and preservation for eval-
uation of well-typed expressions e through the static small-step semantics. Type-safety for the normal
small step semantics

�

µ , ed
�

−→
�

µ′ , e ′d
�

is entirely as before, as residual expressions are identical to
the expressions of the previous section and the relation −→ has not been modified.

Lemma 6.3.1 (Extension of Lemma 6.1.4) (Computational substitution)

1.
Ψ, Ψ′; Γ, α′ : k ′, Γ′ ` τ : k Ψ; Γ ` τ′ : k ′

Ψ, Ψ′; Γ, Γ′[τ′/α′] ` τ[τ′/α′] : k
2.
Ψ, Ψ′; M; Γ, α′ : k ′, Γ′ ` e : τ Ψ; Γ ` τ′ : k ′

Ψ, Ψ′; M; Γ, Γ′[τ′/α′] ` e[τ′/α′] : τ[τ′/α′]

3.
Ψ, Ψ′; M; Γ, x ′ : τ′, Γ′ ` ed : τ Ψ; M; Γ ` e ′d : τ′

Ψ, Ψ′; M; Γ, Γ′ ` ed [e
′
d/x ′] : τ

4.
Ψ; Γ, x :s τ, Γ′ ` e : τ′ •; M; • ` v : τ

Ψ; M; Γ, Γ′ ` e[v/x] : τ′
5.
Ψ; Γ, x : τ, Γ′ ` e : τ′ •; M; • ` v : τ

Ψ; M; Γ, Γ′ ` e[v/x] : τ′

6.
Ψ, Ψ′ ` Γ, α′ : k ′, Γ′ wf Ψ; Γ ` τ′ : k ′

Ψ, Ψ′ ` Γ, Γ′[τ′/α′]wf

Proof. By induction on the typing derivation for τ, e or ed . We prove the cases for the two new typing
rules. cases follow.
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Part 3. Case CEXP-STATICVAR.




x :s τ ∈ Γ

Ψ; M; Γ ` x : τ





We have that [e ′d/x] = e ′d , and Ψ; M; Γ ` e ′d : τ, which is the desired.

Case CEXP-LETSTATIC.




•; M; Γ|static ` e : τ Ψ; M; Γ, x :s τ ` e ′ : τ′

Ψ; M; Γ ` letstatic x = e in e ′ : τ′





Impossible case by syntactic inversion on ed .

Part 4. Case CEXP-LETSTATIC.




•; M; Γ|static, x : τ, Γ′|static ` e : τ Ψ; M; Γ, x :s τ, Γ′, x ′ :s τ
′′ ` e ′ : τ′

Ψ; M; Γ, x :s τ, Γ′ ` letstatic x ′ = e in e ′ : τ′





We use part 5 for e to get that •; M; Γ|static, Γ
′|static ` e[v/x] : τ

By induction hypothesis for e ′ we get Ψ; M; Γ, Γ′, x ′ :s τ
′′ ` e ′[v/x] : τ′

Thus using the same typing rule we get the desired result. �

Lemma 6.3.2 (Types of decompositions)

1.
Ψ; M; Γ ` S[e] : τ Γ|static = •

∃τ′.( •; M; • ` e : τ′ ∀e ′.•; M; • ` e ′ : τ′⇒Ψ; M; Γ ` S[e ′] : τ )

2.
Ψ; M; Γ ` Es[e] : τ

∃τ′.( Ψ; M; Γ ` e : τ′ ∀e .Ψ; M; Γ ` e ′ : τ′⇒Ψ; M; Γ ` Es[e
′] : τ )

Proof.

Part 1. By structural induction on S.

Case S = letstatic x = • in e′.
By inversion of typing we get that •; M; Γ|static ` e : τ. We have Γ|static = •, thus we get •; M; • ` e : τ′.
Using the same typing rule we get the desired result for S[e ′].

Case S = letstatic x = S ′ in e′′. Directly by inductive hypothesis for S ′.

Case S = Es[S]. We have that Ψ; M; Γ ` Es[S[ed ]] : τ. Using part 2 for Es and S[ed ] we get that
Ψ; M; Γ ` S[ed ] : τ′ for some τ′ and also that for all e ′ such that Ψ; M; Γ ` e : τ′ we have Ψ; M; Γ `
Es[e

′] : τ. Then using induction hypothesis we get a τ′′ such that •; M; • ` ed : τ′′. For this type, we also
have that •; M; • ` e ′d : τ′′ impliesΨ; M; Γ ` S[e ′d ] : τ′, which further impliesΨ; M; Γ ` Es[S[e ′d ]] : τ.
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Part 2. By induction on the structure of Es . In each case, we use inversion of typing to get the type for
e and then use the same typing rule to get the derivation for Es[e

′]. �

Theorem 6.3.3 (Extension of Theorem 6.1.5) (Preservation)

1.
•; M; • ` e : τ (µ , e )−→s

�

µ′ , e ′
�

µ∼M

∃M′.( •; M′; • ` e ′ : τ M⊆M′ µ′ ∼M′ )

2.
•; M; • ` ed : τ

�

µ , ed
�

−→
�

µ′ , e ′d
�

µ∼M

∃M′.( •; M′; • ` e ′d : τ M⊆M′ µ′ ∼M′ )

Proof.

Part 1. We proceed by induction on the derivation of (µ , e )−→s
�

µ′ , e ′
�

.

Case OP-STATICENV.






�

µ , ed
�

−→
�

µ′ , e ′d
�

�

µ , S[ed ]
�

−→s

�

µ′ , S[e ′d ]
�







Using Lemma 6.3.2 we get •; M; • ` ed : τ′. Using part 2, we get that •; M; • ` e ′d : τ′. Using the
same lemma again we get the desired.

Case OP-LETSTATICENV.
�

(µ , S[letstatic x = v in e] )−→s (µ , S[e[v/x]] )
�

Using Lemma 6.3.2 we get •; M; • ` letstatic x = v in e : τ′. By typing inversion we get that
•; M; • ` v : τ′′ and also that •; M; x :s τ

′′ ` e : τ′. Using the substitution lemma (Lemma 6.3.1)
we get the desired result.

Case OP-LETSTATICTOP.
�

(µ , letstatic x = v in e )−→s (µ , e[v/x] )
�

Similar to the above.

Part 2. Exactly as before by induction on the typing derivation for ed , as ed entirely matches the defini-
tion of expressions prior to the extension. �

Lemma 6.3.4 (Unique decomposition)

1. Every expression e is either a residual expression ed or there either exists a unique decomposition e =
S[ed ].

2. Every residual expression ed can be uniquely decomposed as ed = E[v].

Proof.
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Part 1. By induction on the structure of the expression e . We give some representative cases.

Case e= λV : K.e′. Splitting cases on whether e ′ = e ′d or not. If e ′ = e ′d then trivially e = ed . If e ′ 6= e ′d
then by induction hypothesis we get a unique decomposition of e ′ into S ′[e ′′]. The original expression
e can be uniquely decomposed as S[e ′′] with S = λV : K .S ′. This decomposition is unique because the
outer frame is uniquely determined; the uniqueness of the inner frames and the expression filling the hole
are already established by induction hypothesis.

Case e= e′ T. By induction hypothesis we get that either e ′ = e ′d , or there is a unique decomposition of
e ′ into S ′[e ′′]. The former case is trivial. In the latter case, e is uniquely decomposed using S = Es[S ′]
with Es = • T , into e = S ′[e ′′] T .

Case e= (let



e′, V
�

= x in e′′). Using induction hypothesis on e ′; if it is a residual expression, then
using induction hypothesis on e ′′; if that too is a residual expression, then the original expression e is
too. Otherwise, use the unique decomposition of e ′′ = S ′[e ′′′] to get the unique decomposition e =
let 〈 ed , x 〉= S ′[e ′′′] in . If e ′ is not a residual expression, use the unique decomposition of e ′ = S ′′[e ′′′′]
to get the unique decomposition e = let




S ′′[e ′′′′], x
�

= e ′′ in .

Case e= letstatic x = e′ in e′′. Using the induction hypothesis on e ′.
In the case that e ′ = ed , then trivially we have the unique decomposition
e = (letstatic x = • in e ′′)[ed ].
In the case where e ′ = S[ed ], we have the unique decomposition
e = (letstatic x = S in e ′′)[ed ].

Part 2. Similarly, by induction on the structure of the dynamic expression ed . �

Theorem 6.3.5 (Extension of Theorem 6.1.7) (Progress)

1.
•; M; • ` e : τ µ∼M e 6= ed

∃µ′, e ′. (µ , e )−→s
�

µ′ , e ′
�

2.
•; M; • ` ed : τ µ∼M ed 6= v

∃µ′, e ′d .
�

µ , ed
�

−→
�

µ′ , e ′d
�

Proof.

Part 1 First, we use the unique decomposition lemma (Lemma 6.3.4) for e . We get that either e is a
dynamic expression ed , in which case we are done; or a decomposition into S[e ′d ]. In that case, we use
Lemma 6.3.2 and part 2 to get that either e ′d is a value or that some progress can be made. In the latter

case we have
�

µ , e ′d
�

−→
�

µ′ , e ′′d
�

for some µ′, e ′′d . Using OP-STATICENV we get
�

µ , S[e ′d ]
�

−→s
�

µ′ , S[e ′′d ]
�

, thus we have the desired for e ′ = S[e ′′d ]. In the former case, where e = S[v], we split cases
based on whether S = (letstatic x = • in e) or not; in the former case we use OP-LETSTATICTOP and in
the latter the rule OP-LETSTATICENV to make progress.

Part 2 Identical as before. �

Theorem 6.3.6 (Extension of Theorem 6.1.8) (Type safety for VeriML)
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1.
•; M; • ` e : τ µ∼M e 6= ed

∃µ′,M′, e ′.( (µ , e )−→s
�

µ′ , e ′
�

•; M′; • ` e ′ : τ µ′ ∼M′ )

2.
•; M; • ` ed : τ µ∼M ed 6= v

∃µ′,M′, e ′d .( (µ , e )−→
�

µ′ , e ′d
�

•; M′; • ` e ′d : τ µ′ ∼M′ )

Proof. Directly by combining Theorem 6.3.3 and Theorem 6.3.5. �

6.4 Proof erasure

Consider the following program:

tautology [P : Prop,Q : Prop] ((P ∧Q)→ (Q ∧ P )) : ([P,Q] (P ∧Q)→ (Q ∧ P ))

assuming the following type for the tautology tactic:

tautology : (φ : ctx)→ (P : [φ]Prop)→ ([φ]P)

where it is understood that the function throws an exception in cases where it fails to prove the given
proposition. This program can be seen as a proof script that proves the proposition (P ∧Q)→ (Q ∧P ). If
it evaluates successfully it will yield a proof object for that proposition. The proof checker for λHOL is
included in the type system of VeriML and therefore we know that the yielded proof object is guaranteed
to be valid – this is a direct consequence of type safety for VeriML. There are many situations where we
are interested in the exact structure of the proof object. For example, we might want to ship the proof
object to a third party for independent verification. In most situations though, we are interested merely in
the existence of the proof object. In this section we will show that in this case, we can evalute the original
VeriML expression without producing proof objects at any intermediate step but still maintain the same
guarantees about the existence of proof objects. We will do this by showing that an alternative semantics
for VeriML using proof erasure simulate the normal semantics – that is, if we erase all proof objects from
an expression prior to execution, the expression evaluates through exactly the same steps.

Evaluating expressions under proof erasure results in significant space savings, as proof objects can
become very large. Still, there is a trade-off between the space savings and the amount of code that we
need to trust. If we evaluate expressions under the normal semantics and re-validate the yielded proof
objects using the base proof checker for λHOL, the proof checker is the only part of the system that we
need to trust, resulting in a very small trusted base. On the other hand, if we evaluate all expressions under
proof erasure, we need to include the implementation of the whole VeriML language in our trusted base,
including its type checker and compiler. In our implementation, we address this trade-off by allowing
users to selectively evaluate expressions under proof erasure. In this case, the trusted core is extended only
with the proof-erased version of the “trusted” expressions, which can be manually inspected.

More formally, we will define a type-directed translation from expressions to expressions with all
proofs erased ¹Ψ; M; Γ ` e : τºE = e ′. We will then show a strict bisimulation between the normal se-
mantics and the semantics where the erasure function has first been applied – that is, that every evaluation
step under the normal semantics (µ , e ) −→

�

µ′ , e ′
�

is simulated by a step like
�

¹µºE , ¹eºE
�

−→
�
�

µ′
�

E ,
�

e ′
�

E

�

, and also that the inverse holds. The essential reason why this bisimulation exists is
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that the pattern matching construct we have presented does not allow patterns for individual construc-
tors of proof objects because of the sort restrictions in the pattern typing rules (Figures 5.1 and 5.2). Since
pattern matching is the only computational construct available for looking into the structure of proof
objects, this restriction is enough so that proof objects will not influence the runtime behavior of VeriML
expressions.

We present the details of the proof erasure function in Figure 6.17. It works by replacing all proof
objects in an expression e by the special proof object admit, directly using the erasure rule for extension
terms ERASEPROOF. We only show the main rules; the rest of the cases only use the erasure procedure
recursively. In the same figure, we also show how the same function is lifted to extension substitutions
σΨ and stores µ when they are compatible with the store typing context M. We call the term admit the
prove-anything constant and it is understood as a logic constant that cannot be used by the user but proves
any proposition. It is added to the syntax and typing of λHOL in Figure 6.18.
We first prove the following auxiliary lemmas which capture the essential reason behind the bisimulation
proof that follows.

Lemma 6.4.1 (Proof object patterns do not exist)

Ψ `?P Ψu > TP : [Φ] t ′ Ψ, Ψu ; Φ ` t ′ : s

s 6= Prop

Proof. By structural induction on the pattern typing for TP . �

Lemma 6.4.2 (Pattern matching is preserved under proof erasure)

• `?P Ψu > TP : K • ` T : K ¹• ` T : KºE = T E

(TP ∼ T ) = (TP ∼ T E )

Proof. We view the consequence as an equivalence: TP ∼ T = σΨ⇔ TP ∼ T E = σΨ. We prove each
direction by induction on the derivation of the pattern matching result and using the previous lemma. �

Lemma 6.4.3 (Erasure commutes with extension substitution application)

1.
Ψ; Φ ` t : t ′ Ψ′ ` σΨ :Ψ

�

Ψ; Φ ` t : t ′
�

E = t E �

Ψ′ ` σΨ :Ψ
�

E = σ
E
Ψ

t E ·σE
Ψ =

�

Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ
�

E

2.
Ψ ` T : K Ψ′ ` σΨ :Ψ ¹Ψ ` T : KºE = T E �

Ψ′ ` σΨ :Ψ
�

E = σ
E
Ψ

T E ·σE
Ψ =

�

Ψ′ ` T ·σΨ : K ·σΨ
�

E

3.
Ψ; M; Γ ` e : τ Ψ′ ` σΨ :Ψ ¹Ψ; M; Γ ` e : τºE = eE �

Ψ′ ` σΨ :Ψ
�

E = σ
E
Ψ

eE ·σE
Ψ =

�

Ψ′; M; Γ ·σΨ ` e ·σΨ : τ ·σΨ
�

E

Proof. By induction on the structure of T . �
We are now ready to prove the bisimulation theorem.
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�

Ψ; Φ ` t : t ′
�

E = t E

Ψ; Φ ` t : t ′ Ψ; Φ ` t ′ : Prop
�

Ψ; Φ ` t : t ′
�

E = admit
ERASEPROOF

¹Ψ ` T : KºE = T E

�

Ψ; Φ ` t : t ′
�

E = t E

�

Ψ ` [Φ] t : [Φ] t ′
�

E = [Φ] t E �

Ψ ` [Φ]Φ′ : [Φ] ctx
�

E = [Φ]Φ
′

�

Ψ′ ` σΨ :Ψ
�

E = σ
E
Ψ

�

Ψ′ ` • : •
�

E = •

�

Ψ′ ` σΨ :Ψ
�

E = σ
E
Ψ

�

Ψ′ ` T : K ·σΨ
�

E = T E

�

Ψ′ ` (σΨ, V : T ) : (Ψ, V : K)
�

E = (σ
E
Ψ , T E )

¹Ψ; M; Γ ` e : τºE = eE

¹Ψ, V : K ; M; Γ ` e : τºE = eE

¹Ψ; M; Γ ` (λV : K .e) : ((V : K)→ τ)ºE = λV : K .eE

¹Ψ; M; Γ ` e : (V : K)→ τºE = eE
¹Ψ ` T : KºE = T E

¹Ψ; M; Γ ` e T : τ · (idΨ, T /V )ºE = eE T E

¹Ψ ` T : KºE = T E
¹Ψ; M; Γ ` e : τ · (idΨ, T /V )ºE = eE

�

Ψ; M; Γ ` 〈 T , e 〉(V :K)×τ : ((V : K)×τ)
�

E
=
¬

T E , eE
¶

(V :K)×τ

¹Ψ; M; Γ ` e : (V : K)×τºE = eE �

Ψ, V : K ; M; Γ, x : τ ` e ′ : τ′
�

E = e ′E
�

Ψ; M; Γ ` let 〈V , x 〉= e in e ′ : τ′
�

E = (let 〈V , x 〉= eE in e ′E )

¹Ψ ` T : KºE = T E �

Ψ, Ψu ; M; Γ ` e ′ : τ · (idΨ, TP/V )
�

E = e ′E
�

Ψ; M; Γ ` holmatch T returnV : K .τ
with Ψu . TP 7→ e ′

: τ · (idΨ, T /V )+ unit
�

E
=

= holmatch T E returnV : K .τ withΨu .TP 7→ e ′E

¹µºE =µ
′ when µ∼M

¹•ºE = •
¹•; M; • ` v : τºE = vE

¹µ, (l 7→ v)ºE =µ, (l 7→ vE )

Figure 6.17: Proof erasure for VeriML
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Syntax

t ::= · · · | admit

Ψ; Φ ` t : t ′

Ψ; Φ ` t ′ : Prop

Ψ; Φ ` admit : t ′
PROVEANYTHING

Figure 6.18: Proof erasure: Adding the prove-anything constant to λHOL

Theorem 6.4.4 (Proof erasure semantics for VeriML are bisimilar to normal semantics)

1.

•; M; • ` e : τ µ∼M (µ , e )−→
�

µ′ , e ′
�

¹•; M; • ` e : τºE = eE �

•; M; • ` e ′ : τ
�

E = e ′E ¹µºE =µ
E �

µ′
�

E =µ
′E

�

µE , eE
�

−→
�

µ′E , e ′E
�

2.

•; M; • ` e : τ
µ∼M ¹•; M; • ` e : τºE = eE

¹µºE =µ
E

�

µE , eE
�

−→
�

µ′E , e ′E
�

∃e ′,µ′,M′.

 

•; M′; • ` e ′ : τ µ′ ∼M′ M⊆M′
�

•; M′; • ` e ′ : τ
�

E = e ′E
�

µ′
�

E =µ
′E (µ , e )−→

�

µ′ , e ′
�

!

Proof. Part 1. By induction on the step relation (µ , e ) −→
�

µ′ , e ′
�

. In all cases the result follows
trivially using Lemmas 6.4.2 and 6.4.3.

Part 2. By induction on the step relation
�

µE , eE � −→
�

µ′E , e ′E
�

. We prove three representative
cases.

Case OP-ΠHOL-BETA.
��

µE , (λV : K .e ′E ) T E
�

−→
�

µE , e ′E · (T E/V )
��

By inversion of ¹•; M; • ` e : τºE = (λV : K .e ′E ) T E we get that e = (λV : K .e ′′) T with
�

V : K ; M; • ` e ′′ : (V : K)→ τ′
�

E = e ′E and ¹• ` T : KºE = T E . Choosing e ′ = e ′′ · (T /V ), µ′ = µE

and M′ =M we have the desired, using Lemma 6.4.3.

Case OP-HOLMATCH.






TP ∼ T E = σE
Ψ

�

µE , holmatch T E withΨu .TP 7→ e ′E
�

−→
�

µE , inj1 (e
′E ·σE

Ψ)
�







By inversion of ¹•; M; • ` e : τºE = eE for eE = holmatch T E with Ψu .TP 7→ e ′E we get T and e ′′ such
that e = (holmatch T with Ψu .TP 7→ e ′′) with ¹• ` T : KºE = T E and

�

Ψu ; M; • ` e ′′ : τ′
�

E = e ′E .
By Lemma 6.4.2 we get that TP ∼ T = σE

Ψ with σΨ = σ
E
Ψ . Thus setting e ′ = inj1(e ′′ · σE

Ψ) and using
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Lemma 6.4.3 we get the desired.

Case OP-NEWREF.






¬(l 7→ _ ∈µE )
�

µE , ref vE
�

−→
�

(µE , l 7→ vE ) , l
�







By inversion of ¹•; M; • ` e : τºE = ref vE we get a value v such that
�

•; M; • ` v : τ′
�

E = vE . There-
fore setting µ′ = (µ, l 7→ v) we get the desired. �
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Chapter 7

User-extensible static checking

The type system of the VeriML computational language includes the λHOL type system. This directly
means that proof objects within VeriML expressions and tactics that are automatically checked for logical
validity. As we argued in Chapter 2, this is one of the main departure points of VeriML compared to
traditional proof assistants. Yet we often need to check things beyond logical validity which the VeriML
type system does not directly allow.

A common example is checking whether two propositions or terms are equivalent. This check re-
quires proof search: we first need to find a proof object for the equivalence and then check it for validity
using the VeriML type system. Yet such equivalence checks are very common when writing λHOL
proofs; we would like to check them statically, as if they were part of type checking. In this way, we will
know at the definition time of proof scripts and tactics that the equivalence checks contained in proofs
are indeed valid. Checks involving proof search are undecidable in the general case, thus fixing a search
algorithm beforehand inside the type system will not be able to handle all equivalence checks that users
need in an efficient way. Users should instead be able to provide their own search algorithms. We say
that static checking – checks that happen at the definition time of a program, just as typing – should be
user-extensible. In this chapter we will show that user-extensible static checking is possible for proofs and
tactics written in VeriML; we will also briefly present how the same technique can be viewed as a general
extensible type checking mechanism, in the context of dependently-typed languages.

In order to make our description of the issue we will address more precise, let us consider an example.
Consider the following logical function:

twice : Nat→Nat ≡ λx : Nat.x + x

Given the following theorem for even numbers:

evenMult2 : ∀x : Nat.even (2x)

we want to prove the following proposition:

evenTwice : ∀x : Nat.even (twice x)

In normal mathematical practice, we would be able to say that evenTwice follows directly from evenMult2.
Though this is true, a formal proof object would need to include more details, such as the fact that x+x =
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λHOL type system

congruence closure + · · ·

β-conversion + · · ·

arithmetic + · · ·

even (2x)
twice x = x + x
x + x = 2x
even (twice x) =
= even (2x)

even (2x)
twice x = x + x
x + x = 2x

even (2x)
twice x = 2x

even (2x)

Figure 7.1: Layers of static checking and steps in the corresponding formal proof of even (twice x)

2x, the β-reduction that reduces twice x to x + x and the fact that if even(2x) is true, so is even(x + x)
since the arguments to even are equal (called congruence). The formal proof is thus roughly as follows1:

even (2x) (theorem)
twice x = x + x (β-conversion)
x + x = 2x (arithmetic conversion)
even (twice x) = even (2x) (congruence)
even (t wi c e x) (follows from the above)

We can extend the base λHOL type system, so that some of these equivalences are decided automati-
cally; thus the associated step of the proof can be omitted. This is done by including a conversion rule in
λHOL, as suggested in Section 3.2, which can be viewed as a fixed decision procedure that directly handles
a class of equivalences. For example, including a conversion rule that automatically checks β-equivalence
would allow us to omit the second step of the above proof. As more checks are included in the λHOL
logic directly, smaller proofs are possible, as shown in Figure 7.1. Yet there is a tradeoff between the so-
phistication of the conversion rule included in the logic and the amount of trust we need to place in the
logic metatheory and implementation. Put otherwise, there is a tradeoff between the size of the resulting
proofs and the size of the trusted core of the logic. Furthermore, even if we include checking for all steps
– β-conversion, arithmetic conversion and congruence – there will always be steps that are common and
trivial yet the fixed conversion rule cannot handle. The reason is that by making any fixed conversion rule
part of the logic, the metatheory of the logic and the trust we can place in the logic checker are dependent
on the details of the conversion rule, thus disallowing user extensions. For example, if we later prove the
following theorem:

∀x, even x→ odd (x + 1)

we can use the above lemma evenTwice to show that odd (twice x + 1). Yet we will need to allude to
evenTwice explicitly, as the fixed conversion rule described does not include support for proving whether
a number is even or odd.

1. We are being a bit imprecise here for presentation purposes. All three equalities would actually hold trivially through
the conversion rule if definitional equality includes β- and ι−reduction. Yet other cases of arithmetic simplification such as
x + x = x · 2 would not hold directly. Supporting the more general case of simplification based on arithmetic properties is
what we refer to in this chapter when referring to an arithmetic conversion rule. Similarly, conversion with congruence closure
reasons about arbitrary equality rewriting steps taking the available hypotheses into account. Thus it is more general than the
congruence closure included in definitional equality, where simply definitionally equal subterms lead to definitionally equal
terms.
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A different approach is thus needed, where user extensions to the conversion rule are allowed, leading
to proofs that omit the trivial details that are needed even in user-specified domains. This has to be done in
a safe manner: user extensions should not introduce equivalences that are not provable in the original logic
as this would directly lead to unsoundness. Here is where the VeriML type system becomes necessary: we
can use the rich typing offered by VeriML in order to impose this safety guarantee for user extensions. We
require user extensions to provide proof for the claimed equivalences by expecting them to obey a specific
type, such as the following:

userExtension : (t1 : T )→ (t2 : T )→ (t1 = t2)

VeriML is an expressive language, allowing for a large number of such extensions to be implemented. This
includes the equivalence checkers for β-conversion, congruence closure as well as arithmetic simplifica-
tions. Thus none of these need to be included inside the logic – they can all be implemented in VeriML
and taken outside the trusted core of the system. Based on this idea, we will present the details of how
to support a safe and user-extensible alternative to the conversion rule in Section 7.1, where conversion is
implemented as a call to tactics of a specific type. We have implemented a version of the conversion rule
that includes all the equivalence checkers we have mentioned. Supporting these has previously required a
large metatheoretic extension to the CIC logic and involved significant reengineering effort as part of the
CoqMT project [Strub, 2010].

So far we have only talked about using the conversion rule as part of proof objects. Let us now
consider what user-extensible checking amounts to in the case of tactics. Imagine a tactic that proves
whether a number is even or odd.

evenOrOdd : (φ : ctx)→ (n : Nat)→ (even n)+ (odd n)

The cases for 2x and twice x would be:

evenOrOddφ n = holmatch n with
2x 7→ inj1 〈 evenMult2 x 〉
twice x 7→ inj1

D

· · · : even (twice x)
E

· · ·

In the case of twice x, we can directly use the evenTwice lemma. Yet this lemma is proved through one
step (the allusion to evenMult2 x) when the conversion rule includes the equivalence checkers pictured
in Figure 7.1. We would rather avoid stating and proving the lemma separately, alluding instead to the
evenMult2 x theorem directly, even in this case, handling the trivial rewriting details through the con-
version rule. That is, we would like proofs contained within tactics to be checked using the extensible
conversion rule as well. Furthermore, these checks should be static so as to know as soon as possible
whether the proofs are valid or not. As we said above, the conversion rule amounts to a call to a VeriML
tactic. Therefore we need to evaluate the calls to the conversion rule statically, at the definition time of
tactics such as evenOrOdd. We achieve this by making critical use of two features of VeriML we have
already described: the staging extension of Section 6.3 and the collapsed logical terms of Section 5.2.

The essential idea is to view static checking as a two-phase procedure: first the normal VeriML type-
checker is used; then, during the static evaluation phase of VeriML semantics, additional checks are done.
These checks might involve arbitrary proof search and are user-defined and user-extensible, through nor-
mal VeriML code. In this way, proofs contained within tactics can use calls to powerful procedures, such

152



VeriML type system
(including λHOL)

congruence closure + · · ·

β-conversion + · · ·

arithmetic + · · ·

evenOrOddφ n = holmatch n with
2x 7→ inj1 〈 evenMult2 x 〉
twice x 7→ inj1 〈 evenMult2 x 〉
· · ·

has been

checked
using

fixed
type checking

extensible
static checking

Figure 7.2: User-extensible static checking of tactics

as the conversion rule, yet be statically checked for validity – just as if the checks became part of the orig-
inal λHOL logic. Owing to the expressive VeriML type system, this is done without needing to extend
the logic at all. This amounts to user-extensible static checking within tactics, which we cover in more detail
in Section 7.2.

The support of user-extensible static checking enables us to layer checking functions, so as to simplify
their implementation, as shown in Figure 7.2. This corresponds to mathematical practice: when working
on proofs of a domain such as arithmetic, we omit trivial details such as equality rewriting steps. Once we
have a fair amount of intuition about arithmetic, we can move to further domains such as linear algebra
– where arithmetic steps themselves become trivial and are omitted; and so on. Similarly, by layering
static checking procedures for increasingly more complicated domains, we can progressively omit more
trivial details from the proofs we use in VeriML. This is true whether we are interested in the proofs
themselves, or when the proofs are parts of tactics, used to provide automation for further domains. For
example, once we have programmed a conversion rule that supports congruence closure, programming a
conversion rule that supports β-reduction is simplified. The reason is that the proofs contained within
the β-conversion rule do not have to mention the congruence proof steps, just as we could skip details in
evenOrOdd above. Similarly, implementing an arithmetic conversion rule benefits from the existence of
congruence closure and β-conversion.

Our approach to user-extensible static checking for proofs and tactics can in fact be viewed as a more
general feature of VeriML: the ability to support extensible type checking. Functional languages such as
ML and Haskell allow users to define their own algebraic datatypes. Dependently typed languages, such
as versions of Haskell with GADTs [Peyton Jones et al., 2006] and Agda [Norell, 2007], allow users to
define and enforce their own invariants on those datatypes, through dependent types. Yet, since the type
checking procedure of such languages is fixed, these extra invariants cannot always be checked statically.
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VeriML allows us to program the automated procedures to prove such invariants within the same language
and evaluate them statically through the staging mechanism. In this way, type checking becomes extensi-
ble by user-defined properties and user-defined checking procedures, while type safety is maintained. The
details of this idea are the subject of Section 7.3.

7.1 User-extensible static checking for proofs

7.1.1 The extensible conversion rule

Issues with the explicit equality approach. In Section 3.2 we presented various alternatives to handling
equality within the λHOL logic. We chose the explicit equality approach, where every equality step is
explicitly witnessed inside proofs. As we discussed, this leads to the simplest possible type-checker for
the logic. Yet equality steps are so ubiquitous inside proofs that proof objects soon become prohibitively
large. One such example is proving that (succ x) + y = succ (x + y). Assuming the following constants in
the signature Σ concerning natural numbers, where elimNat represents primitive recursion over them:

Nat : Type
zero : Nat
succ : Nat→Nat
elimNatK : K→ (Nat→K→K)→Nat→K
elimNatZero : ∀ fz fs , elimNatK fz fs zero= fz
elimNatSucc : ∀ fz fs p, elimNatK fz fs (succ p) = fs p (elimNatK fz fs p)

we can define natural number addition as:

plus = λa : Nat.λb : Nat.elimNatNat b (λp.λr.succ r ) a

To prove the desired proposition, we need to go through the following steps:

plus (succ x) y =
= (λa : Nat.λb : Nat.elimNat b (λp.λr.succ r ) a) (succ x) y

(by definition of plus)
= (λb : Nat.elimNat b (λp.λr.succ r ) (succ x)) y

(by EQBETA)
= elimNat y (λp.λr.succ r ) (succ x)

(by EQBETA)
= (λp.λr.succ r ) x (elimNat y (λp.λr.succ r ) x)

(by elimNatSucc)
= succ (elimNat y (λp.λr.succ r ) x)

(by EQBETA, twice)
= succ (plus x y)

(by EQBETA and EQSYMM, twice)

The resulting proof object explicitly mentions this steps, as well as uses of equality transitivity in order
to combine the steps together. Generating and checking such objects with such painstaking level of detail
about equality soon becomes a bottleneck. For example, imagine the size of a proof object proving that
100000+ 100000 = 200000: we would need at least 100000 applications of logical rules such as EQBETA

and elimNatSucc in order to prove a proposition which otherwise follows trivially by computation.
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Extensions to typing (stratified version)

Φ C̀ π : P P ≡βN P ′

Φ C̀ π : P ′
CONVERSION

Extensions to typing (PTS version)

Φ C̀ t : t ′ Φ C̀ t ′ : Prop t ′ ≡βN t ′′

Φ C̀ t : t ′′
CONVERSION

t →βN t ′

(λx : K.t ) t ′→βN t[t ′/x]
elimNatK tz ts zero→βN tz
elimNatK tz ts (succ t )→βN ts t (elimNatK tz ts t )

t ≡βN t ′

The compatible (t ≡ t ′⇒ t ′′[t/x]≡ t ′′[t ′/x]), reflexive, symmetric and transitive
closure of t →βN t ′

Figure 7.3: The logic λHOLC : Adding the conversion rule to the λHOL logic
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Introducing the conversion rule. In order to solve this problem, various logics introduce a notion
of terms that are definitionally equal: that is, they are indistinguishable with respect to the logic. For
example, we can say that terms that are equivalent based on computation alone such as 100000+ 100000
and 200000 or (succ x)+ y and succ (x+ y) correspond to the same term. In this way, the rewriting steps to
go from one to the other do not need to be explicitly witnessed in a proof object and a simple application
of reflexivity is enough to prove their equality:

` (refl ((succ x)+ y)) : ((succ x)+ y = succ (x + y))

This typing derivation might be surprising at first: we might expect the type of this proof object to be
((succ x) + y) = ((succ x) + y). Indeed, this is a valid type for the proof object. But since ((succ x) + y) is
indistinguishable from succ (x + y), the type we gave above for this proof object is just as valid.

In order to include this notion of definitional equality, we introduce a conversion rule in the λHOL
logic, with details shown in Figure 7.3. We denote definitional equality as ≡ and include β-reduction
and natural number primitive recursion as part of it. The conversion rule is practically what makes
definitionally equal terms indistinguishable, allowing to view a proof object for a proposition P as a proof
object for any definitionally equal proposition P ′. In order to differentiate between the notion of λHOL
with explicit equality that we have considered so far, we refer to this version with the conversion rule as
λHOLC and its typing judgement as Ψ; Φ `c t : t ′; whereas the explicit equality version is denoted as
λHOLE .

Including the conversion rule in λHOL means that when we prove the metatheory of the logic, we
need to prove that the conversion rule does not introduce any unsoundness to the logic. This proof
complicates the metatheory of the logic significantly. Furthermore, the trusted base of a system relying
on this logic becomes bigger. The reason is that the implementation of the logic type checker now needs to
include the implementation of the conversion rule. This implementation can be rather large, especially if
we want the conversion rule to be efficient. The implementation essentially consists of a partial evaluator
for the functional language defined through β-reduction and natural number elimination. This can be
rather complicated, especially as evaluation strategies such as compilation to bytecode have been suggested
[Grégoire, 2003]. Furthermore, it is desirable to support even more sophisticated definitional equality as
part of the conversion rule, as evidenced in projects such as Blanqui et al. [1999], Strub [2010] and Blanqui
et al. [2010]. For example, by including congruence closure in the conversion rule, proof steps that
perform rewriting based on hypotheses can be omitted: if we know that x = y and y = z, then proving
f x = f z becomes trivial. The size of the resulting proof objects is further reduced. Of course, extending
definitional equality also complicates the metatheory further and enlarges the trusted base. Last, user
extensions to definitional equality are impossible: any new extension requires a new metatheoretic result
in order to make sure that it does not violate logical soundness.

The conversion rule in VeriML. We will now see how VeriML makes it possible to reconcile the
explicit equality based approach with the conversion rule: we will gain the conversion rule back, albeit
it will remain completely outside the logic. Therefore we will be free to extend it, all the while without
risking introducing unsoundness in the logic, since the logic remains fixed (λHOLE as presented above).

The crucial step is to recognize that the conversion rule essentially consists of a trusted tactic that is
hardcoded within the logic type checker. This tactic checks whether two terms are definitionally equal or
not; if it claims that they are, we trust that they are indeed so, and no proof object is produced. This is
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where the space gains come from. We can thus view the definitional equality checker as a trusted function
of type:

defEqual : (P : Prop)→ (P ′ : Prop)→ bool

and the conversion rule as follows:

Φ C̀ π : P defEqual P P ′ −→∗ML true

Φ C̀ π : P ′
CONVERSION

where −→∗ML stands for the operational semantics of ML – the meta-language where the type checker for
λHOL is implemented.

This key insight leads to our alternative treatment of the conversion rule in VeriML. First, instead
of hardcoding the trusted definitional equality checking tactic inside the logic type checker, we program
a type-safe definitional equality tactic, utilizing the features of VeriML. Based on typing alone, we require
that this function returns a valid proof object of the claimed equivalences:

defEqual : (φ : ctx, P : Prop, P ′ : Prop)→ option (P = P ′)

Second, we evaluate this tactic under proof erasure semantics. This means that no proof object for P = P ′

is produced, leading to the same space gains as the original conversion rule. In fact, under this semantics,
the type option (P = P ′) is isomorphic to bool – so the correspondence with the original conversion
rule is direct. Third, we use the staging construct in order to check conversion statically. In this way, we
will know whether the conversion checks are successful as soon as possible, after stage-one evaluation.
The main reason why this is important will be mostly evident in the following section. Informally, the
conversion rule now becomes:

Φ È π : P
¦
�

defEqual Φ P P ′
	

erase

©

static
−→∗VeriML Some 〈 admit 〉

Φ È π : P ′

Through this treatment, the choice of what definitional equality corresponds to can be decided at will by
the VeriML programmer, rather than being fixed at the time of the definition of λHOL.

As it stands the rule above mixes typing for λHOL terms with the operational semantics of a VeriML
expression. Since typing for VeriML expressions depends on λHOL typing, adding a dependence on
the VeriML operational semantics would severely complicate the definition of the VeriML language. We
would not be able to use the standard techniques of proving type safety in the style of Chapter 6. We
resolve this by leaving the conversion rule outside the logical core. Instead of redefining typing for λHOL
proof objects we will define a notion of proof object expressions, denoted as eπ. These are normal VeriML
expressions which statically evaluate to a proof object. The only computational part they contain are calls
to the definitional equality tactic. Thus the combination of VeriML typing and VeriML static evaluation
for proof object expressions exactly corresponds to λHOLC typing for proof objects:

Φ C̀ π : P ⇔ •; •; Γ ` eπ : (P )∧ (µ , eπ )−→∗s
�

µ ,



π′
� �

We will show that we can convert any λHOLC proof object π into an equivalent proof object expression
through a type-directed translation: ¹Φ C̀ π : Pº = eπ. Through proof-erasure the calls to the defini-
tional equality tactic will not produce proof objects at runtime, yielding the space savings inherrent in the
λHOLC approach. Furthermore, since the use of proof erasure semantics is entirely optional in VeriML,
we can also prove that a full proof object in the original λHOLE logic can be produced:
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Φ C̀ π : P ¹Φ C̀ π : Pº= eπ (µ , eπ )−→
∗
s

�

µ ,



π′
� �

Φ È π
′ : P

This proof object only requires the original type checker for λHOLE without any conversion-related
extensions, as all conversion steps are explicitly witnessed.

Formal details. We are now ready to present our approach formally. We give the implementation
of the definitional equality checker in VeriML in Code Listings 7.1 and 7.2. We support the notion
of definitional equality presented above: the compatible closure over β-reduction and natural number
elimination reduction. As per standard practice, equality checking is split into two functions: one which
reduces a term to weak-head normal form (rewriteBetaNat in Code Listing 7.1) and the actual checking
function defEqual which compares two terms structurally after reduction. We also define a version of the
tactic that raises an error instead of returning an option type if we fail to prove the terms equal, which we
call reqEqual. For presentation reasons we omit the proof objects contained within the tactics. We instead
name the respective proof obligations within the tactics as Gi and give their type. Most obligations are
easy to fill in based on our presentation of λHOLE in Section 3.2 and can be found in our prototype
implementation of VeriML.

The code of the defEqual tactic is entirely similar to the code one would write for the definitional
equality checking routine inside the λHOLC logic type checker, save for the extra types and proof objects.
It therefore follows trivially that everything that holds for the standard implementation of the conversion
check also holds for this code: e.g. it corresponds exactly to the ≡βN relation as defined in the logic; it
is bound to terminate because of the strong normalization theorem for this relation; and its proof-erased
version is at least as trustworthy as the standard implementation. Formally, we write:

Lemma 7.1.1

1.
Φ ` t : T t ≡βN t ′

reqEqual Φ T t t ′ −→∗ 〈π 〉 Φ `π : t = t ′
2.
Φ ` t : T reqEqual Φ T t t ′ −→∗ error

t 6≡βN t ′

Proof. Through standard techniques show that ≡βN is equivalent to structural equality modulo rewrit-
ing toβN-weak head-normal form. Then, by showing that the combination of defEqual and rewriteBetaNat
accurately implement the latter relation. �

With this implementation of definitional equality in VeriML, we are now ready to translate λHOLE
proof objects into VeriML expressions. Essentially, we will replace the implicit definitional equality
checks used in the conversion rule within the proof objects with explicit calls to the reqEqual tactic.
We define a type-directed translation function in Figure 7.4 that does exactly that. The auxiliary function
¹Φ C̀ πC : Pº′ forms the main part of the translation. It yields an equivalent λHOLE proof object πE ,
which is mostly identical to the original λHOLC proof object, save for uses of the conversion rule. A
use of the conversion rule for terms t and t ′ is replaced with an explicit proof object that has a place-
holder Gi for the proof of t = t ′. The same auxiliary function also yields a map from the placeholders
Gi into triplets (Φ, t , t ′) that record the relevant information of each use of the conversion rule 2. The
main translation function ¹Φ C̀ πC : Pº then combines these two parts into a valid VeriML expression,
calling the reqEqual tactic in order to fill in the Gi placeholders based on the recorded information.

2. We assume that the names and uses of the Gi are α-converted accordingly when joining lists together.
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rewriteBetaNatStep : (φ : ctx, T : Type, t : T )→ (t ′ : T )× (t = t ′)
rewriteBetaNatStepφ T t =

holmatch t with
(t1 : T ′→ T ) (t2 : T ′) 7→
let


t ′1, H1 : t1 = t ′1

·

= rewriteBetaNatφ (T ′→ T ) t1 in

let


t ′, H2 : t ′1 t2 = t ′
·

=

holmatch t ′1 with
λx : T ′.t f 7→

¬

t f /[idφ, t2], G1

¶

| t ′1 7→
¬

t ′1 t2, G2

¶

in



t ′, G3
�

| elimNatT fz fs n 7→
let



n′, H3
�

= rewriteBetaNatφNat n in
let
D

t ′, H4 : elimNatT fz fs n′ = t ′
E

=
holmatch n′ with

zero 7→ 〈 fz , G4 〉
| succ n′ 7→




fs n′ (elimNatT fz fs n′), G5
�

| n′ 7→



elimNatT fz fs n′, G6
�

in



t ′, G7
�

| t 7→ 〈 t , G8 〉

rewriteBetaNat : (φ : ctx, T : Type, t : T )→ (t ′ : T )× (t = t ′)
rewriteBetaNatφ T t =

let
D

t ′, H5 : t = t ′
E

= rewriteBetaNatStepφ T t in
holmatch t ′ with

t 7→ 〈 t , G9 〉
| t ′ 7→ let




t ′′, H6
�

= rewriteBetaNatφ T t ′ in



t ′′, G10
�

Code Listing 7.1: Implementation of the definitional equality checker in VeriML (1/2)
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defEqual : (φ : ctx, T : Type, t1 : T , t2 : T )→ option (t1 = t2)

defEqualφ T t1 t2 =

let


t ′1, H1 : t1 = t ′1

·

= rewriteBetaNatφ T t1 in

let


t ′2, H2 : t2 = t ′2

·

= rewriteBetaNatφ T t2 in

do


H : t ′1 = t ′2

·

← holmatch t ′1, t ′2 with

(ta : T ′→ T ) tb , tc td 7→
do
D

Ha : ta = tc

E

← defEqualφ T ′ ta tc
D

Hb : tb = td

E

← defEqualφ T tb td

return
D

G1 : ta tb = tc td

E

| ((ta : T ′) = tb ), (tc = td ) 7→
do
D

Ha : ta = tc

E

← defEqualφ T ′ ta tc
D

Hb : tb = td

E

← defEqualφ T tb td

return
D

G2 : (ta = tb ) = (tc = td )
E

| (ta→ tb ), (tc → td ) 7→
do
D

Ha : ta = tc

E

← defEqualφ Prop ta tc
D

Hb : tb = td

E

← defEqualφ Prop tb td

return
D

G3 : (ta→ tb ) = (tc → td )
E

| (∀x : T ′, ta), (∀x : T ′, tb ) 7→
do
D

Ha : ta = tb

E

← defEqual (φ, x : T ′) Prop ta tb

return
D

G4 : (∀x : T ′, ta) = (∀x : T ′, tb )
E

| (λx : T ′.(ta : T ′′)), (λx : T ′.tb ) 7→
do
D

Ha : ta = tb

E

← defEqual (φ, x : T ′) T ′′ ta tb

return
D

G5 : (λx : T ′.ta) = (λx : T ′.tb )
E

| ta , ta 7→ do return
D

G6 : ta = ta

E

| ta , tb 7→ None

in return
D

G : t1 = t2

E

reqEqual : (φ : ctx, T : Type, t1 : T , t2 : T )→ (t1 = t2)

reqEqualφ T t1 t2 = match defEqualφ T t1 t2 with
Some

D

H : t1 = t2

E

7→ 〈H 〉
| None 7→ error

Code Listing 7.2: Implementation of the definitional equality checker in VeriML (2/2)
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¹Φ C̀ πC : Pº′ = 〈πE | l 〉

�

Φ, x : P C̀ πC : P ′
�′ = 〈πE | l 〉

�

Φ C̀ λx : P.πC : P → P ′
�′ = 〈 λx : P.πE | l 〉

→INTRO

�

Φ C̀ π
1
C : P ′→ P

�′
=
¬

π1
E | l

1
¶ �

Φ C̀ π
2
C : P ′

�′
=
¬

π2
E | l

2
¶

�

Φ C̀ π
1
C π

2
C : P

�′
=
¬

π1
E π

2
E | l

1 ] l 2
¶

→ELIM

¹Φ, x : K C̀ πC : Pº′ = 〈πE | l 〉
¹Φ C̀ λx : K.πC : ∀x : K.Pº′ = 〈 λx : K.πE | l 〉

∀INTRO

¹Φ C̀ πC : ∀x : K.Pº′ = 〈πE | l 〉
¹Φ C̀ πC d : P[d/x]º′ = 〈πE d | l 〉

∀ELIM
¹Φ C̀ x : Pº′ = 〈 x | ; 〉

VAR

¹Φ C̀ πC : Pº= 〈πE | l 〉 P ≡βN P ′ Gn 6∈ l
�

Φ C̀ πC : P ′
�

=



convπE Gn | l ] [Gn 7→ (Φ, P, P ′)]
� CONVERSION

¹Φ C̀ πC : Pº= eπ

¹Φ C̀ πC : Pº′ = 〈πE | l 〉 |l |= n l =
−−−−−−−−−−−→
Gi 7→ (Φi , Pi , P ′i )

¹Φ C̀ πC : Pº= (letstatic 〈G1 〉 =
�

reqEqual Φ1 Prop P1 P ′1
�

E
in

· · ·
letstatic 〈Gn 〉 =

�

reqEqual Φn Prop Pn P ′n
�

E
in

〈 [Φ]πE 〉)

Figure 7.4: Conversion of λHOLC proof objects into VeriML proof object expressions
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While this translation explicitly records the information for every use of conversion – that is, the
triplet (Φ, t , t ′), a very important point we need to make is that VeriML type information can be used to
infer this information. Therefore, an alternate translation could produce VeriML proof object expressions
of the form:

letstatic G1 = ¹reqEqual _ _ _ _ºE in
· · ·
letstatic Gn = ¹reqEqual _ _ _ _ºE in
〈πE 〉

This evidences a clear benefit of recording logic-related information in types: based on typing alone, we
can infer normal arguments to functions, even when these have an actual run-time role, such as t and t ′.
The function reqEqual pattern matches on these objects, yet their values can be inferred automatically
by the type system based on their usage in a larger expression. This benefit can be pushed even further
to eliminate the need to record the uses of the conversion rule, allowing the user to write proof object
expressions that look identical to λHOLC proof objects. Yet, as we will see shortly, proof object expres-
sions are free to use an arbitrary conversion rule instead of the fixed conversion rule in λHOLC ; thus,
by extending the conversion rule appropriately, we can get small proof object expressions even in cases
where the corresponding λHOLC proof object would be prohibitively large.

We will not give the full details of how to hide uses of the conversion rule in proof object expressions.
Briefly we will say that this goes through an algorithmic typing formulation for λHOLC proof objects:
instead of having an explicit conversion rule, conversion checks are interspersed in the typing rules for
the other proof object constructors. For example, implication elimination is now typed as follows:

Φ C̀ π : P → P ′′ Φ C̀ π
′ : P ′ P ≡βN P ′

Φ C̀ π π
′ : P ′′

Having such a formulation at hand, we implement each such typing rule as an always-terminating VeriML
function with an appropriate type. Conversion checks are replaced with a requirement for proof evidence
of the equivalence. For example:

implElim : (φ : ctx, P, P ′, P ′′ : Prop, H1 : P → P ′, H2 : P ′, H3 : P = P ′)→ (P ′′)

Then, the translation from λHOLC proof objects into proof object expressions replaces every typing rule
with the VeriML tactic that implements it. Type inference is used to omit all but the necessary arguments
to these tactics; and static, proof-erased calls to reqEqual are used to solve the equivalence goals. Thus
through appropriate syntactic sugar to hide the inferred arguments, the calls to the corresponding VeriML
tactics look identical to the original proof object.

Correspondence with original proof object. We use the term proof object expressions to refer to the
VeriML expressions resulting from this translation and denote them as eπ. We will now elucidate the
correspondence between such proof object expressions and the original λHOLC proof object. To do that,
it is fruitful to view the proof object expressions as a proof certificate, sent to a third party. The steps
required to check whether it constitutes a valid proof are the following. First, the whole expression is
checked using the VeriML type checker; this includes checking the included λHOLE proof object πE
through the λHOLE type checker. Then, the calls to the reqEqual function are evaluated during stage
one, using proof erasure semantics and thus do not produce additional proof objects. We expect such calls
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to reqEqual to be successful, just as we expect the conversion rule to be applicable in the original λHOLC
proof object when it is used. Last, stage-two evaluation is performed, but the proof object expression
has already been reduced to a value after the first evaluation stage. Thus checking the validity of the
proof expression is entirely equivalent to the behavior of type-checking the λHOLC proof object, save
for pushing all conversion checks towards the end. Furthermore, the size of the proof object expression
eπ is comparable to the original πC proof object; the same is true for the resulting πE proof object when
proof erasure semantics are used for the calls to reqEqual. Of course, use of the proof erasure semantics
is entirely optional. If we avoid using them (e.g. in cases where the absolute minimum trusted base is
required), the resulting πE proof object will be exponentially larger due to the full definitional equality
proofs.

Formally, we have the following lemma, assuming no proof erasure semantics are used for VeriML
evaluation.

Lemma 7.1.2 (λHOLC proof object – VeriML proof object expression equivalence)

Φ C̀ πC : P ¹Φ C̀ πC : Pº= eπ
•; •; • ` eπ : ([Φ]P) eπ −→

∗
s 〈 [Φ]πE 〉 Φ È πE : P

Extending conversion at will. In our treatment of the conversion rule we have so far focused on re-
gaining the conversion rule with≡βN as the definitional equality in our framework. Still, there is nothing
confining us to supporting this notion of definitional equality only. As long as we can program an equiva-
lence checker in VeriML that has the right type, it can safely be made part of the definitional equality used
by our notion of the conversion rule. That is, any equivalence relation R can be viewed as the definitional
equality≡R, provided that a defEqualR tactic that implements it can be written in VeriML, with the type:

defEqualR : (φ : ctx, T : Type, t : T , t ′ : T )→ option (t = t ′)
For example, we have written an eufEqual function, which checks terms for equivalence based on the

equality with uninterpreted functions decision procedure – also referred to as congruence. This equiva-
lence checking tactic isolates hypotheses of the form t1 = t2 from the current context; then, it constructs a
union-find data structure in order to form equivalence classes of terms. Based on this structure, and using
code similar to defEqual (recursive calls on subterms), we can decide whether two terms are equal up to
simple uses of the equality hypotheses at hand. We have combined this tactic with the original defEqual
tactic, making the implicit equivalence supported similar to the one in the Calculus of Congruent Con-
structions [Blanqui et al., 2005]. This demonstrates the flexibility of this approach: equivalence checking
is extended with a sophisticated decision procedure, which is programmed using its original, imperative
formulation. We have extended defEqual further in order to support rewriting based on arithmetic facts,
so that simple arithmetic simplifications are taken into account as part of the conversion rule.

In our implementation, we have programmed the equality checking procedure defEqual in an exten-
sible manner, so that we can globally register further extensions. We present details of this in Chap-
ter 9. We can thus view defEqual as being composed from a number of equality checkers defEqualR1

, · · · ,
defEqualRn

, corresponding to the definitional equality relation ≡R1∪···∪Rn
. We will refer to this relation as

≡R.
We would like to stress that by keeping the conversion rule outside the logic, the user extensions

cannot jeopardize the soundness of the logic. This choice also allows for adding undecidable equivalences
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to the conversion rule (e.g. functional extensionality) or potentially non-terminating decision procedures.
Soundness is guaranteed thanks to the VeriML type system, by requiring that extensions return a proof of
the claimed equivalences. Through type safety we know that such a proof exists, even if it is not produced
at runtime.

We actually make use of non-terminating extensions to the conversion rule in our developments. For
example, before implementing the eufEqual tactic for deciding equivalence based on equality hypotheses,
we implement a naïve version of the same tactic, that blindly rewrites terms based on equality hypotheses
– that is, given a hypothesis a = b and two terms t and t ′ to test for equivalence, it rewrites all occurrences
of a to b inside t and t ′. While this strategy would lead to non-termination in the general case, it sim-
plifies implementing eufEqual significantly, as many proof obligations within that tactic can be handled
automatically through the naïve version. After eufEqual is implemented, the naïve version does not get
used. Still, this usage scenario demonstrates that associating decidability of equivalence checking with the
soundness of the conversion rule is solely an artifact of the traditional way to integrate the conversion
rule within the internals of the logic.

7.1.2 Proof object expressions as certificates

In terms of size and checking behavior, a proof object expression eπ that makes calls to an appropriately
extended defEqual procedure corresponds closely to proof objects with a version of λHOLC with ≡R as
the definitional equality used in the conversion rule. These proof object expressions can be utilized as
an alternative proof certificate format, to be sent to a third party. Their main benefit over proof objects
is that they allow the receiving third party to decide on the tradeoff between the trusted base and the
cost of validity checking. This is due to the receiver having a number of choices regarding the evaluation
of each defEqualRi

implementing the sub-relations ≡Ri
of ≡R. First, the receiver can use proof erasure

for evaluation as suggested above. In this case, the proof-erased version of defEqualRi
becomes part of the

trusted base – though the fact that it has been verified through the VeriML type system gives a much better
assurance that the function can indeed be trusted. Another choice would be to use non-erasure semantics
and have the function return an actual proof object. This is then checked using the original λHOLE type
checker. In that case, the VeriML type system does not need to become part of the trusted base of the
system. Last, the ‘safest possible’ choice would be to avoid doing any evaluation of the function, and ask
the proof certificate provider to do the evaluation of defEqualRi

themselves. In that case, no evaluation
of its code would need to happen at the proof certificate receiver’s side. This mitigates any concerns one
might have for code execution as part of proof validity checking, and guarantees that the small λHOLE
type checker is the trusted base in its entirety.

The receiver can decide on the above choices separately for each defEqualRi
– e.g. use proof erasure for

rewriteBetaNat but not for eufEqual, leading to a trusted base identical to the λHOLC case. This means
that the choice of what the conversion rule is rests with the proof certificate receiver and not with the designer
of the logic. Thus the proof certificate receiver can choose the level of trust they require at will, while
taking into account the space and time resources they want to spend on validation. Still, the producer
of the proof certificate has the option of further extensions to the conversion rule. Thus proof object
expressions constitute an extensible proof certificate format –that is, a certificate format with an extensible
checking procedure– that still allows for the actual size of the checking procedure, or the trusted base, to
be decided by the checking party.
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Disambiguating between notions of proof. So far we have introduced a number of different notions
of proof: proof objects in λHOLC and λHOLE ; proof object expressions and proof expressions; we have
also mentioned proof scripts in traditional proof assistants. Let us briefly try to contrast and disambiguate
between these notions.

As we have said, proof objects in λHOLE are a kind of proof certificate where every single proof
step is recorded in full detail; therefore, the size of the trusted base required for checking them is the
absolute minimum of the frameworks we consider. Yet their size is often prohibitively large, rendering
their transfer to a third party and their validation impractical. Proof object expressions in VeriML, as
generated by the translation offered in this chapter, can be seen as proof objects with some holes that are
filled in computationally. That is, some simple yet tedious proof steps are replaced with calls to verified
VeriML proof-producing functions. The fact that these functions are verified is a consequence of requiring
them to pertain to a certain type. The type system of VeriML guarantees that these functions are safe to
trust: that is, if they return successfully, the missing part of the proof object can indeed be filled in.
Seen as proof certificates, they address the impracticality of proof objects, without imposing an increased
trusted base: their size is considerably smaller, validating them is fast as the missing parts do not need to
be reconstructed, yet an absolutely skeptical third party is indeed able to perform this reconstruction.

We have seen the conversion rule as an example of these simple yet tedious steps that are replaced by
calls to verified VeriML functions. More generally, we refer to the mechanism of avoiding such steps as
small-scale automation. The defining characteristics of small-scale automation are: it is used to automate
ubiquitous, yet simple steps; therefore the VeriML functions that we can use should be relatively inexpen-
sive; as our earlier discussion shows, the calls to small-scale automation tactics can be made invisible to
the programmer, and therefore happen implicitly; and we expect, in the standard case, that small-scale au-
tomation functions are evaluated through proof-erasure semantics and therefore do not leave a trace in the
produced proof object. We have also made the choice of evaluating small-scale automation statically. In this
way, after stage-one evaluation, small-scale automation has already been checked. Based on this view, our
insight is that proof objects in λHOLC should actually be seen as proof object expressions, albeit where a
specific small-scale automation procedure is used, which is fixed a priori.

What about proof expressions? We have defined them earlier as VeriML expressions of propositional
type and which therefore evaluate to a proof object. In these expressions we are free to use any VeriML
proof-producing function, evaluated either statically or dynamically, through proof-erasure semantics or
not. Indeed, proof object expressions are meant to be seen as a special case of proof expressions, where
only static calls to (user-specified) small-scale automation functions are allowed and evaluated under proof-
erasure semantics. The main distinction is that proof expressions can also use other, potentially expensive,
automated proof-search functions. Using arbitrary proof expressions as proof certificates would thus
not be desirable despite their compactness, as the receiving third party would have to perform lengthy
computation. We refer to these extra automation mechanisms that can be used in proof expressions as
large-scale automation.

The distinction between small- and large-scale automation in VeriML might seem arbitrary, but indeed
it is deliberately so: the user should be free to decide what constitutes trivial detail, taking into account
the complexity of the domain they are working on and of the automation functions they have developed.
There is no special provision that needs to be taken in order to render a VeriML proof automation function
part of small-scale automation, save perhaps for syntactic sugar to hide its uses. Typing is therefore of
paramount importance in moving freely between the two kinds of automation: in the case of small-scale
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automation, the fact that calls to tactics are made implicitly, means that all the relevant information must
be inferred through the type system instead of being explicitly specified by the user. It is exactly this
inferrence that the VeriML type system permits.

Contrasting proof expressions with proof scripts reinforces this point. Proof scripts in traditional
proof assistants are similar to VeriML proof expressions, where all the logic-related typing information
is absent. [This is why we refer to VeriML proof expressions as typed proof scripts as well.] Since the
required typing information is missing, the view of small-scale vs. large-scale automation as presented
above is impossible in traditional proof assistants. Another way to put this, is that individual proof steps
in proof scripts depend on information that is not available statically, and therefore choosing to validate
certain proof steps ahead of time (i.e. calls to small-scale automation tactics) is impossible.

7.2 User-extensible static checking for tactics

In the previous section we presented a novel treatment of the conversion rule which allows safe user
extensions. Uses of the conversion rule are replaced with special user-defined, type-safe tactics, evaluated
statically and under proof erasure semantics. This leads to a new notion of proof certificate, which we
referred to as proof object expressions. The main question we will concern ourselves with in this section
is what happens when the proof object expression is contained within a VeriML function and is therefore
open, instead of being a closed expression: can we still check its validity statically?

Upon closer scrutiny, another way to pose the same question is the following: can we evaluate VeriML
proof-producing function calls during stage-one evaluation? The reason this question is equivalent is that
the conversion rule is implemented as nothing other than normal VeriML functions that produce proofs
of a certain type.

We will motivate this question through a specific usage case where it is especially useful. When devel-
oping a new extension to the conversion rule, the programmer has to solve a number of proof obligations
witnessing the claimed equivalences – remember the obligations denoted as Gi in Code Listings 7.1 and
7.2. Ideally, we would like to solve such proof obligations with minimal manual effort, through a call to a
suitable proof-producing function. Yet we would like to know whether these obligations were successfully
proved at the definition time of the tactic, i.e. statically – rather than having the function fail seemingly
at random upon a specific invocation. The way to achieve this is to use static evaluation for the function
calls.

A rewriter for plus. Let us consider the case of developing a rewriter –similar to rewriteBetaNatStep–
for simplifying expressions of the form x + y depending on the second argument. We will then register
this rewriter with defEqual, so that such simplifications are automatically taken into account as part of
definitional equality.

The addition function is defined by induction on the first argument, as follows:

(+) = λx.λy.elimNat y (λp.λr.succ r ) x

Based on this definition, it is evident that defEqual, that is, the definitional equality tactic, presented al-
ready in the previous section performs simplification based on the first argument, allowing the conversion
rule to decide implicitly that (succ x) + y = succ (x + y) or even that (succ zero) + (x + y) = succ (x + y).
With the extension we will describe here, similar equivalences such as x + (succ y) = succ(x + y) will also
be handled by definitional equality.
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type rewriterT= (φ : ctx, T : Type, E : T )→ (E ′ : T )× (E = E ′)

plusRewriter1 : rewriterT→ rewriterT
plusRewriter1 recurseφ T E =
holmatch E with

X +Y 7→
let
D

Y ′, H1 : Y = Y ′
E

= recurseφ Y in

let
D

E ′, H2 : X +Y ′ = E ′
E

=
holmatch Y ′ with

zero 7→
¬

X , G1 : X + zero=X
¶

| succ Y ′ 7→
D

succ (X +Y ′), G2 : X + succ Y ′ = succ (X +Y ′)
E

| Y ′ 7→
D

X +Y ′, G3 : X +Y ′ =X +Y ′
E

in
D

E ′, G4 : X +Y = E ′
E

| E 7→
¬

E , G5 : E = E
¶

Code Listing 7.3: VeriML rewriter that simplifies uses of the natural number addition function in logical
terms

We give the code of this rewriter as the plusRewriter1 function in Code Listing 7.3. In order for
rewriters to be able to use existing as well as future rewriters to perform their recursive calls, we write them
in the open recursion style – they receive a function of the same type that corresponds to the “current”
rewriter. As always, we have noted the types of proof hypotheses and obligations in the program text; it
is understood that this information is not part of the actual text but can be reported to the user through
interactive use of the VeriML type checker. Contrary to our practice so far, in this code we have used
only capital letters for the names of logical metavariables. This we do in order to have a clear distinction
between normal logical variables, denoted through lowercase letters, and metavariables.

How do we fill in the missing obligations? For the interesting cases of X +zero=X and X +succ Y ′ =
succ (X +Y ′), we would certainly need to prove the corresponding lemmas. But for the rest of the cases,
the corresponding lemmas would be uninteresting and tedious to state and prove, such as the following
for the G4 : X +Y = E ′ case:

lemma1: ∀x, y, y ′, e ′.y = y ′→ (x + y ′ = e ′)→ x + y = e ′

= λx, y, y ′, e ′, Ha , Hb .conv Hb (subst (z.x + z = e ′) (symm Ha))
G4 = lemma1 X Y Y ′ E ′ H1 H2

An essentially identical alternative would be to directly fill in the proof object for G4 instead of stating
the lemma:

G4 = conv H2 (subst (z.X + z = E ′) (symm H1))

Still, stating and proving such lemmas, or writing proof objects explicitly, soon becomes a hindrance
when writing tactics. A better alternative is to use the congruence closure conversion rule to solve this
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trivial obligation for us directly at the point where it is required. Assuming that the current reqEqual
function includes congruence closure as part of definitional equality, our first attempt to do this would
be:

G4 : x + y = t ′ ≡
let Φ′ = [φ, h1 : Y = Y ′, h2 : X +Y ′ = E ′] in
let
D

H : [Φ′]X +Y = E ′
E

= reqEqual Φ′ (X +Y ) E ′ in
D

[φ]H/[idφ, H1/h1, H2/h2] : [φ]X +Y = E ′
E

The benefit of this approach is more evident when utilizing implicit arguments, since many details can
be inferred and therefore omitted. Here we had to alter the environment passed to requireEqual, which
includes several extra hypotheses. Once the resulting proof has been computed, the hypotheses are sub-
stituted by the actual proofs that we have.

Moving to static proof expressions. This is where using the letstatic construct becomes essential. We
can evaluate the call to reqEqual statically, during stage one interpretation. Thus we will know at the time
that plusRewriter1 is defined whether the call succeeded; also, it will be replaced by a concrete value, so it
will not affect the runtime behavior of each invocation of plusRewriter1 anymore. To do that, we need to
avoid mentioning any of the metavariables that are bound during runtime, like X , Y , and E ′. This is done
by specifying an appropriate environment in the call to reqEqual, similarly to the way we incorporated
the extra knowledge above and substituted it later. Using this approach, we have:

G4 = letstatic 〈H 〉 =
let Φ′′ = [x, y, y ′, e ′ : Nat, h1 : y = y ′, h2 : x + y ′ = e ′] in
requireEqual Φ′′ (x + y) t ′

in
¬

[φ]H/[X /idφ,Y /idφ,Y ′/idφ, E ′/idφ, H1/idφ, H2/idφ]
¶

What we are essentially doing here is replacing the meta-variables by normal logical variables, which
our tactics can deal with. The meta-variable context is “collapsed” into a normal context; proofs are
constructed using tactics in this environment; last, the resulting proofs are transported back into the
desired context by substituting meta-variables for variables. We have explicitly stated the substitutions
in order to distinguish between normal logical variables and meta-variables. In the actual program code,
most of these details can be omitted.

The reason why this transformation needs to be done is that functions in our computational language
can only manipulate logical terms that are open with respect to a normal variables context; not logical
terms that are open with respect to the meta-variables context too. A much more complicated, but also
more flexible alternative to using this “collapsing” trick would be to support metan -variables within our
computational language directly.

It is worth noting that the transformation we describe here is essentially the collapsing transformation
we have detailed in Section 5.2. Therefore this transformation is not always applicable. It is possible only
under the conditions that we describe there – roughly, that all involved contextual terms must depend on
the same variables context and use the identity substitution.

Overall, this approach is entirely similar to proving the auxiliary lemma lemma1 mentioned above,
prior to the tactic definition. The benefit is that by leveraging the type information together with type
inference, we can avoid stating such lemmas explicitly, while retaining the same runtime behavior. We
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natInduction: (φ : ctx, P : [φ]Nat→ Prop)→
(Hz : P 0, Hs : ∀n.P n→ P (succ n))→ (∀n.P n)

instantiate : (φ : ctx, T : Type, P : [φ, x : T ]Prop)→
(H : ∀x.P, a : T )→ (P/[a/x])

plusRewriter1 : rewriterT→ rewriterT
plusRewriter1 recurseφ T E =

holmatch E with
X +Y 7→
let
D

Y ′, H1 : Y = Y ′
E

= recurseφ Y in

let
D

E ′, H2 : X +Y ′ = E ′
E

=
holmatch Y ′ with

zero 7→ 〈X , {{instantiate (natInduction reqEqual reqEqual)X }}
: X + zero=X

¶

| succ Y ′ 7→



succ (X +Y ′),
{{instantiate (natInduction reqEqual reqEqual)X }}

: X + succ Y ′ = succ (X +Y ′)
E

| Y ′ 7→
D

X +Y ′, {{reqEqual}} : X +Y ′ =X +Y ′
E

in
D

E ′, {{reqEqual}} : X +Y = E ′
E

| E 7→
¬

E , {{reqEqual}} : E = E
¶

Code Listing 7.4: VeriML rewriter that simplifies uses of the natural number addition function in logical
terms, with proof obligations filled-in

thus end up with very concise proof expressions to solve proof obligations within tactics, which are
statically validated. We introduce syntactic sugar for binding the result of a static proof expression to a
variable, and then performing a substitution to bring it into the current context, since this is a common
operation.

{{e}} ≡ letstatic 〈H 〉 = e in 〈 [φ]H/σ 〉

More details of how this construct works are presented in Subsection 8.3.1. For the time being, it will
suffice to say that it effectively implements the collapsing transformation for the logical terms involved in
e and also fills in the σ substitution to bring the collapsed proof object back to the required context.

Based on these, the trivial proofs in the above tactic can be filled in using a simple {{reqEqual}} call.
The other two we actually need to prove by induction. We give the full code with the proof obligations
filled in Code Listing 7.4; we use implicit arguments to omit information that is easy to infer through
typing and end up with very concise code.

After we define plusRewriter1, we can register it with the global equivalence checking procedure.
Thus, all later calls to reqEqual will benefit from this simplification. It is then simple to prove commuta-
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tivity for addition:

plusComm : (∀x, y.x + y = y + x)
plusComm = NatInduction reqEqual reqEqual

Based on this proof, we can write a naive rewriter that takes commutativity into account and uses the
hash values of logical terms to avoid infinite loops; similarly we can handle associativity and distributiv-
ity with multiplication. Such rewriters can then be used for a better arithmetic simplification rewriter,
where all the proofs are statically solved through the naive rewriters. The simplifier works by converting
expressions into a list of monomials, sorting the list based on the hash values of the variables, and then
factoring monomials on the same variable. Also, the eufEqual procedure mentioned earlier has all of its
associated proofs automated through static proof expressions, using a naive, potentially non-terminating,
equality rewriter. In this way, we can separate the ‘proving’ part of writing an extension to the conversion
rule – by incorporating into a rewriter with a naive mechanism – from its ‘programming’ part – where we
are free to use sophisticated data structures and not worry about the generated proof obligations. More
details about these can be found in Chapter 9.

Formal statement. Let us return now to the question we asked at the very beginning of this section:
can we statically check proof object expressions that are contained within VeriML functions – that is, that
are open with respect to the extension variable context Ψ? The answer is perhaps obvious: yes, under the
limitations about collapsable terms that we have already seen. We will now state this with more formal
detail.

Let us go back to the structure of proof object expressions, as presented in Section 7.1. We have
defined them as VeriML expressions of the form:

letstatic G1 =
�

reqEqual Φ1 Prop P1 P ′1
�

E
in

· · ·
letstatic Gn =

�

reqEqual Φn Prop Pn P ′n
�

E
in

〈πE 〉

The main limitation to checking such expressions statically comes from having to evaluate the calls to
reqEqual statically: if the logical terms Pi , P ′i involve metavariables, their value will only be known at
runtime. But as we have seen in this chapter, if these logical terms are collapsable, we are still able to
evaluate such calls statically, after the transformation that we described. Therefore we are still able to
check open proof object expressions statically, if we use the special {{·}} construct to evaluate the calls to
reqEqual:

let G1 =
nn
�

reqEqual Φ1 Prop P1 P ′1
�

E

oo

in
· · ·
let Gn =

nn
�

reqEqual Φn Prop Pn P ′n
�

E

oo

in
〈πE 〉

Based on this, we can extend the lemma 7.1.2 to open λHOLC proof objects as well.
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Lemma 7.2.1 (Extension of Lemma 7.1.2) (λHOLC proof object – VeriML proof object expression equiva-
lence)

1.
Ψ; Φ C̀ πC : P collapsable

�

Ψ; Φ C̀ πC : P
�

¹Ψ; Φ C̀ πC : Pº= eπ
Ψ; •; • ` eπ : ([Φ]P) eπ −→

∗
s e ′π

2.
Ψ; •; • ` eπ : ([Φ]P) eπ −→

∗
s eπ′ • ` σΨ :Ψ

e ′π ·σΨ −→
∗ 〈πE 〉 •; Φ ·σΨ È πE : P ·σΨ

Proof. Straightforward by the adaptation of the translation of λHOLC proof object to proof object
expressions suggested above; the feasibility of this adaptation is proved directly through Theorem 5.2.4.
The second part is proved directly by the form of the proof object expressions eπ (a series of let · · · in con-
structs), which based on the semantics of VeriML and its progress theorem always evaluate successfully.
�

Let us describe this lemma in a little bit more detail. The first part of the lemma states that we can
always translate an open (with respect to the extension variables context Ψ) λHOLC proof object to
an open VeriML proof object expression of the same type. Also, that the expression is guaranteed to
successfully evaluate statically into another expression, instead of throwing an exception or going into an
infinite loop. Informally, we can say that the combination of typing and static evaluation yields the same
checking behavior as typing for the original λHOLC proof object. Formally, static evaluation results in
an expression e ′π and not a value; it would not be possible otherwise, since its type contains extension
variables that are only instantiated at runtime. Thus it would still be possible for the expression to fail
to evaluate successfully at runtime, which would destroy the informal property we are claiming. This is
why the second part is needed: under any possible instantiation of the extension variables, the runtime
e ′π expression will evaluate successfully to a valid λHOLE proof object.

Overall this lemma allows us one more way to look at VeriML with the staging, proof erasure and col-
lapsing constructs we have described. First, we can view VeriML as a generic language design VeriML(X),
where X is a typed object language. For example, though we have described VeriML(λHOLE ), an alter-
nate version VeriML(λHOLC ) where λHOLC is used as the logic is easy to imagine. The main VeriML
constructs –dependent abstraction, dependent tuples and dependent pattern matching– allow us to manip-
ulate the typed terms of X in a type-safe way. The lemma above suggests that the combination of staging,
proof erasure and collapsing are the minimal constructs that allow us to retain this genericity at the user
level, despite the a priori choice of λHOLE .

What we mean by this is the following: the lemma above shows that we can embed λHOLC proof ob-
jects within arbitrary VeriML(λHOLE ) expressions and still check them statically, even though λHOLE
does not include an explicit conversion rule at its design time. Furthermore, we have seen how further
extensions to the conversion rule can be checked in entirely the same manner. Therefore, these constructs
allow VeriML(λHOLE ) to effectively appear as VeriML(λHOLE+X ) to the user, where X is the user-defined
conversion rule. Last, user-extensible static checking does not have to be limited to equivalences as we do
in the conversion rule; any other property encodable within λHOLE can be checked in a similar manner
too. Thus the combination of VeriML(λHOLE ) with these three constructs allow the user to treat it as
the language VeriML(λHOLE+X) where X is a user-defined set of properties that is statically checked in
a user-defined manner. Put simply, VeriML can be viewed as a language that allows user-extensible static
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checking.
Of course, the above description is somewhat marred by the existence of the side-condition of col-

lapsable logical terms and therefore does not hold in its full generality. It is a fact that we cannot stat-
ically prove that terms containing meta-variables are βN-equivalent; this would be possible already in
the VeriML(λHOLC ) version of the language. Lifting this side-condition requires further additions to
VeriML, such as substitution variables and meta-meta-variables. The reason is that VeriML would need to
manipulate λHOLC terms that are open not only with respect to the Φ normal variables context, but also
with respect to the Ψ metavariables context, in order to support type-safe manipulation of terms that in-
clude metavariables. For example, our definitional equality tactic would have roughly the following form,
where we have only written the metavariables-matching case and include the context details we usually
omit:

defEqual : (ψ : ctx2, φ : [ψ] ctx1)→
(T : [ψ][φ]Type, t1, t2 : [ψ][φ]T )→
option ([ψ][φ] t1 = t2)

defEqualψφ T t1 t2 = holmatch t1, t2 with
(φ′ : [ψ] ctx1, X : [ψ][φ′]T ′, s , s ′ : [ψ]φ′ Âφ).X /s , X /s ′ 7→
do
D

H : [ψ] s = s ′
E

← defEqualSubstψφ′ φ s s ′

return 〈 eqMeta X H 〉

Though the principles presented in our technical development for VeriML could be used to provide an
account for such extensions, we are not yet aware of a way to hide the considerable extra complexity from
the user. Thus we have left further investigation of how to properly lift the collapsing-related limitation
to future work.

7.3 Programming with dependently-typed data structures

In this section we will see a different application of the static checking of proof expressions that we pre-
sented in the previous section. We will show how the same approach can be used to simplify programming
with dependently-typed data structures in the computational part of VeriML, similar to programming in
Haskell with GADTs [Peyton Jones et al., 2006]. Though this is a tangent to the original application
area that we have in mind for VeriML, namely proof assistant-like scenarios, we will see that in fact the
two areas are closely related. Still, our current VeriML implementation has not been tuned to this usage
scenario, so most of this section should be perceived as a description of an interesting future direction.

First, let us start with a brief review of what dependently-typed programming is: the manipulation
of data structures (or terms) whose type depends somehow on the value of other data structures – that
is, programming with terms whose type depends on other terms. The standard concrete example of such
a data structure is the type of lists of a specific length, usually called vectors in the literature. The type
of a vector depends on a type, representing the type of its elements (similar to polymorphic lists); and on
the value of a natural number as well, representing the length of the vector. Vector values are constrained
through this type so that only vectors of specific length are allowed to have the corresponding type. For
example, the following vector:

[ "hello", "world", "!" ]
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has type vector string 3. We write that the kind of vectors is:

vector : ?→Nat→ ?

We remind the reader that “?” stands for the kind of computational types. The definition of the vector
type looks as follows:

type vector (α : ?) (n : Nat) = nil :: vector α 0
| cons :: α→ vector α n→ vector α (succ n)

We see that the constructor for an empty vector imposes the constraint that its length should be zero; the
case for prefixing a vector with a new element constrains the length of the resulting vector accordingly.

The dependently-typed vector datatype offers increased expressiveness in the type system compared
to the simply-typed list datatype familiar from ML and Haskell. This becomes apparent when considering
functions that manipulate such a datatype. By having the extra length argument, we can specify richer
properties of such functions. For example, we might say that the head and tail functions on vectors
require that the vector be non-empty; that the map function returns a vector of the same length; and that
append returns a vector with the number of elements of both arguments. Formally we would write these
as follows:

head : vector α (succ n)→ vector α n

tail : vector α (succ n)→ vector α n

map : (α→β)→ vector α n→ vectorβ n

append : vector α n→ vector α m→ vector α (n+m)

In the case of head, this allows us to omit the redundant case of the nil vector:

head l =match l with cons hd tl 7→ hd
The compiler can determine that the nil-case is indeed redundant, as vector α (n + 1) could never be
inhabited by an empty vector per definition, and therefore will not issue a warning about incomplete
pattern matching. Furthermore, the richer types allow us to catch more errors statically. For example,
consider the following erroneous version of map:

map f l = match l with
nil 7→ nil

| cons hd tl 7→ let hd′ = f hd in map f tl
In the second case, the user made a typo, forgetting to prefix the resulting list with hd′. Since the resulting
list does not have the expected length, the compiler will issue an error when type-checking this function.

There are a number of languages supporting this style of programming. Some of the languages that pi-
oneered this style are Cayenne [Augustsson, 1999], Dependent ML [Xi and Pfenning, 1999] and Epigram
[McBride, 2005]. Modern dependently-typed languages include Haskell with the generalized abstract
datatypes extension (GADTs) [Peyton Jones et al., 2006], Agda [Norell, 2007] and Idris [Brady, 2011].
Various logics based on Martin-Löf type theory such as CIC as supported by Coq [Barras et al., 2012] and
NuPRL [Constable et al., 1986] support dependently-typed programming as well. Coq includes a surface
language specifically for this style of programming, referred to as Russell [Sozeau, 2006].

VeriML does fall under the definition of dependently-typed programming: for example, in a depen-
dent tuple (P, π), the type of the proof object π depends on the (runtime) value of P . In this section we
will show that it can indeed encode types such as vector exactly as presented above and the advantages it
offers over such languages.
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Behind the scenes. Let us now dig deeper into what is happening behind the scenes in the type checker
of a compiler, when manipulating dependently-typed data structures such as vector. We will start with
the elimination form, namely pattern matching. Consider the following piece of code:

append l1 l2 = match l1 with
nil 7→ · · ·
cons hd t l 7→ · · ·

Just as in the simply-typed version of lists, in each branch we learn the top-most constructor used. But
in the dependently-typed version, we learn more information: namely, that the length of the list (the
dependent argument n) is zero in the first case; and that it can be written as n = succ n′ for suitable n′ in
the second case.

This information might be crucial for further typing decisions. Typing imposes additional constraints
on the length of resulting lists, as the type of the example append functio does. To show that these
constraints are indeed satisfied, the extra information coming from each pattern matching branch needs
to be taken into account. Similar information might come from function calls yielding dependent data
structures. These are more evident when we consider the full code of the append function:

append : vector α n→ vector α m→ vector α (n+m)
append l1 l2 = match l1 with

nil 7→ l2
| cons hd t l 7→ let t l ′ = append t l l2 in

cons hd t l ′

Let’s annotate this code with all the information coming from typing. We drop the polymorphic type
for presentation purposes.

append (l1 : vector n ) (l2 : vector m ) =
match l1 with

nil where n = 0 7→
(l2 : vector m )

| cons where n = succ n′ hd (t l : vector n′ ) 7→
let (t l ′ : vector (n′+m) ) = append t l l2 in

(cons hd t l ′ : vector (succ (n′+m)) )

This information can directly be figured out through the type inference algorithm based on the
already-available information about the dependent terms, using adaptations of unification-based mech-
anisms such as Algorithm W [Damas and Milner, 1982]. Yet there is one piece missing from deeming
the above code well-typed: we must ensure that the type of the returned lists in both branches indeed
satisfies the desired type, as specified in the type signature of append. Namely, in the first branch we need
to reconcile the type vector m with the expected type vector (n + m); similarly for the second branch,
vector (succ (n′+m)) needs to be reconciled with vector (n+m). What the type checker essentially needs
to do is prove that the two types are equal. It needs to make sure that m = n+m and succ (n′+m) = n+m
taking into account the extra available information about n in both cases.

Though these two cases might seem straightforward conclusions of the available information, it is
important to realize that the proof obligations that might be generated in such dependently-typed pro-
grams are arbitrarily complex. It is important for users to be able to specify their own functions such as
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append : (n : Nat, l1 : vector n, m : Nat, l2 : vector m)→
(r : Nat)× vector r × (r = n+m)

append n (l1 : vector n ) m (l2 : vector m ) =
match l1 with

nil(H1 : n = 0 ) 7→
(m, l2, G1 : m = n+m )

| cons(n′, hd , t l : vector n′ , H2 : n = succ n′ ) 7→
let (r ′, t l ′ : vector r ′ , H3 : r ′ = n′+m ) = append t l l2 in
(n, cons hd t l ′, G2 : succ r ′ = n+m )

Code Listing 7.5: Version of vector append with explicit proofs

+ and predicates other than the implicit equality constraints shown above, in order to be able to capture
precisely the properties that they want the dependent data structures to have. Taking these into account,
it is evident that proving the generated proof obligations involves proving theorems about functions such
as + and predicates such as less-than. Thus discharging the proof obligations automatically is undecidable
in the general case, if we allow a rich enough set of properties to be captured at the type level.

In summary, we might say that positive occurrences of dependent terms, such as in the body of a func-
tion or of a let declaration, are associated with proof obligations; negative occurrences, such as in a pattern
matching branch or in the binding part of a let declaration, yield proof hypotheses; and that type-checking of
dependent terms is intermixed with theorem proving to discharge the generated proof obligations3. The
astute reader familiar with ML-style languages might note that such a view is even true for polymorphic
types in the presence of existential types (e.g. through the ML module system). Yet in that case we are
only dealing with syntactic equality, rendering a decidable decision procedure for the theorem proving
part feasible.

Explicit version. Based on the above discussion, we can provide an intermediate representation of
dependently-typed programs where the proof-related parts are explicitly evident. For example, the im-
plicit equality constraints in the type of vector’s constructors and in the type of append can be viewed
instead as requiring explicit proof terms for the equalities. Such a representation was first presented by
Xi et al. [2003] in order to reconcile the GADT-style definitions with ML-style definitions of data types:
instead of explicitly assigning a type to each constructor, each constructor can be presented as a list of
components, some of which are explicit equality constraints. Still, recent work [e.g. Goguen et al., 2006,
Sulzmann et al., 2007, Schrijvers et al., 2009, Vytiniotis et al., 2012] suggests that this representation is
more fundamental; the current version of the GHC compiler for Haskell actually uses the explicit version
and even keeps the equality proofs in subsequent intermediate languages as it is useful for compilation
purposes.

Based on the above, we give the explicit version of the definition of vector becomes:

3. This summary assumes let-normal form so that hypotheses are not missed: for example, writing cons hd (append t l l2) in
the second branch of the append function would make us lose the information about the length of the returned list. Transforming
this into let-normal form allows us to capture the extra information.
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type vector α n = nil of (n = 0)
| cons of (n′ : Nat)×α× vector α n′× (n = succ n′)

Similarly, the explicit version of append assigns names to hypotheses and notes the types of obligations
that need to be proved; we present it in Code Listing 7.5. It is quite similar to our fully-annotated version
from above. In this code fragment we have left the proof obligations G1 and G2 unspecified; we have only
given their types. In the real version of the code they would need to be replaced by sufficient evidence to
show that the proof obligations indeed hold.

We have on purpose used syntax close to the one we use in VeriML. In fact, the above two code frag-
ments can be directly programmed within VeriML, showing that VeriML can be used for the style of
dependently-typed programming supported by languages such as Haskell at its computational level. Do-
main objects of λHOL such as natural numbers can be used as dependent arguments (also called dependent
indexes); λHOL propositions can be used to ascribe constraints to such arguments; and λHOL proof ob-
jects can be used as evidence for the discharging of proof obligations. All of the involved λHOL terms are
closed and the contextual terms support is not required for this style of programming. Note that while the
dependent indexes are at the level of the logical language, dependent types such as vector are part of the
ML-style computational level of VeriML. The full expressiveness of λHOL is available both for defining
the types of dependent indexes and for defining their required properties.

To show that the above encoding of the dependent vector datatype does not need any new features in
VeriML, let us give its fully explicit version with no syntactic sugar, following the language definition in
Chapter 6:

vector = λα : ?.µt : ([]Nat)→ ?.λN : []Nat.
([]N = zero)+((N ′ : []Nat)×α× t N ′× ([]N = succ N ′))

One question remains: how do we go from the simply-typed presentation of dependent programs
as shown above to the explicit version presented here? By comparison of the two versions of the code
of append we identify two primary difficulties, both related to positive occurrences of dependent terms:
first, we need to ‘invent’ instantiations for the indexes – e.g. for the length of the vectors returned; second,
we need to discharge the proof obligations. As suggested above, the instantiations for the indexes can
be handled through type inferrence using a unification-based algorithm, assuming that sufficient typing
annotations are available from the context; though limiting the number of required annotations is an
interesting research problem in itself [e.g. Peyton Jones et al., 2006], we will not be further concerned
with this. The latter problem, discharging proof obligations such as G1 and G2 in append, amounts to
general theorem proving as discussed above and is therefore undecidable. We will now focus on approaches
to handling this problem.

Options for discharging obligations. The first option we have with respect to discharging obligations
is to restrict their form, so that the problem becomes decidable. For example, Dependent ML restricts
indices to be natural numbers and the obligations to be linear equalities. The type-checker might then
employ a decision procedure for deciding the validity of all the obligations. If the decision procedure is
proof-producing, such calls are viewed as part of elaboration of the surface-level program into the explicit
version, where obligations such as G1 and G2 are actually filled in with the proof returned through the
decision procedure. The benefit of this choice is that it requires no special user input in order to discharge
obligations; the obvious downside is that the expressibility of the dependent types is severely limited. If we
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take the view that dependently-typed programming is really about being able to define data structures with
user-defined invariants and functions with user-defined pre- and post-conditions, it is absolutely critical
that we have an expressive logic in order to describe them; this is something that this option entirely
precludes.

A second option is to have the user give full, explicit evidence that the proof obligations hold by pro-
viding a suitable proof object. This is the other end of the spectrum: it offers no automation with respect
to discharging obligations, yet it offers maximum extensibility – programs with arbitrarily complex proof
obligations can be deemed well-typed, as long as proofs exist (and the user can somehow discover it). The
proof objects can be rather large even for simple proof obligations, therefore this choice is clearly not suit-
able for a surface language. The maximum expressivity and the ease of type-checking makes this choice
well-suited for compiler intermediate languages; indeed, GHC uses this form as mentioned above.

In practice, most dependently-typed languages offer a mix between these two choices, where some
obligations are solved directly through some built-in decision procedures and others require user input,
in the form of explicit proofs or auxiliary lemmas. For example, the type class resolution mechanism
offered by Haskell can be viewed as a decision procedure for Prolog-style obligations (first-order minimal
logic with uninterpreted functions); the conversion rule in languages such as CIC or Agda, as noted in
Section 7.1, can be viewed as a decision procedure forβι-equality; languages with an extended conversion
rule such as CoqMT also include decision procedures for arithmetic and other first-order theories; and
last, dependent pattern matching as supported by languages such as Agda or Idris can be viewed as pro-
viding a further decision procedure over heterogeneous equality. All these languages also provide ways to
give an explicit proof object in order to discharge specific proof obligations arising in dependently-typed
programs. Still, the automation offered in these languages falls short of user expectations in many cases:
for example, while the above version of append would be automatically found to be well-typed in all these
languages, the version where the arguments are flipped is only well-typed in CoqMT and requires explicit
proof in others. This fact is especially true as the properties specified for dependent indices become more
complex.

Yet another choice is to use the full power of a proof assistant in order to discharge obligations. This
choice is primarily offered by the Russell language, which is a surface language in Coq specifically for writ-
ing dependently-typed programs. It allows the user to write the simply-typed version of such programs, as
we did before for append; during elaboration, the generated proof obligations are presented to the user as
goals; after the user has solved all the goals, the fully explicit dependently-typed version is emitted. Obli-
gations are first attempted to be solved through a default automation (semi-)decision procedure. They are
only presented to the user if the decision procedure fails to solve them, in which case the user can develop
a suitable proof script in the interactive style offered by Coq. We consider this approach to be the current
state-of-the-art: it offers a considerable amount of automation; it is maximally expressive, as the user is
always free to provide a proof script; it separates the programming part clearly from the proof-related
part; and, most importantly, the amount of automation offered is user-extensible. This last point is true
because the user can specify their own more sophisticated automation decision procedure to be used as
the ‘default’ one.

Our main point in this section is that VeriML offers this same choice, yet with a significant improve-
ment: proof obligations can be discharged through statically-evaluated calls to decision procedures; but
the decision procedures themselves can be programmed within the same language. First, we can use the same
mechanism used in the previous section for statically discharging obligations. Consider the following
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version of append within VeriML:

append : (n : Nat, l1 : vector n, m : Nat, l2 : vector m)→
(r : Nat)× vector r × (r = n+m)

append n (l1 : vector n ) m (l2 : vector m ) =
match l1 with

nil(H1 : n = 0 ) 7→
(m, l2, {{Auto}} : (m = n+m) )

| cons(n′, hd , t l : vector n′ , H2 : n = succ n′ ) 7→
let (r ′, t l ′ : vector r ′ , H3 : r ′ = n′+m ) = append t l l2 in

(n, cons hd t l ′, {{Auto}} : (succ r ′ = n+m) )

Obligations are discharged through static calls to the Auto function of the type

Auto : (φ : ctx, P : Prop)→ (P )

where both φ and P are implicit arguments. The collapsing transformation used in the previous section
turns the extra proof hypotheses H1 through H3 into elements of the φ context that Auto is called with.
Thus the static calls to the function can take this information into account, even though the actual proofs
of these hypotheses will only be available at runtime. Since discharging happens during stage-one evalu-
ation, we will know statically, at the definition time of the append function whether the obligations are
successfully discharged or not.

The departure from the Russell approach is subtle: the Auto function itself is written within the same
programming language; whereas the tactics used in Russell are written through other languages provided
by Coq. In fact, Auto is a dependently-typed function in itself. Therefore, some of its proof obligations
can be solved statically and automatically through another function and so on. Another way to view this
is that proof obligations generated during VeriML type-checking are discharged through proof functions that
are written in VeriML themselves. Using one conversion rule to help us solve the obligations of another, as
shown in the previous section, is one example where this idea is put to practice.

VeriML does not yet offer a surface language for dependently-typed programming similar to Russell,
so that surface programs can be written in a simply-typed style. Thus for the time being developing such
programs is tedious. Still, such an extension is conceptually simple and could be provided through typed
syntactic sugar. As suggested above, positive occurrences of dependent data types can be replaced by suit-
able dependent tuples: indices, such as the length of the list in the vector example, are left as implicit
arguments to be inferred by type checking; and proof obligations are discharged through a static call to
a default automation tactic. Negative occurrences are replaced by fully unpacking the dependent tuples
and assigning unique names to their components, so that they can be used in the rest of the program. Fur-
thermore, the user can be asked to explicitly provide a proof expression if one of the static tactic calls fail.
Based on this, type-checking a dependently-typed program has a fixed part (using type inference to infer
missing indices) and a user-extensible part (using the automation tactic statically). They respectively cor-
respond to fixed type-checking and user-extensible static evaluation, resembling the case of the extensible
conversion rule.

Overall the VeriML approach to dependently-typed programming described here leads to a form of
extensible type checking: dependent types offer users a way to specify rich properties about data structures
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and functions; and the VeriML constructs offer a way to specify how to statically check whether these
properties hold using a rich programming model. We believe that exploiting this possibility is a promising
future research direction.

Further considerations.

We will now draw attention to further issues that have to do with dependently-typed programming in
VeriML and other languages.

Phase distinction. Throughout the above discussion we have made a silent assumption: the notion of
indices that data types can depend on is distinct from arbitrary terms of the computational language;
furthermore, some logic for describing such properties is available. Still, our initial description of de-
pendent types suggests that a type can depend on an arbitrary term. This style of full dependent types
poses a number of problems: e.g. what happens if the term contains a non-terminating function appli-
cation, or a side-effecting operation? Non-termination would directly render type checking undecidable,
as the compiler could be stuck for arbitrarily long trying to prove two terms equal. Side-effects would
present other difficulties; for example, type checking would have to proceed in a well-specified order so
that the threading order of side-effects is known to the user. Therefore all dependently-typed languages
support restricted forms of dependent types. The only exception is Cayenne, one of the earliest proposals
of dependently-typed languages, which was plagued by the problems suggested above. Languages such as
Dependent ML and Haskell with GADTs choose to only allow dependency on a separate class of terms
– the indexes as used throughout our discussion. Languages that can be used as type-theoretic logics (Epi-
gram, Agda, Idris, Coq etc.) offer an infinite, stratified tower of universes, where values in one universe
are typed through values in the next universe and dependency is only allowed from higher universes into
lower ones. They also restrict computation to be pure.

The main idea behind dependent data types in languages such as Dependent ML and Haskell with
GADTs is to allow other kinds of static data other than types; it is exactly these static data that are referred
to as indexes. The natural number n representing the length of a vector in the example given above is such
an index; its classifier Nat is now viewed as a kind instead of as a type of a runtime value. Indexes exist
purely for type-checking purposes and can be erased prior to runtime. We thus understand that this style
of dependently-typed programming preserves the phase distinction property: indices, together with the
proofs about them, do not influence the runtime behavior of dependently-typed programs and can thus
be erased prior to runtime. This is the same property that holds for polymorphic type abstraction and
instantiation in System F: both forms can be erased.

In languages with a tower of universes we might say that a generalization of this property holds:
evaluating a term of universe n is independent from all terms of higher universes contained in it; therefore
these can be erased prior to evaluation. This is the intuition behind including erasure in definitional
equality (as done, for example, in [Miquel, 2001]); doing program extraction from CIC terms [Paulin-
Mohring, 1989, Paulin-Mohring and Werner, 1993]; and is also of central importance in the optimizations
that Idris performs to yield efficient executable code from dependently-typed programs [Brady et al., 2004,
Brady, 2005].

VeriML does not support such a phase distinction, as the indices are λHOL terms which might be pat-
tern matched against and therefore influence runtime. Phase distinction holds for the proof objects used
to discharge proof obligations though; this, in fact, is another way to describe the proof erasure property
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of VeriML. Yet, as the obligations are discharged during static evaluation, the indices are not actually pat-
tern matched against: indices are metavariables, whose instantiations are only known at runtime, but the
actual proof obligations that we discharge are collapsed versions, and so the metavariables are not part of
them. The indices are only used to bring the proofs resulting from static evaluation into the appropriate
context. Since the proofs themselves can be erased, it makes sense to also allow the indices to be erased.

This is possible by adding special support to the type system, in order to mark certain λHOL terms as
erasable. The type system then checks that those terms are not pattern matched upon, making sure that
it is safe to erase them prior to runtime. It is interesting to note that this special typing support can take
the form of marking dependent λHOL abstractions or tuples as static where the associated λHOL terms
are only allowed to be used during stage-one evaluation. For example, the type of append could be:

append : (n :s Nat, m :s Nat)→ vector n→ vector m→ (r :s Nat)× vector r × (r = n+m)s

This reveals a relationship betwen staged programming and dependently-typed programming (as suggested
for example in Sheard [2004]) which warrants further investigation.

Handling impossible branches. We mentioned earlier that the additional typing information might
allow us to omit certain pattern matching cases, yet still cover all possible ones. For example, the code of
the head function for lists is:

head : vector (succ n)→ vector n
head l = match l with cons hd t l 7→ hd

The compiler can indeed discover that the omitted nil branch is impossible, as it would mean that the false
proposition succ n = 0 is provable based on the available typing information. Thus this check employs
theorem proving as well, requiring us to show that the omitted branches lead to contradictions.

We need an additional construct in order to support such impossible branches in VeriML. Its typing
rule is as follows:

Ψ ` t : ([]False)
Ψ; M; Γ ` absurd t : τ

This construct turns a closed proof of the contradiction into a value of any type. It can be used in
impossible branches in order to return a term of the required type. The required proof can be handled as
above, through static proof expressions:

head l = match l with cons hd t l 7→ hd
| nil 7→ absurd {{Auto}}

The semantics of the construct are interesting: no operational semantics rule is added at all for the
new construct! In order for the progress theorem to continue to hold we must make sure that a closed
absurd t expression will never be encountered. Equivalently, we must make sure that no closed λHOL
proof object for the proposition False exists. This is exactly the statement of soundness for λHOL. We
therefore understand that the addition of the absurd construct requires soundness of λHOL to hold; in
fact, it is the only construct we have presented that requires so.
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Chapter 8

Prototype implementation

We have so far presented the VeriML language design from a formal standpoint. In this chapter we will
present how VeriML can be practically implemented. Towards that effect I have completed a prototype
implementation of VeriML that includes all the features we have seen so far as well as a number of other
features that are practically essential, such as a type inference mechanism. The prototype is programmed
in the OCaml programming language [Leroy et al., 2010] and consists of about 10k lines of code. It is
freely available from http://www.cs.yale.edu/homes/stampoulis/.

8.1 Overview

The VeriML implementation can be understood as a series of components that roughly correspond to
the phases that an input VeriML expression goes through: parsing; syntactic elaboration; type inferenc-
ing; type checking; and evaluation. We give an example of these phases in Figure 8.1. Parsing turns the
input text of a VeriML expression into a concrete syntax tree; syntactic elaboration performs syntax-level
transformations such as expansion of syntactic sugar and annotation of named variables with their corre-
sponding hybrid deBruijn variables, yielding an abstract syntax tree. Type inferencing attempts to fill in
missing parts of VeriML expressions such as implicit arguments and type annotations in constructs that
need them (e.g. 〈 T , e 〉 and holmatch). Type checking then validates the completed expressions according
to the VeriML typing rules. This is a redundant phase as type inferencing works according to the same
typing rules; yet it ensures that the more complicated type inferencing mechanism did not introduce or
admit any ill-typed terms.

The last phase is evaluation of VeriML expressions based on the operational semantics. We have im-
plemented two separate evaluation mechanisms for VeriML: an interpreter, written as a recursive OCaml
function (from VeriML ASTs to VeriML ASTs); and a translator, which translates well-typed VeriML ex-
pressions to OCaml expressions (a function from VeriML ASTs to OCaml ASTs). The resulting OCaml
expressions can then be treated as normal OCaml programs and compiled using the normal OCaml com-
piler. We will only cover the latter approach as we have found evaluation through translation to OCaml
to be at least one order of magnitude more efficient than direct interpretation.

Our prototype also includes an implementation of the λHOL logic. Since terms of the λHOL logic
are part of the VeriML expressions, the above computational components need to make calls to the corre-
sponding logical components – for example, the VeriML expression parser calls the λHOL parser to parse
logical terms. Our implementation of the λHOL logic is thus structured into components that perform
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Input VeriML text:
fun phi T t1 t2 => match isEqual _ _ t1 t2 with ...

Parsing
��

Concrete syntax tree:
λphi.λT.λt1.λt2.sumcase(isEqual _ _ t1 t2, · · · , · · · )

Syntactic elaboration
��

Abstract syntax tree:
λphi : _.λT : _.λt1 : _.λt2 : _.sumcase(isEqual _ _ B1 B0, · · · , · · · )

Type inference
��

Fully-explicit abstract syntax tree:
λphi : ctx.λT : [B0]Type.λt1 : [B1]B0.λt2 : [B2]B0.
sumcase(isEqual B3 B2 B1 B0, · · · , · · · )

Type checking
��

Well-typed abstract syntax tree:
λphi : ctx.λT : [B0]Type.λt1 : [B1]B0.λt2 : [B2]B0.
sumcase(isEqual B3 B2 B1 B0, · · · , · · · )

Translation to OCaml
��

Output OCaml AST:
fun (phi : Logic.ctx) (T t1 t2: Logic.term) =>

match isEqual phi T t1 t2 with ...

Figure 8.1: Components of the VeriML implementation
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parsing, syntactic elaboration, type inferencing and type checking for logical terms, following the struc-
ture of the computational language implementation. Last, the translation of logical terms into OCaml
ASTs is done by reusing the λHOL implementation. The resulting OCaml code thus needs to be linked
with (part of) the λHOL implementation.

In the rest, we will describe each component in more detail and also present further features of the proto-
type.

8.2 Logic implementation

The core of our implementation of λHOL that includes parsing, syntactic elaboration and typing consists
of about 1.5k lines of code. It follows the presentation of the logic given in Section 4.2. The relevant files
in our prototype are:

syntax_trans_logic.ml Parsing for λHOL terms
logic_cst.ml Concrete syntax trees; syntactic elaboration (CST to AST con-

version)
logic_ast.ml Abstract syntax trees and syntactic operations
logic_core.ml Core auxiliary logic operations
logic_typing.ml λHOL type checking

Concrete syntax. Parsing is implemented through Camlp4 grammar extensions; we present examples
of the concrete syntax in Table 8.1. Our parser emits concrete syntax trees: these are values of a datatype
that corresponds to λHOL terms at a level close to the user input. For example, concrete syntax trees
use named variables, representing the term λx : Nat .x as LLam("x", Var("Nat"), Var("x")). Also
they allow a number of syntactic conveniences, such as being able to refer to a metavariable V without
providing an explicit substitution σ ; referring to both normal variables v and meta-variables V without
distinguishing between the two; and also maintaining and referring to an “ambient context” denoted as
@ in order to simplify writing contextual terms – e.g. in order to write [φ, x : Nat] x = x as @x = x
when the ambient context has already been established as φ, x : Nat. We will see more details of this
latter feature in Subsection 8.3.1. We convert concrete syntax trees to abstract syntax trees which follow
the λHOL grammar given in Section 4.2. The conversion keeps track of the available named variables
and metavariables at each point and chooses the right kind of variable (free or bound normal variable,
free or bound metavariable or constant variable) based on this information. We chose to have concrete
syntax trees as an intermediate representation between parsing and abstract syntax, so that managing the
information about the variables does not conflate the parsing procedure.

Abstract syntax. Abstract syntax trees as defined in our implementation follow closely the grammar of
λHOL given in Section 4.2. We depart from that grammar in two ways: first, by allowing holes or inferred
terms – placeholders for terms to be filled in by type inference, described in detail in Subsection 8.2.1; and
second, by supporting constant schemata c/σ instead of simple constants c following our presentation in
Section 4.3.

Furthermore, we allow constant definitions in order to abbreviate terms through a constant. These
constants are not unfolded to their corresponding terms under any circumstances in the rest of the logic
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Concrete syntax Abstract syntax

fun x : t => t’ λ(t ).t ′

forall x : t, t’ Π(t ).t ′

t -> t’ Π(t ).t ′

t1 t2 t1 t2
t1 = t2 t1= t2
x vL or bi or X /σ or c/σ
x/[σ] X /σ or c/σ
id_phi, t1, t2, ..., tn idφ, t1, t2, · · · , tn
[phi, x : Nat].x = x [φ, Nat]v|φ| = v|φ|
@x = x [φ, Nat]v|φ| = v|φ| when @=φ, Nat

Table 8.1: Concrete syntax for λHOL terms

implementation. Unfolding is entirely user-controlled, through the unfold axiom that reflects the equality
between a constant and its definition. This treatment of unfolding follows the explicit equality approach
that we presented in Section 7.1. We present the formal details of this extension to constant signatures Σ
in Figure 8.2.

Syntactic operations. The syntactic operations presented in Section 4.2, such as freshening d·e, binding
b·c and substitution application · · σ are part of the logic implementation, as functions that operate on
abstract syntax trees. These operations are defined over various datatypes – terms, substitutions, contexts,
etc. Furthermore, other kinds of variables such as metavariables, context variables and even computa-
tional variables are represented in the implementation through hybrid deBruijn variables as well, as this
representation makes for code that is easier to work with than deBruijn indices. In order to reuse the code
of these basic operations, we have implemented them as higher-order functions. They expect a traversal
function over the specific datatype that they work on which keeps track of the free and bound variables
at each subterm. These generic operations are defined in the binding.ml file of the prototype implemen-
tation.

Type checking. The typing rules for λHOL are all syntax-directed: every λHOL term constructor cor-
responds exactly to a single typing rule. Thus we do not need a separate formulation of algorithmic typing
rules; the typing rules given already suggest a simple type checking algorithm for λHOL. This simplicity
is indeed reflected in our implementation: the main procedure that implements type checking of λHOL
abstract syntax trees is just under 300 lines of OCaml code. As a side-effect, the type checker fills in the
typing annotations that pattern matching requires and thus yields annotated λHOL terms, as presented
in Section 5.1. For example, the Π-type former is annoted with the sort of the domain, yielding terms of
the form Πs (t ).t

′.
An important function that type checking relies on is lterm_equal which compares two logical terms

up to definitional equality, which in the case of λHOL is simply syntactic equality. It is used often during
type checking to check whether a type matches an expected one – e.g. we use it in the implementation
of ΠELIM rule for t1 t2, where t1 : Π(t ).t ′ in order to check whether the type of t2 matches the domain
of the function type t . This equality checking function is one of the main parts of the implementation
that would require changes in order to support a fixed conversion rule in the logic, yielding λHOLC ; as
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Syntax:

(Signature) Σ ::= · · · | Σ, c : [Φ] t ′ = [Φ] t
(Logical terms) t ::= · · · | unfold c/σ

`Σwf

`Σwf •; • `Σ [Φ] t ′ : [Φ] s s 6= Type′ •; • `Σ [Φ] t : [Φ] t ′ (c : _) 6∈Σ
`Σ, c : [Φ] t ′ = [Φ] t wf

SIGCONSTDEF

Φ `Σ t : t ′

the rule CONSTSCHEMA is replaced by:

c : [Φ′] t ′ ∈Σ or c : [Φ′] t ′ = _ ∈Σ Ψ; Φ ` σ : Φ′

Ψ; Φ `Σ c/σ : t ′ ·σ
CONSTSCHEMA

c : [Φ′] t ′ = [Φ′] t ∈Σ Ψ; Φ ` σ : Φ′

Ψ; Φ ` unfold c/σ : c/σ = t ·σ
EQUNFOLD

Figure 8.2: Extension to λHOL signatures with definitions: Syntax and typing

mentioned in Section 7.1, these changes become instead part of the standard rewriter and equality checker
programmed in VeriML and do not need to be trusted.

8.2.1 Type inference for logical terms

One of the important additions in our implementation of λHOL compared to its formal description is
allowing terms that include holes or inference variables – missing subterms that are filled in based on infor-
mation from the context. This is an essential practical feature for writing logical terms, as the typed nature
of λHOL results in many redundant occurrences of simple-to-infer terms. For example, the constructor
for logical conjunction has the type:

andI : ∀P,Q : Prop, P →Q→ P ∧Q

The two first arguments are redundant, since the type of the second two arguments (the proof objects
proving P and Q) uniquely determine what the propositions P and Q are. Given proofs π1 and π2, we
can use inference variables denoted as ? to use the above constructor:

andI ? ?π1 π2

Another example is using the elimination principle for natural numbers of type:

elimNat : [T : Type]T → (Nat→ T → T )→Nat→ T

We can use this to write the addition function, as follows:

plus= λx :?.λy :?.elimNat/[?] y (λp :?.λr :?.succ r ) x
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or more succinctly, using syntactic sugar for functions and use of constants, as:

plus= λx.λy.elimNat y (λp.λr.succ r ) x

Intuitively, we can view inference variables as unknowns for whom typing generates a set of con-
straints; we instantiate the inference variables so that the constraints are satisfied, if possible. In the case of
λHOL, the constraints are requirements that the inference variables be syntactically equal to some other
terms. For example consider the following typing derivation:

· · ·

Ψ; Φ, x :?1 ` t1 : t → t ′
(Φ, ?1).x =?1

Ψ; Φ, x :?1 ` x : t
VAR

Ψ; Φ, x :?1 ` t1 x : t ′
ΠELIM

Ψ; Φ ` (λx :?1.t1 x) :?1→ t ′
ΠINTRO

From the application of the VAR typing rule the constraint ?1 ≡ t follows directly. More complicated
constraints are also common, if we take into account the fact that our typing rules work involve operations
such as freshening, binding and also application of substitutions. For example, in the following typing
derivation we use a non-identity substitution with a metavariable:

· · ·

(H : [Φ′] ?1) ∈Ψ

Ψ; Φ `H/[X ,Y ] :?1 · (X /a, Y /b )
METAVAR

Ψ; f : (X = Y )→ (Y =X ) ` f H/[X ,Y ] : Y =X
ΠELIM

where

Ψ=φ : ctx, X : [φ]Nat, Y : [φ]Nat, H : [a : Nat, b : Nat] ?1

resulting in the following constraint:

?1 · (X /a, Y /b )≡ (X = Y )

which can be solved for

?1 ≡ (a = b )

These equality constraints are not explicit in our formulation of the typing rules, yet an alternative
presentation of the same typing rules with explicit constraints is possible, following the approach of Pot-
tier and Rémy [2005]. Intuitively, the main idea is to replace cases where a type of a specific form is
expected either in the premises or consequences of typing rules, with an appropriate constraint. The
constraints might introduce further inference variables. For example, the typing rule ΠELIM can be for-
mulated instead as:

Ψ; Φ ` t1 :?1 Ψ; Φ ` t2 :?2
?1 ≡Π(?3).?4 ?2 ≡?3 ?r ≡ d?4e · (idΦ, t2)

Ψ; Φ ` t1 t2 :?r

ΠELIM-INFER

We can view this as replacing the variables we use at the meta-level (the variables that we implicitly
quantify over, used for writing down the typing rules as mathematical definitions), with the concrete
notion of inference variables. We have implemented a modified type checking algorithm in the file
logic_typinf.ml which works using rules of this form.
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The presence of explicit substitutions as well as the fact that the constraints might equate inference
variables with terms that contain further inference variables renders the problem of solving these con-
straints equivalent to higher-order unification. Thus, solving the constraint set generated by typing deriva-
tions in the general case is undecidable. Our implementation does not handle the general case, aiming to
solve the most frequent cases efficiently. Towards that effect, it solves constraints eagerly, as soon as they
are generated, rather than running typing to completion and having a post-hoc phase of constraint solving.

Implementation details. The key point of our implementation that enables support for inference vari-
ables and the type inferencing algorithm is having the procedure lterm_equal that checks equality be-
tween terms be a unification procedure instead of a simple syntactic comparison. When an uninstantiated
inference variable is compared to a term, the variable is instantiated accordingly so that the comparison is
successful. The type inference algorithm thus uses lterm_equal in order to generate and solve constraints
simultaneously as mentioned above.

We implement inference variables as mutable references of option type; they are initially empty and
get assigned to a term when instantiated. Syntactic operations such as freshening, binding and substitution
application cannot be applied to uninstantiated variables. Instead we record them into a suspension – a
function gathering their effects so that they get applied once the inference variable is instantiated. Thus
we represent inference variables as a pair:

(?n , f )

where ?n is understood as the mutable reference part and f as the composition of the applied syntactic
operations. Thus the constraint ?1 · (X /a, Y /b ) ≡ (X = Y ) given as an example above, will instead by
represented and solved by an equality checking call of the form:

lterm_equal (?1, f ) (X = Y )

where the suspension f is defined as f =−·(X /a, Y /b ). Different occurrences of the same inference vari-
able – arising, for example, from an application like t1 ?2 where t1 :Π(t ).t ′ and t ′ has multiple occurrences
of the bound variable b0 – share the reference part but might have a different suspension, corresponding
to the point that they are used. Because of the use of mutable references, all occurrences of the same
inference variable get instantiated at the same time.

The main subtlety of instantiating inference variables is exactly the presence of suspensions. In the
case where we need to unify an inference variable with a term

(?n , f ) = t

we cannot simply set ?n = t : even if we ignore the suspension f , further uses of the same inference variable
with a different suspension f ′ will not have the intended value. The reason is that t is the result of some
applications of syntactic operations as well:

(?n , f ) = t where t = f (t ′′)
(?n , f ′) = t ′ where t ′ = f ′(t ′′)

Instead of unifying ?n with t , we should unify it with t ′′; applying the suspensions as first intended will
result in the right value in both cases. In order to do this, we also maintain an inverse suspension f −1 as
part of our representation of inference variables, leading to triples of the form:

(?n , f , f −1)
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where f ◦ f −1 = id. Instantiating ?n with f −1(t ) yields the desired result in both occurrences of the
variable.

Keeping in mind that f is a composition of syntactic operations, e.g. f = d−e ◦ (− ·σ), we maintain
the inverse suspension by viewing it as a composition of the inverse syntactic operations, e.g. f −1 =
(− ·σ−1) · d−e. In the case of freshening and binding, these inverse operations are trivial since d·e= b·c−1.
Yet in the case of applying a substitution σ , the case that an inverse substitution σ−1 exists is but a
special case – essentially, when σ is a renaming of free variables – so we cannot always set f −1 = (− ·
σ−1). In the general case, σ might instantiate variables with specific terms. The inverse operation is then
the application of a generalized notion of substitutions σG where arbitrary terms – not only variables
– can be substituted for other terms. In our implementation, unification does not handle such cases in
full generality. We only handle the case where the applied substitutions are renamings between normal
variables and meta-variables. This case is especially useful for implementing static proof expressions as
presented in Section 7.2, which yield constraints of the form:

?1 · (X /a, Y /b )≡ (X = Y )

as seen above, where X and Y are metavariables and a and b are normal variables. In this case, our
representation of inference variables yields:

(?1, f = (− ·σ), f −1 = (− ·σ−1
G ))≡ (X = Y )

with σ = (X /a, Y /b ) and σ−1
G = (a/X , b/Y ), which leads to

?1 ≡ f −1(X = Y )≡ (a = b )

as desired.
The implementation of these inference variables forms the main challenge in supporting type infer-

ence for logical terms. The actual type inference algorithm mimics the original type checking algorithm
closely. The main departure is that it exclusively relies on the equality checking/unification procedure
lterm_equal to impose constraints on types, even in cases where the original type checker uses pattern
matching on the return type. An example is checking function application, where instead of code such as:

App(t1, t2) |-> let t1_t = type_of t1 in
let t2_t = type_of t2 in
match t1_t with

Pi(var, t, t’) -> lterm_equal t t2_t

we have:

App(t1, t2) |-> let t1_t = type_of t1 in
let t2_t = type_of t2 in
let t = new_infer_var () in
let t’ = new_infer_var () in
let t1_expected = Pi(var, t, t’) in
lterm_equal t1_t t1_expected && lterm_equal t t2_t

Essentially this corresponds to using typing rules similar to ΠELIM-INFER, as described above. Our type
inference algorithm also supports bi-directional type checking: it accepts an extra argument representing
the expected type of the current term, and instantiates this argument accordingly during recursive calls.
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The two directions of bi-directional type checking, synthesis (determining the type of an expression) and
analysis (checking an expression against a type), correspond to the case where the expected type is simply
an uninstantiated inference variable, and the case where it is at least partially instantiated, respectively.
This feature is especially useful when the expected type of a term is known beforehand, as type-checking
its subterms is informed from the extra knowledge and further typing constraints become solvable.

8.2.2 Inductive definitions

Our logic implementation supports inductive definitions in order to allow users to define and reason
about types such as natural numbers, lists, etc. Also, it allows inductive definitions of logical predicates,
which are used to define logical connectives such as conjunction and disjunction, and predicates between
inductive types, such as the less-than-or-equal relation between natural numbers. Each inductive definition
generates a number of constants added to the signature contextΣ, including constants for constructors and
elimination and induction principles. Support for inductive types is necessary so as to prescribe a ‘safe’
set of axioms that preserve logical soundness, as arbitrary additions to the constant signature can lead to
an inconsistent axiom set. It is also necessary from a practical standpoint as it simplifies user definitions
significantly because of the automatic generation of induction and elimination principles. Our support
follows the approach of inductive definitions in CIC [Paulin-Mohring, 1993] and Martin-Löf type theory
[Dybjer, 1991], adapted to the λHOL logic.

Let us proceed to give some examples of inductive definitions. First, the type of natural numbers is
defined as:

Inductive Nat : Type :=
zero : Nat

| succ : Nat→Nat

This generates the following set of constants:

Nat : Type
zero : Nat
succ : Nat→Nat
elimNat : [t : Type] t → (Nat→ t → t )→Nat→ t
elimNatZero : [t : Type]∀ fz fs , elimNat fz fs zero= fz
elimNatSucc : [t : Type]∀ fz fs p, elimNat fz fs (succ p) = fs p (elimNat fz fs p)
indNat : ∀P : Nat→ Prop.P zero→ (∀n, P n→ P (succ n))→∀n, P n

The elimination principle elimNat is used to define total functions over natural numbers through primi-
tive recursion; the axioms elimNatZero and elimNatSucc correspond to the main computation steps asso-
ciated with it. They correspond to one step of ι-reduction, similar to how the beta axiom corresponds to
one step of β-reduction. An example of such a function definition is addition:

plus = λx.λy.elimNat y (λp.λr.succ r ) x

Through the rewriting axioms we can prove:

plus zero y = y
plus (succ x) y = succ(plus x y)

The induction principle indNat is the standard formulation of natural number induction in higher-order
logic. Lists are defined as follows, with t as a type parameter.
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Inductive List : [t : Type]Type :=
nil : List

| cons : t → List→ List

We also use inductive definitions to define connectives and predicates at the level of propositions. For
example, we define logical disjunction ∨ as:

Inductive or : [A : Prop,B : Prop]Prop :=
orIntroL : A→ or/[A, B]

| orIntroR : B→ or/[A, B]

generating the following set of constants:

or : [A : Prop, B : Prop]Prop
orIntroL : [A : Prop, B : Prop]A→ or/[A,B]
orIntroR : [A : Prop, B : Prop]B→ or/[A,B]
indOr : [A : Prop, B : Prop]∀P : Prop,

(A→ P )→ (B→ P )→ (or/[A,B]→ P )

We have defined the two arguments to or as parameters, instead of defining or as having a kind Prop→
Prop→ Prop, as this leads to the above induction principle which is simpler to use.

An example of an inductively-defined predicate is less-than-or-equal for natural numbers:

Inductive le : Nat→Nat→ Prop :=
leBase : ∀n, le n n

| leStep : ∀nm, le n m→ le n (succ m)

generating the induction principle:

indLe : ∀P : Nat→Nat→ Prop,
(∀n, P n n)→
(∀nm, le n m→ P n m→ P n (succ m))→
(∀nm, le n m→ P n m)

The types of constructors for inductive definitions need to obey the strict positivity condition [Paulin-
Mohring, 1993] with respect to uses of the inductive type under definition. This is done to maintain
logical soundness, which is jeopardized when arbitrary recursive definitions such as the following are
allowed:

Inductive D : Type := mkD : (D→D)→D

This definition in combination with the generated elimination principle allows us to define non-terminating
functions over the type D , which renders the standard model used for the semantics of λHOL unusable.
In order to check the positivity condition, we extend the λHOL type system to include support for
positivity types, following the approach of Abel [2010], instead of the traditional implementation using
syntactic checks used in Coq [Barras et al., 2012] and other proof assistants. This results in a simple im-
plementation that can directly account for traditionally tricky definitions, such as nested inductive types.
The elimination principles are generated through standard techniques.

We give a formal sketch of the required extensions for positivity types to λHOL typing in Figure 8.3.
The main idea is that contexts Φ carry information about whether a variable must occur positively (de-
noted as t+) or not. We change the type judgement so that it includes the polarity of the current position:

190



Syntax

(Contexts) Φ ::= · · · | Φ, t+

(Polarities) p ::= − | ++ | +

Ψ; Φ ` t :p t ′

Φ.L= t+ p 6=−
Ψ; Φ ` vL :p t

VARPOS
Φ.L= t

Ψ; Φ ` vL :p t
VARANY

Ψ; Φ ` t1 :p↓ s Ψ; Φ, t1 ` dt2e|Φ| :
p s ′ (s , s ′, s ′′) ∈R

Ψ; Φ `Π(t1).t2 :p s ′′
ΠTYPE

Ψ; Φ ` t1 :− s Ψ; Φ, t1 ` dt2e|Φ| :
− t ′ Ψ; Φ `Π(t1).

�

t ′
�

|Φ|õ1 :− s ′

Ψ; Φ ` λ(t1).t2 :p Π(t1).
�

t ′
�

|Φ|õ1

ΠINTRO

Ψ; Φ ` t1 :p Π(t ).t ′ Ψ; Φ ` t2 :− t

Ψ; Φ ` t1 t2 :p �t ′
�

|Φ| · (idΦ, t2)
ΠELIM

Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ :p Φ′

Ψ; Φ `Xi/σ :p t ′ ·σ
METAVAR

Ψ; Φ′ ` σ :p Φ

Ψ; Φ ` σ :++ Φ′ Ψ; Φ ` t :++ t ′ ·σ
Ψ; Φ ` (σ , t ) :++ (Φ′, t ′+)

SUBSTPOSVARPOS

Ψ; Φ ` σ :++ Φ′ Ψ; Φ ` t :− t ′ ·σ
Ψ; Φ ` (σ , t ) :++ (Φ′, t ′)

SUBSTANYVARPOS

Ψ; Φ ` σ :+ Φ′ Ψ; Φ ` t :++ t ′ ·σ
Ψ; Φ ` (σ , t ) :+ (Φ′, t ′+)

SUBSTPOSVARANY

Ψ; Φ ` σ :p Φ′ Ψ; Φ ` t :p t ′ ·σ
Ψ; Φ ` (σ , t ) :p (Φ′, t ′)

SUBSTANYVARANY

p ↓

+ ↓ = ++
++ ↓ = −
− ↓ = −

Figure 8.3: Extension λHOL with positivity types
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the positive polarity + for positive positions; the strictly positive polarity ++; and the negative polarity
− where only normal unrestricted variables can be used. We demote polarities when in the domain of a
function type; in this way we allow constructors with type (Nat→Ord)→Ord, where Ord occurs pos-
itively (the limit constructor of Brouwer ordinals); but we disallow constructors such as (D → D)→ D ,
as the leftmost occurrence of D is in a negative position. We take polarities into account when checking
substitutions used with metavariables. Thus if we know that a certain parametric type (e.g. lists) uses its
parameter strictly positively, we can instantiate the parameter with a positive variable. This is used for
defining rose trees – trees where each node has an arbitrary number of children:

Inductive List : [t : Type+]Type :=
nil : List

| cons : t → List→ List

Inductive Rose : [t : Type+]Type :=
node : List/[Rose]→Rose

Using the new judgements, inductive definitions can be simply checked as follows (we use named
variables for presentation purposes):

• ` [Φ] t : s t =Π−−−−−−−→xa r g s : ta r g s .s
′ s ′ ∈ (Prop,Type)

•; Φ, name : t+ ` ti :+ s ′ ti =Π
−−−→
x1 : t 1

i .name
−→
t 2
i

` (Inductive name : [Φ] t :=−−−−−−→cnamei : ti )wf

That is, the inductive definition must have an appropriate arity at one of the allowed sorts for definitions,
the positivity condition must hold for the occurrences of the new type in each constructor, and each
constructor must yield an inhabitant of the new type.

8.3 Computational language implementation

The implementation of the VeriML computational language follows a similar approach to the implemen-
tation of λHOL with similar components (parsing, syntactic elaboration, typing and type inference).
Calls to the relevant λHOL functions are done at every stage in order to handle logical terms appearing
inside computational expressions. Our implementation supports all the constructs presented in Chap-
ter 6, including a pattern matching construct that combines all the features presented in Section 6.2. It
also includes further constructs not covered in the formal definition, such as let and letrec constructs for
(mutually recursive) definitions, base types such as integers, booleans and strings, mutable arrays, generic
hasing and printing functions and monadic-do notation for the option type. Last it includes support for
subtyping based on context subsumption for contextual types – for example, a type such as list ([Φ] t) is
a subtype of list ([Φ, x : t ′] t). The support for these features follows standard practice. Here we will
cover the surface syntax extensions handled by syntactic elaboration and also aspects of the evaluation of
VeriML expressions through translation to OCaml.

8.3.1 Surface syntax extensions

The surface syntax for the VeriML computational language supports a number of conveniences to the
programmers. The most important of these are simplified syntax for contextual terms and surface syntax
for tactic application. Other conveniences include abbreviated forms of the constructs that make use
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of inference variables in their expanded form – for example, eliding the return type in dependent tuples
〈 T , e 〉(X :K)×τ .

Delphin-style syntax for contextual terms. The simplified syntax for contextual terms is based on the
aforementioned notion of an ambient contextΦ, denoted as @ in the surface syntax of our implementation.
We denote it here as Φ@ for presentation purposes. The main idea is to use the ambient context instead of
explicitly specifying the context part of contextual terms [Φ] t , leading to contextual terms of the form
@t (denoting [Φ@] t ). Uses of metavariables such as X /σ are also simplified, by taking σ to be the identity
substitution for the ambient context (more precisely, the prefix of the identity substitution idΦ′ ⊆ idΦ@

when X : [Φ′] t ′ with Φ′ ⊆ Φ@). Furthermore, we include constructs to manage the ambient context: a
way to introduce a new variable, νx : t in e , which changes the ambient context to Φ′@ =Φ@, x : t inside e.
Also, we have a way to reset the ambient context and specify it explicitly, denoted as let @ = Φ in e . Some
existing constructs, such as abstraction over contexts λφ : ctx.e also update the ambient context so as to
include the newly-introduced context variable: Φ′@ = Φ@, φ. Based on these, we can write the universal
quantification branch of the tautology prover as:

tautology : (φ : ctx)→ (P : @Prop)→ option (@P )
tautology = λφ : ctx.λP : @Prop.holmatch @P with

@∀x : Nat,Q 7→ do 〈 pf’ 〉← νx : Nat in tautology @ @Q;
return




@λy : Nat.pf’/[i d@, y]
�

The syntax thus supported is close to the informal syntax we used in Section 2.3. Though it is a simple
implementation change to completely eliminate mentioning the ambient context, we have maintained it
in order to make the distinction between contextual terms of λHOL and computational expressions of
VeriML more evident.

The idea of having an ambient context and of the fresh variable introduction construct νx : t in e
comes from the Delphin programming language [Poswolsky, 2009]. Delphin is a similar language to
VeriML, working over terms of the LF framework instead of λHOL; also, it does not include an explicit
notion of contextual terms, supporting instead only terms inhabiting the ambient context as well as the
constructs to manipulate it. Our implementation establishes that these constructs can be seen as syntac-
tic sugar that gets expanded into full contextual terms of contextual modal type theory [Nanevski et al.,
2008b], suggesting a syntax-directed translation from Delphin expressions into expressions over contex-
tual terms. Instead of reasoning explicitly about contextual terms as we do in our metatheory, Delphin
manages and reasons about the ambient context directly at the level of its type system and operational
semantics. This complicates the formulation of the type system and semantics significantly, as well as
the needed metatheoretic proofs. Furthermore, the syntax-directed translation we suggest elucidates the
relationship between Delphin and Beluga [Pientka and Dunfield, 2008], a language for manipulating LF
terms based on contextual terms, similar to VeriML.

Syntax for static proof expressions. Our implementation supports turning normal proof expressions
e : ([Φ]P) into statically-evaluated proof expressions as presented in Section 7.2 with a simple annotation
{{e}}. Note that this is not the staging construct, as we assume that e might be typed under an arbitrary
Ψ context containing extension variables instantiated at runtime. This construct turns e into a closed
expression es that does not include any extension variables, following the ideas in Section 5.2; it then uses
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the staging construct {es}static to evaluate the closed expression; and then performs the needed substitution
of variables to metavariables in order to bring the result of the static evaluation into the expectedΨ context
with the right type. A sketch of this transformation is:

Ψ; Σ; Γ|static ` {{e}} : ([Φ]P)
 

•; Σ; Γ|static ` es : ([Φ′]P ′) • ` Φ′ wf Ψ; Φ ` σ : Φ′ P ′ ·σ = P

Ψ; Σ; Γ|static ` let 〈X 〉 = {es}static in 〈 [Φ]X /σ 〉 : ([Φ]P)

The actual implementation of this construct is a combination of syntactic elements – most impor-
tantly, manipulation of the ambient context – and type inference. Let us first present an example of how
this construct is used and expanded, arising from the plusRewriter1 example seen in Section 7.2. Consider
the following code fragment:

plusRewriter1 =
λφ : ctx.λT : @Type.λt : @T .holmatch @t with

@x + y 7→ let



y ′, H ′ : @y = y ′
�

= · · · in
let



t ′, H ′′ : @x + y ′ = t ′
�

= · · · in
¬

t ′, {{requireEqual @ @?1 @?2 @?3}} : (@x + y = t ′)
¶

where requireEqual has type:

requireEqual : (φ : ctx)→ (T : @Type)→ (t1, t2 : @T )→ (@t1 = t2)

At the point where requireEqual is called, the extension context is:

Ψ=φ : ctx, T : @Type, t , x, y, y ′ : @Nat, H ′ : @y = y ′, t ′ : @Nat, H ′′ : @x + y ′ = t ′

Based on this, syntactic elaboration will determine the Φ′ construct used in the expansion of {{· · ·}} as
(usingb· to signify normal variables and differentiate them from the metavariables they correspond to):

Φ′ = bT :?T , bt :?t , bx :?x , by :?y , by ′ :?y ′ ,
cH ′ :?H ′ ,

bt ′ :?t ′ ,
ÓH ′′ :?H ′′

and the substitution σ as:

σ = T /[idφ], t/[idφ], x/[idφ], y/[idφ], y ′/[idφ], H ′/[idφ], t ′/[idφ], H ′′/[idφ]

The expansion then is:

{{requireEqual @ @?1 @?2 @?3}}  
let



S : [Φ′] ?3
�

=
let @= Φ′ in{requireEqual @ @?1 @?2 @?3}static

in
〈 [φ] S/σ 〉

From type inference, we get that:

?3 ·σ ≡ x + y = t ′
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From this, we get that ?3 ≡ bx + by =
bt ′. The rest of the inference variables are similarly determined.

The implementation thus works as follows. First, we transform e into a closed expression es by relying
on the ambient context mechanism. We expect all contextual terms inside e to refer only to the ambient
context. We change the ambient context to the Φ′ context, as determined syntactically by introductions
of metavariables and normal variables through the νx in e construct. Normal variables from Φ′ shadow
meta-variables leading to a closed expression. The exact types in Φ′ are not determined syntactically;
inference variables are used instead. The σ substitution is constructed together with Φ′ and can be viewed
as a renaming between normal variables and meta-variables. It is an invertible substitution, as described
above in the type inference section; therefore even if e contains inference variables, these can still be
uniquely determined.

Tactics syntax. Our implementation includes syntactic sugar for frequently-used tactics, in order to
enable users to write concise and readable proof scripts. Each new syntactic form expands directly into a
tactic call, potentially using the features described so far – implicit arguments through inference variables,
manipulation of the ambient context and staging annotations. For example, we introduce the following
syntax for conversion, hiding some implicit arguments and a static tactic call:

Exact e ≡ eqElim @ @? @? e {{requireEqual @ @? @? @?}}

with the following type for eqElim:

eqElim : (φ : ctx, P : @Prop, P ′ : @Prop, H : @P, H ′ : @P = P ′)→ (@P ′)

Intuitively, this syntax is used at a place where a proof of P ′ is required but we supply a proof of the
equivalent proposition P . The proof of equivalence between P and P ′ is done through static evaluation,
calling the requireEqual tactic. Using ⇑ for type synthesis and ⇓ for type analysis we get that the combined
effect of syntactic elaboration and type inference is:

` e ⇑ (@P ′)
` Exact e ⇓ (@P )

 
eqElim @ @P @P ′ e

��

requireEqual @ @Prop @P @P ′
		

Another frequently-used example is the syntax for the cut principle – for proving a proposition P and
introducing a name H for the proof to be used as a hypothesis in the rest of the proof script. This is
especially useful for forward-style proofs.

Cut H : P by e in e ′

≡
(cut : (φ : ctx, P ′ : @Prop, P : @Prop,pf 1 : @P, pf 2 : (νH : P in @P ′))→ (@P ′) )

@ @? @? @P e (νH : P in e ′)

An example of a full proof script for a property of addition that uses this style of tactic syntactic sugar
follows:
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let p l u s_x_Sy : (@∀x, y : Nat.x +(succ y) = succ (x + y)) =
Intro x in Intro y in
Instantiate
(NatInduction for z.z +(s uc c y) = s uc c(z + y)

base case by Auto
inductive case by Auto)

with @x
The tactic syntax we support is mostly meant as a proof-of-concept. It demonstrates the fact that proof

scripts resembling the ones used in traditional proof assistants are possible with our approach, simply by
providing specific syntax that combines the main features we already support. We believe that this kind
of syntax does not have to be built into the language itself, but can be provided automatically based on
the available type information. For example, it can be determined which arguments to a function need
to be concrete and which can be left unspecified as inference variables, as evidenced by existing implicit
argument mechanisms (e.g. in Coq [Barras et al., 2012]). Also, obligations to be proved statically, such as
P = P ′ above, can be also handled, by registering a default prover for propositions of a specific form with
the type inferencing mechanism. In this way, syntax for tactics defined by the user would not need to be
explicitly added to the parser. We leave the details as future work.

Meta-generation of rewriters. When defining inductive types such as Nat and List as shown in Sub-
section 8.2.2, we get a number of axioms like elimNatZero that define the computational behavior of the
associated elimination principles. The fact that we do not have any built-in conversion rule means that
these axioms are not taken into account automatically when deciding term equality. Following the ap-
proach of Section 7.2, we need to define functions that rewrite terms based on these axioms. The situation
is similar when proving theorems involving equality like:

∀x.x + 0= x

which is the example that prompted us to develop plusRewriter1 in the same section. Writing such rewrit-
ers is tedious and soon becomes a hindrance: every inductive definition and many equality theorems
require a specialized rewriter. Still the rewriters follow a simple template: they perform a number of
nested pattern matches and recursive calls to determine whether the left-hand side of the equality matches
the scrutinee and then rewrite to the right-hand side term if it does.

In order to simplify this process, we take advantage of the common template of rewriters and provide a
syntactic construct that generates rewriters at the meta-level. This construct is implemented as an OCaml
function that yields a VeriML term when given a theorem that proves an equality. That is, we add a
construct GenRewriter c which is given a proof c of type ∀· · · , lhs= rhs and generates a VeriML term that
corresponds to the rewriter a user would normally write by hand. The rewriter has similar structure as
described earlier. When programming the rewriter generator itself, we use the normal OCaml type system
to construct an appropriate VeriML term. This term is then returned as the expansion of GenRewriter c
and checked using the VeriML type system. Thus the rewriter generator does not need to be trusted.

8.3.2 Translation to OCaml

Our implementation evaluates VeriML programs by translating them into OCaml programs which are
then run using the standard OCaml tools. Intuitively, the translation can be understood as translat-
ing dependently-typed VeriML expressions into their simply-typed ML counterparts. We follow this
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Description VeriML AST OCaml AST

Dependent functions over contextual terms

type (X : [Φ] t )→ τ Logic.term -> ¹τº
introduction λX : [Φ] t .e fun X : Logic.term => ¹eº
elimination e ([Φ] t ) ¹eº ¹tº

Dependent functions over contexts

type (φ : [Φ] ctx)→ τ Logic.ctx -> ¹τº
introduction λφ : [Φ] ctx.e fun X : Logic.ctx => ¹eº
elimination e ([Φ]Φ′) ¹eº

�

Φ′
�

Dependent tuples over contextual terms

type (X : [Φ] t )×τ Logic.term * ¹τº
introduction 〈 [Φ] t , e 〉(X :[Φ] t ′)×τ ( ¹tº, ¹eº )
elimination let 〈X , x 〉= e in e ′ let ( X, x ) = ¹eº in

�

e ′
�

Type constructors over contextual terms

kind ΠV : K .k ¹kº
introduction λX : T .τ ¹τº
elimination τ ([Φ] t ) ¹τº

Table 8.2: Translation of λHOL-related VeriML constructs to simply-typed OCaml constructs

approach in order to achieve efficient execution of VeriML programs without the significant development
cost of creating an optimizing compiler for a new language. We make use of the recently-developed Just-
In-Time-based interpreter for OCaml [Meurer, 2010] which is suitable for the interactive workflow of a
proof assistant, as well as of the high-quality OCaml compiler for frequently-used support code and tac-
tics. The availability of these tools render the language a good choice for the described approach to VeriML
evaluation. We have also developed a complete VeriML interpreter that does not make use of translation
to OCaml. Its implementation follows standard practice corresponding directly to the VeriML semantics
we have given already. Nevertheless, it has been largely obsoleted in favor of OCaml-based translation
because of efficiency issues: typechecking and running the full code of our examples presented in the next
chapter takes about 6 minutes with the interpreter-based evaluation, whereas it takes only 15 seconds in
OCaml-based translation coupled with OCamlJIT, when using a 2.67 GHz Intel i7-620 CPU.

The main translation function accepts a VeriML computational language AST and emits an OCaml
AST. The VeriML AST is assumed to be well-typed; the translation itself needs some type information
for specific constructs and it can therefore be understood as a type-directed translation. We make use of
the Camlp4 library of OCaml that provides quotation syntax for OCaml ASTs.

The ML core of VeriML presented in Figure 6.1 is translated directly into the corresponding OCaml
forms. The λHOL-related constructs of Figure 6.2 are translated into their simply-typed OCaml counter-
parts, making use of our existing λHOL implementation in OCaml – the same one used by the VeriML
type checker. For example, VeriML dependent functions over contextual terms are translated into normal
OCaml functions over the Logic.term datatype – the type of λHOL terms as encoded in OCaml. The
fact that simply-typed versions of the constructs are used is not an issue as the type checker of VeriML has
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already been run at this point, providing the associated benefits discussed in previous chapters. We give a
sketch of the translated forms of most λHOL-related constructs in Table 8.2. Note that type-level func-
tions over extension terms are simply erased, as they are used purely for VeriML type checking purposes
and do not affect the semantics of VeriML expressions.

Let us now present some important points of this translation. First, the context part of contextual
terms is dropped – we translate a contextual term [Φ] t as the OCaml AST ¹tº. For example, the term

[x : Nat]∀y : Nat, x > 0→ x + y > y

or, in concrete syntax:

[Nat]Π(Nat).Π(gt v0 zero).gt (plus v0 b1) b1

is translated as:

LPi(LConst("Nat"),
LPi(LApp(LApp(LConst("gt"), LFVar(0)), LConst("zero")),
LApp(LApp(LConst("gt"),
(LApp(LApp(LConst("plus"), LFVar(0), LBVar(1)))),
LBVar(1)))))

The reason why the context part is dropped is that it is not required during evaluation; it is only relevant
during VeriML type checking. This is evident in our formal model from the fact that the λHOL-related
operations used in the VeriML operational semantics – substitution and pattern matching – do not actually
depend on the context part, as is clear from the practical version of pattern matching using annotated
terms in Section 5.1.

Also, extension variables X and φ as used in the dependently-typed constructs are translated into
normal OCaml variables. This reflects the fact that the operational semantics of VeriML are defined only
on closed VeriML expressions where the extension variables context Ψ is empty; therefore extension
variables do not need a concrete runtime representation. By representing extension variables as OCaml
variables, we get extension substitution for free, through OCaml-level substitution. This is evidenced
in the following correspondence between the VeriML semantics of function application and the OCaml
semantics of the translated expression:

(λX : [Φ] t ′.e) ([Φ] t )−→V e r i M L e · ([Φ] t/X )
≡

(fun X : Logic.term => e) t−→OC aml e[t/X]

Uses of extension variables inside logical terms are translated as function calls. As mentioned in Sec-
tion 4.1, the usage form of meta-variables X /σ is understood as a way to describe a deferred substitution
σ , which gets applied to the term t as soon as X is instantiated with the contextual term [Φ] t . This is cap-
tured in our implementation by representing X /σ as a function call subst_free_list X σ , where the
free variables of the term X (again, an OCaml-level variable) are substituted for the terms in σ . Similarly,
uses of parametric contexts φ stand for deferred applications of weakening, shifting the free variables in a
term by the length of the specified context, when φ is instantiated.

Pattern matching over λHOL terms is translated following the same approach into simply-typed pat-
tern matching over the OCaml datatypes Logic.term and Logic.ctx that encode λHOL logical terms
and contexts respectively. Patterns TP as used in the VeriML construct become OCaml patterns over
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those data types; unification variables from Ψu become OCaml pattern variables. In this way we reuse
pattern matching optimizations implemented in OCaml. The main challenge of this translation is main-
taining the correspondence with the pattern matching rules described in Section 5.1. Most rules directly
correspond to a constructor pattern for λHOL terms – for example, the rule for sorts: we can simply
match a term like LSort(LSet) against a pattern like LSort(s), where s is a pattern variable. Other
rules require a combination of a constructor pattern and of guard conditions, such as the rule for appli-
cation: matching the term LApp(t1,t,s,t2) corresponding to the term (t1 : t : s) t2 against a pattern
LApp(t1’,t’,s’,t2’) requires checking that s = s’. Similarly, the exact pattern X /σ where X is not
a unification metavariable, used matching a term t against an already-instantiated metavariable, requires
checking that X ≡ t , implemented as a guard condition lterm_equal t t’. Last, some rules such as
function formation need to apply freshening after matching.

Though we reuse the λHOL implementation in order to translate the related parts of VeriML ex-
pressions, this is not a hard requirement. We can replace the OCaml representation of λHOL terms –
for example, we can translate them into terms of the HOL-Light system, which is also implemented in
OCaml and uses a similar logic. Translating a VeriML tactic would thus result in an HOL-Light tactic. In
this way, the VeriML implementation could be seen as a richly-typed domain-specific language for writing
HOL-Light tactics.

8.3.3 Staging

Supporting the staging construct of VeriML introduced in Section 6.3 under the interpreter-based evalua-
tion model is straightforward: prior to interpreting an expression e , we call the interpreter for the staged
expressions es it encloses; the interpreter yields values for them vs (if evaluation terminates successfully);
the staged expressions are replaced with the resulting values vs yielding the residual expression.

When evaluating VeriML terms through translation to OCaml, this is not as straightforward. The
translation yields an OCaml AST – a value of a specific datatype encoding OCaml expressions. We need
to turn the AST into executable code and evaluate it; the result value is then reified back into an OCaml
AST, yielding the translation of the staged expression. This description essentially corresponds to staging
for OCaml. The VeriML translator could thus be viewed as a stage-1 OCaml function, which evaluates
stage-2 expressions (the translations of staged VeriML expressions) and yields stage-3 executable code (the
translation of the resulting residual expressions).

Still, staging is not part of Standard ML and most ML dialects do not support it; the OCaml lan-
guage that we use does not support it by default. Various extensions of the language such as MetaOCaml
[Calcagno et al., 2003] and BER MetaOCaml have been designed precisely for this purpose but do not
support other features of the language which we rely on, such as support for Camlp4. We address this
issue by evaluating OCaml ASTs directly through the use of the OCaml toplevel library, which can be
viewed as a library that provides access to the OCaml interpreter. The OCaml AST is passed directly
to the OCaml interpreter; it yields an OCaml value which is reified back into an OCaml AST. Reifi-
cation requires being able to look into the structure of the resulting value and is thus only possible for
specific datatypes, such as λHOL tuples, integers and strings; we disallow using the staging construct for
expressions of other types that cannot be reified, such as functions and mutable references.

There are thus two distinct interpreters involved in the evaluation of a VeriML program: one is the
interpreter used during translation from VeriML to OCaml, whose purpose is to execute staged VeriML
expressions; another is the interpreter (or compiler) used after the translation is complete, in order to
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evaluate the result of the translation – the translation of the residual VeriML program. An interpreter
has to be used for the first stage, a consequence of how we are side-stepping the lack of staging support
in OCaml. Still, we can make sure that the interpretation overhead is minimized by using the OCamlJIT
interpreter, and also by making sure that the interpreter is mostly used to make calls to already-compiled
code. We achieve this by splitting our code into separate files and using separate compilation.

From the two interpreters involved in evaluation, the first one corresponds to the static evaluation
semantics −→s ; the second to dynamic evaluation −→, as described in Section 6.3. The two interpreters
do not share any state between them, contrary to the semantics that we have given. We partially address
the issues arising from this by repeating top-level definitions in both interpreters, so that an equivalent
state is established; we assume that staged VeriML expressions do not alter the state in a way that alters
the evaluation of dynamic expressions.

8.3.4 Proof erasure

In order to be able to control whether an expression is evaluated under proof-erasure semantics or not,
we make normal semantics the default evaluation strategy and include a special construct denoted as
{e}t r u s t ed to evaluate the expression e under proof-erasure. We implement the proof-erasure semantics as
presented in Section 6.4, as erasure proof objects and evaluation under the normal semantics. We change
the translation of λHOL terms to be a type-directed translation. When a term sorted under Prop is found,
that is, a term corresponding to a proof object, its translation into an OCaml AST is simply the translation
of the admit constant. More precisely, the translation is a conditional expression branching on whether
we are working under proof erasure or not: in the former case the translation is the trivial admit constant
and in the latter it is the full translation of the proof object. The exact mode we are under is controlled
through a run-time mutable reference, which is what the {e}t r u s t ed construct modifies. In this way, all
enclosed proof objects in e are directly erased.

8.3.5 VeriML as a toplevel and VeriML as a translator

We include two binaries for VeriML: a VeriML toplevel and a VeriML translator. The former gives an
interactive read-eval-print-loop (REPL) environment as offerred by most functional languages. It works
by integrating the VeriML-to-OCaml translator with the OCaml interpreter and is suitable for experi-
mentation with the language or as a development aid. The latter is used to simply record the OCaml
code yielded by the VeriML-to-OCaml translation. When combined with the OCaml compiler, it can be
viewed as a compiler for VeriML programs.

The VeriML toplevel is also suitable for use as a proof assistant. When defining a new VeriML ex-
pression – be it a tactic, a proof script or another kind of computational expression – the VeriML type
checker informs us of any type errors. By leaving certain parts of such expressions undetermined, such
as a part of a proof script that we have not completed yet, we can use the type information returned by
the type checker in order to proceed. Furthermore, we are also informed if a statically-evaluated proof
expression fails. We have created a wrapper for the toplevel for the popular Proof General frontend to
proof assistants [Aspinall, 2000], which simplifies significantly this style of dialog-based development.
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Chapter 9

Examples and Evaluation

We will now present a number of examples that we have implemented in VeriML. We will follow the ideas
from Chapter 7 in building a conversion rule that supports β-equivalence, congruence closure and arith-
metic simplifications in successive layers. Such extensions to the conversion rule have required significant
engineering effort in the past [e.g. Strub, 2010]; their implementation in current proof assistants makes
use of techniques such as proof by reflection and translation validation [Barras et al., 2012]. The VeriML
design allows us to express them in a natural style. We will also present a first-order automated theorem
prover which will be used to simplify some of the proofs involved. We will use syntax that is close to the
actual syntax used by our prototype implementation, with slight changes for presentation purposes.

9.1 Basic support code

The basic VeriML library includes definitions of Standard ML datatypes, such as bool, option and list,
along with auxiliary functions over these. For example, the type of lists and the associated map and fold
functions are defined in Code Listing 9.1, as well as the option type with associated functions and syntax.

We also define a number of simple proof-producing functions to lift λHOL proof object constructors
to the computational level. We provide tactic syntactic sugar for them, as described in Chapter 8. For
example, the function eqElim in Code Listing 9.2 lifts the EQELIM typing rule (in Figure 3.10) from the
level of λHOL proof objects to the level of VeriML proof expressions of type hol([Φ]P).

The code uses concrete syntax that we have not discussed so far. We remind the reader that VeriML
proof expressions are expressions of the type ([Φ]P)≡ (G : [Φ]P )×unit where P is a proposition; that is,
dependent tuples where the first argument is a proof object upon successful evaluation and the second is
the unit. We write this type as hol([Φ]P) in the concrete syntax. Also, we use @ to refer to the ambient
context, denoted as @ in the previous chapter. Following the same notation we write contextual terms
[Φ] t where Φ is exactly the ambient context as @t . In this notation, @ binds as far to the left as possible,
capturing all the following logical terms until another computational term is encountered.

The code of the function itself is straightforward: it opens up the dependent tuples, making the meta-
variables H1 and H2 hold the proof objects contained therein; using these it creates a new proof object,
which it wraps inside a dependent tuple. We introduce the following syntactic sugar for this tactic, in
order to omit all arguments but the proof expressions:

"Exact e1 by e2" ::= eqElim @ @? @? e1 e2
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type list = fun a : ? ⇒ rec t : ? ⇒ Unit + a * t ;;1

let nil = fun a ⇒ fold( inl(unit), list a ) ;;2

let cons = fun a hd tl ⇒ fold( inr( (hd, tl) )) ;;3

4

letrec listmap = fun a : ? ⇒ fun b : ? ⇒ fun f : a → b ⇒ fun l : list a ⇒5

match unfold l with6

inl u 7→ nil _7

| inr (hd, tl) 7→ cons _ (f hd) (listmap _ _ f tl) ;;8

9

letrec listfold = fun (a b : ?) (f : b → a → b) start ⇒ fun l : list a ⇒10

match unfold l with11

inl u 7→ start12

| inr (hd, tl) 7→ f (listfold _ _ f start tl) hd ;;13

14

type option = fun a : ? ⇒ a + Unit ;;15

let optionalt = fun a : ? ⇒ fun t1 : option a ⇒ fun t2 : unit → option a ⇒16

match t1 with17

inl s ⇒ s18

| inr u ⇒ t2 () ;;19

"e1 || e2" := optionalt _ e1 (fun u ⇒ e2) ;;20

21

let optionforce = fun a : ? ⇒ fun t : option a ⇒22

optionalt _ t (fun u => error);;23

24

let optionret = fun a : ? ⇒ fun t : a ⇒ inl( t );25

let optionbind = fun a b : ? ⇒ fun t : option a ⇒ fun f : a → option b ⇒26

match t with27

inl s 7→ f s28

| inr u 7→ inr () ;;29

"do x1 ← e1; ...; xn ← en; return e" :=30

optionbind _ _ e1 (fun x1 ⇒31

...32

optionbind _ _ en (fun xn ⇒33

optionret e) ... ) ;;34

Code Listing 9.1: Definition of basic datatypes and associated functions
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let eqElim =1

fun φ : ctx, P1 : @Prop , P2 : @Prop ,2

pf1 : hol(@P1) , pf2 : hol(@P1 = P2) ⇒3

let < H1 > = pf1 in4

let < H2 > = pf2 in5

< @conv H1 H2 > : hol(@P2) ;;6

7

let intro = fun φ : ctx, T : @Type, P : [@, x : T].Prop ,8

pf : hol([@, x : T].P) ⇒9

let < [ @, x : T ].pf > = pf in10

< @fun x : T ⇒ pf > : hol(@∀x.P) ;;11

"Intro x : T in e" ::= intro @ @T (ν x : T in @?) (ν x : T in e)12

"Intro x in e" ::= intro @ @? (ν x : ? in @?) (ν x : ? in e)13

14

let assume = fun φ : ctx, P : @Prop, P’ : [ @, x : P ].Prop ,15

pf : hol([ @, x : P].P’) ⇒16

let < [@, x : P ].pf > = pf in17

< @fun x : P ⇒ pf > : hol(@P1 → P2) ;;18

"Assume H : P in e" ::= assume @ @? (ν H : P in @?) (ν H : P in e)19

"Assume H in e" ::= assume @ @? (ν H : ? in @?) (ν H : ? in e)20

21

let cutpf = fun φ : ctx, P : @Prop, P’ : @Prop ,22

pf1 : hol( [@ , H : P’].P ), pf2 : hol( @P’ ) ⇒23

let < [@ , H : P’].pf1 > = pf1 in24

let < pf2 > = pf2 in25

< @pf1/[id_φ, pf2 ] > : hol( @P ) ;;26

"Cut H : P’ by e1 in e2" ::= cut @ @? @P’ (ν H : P’ in e2) e127

"Cut H by e1 in e2" ::= cut @ @? @? (ν H : ? in e2) e128

Code Listing 9.2: Examples of proof object constructors lifted into VeriML tactics
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In the rest we will often omit definitions of such syntactic shorthands; we will note implicit arguments
with brackets instead. It is understood that these are then instantiated implicitly. We give more examples
of such proof constructor lifting functions along with their syntactic sugar in Code Listing 9.2. In all
functions note that when we open up dependent tuples, we annotate metavariables with their context
unless it is the ambient context.

A proof expression of the ∀P,Q : Prop.P = Q → (P → Q) theorem of higher-order logic is given as
follows:

Theorem propeq_impl : ∀P,Q : Prop.P = Q → (P → Q) :=
Intro P : Prop in Intro Q : Prop in
Assume H1 : P = Q in
Assume H2 : P in
Exact < H2 > by < H1 > ;;

9.2 Extensible rewriters

In Section 7.1, we mentioned that we have implemented some infrastructure for a user-extensible defi-
nitional equality checker. We develop this infrastructure before implementing any non-trivial notion of
definitional equality such as β-equality, as it will allow us to simplify such implementations. The code is
based around rewriters and equality checkers: rewriters perform one step of a relation such as t −→R t ′,
simplifying t into the form t ′; equality checkers decide whether two terms are equal. A rewriter can be
turned into an equality checker through a function similar to defEqual as seen before, which essentially
computes the symmetric, transitive, reflexive and compatible closure=R of−→R. This assumes that−→R
is confluent, something that we do not enforce.

Rewriters. The type of rewriters is defined as:

type rewriter_t = ( {φ : ctx} , {T : @Type}, e : @T ) →
( e’ : @T ) × hol( @e = e’ ) ;;

Some rewriting relations might proceed by structural recursion. For example, rewriting to weak head-
normal form with respect to β-reduction is defined as follows:

t t ′ −→β t ′′[t ′/x] when t −→β λx.t ′′

Furthermore, we build rewriters by composing many rewriters together:

−→R=−→R1
∪· · ·∪ −→Rn

It makes sense to use −→R for the recursive calls used by any one of the −→Ri
rewriters. In that way,

progress made by one rewriter will trigger further progress in another. Consider the following example
which makes use of an alternate definition of addition:

(elimNat λy.y (λp.λr.λy.succ (r y)) 0) 5

Though the above rule for β-reduction does not apply, a different rewriter −→N can reduce the function
term to λy.y. Then the β-reduction rule can make progress.

In order to support this, we write each −→Ri
rewriter in open recursion style, expecting the current

‘full’ −→R rewriter as an argument. We call each −→Ri
rewriter as a rewriter module. Their type is:
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let build_rewriter =1

fun rewriters_list : list rewriter_module_t ⇒2

letrec rewriter : rewriter_t =3

fun {φ T} e ⇒4

(let test_progress =5

fun res : < e’ : @T > hol( @e = e’ ) ⇒6

let < e’ > = res in7

holmatch @e’ as x return bool with8

@e 7→ false9

| @e’ 7→ true10

in11

let idelem = < @e , @refl e > in12

let first_successful =13

listfold14

(fun res currewritemodule ⇒15

(if test_progress res then16

res17

else18

currewritemodule rewriter @e))19

idelem20

rewriters_list21

in22

if test_progress first_successful then23

let < e’ , pfe’ > = first_successful in24

let < e’’ , pfe’’ > = rewriter @e’ in25

< @e’’ , @trans pfe’ pfe’’ >26

else27

first_successful)28

in29

rewriter ;;30

Code Listing 9.3: Building a rewriter from a list of rewriter modules
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let global_rewriter_modules = ref nil : ref (list rewriter_module_t) ;;1

let default_rewriter = fun {φ T} e ⇒2

build_rewriter !global_rewriter_modules @e ;;3

4

let global_rewriter_add = fun r ⇒5

global_rewriter_modules := listsnoc !global_rewriter_modules r ;;6

let global_rewriter_add_many = fun r ⇒7

global_rewriter_modules := listappend !global_rewriter_modules r ;;8

let global_rewriter_add_top = fun r ⇒9

global_rewriter_modules := cons r !global_rewriter_modules ;;10

let global_rewriter_remove_top = fun u ⇒11

match !global_rewriter_modules with12

nil 7→ unit13

| cons(hd,tl) 7→ global_rewriter_modules := tl ;;14

"Temporary Rewriter e1 in e2" ::=15

global_rewriter_add_top e1 ;16

let res = e2 in17

global_rewriter_remove_top (); res18

Code Listing 9.4: Global registering of rewriter modules

type rewriter_module_t =
rewriter_t →
( {φ : ctx} , {T : @Type}, e : @T ) →
( e’ : @T ) × hol( @e = e’ ) ;;

The relationship between full rewriters and rewriter modules corresponds to the relationship between the
functions rewriteBetaNat and rewriteBetaNatStep presented in Section 7.1. That is, rewriter modules are
expected to perform a single rewriting step, whereas full rewriters are expected to proceed until a normal
form is reached.

We build a full rewriter from a list of rewriter modules through the code presented in Code Listing 9.3.
Intuitively, the full rewriter −→R tries to make progress towards a normal form by trying each rewriter
module successively. The next step is given by the first rewriter module which does make progress, yield-
ing a term t ′ which is not syntactically identical to the original term t . The process continues until no
further progress can be made.

We define a global mutable list of rewriter modules and a default rewriter that uses build_rewriter
to combine them together, as shown in Code Listing 9.4. We also provide some management functions,
adding rewriters as the first or last one to be used, as the order in which they are executed is important:
for example, normalizing 0+ x takes one step through a rewriter that evaluates addition directly, but
multiple steps if going through more basic reductions (unfolding of the definition of +, multiple β-steps
and a natural number elimination step). Also, we define a function to remove the top element of the list,
which is mostly used in order to define temporary rewriters that are only used within one block of code.

Equality checkers. The type of equality checkers is identical to the type of defEqual as presented in
Chapter 7:

206



let equalchecker_syntactic : equalchecker_t =1

fun {φ T} e1 e2 ⇒2

holmatch @e2 as e2’ return option(hol(@e1 = e2’)) with3

@e1 7→ some < @refl e1 >4

| @e2’ 7→ none ;;5

6

let equalchecker_closure =7

fun rewriter : rewriter_t ⇒8

letrec check_equal = fun {φ T} e1s e2s ⇒9

let < e1, pfe1 > = rewriter @e1s in10

let < e2, pfe2 > = rewriter @e2s in11

do < pf > ←12

(holmatch @T, @e1, @e2 with13

| @T, @(a1 : T’ → T) b1, @(a2 : T’ → T) b2 7→14

do < pfa > ← check_equal @a1 @a2 ;15

< pfb > ← check_equal @b1 @b2 ;16

return G1 : hol( @a1 b1 = a2 b2 )17

18

| @T’’ → T’, @λx : T’’.a1 , @λx : T’’.a2 7→19

do < [@, x : T’’].pfa > ← νx:T.check_equal @a1 @a2 ;20

return G2 : hol( @λx : T’’.a1 = λx : T’’.a2 ) ;;21

22

| ... );23

return G : hol( @e1s = e2s )24

in25

check_equal ;;26

Code Listing 9.5: Basic equality checkers: syntactic equality and compatible closure

type equalchecker_t = ( {φ : ctx}, {T : @Type} , e1 : @T , e2 : @T ) →
option (hol(@e1 = e2)) ;;

We will not use the open recursion style shown above for equality checkers, so each module we develop
should have the above type. The simplest example is a checker that can only decide syntactic equality
between two terms as presented in Code Listing 9.5, lines 1 through 5.

The next example we develop is the “contextual closure” equality tester, which compares two terms
structurally, using the rewriter at each step. This is mostly identical to the checker presented in Section 7.1,
where the rewriteBetaNat function is used as the rewriter inside the defEqual equality checking function.
We thus present a sketch of this function in Code Listing 9.5 and refer the reader to Section 7.1 for the
missing pattern matching cases.

Since no equality-related automation is built up at this point, we need to provide explicit detailed
proofs for the missing proof obligations in this function. The fact that we perform these proofs at such
an early stage in our development will allow us to take them for granted in what follows and never reason
explicitly about steps related to contextual closure again. The full proof objects follow:

G1 = < @conv (conv (refl (a1 b1)) (subst (x.a1 b1 = a1 x) pfb))
(subst (x.a1 b1 = x b2) pfa) >
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let equalchecker_compose_many = fun equalcheckers : list equalchecker_t ⇒1

fun {φ T} e1 e2 ⇒2

listfold (fun prf checker ⇒3

prf || (do return checker @e1 @e2))4

(equalchecker_syntactic @e1 @e2)5

equalcheckers ;;6

7

let build_equalchecker = fun rewriter equalcheckers_list ⇒8

equalchecker_closure rewriter9

(equalchecker_compose_many equalcheckers_list) ;;10

11

let global_equalcheckers = ref nil ;;12

13

let default_isequal =14

build_equalchecker default_rewriter !global_equalcheckers ;;15

let require_isequal =16

fun {φ T} e e’ ⇒17

match default_isequal @e @e’ with18

some(prf) 7→ prf19

| none 7→ error ;;20

Code Listing 9.6: Global registration of equality checkers and default equality checking

G2 = < @congLam (x:T’’.pfa/[id_φ, x]) >
G = < @conv (conv pf (subst (x. x = e2s) (symm pfe1)))

(subst (y. e1 = y) (symm pfe2)) >

Just as in the case of rewriters, we create a default equality checker which combines a list of others. We
register available equality checkers in a global mutable list. We expect each checker in the list to be a
‘local’ checker – that is, it does not form the compatible closure seen above on its own. Instead, we take
the compatible closure after all local checkers are combined into one and make the resulting checker the
default one. These are shown in Code Listing 9.6.

We also define syntactic sugar for calls to require_isequal where all arguments are inferred; also a
form where the call happens statically, following the insights from Chapter 7, and syntax for other tactics
that require equality proofs. In this way, require_equal becomes similar to the conversion rule yet can
be extended using more rewriters and checkers.

"ReqEqual" ::= require_isequal @ @? @? @?
"StaticEqual" ::= {{ require_isequal @ @? @? @? }}
"Exact e" ::= Exact e by StaticEqual
"Cut H : e1 = e2 in e3" ::= Cut H : e1 = e2 by StaticEqual in e3

9.3 Naive equality rewriting

After having set up the infrastructure, we are ready to develop non-trivial equality checking. Our first
concern is to have a way to take existing hypotheses into account. For example, if we already know that
t1 = t2, the two terms should be indistinguishable for the rest of our reasoning, eliminating the need for
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explicit rewriting by the user. This sort of reasoning is ubiquitous and by making it part of the default
equality checking at an early point, we simplify the implementation of later extensions.

We first develop a naive way of supporting such reasoning: we add a term rewriter that substitutes
all occurrences of t1 to t2 – or the inverse – when a hypothesis t1 = t2 exists. In this way, terms come
into a ‘normal’ form where the equality hypotheses have been taken into account before being checked
for syntactic equality. This strategy has numerous shortcomings. For example, the presence of a cycle in
the equality hypotheses leads to an infinite loop – consider the case where x = y and y = x. It is also very
inefficient and can only prove simple cases of using the hypotheses. The obvious benefit is its simplicity.
The code for this naive rewriter is presented in Code Listing 9.7. The auxiliary function gather_eqhyps
isolates equality hypotheses from the current context and records them into a list.

In our actual implementation we try both directions for rewriting, as each direction is able to prove a
different set of facts. We add this rewriter to the default one through the global_rewriter_add function
seen earlier. We are then able to directly prove simple lemmas such as the following:

Lemma test1 : ∀x,y,z,f,g.x = y → g = f → y = z → f x = g z :=
Intro x y z f g in Assume H1 H2 H3 in
ReqEqual ;;

9.4 Equality with uninterpreted functions

As mentioned above, the naive strategy for incorporating hypothesis in equality checking suffers from a
number of problems. In this section we will present the code for a sophisticated procedure that does the
same thing in an efficient and scalable way. We will use an imperative union-find algorithm to construct
equivalence classes for terms based on the available hypotheses. It also takes the form of terms into
account, having special provisions for function applications: for example, if we know that f x = y, then
the extra knowledge that f = g will make all three terms f x, y and g x part of the same equivalence class.
Thus the equality checker we will construct is essentially a decision procedure for congruence closure or the
theory of equality with uninterpreted functions, as this theory is referred to in the SAT/SMT literature.
In fact our implementation is a direct VeriML adaptation of the standard textbook algorithm for this
procedure [e.g. Bradley and Manna, 2007, Kroening and Strichman, 2008]. This showcases the fact that
VeriML allows us to implement sophisticated decision procedures without requiring significant changes
to the underlying algorithms and data structures.

Formally, the theory of equality with uninterpreted functions is the combination of the following
theorems:

refl : ∀x.x = x
symm : ∀x,y.x = y → y = x
trans : ∀x,y,z.x = y → y = z → x = z
congApp1 : ∀f,x,y.x = y → f x = f y
congApp2 : ∀f,g,x.f = g → f x = g x

Intuitively, the automation functions we have developed already include explicit proofs involving these
theorems. Ideally we would thus like not to have to repeat such proofs in the development of our decision
procedure. We will show that this is indeed the case.

The basic idea of the algorithm is the following: every term t has a parent term t ′ which it is equal to.
If the parent term t ′ is identical to the term t itself, then the term t is the representative of the equivalence
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type eqhyps_t = fun {φ : ctx} ⇒ list ( ( {T : @Type}, t1 : @T, t2 : @T ) ×1

hol( @t1 = t2 )) ;;2

3

letrec gather_eqhyps : ( φ : ctx ) → eqhyps_t = fun {φ} ⇒4

holmatch φ with5

[ φ0, H : t1 = t2 ] 7→6

let @ = φ0 in7

let res = gatherhyps @ in8

ν H : t1 = t2 in9

cons < @t1, @t2, @H > res10

| [ φ0, H : (P : Prop) ] 7→ gatherhyps [ φ0 ]11

| [ φ0, t : (T : Type) ] 7→ gatherhyps [ φ0 ]12

| [ φ0, t : Type] 7→ gatherhyps [ φ0 ] ;;13

| [] 7→ nil14

15

let rewriter_naive_eq : rewriter_module_t =16

letrec subst : ( {φ : ctx} , hyps : eqhyps_t , {T : @Type} ) →17

( t : @T ) → ( t’ : @T ) × hol( @t = t’ ) =18

fun {φ} hyps {T} t ⇒19

let res =20

listfold21

(fun cur elm ⇒22

cur || (let < T’ , t1’ , t2’ , pf > = elm in23

holcase @T, @t with24

@T’ , @t1’ 7→ do return < @t2’ , @pf >25

| @T’’ , @t’’ 7→ none))26

none eqhyps27

in28

match res with29

some v 7→ v | non 7→ < @t , @refl t >30

in31

fun recursive {φ T} e ⇒32

let hyplist = gather_eqhyps @ in33

subst hyplist @e ;;34

Code Listing 9.7: Naive rewriting for equality hypotheses
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class it belongs to. Therefore equivalence classes are represented as a directed tree of terms with nodes
pointing towards their parents; the root of the tree is the representative of the equivalence class and has
a self link. The find operation for checking whether two terms t1 and t2 are equal involves finding the
representatives t1,r e p and t2,r e p for both by following parent links and comparing the representatives. The
union operation for incorporating new knowledge about equality between two terms t1 = t2 consists of
merging their equivalence classes, making the representative of either term a child of the representative of
the other term.

We implement the above description quite literally in the union and find functions presented in
Code Listing 9.10 and Code Listing 9.9. The main departure from the standard implementation is that
we add proofs to all the associated data structures. Union then needs a proof of t1 = t2 and find produces
a proof that the returned representative tr e p is indeed equal to the original term t . Another adjustment
we need to do is to represent the tree as a hash table instead of an array as done usually; hashing a term
gives us an easy way to map terms to hash table entries (see Code Listing 9.8). In order to handle function
applications correctly, we add another kind of edge called congruence edge, represented as sets that are part
of every hashtable entry. These edges associate a term t with all other terms of the form t ′ t or t t ′ – that
is, all other function applications which include t . In this way, when we handle a new equality hypothesis
involving either t or t ′, we can access the terms where it appears and make further updates to the equiva-
lence classes through the use of the theorems congApp1 and congApp2. This is the main functionality of
merge as given in Code Listing 9.12. It is informed of the congruent terms whose equivalence classes also
need updating through the congruent_eq function of Code Listing 9.11. The final code for the equality
checking module that is then registered globally is given in Code Listing 9.13.

We will briefly comment on some interesting points of this code. First, the hashtable implementation
in Code Listing 9.8 is entirely standard, save for the fact that keys are arbitrary λHOL terms and values can
be dependent on them. This is one of the cases where we make use of the fact that VeriML allows mixing
logic-related terms and normal imperative data structures. The type of values is kept parametric for the
hashtable implementation in order to allow reuse; more precisely, instead of being a simple computational
type of kind *, it is a type constructor reflecting the dependency on the keys. In fact, the type of keys is
parametric too, so that any type of λHOL domain objects can become an entry in the hashtable – this is
the reason for the implicit T parameter. The parametric type of hashtables is then instantiated with the
concrete value type constructor eufval_t in Code Listing 9.9. Based on this definition we see that every
term in the hash table is associated with two mutable fields: one representing the parent, along with the
required proof of equality; and another one representing the set of terms corresponding to the congruence
edges.

Perhaps the most surprising fact about the code is that it does not involve any manual proof. All the
points where a proof is required are handled with StaticEqual, which performs a statically-evaluated
call to the default equality checking function. For example, in Code Listing 9.9, line 27, a proof of f a
= farep is discovered, given f = frep, a = arep and frep arep = farep. This is where the code
we have developed so far pays off: all the functions involved in our EUF equality checker are verified,
yet without any additional manual proof effort – save for setting up the data structures in the right way.
We have effectively separated the ‘proving’ part of the decision procedure in the naive rewriter presented
earlier, from the ‘algorithmic’ part of the decision procedure presented here. We believe that further sur-
face syntax extensions can bring the VeriML code even closer to the simply typed version minimizing the
additional user effort required. One such extension would be to automatically infer implicit introduction
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type hash_t = fun {φ : ctx} ⇒ fun val_t : ({T : @Type}, key : @T)→? ⇒1

array (option (({T : @Type}, key : @T) × val_t @key))2

3

let hashget = fun {φ} {val_t} (h : hash_t val_t) {T} key ⇒4

let hn = arraylen h in5

letrec find = fun i : int ⇒ match h.(i) with6

some < key’, val > 7→ holcase @key’ with7

@key 7→ some value8

| @key’’ 7→ find ((i+1)%hn)9

| none |-> none10

in11

find ((hash < @key >) % hn) ;;12

13

let hashget_force = fun {φ val_t} h {T} key ⇒14

optionforce (hashget h key) ;;15

16

let hashset = fun {φ val_t} h {T} key (val : val_t @key) ⇒17

let hn = arraylen h in18

letrec find = fun i : int ⇒19

match h.(i) with20

some < key’, val’ > 7→ holcase @key’ with21

@key 7→ h.(i) := some < @key , val >22

| @key’’ 7→ find ((i+1)%hn)23

| none 7→ h.(i) := some < @key , val >24

in25

find ((hash < @key >) % hn) ;;26

27

type set_t = fun {φ : ctx} ⇒28

(hash_t (fun _ _ ⇒ Unit)) × (list ({T : @Type} × hol(@T))) ;;29

30

let setadd = fun {φ} ((sethash,setlist) as set) {T} t ⇒31

match hashget sethash @t with32

some _ 7→ set33

| none 7→ hashset sethash @t ();34

( sethash, cons < @t > setlist ) ;;35

let setfold = fun {a φ} (f : ( {T} t ) → a → a) (start : a) (_, setlist) ⇒36

listfold (fun cur < t > ⇒ f @t cur) start setlist ;;37

let setiter = fun {φ} (f : ( t ) → Unit) set ⇒38

setfold (fun {T} t u ⇒ f @t) () set ;;39

let setunion = fun φ set1 set2⇒40

setfold (fun {T} t curset ⇒ setadd curset @t) set1 set2 ;;41

Code Listing 9.8: Implementation of hash table with dependent key-value pairs and of sets of terms as
pairs of a hashtable and a list
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type eufval_t = fun {φ T} key ⇒1

(ref ( parent : @T ) × hol( @key = parent ) ) ×2

(ref set_t ) ;;3

4

type eufhash_t = fun {φ} ⇒ hash_t eufval_t ;;5

6

let syntactic_booleq = fun {φ T} e1 e2 ⇒7

match equalchecker_syntactic @e1 @e with8

some _ 7→ true | none 7→ false ;;9

10

letrec find11

: ({φ}, h:eufhash_t, {T:@Type}, t:@T) → (rep:@T) × hol(@t = rep)12

= fun {φ} h {T} t ⇒13

let add_to_congedges = fun {T1} t1 {T2} t2 ⇒14

let < t1rep, _ > = find h @t1 in15

let (_, congedges) = hashget_force h @t1rep in16

congedges := setadd !congedges @t217

in18

let rep_of_funapp19

: ({T T’}, f : @T → T’, a : @T) → (farep : @T’)×hol(@f a = farep)20

= fun {T T’} f a ⇒21

let < frep, fprf > = find h @f in22

let < arep, aprf > = find h @a in23

if (syntactic_booleq @f @frep) && (syntactic_booleq @a @arep) then24

< @f a, StaticEqual >25

else let < farep, faprf > = find h (@frep arep) in26

< @farep, StaticEqual >27

in28

match hashget h @t with29

some (paredge, congedges) 7→30

let < parent, prf > = !paredge in31

if syntactic_booleq @t @parent then !paredge32

else let < rep , prf’ > = find h @parent in33

< @rep , StaticEqual >34

| none 7→ let congedges = ref emptyset in35

holmatch @t with36

@(f : T’ → T) a 7→ let paredge = rep_of_funapp @f @a in37

hashset h @t (ref paredge, congedges);38

add_to_congedges @a @t;39

add_to_congedges @f @t;40

paredge41

42

| @t’’ 7→ let selfedge = < @t , StaticEqual > in43

hashset h @t (ref selfedge, congedges);44

selfedge ;;45

Code Listing 9.9: find – Finding the equivalence class representative of a term
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let union = fun {φ} h ⇒1

fun {T} t1 t2 (prf : @t1 = t2) ⇒2

let < n1rep, prf1 > = find h @t1 in3

let < n2rep, prf2 > = find h @t2 in4

if syntactic_booleq @t1rep @t2rep then ()5

else let (paredge1, congedges1) = hashget_force h @t1rep in6

let (_, congedges2) = hashget_force h @t2rep in7

let paredge1’ =8

< @t2rep , StaticEqual >9

: (t1par : @T)×hol(@t1rep = t1par)10

in11

paredge1 := paredge1’;12

congedges2 := setunion !congedges1 !congedges2;13

congedges1 := emptyset ;;14

Code Listing 9.10: union – Merging equivalence classes

let simple_eq1

: ({φ}) → eufhash_t → ({T}, t1, t2) → option hol(@t1 = t2)2

= fun {φ} h {T} t1 t2 ⇒3

let < t1rep, prf1 > = find h @t1 in4

let < t2rep, prf2 > = find h @t2 in5

holmatch @t1rep with6

@t2rep 7→ some StaticEqual7

| @t1rep’ 7→ none ;;8

9

let congruent_eq10

: ({φ}) → eufhash_t → ({T}, t1, t2) → option hol(@t1 = t2)11

= fun {φ} h {T} t1 t2 ⇒12

(simple_eq h t1 t2) ||13

holmatch @t1, @t2 with14

@(f1 : T’ → T) a1, @(f2 : T’ → T) a2 7→15

do < pff > ← simple_eq h @f1 @f2;16

< pfa > ← simple_eq h @a1 @a2;17

return StaticEqual18

| @t1’, @t2’ 7→ none19

Code Listing 9.11: simple_eq, congruent_eq – Checking equality based on existing knowledge
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letrec merge1

: (φ) → eufhash_t -> ( T, t1 : @T, t2 : @T , prf : @n1 = n2) → Unit2

= fun {φ} h {T} t1 t2 H ⇒3

let mergeifneeded =4

fun {T1} t1 {T2} t2 ⇒5

holmatch @T1 with6

@T2 7→ let < t1rep, _ > = find h @t1 in7

let < t2rep, _ > = find h @t2 in8

if not (syntactic_booleq @t1rep @t2rep) then9

match congruent_eq h @t1 @t2 with10

some < prf2 > 7→ merge h @t1 @t2 @prf211

| none 7→ ()12

| @T1 7→ ()13

in14

let < t1rep, _ > = find h @t1 in15

let < t2rep, _ > = find h @t2 in16

if syntactic_iseq @t1rep @t2rep then ()17

else let (_, congedges1) = hashget_force h @t1rep in18

let (_, congedges2) = hashget_force h @t2rep in19

union h @t1 @t2 @prf;20

setiter (fun T1 t1 ⇒21

setiter (fun T2 t2 ⇒ mergeifneeded @t1 @t2)22

congedges2)23

congedges1 ;;24

Code Listing 9.12: merge – Incorporating a new equality hypothesis

let build_eufhash : (φ : ctx) → eufhash_t @ = fun φ ⇒1

let hyplist = gather_eq_hyps @ in2

let eufhash = emptyhash in3

listfold4

(fun _ < {T}, t1, t2, prf : @t1 = t2 > ⇒5

merge eufhash @t1 @t2 @prf)6

() hyplist;7

eufhash ;;8

9

let equalchecker_euf : equalchecker_t =10

fun {φ T} t1 t2 ⇒11

let eufhash = build_eufhash @ in12

simple_eq eufhash @t1 @t2 ;;13

Code Listing 9.13: equalchecker_euf – Equality checking module for EUF theory
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let rewriter_beta : rewriter_module_t =1

fun recursive {φ T} e ⇒2

holmatch @e with3

@(t1 : T’ → T) t2 7→4

let < t1’, pf1 > = recursive @t1 in5

let < e’, pfe’ > =6

holmatch @t1’ as t1’’7

return ( e’ : @T ) × hol( @t1’’ t2 = e’ )8

with9

@fun x : T’ ⇒ t1body 7→10

< @t1body/[id_φ, t2], @beta (fun x⇒t1body) t2 >11

| @t1’’ 7→ < @t1’ t2 , StaticEqual >12

in < @e’, StaticEqual >13

14

| ( t : @T ). @t 7→ < @t , StaticEqual > ;;15

Code Listing 9.14: Rewriter module for β-reduction

and elimination points for dependent tuples.
After registering the EUF equality checker so that it is always used, the implementation of further

tactics and decision procedures is simplified. It is more robust than the naive rewriter presented earlier,
so users can rely on the equality checker being able to take equality hypotheses into account in most
cases where they would help. For example, we can use it to write a rewriter module for β-reduction,
as presented in Code Listing 9.14. The call to StaticEqual in line 13 relies on the EUF checker in
order to discover the involved proof. The meta-generation of rewriter modules for arbitrary lemmas from
Section 8.3.1, which is used to minimize the effort required to develop modules such as rewrite_beta,
also emits code that relies on the EUF checker.

9.5 Automated proof search for first-order formulas

We will shift our attention to automatically proving first-order formulas involving logical connectives
such as conjunction and disjunction. We will present a simple prover based on a brute-force strategy with
backtracking. The main function of the prover is autoprove in Code Listing 9.15; it uses the function
findhyp to find a proof of a formula using the current hypotheses as presented in Code Listing 9.16; and
it handles implications of the form P1 → P2 through the autoprove_with_hyp function, presented in
Code Listing 9.17.

The autoprove function itself is straightforward. It proceeds by pattern matching on the current
goal, proving conjunctions by attempting to prove both propositions recursively and disjunctions by
attempting to solve the first and backtracking to solve the second if that fails. Universal quantification
starting in line 18 uses the ν construct in order to introduce a new logical variable in the current φ
context, so that we can proceed recursively. Equality is handled through the current equality checking
function. The autoprove_with_hyp function solves goals of the form P1 → P2. We separate it so that
we can handle cases where conjunction or disjunction appear in P1.

In the default case, we attempt to solve the goal using the current hypotheses directly, or by proving
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let autoprove1

: ( {φ}, P : @Prop ) → set_t → option (hol(@P))2

= fun {φ} P visited ⇒3

if setmember visited @P then none4

else5

holmatch @P with6

@P1 ∧ P2 7→ do < prf1 > ← autoprove @P1 visited ;7

< prf2 > ← autoprove @P2 visited ;8

return < @andIntro prf1 prf2 >9

10

| @P1 ∨ P2 7→ (do < prf1 > ← autoprove @P1 visited ;11

return < @orIntro1 prf1 > ) ||12

(do < prf2 > ← autoprove @P2 visited ;13

return < @orIntro2 prf2 > )14

15

| @P1 → P2 7→ autoprove_with_hyp @P1 @P216

17

| @∀x : A, P’ 7→18

do < [ @ , x : A ].prf > ← ν x : A in autoprove @P visited ;19

return < @fun x : A ⇒ prf >20

21

| @True 7→ some < @trueIntro >22

23

| @t1 = t2 7→ default_equalchecker @t1 @t224

25

| @P’ 7→ let visited’ = setadd visited @P in26

(findhyp @P visited’) ||27

(do < absurd > ← findhyp @False visited’ ;28

return < @FalseInd absurd >) ||29

(setremove visited @P; none) ;;30

31

"Auto" := match autoprove @ @? emptyType with32

some prf → prf | none → error ;;33

Code Listing 9.15: autoprove – Main function for automated proving of first-order formulas

217



type hyplist_t = fun {φ : ctx} ⇒ list (( H : @Prop ) × hol( @H )) ;;1

2

let gatherhyps : (φ) → hyplist_t =3

fun φ ⇒4

holmatch @ with5

[] 7→ nil6

| [ φ0 , H : (P : Prop) ] 7→7

let @ = φ0 in8

let hyps = gatherhyps @ in9

let < P’, prfeq > = default_rewriter @P in10

ν H : P in11

cons < @P’ , {{ Exact H }} > hyps12

| [ φ0, t : (T : Type) ] 7→ gatherhyps φ013

| [ φ0, t : Type] 7→ gatherhyps φ0 ;;14

15

let findhyp16

: ( {φ}, Goal : @Prop ) → set_t → option (hol( @Goal ))17

= fun {φ} Goal visited ⇒18

let hyps = gatherhyps @ in19

listfold20

(fun curprf < Hyp : @Prop, hyp : @Hyp > ⇒21

(curprf) ||22

(do < prfeq > ← default_equalchecker @Hyp @Goal ;23

return (Exact @hyp)) ||24

(holmatch @Hyp with25

@P → Q 7→26

do < prfeq > ← default_equalchecker @P→Q @P→Goal ;27

< prfP > ← autoprove @P visited ;28

return (Exact @hyp prfP)) ||29

(holmatch @Hyp with30

@P1 → P2 → Q 7→31

do < prfeq > ← default_equalchecker @P1→P2→Q @P1→P2→Goal ;32

< prfP > ← autoprove @P1∧P2 visited ;33

return (Exact @hyp (andElim1 prfP) (andElim2 prfP))))34

none l35

Code Listing 9.16: findhyp – Search for a proof of a goal in the current hypotheses
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let autoprove_with_hyp1

: ( {φ}, H : @Prop, G : @Prop ) → option (hol(@H → G))2

= fun {φ} H G ⇒3

holmatch @H with4

@P1 ∧ P2 7→ do < prf > ← autoprove_with_hyp @P1 @P2 → G ;5

return < @fun h ⇒ prf (andElim1 h) (andElim2 h) >6

7

| @P1 ∨ P2 7→ do < prf1 > ← autoprove_with_hyp @P1 @G ;8

< prf2 > ← autoprove_with_hyp @P2 @G ;9

return < @fun h ⇒ orInd prf1 prf2 h >10

11

| @H’ 7→12

do < [@, h : H].g > ← ν h : H in autoprove @G emptyset ;13

return < @fun h ⇒ g >14

Code Listing 9.17: autoprove_with_hyp – Auxiliary function for proving a goal assuming an extra
hypothesis

absurdity from the current hypotheses. We use the findhyp function to do this from Code Listing 9.16,
which either tries to find a hypothesis that matches the goal up to the current equality checking relation, or
a hypothesis that matches the goal save for some extra premises. These premises are then solved recursively
using autoprove. In order to avoid infinite loops that could arise from this behavior, we maintain a
set of propositions that we have already attempted to solve in the visited argument of autoprove.
The findhyp function utilizes the auxiliary gatherhyps function, which separates hypotheses from the
current φ context and stores them into a list so that they can be further manipulated. This is mostly
similar to gather_eqhyps as seen earlier.

Using this automated prover we can solve goals that involve the basic first-order connectives. For
example, the following lemma can be proved automatically thanks to the logical reasoning provided by
autoprove and the equality reasoning provided through equalchecker_euf.

Lemma test1 : ∀x,y,z.(x=y∧y=z) ∨ (z=y∧y=x) → x = z := Auto ;;

9.6 Natural numbers

We will now present the VeriML implementation of the theory of natural numbers including the addition
and multiplication functions, along with their algebraic properties. The type of natural numbers is defined
as an inductive type in λHOL as shown in Code Listing 9.18, lines 1 through 3. This definition generates a
number of constants to perform elimination and induction on natural numbers following the description
of Subsection 8.2.2. Elimination is governed by the two generated rewriting lemmas NatElimzero and
NatElimsucc; we add these to the default equality checking procedure through rewriter meta-generation
as described in Section 8.3.1. In this way when using functions defined through elimination, such as
addition and multiplication, their result will be computed during equality checking. These are shown in
lines 5 through 13.

We next define a tactic that simplifies the use of the natural number induction principle. We need this
so that the types of the base and inductive cases do not include β-redeces in the common case. Such rede-

219



Inductive Nat : Type :=1

zero : Nat2

| succ : Nat → Nat ;;3

4

(* generated constants:5

NatElim : [T : Type]T → (Nat → T → T) → Nat → T;;6

NatElimzero : [T : Type]∀fz fs, NatElim fz fs zero = fz;;7

NatFoldsucc : [T : Type]∀fz fs n, NatElim fz fs (succ n) =8

fs n (NatElim fz fs n);;9

NatInd : ∀P : Nat → Prop, P zero → (∀n,P n → P (succ n)) → ∀n,P n;; *)10

11

global_rewriter_add (GenerateRewriter NatElimzero);;12

global_rewriter_add (GenerateRewriter NatElimsucc);;13

14

let nat_induction =15

fun φ (P : [φ, x : Nat].Prop)16

(pf1 : hol(@P/[id_φ,0]))17

(pf2 : hol(@∀x : Nat, P/[id_φ,x] → P/[id_φ, succ x]))18

(spf1 : hol(@?)) (spf2 : hol(@?)) (spf3 : hol(@?)) ⇒19

let < pf1’ > = Exact pf1 by spf1 in20

let < pf2’ > = Exact pf2 by spf2 in21

(Exact < @NatInd (fun x ⇒ P) pf1’ pf2’ > by spf3)22

: hol( @∀x : Nat, P ) ;;23

24

"NatInduction for x.P base case by e1 inductive case by e2" :=25

nat_induction @ (νx in @P) e1 e2 StaticEqual StaticEqual StaticEqual ;;26

Code Listing 9.18: Definition of natural numbers and natural induction tactic
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ces arise in most cases of using natural number induction because the induction principle is represented
as a Nat→ Prop predicate, usually of the form fun x ⇒ P. The lack of β-reduction support in the def-
initional equality of λHOL means that an application of this predicate such as (fun x ⇒ P) 0 has to
be explicitly proved to be equal to P/[id, 0]. The induction tactic uses the default equality checking
function in order to prove the equality between such forms, allowing the user to consider the reduced
forms for the base and inductive case.

A surprising thing about nat_induction is that it does not directly use the StaticEqual tactic to
solve the involved equalities in its code. The essential reason is that the positions where this tactic would
be used, in all applications of the Exact tactic, do not fall under the constraints imposed by the collapsing
transformation described in Section 5.2: they include non-identity substitutions for the metavariable P .
Thus this transformation cannot be directly used so that ReqEqual is called statically inside the code of
nat_induction. Yet we expect that in most cases where the induction tactic is used the constraints of
the collapsing transformation will indeed be satisfied and the involved proofs can be statically discovered
at those points. We therefore transfer the requirement for the equality proofs from the place where
the induction tactic is defined to all the places where it is used. Through suitable syntactic sugar, this
additional requirement is hidden from the user.

In Code Listing 9.19, we present the definition and algebraic properties of the natural number addi-
tion function. The proofs of the properties are mostly automated save for having to specify the induction
principle used. The fact that the induction principle has to be explicitly stated in full stems from a limita-
tion in the type inference support of the VeriML prototype. The automation comes from the extensible
equality checking support: as soon as a property is proved it is added to the global default rewriter, which
enables equality checking to prove the required obligations for further properties. Thus by proving the
lemmas in the right order, we can limit the amount of the required manual effort. After proving the
commutativity and associativity properties of addition, we use a generic commutativity and associativity
equality module to add them to the global equality checking procedure. The type of the generic module
is:

equalchecker_comm_assoc : ({T : @Type}, {op : @T → T → T}) →
(op_comm : @∀x y, op x y = op y x) →
(op_assoc : @∀x y z,op x (op y z) = op (op x y) z) →
equalchecker_t ;;

We do not give the code of this function here. It proceeds by pattern matching on terms, ordering appli-
cations of the op argument (here instantiated as the addition function plus), based on the hash values of
their arguments. It yields a normalized form for terms that are equivalent up to associativity and com-
mutativity. This function resembles the naive equality rewriter of Section 9.3 and suffers from similar
shortcomings: it can only prove simple cases where associativity and commutativity apply and it imple-
ments a very inefficient strategy.

The theory of multiplication is similar and is presented in Code Listing 9.20. We have elided the
global rewriter registration calls for presentation purposes; they directly follow the addition case. The
main difference with addition is that not all proofs are automatic: in the theorems mult_x_Sy and
mult_plus_distr, the equality checking support is not enough to prove the inductive case. We have
to specify explicitly that terms should be rewritten based on the induction hypothesis instead – using a
tactic similar to the naive rewriter of Section 9.3, which only rewrites terms based on a given equality
proof. To see why this is necessary, consider the following proof obligation from mult_x_Sy, line 17:

221



Definition plus : Nat → Nat → Nat := fun x : Nat ⇒ fun y : Nat ⇒1

NatElim y (fun p r ⇒ succ r) x ;;2

3

Temporary Rewriter (Unfolder plus) in {4

Theorem plus_Z_y : ∀y,0 + y = y := Auto ;;5

Theorem plus_Sx_y : ∀x y,(succ x) + y = succ (x + y) := Auto ;;6

}7

8

global_rewriter_add (GenerateRewriter plus_Z_y);;9

global_rewriter_add (GenerateRewriter plus_Sx_y);;10

11

Theorem plus_x_Z : ∀x : Nat, x + 0 = x :=12

NatInduction for x. x + 0 = x13

base case by Auto14

inductive case by Auto ;;15

16

Theorem plus_x_Sy : ∀(x y : Nat), x + (succ y) = succ (x + y) :=17

Intro x y in18

Instantiate19

(NatInduction for z. z + (succ y) = succ (z + y)20

base case by Auto21

inductive case by Auto)22

with @x ;;23

24

global_rewriter_add (GenerateRewriter plus_x_Z);;25

global_rewriter_add (GenerateRewriter plus_x_Sy);;26

27

Theorem plus_comm : ∀(x y : Nat), x + y = y + x :=28

Intro x y in29

NatInduction for y. x + y = y + x30

base case by Auto31

inductive case by Auto ;;32

33

Theorem plus_assoc : ∀(x y z : Nat), x + (y + z) = (x + y) + z :=34

Intro x y in35

NatInduction for z.x + (y + z) = (x + y) + z36

base case by Auto37

inductive case by Auto ;;38

39

global_equalchecker_add (equalchecker_comm_assoc plus_comm plus_assoc) ;;40

Code Listing 9.19: Addition for natural numbers
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Definition mult : Nat → Nat → Nat := fun x : Nat ⇒ fun y : Nat ⇒1

NatElim 0 (fun p r ⇒ y + r) x ;;2

3

Theorem mult_z_y : ∀y : Nat, 0 * y = 0 := Auto ;;4

Theorem mult_Sx_y : ∀(x y : Nat), (succ x) * y = y + (x * y) := Auto ;;5

6

Theorem mult_x_z : ∀x : Nat, x * 0 = 0 :=7

NatInduction for x. x * 0 = 08

base case by Auto9

inductive case by Auto ;;10

11

Theorem mult_x_Sy : ∀x y, x * (succ y) = x + (x * y) :=12

Intro x y in13

Instantiate14

(NatInduction for z. z * (succ y) = z + (z * y)15

base case by Auto16

inductive case by ( Intro z in Assume IH in Rewrite @IH in17

Auto ) )18

with @x ;;19

20

Theorem mult_comm : ∀x y, x * y = y * x :=21

Intro x in22

NatInduction for y. x * y = y * x23

base case by Auto24

inductive case by Auto ;;25

26

Theorem mult_plus_distr : ∀x y z, x * (y + z) = (x * y) + (x * z) :=27

Intro x y z in28

Instantiate29

(NatInduction for a. a * (y + z) = (a * y) + (a * z)30

base case by Auto31

inductive case by ( Intro a in Assume IH in Rewrite @IH in32

Auto ) )33

with @x ;;34

35

Theorem mult_assoc : ∀x y z, x * (y * z) = (x * y) * z :=36

Intro x y in37

NatInduction for z.x * (y * z) = (x * y) * z38

base case by Auto39

inductive case by Auto ;;40

Code Listing 9.20: Multiplication for natural numbers
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I H : z ∗ (succ y) = z +(z ∗ y)

G : (succ z) ∗ (succ y) = (succ z)+ ((succ z) ∗ y)

Equality checking proceeds as follows. First we rewrite the left-hand side and right-hand side of the
equality to normal form based on the current default rewriter:

(LHS) (succ z) ∗ (succ y)−→ (mult_Sx_y)
(succ y)+ z ∗ (succ y)−→ (plus_Sx_y)
succ (y + z ∗ (succ y))

(RHS) (succ z)+ ((succ z) ∗ y)−→ (plus_Sx_y)
succ (z +(succ z) ∗ y)−→ (mult_Sx_y)
succ (z + y + z ∗ y)

The current equality checking cannot decide these two normal forms to be equal. In order for the EUF
procedure to take the induction hypothesis into account, there would need to be an explicit z + z ∗ y
subterm in the RHS. Such a term would only appear if we rewrite the RHS into y + z + z ∗ y based on
commutativity, yet the naive commutativity support does not have any sophistication so as to perform
this commutativity step; rewriting into this form would be just a coincidence based on the hash values
of the terms and we should not therefore depend on it. What we do instead is to force a rewriting step
in the LHS based on the inductive hypothesis, resulting in the equivalent term succ (y + z + z ∗ y). Now
the naive commutativity support will rewrite both the LHS and RHS into the same normal form and
syntactic equality yields the desired equality proof.

The distributivity property of multiplication with regards to addition requires no special provision in
terms of equality checking support; the default meta-generated rewriter for it is enough to handle cases
where it needs to be used.

9.7 Normalizing natural number expressions

We will now develop a more sophisticated rewriter that normalizes arithmetic terms up to associativity
and commutativity of addition and multiplication. The rewriter works as follows: given an arithmetic
term, it constructs a list of monomials of the form a · x where a is a constant expression and x is a variable
or a product of variables (nat_to_monolist in Code Listing 9.23); the list is sorted so that monomials
on the same variable become adjacent (sort_list in Code Listing 9.22); consecutive monomials on the
same variable are factorized (factorize_monolist in Code Listing 9.24); and the list of monomials is
converted back into an arithmetic expression. These auxiliary functions need to be partially correct so
that the resulting rewriter can prove that rewriting a term t to t ′ based on this sequence of steps is actually
valid. For example, the nat_to_monolist function has to return a monomials list that, when summed,
is equivalent to the original number; and sorting a list of monomials needs to return the same list, albeit
permuted. Note that the second property of sorting, namely the fact that the returned list is ordered, is
not important for our purposes.

In order to be able to specify and reason about the behavior of these functions, we need a definition
of lists at the level of the logic. This is shown in Code Listing 9.21. Contrast this definition with the
definition of lists at the computational level of VeriML, as seen earlier in Code Listing 9.1: the logic
definition allows us to reason about lists, describing the behavior of list-related functions at the logic or
computational level; whereas the computational definition allows us to define lists of arbitrary VeriML
values, including mutable references and contextual terms but precludes reasoning about their behavior.
The effort associated with having to duplicate definitions can be mitigated by having logic definitions
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Inductive List [ T : Type ] : Type :=1

nil : List2

| cons : T → List → List ;;3

4

Definition append [T : Type] : List/[T] → List/[T] → List/[T] :=5

fun x y ⇒ ListElim y (fun hd tl r ⇒ cons hd r) x ;;6

7

Definition sumlist : List/[Nat] → Nat :=8

ListElim 0 (fun hd tl r ⇒ hd + res) ;;9

10

Lemma sum_append : ∀l1 l2,11

sumlist (append l1 l2) = (sumlist l1) + (sumlist l2)12

13

Inductive removed [T : Type] : List/[T] → T → List/[T] → Prop :=14

removedHead : ∀hd tl, removed (cons hd tl) hd tl15

| removedTail : ∀elm hd tl tl’, removed tl elm tl’ →16

removed (cons hd tl) elm (cons hd tl’) ;;17

18

Lemma removed_sum : ∀l elm l’,19

removed l elm l’ → sumlist l = elm + (sumlist l’)20

21

Inductive permutation [T : Type] : List/[T] → List/[T] → Prop :=22

permutationNil : permutation nil nil23

| permutationCons : ∀hd l1’ l2 l2’, removed l2 hd l2’ →24

permutation l1’ l2’ →25

permutation (cons hd l1’) l2 ;;26

27

Theorem permutation_sum : ∀l1 l2,28

permutation l1 l2 → sumlist l1 = sumlist l229

30

Lemma permutation_removed [T : Type] : ∀l1 elm l1’ l2’,31

removed l1 elm l1’ → permutation l1’ l2’ →32

permutation l1 (cons elm l2’)33

34

Theorem permutation_symm [T : Type] : ∀l1 l2,35

permutation l1 l2 → permutation l2 l136

Code Listing 9.21: Definition of lists and permutations in λHOL, with associated theorems
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implicitly define the equivalent computational versions as well.
In Code Listing 9.21 we also give the definitions of the append function at the logical level and of

sumlist which accumulates together the members of lists of natural numbers. We also define the predi-
cate of a list being a permutation of another, as well as the auxiliary predicate removed l1 elm l1’. This
stands for the property “if the element elm is removed from the list l1, the resulting list is l1’”. Last, we
give statements of lemmas about the interaction of these functions. We do not give the proofs here; these
follow the ideas presented so far. The proof that presents the most difficulty is the permutation_symm
theorem, taking 50 lines in total. It requires proving an inversion lemma for permutations and a number
of manual proof steps. This proof could be significantly improved by meta-generation of inversion prin-
ciples, as well as the development of automation for user-defined predicates following the ideas presented
for the equality predicate; we leave these matters to future work.

In Code Listing 9.22 we present the sorting function for lists. This is a computational function that
manipulates logical lists. The reason behind this choice is that we want to sort lists based on the hash
of their elements – that is, based on an extra-logical operation –, yet we also need a proof that sorting
returns a permutation of the original list – therefore the choice of logical lists. We leave the comparison
operation as a parameter to the sorting function. The sorting algorithm we implement is selection sort;
we use the auxiliary function min_list to remove the minimum element of a list. In both functions we
provide manual proofs of most obligations, using the definitions and lemmas of Code Listing 9.21. A
point worth mentioning is that we need to explicitly rewrite the input lists to head-normal form before
pattern matching is performed, as matching happens only up to syntax and not up to β-equivalence or
evaluation of logical functions such as append.

The rest of the code for arithmetic simplifications is presented in Code Listing 9.23 and 9.24, following
the description given earlier. Sorting of monomial lists is done using the comparison function cmp. This
function only uses the hash value of the variable component x, thus making monomials on the same
variable adjacent in the sorted list. It is worth noting that most of the proof obligations for these functions
are solved automatically for the most part –an additional hint is required in some cases– and are validated
statically following the ideas we have seen earlier.

9.8 Evaluation

This concludes our presentation of the examples we have implemented in VeriML. It is worth noting
that the full code of the examples mentioned above is about 1.5k lines of VeriML code, including all the
infrastructure and basic library code we describe. We offer a breakdown of the line counts for the different
modules in Table 9.1. In the same table we note the line counts for the proof-related aspects of the code,
which include all logic definitions, proofs, hints (as additions of meta-generated rewriters) and induction
tactics, in order to give an accurate portrayal of the λHOL-related reasoning that the programmer has to
do. It is worth noting that the vast majority of the proof-related code corresponds to defining and proving
the theory of natural numbers, lists and permutations. The actual conversion implementation functions
have minimal manual proof involved.

It is worth contrasting these line counts with the two tactics in Coq that are roughly equivalent in
functionality to our implementation of the EUF and arithmetic simplification conversion rules, namely
congruence and ring_simplify respectively. This comparison is shown in Table 9.2. For EUF con-
version in VeriML, we have included the naive equality rewriter as well as the main EUF module; for
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letrec min_list1

: ({φ : ctx}, {T : @Type}, cmp : (@T) → (@T) → bool, l : @List) →2

(min : @T) × (rest : @List) × hol(@removed l min rest)3

= fun {φ T} cmp l ⇒4

let < @l’ , @pfl’ > = default_rewriter @l in5

let < @min, @rest, @pf > =6

holmatch @l’ with7

@nil 7→ error8

| @cons hd nil 7→ < @hd , @nil , @removedHead ? ? >9

| @cons hd tl 7→10

let < min’, rem, pf > = min_list cmp @tl in11

if (cmp @hd @min’ ) then12

< @hd , @tl, Exact @removedHead hd tl >13

else14

< @min’, @cons hd rem, @removedTail pf >15

in < @min , @rest , {{ Auto }} > ;;16

17

18

let sort_list19

: ({φ : ctx}, {T : @Type}, cmp : (@T) → (@T) → bool, l : @List) →20

(l’ : @List) × hol (@permutation l l’)21

= fun {φ T} cmp l ⇒22

let < lnorm , pflnorm > = default_rewriter @l in23

let < l’ , pfl’ , u > =24

holmatch @lnorm with25

@nil 7→ < @nil , @permutationNil >26

| @cons hd tl 7→27

let < newhd, newtl, prf1 > = min_list cmp (@cons hd tl) in28

let < newtl’, prf2 > = sort_list cmp @newtl in29

let < prf2’ > = < @permutation_symm prf2 > in30

< @cons newhd newtl’ ,31

@permutation_symm (permutationCons prf1 prf2’) >32

in < @l’, {{ Auto }} > ;;33

Code Listing 9.22: Selection sorting for lists
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let is_const = fun {phi} n ⇒1

holmatch @n with @const/[] 7→ true | @n’’ 7→ false ;;2

3

let nat_to_monolist4

: ({φ : ctx} , n : @Nat) → ( l : @List ) × hol( @n = sumlist l ) ;;5

= fun {φ} n ⇒ holmatch @n with6

@a + b 7→7

let < l1, pf1 > = nat_to_monolist @a in8

let < l2, pf2 > = nat_to_monolist @b in9

< @append l1 l2 , {{ Cut @sum_append l1 l2 in Auto }} >10

11

| @a * b 7→12

if is_const @a && is_const @b then13

< @cons ((a * b) * 1) nil , {{ Auto }} >14

else if is_const @a then15

< @cons (a * b) nil , {{ Auto }} >16

else if is_const @b then17

< @cons (b * a) nil , {{ Auto }} >18

else19

< @cons (1 * (a * b)) nil , {{ Auto }} >20

21

| @e 7→ if is_const @e then22

< @cons (e * 1) nil , {{ Auto }} >23

else24

< @cons (1 * e) nil , {{ Auto }} > ;;25

26

let cmp = fun φ e1 e2 ⇒27

holmatch @e1, @e2 with28

@a1 * b1, @a2 * b2 7→ ( hash @b1 ) < ( hash @b2 )29

| @e1 , @e2 7→ ( hash @e1 ) < ( hash @e2 )30

Code Listing 9.23: Rewriter module for arithmetic simplification (1/2)
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let factorize_monolist1

: ({φ : ctx}, l : @List) → (l’ : @List) × hol( @sumlist l = sumlist l’ )2

= fun {φ n} l ⇒ holmatch @l with3

@cons (hda * hdb) tl 7→4

let < tl’ , pftl’ > = factorize_monolist @tl in5

holmatch @tl’ with6

@cons (hdc * hdb) tl’’ 7→7

< @cons ((hda + hdc) * hdb) tl’’ ,8

{{ Rewrite @pftl’ in ReqEqual }} >9

| @tl’ 7→ < @cons (hda * hdb) tl’ , StaticEqual >10

| @l 7→ < @l , StaticEqual > ;;11

12

let rewriter_arithsimpl : rewriter_module_t =13

fun recursive {φ T} e ⇒14

holmatch @e with15

@e1 + e2 7→16

let < l0, pf1 > = nat_to_monolist @e1+e2 in17

let < l1, pf2 > = sort_list cmp @l0 in18

let < l2, pf3 > = factorize_monolist @l1 in19

< @sumlist l2, {{ Cut @permutation_sum l0 l1 in Auto }} >20

| @e 7→ < @e , StaticEqual > ;;21

Code Listing 9.24: Rewriter module for arithmetic simplification (2/2)

Logic definitions,
Total lines of code proofs, hints

Basic library 131 16
Basic connectives 36 36
Basic rewriting support 191 19
Naive equality rewriter 79 2
Hash tables and sets (Prop and Type) 69x2=138 0
EUF rewriter 200 0
β-rewriting 21 1
Auto prover 178 14
Naive comm./assoc. rewriting 111 17
Force rewriting on hypothesis 56 7
Theory of natural numbers 128 128
Lists, permutations and sorting 200 158
Arithmetic simplification 84 3

Full code involved 1581 401

Table 9.1: Line counts for code implemented in VeriML
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Total code Manual proof
VeriML
EUF conversion 279 2
Arithmetic simplification 395 178
Natural numbers theory 128 128

Coq
Congruence 1437 62
Ring simplification 1997 846
Abstract ring theory 259 259

Table 9.2: Comparison of line counts for EUF rewriting and arithmetic simplification between VeriML
and Coq

arithmetic simplification, we have included the naive commutativity and associativity rewriter, the the-
ory of lists and the arithmetic simplification procedure. In both of these cases some of the code is reusable:
e.g. the theory of lists consists of theorems that are useful independently of arithmetic simplification, and
the code of the naive rewriter is mostly reused for implementing the forced rewriting procedure. In com-
puting the line counts for the Coq versions, we have manually isolated the proof-related lines, such as
calls to tactics and CIC constructors inside ML code in the case of the congruence tactic, and the lemmas
proved using LTac proof scripts in the case of ring simplification. In the same table, we have also included
the counts for our development of the theory of natural numbers, as well as the theory of abstract rings
used by ring_simplify which are composed of roughly the same theorems.

The VeriML versions of the tactics and proofs compare favorably to their Coq counterparts; it is
telling that the manual proofs required for all of our VeriML code, including basic logic definitions and
tactics, is half the size of the proofs required just for arithmetic simplification in Coq. In arithmetic sim-
plification, the Coq proofs are about 5 times larger than their VeriML equivalent; in the EUF procedure,
the ratio is 30:1, or 3:1 if we include the basic rewriting support code of VeriML (which is what accounts
for the congruence properties). The main reason behind the significant reduction in manual proof size for
the VeriML versions is the way we implement our proofs and proof-producing functions, making use of
the extensible conversion support. As for the overall reduction in code size, the main reason is that we do
not have to go through encodings of logical terms such as the ones used by proof-by-reflection or transla-
tion validation, as required by the Coq versions, but can rather work on the exact terms themselves. Of
course the comparison of line counts for the programming aspect of the procedures cannot provide accu-
rate grounds for drawing conclusions. This is especially true since the compared tactics are for different
logics, use more realistic and full-featured implementations of the algorithms we describe (e.g. congruence
takes injectivity of constructors into account) and the performance is not yet comparable, owing largely
to our prototype VeriML implementation. Still, the difference in manual proof effort required indicates
the savings that VeriML can offer.
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Chapter 10

Related work

There is a large body of existing related literature that the work in this dissertation rests upon. The design
of VeriML is such that it can be viewed as either a programming language tailored to tactic programming
or as a complete proof assistant. We will therefore compare VeriML to other tactic development method-
ologies as well as existing architectures of proof assistants. When viewed as a programming language, the
core departure of VeriML from traditional functional programming languages such as ML and Haskell is
the availability of constructs for type-safe manipulation of an object language; we will present a number
of existing language designs that contain similar constructs. Last, VeriML represents a particular way of
combining a logic with a side-effectful programming language, where a strong separation between the two
languages is maintained. We will compare this approach with other potential combinations.

10.1 Development of tactics and proof automation

Tactic development in ML. Most modern proof assistants, such as HOL [Slind and Norrish, 2008,
Harrison, 1996], Isabelle [Paulson, 1994], Coq [Barras et al., 2012] and NuPRL [Allen et al., 2000], allow
users to extend the set of available tactics, by programming new tactics inside the implementation language
of the proof assistant. In all cases this language is a dialect of Standard ML [Milner, 1997]. In fact, ML
was designed precisely for this purpose in the context of the original LCF system [Gordon et al., 1979]
– as the Meta Language of the system, used to manipulate the terms of the logic – the object language.
Developing tactics in ML is thus the canonical methodology used in the direct descendants of this system
such as HOL.

The programming constructs available in ML were chosen specifically with tactic development in
mind, making the language well-suited to that purpose. For example, higher-order functions are available
so that we can define tacticals – functions that combine other tactics (which are functions themselves).
The programming model available in ML is very expressive, allowing general recursion, mutable refer-
ences and other side-effectful operations; this enables the development of efficient tactics that make use of
sophisticated algorithms and data structures such as discrimination nets [Gordon, 2000].

The main problem with tactic development in ML is that it is essentially untyped. Logical terms and
proofs are encoded within ML as algebraic data types. Data types are simply-typed in ML, effectively
identifying all proofs and all terms at the level of types and precluding any extra information – such as
the context of free variables they depend on, or the kinds of terms, or the consequence of proofs – from
being available statically. This hurts the composability of tactics and their maintainability as well, as
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we cannot give precise signatures to the kinds of arguments they expect, the results they produce and the
relationships between them. VeriML can be viewed as a dependently-typed extension of ML that addresses
this shortcoming, by making the type of proofs and logical terms dependent on the information produced
by the type system of the logic. The relationship between programming tactics in VeriML instead of ML
is therefore similar to the relationship of developing functional programs in ML instead of Lisp.

For example, the VeriML type we gave to rewriters is the following:

(φ : ctx,T : Type, t : T )→ (t ′ : T )× (t = t ′)
In ML, the equivalent type would be:

holterm→ holterm× holproof

In this type, the fact that the input and output terms share the same type and variable context, as well
as the fact that the output proof witnesses the equivalence between the input and output terms is lost.
Still, the types holterm and holproof have equivalent types in VeriML, constructed by hiding the extra
context and typing information through existential packages: the types (φ : ctx,T : Type)× (t : T ) and
(φ : ctx, P : Prop)× (p : P ), respectively. This shows that, in principle, any tactic written in ML for an
LCF-style proof assistant can be written as a VeriML function instead.

Another shortcoming of ML in terms of tactic development is that users have to master the internal
representation of logical terms and proofs in the proof assistant. For examples, the user needs to know the
details of how logical variables are encoded through deBruijn indices in order to develop tactics that deal
with open terms. This can be somewhat mitigated through proper syntactic extensions to ML as done in
HOL-Light [Harrison, 1996]. The first-class constructs for pattern matching over open logical terms and
contexts make tactic development in VeriML more convenient, hiding the implementation details of the
proof assistant.

Tactic development in LTac. The Coq proof assistant offers the higher-level LTac language [Delahaye,
2000, 2002], which is specifically designed for tactic development. This is a significant feature, as it enables
users to extend the provided automation with their own tactics through convenient pattern-matching
constructs, addressing the above-mentioned shortcoming of tactic development in ML. LTac has been put
to good use in various developments where the manual proof effort required is reduced to a minimum [e.g.
Chlipala, 2011, Morrisett et al., 2012]. The key construct of LTac is the support for pattern matching on
proof states with backtracking. It is used to examine the forms of the current hypotheses and the current
goal and to issue the corresponding tactics; upon failure of such tactics, LTac implicitly backtracks to an
alternative pattern matching case allowing further progress. The pattern matching construct of VeriML
has been influenced by LTac; it is similar in features, save for the backtracking support which we have
chosen to leave as a user-defined feature instead.

Other than the pattern matching construct, LTac is an untyped functional language without support
for ML-style data types or side-effects such as mutability. This hurts expressivity, prompting users to use
ad-hoc idioms to overcome the limited programming model of LTac. In order to write more sophisticated
tactics such as congruence closure, one has to revert to ML. Also, LTac is interpreted, leading to long
running times for large tactics. Last, the untyped nature of the language makes LTac tactics notoriously
hard to maintain and debug and are sometimes avoided precisely for this reason [e.g. Nanevski et al.,
2010]. VeriML addresses these shortcomings by offering an expressive type system, a full programming
model and compilation through translation to ML; it can thus be seen as a ‘typed LTac’.
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Proof by reflection. Coq offers another methodology for writing user-defined tactics, enabled by the
inclusion of the conversion rule in its logic. This rule renders the logic (referred to as Gallina) into
a functional programming language. For reasons of soundness, programs in this language need to be
terminating. Through the technique of proof by (computational) reflection [Boutin, 1997], we can program
the decision procedures directly in the logic language. The technique consists of reflecting part of the
propositions of the logic as an inductive type within the logic itself, so that they can be manipulated as
a normal datatype. Also, we need to define encoding and decoding functions from propositions to the
inductive type and back. The decision procedure can then be programmed as a function at the level of
the logic and its correctness can be stated and proved as a normal theorem, using the interactivity support
of Coq. A sketch of the different components involved in the proof-by-reflection approach would be as
follows using VeriML-style types:

Inductive IProp : Type := IAnd ip1 ip2 | IOr ip1 ip2 | · · · .
encode : Prop→ IProp (programmed in LTac)
decode : IProp→ Prop (programmed in Gallina)
decision_procedure : IProp→ Bool (programmed in Gallina)
correctness : ∀ i p : IProp.decision_procedure i p = true→ decode i p

In VeriML, the first three components would not be needed because we can manipulate propositions
directly; and we can write a single function that combines the last two components:

decision_procedure : (P : Prop)→ option (P )

The fact that the decision procedures written in proof-by-reflection style are certified means that the
procedures do not need to generate proof objects; thus procedures written in this style are very efficient.
Together with the fact that Gallina functions are total, decision procedures that are complete for certain
theories do not even need to be evaluated; their definition and soundness proof is enough to prove all
related theorems directly. This fact has prompted Pollack [1995] to propose total and certified decision
procedures, developed using a mechanism similar to proof-by-reflection, as the main extensibility mecha-
nism for proof assistants; yet this proposal has not been followed through.

The main problem with this approach is that it has a high up-front cost for setting up the reflection, es-
pecially if we want our decision procedure to manipulate open terms: a concrete deBruijn representation
must be used for representing variables and the user must also develop functions to manipulate this rep-
resentation. Pattern matching over such encodings is cumbersome compared to the first-class constructs
offered by LTac or VeriML. Also, the programming model of Gallina does not support side-effects in the
code of the decision procedures. In VeriML we can code similar procedures which are also certified, yet
the total correctness requirement is relaxed: VeriML procedures can still fail to terminate successfully,
so they need to be evaluated to completion. This is a limitation compared to proof-by-reflection, as it
increases the required run time; but it can also be viewed as an advantage, as we do not have to prove
termination of the decision procedures. Non-terminating behavior is not necessarily a problem and can
be used towards good effect in our developments (e.g. consider the naive equality rewriter of Section 9.3,
which is non-terminating in some cases). In other cases, a procedure is terminating yet its termination cri-
terion might be difficult to prove. In proof-by-reflection, the totality requirement has to be circumvented
through the use of an argument that limits the amount of steps that are performed. Also, the certification
of VeriML procedures is more light-weight than proof by reflection: the type system of VeriML can be
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viewed itself as a light-weight certification mechanism. Coupled with the support for static proof expres-
sions to solve the required proof obligations inside procedures, this significantly limits the manual proof
effort required.

Still, the proof-by-reflection technique can be used in the context of VeriML, which could potentially
be useful in large developments. In fact VeriML offers benefits for programming the LTac components of
the proof-by-reflection procedures. For example, we could assign the following rich type to the encoding
function:

encode : (P : Prop)→ (I : IProp)× (decode I = P)
Also, the small-scale automation mechanism used to implement proof-by-reflection, namely the conver-
sion rule, is programmed directly in VeriML as well, leading to a smaller trusted base.

Yet the unique characteristic of the proof-by-reflection approach is that the tactics are themselves
logical functions. Therefore we can reason about them using the full features of the logic, allowing us
to prove deep theorems about their behavior. Together with the fact that Gallina has an infinite type
hierarchy with computation allowed at any level, this would allow us to give very precise signatures to
tactics – e.g. capturing precisely the set of cases where an automation tactic can be applied successfully.
In contrast, VeriML maintains a two-layer architecture, where tactics are written in the computational
language and cannot be reasoned about in the logic. Thus the signatures that we can give to tactics are
limited to what is allowed by the VeriML type system. In the future we would like to explore the potential
of offering VeriML as a surface language in a proof assistant such as Coq, where VeriML-defined tactics
are compiled down to Gallina tactics through proof-by-reflection. This is an interesting alternative that
offers some of the benefits of both approaches: the up-front cost of setting up proof-by-reflection would
be significantly reduced, but we could also reason about VeriML tactics in the logic. Still, the tactics would
not be able to use side-effects and an efficient evaluation strategy for the conversion rule (e.g. compilation-
based) would need to be part of the trusted base of the system.

Unification-based automation. Coq includes another small-scale automation mechanism other than
the conversion rule: a unification-based type inference engine used to elaborate surface-level terms to con-
crete CIC terms. By issuing hints to this engine, users can perform automation steps as part of type
inferencing. The hints take the form of Prolog-like logic programs. Gonthier et al. [2011] show how
these hints can be encoded through the existing Coq mechanism of canonical structures (a generalization
of type classes); also, the experimental Matita proof assistant includes explicit support for these unification
hints [Asperti et al., 2009]. This technique offers various advantages over untyped LTac-style automation
tactics: Automation procedures are essentially lemmas whose premises are transparently resolved through
unification. Therefore we can specify and develop the main part of the automation lemmas by using the
existing infrastructure of the proof assistant for proving lemmas. Also, since the technique is based on a
small-scale automation mechanism, automation developed in this way applies transparently to the user,
allowing us to omit unnecessary details.

The limitations of this approach are that automation procedures need to be written in the logic pro-
gramming style instead of a more natural functional programming model. Also, procedures written in
this way are hard to debug, as missing or erroneous hints can result in unspecified behavior depending on
how the type inferencing engine works. Also the support for writing this style of procedures in Coq is
still rudimentary and requires ad-hoc usage patterns and a high up-front cost. Our approach to extensible
small-scale automation allows for more sophisticated procedures that use a full programming model. Still,
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the unification-based approach is useful in cases other than proof automation, such as automatic instantia-
tion of generic mathematical operators. We have not yet programmed a unification algorithm as a VeriML
procedure; doing so in the future will allow us to replicate this technique in the context of VeriML.

A calculus of tactics. An alternative tactic development methodology is described by Jojgov and Geu-
vers [2004], where a calculus of basic building blocks for writing tactics is presented. The calculus is based
around an extension of λHOL with metavariables presented in Geuvers and Jojgov [2002], similar to our
own extensions of λHOL. Though the provided building blocks do not allow the same generality as the
full ML programming model we support, they include an explicit unification construct between terms
that both contain metavariables. This is a more general construct than the pattern matching supported in
VeriML, where only the patterns can contain metavariables and the scrutinees must be closed. Extending
our language so that such a unification construct can be built-in or programmed within the language is a
high priority for future development of VeriML.

Automation tactics with user-defined hints. A last way that user-defined automation is added in cur-
rent proof assistants is to use automated tactics that implement a fixed proof search strategy, but can be
informed through user-defined hints. Though this is not a tactic development technique per se, it is rel-
evant here since adding user-defined automation is one of the main reasons why tactic development is
important. There are multiple instances of this technique in a wide variety of current proof assistants.

First, the Isabelle simplifier [Paulson, 1994, Nipkow et al., 2002] is one such case: the simplifier is
a powerful rewriting-based prover that is used in most tactics and can be informed through user-defined
rewriting lemmas. Users can register first-order lemmas they prove directly with the simplifier, increasing
the available automation. This mechanism is quite similar in function to our extensible equality checking
support, though it applies more widely – owing both to properties of the logic (propositional equality
coincides with propositional equivalence) and to more sophisticated infrastructure for the simplifier (e.g.
rewriting lemmas can include premises). Still, our equality checking allows more sophisticated extensions
that are not possible for the Isabelle simplifier: we can extend it not only with first-order lemmas, but with
arbitrary decision procedures as well, written in a general-purpose programming model. For example, the
congruence closure function for equality hypotheses we support cannot be directly added to the simplifier.

Another instance of this technique that is often used as part of large proof developments is to use
a powerful user-defined automation tactic that is informed of domain-specific knowledge through user-
provided hints [e.g. Chlipala, 2008, 2011, Morrisett et al., 2012]. The hints can be as simple as a rewriting
lemma and as complicated as an LTac tactic that is to be applied for specific propositions. We refer to this
technique as adaptive proof scripts. By replacing proof scripts with a single call to the automation tactic,
our proofs can adapt to changes and additions in our definitions: if the changes are small, automation will
still be able to find a proof and the proof scripts will go through; larger changes will make automation
fail, but users can respond to the points of failure by adding appropriate lemmas and tactics as hints. This
approach has inspired the way that we program and use equality checking to provide automation to other
tactics. The extensions that we add to the equality checking procedure can be seen as a form of adding
sophisticated user hints.

A last instance of this technique is the standard way of developing proofs in fully automated provers
such as ACL2 [Kaufmann and Strother Moore, 1996] and SMT solvers [e.g. De Moura and Bjørner, 2008].
Lemmas that have already been proved play implicitly the role of hints. By offering very sophisticated
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and efficient proof search algorithms, such provers can handle large theorems automatically, with a small
number of additional auxiliary lemmas. Still, these provers offer poor or no support for extensibility with
user-defined tactics; this limits their applicability in cases where the fixed proof search algorithms available
are not well-suited to the user domain.

In all such cases, the basic automation tactic can be viewed as a small-scale automation mechanism, as
it is used ubiquitously and transparently throughout the proof. It is also extensible, owing to the support
for user-defined hints. This extensibility is key to the success of such techniques, allowing users to omit
a large amount of details; it has directly inspired our focus on offering extensible small-scale automation
mechanisms. VeriML is a good candidate as the implementation language of such automation tactics,
especially compared to LTac or proof by reflection: other than the benefits we have discussed already,
it allows the use of hash tables and other efficient data structures in order to represent the database of
user-supplied hints.

Overall, VeriML offers a single language that combines many of the benefits of these existing approaches.
Developing tactics in VeriML is the only methodology among the ones presented above that combines
three characteristics:

1. expressivity, where a full, side-effectful programming model is available for writing sophisticated
tactics;

2. convenience, where first-class constructs for pattern matching on arbitrary open logical terms and
proof states are available; and

3. safety, where the behavior of tactics can be specified and checked through a type system, enabling
increased static guarantees as well as better maintainability and composability.

Also, we have shown how many of the techniques mentioned above can be programmed directly within
VeriML. Last, it is important to stress the fact that users only have to master a single language and a single
programming model. In many current developments, the above techniques are combined in order to get
the automation behavior required as well as good efficiency. The fact that VeriML is compiled and does
not need to produce proof objects shows that similar efficiency can be achieved in the future using a single
language.

10.2 Proof assistant architecture

The LCF family of proof assistants has had a profound influence on the design of VeriML. The main
shared characteristic with VeriML is that these proof assistants follow the language-based approach: all
aspects of the proof assistant, including the basic tactics, decision procedures and equality checking func-
tions, as well as user-developed proofs and proof-producing functions, are implemented within the same
language, namely ML. In the LCF family, the core logic implementation is offered as an ML module that
introduces two abstract data types: a type of logical terms such as propositions and domain objects (the
holterm type as mentioned above) and a type of proofs (holproof). The only way to produce values of
such types is through the constructor functions offered by this module. These constructors are in one-to-
one correspondence with the logical rules, guaranteeing that all values of the proof type correspond to a
particular derivation in the logic. Also, basic destructor functions for looking into the structure of logical
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terms are offered. This design leads to an extensible proof assistant that is conceptually clear and easy to
master. It allows the use of the full ML programming model when writing proof-producing functions.
Thanks to the LCF design and to the type safety property of ML, full proof objects do not need to be pro-
duced to guarantee validity. The same property is true in VeriML, as shown in the proof erasure corollary
of type safety. VeriML can be viewed as following precisely the same architecture, albeit with a significant
departure: the basic constructor and destructor functions are dependently-typed instead of simply-typed,
capturing the context and typing information from the logic type system. The correspondence is direct
if we consider the pattern matching support as a principled way to offer typed destructors over logical
terms.

More recently, proof assistants based on a two-layer architecture such as Isabelle and Coq have be-
come popular. In these, a higher-level language is made available to users for developing proofs, different
from the implementation language of the proof assistant. This allows increased interactivity support,
convenient syntax for writing proofs and in the case of Coq/LTac, a higher-level language for tactic de-
velopment. Despite the benefits that this architecture offers, it has a significant downside: user-defined
tactic development is de-emphasized and the programming model available for user-defined tactics is sig-
nificantly limited compared to ML. The Coq architecture departs from LCF in another significant way:
the LCF approach to hiding the data types of the logic is not followed, and tactics need to construct full
proof objects to be checked by a proof checker. This leads to significant scalability issues in large devel-
opments, which are usually mitigated through increased use of proof-by-reflection. The VeriML design
allows increased interactivity through queries to the type checking engine; supports convenient tactic syn-
tax through syntactic sugar extensions as presented in Chapter 9; maintains the language-centric approach
of the original LCF design; and allows users to control the size of proof objects through selective use of
the proof erasure semantics.

The ACL2 theorem prover [Kaufmann and Strother Moore, 1996] is an interactive proof assistant
that follows a very different style than the LCF-based or LCF-derived proof assistants we have presented
so far. It is based on a simple first-order logic and eschews the use of tactics, opting instead to use a
powerful automated theorem prover based on rewriting that takes into account user-defined rewriting
lemmas. The increased automation is in large made possible by the simplicity of the logic language and the
use of domain-specific decision procedures. ACL2 has successfully been used for large-scale verification
of software [e.g. Bevier et al., 1987, Young, 1989] and hardware [e.g. Brock et al., 1996], which shows
that rewriting-based proving can be expressive and powerful. We would like to investigate the addition
of ACL2-like proving in our extensible rewriting infrastructure in the future. Extensions to the existing
rewriters in ACL2 are made in the form of metafunctions; yet the untyped nature of ACL2 does not allow
metafunctions to use facts that can be discovered through the existing rewriters [Hunt et al., 2005]. The
VeriML type system addresses this shortcoming.

In the traditional ACL2 system the proofs are not foundational and one needs to trust the entirety of
the system in order to trust their validity. Milawa [Davis, 2010] is a theorem prover that addresses this
shortcoming of ACL2. It is based on a similar first-order logic which includes a notion of proof objects.
A checker for this logic constitutes the first level of the Milawa system. More sophisticated checkers are
then developed and proved sound within the same logic using a technique similar to proof-by-reflection
as presented above. In this way, a large number of the original ACL2 features and decision procedures
are built in successive layers and verified through the checker of the previous layer, yielding a powerful
certified theorem prover. The layered implementation of the conversion rule to yield extensible proof
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checking in VeriML shares a similar idea; we apply it to a particular fragment of the logic (equality proofs)
and not to the full logic checker instead, but also we use a more expressive logic and a richer programming
language. Milawa has also been connected to a verified implementation of its runtime system [Myreen
and Davis, 2011], yielding perhaps the most high-assurance proof assistant in existence, as it has been
certified all the way down to the machine code that executes it. We leave the investigation of similar ideas
for the VeriML runtime to future work.

10.3 Extensibility of the conversion rule

CoqMT [Strub, 2010] is an extension of Coq that adds decision procedures for first-order theories such as
congruence closure and arithmetic to the conversion rule. This increases the available small-scale automa-
tion support, reducing the required manual proof effort in many cases; also, it makes more dependently
typed terms typeable. Still the metatheory of CIC needs significant new additions in order to account for
the extended conversion rule [Blanqui et al., 2007]. Also, the added decision procedures are not verified,
increasing the trusted base of the system.

NuPRL [Constable et al., 1986, Allen et al., 2000] supports an extensional type theory instead of an
intensional as in the case of Coq. This translates to a very powerful conversion rule, where all provably
equal terms are made definitionally equal. The extensional conversion rule destroys decidability for proof
checking, but allows a large number of decision procedures to be integrated within the conversion rule,
resulting in good small-scale automation support. Still, these decision procedures become part of the
trusted base of the system.

The approach to the conversion rule we have described in this dissertation amounts to replacing the
conversion rule with explicit proof witnesses and re-implementing the computational aspect of the con-
version rule outside the logic, as a VeriML function. This allows us to extend conversion with arbitrary
user-defined decision procedures, without metatheoretic additions to the logic and without increasing the
trusted base. It also allows the implementation of different evaluation strategies for the existing conver-
sion rule. We have also implemented the decision procedures used in CoqMT, arriving at a conversion
rule of similar expressivity. We believe that our ideas can be extended to a full type-theoretic logic instead
of the simple higher-order logic we support, but have left this as future work.

Geuvers and Wiedijk [2004] argue about why replacing the conversion rule with explicit witnesses is
desirable for foundational proof objects. The logic they present is in fact very similar to λHOLE . They
leave the question of how to reconcile the space savings of the implicit conversion approach with the
increased trust of their explicit witnesses approach as future work; we believe our approach addresses this
question successfully.

Grégoire [2003] presents a different sort of extension to the conversion rule: an alternative evaluation
strategy for the βι-conversion rule in Coq, based on compilation of CIC terms into an abstract machine.
This evaluation strategy significantly speeds up conversion in many situations and is especially useful
when evaluating decision procedures implemented through proof-by-reflection. Still, this implementation
of the conversion rule represents a significant increase in the trusted base of the system; this is possibly the
reason why the independent Coq proof checker coqchk does not use this implementation of conversion
by default. Though in our examples we have implemented a very simple call-by-name interpretation-based
evaluation strategy for βι-conversion, our approach to conversion allows for much more sophisticated
implementations, without requiring any increase in the overall trusted base.
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10.4 Type-safe manipulation of languages with binding

The Beluga programming language [Pientka, 2008, Pientka and Dunfield, 2008] is perhaps the most
closely related language to VeriML. It is a language designed for type-safe manipulation of LF terms with
a similar two-layer architecture: LF comprises the logical level (corresponding to λHOL in our system),
and Beluga the computational level (corresponding to VeriML). LF itself is a logical framework that can
be used to represent the terms and derivations of various logics, including the λHOL logic we describe
[Harper et al., 1993]. Beluga uses contextual terms to represent open LF terms and their types; it provides
dependently typed constructs to manipulate such terms, including a dependently-typed pattern matching
construct for contexts and contextual terms. The ML-style universe supported is limited compared to
VeriML, as it does not include mutable references. The use of contextual type theory [Nanevski et al.,
2008b] in Beluga has been of crucial importance in the design of VeriML. Through VeriML, we show how
a language based on similar ideas can be used to write small-scale and large-scale automation procedures
and can serve as an alternative architecture for proof assistants.

Perhaps the biggest difference between the two languages is that Beluga aims to be useful as a meta-
logic of the LF system with Beluga functions representing meta-proofs about LF-encoded logics. We have
chosen to focus on proofs in the well-established HOL logic instead. Therefore VeriML functions are
not seen as meta-proofs, but merely as functions that produce foundational proofs. This allows us to add
features such as mutability and non-covering pattern matching whose presence in a meta-logic would be
problematic due to soundness issues. Also, our metatheoretic proofs about λHOL and VeriML present
improvements over the related Beluga proofs, such as the use of hybrid deBruijn variables to elucidate
the various substitution operations we define, and our novel handling of pattern matching. A recent
extension to Beluga [Cave and Pientka, 2012] employs a metatheoretic study with similar orthogonality
characteristics between the logic and the computational language as does our own development. This
extension also supports recursive types and type constraints. The former are already part of the ML
universe we support; the latter are similar to the equality constraints we use for λHOL terms but are also
applicable in the case of contexts. Still, the constraints are solved using a fixed procedure that is built into
the Beluga type checker. We have shown how to solve such constraints through user-defined procedures,
using a combination of staging and the collapsing transformation.

Delphin [Poswolsky and Schürmann, 2008, Poswolsky, 2009] is a similar language to Beluga, used
for type-safe manipulation of LF terms. The main difference is that manipulation of open terms does
not make use of contextual types but makes use of an ambient context instead. This leads to simpler
code compared to Beluga in the most common case, as contexts do not have to be mentioned. Still
this solution to open terms is not as general as contextual types, as we cannot maintain terms that inhabit
entirely different contexts. We show how the ambient context can be supported through extensions at the
syntactic level, offering the same benefits as Delphin while maintaining the generality of the contextual
types approach. Also, our use of contextual types allows us to use the normal typing rules for mutable
references; the use of ambient contexts would require seemingly ad-hoc restrictions as side conditions in
order to maintain type safety.

A number of languages support embedding open terms of a typed object language within a meta-
language in a type-safe way; some examples are MetaML [Taha and Sheard, 2000], FreshML [Shinwell
et al., 2003], and MetaHaskell [Mainland, 2012]. With the exception of FreshML, these languages do
not allow pattern matching on such embedded open terms. MetaML is especially interesting as its pri-
mary motivation is to support staging, leading the object and meta language to coincide. While VeriML
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supports staging, it only does so for closed expressions and thus does not require special treatment for
quoted VeriML expressions. MetaML uses environment classifiers in order to differentiate between open
terms inhabiting different contexts at the typing level; this enables hygienic treatment of bound variables
– that is, bound variables cannot escape the scope of their binder. The solution based on classifiers can
be viewed as a restriction of the contextual approach we follow, where all open terms must inhabit fully
polymorphic contexts. FreshML and MetaHaskell do not support hygienic treatment of variables; this
would destroy type-safety in our setting. This can be remedied in the case of FreshML through the use
of static obligations that resemble a logic [Pottier, 2007]; we believe that the contextual type theory so-
lution is much simpler. The solution used in MetaHaskell also employs polymorphic contexts. Overall,
the contextual type theory-based solution of VeriML offers a number of advantages: type-safe and hy-
gienic embedding of open terms, even when the object language is dependently-typed; variable contexts
that combine a polymorphic part with concrete variables; and type-safe manipulation of the embedded
terms as well. We believe that the metatheoretic treatment we have presented presents a recipe for com-
bining a typed object language with a typed meta language, yielding these benefits. As future work, we
would like to apply this recipe to languages with full (heterogeneous) staging support such as MetaML
and MetaHaskell.

10.5 Mixing logic with computation

The YNot framework [Nanevski et al., 2008a] is similar to VeriML as it mixes a logical language –
specifically CIC – with side-effectful computation, such as the use of mutable references. Yet the approach
taken is profoundly different, as side-effectful computations become integrated within the existing logical
language through a monadic type system. Combined with proof-by-reflection, this approach could lead
to type-safe decision procedures that make use of side effects, yet we are not aware of any such usage of
the YNot framework. Also, this approach requires a significant addition both to the metatheory of the
logic language as well as its implementation.

The Trellys project [Casinghino et al., 2011] presents another potential combination between a logic
and a side-effectful computational language. The logic is a sub-language of the computational language,
where non-termination and other side-effects are not allowed. Still, logical terms can reason about com-
putational terms, even side-effectful ones. Compared to VeriML, this approach successfully addresses
the duplication of data structures and functions between the two levels (consider, for example, the two
definitions of lists in Chapter 9), as well as the inability to reason about functions in the computational
language. Still, the resulting logic is non-standard. The apparent duplication of definitions in VeriML can
be addressed in the future by a process similar to type promotion in Haskell [Yorgey et al., 2012]: the
same surface-level definition results in definitions at both the logical and the computational level.
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Chapter 11

Conclusion and future work

The work presented in this dissertation started from a simple observation: the language support for writ-
ing new automation procedures in current proof assistants is lacking. This leads to automation that is
error-prone, difficult to maintain and extend; or requires mastery of the proof assistant to a level that
only advanced users possess. Seeing how important it is to automate trivial and non-trivial details in large
proofs, this is a shortcoming of profound importance. It ultimately leads to a proof development pro-
cess that requires significant manual effort, even when the actual proof at hand is well-understood or not
particularly deep in a mathematical sense – as is often the case in software certification tasks.

A second key observation is that the boundary between trivial and non-trivial details is thin and not
constant. The non-trivial details of a particular domain become trivial details as soon as we move into a
more complicated domain. Therefore the same automation procedures should be used in either case, with
minimal user effort. Also, when using automation to handle trivial details in a way that is transparent to
the user, these details should not necessarily be expanded out to their full formal counterpart. The reason
is that trivial details occur pervasively throughout proofs, and full expansion leads to prohibitively large
formal proofs that take a long time to check. This suggests that the automation procedures themselves
should be verified upon definition, instead of verifying their results upon evaluation. In this way, we can
be certain that automation does not make false claims, even when formal proofs are not produced.

These two observations combined result in the basic design idea behind VeriML: a programming lan-
guage that enables the development of verified automation procedures, using an expressive programming
model and convenient constructs tailored to this task. We achieve expressiveness by including the side-
effectful, general-purpose programming model of ML as part of the language; convenience by adding
first-class support for introducing proofs, propositions and other logical terms as well as pattern matching
over them – the exact constructs that form the main building blocks of automation procedures. The verifi-
cation of automation procedures is done in a light-weight manner, so that it does not become a bottleneck
in itself. It is the direct product of two mechanisms. The first is a rich type system that keeps information
about the logical terms that are manipulated and enables user to assign detailed signatures to their automa-
tion procedures. The second is a staging mechanism which is informed by the typing information and
allows the use of existing automation in order to minimize the proof burden associated with developing
new automation procedures. The use of the type system also leads to a principled programming style for
automation procedures, making them more composable and maintainable.

In summary, VeriML is therefore a “programming language combining typed manipulation of logical
terms with a general-purpose side-effectful programming model”, as is stated in my thesis. In this dis-
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sertation, I have described the overall design of the language; I have shown that the language is type-safe
and that automation procedures do not need to produce full proofs, through an extensive metatheoretic
study; I presented an implementation of the language, including a type inferencing engine and a compiler
for it; and I described a number of examples written in the language, which have been previously hard to
implement using the existing approaches. Also, I have shown that various features of the architecture of
modern proof assistants can be directly recovered and generalized through the VeriML design, rendering
the VeriML language as a proof assistant in itself. Proofs, as well as automation procedures and other
tactics can be written as VeriML programs. Interactive support for writing proofs is recovered as queries
to the VeriML type checker; it is generalized to the case of tactics as well, allowing them to be developed
interactively as well. Also, the conversion rule that is part of the trusted core of modern proof assistants,
can be programmed instead in VeriML, thus allowing sophisticated user extensions while maintaining
logical soundness.

The VeriML design therefore constitutes a viable alternative to the architecture of proof assistants,
one that represents a return to form: a single meta-language is used to implement all aspects of the proof
assistant, allowing maximum extensibility. This was the rationale behind the original LCF system and
the original design of ML [Milner, 1972]. Our work essentially updates this language-centric design with
the modern discoveries in the domain of dependently typed languages, resulting in a meta-language that
can be used for conducting proofs and for programming verified proof procedures with reduced manual
effort.

Still, a long way lies ahead of us until an actual VeriML implementation can be a realistic alternative to
existing proof assistants. A number of features that are essential for practical purposes are not yet covered
by our design and its corresponding metatheory and implementation. We will first focus on features
where the main challenge spans across the theory and the implementation; features that are mostly related
to engineering issues of the implementation will follow.

Metatheory

Meta-N-terms. In order to be able to manipulate open logical terms, we closed them over the variable
environment they depend on. This led to the introduction of contextual terms or meta-terms, along
with their corresponding notions of meta-variables, contexts and substitutions. The computational
language of VeriML allows us to introduce contextual terms, bind them to meta-variables and pat-
tern match to look into their structure. In many situations, it would be useful to be able to close the
contextual terms once more, over the meta-variables they depend on. These would then be charac-
terized as meta-2-terms, as they would contain not only normal logical variables but meta-variables
as well. By repeating this process we would be able to manipulate such meta-2-terms directly inside
VeriML using similar constructs such as the pattern matching we already support.

In this dissertation we have already presented a situation where this would be useful, namely the
static evaluation of proof expressions within tactics – as exemplified by the StaticEqual expres-
sion we often use throughout our examples. Such proof expressions contain meta-terms, usually
instantiated through type inference; these meta-terms contain meta-variables, standing for the input
arguments of the tactic we are defining. In order to evaluate these proof expressions, we would there-
fore need to perform pattern matching where the scrutinee is an open meta-term. Yet our pattern
matching theorem and algorithm only covers the case where the scrutinee is closed and the pattern
is open. This is for good reason too, as generalizing to the case where both the scrutinee and the
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pattern contain meta-variables, together with the fact that the scrutinee might contain non-identity
substitutions, changes the operation from pattern matching to unification which would destroy
the decidability and determinism properties of the operation. The way we have addressed this is
the use of the collapsing transformation, which turns the open meta-terms into equivalent closed
ones which pattern matching can already handle. Yet this transformation is only applicable under
certain limitations. If we had support for manipulating meta-2-terms instead, this transformation
would not be necessary and we would be able to lift such limitations.

Another situation where meta-2-terms show up is the notion of proof state, that is, the type of
an incomplete proof. We can view the current context and the current goal, as captured through
type inference, as the notion of proof state that VeriML supports. This is limited compared to
current proof assistants: most proof assistants allow multiple hypotheses-goals pairs to be part of
the current proof state, as well as unification variables – variables to be implicitly instantiated based
on their usage. Such variables are often useful when solving goals involving existentials, or when
using universally quantified lemmas: we can delay the instantiation of the existential witness, or of
the arguments of the lemmas, until their identity is trivial to deduce from the context. We could
encode such notions of proof state as meta-2-terms, and we would therefore need pattern matching
over meta-2-terms as well as their associated meta-2-contexts in order to work with such proof states
and incomplete proofs.

A last situation where meta-2-terms and potentially even higher-order meta-N-terms would be use-
ful is in programming a well-typed unification procedure in VeriML: namely, a procedure that takes
two open terms with meta-variables (representing unification variables), and decides whether a sub-
stitution exists that makes the two terms match. As mentioned earlier, the problem of unification of
λHOL terms is undecidable, as it is equivalent to higher-order unification in the λ-calculus. Yet un-
decidability can be overcome by enabling programmatic control. We would therefore like to follow
a similar approach as we did for the equality proofs of the conversion rule to handle unification: by
programming unification inside VeriML instead of making it a fixed procedure, we would be able
to develop further extensions to it, to handle more cases. We believe that being able to manipulate
meta-N-terms plus their accompanying notions of contexts and substitutions, would allow us to
program this procedure inside VeriML. Such an extensible unification procedure would allow us
to treat the remaining small-scale automation mechanisms in current proof assistants, which are all
unification-based, in a similar manner to the conversion rule, with similar benefits.

Extending our metatheory to meta-2-terms, as well as higher meta-N-terms, should be possible by
repeating the process we described in Chapter 4 for deriving meta-1-terms and the associated proofs.
In fact, we have done our proofs with such an extension in mind, making sure that the operations
and theorems of the base level of normal logical terms exactly match up with the operations and
theorems of the meta-1-level of contextual terms. Therefore repeating this process once more, or
inductively up to N, should in principle give us the desired. Still, further extensions would be
needed for meta-2- or meta-N-terms to be truly useful, such as being able to write code that is
polymorphic over meta-levels and also to be able to pattern match on substitutions in the same
way that we pattern match on terms and contexts. Managing this complexity in order to arrive at
a conceptually clear description of the metatheory and the language would be a process in itself; it
would be an even more significant challenge to find ways to mask this complexity at the level of the
end user of the language.
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Inductive definitions. VeriML needs better support for inductive types and inductive predicates. For
the time being, inductive definitions are opaque – there is no pattern matching support for them,
which precludes writing VeriML functions that operate directly on such definitions. We have so far
addressed this shortcoming through ad-hoc means, such as the meta-generation of rewriters for the
elimination principles. We should be able to write such code in a generic manner within VeriML
supporting all inductive definitions, while retaining the increased typing information that VeriML
offers. This would allow the definition of typed generic induction and inversion tactics, which have
proved to be one of the main hindrances of using inductive definitions in our current developments.
The inversion tactic is especially notorious even in current proof assistants, as its behavior is hard
to describe formally; being able to give it a precise signature through typing would be an interesting
potential.

The main challenge in supporting inductive definitions comes from the fact that their well-formedness
conditions are syntactic in nature, instead of being based on the judgemental approach. We have
partly addressed this in the case of the positivity condition and in the handling of parameters, yet
syntactic side-conditions remain. This precludes us from applying the techniques we used in our
metatheory in order to derive well-formed patterns over such definitions, as our techniques assume
that the typing of the object language is described as a pure judgement.

Controlling representations. We use a generic representation for logical terms, but we believe that spe-
cialized representations for use under specific circumstances could improve the efficiency of VeriML
programs significantly. For example, closed natural numbers up to a certain number could be repre-
sented as machine integers and their operations such as addition and multiplication could be imple-
mented through machine instructions. A more ambitious use case for the same idea has to do with
the equality checking function described in Section 9.4. This function needs to construct a hash
table representing equivalence classes anew for every context. We could instead add an additional
representation to contexts that keep track of the hash table as well, calling the right function when
a new element enters the current context. Furthermore, the proof erasure procedure we describe
for proof objects could be seen as choosing a unit representation for proof objects; the same repre-
sentation could be used in order to erase other terms that do not influence the runtime behavior of
programs and are only useful during type checking. It is interesting to see if user-defined represen-
tations for existing classes of logical terms can be maintained and manipulated while maintaining
type safety. The main challenge would be to coordinate between the set of patterns allowed over
terms and the information that the actual representation of such terms contains.

Implementation

Our prototype implementation has served well as an experimentation platform for the work presented in
this dissertation. Still it is far from a language implementation ready for the end user of VeriML. The ML
core of the language does not support many of the conveniences present in modern functional languages
like OCaml and Haskell, such as Hindley-Milner type inference, first-class modules, type classes and ef-
fect encapsulation through monads. The syntax and constructs of the language are more verbose in many
situations, such as pattern matching over normal datatypes, and error reporting is rudimentary. Last, our
compilation methodology goes through translation to OCaml, which introduces the unnecessary over-
head of re-typechecking the resulting OCaml AST. Our implementation of the λHOL logic has similar
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shortcomings.
In order to address these issues, we would like to work on a new implementation of VeriML that

extends an existing programming language implementation with the VeriML-specific constructs for an
existing logic implementation, so as to inherit the engineering effort that has gone into them. The OCaml
implementation together with the CIC logic implementation used in Coq are natural choices for this
purpose, as they would allow us to use VeriML as an additional language in Coq, without enlarging its
trusted base. In this way we would also be able to reuse the large library and proof developments that are
already implemented in Coq, and ease adoption of VeriML in situations where it can be of benefit. One
challenge with this approach is to extend the design and metatheory of VeriML so as to incorporate the
CIC logic, which contains many features not in λHOL. We are confident that the main techniques used
in our current metatheory are still applicable in the case of CIC.

The VeriML extension should be as isolated as possible from the main OCaml implementation, re-
flecting the orthogonality between the λHOL-related constructs and the ML core that characterizes our
metatheory. This would allow development of further extensions to VeriML without requiring changes
to the core OCaml implementation; it would also minimize the cost associated with updating to newer
versions of the OCaml implementation as they become available. We expect the main challenge to be
inserting hooks into the main OCaml modules, such as the AST definitions, the type checker and the
compiler to bytecode, so that they make calls to corresponding extension modules. Such changes are a
particular instance of the expression problem; we might be able to make use of the existing solutions to it
[e.g. Swierstra, 2008].

One important aspect of any implementation of VeriML is the capabilities of the type inferencing
engine. Our current support for type inference of logical terms, as described in Chapter 8, is based
around greedy mutable reference-based unification, using invertible syntactic operations on terms. This
approach is both versatile and efficient, yet we would like to explore further enhancements to it and
use the same approach for computational expressions and types, and all the other kinds of terms in our
language. The main extension to this approach would be to allow some backtracking when more than
one typing alternatives are possible and also a way to interoperate with constraint-based type inference
as described by Pottier and Rémy [2005]. The inference engine in recent versions of OCaml is based
on this mechanism, where type inference is formulated as a stage of constraint generation followed by
a stage of constraint solving. This formulation is well-suited to our purposes of extending the OCaml
implementation, as VeriML-related constraints could be presented as an additional kind of constraints to
be solved by an independent constraint solver based around unification of logical terms.

Another issue we would like to address is the duplication of definitions of types and functions be-
tween the logic and the computational language. In many cases the same definition is directly applicable
both in the logical and in the computational level – e.g. definition of recursive types without negative
occurrences or mutable references, or of recursive functions that are pure and total. We are confident that
such cases can be handled by offering surface-level syntax that performs both definitions at the logical
and at the computational level, allowing users to treat each definition at either level transparently. This
correspondence is not as direct in cases where the boundary between the logical and the computational
level is crossed, such as tactics that pattern match on logical terms and data types that use ML-only types
such as mutable references. Still, it is interesting to explore whether surface syntax can be offered in such
situations as well that hides some of the complexities associated with having two strongly isolated levels
in the language.
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Translating to reflective CIC procedures would be an alternative implementation strategy for the pure
subset of VeriML. This option might be worth exploring in parallel to the above described strategy. The
main benefit of this approach would be that we would be able to reason about VeriML functions using the
full expressivity of the CIC logic, instead of the comparatively more limited expressivity of the VeriML
type system. The challenge of this approach would be to reify a large subset of the CIC logic as an
inductive datatype within CIC, as well as the corresponding typing relation. Even though considerable
effort has gone into similar considerations [e.g. Chapman, 2009, Chapman et al., 2010], this is still largely
an open problem.

User interface

When viewed as a proof assistant, the user interface that VeriML offers becomes very important. Ex-
ploring ways that the VeriML design can enhance the user experience becomes an interesting problem in
itself. For example, traditional proof assistants usually have two different languages for writing proofs:
one that follows the imperative style, where the focus is placed on the tactics applied; and one that follows
the declarative style, where the intermediate steps of the proof are the main focus. We believe that the
increased typing information present in VeriML would allow us to mix these two styles, by writing two
sets of strongly-typed tactics tailored to each style and using type inference to mediate the proof state
between them.

Supporting interactive development of VeriML proofs and tactics presents an interesting user-interface
design issue, especially in the presence of our staging support. The proof script languages used in current
proof assistants have clear breakpoints, allowing partial proof scripts to be evaluated up to a certain point.
Interactive development environments such as Proof General [Aspinall, 2000] have a notion of “locked
region” that follows such breakpoints, and moves as subsequent steps of proof scripts are performed.
Proof state information is presented to the user, as it is determined for the currently active breakpoint.
In VeriML, proof expressions do not necessarily have a similar linear structure with well-defined break
points. Partial proof expressions can also have missing parts at various points. The presence of staged
expressions complicates the evaluation order of expressions further; such expressions also need to be able
to provide information about their result to the user, e.g. in order to allow them to fix erroneous appli-
cations of the conversion rule. These issues are even more serious in the case of tactics, whose structure
is based around pattern matching and is therefore certainly not linear. Yet, proof state and further typing
information is available at all program points, even for incomplete proof expressions and incomplete tac-
tics, by querying the type checking engine of VeriML. In order to address the above issues and make use
of such information to offer a better interface to the user, we expect that increased coupling between the
interactive development environment and the VeriML implementation will be essential, departing further
from the traditional REPL-based interface to proof assistants.

Other uses of the VeriML design

We believe that VeriML could be used to investigate a number of interesting possibilities, other than the
examples seen so far and the traditional usage scenario of proof assistants. First, we believe that VeriML
could be used to realize projects such as the extensible low-level programming language and software cer-
tification framework Bedrock [Chlipala, 2011]. The additional expressivity, extensibility and efficiency
that a realistic VeriML implementation would be able to offer to tactic programming would address the
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main issues of this framework. Also, we believe that the first-class support for proofs in VeriML could
render it an appealing platform for implementing a number of certifying tools, such as compilers, static
analysis tools and SMT solvers. The combination of such tools with a software certification framework
such as Bedrock could result in an intriguing implementation language for certifiable systems code with
significant reductions in the required certification effort.

Another interesting potential is to relax the pattern matching restriction in VeriML, where proof
objects cannot be inspected, in order to develop procedures that extract knowledge by looking into the
structure of existing proofs. For example, one procedure could generalize the steps used in a specific
proof, in order to create a tactic that can handle proofs that are similar in structure. Designing a tactic
that corresponds to the word “similarly” as used in informal pen-and-paper proofs is a very motivating
research problem for future proof assistants. We believe that VeriML constitutes a good framework to
support experimentation with such ideas, because of its language-centric nature, its treatment of trivial
steps in proofs and its pattern matching capabilities.

Last, we believe that the design of VeriML and especially our treatment of combining a typed object
language and a typed meta language could be useful in the context of normal functional programming
languages. One such example would be to add staging support in languages such as OCaml and Haskell,
with the ability to pattern match and manipulate the code of later stages. In this way we would be able
to write optimization stages programmatically, something that would be especially useful in the context
of embedded domain-specific languages. Ideas similar to the extensible conversion rule would be useful in
this situation, in order to provide extensible type checking for the embedded languages.
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