
Supporting Binary Compatibility with Static Compilation �

Dachuan Yu Zhong Shao Valery Trifonov
Department of Computer Science, Yale University

New Haven, CT 06520-8285, U.S.A.
�����������	
�����
�����������

Abstract

There is an ongoing debate in the Java community on
whether statically compiled implementations can meet
the Java specification on dynamic features such as binary
compatibility. Static compilation is sometimes desirable
because it provides better code optimization, smaller
memory footprint, more robustness, and better intellec-
tual property protection. Unfortunately, none of the ex-
isting static Java compilers support binary compatibility,
because it incurs unacceptable performance overhead.
In this paper, we propose a simple yet effective solu-
tion which handles all of the binary-compatibility cases
specified by the Java Language Specification. Our ex-
perimental results using an implementation in the GNU
Java compiler shows that the performance penalty is on
average less than 2%. Besides solving the problem for
static compilers, it is also possible to use this technique
in JIT compilers to achieve an optimal balance point be-
tween static and dynamic compilation.

1 Introduction

Modern software applications are often built up by com-
bining many components. Some of these components
are shared libraries which allow multiple applications to
share large amounts of system software.

Shared libraries evolve over time so that new function-
ality can be added, bugs can be fixed, algorithms and ef-
ficiency can be improved, and deprecated functions can
be removed. Evolving or modifying these libraries can
affect applications that depend on them, thus library evo-
lution may cause compatibility problems.

However, it is usually undesirable to recompile a whole
application just to accommodate the changes in a single

�This work is supported in part by DARPA OASIS grant F30602-
99-1-0519, NSF grant CCR-9901011, and NSF ITR grant CCR-
0081590. Any opinions, findings, and conclusions contained in this
document are those of the authors and do not reflect the views of these
agencies.

component. In the case of widely distributed libraries,
used by many unknown applications, it is often imprac-
tical or impossible to recompile even only the importing
units. A popular current approach is to try to guaran-
tee that binaries can be directly replaced by compatible
binaries without compromising a working system.

Binary compatibility is a concept introduced to address
this problem. It was initially referred to as release-to-
release binary compatibility[10], and later defined in the
Java Language Specification (JLS) [11], which describes
the changes that developers are permitted to make to a
package or to a class or interface type while preserv-
ing compatibility with existing binaries. Thus the Java
binary compatibility prescribes conditions under which
modification and recompilation of classes do not neces-
sitate recompilation of other classes depending on them.

In the Java Virtual Machine [19], support for binary
compatibility is primarily due to the use of symbolic ref-
erences to look up fields and methods at run-time. How-
ever, in some cases a native compiler for Java is needed
that compiles Java (or bytecode) programs directly into
native code in the same manner as compilers for C/C++.
This ahead-of-time compilation is desirable because it
yields better optimized code, more robust deployed ap-
plications, and offers better intellectual property protec-
tion [3, 5, 7]. We will elaborate on this later.

Nevertheless, supporting binary compatibility with
ahead-of-time compilation is a hard problem because of
the seemingly contradictory requirements. When cer-
tain changes are allowed due to binary compatibility, the
contents of a class cannot be completely determined un-
til the class is loaded. However, ahead-of-time compilers
usually generate hard-coded offsets based on the layout
information of other classes at compile time.

A well-known problem is that the standard compila-
tion techniques for virtual methods in object-oriented
languages preclude binary compatibility (cf. the fragile
base class problem [12, 26]). For example, the documen-

tation on binary compatibility [30] in the EPOC C++
System says:

... virtual member functions are for life—you can’t
add or remove virtual member functions, or change
the virtuality of a function, or change their decla-
ration order, or even override an existing function
that was previously inherited, ...

For compliance with the binary-compatibility require-
ments of Java some existing native compilers solve this
problem by generating (at least) some of the code at run
time, which unavoidably negates some of the benefits of
pre-compilation. Other existing native compilers simply
have no support for binary compatibility, because the ob-
vious solutions (e.g. method lookup by name at run time)
seem to incur high performance overhead.

This paper presents a simple yet effective solution using
static compilation, which meets all Java binary compati-
bility requirements with little performance penalty. The
contributions are:

� In our solution, the compilation is fully static,
which allows the compiler to take advantage of the
well-developed static compilation techniques for
better code optimization.

� Our solution covers all the cases specified in the
JLS. Different features—including methods, fields,
interfaces, and modifiers—are supported by the
same set of simple core techniques.

� Our solution also detects all binary-incompatible
changes and gracefully raise proper exceptions at
load or run time.

� Our solution is efficient. We describe an implemen-
tation in the GNU Java compiler (GCJ). The perfor-
mance test shows that the performance penalty of
our new technique is on average less than 2%.

In the remainder of this introduction, we briefly describe
the benefits of static compilation.

1.1 Why Static Compilation?

Two popular approaches for compiling Java pro-
grams are Just-In-Time (JIT) compilation (e.g. Sun
Hotspot [29], Cacao [17], OpenJIT [24], shuJIT [28],
vanilla Jalapeno [1]) and static compilation (e.g. Bullet-
Train [22], Excelsior JET [20], GCJ [32], IBM Visu-
alAge for Java [13], JOVE [14]). It would be wrong to

say one approach is definitely better than the other, since
they are suited for different situations [7]. In fact, cur-
rent research on “quasi-static compilation” [27] shows
that combining these two may yield excellent results.

In practice, static Java compilers are sometimes desir-
able over JIT compilers because they have many advan-
tages [3, 5, 7]:

� Static compilation yields more robust deployed ap-
plications. On the one hand, a deployment JIT may
be different from the development JIT, which can
cause problems due to even slight differences in the
virtual machine or library code. With static com-
pilation, programs are compiled into native code
allowing the developer to test exactly what is de-
ployed. On the other hand, compilers have bugs.
Crashes caused by static compiler bugs sometimes
happen at compile time (unless the bug is the kind
that generates bad code silently), while bugs in the
JIT may cause crashes at program execution time,
and some of them may only surface after a por-
tion of the program has been executed many times.
Moreover, if the program crashes due to a bug in
either the compiler or the program itself, statically
compiled code is much easier to debug because the
run-time trace is more predictable.

� Static compilation provides better intellectual prop-
erty protection. Native code is much harder to
reverse-engineer than Java bytecode.

� Static Java compilers can perform resource inten-
sive optimization before the execution of the pro-
gram. In contrast, JIT compilers must perform
analysis at execution time, thus are limited to sim-
ple optimizations that can be done without a large
impact on the combined compile and execute time.

� Static compilation achieves greatly reduced start-
up cost, reduced memory usage, automatic sharing
of code by the OS between applications, and easier
linking with native code.

� Last but not least, static compilation is better suited
for code certification than JIT compilation. It is sig-
nificantly easier to achieve higher safety assurance
by removing the compiler from the trusted comput-
ing base. There has been a lot of work done in
this area [23, 21, 18] which mostly focuses on static
compilation.

Regardless of the above advantages, there is an ongoing
debate in the Java community on whether statically com-
piled implementations can meet the Java specification

on dynamic features such as binary compatibility. Our
paper presents a scheme that accommodates the seem-
ingly contradictory goal of full Java compliance and
static compilation, thus showing that binary compatibil-
ity can indeed be supported using static compilers. Fol-
lowing the inspiration of “quasi-static compilation” [27],
this technique in practice can also be used together with
other JIT compilation techniques to achieve an optimal
balance point between static and dynamic compilation.
Thus we believe this result is of interest to the general
audience in the JVM community.

2 Background

Java binary compatibility requires that changes in certain
aspects of a class � from version to version must not en-
tail the recompilation of other classes that are clients of
�. (Client classes of � are those that reference � in some
way, such as by accessing members of objects of �, or by
extending �.) For example, changing the order of meth-
ods and fields of a class or adding methods and fields to
a class must not force recompilation of its clients.

Java virtual machines allow these kinds of changes to oc-
cur between releases of a class because references from
one class to the fields and methods of other classes are
made by symbolic names embedded in the class file.
These references are transformed into addresses and off-
sets during the process of resolution.

However, static compilers that do not consider binary
compatibility usually generate these offsets hard-coded,
ahead of (link) time. This implies that changes to a class
that affect the layout of fields and methods in the class
could require all of its clients to be recompiled, since
they contain hard-coded addresses and offsets based on
the old layout. Failure to recompile all clients of a mod-
ified class can result in unexpected run-time behavior.

Current run-time compilers for Java have encountered
similar problems. Taking the virtual method invocation
as an example, binary compatibility is usually accom-
plished using run-time compilation techniques: Just-in-
time compilers generate code for classes at run-time.
During the run-time compilation, a virtual method invo-
cation on an object of a loaded class can be safely com-
piled based on the determined vtable(virtual method ta-
ble) of that class. However, a virtual method invocation
on an object of a class which is not loaded yet cannot be
handled in the same manner. In this case, the compiler
emits special code which “stitches” the actual method
invocation code lazily when it is executed.

For optimization purposes, JIT compilers often use
guarded inlining (where the guard checks for the ob-
ject type at run-time) to handle the scenario where the
inlining is invalidated by further class loading. When
such a scenario occurs, run-time compilation has to be
performed. There has been also work on techniques for
inlining virtual methods more efficiently [6, 15, 25].

Typically, static compilers use global or whole-program
analysis [4] to do inlining or devirtualization. How-
ever, without the ability to perform compilation at run-
time, they assume that no changes will be made to
classes referred to by the compiled code. Hence, they
do not comply with the JLS. The trade-off between bi-
nary compatibility (for full compliance with the JLS)
and cross-class inlining is obviously an issue for static
Java compilers. While our solution for binary compat-
ibility does not directly support cross-class inlining, in
cases when dynamic compilation may not be desirable
due to various reasons discussed in section 1.1, an im-
plementation would employ our solution together with
other schemes that support inlining (but not binary com-
patibility) to achieve optimal results. For instance with
quasi-static compilation [27] both pre-compiled native
code and bytecode of classes are shipped together. When
binary changes invalidate the pre-compiled native code,
the VM falls back to compiling or even interpreting the
bytecode. Similarly, a version of native code compiled
with cross-class inlining can be shipped together with
native code compiled using our approach. In the com-
mon case, when no changes to other classes are made,
the inlined version of native code would be used for
maximum efficiency. In cases when binary changes are
detected, the system would fall back to running the ver-
sion compiled without inlining but with support for bi-
nary compatibility, thus avoiding run-time compilation.

In summary, run-time compilers support binary com-
patibility with various run-time compilation techniques.
However none of the existing static Java compilers pro-
vide support for binary compatibility, primarily because
the high overhead negates much of the advantages of
static compilation.

3 Static Compilation vs Binary Compati-
bility

In this section, we give examples to illustrate the con-
cept of Java binary compatibility. We also show how
the naı̈ve application of the standard vtable approach for
static compilation fails.

Consider the following program. Class ����������

defines two virtual methods, ��� and ����. Class
�������������� extends class ����������, overrides
those two methods, and defines a new virtual method
�����. The ��	� method of class ������� creates in-
stances of both the above classes and does some virtual
method calls. Note that at run-time the variable �����	
contains an object of class ��������������, although
its static class is ����������.

������ ����� �	
�	���
	 �

�
��
�� �� � ��� ��

�
�� ���� �� � ��� ��

�

������ ����� �����	
�	���
	

��
��� �	
�	���
	�

�
��
�� �� � ��� ��

�
�� ���� �� � ��� ��

�
�� ������� � ��� ��

�

������ ����� �����
	 �

������ ������ �
�� ���� ���	��� �	��� � �

!! �
�
 �
�
 ���� 	��� "
	 �������

���

�	
�	���
	 #
� $ �
% �	
�	���
	���

�����	
�	���
	 �
		� $ �
% �����	
�	���
	���

�	
�	���
	 &�
��� $ �
% �����	
�	���
	���

���

#
��
�����

#
���������

�
		��
�����

�
		���������

�
		����������

���

��

The standard technique used in object-oriented program-
ming language implementations supports virtual method
dispatch by collecting the virtual methods of a class in
a record called a vtable, and providing a pointer to this
record in each object of the class. When the three classes
above are compiled, the layout of the vtables of classes
���������� and �������������� is determined stati-
cally (Figure 1), and the code in class ������� is com-
piled to invoke virtual methods by accessing the corre-
sponding entries in the vtables of these classes, reach-
able through the respective objects. Since the variable
�����	, declared of class ����������, can be bound
to an object of class ��������������, the layout of the
vtable of ��������������must be consistent with that
of ����������, so that virtual method invocations can
be compiled to use the same offset in the vtable for a
given method of ����������, regardless of the dynamic
class of the object.

However, this vtable approach cannot be directly ap-
plied if we want to support binary compatibility. When

JavaProgrammer’s vtable

hack

study

Entry 0

Entry 1

Entry 2

eat

Programmer’s vtable

hack

eatEntry 0

Entry 1

Figure 1: The vtables.

JavaProgrammer’s vtable

hack

study

Entry 0

Entry 1

Entry 2

eat

Programmer’s vtable

eat

hack

Entry 0

Entry 1

Entry 2

sleep

Figure 2: Scenario A: adding a method.

changes are made to the binary of a class, the locations
of method pointers in the vtable may change, which in-
validates the offset information used to compile other
classes. Even worse, vtables reachable through objects
of the same static class may now have different layout,
as illustrated in the following subsections.

3.1 Scenario A: Adding a Method

Here we make a binary-compatible change to class
���������� by adding a new method ����� at the very
beginning.

������ ����� �	
�	���
	 �

�
�� ��

��� � ��� �� !! '
% �
��
�(

�
��
�� �� � ��� ��

�
�� ���� �� � ��� ��

�

Now we recompile class ���������� only. The vta-
bles for ���������� and �������������� are shown
in Figure 2. The vtable layout of class ���������� has
changed, and it is no longer consistent with the vtable
layout of class ��������������. When these classes
are loaded and ����������	� invoked, the code for
������� will access the wrong entry in the vtable and
end up calling method �����. A similar problem oc-
curs with ��������. This is exactly the behavior shown
by the current GCJ, which uses the standard vtable ap-
proach, and thus does not support binary compatibility.

Note that even if we had added the method ����� at the
end of class ����������, the problem still exists, be-
cause when we recompile class ����������, method
����� will use entry 2 of the vtable. However the
entry 2 of the vtable of class �������������� is al-
ready occupied by method �����, and the invocation
����������� of ������� was compiled based on this.

JavaProgrammer’s vtable

hack

study

Entry 0

Entry 1

Entry 2

eat

Programmer’s vtable

hackEntry 0

Figure 3: Scenario B: removing a method.

The observation here is that the vtable layout may
change due to changes in the class. So we really should
not have made any assumptions about the vtable lay-
outs of ����������and �������������� in �������.
Moreover, the information available at compile time is
not sufficient for building the vtables, since classes in the
same hierarchy may change, yet we still need to main-
tain consistency between a subclass and its superclass.

3.2 Scenario B: Removing a Method

Some source code modifications, such as removing a
method from a class, are binary incompatible changes in
the sense that other programs which work fine with the
old binary may cease to function when linked with the
evolved new binary due to the removal of the method.
However, the safety of modern software systems de-
mands that under no circumstances may an application
crash. The JLS requires that, under the incompatible
change in which a method is removed, the program
should still run as long as the missing method is not used,
and that an exception should be raised if code tries to in-
voke the missing method at run time.

Consider what happens when we remove the method
��� from class ���������� in the original program
and recompile it. The vtables for ���������� and
��������������are shown in Figure 3. Obviously, the
vtable layout of class ���������� has changed, and it
is no longer consistent with the vtable layout of class
��������������.

������ ����� �	
�	���
	 �

!! �
��
�� �� � ��� �� !!)
�
�
�(

�
�� ���� �� � ��� ��

�

In this case, the correct behavior of a virtual method
invocation ������� in any old binary depends on the
static class of the object ���. If the static class of ���
is ��������������, the method invocation works fine,
as if no change had been made. However, if the static
class of ��� is ����������, a �� ���������!����

exception should be thrown when the method is in-
voked, even if ��� actually contains an object of class
��������������which defines method ���.

hack

drink

Entry 0

Entry 1

Entry 2

eat

OOProgrammer’s vtable

hack

drin k

Entry 0

Entry 1

Entry 2

Entry 3

eat

study

JavaProgrammer’s vtable

hack

eatEntry 0

Entry 1

Programmer’s vtable

Figure 4: Scenario C: changing class hierarchy.

The standard vtable approach fails in this case as
well. The invocation ������� in ������� will call
the wrong method ����, while �������� will have
implementation-dependent results, since it uses a pointer
located outside of the actual vtable.

The observation here is that we need to gracefully handle
incompatible changes by raising exceptions at run time.
Of course, we still need to keep in mind the consistency
of vtables.

3.3 Scenario C: Binary Change at Run Time

Some static compilers (e.g. BulletTrain) perform depen-
dency analysis before executing a Java program, and
attempt to recompile if inconsistency is detected. In
the cases of scenarios A and B, these compilers would
have refused to run �������, or attempted to recom-
pile it automatically. The problem is that this behavior
is not only non-compliant with the binary compatibility
requirements of the JLS (which intends to solve these
issues without recompilation of the client classes of the
changed class), but also that this dependency analysis
cannot always be done statically.

A simple example which presents a challenge to the
static dependency analysis scheme is reflection. Using
reflection, a program can load arbitrary class files which
are not known at compile time. This means that the static
analysis may not work out all the dependencies. Even if
reflection is not a concern, binary changes may occur
at run time after some classes are already loaded and
executed. In these cases, recompilation is not possible.
Here we use another binary-compatible change, namely
the insertion of a new class into the class hierarchy, to
demonstrate the problem.

������ ����� **�	
�	���
	

��
��� �	
�	���
	 � !! '
% +����(

�
�� �	����� � ��� ��

�

������ ����� �����	
�	���
	

��
��� **�	
�	���
	� !! '
% ,�
	�	���(

�
��
�� �� � ��� ��

�
�� ���� �� � ��� ��

�
�� ������� � ��� ��

�

Based on the original program, before we make
any changes, suppose class ������� (but not
��������������) is already loaded and being ex-
ecuted. During the execution of the first line of
��	�, we insert a new class ""���������� between
���������� and ��������������. We compile
""��������� and recompile ��������������. The
vtables are shown in Figure 4. Clearly, the vtable
layout of �������������� has changed. The line
for ����������� in ������� is going to call method
��	��which happens to reside in the entry 2 of �����’s
vtable after the change.

The lesson is, binary changes may occur after some
classes are loaded. Static dependency analysis and re-
compilation are sometimes not only undesirable, but un-
affordable. Reflection is an additional complication.

4 Our Approach

In this section we present our solution for static com-
pilers to support Java binary compatibility. Table 1 and
Table 2 summarize all the binary changes to classes and
interfaces specified in Chapter 13 of the Java language
specification [11]. Compatible changes are marked with
“�” and incompatible changes are marked with “�”. We
present the solutions for these changes in the coming
subsections. In these tables, SEC x means the solution
is presented in Section x. The symbol

�
is only used for

binary compatible changes. It means that the solution is
trivial and requires no change to the existing implemen-
tation. The numbers associated with each binary change
are used for cross-referencing in later sections.

4.1 Virtual Methods

The major difficulty in supporting Java binary compati-
bility is the handling of virtual methods. In this section,
we present our idea in a simplified setting where only
virtual methods under single inheritance are considered.
Temporarily putting aside other features (e.g. modifiers)
makes it easier to understand our solution. Extending
this solution to work for static methods and constructors
is trivial. All the other language features can be sup-
ported with simple extensions which we present later.

4.1.1 Idea

From the lessons we learned in Section 3, we know that
even though we want to compile classes ahead of time,
we cannot afford to build the vtables statically. The in-
formation we get during the ahead-of-time compilation

No. �/� Binary Change to Class Solution

1 � adding(overriding)
method/constructor (without
modifier change)

SEC 4.1

2 � changing hierarchy preserv-
ing super(s)

SEC 4.1

3 � adding field (without modifier
change)

SEC 4.2

4 � abstract� nonabstract
�

5 � final� nonfinal
�

6 � nonpublic� public
�

7 � allowing more access to mem-
ber

�

8 � final field� nonfinal field
�

9 � adding/deleting transient
modifier

�

10 � changing formal parameter
name of method/constructor

�

11 � abstract method � nonab-
stract

�

12 � final method� nonfinal; non-
final static meth� final static

�

13 � changing synchronized modi-
fier

�

14 � changing throws clause
�

15 � changing method/constructor
body

�

16 � adding method/constructor
that overloads existing one

�

17 � changing static initializer
�

18 � removing method/constructor SEC 4.1
19 � removing field SEC 4.2
20 � changing hierarchy without

preserving super(s)
SEC 4.4.1

21 � noncircular hierarchy � cir-
cular hierarchy

SEC 4.4.1

22 � nonfinal� final SEC 4.4.1
23 � nonabstract� abstract SEC 4.4.1
24 � nonfinal virtual method � fi-

nal virtual
SEC 4.4.2

25 � restricting access to member SEC 4.4.2
26 � nonfinal field� final field SEC 4.4.2
27 � static� instance member SEC 4.4.2
28 � nonabstract method � ab-

stract
SEC 4.4.2

29 � public� nonpublic SEC 4.4.2

30 �/� adding(overriding) method
(with modifier change)

SEC 4.4.3

31 �/� adding field (with modifier
change)

SEC 4.4.3

32 �/� changing signature SEC 4.4.3
33 �/� about native methods SEC 4.4.3

Table 1: Java binary compatibility summary: classes.

C

X

A B

loaded class cache

A
B
C
X

h −> 1
m −> 2

f1 −> 1

global allocation table

f2 −> 2

ctable list

B
C
X

A

C.m −> 1

X.h −> 2

ctable
A.g −> 0 k1

2

k2

off_tab vtable vtableoff_tab

m

hf1

f2

EXN EXN

B’s data and code area C’s data and code area

ctable

Figure 5: Our solution.

No. �/� Binary Change to Interface Solution

34 � changing hierarchy preserv-
ing super(s)

SEC 4.3

35 � nonpublic� public
�

36 � adding/deleting transient
modifier

�

37 � changing formal parameter
name of method

�

38 � changing synchronized
modifier

�

39 � adding method that over-
loads existing one

�

40 � removing member SEC 4.3
41 � changing hierarchy without

preserving super(s)
SEC 4.4.1

42 � public� nonpublic SEC 4.4.2

43 �/� adding field SEC 4.2
SEC 4.4.3

44 �/� adding method SEC 4.3
SEC 4.4.3

45 �/� changing signature SEC 4.4.3

Table 2: Java binary compatibility summary: interfaces.

is not sufficient to determine the vtable layout. Besides,
we need to handle our compilation carefully so that we
can detect binary-incompatible changes and emit error
messages gracefully.

We solve this problem by building vtables during class
loading. Once loaded, a class is considered fixed. Fur-
ther changes to this class can be ignored, according to
the JLS. Thus we can safely determine the layout of the
vtables.

A minor complication is that vtable layouts have to be

consistent between a superclass and a subclass. In other
words, a method � is located at the same position in
the vtable of a subclass as in the vtable of a superclass.
Luckily, the loading of a superclass precedes the loading
of a subclass, which makes it possible to construct the
vtable of the subclass based on the vtable layout of the
superclass. In our solution, we maintain this consistency
with the help of a global allocation table which reflects
the layout of the vtables of all the loaded classes. During
the loading of a class, we check the global allocation
table to learn the vtable layout of the superclass. Then
we follow the layout of the superclass and construct the
class’s vtable by appending fresh entries at the end. We
also record the newly determined layout in the global
allocation table so that any subclasses can access it.

The problem now is how to statically compile a virtual
method invocation when the vtable layout is not deter-
mined statically. We handle this by introducing an extra
level of indirection by compiling virtual method invoca-
tions to fetch an offset table entry before accessing the
vtable. The offset table maps a virtual method to the off-
set of the method in the vtable. Its entries are filled in at
run time when the corresponding class is loaded.

The idea of our approach is shown in Figure 5. To en-
able this approach, we need to make changes to both the
compiler and the class loader.

Compiler Every class is statically compiled to contain
a customizing table (ctable) and an offset table (off tab).
The size of the ctable is proportional to the number of
distinct external method invocations in the class. For
each distinct external method referenced in the code of
the class, there is a corresponding entry in the ctable. In
a class �, if an external method � is invoked on both an

object of a class � and an object of its subclass �, then
both ��� and ��� will appear in �’s ctable. A ctable
entry maps an external method to a unique natural num-
ber. This natural number is the offset of the entry for the
external method in the offset table. The offset table en-
tries are filled in incrementally at run time according to
the information in the global allocation table. A virtual
method invocation is compiled to go through the corre-
sponding offset table entry before accessing the vtable.

Class loaderThe class loader has to maintain the global
allocation table, the offset tables, and the vtables during
class loading. When a class � is loaded, the class loader
constructs the vtable for � based on the vtable layout of
the superclass of�� which is specified in the global allo-
cation table. Here we reserve the entry � to point to some
special exception code. Once the vtable is constructed,
the class loader registers the vtable layout in the global
allocation table. This information is also propagated to
the offset tables of the loaded client classes of �� In this
step it is possible that the offset table of a certain class
� contains an entry for a method � of class �� while �
does not actually exist in this newly loaded class �� This
means that there must have been some binary incompat-
ible changes (e.g. � was removed from �� while � was
compiled with an old version of �). In this case, the
class loader puts the special offset � in the corresponding
offset table entry. The entry � of a vtable always points
to some special code that would raise proper exceptions
when the method � is invoked.

Example Consider what happens at run time when ex-
ecuting a virtual method invocation ���, where � is of
static class �. Suppose this method invocation appears in
the body of class #. The statically determined ctable of
class # designates an offset � for the method � of class �.
In our scheme, ��� is compiled to access the entry � of
class #’s offset table for a new offset � �. This new offset
�� is copied from the global allocation table during class
loading. It is the actual offset of the method � in the
vtable of class �. Although the dynamic class of object
� could be a subclass of �, it is safe to use the offset � �

to access the vtable of object � for invoking the method,
because we have arranged the vtables of a superclass and
its subclasses to be consistent.

Correctness The correctness of our solution for vir-
tual methods is based on the following observations: the
global allocation table provides a correct view of all the
vtables of the loaded classes; the vtable of a subclass is
consistent with the vtable of its superclass; all offset ta-
bles are consistent with the global allocation table; and
a virtual method invocation cannot be executed before
the class of the receiver object is loaded. We refer in-

terested readers to our internal report [31] for a formal
development and its soundness proof.

4.2 Fields

The support for fields can be separated into three cate-
gories: support for private fields, support for non-private
fields, and support for various kinds of access modifiers.

Private fields can only be referenced from within the
defining class. Thus they do not require any special care
for binary compatibility.

Changing non-private fields may affect other classes that
depend on them. A similar technique as we used for
methods can be used here, though it may be relatively
less efficient. However, it is generally good software en-
gineering practice to limit the use of non-private fields.
Using non-private fields is also discouraged in the Bi-
nary Compatibility chapter of the JLS; to quote from
Section 13.4.7 of JLS [11], “Widely distributed pro-
grams should not expose any fields to their clients.” In
fact, non-private fields (especially as part of public APIs)
seem to be quite rare. To the authors’ knowledge, they
are almost non-existent in the standard Java libraries. We
believe that the inefficiency here will not have much im-
pact in practice.

Nevertheless, the handling of removed fields is tricky.
Unlike calling a method, the trick with reserving the �-
offset entry will not work in this case because accessing
it as a field will not raise any exceptions. Using a run-
time check for every field access to determine whether
the offset for a field is valid has too great a cost in per-
formance. Our solution is, instead of detecting miss-
ing fields lazily, to raise exceptions at class loading time
when trying to fill in an offset table entry for a field, if
the corresponding information is not in the global allo-
cation table. Note that this solution does not obey the
JLS on the particular aspect that exceptions of a missing
field should be raised lazily. For full compliance with
the JLS, one possible solution is to fill in the offset table
entry of the missing field with some special offset which
triggers an OS trap when accessed. A similar technique
is introduced by Joisha et al. [16] for the IBM Quick-
silver quasi-static compiler [27] for a different purpose,
namely to trigger the “stitching” (or linking) operations.

More surprisingly, adding a field is not always a compat-
ible change if changes of modifiers are involved. We dis-
cuss this peculiarity in Section 4.4.3 together with other
modifier changes.

4.3 Interfaces

The common practice in supporting Java interfaces is to
use interface tables (itables); we refer the reader to the
work of Alpern et al. [2] for a discussion of the prior
implementation techniques for interface dispatch and an
efficient implementation of Java interfaces. For each in-
terface that a class implements, there is a correspond-
ing itable which contains all the methods declared in the
interface. At run time, an interface method invocation
would involve looking up the itable by interface name,
fetching the address of the interface method from a fixed
offset, determined at compile time, and invoking it. The
itable look-up mechanism provides natural support for
binary compatibility; however, if the method layout of
an itable may change, it would be wrong to use a fixed
offset to access an interface method.

Fortunately, this is exactly the same problem that we
solved for virtual methods and vtable dispatch. All we
have to do is make sure interface method invocations go
through the offset table, and fill in the offset table incre-
mentally at class loading time once the itable layout is
determined.

4.4 Other Changes

All the other binary changes specified by the JLS can
be supported by making simple extensions to the tech-
niques discussed so far. They happen to all be incom-
patible changes, and fall into the following categories.
(The numbers at the beginning of the bullets are used
for cross-referencing with the entries in Table 1 and Ta-
ble 2.)

4.4.1 Checking constraints

The incompatible changes in this category are han-
dled by maintaining constraints either explicitly or
implicitly, and checking them against the loaded classes
during class loading. When any of the constraints
are violated, exceptions are raised ($��	
�!����,
������	������	��!����, %������	��	��!����,
etc).

� (20,41) When compiling a class, we add a con-
straint for every upward cast indicating the ex-
pected inheritance relationship. During execution,
we have the system maintain all the constraints
specified by the currently loaded classes. When a
class is loaded, we check its constraints against the
loaded class hierarchy. We also check the newly

loaded class against the constraints maintained by
the system.

� (21) If the class hierarchy becomes circular due to
incompatible changes, we can detect it during class
loading.

� (22) If a class 	
� inherits a nonfinal class 	
�
�,
and 	
�
� is changed to be final, we can detect it
during the loading of class 	
�.

� (23) Abstract classes cannot be used to create in-
stances. Similar to what we did for upward casts,
we add a constraint for every instance creation indi-
cating that the class being instantiated cannot be an
abstract class. These constraints are checked during
class loading.

4.4.2 Tagging and exception handling

Most modifier-incompatible changes can be handled by
tagging the global allocation table entries with modifiers
(e.g. access control, readable/writable, instance/static,
etc.). In the offset tables, the entries are tagged with
the expected modifiers, too. During class loading, the
class loader decides whether the modifiers are compati-
ble, and fills in an offset table entry with the registered
offset only if they are.

While we could use offset � for all kinds of error han-
dling, it is usually preferred to raise different exceptions
on different incompatible changes. To achieve this, we
can reserve more entries in the vtables and other data
structures (e.g. itables) for various exception code. If
a certain access is denied according to the global allo-
cation table, the offset of the corresponding exception
entry is used.

� (24) Final virtual methods cannot be overridden.
During class loading, a subclass studies the vtable
layout of its superclass. A tag in the global al-
location table indicates whether a virtual method
is final. If a final virtual method is overridden,
$��	
�!���� exception is raised immediately.

� (25) If a binary change restricts access to a mem-
ber, the tag in the corresponding global allocation
table entry can be used to decide whether an ac-
cess is granted. If an access attempt to a field is
denied, %������&�����!���� exception is imme-
diately raised. If an access attempt to a method or
constructor is denied, the offset of the exception en-
try is used.

� (26) If a field that was not final is changed to
be final, then it can break compatibility with pre-
existing binaries that attempt to assign new values
to the field. Our solution is to tag the final field with
read-only access in the global allocation table. If
some offset table is expecting the field to be tagged
with writable access, %������&�����!���� ex-
ception is raised.

� (27) Changing the ����	� modifier of members
could raise exceptions when the member is ac-
cessed. Static members and instance members are
tagged differently in the global allocation table and
the offset tables. In the case of field modifier mis-
match, %�������	��������������!���� ex-
ception is raised; while in the case of modifier mis-
match of other members, the entry in the table is
filled with the offset for code raising the exception.

� (28) An abstract method cannot be invoked. If
a subclass 	 inherits a method � defined in the
old binary of a superclass �, and � is changed
by declaring � as an abstract method, invoking �

on an object of 	 is going to raise an exception
(&�������������!����). Our solution is, when
constructing the vtable of a class � that declares an
abstract method � , to put a pointer to the exception
code in the entry of � . A subclass that does not de-
fine � inherits the exception code, while a subclass
that defines � works as if no change is made.

� (29,42) The members of nonpublic classes cannot
be accessed from outside the package. Having ac-
cess tags in the corresponding global allocation ta-
ble entries solves this problem. Similar observa-
tions apply to interfaces.

4.4.3 Miscellaneous

� (32,45) Changing a signature has the combined ef-
fect of removing the old member and adding a new
one.

� (33) Adding or deleting a native modifier is con-
sidered compatible. The support for this is trivial.
Other changes related to native methods are beyond
the scope of the JLS.

� (30,31,43) Adding a field/method is a compatible
change, except in the following cases.

1. The new field/method shadows/overrides an
old one, and the new field/method is less ac-
cessible than the old one.

Manager’s offset table

Tom.eat −> 0

Tom.hack −> 1

Jerry.eat −> 2

Jerry.hack −> 3

Jerry.study −> 4

Manager’s ctable

Figure 6: The ctable and offset table of �������

2. The new field/method shadows/overrides an
old one, and the new field/method is a static
(instance) member but the old one is an in-
stance (static) member.

3. The new field in an interface may shadow a
field in other classes.

These cases are handled as (25), (27) and (26).

� (44) Adding methods to interfaces is listed as a
binary compatible change in the JLS. However, it
MAY break compatibility with pre-existing bina-
ries [8]. Based on our support for interfaces in Sec-
tion 4.3, together with the technique described for
(28), we can build the itable of an interface with
pointers to specific exception code. If a class which
implements the interface does not define all the in-
terface methods, the exception code is inherited.

5 Example Revisited: Programmer &
Manager

In our solution, the class ������� is compiled to contain
a ctable and an offset table (Figure 6). The ctable maps
distinct external methods used in the class to unique off-
sets. The offset table is initially empty, and is filled in
incrementally at run time with the offsets of these exter-
nal methods.

5.1 Scenario A Revisited: Adding a Method

In Scenario A we added a new method ����� at the very
beginning of ����������. Our solution does not re-
quire recompilation of �������, because ������� does
not make any assumptions about the vtable layouts of
���������� and ��������������.

Figure 7 illustrates what happens during the class load-
ing of ���������� and ��������������. When
���������� is being loaded, its vtable is constructed
on the fly so that any binary changes before class loading
can be taken into account. The layout of this newly con-
structed vtable is registered in the global allocation table

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

off_tab

3
2

2

3
4

vtable

...

...

EXN
vtable

...

3

1

2

0

sleep

eat

hack

EXN

Programmer ...

vtable
...

3

4

1

2

0

sleep

eat

hack

study

EXN

JavaProgrammer ...

���������
���������
���������

���������
���������
���������

ctable list

Manager
Programmer

JavaProgrammer

���������
���������
���������

���������
���������
���������

ctable list

Manager
Programmer

�����
�����
�����

�����
�����
�����
study −> 4

sleep −> 1
eat −> 2
hack −> 3

������
������
������
������

������
������
������

������
������
������

������
������
������
������

sleep −> 1
eat −> 2
hack −> 3

ctable list

Manager

global allocation table

Manager

���
���
���

���
���
���

���
���
���

���
���
���

off_tab

3
2

vtable

...

...

EXN

vtable
...

3

1

2

0

sleep

eat

hack

EXN

Programmer ...

off_tab vtable

...

...

EXN

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

Manager

loaded class cache

Manager

Programmer

loaded class cache

Manager

Programmer

loaded class cache

JavaProgrammer

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable

Loading JavaProgrammer

global allocation table

Manager
Programmer

JavaProgrammer

global allocation table

Manager
Programmer

Loading Programmer

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable

Tom.hack −> 1
Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable

Jerry.eat −> 2

Figure 7: Scenario A revisited: adding a method.

entry of ����������. This layout information is used
to fill in the relevant offset table entries of �������.

When �������������� is loaded later (being a sub-
class of ����������, its loading cannot precede that
of ����������), its vtable is constructed following the
layout requirements specified by the global allocation
table entry of ����������. By doing this, the consis-
tency of the vtable layouts between a subclass and its
superclass is maintained. Once this is done, the layout
information is propagated accordingly to the offset ta-
ble entries of �������. Using the offset specified in the
corresponding offset table entry, a virtual method invo-
cation will successfully get through.

���
���
���
������
���
���
������
���
���
���

off_tab

1
0

3
1
2

vtable

...

...

EXN
vtable

...

3

1

2

0

hack

eat

study

EXN

JavaProgrammer ...

�����
�����
�����
�����

�����
�����
�����
�����

eat −> 2
study −> 3

hack −> 1

���
���
���
���

���
���
���
���

off_tab

1
0

vtable

...

...

EXN

vtable
...

1

0

hack
EXN

Programmer ...

�����
�����
�����
�����hack −> 1

off_tab vtable

...

...

EXN

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

Manager

loaded class cache

Manager

Programmer

loaded class cache

Manager

Programmer

loaded class cache

JavaProgrammer

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable vtable
...

1

0

hack
EXN

Programmer ...

ctable list

Manager
Programmer

JavaProgrammer

global allocation table

Manager
Programmer

JavaProgrammer

Loading JavaProgrammer

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable

global allocation table

Manager
Programmer

ctable list global allocation table

ManagerManager

ctable list

Manager
Programmer

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable

Loading Programmer

Figure 8: Scenario B revisited: removing a method.

5.2 Scenario B Revisited: Removing a Method

In Scenario B, we removed the method ��� from class
����������. Although this is an incompatible change,
the program is still supposed to run as long as the re-
moved method is not invoked. In class �������, if we
execute a method invocation ���������, the program
will execute as usual. However, if we execute �������,
an exception should be raised.

In our solution (Figure 8), after class ���������� is
loaded, there would be no information about method
��� in the global allocation table. However in �������,
which expected a method ��� from class ����������,

there is an offset table entry which expects an offset
for method ���. In this case we put � in the offset ta-
ble entry. In the actual vtable of any class, the entry
at offset 0 is always set to point to some specific code
that would raise proper exceptions when invoking the
�������method at run time. However, things will be as
usual if ��������� is executed, because ��� does occur
in the global allocation table entry of ��������������.

5.3 Scenario C Revisited: Binary Change at
Run Time

Our solution works even if binary changes happen at
run time (Figure 9). Here we illustrate why this is true
using the example in scenario C, in which we changed
the class hierarchy compatibly by inserting a new class.
In scenario C, after class ������� is loaded and be-
ing executed, we add a new class ""���������� into
the old class hierarchy. When object ��� is being cre-
ated, class ���������� is loaded. Then, when object
����� is being created, both class ""���������� and
class �������������� are loaded. The vtable layouts
of ����������, ""���������� and ��������������

are determined during class loading. All of this infor-
mation is registered in the global allocation table. Us-
ing this information, the offset table of ������� is filled
in incrementally. Eventually, the virtual method invoca-
tions will get through.

6 Algorithm

We have separately talked about how to support various
binary compatibility issues in Section 4. In this section,
we take a different view and present roughly the overall
algorithm of our solution. The algorithm consists of two
parts: the compilerpart and the class loaderpart.

6.1 Compiler

To support binary compatibility, the major difference
in the compilation is that the metadata structures (e.g.
vtable, itable, field record, etc) of classes and interfaces
are not fixed.

1. Create ctable and offset table for every class be-
ing compiled.The ctable maps external references
(including references to various kinds of members)
to unique offsets to the offset table. The offset ta-
ble entries are tagged with the expected modifiers
of the members. The contents of the offset table
entries are blank. They are to be filled in incremen-
tally at run time when the corresponding class is

���
���
���
���

���
���
���
���

���
���
���
���

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable off_tab

1

4

1
2

2

...

���������
���������
���������
���������

ctable list

Manager
Programmer

OOProgrammer
JavaProgrammer

off_tab

2
1

vtable

...

...

EXN
vtable

...

3

1

2

0

eat

hack

drink

EXN

OOProgrammer ...

vtable
...

1

2

0

eat

hack

EXN

Programmer ...

���������
���������
���������

���������
���������
���������

ctable list

Manager
Programmer

OOProgrammer

eat −> 1
hack −> 2

������
������
������
������

������
������
������
������

eat −> 1
hack −> 2

���������
���������
���������
���������

���������
�����
�����
�����

���������
���������
���������

���������
���������
��������� �����

�����
�����

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

���������
���������
���������
���������

���������
���������
���������
���������

ctable list global allocation table

ManagerManager

loaded class cache

Manager

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable off_tab vtable

...

...

EXN

Manager

Programmer

loaded class cache

OOProgrammer

JavaProgrammer

vtable
...

3

1

2

0

eat

hack

drink

EXN

OOProgrammer ...

vtable
...

1

2

0

eat

hack

EXN

Programmer ...

vtable
...

3

4

1

2

0

eat

hack

drink

study

EXN

JavaProgrammer ...

global allocation table

Manager
Programmer

OOProgrammer
JavaProgrammer

hack −> 2drink −> 3
eat −> 1

study −> 4

Manager

Programmer

loaded class cache

OOProgrammer

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable

Loading JavaProgrammer

Loading OOProgrammer

global allocation table

Manager
Programmer

OOProgrammer

drink −> 3

Manager

Programmer

loaded class cache

Tom.hack −> 1
Jerry.eat −> 2

Tom.eat −> 0

Jerry.hack −> 3
Jerry.study −> 4

Manager’s data and code area

ctable off_tab vtable

...

...
2
1 EXN

vtable
...

1

2

0

eat

hack

EXN

Programmer ...

ctable list

Manager
Programmer

global allocation table

Manager
Programmer

Loading Programmer

Figure 9: Scenario C revisited: changing class hierarchy.

loaded. It is guaranteed that an offset table entry
will be filled in before it is used, because no access

to a class can be made before the class is loaded.

2. Compiling external references.Accesses to exter-
nal references are compiled to go through the offset
table. The object code fetches an offset from the
offset table, and uses it to access the corresponding
metadata structure.
Taking virtual method invocation as an example,
if an object � is of static class � , then a virtual
method invocation ���'(that appears inside class
� would be compiled as follows (where the final �
is the self pointer):

�
�
""-� $ �

���������
. /0/. /�/�

��
������
 �
""-����
""-� �
�

Here ������ is the ctable of class �, �

)��� is
the offset table of class �. Class �’s ctable entry
for the virtual method � of class � is fixed. The
lookup can be performed at compile time, so that
at run time we can fetch the vtable offset directly
from a certain offset table entry.

6.2 Class Loader

The class loader needs to maintain the related data struc-
tures such as the global allocation table, offset tables,
and metadata structures like the vtable. It also has to
check for various constraints during class loading. Here
is what happens when a class � is loaded by the class
loader. Loading interfaces is handled similarly.

1. Loading superclasses.Recursively load all the su-
perclasses of �, if they are not loaded already.

2. Check for constraints related to the class hierarchy.
In this step we only need to check things related to
class �. Refer to Section 4.4.1 for details.

3. Create a global allocation table entry for class�
(��). This �� maps every member to its position in-
formation in the corresponding metadata structure
(e.g. vtable), together with the modifier tags. Static
members are easy to deal with, but special attention
must be paid when mapping instance members, be-
cause we have to do it in such a way that it is consis-
tent with the global allocation table entries of �’s
superclasses.
In order to do this, we have to check the global al-
location table entries of all the superclasses of �
(recursively, they are already consistent with each
other). Note that this data is not copied from the
global allocation table entries of �’s superclasses
to the entry of �, because that would be space-
inefficient. This is also when we make sure final

methods are not overridden. After that, we con-
struct the mappings of �’s fresh instance members
(those members defined in � but not in any super-
classes of �). Here we can only use those offsets
which are not yet used in any superclasses of �. In
particular some offsets (e.g. �) are reserved for in-
compatible change exception handling and cannot
be used to map members to.

4. Create the class data structures (e.g. vtable) of
class�. We do this according to the layout spec-
ified in the global allocation table entry � and the
entries of �’s superclasses. If the global allocation
table maps a member to position �, then the data for
the actual member is put at position � of the corre-
sponding data structure. Beside those specified by
the global allocation table, we also need to fill in
the reserved entries with pointers to particular ex-
ception code.

5. Fill in currently loaded classes’ offset table entries
that correspond to the members in�. We do this
with the help of the global allocation table entries
of � and its superclasses. This step is done by it-
erating over the ctable list. An inverse ctable list
would probably help to improve efficiency.
Here we may find out that other classes might be
expecting a non-existent member from�, or the ex-
pected access is not granted by comparing the mod-
ifier tags. In these cases we put offsets of exception
code (e.g. �) in the offset tables of those classes.
However, as we discussed in Section 4.2, removed
fields cannot be handled in the same manner. We
raise an exception immediately when trying to fill
in the offset table entry for that removed field.

6. Fill in the offset table of class�. This is done in the
same manner as the last step. For �’s offset table,
we fill in those entries that correspond to members
expected from the loaded classes. The entries for
members expected from not-yet-loaded classes are
left to be filled in later.

7. Add the information of class� to the loaded class
cache.Also add the class hierarchy constraints de-
manded by class � to the set of constraints main-
tained by the system.

8. Extend the ctable list with a pointer to the ctable of
class�.

�
�� 1'23���2����4����
�5
��6. 7
�� �
�3
��

�
�� �7
���. 7
�� ������

�
�� 7
��. �7
��� �����

�
�� +8 +92. 7
�� ��	���
��

�
�� 7
��. 2�7
���

���� :;;4�7
���

direct dispatch (vtable)

�
�� 1'23���2����4����
�5
��6. 7
�� �
�3
��

�
�� +8 +92. 7
�� ��	���
��

�
�� �7
���. 7
�� ������

�
�� 7
��. �7
��� �����

�
�� 7
��. 2�7
���

�
��
����
92. 7
�� �
""�
�

���� :�7
��.7
���

indirect dispatch (offset table)

Figure 10: Sample method invocation code

7 Implementation and Performance Eval-
uation

For ease of presentation, we have used vtable entry num-
bers in the offset table entries in the examples. In an ac-
tual implementation, a “processed offset” can be used in-
stead. This “processed offset” is the vtable entry number
multiplied by the size of a vtable entry (size of a pointer
to code). Thus we transferred some of the burden from
run time to compile time.

Bryce McKinlay implemented part of our solution for
GCJ. His implementation so far provides full support for
virtual methods and partial support for interface meth-
ods. The support for fields is still work in progress. This
implementation is to be included in the future GCC re-
lease 3.1.

When compiling with the *"+ optimization flag, it turns
out that our new scheme generates one more assembly
instruction for each virtual method invocation. Figure 10
shows the result of compiling a virtual method invoca-
tion. In our indirect dispatch scheme with the offset ta-
ble involved, the code fetches the offset from the cor-
responding offset table (������) entry, and adds it to
the vtable pointer before calling the method. In contrast,
the original direct vtable dispatch scheme generates code
which adds the offset of the method to the vtable pointer
and calls it. When the same call occurs in a loop (or in
succession), the compiler moves the otable load out of
the loop, so the overhead is reduced.

Our tests are based on the Java Grande 2.0 bench-
marks [9] (the current version of GCJ cannot compile the
SPECjvm98 benchmark suite). All results were obtained

Benchmark Direct Indirect Unit Ratio (%)

Same:Instance 34.59 34.84 ns/call 99.27
Other:Instance 38.55 37.29 ns/call 103.39

Crypt (A) 7.26 7.27 s 99.82
HeapSort (A) 2.14 2.15 s 99.67
Series (A) 46.90 47.62 s 98.49

Crypt (B) 48.41 48.49 s 99.82
HeapSort (B) 14.69 14.67 s 100.14
Series (B) 485.87 493.12 s 98.53

AlphaBeta 24.76 25.04 s 98.89
MonteCarlo 32.89 32.64 s 100.77
Euler 327.55 328.65 s 99.66
RayTracer 45.21 44.81 s 100.90
MolDyn 518.09 529.13 s 97.91

Table 3: Java Grande 2.0 benchmarks

on a DELL Precision 410 workstation running Red Hat
Linux 7.1. The machine has 512MB of main mem-
ory and 500MHz Pentium III processor with 512KB of
cache. The average results over 3 rounds of tests, us-
ing dynamic linking with *"+ flag turned on for both
the direct vtable dispatch scheme of GCJ (Direct) and
our indirect offset table dispatch scheme (Indirect), are
shown in Table 3. In the “Ratio (%)” column, numbers
less than 100 indicate performance slowdown using our
scheme, while numbers greater than 100 indicate perfor-
mance speedup.

The first two benchmarks are taken from benchmark
suite section 1 (Low Level Operations). They test the
performance of invoking virtual (instance) methods on
an object of the same class and of another class. These
two benchmarks perform a large number of iterations
over 17 method invocations; every invoked method sim-
ply increases a global static counter. The result indicates
that much of the offset table overhead was optimized
away in these cases. Somewhat surprisingly the perfor-
mance on “Other:Instance” was improved, possibly due
to the different instruction scheduling.

The rest of the benchmarks (IDEA Encryption, Heap
Sort, Fourier Coefficient Analysis, Alpha Beta Search,
Monte Carlo Simulation, Computational Fluid Dynam-
ics, 3D Ray Tracer, and Molecular Dynamics Simula-
tion) are chosen from Sections 2 (Kernel) and 3 (Large
Scale Applications) of the benchmark suite. We chose
those with the most method invocations involved. Some
of them are run on different data sizes (A/B). The per-
formance penalty is on average less than 2%. Again we
see some performance speedup in the test cases.

Another interesting observation is on the size of the ob-

ject files. The new indirect dispatch scheme for binary
compatibility puts extra offset tables in the object files.
However, the vtables are no longer needed. When test-
ing with the Java Grande 2.0 benchmarks, it turned out
that the object file size using the new scheme is on av-
erage 1% less than using the standard vtable dispatch
scheme.

8 Related Work

Joisha et al. [16] use an indirection table to enable effi-
cient sharing of executable code for the IBM Quicksilver
quasi-static compiler [27]. Besides increasing reusabil-
ity of binary code, their solution also provides some sup-
port for binary compatibility. When binary changes (es-
pecial compatible ones) to a class � are detected during
class loading, the class � is recompiled without requir-
ing any changes to the loaded client classes of �, because
all stitching (or linking operations) are performed on the
indirection table. This stitching, or the operation which
fills in the indirection table, happens incrementally the
first time any single entry is used during the execution
of the program. To enable this operation, they use some
special offsets to trigger “traps” in the OS. When the
program tries to access the memory using these offsets,
the trap handler takes care of filling in the indirection
table entry and resuming the program execution. Since
the major concern of their paper is the sharing of code
images, they do not explicitly address the handling of
various binary incompatible changes.

In contrast, our solution does not require using any
dynamic compilation techniques. Unlike the approach
taken by Joisha et al., we handle the problem of binary
compatibility by building vtables and other class data
structures not during compilation but during class load-
ing. A global allocation table is introduced to help main-
tain the consistency of table layout between superclasses
and subclasses. We also introduce an offset table for ev-
ery class. These offset tables are filled in with the help of
the global allocation table during class loading as soon
as the referenced class is loaded. The statically compiled
code (e.g. for method invocation) uses the offset tables to
access the corresponding class data structures (e.g. vta-
bles). Due to the observation that an external reference
cannot be executed before the referenced class is loaded,
going through the offset tables is guaranteed to be safe.
Thus our approach does not rely on OS-dependent trap-
ping mechanisms to trigger the linking process at run-
time. However, similar trapping mechanisms can be
used to handle missing fields in cases when full com-
pliance with the JLS is important. Lastly, because we
fill in all related offset table entries during the loading

of a class, we can check for various binary incompat-
ible changes. Our paper presents a detailed discussion
of all the binary changes, including both compatible and
incompatible, defined by the JLS.

9 Conclusion

We have presented a scheme which uses static compi-
lation to support Java binary compatibility. All of the
binary compatibility requirements in the Java Language
Specification are supported with the same set of sim-
ple techniques. Binaries changed in a compatible man-
ner can link successfully with pre-existing binaries that
previously linked without error. Incompatible changes
raise various run-time exceptions accordingly. Our im-
plementation shows that this approach is fairly efficient
and has the potential of being applied to real systems.

10 Acknowledgments

We want to specially thank Bryce McKinlay for imple-
menting the indirect dispatching scheme for GCJ and his
inspiring discussion on related issues, and Manish Gupta
for keeping us informed about the state-of-the-art in dy-
namic Java compilers. We also thank many posters on
the GCJ mailing list (java@gcc.gnu.org) for answering
our questions about the GCJ internals, Greg Collins and
Andrew McCreight for valuable comments on an early
version of our paper, and the anonymous reviewers.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srini-
vasan, and J. Whaley. The Jalapeño virtual machine. IBM
System Journal, 39(1), February 2000.

[2] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber.
Efficient implementation of Java interfaces: Invokeinter-
face considered harmless. In Proc. 2001 ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 108–124, 2001.

[3] P. Bothner. A GCC-based Java implementation. In IEEE
Compcon 1997 Proceedings, pages 174–178, February
1997.

[4] D. Chambers, C. Dean, J. Grove. Whole-program opti-
mization of object-oriented languages. Technical Report
TR-96-06-02, Dept. of Computer Science and Engineer-
ing, University of Washington, 28, 1997.

[5] D. Chase, R. Hoover, and K. Zadeck. BulletTrain tech-
nology white paper. ����<!!%%%�����	���	���
�

�
�!, 2001.

[6] D. Detlefs and O. Agesen. Inlining of virtual methods.
In ECOOP’99, LNCS 1628, pages 258–278, 1999.

[7] O. P. Doederlein. The Java performance report – part
IV (static compilers). ����<!!%%%�3����
����
	�!

�
��
	�!3�	!, August 2001.

[8] S. Drossopoulou, D. Wragg, and S. Eisenbach. What
is Java binary compatibility? ACM SIGPLAN Notices,
33(10):341–358, 1998.

[9] Edinburgh Parallel Computing Centre. The Java Grande
forum benchmark suite. ����<!!%%%�
����
�����

��!3����	���
!, 2001.

[10] I. R. Forman, M. H. Conner, S. H. Danforth, and L. K.
Raper. Release-to-release binary compatibility in SOM.
In Proc. 1995 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Appli-
cations, pages 426–438, Oct. 1995.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification (Second Edition). Addison-
Wesley, 2000.

[12] IBM Corporation. IBM’s system object model (SOM):
Making reuse a reality. First Class, a bimonthly publica-
tion of the Object Management Group, October 1994.

[13] IBM Corporation. IBM VisualAge for Java. ����<!!

%%%��
"�%�	
������
�!��!��3���!, 1998.

[14] Instantiations, Inc. Jove, optimizing native compiler for
Java technology. ����<!!%%%������������
����
�!
3
�
!�	
����!��
3
�
����
�����, 2000.

[15] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and
T. Nakatani. A study of devirtualization techniques
for Java Just-In-Time compiler. In Proc. 2000 ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications, 2000.

[16] P. G. Joisha, S. P. Midkiff, M. J. Serrano, and M. Gupta.
A framework for efficient reuse of binary code in Java. In
Proc. 15th ACM International Conference on Supercom-
puting, pages 440–453, New York, June 2001.

[17] A. Krall and R. Grafl. CACAO — A 64-bit JavaVM just-
in-time compiler. Concurrency: Practice and Experi-
ence, 9(11):1017–1030, 1997.

[18] C. League, V. Trifonov, and Z. Shao. Type-preserving
compilation of featherweight Java. In Proc. 8th Founda-
tions of Object-Oriented Languages Workshop, London,
January 2001.

[19] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification (Second Edition). Addison-Wesley, 1999.

[20] V. Mikheev, N. Lipski, D. Gurchenkov, P. Pavlov,
V. Sukharev, A. Markov, S. Kuksenko, S. Fedoseev,
D. Leskov, A. Yeryomin, and A. P. Ershov. Overview
of Excelsior JET, a high performance alternative to Java
Virtual Machines. In Proc. 2002 ACM Workshop on Soft-
ware and Performance, 2002.

[21] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system F to typed assembly language. In Proc. 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 85–97, Jan. 1998.

[22] NaturalBridge, Inc. BulletTrain optimizing com-
piler and runtime for JVM bytecodes. ����<!!%%%�

����	���	���
��
�!, 1996.

[23] G. C. Necula and P. Lee. The design and implementation
of a certifying compiler. In Proc. 1998 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pages 333–344, 1998.

[24] H. Ogawa, K. Shimura, S. Matsuoka, F. Maruyama,
Y. Sohda, and Y. Kimura. OpenJIT: an open-
ended,reflective JIT compiler framework for Java. In
14th European Conference on Object-Oriented Program-
ming, pages 362–387, 2000.

[25] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM

server compiler. In Proceedings of the 1st JavaTM Virtual
Machine Research and Technology Symposium, 2001.

[26] P. Potrebic. What’s the fragile base class (FBC) problem?
BeTM newsletter – the newsletter for BeOSTM developers
and customers. Issue 79, June 1997.

[27] M. J. Serrano, R. Bordawekar, S. P. Midkiff, and
M. Gupta. Quicksilver: a quasi-static compiler for Java.
In Proc. 2000 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Appli-
cations, pages 66–82, Oct. 2000.

[28] K. Shudo. shuJIT—JIT compiler for Sun JVM/x86.
����<!!%%%�����
��
�!3��!, 1998.

[29] Sun Microsystems. The Java HotSpot virtual ma-
chine white paper. ����<!!3���������
�!�	
�����!
�
���
�!, 2001.

[30] Symbian Ltd. EPOC C++ system documentation – con-
trolling binary compatibility. ����<!!%%%���������

�
�!, 1999.

[31] The FLINT project. Binary compatibility report.
����<!!"�����������
�
��!=�������!����
��!

���������>, 2001.

[32] The Free Software Foundation. The GNU compiler for
Java. ����<!!��������
	�!3���!, 2000.

