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Abstract
This paper presents a new approach for automatically deriving
worst-case resource bounds for C programs. The described
technique combines ideas from amortized analysis and ab-
stract interpretation in a unified framework to address four
challenges for state-of-the-art techniques: compositionality,
user interaction, generation of proof certificates, and scal-
ability. Compositionality is achieved by incorporating the
potential method of amortized analysis. It enables the deriva-
tion of global whole-program bounds with local derivation
rules by naturally tracking size changes of variables in se-
quenced loops and function calls. The resource consumption
of functions is described abstractly and a function call can
be analyzed without access to the function body. User in-
teraction is supported with a new mechanism that clearly
separates qualitative and quantitative verification. A user can
guide the analysis to derive complex non-linear bounds by
using auxiliary variables and assertions. The assertions are
separately proved using established qualitative techniques
such as abstract interpretation or Hoare logic. Proof certifi-
cates are automatically generated from the local derivation
rules. A soundness proof of the derivation system with re-
spect to a formal cost semantics guarantees the validity of the
certificates. Scalability is attained by an efficient reduction of
bound inference to a linear optimization problem that can be
solved by off-the-shelf LP solvers. The analysis framework
is implemented in the publicly-available tool C4B. An exper-
imental evaluation demonstrates the advantages of the new
technique with a comparison of C4B with existing tools on
challenging micro benchmarks and the analysis of more than
2900 lines of C code from the cBench benchmark suite.

1. Introduction
In software engineering and software verification, we often
would like to have static information about the quantitative
behavior of programs. For example, stack and heap-space
bounds are important to ensure the reliability of safety-critical
systems [Regehr et al. 2005]. Static energy usage informa-
tion is critical for autonomous systems and has applications
in cloud computing [Cohen et al. 2012; Carroll and Heiser
2010]. Worst-case time bounds can help create constant-time
implementations that prevent side-channel attacks [Käsper
and Schwabe 2009; Barthe et al. 2014]. Loop and recursion-
depth bounds are used to ensure the accuracy of programs that
are executed on unreliable hardware [Carbin et al. 2013] and

complexity bounds are needed to verify cryptographic pro-
tocols [Barthe et al. 2009]. In general, quantitative resource
information can provide useful feedback for developers.

Available techniques for automatically deriving worst-
case resource bounds fall into two categories. Techniques in
the first category derive impressive bounds for numerical
imperative programs, but are not compositional. This is
problematic if one needs to derive global whole-program
bounds. Techniques in the second category derive tight whole-
program bounds for programs with regular loop or recursion
patterns that decrease the size of an individual variable or
data structure. They are highly compositional, scale for large
programs, and work directly on the syntax. However, they do
not support multivariate interval-based resource bounds (e.g.,
x´ y) which are common in C programs. Indeed, it has been
a long-time open problem to develop compositional resource
analysis techniques that can work for typical imperative code
with non-regular iteration patterns, signed integers, mutation,
and non-linear control flow.

Tools in the first category include SPEED [Gulwani et al.
2009b], KoAT [Brockschmidt et al. 2014], PUBS [Albert
et al. 2012a], Rank [Alias et al. 2010], and LOOPUS [Sinn
et al. 2014]. They lack compositionality in at least two
ways. First, they all base their analysis on some form of
ranking function or counter instrumentation that is linked
to a local analysis. As a result, loop bounds are arithmetic
expressions that depend on the values of variables just before
the loop. This makes it hard to give a resource bound on
a sequence of loops and function calls in terms of the
input parameters of a function. Second, while all popular
imperative programming languages provide a function or
procedure abstraction, available tools are not able to abstract
resource behavior; instead, they have to inline the procedure
body to perform their analysis.

Tools in the second category originate form the potential
method of amortized analysis and type systems for functional
programs [Hofmann and Jost 2003; Hoffmann et al. 2012]. It
has been shown that class definitions of object-oriented pro-
grams [Hofmann and Jost 2006] and data-structure predicates
of separation logic [Atkey 2010] can play the role of the type
system in imperative programs. However, a major weakness
of existing potential-based techniques is that they can only
associate potential with individual program variable or data
structure. For C programs, this fails for loops as simple as
for(i=x;i<y;i++) where y ´ i decreases, but not |i|.
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A general problem with existing tools (in both categories)
is user interaction. When a tool fails to find a resource bound
for a program, there is no possibility for sound user interac-
tion to guide the tool during bound derivation. For example,
there is no concept of manual proofs of resource bounds; and
no framework can support composition of manually derived
bounds with automatically inferred bounds.

This paper presents a new compositional framework for
automatically deriving resource bounds on C programs. This
new approach is an attempt to unify the two aforementioned
categories: It solves the compositionality issues of tech-
niques for numerical imperative code by adapting amortized-
analysis–based techniques from the functional world. Our
automated analysis is able to infer resource bounds on C pro-
grams with mutually-recursive functions and integer loops.
The resource behavior of functions can be summarized in a
function specification that can be used at every call site with-
out accessing the function body. To our knowledge this is the
first technique based on amortized analysis that is able to de-
rive bounds that depend on negative numbers and differences
of variables. It is also the first resource analysis technique for
C that deals naturally with recursive functions and sequenced
loops, and can handle resources that can become available
during execution (e.g., when freeing memory). Compared to
more classical approaches based on ranking functions, our
tool inherits the benefits of amortized reasoning. Using only
one simple mechanism, it handles:

• interactions between sequential loops or function calls
through size changes of variables,

• nested loops that influence each other with the same set
of modified variables,

• and amortized bounds as found, for example, in the Knuth-
Morris-Pratt algorithm for string search.

The main innovations that make amortized analysis work on
imperative languages are to base the analysis on a Hoare-
like logic and to track multivariate quantities instead of
program variables. This leads to precise bounds expressed
as functions of sizes |rx, ys| “ maxp0, y ´ xq of intervals.
A distinctive feature of our analysis system is that it reduces
linear bound inference to a linear optimization problem that
can be solved by off-the-shelf LP solvers. This enables the
efficient inference of global bounds for larger programs.
Moreover, our local inference rules automatically generate
proof certificates that can be easily checked in linear time.

The use of the potential method of amortized analysis
makes user interaction possible in different ways. For one
thing, we can directly combine the new automatic analysis
with manually derived bounds in a previously-developed
quantitative Hoare logic [Carbonneaux et al. 2014] (see
Section 7). For another thing, we describe a new mechanism
that allows the separation of quantitative and qualitative
verification (see Section 6). Using this mechanism, the user
can guide the analysis by using auxiliary variables and logical

assertions that can be verified by existing qualitative tools
such as Hoare logic or abstract interpretation. In this way, we
can benefit from existing automation techniques and provide
a middle-ground between fully automatic and fully manual
verification for bound derivation. This enables the semi-
automatic inference of non-linear bounds, such as polynomial,
logarithmic, and exponential bounds.

We have implemented the analysis system in the tool C4B
and experimentally evaluated its effectiveness by analyzing
system code and examples from the literature. C4B has au-
tomatically derived global resource bounds for more than
2900 lines of C code from the cBench benchmark suite. Ap-
pendix C contains more than 30 challenging loop and recur-
sion patterns that we collected from open source software
and the literature. Our analysis can find asymptotically tight
bounds for all but one of these patterns, and in most cases
the derived constant factors are tight. To compare C4B with
existing techniques, we tested our examples with tools such
as KoAT [Brockschmidt et al. 2014], Rank [Alias et al. 2010],
and LOOPUS [Sinn et al. 2014]. Our experiments show that
the bounds that we derive are often more precise than those
derived by existing tools. Only LOOPUS [Sinn et al. 2014],
which also uses amortization techniques, is able to achieve a
similar precision.

Examples from cBench and micro benchmarks demon-
strate the practicality and expressiveness of the user guided
bound inference. For example, we derive a logarithmic bound
for a binary search function, a bound that depends on the
contents of an array to describe the exact cost of a function
that finds a maximal element in an array, and a bound that
amortizes the cost of k successive increments to a binary
counter (see Section 6).

In summary, we make the following contributions.

• We develop the first automatic amortized analysis for
C programs. It is naturally compositional, tracks size
changes of variables to derive global bounds, can handle
mutually-recursive functions, generates resource abstrac-
tions for functions, derives proof certificates, and handles
resources that can become available during execution.

• We show how to automatically reduce the inference of
linear resource bounds to efficient LP solving.

• We describe a new method of harnessing existing qualita-
tive verification techniques to guide the automatic amor-
tized analysis to derive non-linear resource bounds with
LP solving.

• We prove the soundness of the analysis with respect to a
parametric cost semantics for C programs. The cost model
can be further customized with function calls (tickpnq)
that indicate resource usage.

• We implemented our resource bound analysis in the
publicly-available tool C4B.
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• We present experiments with C4B on more than 2900
lines of C code. A detailed comparison shows that our
prototype is the only tool that can derive global bounds
for larger C programs while being as powerful as existing
tools when deriving linear local bounds for tricky loop
and recursion patterns.

2. The Potential Method
The idea that underlies the design of our framework is
amortized analysis [Tarjan 1985]. Assume that a program
S executes on a starting state σ and consumes n resource
units of some user-defined quantity. We denote that by writing
pS, σq ón σ

1 where σ1 is the program state after the execution.
The basic idea of amortized analysis is to define a potential
function Φ that maps program states to non-negative numbers
and to show that Φpσq ě n if σ is a program state such that
pS, σq ón σ

1. Then Φpσq is a valid resource bound.
To obtain a compositional reasoning we also have to take

into account the state resulting from a program’s execution.
We thus use two potential functions, one that applies before
the execution, and one that applies after. The two functions
must respect the relation Φpσq ě n` Φ1pσ1q for all states σ
and σ1 such that pS, σq ón σ1. Intuitively, Φpσq must provide
enough potential for both, paying for the resource cost of
the computation and paying for the potential Φ1pσ1q on the
resulting state σ1. That way, if pσ, S1q ón σ

1 and pσ1, S2q óm

σ2, we get Φpσq ě n ` Φ1pσ1q and Φ1pσ1q ě m ` Φ2pσ2q.
This can be composed as Φpσq ě pn`mq ` Φ2pσ2q. Note
that the initial potential function Φ provides an upper bound
on the resource consumption of the whole program. What we
have observed is that, if we define tΦuS tΦ1u to mean

@σ nσ1. pσ, Sq ón σ
1 ùñ Φpσq ě n` Φ1pσ1q ,

then we get the following familiar looking rule

tΦuS1 tΦ
1u tΦ1uS2 tΦ

2u

tΦuS1;S2 tΦ
2u .

This rule already shows a departure from classical techniques
that are based on ranking functions. Reasoning with two
potential functions promotes compositional reasoning by
focusing on the sequencing of programs. In the previous
rule, Φ gives a bound for S1;S2 through the intermediate
potential Φ1, even though it was derived on S1 only. Similarly,
other language constructs lead to rules for the potential
functions that look very similar to Hoare logic or effect
system rules. These rules enable reasoning about resource
usage in a flexible and compositional way, which, as a side
effect, produces a certificate for the derived resource bound.

The derivation of a resource bound using potential func-
tions is best explained by example. If we use a cost model
that assigns cost n to the function call tickpnq and cost 0 to
all other operations then the cost of the following example
can be bounded by |rx, ys| “ maxpy´x, 0q.

¨; 0` T
K
¨|rx, ys| ` 0¨|ry, xs| $

while (x+K<=y) {

x`K ď y; 0` T
K
¨|rx, ys| ` 0¨|ry, xs| $

x=x+K;

% x ď y; T ` T
K
¨|rx, ys| ` 0¨|ry, xs| $

tick(T);

% x ď y; 0` T
K
¨|rx, ys| ` 0¨|ry, xs|

}

% x ě y; 0` T
K
¨|rx, ys| ` 0¨|ry, xs|

Figure 1: Derivation of a tight bound on the number of ticks
for a standard for loop. The parameters K ą 0 and T ą 0
are not program variables but denote concrete constants.

while (x<y) { x=x+1; tick(1); } (Example 1)

To derive this bound, we start with the initial potential
Φ0 “ |rx, ys|, which we also use as the loop invariant. For the
loop body we have (like in Hoare logic) to derive a triple like
tΦ0u x “ x` 1; tickp1q tΦ0u. We can only do so if we utilize
the fact that x ă y at the beginning of the loop body. The
reasoning then works as follows. We start with the potential
|rx, ys| and the fact that |rx, ys| ą 0 before the assignment.
If we denote the updated version of x after the assignment
by x1 then the relation |rx, ys| “ |rx1, ys| ` 1 between the
potential before and after the assignment x “ x` 1 holds.
This means that we have the potential |rx, ys| ` 1 before the
statement tickp1q. Since tickp1q consumes one resource unit,
we end up with potential |rx, ys| after the loop body and have
established the loop invariant again.

Figure 1 shows a derivation of the bound T
K ¨|rx, ys| on

the number of ticks for a generalized version of Example 1
in which we increment x by a constant K ą 0 and consume
T ą 0 resources in each iteration. The reasoning is similar
to the one of Example 1 except that we obtain the potential
K¨ TK after the assignment. Note that the logical assertions
are only used in the rule for the assignment x “ x` K.

To the best of our knowledge, no other implemented tool
for C is currently capable of deriving a tight bound on the
cost of such a loop. For T “ 1 (many systems focus on the
number of loop iterations without a cost model) and K “ 10,
KoAT computes the bound |x| ` |y| ` 10, Rank computes
the bound y ´ x ´ 7, and LOOPUS computes the bound
y ´ x´ 9. Only PUBS computes the tight bound 0.1py ´ xq
if we translate the program into a term-rewriting system by
hand. We will show in the following sections that the potential
method makes automatic bound derivation straightforward.

The concept of a potential function is a generalization of
the concept of a ranking function. A potential function can be
used like a ranking function if we add the statement tickp1q
to every back edge of the program (loops and function calls).
However, a potential function is more flexible. For example,
we can use a potential function to prove that Example 2 does
not consume any resources.

while (x<y) {tick(-1); x=x+1; tick(1)} (Example 2)
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while (x<y) { x=x+1; tick(10); } (Example 3)

Similarly we can prove that Example 3 can be bounded by
10|rx, ys|. In both cases, we reason exactly like in the first
version of the while loop to prove the bound. Of course,
such loops with different tick annotations can be seamlessly
combined in a larger program.

In general, the potential based approach addresses several
challenges in resource bound analysis. This includes amor-
tized bounds in which individual loop iterations have different
resource consumption, sequential loops or function calls that
require the tracking of size changes of variables, and nested
loops that interact by modifying the same set of variables.

3. Compositional Resource-Bound Analysis
In this section we describe the high-level design of the
automatic amortized analysis that we implemented in C4B.
Examples explain and motivate our design decisions.

Linear Potential Functions. To find resource bounds auto-
matically, we first need to restrict our search space. In this
work, we focus on a the following form of potential functions,
which can express tight bounds for many typical programs
and allows for inference with linear programming.

Φpσq “ q0 `
ÿ

x,yPdompσq^x‰y

qpx,yq ¨ |rσpxq, σpyqs| .

Here σ : pLocals Ñ Zq ˆ pGlobals Ñ Zq is a simplified
program state that maps variable names to integers, |ra, bs| “
maxp0, b´ aq, and qi P Q. To simplify the references to the
linear coefficients qi, we introduce an index set I . This set is
defined to be t0uYtpx, yq | x, y P Var^x ‰ yu. Each index
i corresponds to a base function fi in the potential function:
0 corresponds to the constant function σ ÞÑ 1, and px, yq
corresponds to σ ÞÑ |rσpxq, σpyqs|. Using these notations we
can rewrite the above equality as

Φpσq “
ÿ

iPI

qifipσq.

We often write xy to denote the index px, yq. The family
pfiqiPI is actually a basis (in the linear-algebra sense) for
potential functions. This allows us to uniquely represent
any linear potential function Φ as a quantitative annotation
Q “ pqiqiPI , that is, a family of rational numbers where only
a finite number of elements are not zero. As a notable differ-
ence from previous works based on amortized-analysis, we
do not require all the coefficients of our potential function to
be positive. In practice, we will see using a semantic argu-
ment that despite this additional freedom, potential functions
always remain positive.

In the potential functions, we treat constants as global
variables that cannot be assigned to. For example, if the
program contains the constant 8128 then we have a variable
c8128 and σpc8128q “ 8128. We assume that every program
state includes the constant c0.

Abstract Program State. In addition to the quantitative an-
notations our automatic amortized analysis needs to maintain
a minimal abstract state to justify certain operations on quan-
titative annotations. For example when analyzing the code
xÐ x` y, it is helpful to know the sign of y to determine
which intervals will increase or decrease. The knowledge
needed by our rules can be inferred by local reasoning (i.e.
in basic blocks without recursion and loops) within usual
theories (e.g. Presburger arithmetic or bit vectors).

The abstract program state is represented as logical con-
texts in the derivation system used by our automated tool.
Our implementation finds these logical contexts using ab-
stract interpretation with the domain of linear inequalities.
We observed that the rules of the analysis often requires only
minimal local knowledge. This means that it is not necessary
for us to compute precise loop invariants and only a rough fix-
point (e.g. keeping only inequalities on variables unchanged
by the loop) is sufficient to obtain good bounds.

Challenging Loops. One might think that our set of po-
tential functions is too simplistic to be able to express and
prove bounds for realistic programs. Nevertheless, we can
handle challenging example programs without special tricks
or techniques. Examples speed 1 and speed 2 in Figure 2,
which are taken from previous work [Gulwani et al. 2009b],
demonstrate that our method can handle tricky iteration pat-
terns. The SPEED tool [Gulwani et al. 2009b] derives the
same bounds as our analysis but requires heuristics for its
counter instrumentation. These loops can also be handled
with inference of disjunctive invariants, but in the abstract
interpretation community, these invariants are known to be
notoriously difficult to generate. In Example speed 1 we have
one loop that first increments variable y up to m and then
increments variable x up to n. We derive the tight bound
|rx, ns| ` |ry,ms|. Example speed 2 is even trickier, and we
found it hard to find a bound manually. However, using po-
tential transfer reasoning as in amortized analysis, it is easy
to prove the tight bound |rx, ns| ` |rz, ns|.

Nested and Sequenced Loops. Example t08a in Figure 2
shows the ability of the analysis to discover interaction
between sequenced loops through size change of variables.
We accurately track the size change of y in the first loop
by transferring the potential 0.1 from |ry, zs| to |r0, ys|.
Furthermore, t08a shows again that we do not handle the
constants 1 or 0 in any special way. In all examples we could
replace 0 and 1 with other constants like in the second loop
and still derive a tight bound. The only information, that
the analyzer needs is y ě c before assigning y “ y ´ c.
Example t27 in Figure 2 shows how amortization can be
used to handle interacting nested loops. In the outer loop we
increment the variable n until n “ 0. In each of the |rn, 0s|
iterations, we increment the variable y by 1000. Then we non-
deterministically (expressed by ˚) execute an inner loop that
decrements y by 100 until y ă 100. The analysis discovers
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while (n>x) {

nąx; |rx, ns|`|ry,ms| $
if (m>y)

mąy; |rx, ns|`|ry,ms| $
y=y+1;

% ¨; 1`|rx, ns|`|ry,ms|
else

nąx; |rx, ns|`|ry,ms| $
x=x+1;

% ¨; 1`|rx, ns|`|ry,ms|
% ¨; 1`|rx, ns|`|ry,ms| $
tick(1);

} % ¨; |rx, ns|`|ry,ms|

|rx, ns| ` |ry,ms|

speed 1

while (x<n) {

xăn; |rx, ns|`|rz, ns| $
if (z>x)

xăn; |rx, ns|`|rz, ns| $
x=x+1;

% ¨; 1`|rx, ns|`|rz, ns|
else

zďx, xăn; |rx, ns|`|rz, ns| $
z=z+1;

% ¨; 1`|rx, ns|`|rz, ns|
% ¨; 1`|rx, ns|`|rz, ns| $
tick(1);

} % ¨; |rx, ns|`|rz, ns|

|rx, ns| ` |rz, ns|

speed 2

while (z-y>0) {

yăz; 3.1|ry, zs|`0.1|r0, ys| $
y=y+1;

% ¨; 3`3.1|ry, zs|`0.1|r0, ys| $
tick(3);

% ¨; 3.1|ry, zs|`0.1|r0, ys|
}

% ¨; 3.1|ry, zs|`0.1|r0, ys| $
while (y>9) {

yą9; 3.1|ry, zs|`0.1|r0, ys| $
y=y-10;

% ¨; 1`3.1|ry, zs|`0.1|r0, ys| $
tick(1);

} % ¨; 3.1|ry, zs|`0.1|r0, ys|

3.1|ry, zs| ` 0.1|r0, ys|

t08a

while (n<0) {

nă0; P pn, yq $
n=n+1;

% ¨; 59`P pn, yq $
y=y+1000;

% ¨; 9`P pn, yq $
while (y>=100 && *){

yą99; 9`P pn, yq $
y=y-100;

% ¨; 14`P pn, yq $
tick(5);

} % ¨; 9`P pn, yq $
tick(9);

} % ¨; P pn, yq

59|rn, 0s|`0.05|r0, ys|

t27
Figure 2: Derivations of bounds on the number of ticks for challenging examples. Examples speed 1 and speed 2 (from [Gulwani
et al. 2009b]) use tricky iteration patterns, t08a contains sequential loops so that the iterations of the second loop depend on the
first, and t27 contains interacting nested loops. In the potential functions, we only mention the non-zero terms and in the logical
context Γ we only mention assertions that we use. In Example t27, we use the abbreviation P pn, yq :“ 59|rn, 0s|`0.05|r0, ys|.

void c_down (int x,int y) {

if (x>y) {tick(1); c_up(x-1,y);}

}

void c_up (int x, int y) {

if (y+1<x) {tick(1); c_down(x,y+2);}

}

0.33` 0.67|ry, xs| (c downpx, yq)
0.67|ry, xs| (c uppx, yq)

t39

for (; l>=8; l-=8)

/* process one block */

tick(N);

for (; l>0; l--)

/* save leftovers */

tick(1);

N
8 |r0, ls| if N ě 8

7 8´N
8 ` N

8 |r0, ls| if N ă 8

t61

for (;;) {

do { l++; tick(1); }

while (l<h && *);

do { h--; tick(1); }

while (h>l && *);

if (h<=l) break;

tick(1); /* swap elems. */ }

2` 3|rl, hs|

t62

Figure 3: Example t39 shows two mutually-recursive functions with the computed tick bounds. Example t61 and t62 demonstrate
the unique compositionality of our system. In t61, N ě 0 is a fixed but arbitrary constant. The derived constant factors are tight.

that only the first execution of the inner loop depends on the
initial value of y. We again derive tight constant factors.

Mutually Recursive Functions. As mentioned, the analy-
sis also handles advanced control flow like break and return
statements, and mutual recursion. Example t39 in Figure 3
contains two mutually-recursive functions with their automat-
ically derived tick bounds. The function c down decrements
its first argument x until it reaches the second argument y.
It then recursively calls the function c up, which is dual to
c down. Here, we count up y by 2 and call c down. C4B
is the only available system that computes a tight bound.
The analysis amounts to computing the meeting point of two
trains that approach each other with different speeds.

Compositionality. With two concrete examples from open-
source projects we demonstrate that the compositionality of
our method is indeed crucial in practice.

Example t61 in Figure 3 is typical for implementations
of block-based cryptographic primitives: Data of arbitrary
length is consumed in blocks and the leftover is stored in a

buffer for future use when more data is available. It is present
in all the block encryption routines of PGP and also used in
performance critical code to unroll a loop. For example we
found it in a bit manipulating function of the libtiff library and
a CRC computation routine of MAD, an MPEG decoder. This
looping pattern is handled particularly well by our method.
If N ě 8, C4B infers the bound N

8 |r0, ls|, but if N ă 8, it
infers 7 8´N

8 ` N
8 |r0, ls|. The selection of the block size (8)

and the cost in the second loop (tickp1q) are random choices
and C4B would also derive tight bound for other values.

To understand the resource bound for the case N ă 8,
first note that the cost of the second loop is |r0, ls|. After the
first loop, we still have N

8 |r0, ls| potential available from the
invariant. So we have to raise the potential of |r0, ls| from N

8

to 1, that is, we must pay 8´N
8 |r0, ls|. But since we got out

of the first loop, we know that l ă 8, so it is sound to only
pay 7 8´N

8 potential units instead. This level of precision and
compositionality is only achieved by our novel analysis, no
other available tool derives the aforementioned tight bounds.
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Example t62 (Figure 3) is the inner loop of a quick
sort implementation in cBench. More precisely, it is the
partitioning part of the algorithm. This partition loop has
linear complexity, and feeding into our analysis gives the
correct and tight worst-case bound 2 ` 3|rl, hs|. With the
potential method in mind, it is clear that the three loops get
their potential from the same interval rl, hs. However, KoAT
fails to find a bound and LOOPUS derives the quadratic
bound ph´ l ´ 1q2. Following the classical technique, these
tools try to find one linear ranking-function for each loop and
combine them multiplicatively or additively.

We only show a small selections of the programs that we
can handle automatically here. In Appendix C is a list of
more than 30 classes of challenging programs that we can
automatically analyze. Section 8 contains a more detailed
comparison with other tools for automatic bound derivation.

4. Derivation System
In the following we describe the local and compositional
derivation rules of the automatic amortized analysis.

Judgements. The derivation system for the automatic amor-
tized analysis is defined in Figure 4. The derivation rules
yield judgements of the form

pΓB , QBq; pΓR, QRq; pΓ, Qq $ S % pΓ1, Q1q.

The part pΓ, Qq $ S % pΓ1, Q1q of the judgement can be
seen as a quantitative Hoare triple. All assertions are split
into two parts, the logical part and the quantitative part.
The quantitative part Q represents a potential function as
a collection of rational numbers qi indexed by the index set
I . The logical part Γ is left abstract but is enforced by our
derivation system to respect classic Hoare logic constraints.
The meaning of this basic judgment is as follows: If S is
executed with starting state σ, the assertions in Γ hold, Q1ě0,
and at least Qpσq resources are available then the evaluation
does not run out of resources and, if the execution terminates
in state σ1, there are at leastQ1pσ1q resources left and Γ1 holds
for σ1.

The judgement is a bit more involved since we have to
take into account the early exit statements break and return.
This is similar to classical Hoare triples in the presence
of non-linear control flow. In the judgement, pΓB , QBq is
the postcondition that holds when breaking out of a loop
using break. Similarly, pΓR, QRq is the postcondition that
holds when returning from a function call with return. (This
becomes clear in the rules.)

As a convention, if Q and Q1 are quantitative annotations
we assume that Q “ pqiqiPI and Q1 “ pq1iqiPI . The notation
Q˘ n used in many rules defines a new context Q1 such that
q10 “ q0 ˘ n and @i ‰ 0. q1i “ qi. Finally, if a rule mentions
Q and Q1 and leaves the latter undefined at some index i we
assume that q1i “ qi.

We describe the automatic amortized analysis for a subset
of expressions of Clight. Assignments are restricted to the

form xÐ y or xÐ x˘ y. In the implementation, a Clight
program is converted into this form prior to analysis without
changing the resource cost. This is achieved by using a series
of cost-free assignments that do not result in additional cost
in the semantics. Non-linear operations such as xÐ z ˚ y or
xÐ arys are handled by assigning 0 to coefficients like qxa
and qax that depend on x after the assignment.

Function Specifications. During the analysis, function
specifications are quadruples pΓf , Qf ,Γ1f , Q

1
f qwhere Γf , Qf

depend on ~args , and Γ1f , Q
1
f depend on ret . These param-

eters are instantiated by appropriate variables on call sites.
A distinctive feature of our analysis is that it respects the
function abstraction: when deriving a function specification it
generates a set of constraints and the above quadruple; once
done, the constraint set can readily be reused for every call
site and the function need not be analyzed multiple times.
Therefore, the derivation rules are parametric in a function
context ∆ that we leave implicit in the rules presented here.

Derivation Rules. The rules of our derivation system must
serve two purposes. They must attach potential to certain
program variable intervals and use this potential, when it is
allowed, to pay for resource consuming operations. These
two purposes are illustrated on the Q:SKIP rule. This rule
reuses its precondition as postcondition, it is explained by
two observations: first, no resource is consumed by the skip
operation, thus no potential has to be used to pay for the
evaluation; second, the program state is not changed by the
execution of a skip statement, thus all the potential available
before the execution of the skip statement is still available
after. These two observations would also justify a rule
with the side-condition Q ě Q1, because some potential
is always safely lost. For the sake of orthogonality, it is not
how we present the rule and this form of weakening is in fact
expressed as the stand-alone rule Q:WEAK described later.

The rules Q:INC and Q:DEC describe how the potential is
distributed after a size change of a variable. The rule Q:INC
is for incements xÐ x` y and the symmetric rule Q:DEC
is for decrements xÐ x´ y. The two rules are equivalent in
the case where y “ 0.

The two previous rules are essentially the same, so we
only focus on the explanation of Q:INC. In this rule, the
program updates a variable x with x` y. Since x is changed,
the quantitative annotation must be updated to reflect the
change of the program state. We write x1 for the value
of x after the assignment. Since x is the only variable
changed, only intervals of the form ru, xs and rx, us will be
resized. Consider Spxq “ qxu|rx, us| ` qux|ru, xs|, during
the increment, S will increase by at most y ¨maxpqux,´qxuq.
This means that we must decrease the potential q0y of |r0, ys|
by maxpqux,´qxuq to pay for the change on |rx, us| and
|ru, xs|. A symmetric argument explains the change on qy0.

Another interesting rule is Q:CALL. It needs to account
for the changes to the stack caused by the function call, the
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B;R; pΓ, Qq $ skip % pΓ, Qq
(Q:SKIP)

pΓ, QBq;R; pΓ, QBq $ break % pΓ1, Q1q
(Q:BREAK)

n ă 0 ùñ Q ě 0

B;R; pΓ, Qq $ tickpnq % pΓ, Q´nq
(Q:TICK)

P “ QRrret{xs Γ “ ΓRrret{xs @i P dompP q. pi “ qi

B; pΓR, QRq; pΓ, Qq $ return x % pΓ1, Q1q
(Q:RETURN)

@u.pqyu “ q1xu ` q
1
yu ^ quy “ q1ux ` q

1
uyq

B;R; pΓrx{ys, Q`Mu`Mepyqq $ xÐ y % pΓ, Q1q
(Q:UPDATE)

Q ě Q1 pΓ1, Q1q;R; pΓ, Qq $ S % pΓ, Qq

B;R; pΓ, Qq $ loop S % pΓ1, Q1q
(Q:LOOP)

q10y “ q0y ´
ř

u maxpqux,´qxuq
q1y0 “ qy0 ´

ř

u maxpqxu,´quxq

B;R; pΓrx{x`ys, Qq $ xÐ x` y % pΓ, Q1q
(Q:INC)

q10y “ q0y ´
ř

u maxpqxu,´quxq
q1y0 “ qy0 ´

ř

u maxpqux,´qxuq

B;R; pΓrx{x´ys, Qq $ xÐ x´ y % pΓ, Q1q
(Q:DEC)

B;R; pΓ^ e,Qq $ S1 % pΓ
1, Q1q

B;R; pΓ^ e,Qq $ S2 % pΓ
1, Q1q

B;R; pΓ, Qq $ ifpeq S1 else S2 % pΓ
1, Q1q

(Q:IF)

B;R; pΓ, Qq $ S1 % pΓ
1, Q1q

B;R; pΓ1, Q1q $ S2 % pΓ
2, Q2q

B;R; pΓ, Qq $ S1;S2 % pΓ
2, Q2q

(Q:SEQ)

pΓf , Qf ,Γ
1
f , Q

1
f q P ∆pfq Loc “ LocalspQq

@i ‰ j. xi ‰ xj c P Q`0 Q “ P ` S Q1 “ P 1 ` S U “ Qf r ~args{~xs U 1 “ Q1f rret{rs
@i P dompUq. pi “ ui @i P dompU 1q. p1i “ u1i @i R dompU 1q. p1i “ 0 @i R Loc. si “ 0

B;R; pΓf r ~args{~xs ^ ΓLoc, Q`cq $ r Ð fp~xq % pΓ1f rret{rs ^ ΓLoc, Q
1`cq

(Q:CALL)

B;R; pΓ, Qq $ assert e % pΓ^ e,Qq
(Q:ASSERT)

Σf “ p~y, Sf q Qf ě 0 Q1f ě 0
B; pΓ1f , Q

1
f q; pΓf r ~args{~ys, Qf r ~args{~ysq $ Sf % pΓ

1, Q1q

pΓf , Qf ,Γ
1
f , Q

1
f q P ∆pfq

(Q:EXTEND)

Γ1 |ù Γ2 Q1 ľΓ1
Q2 B;R; pΓ2, Q2q $ S % pΓ12, Q

1
2q Γ12 |ù Γ11 Q12 ľΓ1

2
Q11

B;R; pΓ1, Q1q $ S % pΓ11, Q
1
1q

(Q:WEAK)

L “ txy | DlxyPN .Γ |ù lxy ď |rx, ys|u U “ txy | DuxyPN .Γ |ù |rx, ys| ď uxyu @i. pi, ri P Q`0
@i P U . q1i ě qi ´ ri @i P L. q1i ě qi ` pi @i R UYLYt0u. q1i ě qi q10 ě q0`

ř

iPU uiri ´
ř

iPL lipi

Q1 ľΓ Q
(RELAX)

Figure 4: Inference rules of the quantitative analysis.

arguments/return value passing, and the preservation of local
variables. We can sum up the main ideas of the rule as follows.

• The potential in the pre- and postcondition of the function
specification is equalized to its matching potential in the
callee’s pre- and postcondition.

• The potential of intervals |rx, ys| is preserved if x and y
are local variables.

• The unknown potentials after the call (e.g. |rx, gs|, with x
local and g global) are set to zero in the postcondition.

If x and y are local variables and fpx, yq is called, Q:CALL
splits the potential of |rx, ys| in two parts, one part to perform
the computation in the function f and one part to keep for
later use after the function call. This splitting is realized by
the equations Q “ P`S and Q1 “ P 1`S1. Arguments in
the function precondition pΓf , Qf q are named using a fixed

vector ~args of names different from all program variables.
This prevents name conflicts from happening and ensures that
the substitution r ~args{~xs is meaningful. Symmetrically, we
use the unique name ret to represent the return value in the
function’s postcondition pΓ1f , Q

1
f q.

The rule Q:WEAK is not syntax directed. In the imple-
mentation we apply Q:WEAK before loops and between the
two statements of a sequential composition. We could in-
tegrate weakening into every syntax directed rule but this
simple heuristic helps to make the analysis efficient. The
high-level idea of Q:WEAK is the following: If we have
a sound judgement, then it is sound to add more potential
to the precondition and remove potential from the postcon-
dition. The concept of more potential is formalized by the
relation Q1 ľΓ Q that is defined in the rule RELAX that also
deals with the important task of transferring constant poten-
tial (represented by q0) to interval sizes and vice versa. If
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p¨, Bdeq; ppxě10, Qdeq $ x “ x´ 10 % pxě0, P deq
(Q:DEC)

p¨, Bweq; ppxě10, Qweq $ x “ x´ 10 % p¨, Pweq
(Q:WEAK)

p¨, Btiq; p¨, Qtiq $ tickp5q % p¨, P tiq
(Q:TICK)

p¨, Bsqq; ppxě10, Qsqq $ x “ x´10; tickp5q; % p¨, P sqq
(Q:SEQ)

p¨, Bifq; ppxě10, Qifq $ x “ x´10; tickp5q; % p¨, P ifq
(Q:WEAK)

¨
¨
¨
¨
¨
¨
¨

p¨, Bbrq; p¨, Qbrq $ break % pK, P brq
(Q:BREAK)

p¨, Belq; pxă10, Qelq $ break % p¨, P elq
(Q:WEAK)

p¨, Bloq; p¨, Qloq $ if px´ 10 ě 0q tx “ x´10; tickp5q; u else break; % p¨, P loq
(Q:IF)

p¨, Bq; p¨, Qq $ loop if px´ 10 ě 0q tx “ x´10; tickp5q; u else break; % p¨, P q
(Q:LOOP)

Constraints:
P“Blo ^Q“Qlo“P lo Bel“Bif“Blo ^Qel“Qif“Qlo ^ P el“P if“P lo Bel“Bbr ^Qel ľpxă10q Q

br ^ P br ľp¨q P
el

Bbr“Qbr Bif“Bsq ^Qif ľpxă10q Q
sq ^ P sq ľp¨q P

if Bsq“Bwe“Bti ^Qsq“Qwe ^ Pwe“Qti ^ P ti“P sq

Qti“P ti ` 5 Bwe“Bde ^Qwe ľpxă10q Q
de ^ P de ľpxě0q P

we pde
0,10“q

de
0,10 ` q

de
0,x ^ p

de
0 “q

de
0 ^ @pα, βq ‰ p0, 10q. p

de
α,β“q

de
α,β

Linear Objective Function: 1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x Constant Objective Function: 1¨q0 ` 11¨q0,10

Figure 5: An example derivation as produced C4B. The constraints are resolved by an off-the-shelf LP solver.

we can deduce from the logical context that the interval size
|rx, ys| ě l is larger then a constant l then we can transfer
potential qxy¨|rx, ys| form the interval to constant potential
l¨qxy and guarantee that we do not gain potential. Conversely,
if |rx, ys| ď u for a constant u then we can transfer constant
potential u¨qxy to the interval potential qxy¨|rx, ys| without
gaining potential.

5. Automatic Inference via LP Solving
We separate the search of a derivation into two steps. As a first
step we go through the functions of the program and apply
inductively the derivation rules of the automatic amortized
analysis. This is done in a bottom-up way for each strongly
connected component (SCC) of the call graph. During this
process our tool uses symbolic names for the rational coeffi-
cients qi in the rules. Each time a linear constraint must be
satisfied by these coefficients, it is recorded in a global list for
the SCC using the symbolic names. We reuse the constraint
list for every call from outside the SCC.

We then feed the collected constraints to an off-the-shelf
LP solver (currently CLP [COIN-OR Project 2014]). If the
solver successfully finds a solution, we know that a derivation
exists and extract the values for the initialQ from the solver to
get a resource bound for the program. To get a full derivation
we extract the complete solution from the solver, and apply it
to the symbolic names qi of the coefficients in the derivation.
If the LP solver fails to find a solution, an error is reported.

Figure 5 contains an example derivation as produced by
C4B. The upper case letters (with optional superscript) such
as Qde are families of variables that are later part of the
constraint system that is passed to the LP solver. For example
Qde stands for the potential function qde

0 ` qde
x,0|rx, 0s| `

qde
0,x|r0, xs| ` qde

x,10|rx, 10s| ` qde
10,x|r10, xs| ` qde

0,10|r0, 10s|,
where the variables such as qde

x,10 are yet unknown and later
instantiated by the LP solver.

In general, the weakening rule can be applied after every
syntax directed rule. However, it can be left out in practice
at some places to increase the efficiency of the tool. The
weakening operation ľΓ is defined by the rule RELAX. It is

parameterized by a logical context used to gather information
on interval sizes. For example, P de ľpxě0q P

we ”

pwe
0,10 ď pde

0,10 ` u0,10 ´ v0,10 ^ p
we
x,0 ď pde

x,0 ` ux,0 ´ v0,x^

pwe
0 ď pde

0 ´ 10¨u0,10 ` 10¨v0.10
ľ

pα,βq‰p0,10q,px,0q

pwe
α,β ď pde

α,β .

The other rules are syntax directed and applied inductively.
For example, the outermost expression is a loop, so we use
the rule Q:Loop at the root of the derivation tree. At this
point, we do not know yet whether a loop invariant exists.
But we produce the constraints Qlo “ P lo which is short for
the following constraint set.

qlo
0 “ plo

0 qlo
x,0 “ plo

x,0 qlo
0,x “ plo

0,x

qlo
x,10 “ plo

x,10 qlo
10,x “ plo

10,x qlo
0,10 “ plo

0,10

These constraints express the fact that the potential functions
before and after the loop body are equal and thus constitute
an invariant.

After the constraint generation, the LP solver is provided
with an objective function to be minimized. We wish to
minimize the initial potential, which is a resource bound
on the whole program. Here it is given by Q. Moreover, we
would like to express that minimization of linear potential
such as q10,x|r10, xs| takes priority over minimization of
constant potential such as q0,10|r0, 10s|.

To get a tight bound, we use modern LP solvers that allow
constraint solving and minimization at the same time: First
we consider our initial constraint set as given in Figure 5 and
ask the solver to find a solution that satisfies the constraints
and minimizes the linear expression

1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x .

The penalties given to certain factors are used to prioritize
certain intervals. For example, a bound with r10, xs will be
preferred to another with r0, xs because |r10, xs| ď |r0, xs|.
The LP solver now returns a solution of the constraint set
and an objective value, that is, a mapping from variables
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1 logical state invariant tna “ #1paqu
2 while (k > 0) {

3 x=0;

4 while (x < N && a[x] == 1) {

5 assert(na > 0);

6 a[x]=0; na--;

7 tick(1); x++; }

8 if (x < N) { a[x]=1; na++; tick(1); }

9 k--;

10 }

Figure 6: Assisted bound derivation using logical state. We
write #1paq for #ti | 0ďiăN^aris“1u. The derived bound
is 2|r0, ks| ` |r0, nas|.

1 logical state invariant tlg ą log2ph´ lqu
2 bsearch(x,l,h,lg) {

3 if (h-l > 1) {

4 assert(lg > 0);

5 m = l + (h-l)/2;

6 lg--; if (a[m]>x) h=m; else l=m;

7 tick(Mbsearch);

8 l = bsearch(x,l,h,lg);

9 tick(´Mbsearch);

10 } else return l;

11 }

Figure 7: Assisted bound derivation using logical state. We
write log2pxq for the integer part of logarithm of x in base 2.
The semi-automatically derived bound is |r0, lgs|.

to floating-point numbers and the value of the objective
function with this instantiation. The solver also memorizes
the optimization path that led to the optimal solution. In this
case, the objective value would be 5000 since the LP solver
assigns q0,x “ 0.5 and q˚ “ 0 otherwise. We now add the
constraint

1¨qx,0 ` 10000¨q0,x ` 11¨qx,10 ` 9990¨q10,x ď 5000

to our constraint set and ask the solver to optimize the
objective function

q0 ` 11¨q0,10 .

This happens in almost no time in practice. The final solution
is q0,x “ 0.5 and q˚ “ 0 otherwise. Thus the derived bound
is 0.5|r0, xs|.

A notable advantage of the LP-based approach compared
to SMT-solver–based techniques is that a satisfying assign-
ment is a proof certificate instead of a counter example.

The constraints that we generate have a particularly simple
form that is known as network problem. Such problems can
be solved in linear time in practice.

6. Logical State and User Interaction
While complete automation is desirable, it is not always pos-
sible since the problem of bound derivation is undecidable.
In this section we present a new technique to derive complex

logical state invariant tnm “ Ap0qu
i=1; m=a[0];

while (i < N) {

if (a[i] > m) {

assert(nm > 0); nm--;

m = a[i], tick(1);

} i++, tick(1);

}

Figure 8: Example of assisted bound derivation using logical
state. We write Apiq for #tk | i ď k ď N ^ @ 0 ď j ă
k. arjs ă arksu. The bound derived is |r0, N s| ` |r0, nms|.

resource bounds semi-automatically by leveraging our au-
tomation. Our goal is to develop an interface between bound
derivation and established qualitative verification techniques.

When the resource bound of a program depends on the
contents of the heap, or is non-linear (e.g. logarithmic, expo-
nential), we introduce a logical state using auxiliary variables.
Auxiliary variables guide C4B during bound derivation but
they do not change the behavior of the program.

More precisely, the technique consists of the following
steps. First, a program P that fails to be analyzed automati-
cally is enriched by auxiliary variables ~x to form a program
Plp~xq. Second, an initial value ~Xpσq for the logical variables
is selected so that:

@nσ σ1. pσ, Plp ~Xpσqqq ón σ
1 ùñ Dn1ďn. pσ, P q ón1 σ1.

Since the annotated program and the original one are usually
syntactically close, the proof of this result goes by simple
induction on the resource-aware evaluation judgement. Third,
using existing automation tools, a bound Bp~xq for Plp~xq is
derived. Finally this bound, instantiated with ~X , gives the
final resource bound for the program P .

This idea is illustrated by the program in Figure 6. The
parts of the code in blue are annotations that were added to the
original program text. The top-level loop increments a binary
counter k times. A naive analysis of the algorithm yields the
quadratic bound k ¨N . However, the algorithm is in fact linear
and its cost is bounded by 2k `#1paq where #1paq denotes
the number of one entries in the array a. Since this number
depends on the heap contents, no tool available for C is able
to derive the linear bound. However, it can be inferred by our
automated tool if a logical variable na is introduced. This
logical variable is a reification of the number #1paq in the
program. For example, on line 6 of the example we are setting
a[x] to 0 and because of the condition we know that this
array entry was 1. To reflect this change on #1paq, the logical
variable na is decremented. Similarly, on line 8, an array entry
which was 0 becomes 1, so na is incremented. To complete
the step 2 of the systematic procedure described above, we
must show that the extra assertion na > 0 on line 5 is always
true. It is done by proving inductively that na “ #1paq
and remarking that since a[x] == 1 is true, we must have
#1paq ą 0, thus the assertion na > 0 never fails.
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Another simple example is given in Figure 7 where a
logarithmic bound on the stack consumption of a binary
search program is proved using logical variable annotations.
Once again, annotations are in blue in the program text. In
this example, to ease the proof of equivalence between the
annotated program and the original one, we use the inequality
lg ą log2ph ´ lq as an invariant. This technique allows a
simpler proof because, when working with integer arithmetic,
it is not always the case that log2px´ x{2q “ log2pxq ´ 1.

7. Soundness Proof
The soundness of the analysis builds on a new cost semantics
for Clight and an extended quantitative logic. Using these
two tools, the soundness of the automatic analysis described
in Section 3 is proved by a translation morphism to the logic.

Cost Semantics for Clight. To base the soundness proof on
a formal ground, we start by defining a new cost-aware oper-
ational semantics for CompCert Clight. Clight’s operational
semantics is based on small-step transitions and continuations.
Expressions—which do not have side effects—are evaluated
in a big-step fashion.

A program state σ “ pθ, γq is composed of two maps from
variable names to integers. The first map, θ : Locals Ñ Z,
assigns integers to local variables of a function, and the
second map, γ : Globals Ñ Z, gives values to global
variables of the program. In this article, we assume that all
values are integers but in the implementation we support all
data types of Clight. The evaluation function J¨K maps an
expression e P E to a value JeKσ P Z in the program state
σ. We write σpxq to obtain the value of x in program state σ.
Similarly, we write σrx ÞÑ vs for the state based on σ where
the value of x is updated to v.

The small-step semantics is standard, except that it tracks
the resource consumption of a program. The semantics is
parametric in the resource of interest for the user of our sys-
tem. We achieve this independence by using a tick instruction
that allows the programmer to specify how much and when
resource is consumed. If the resource usage is bound to the
programming language (e.g. stack usage, number loop itera-
tions and function calls), the tick statements can be inserted
automatically by a pre-processing phase. Resources can be
released by using a negative tick. Two sample rules of the
semantics for update and tick follow.

σ1 “ σrx ÞÑ JeKσs
pσ, xÐ e,K, cq Ñ
pσ1, skip,K, cq

(U)
pσ, tickpnq,K, cq Ñ
pσ, skip,K, c´nq

(T)

The rules have as implicit side condition that c is non-negative.
This makes it possible to detect a resource crash as a stuck
configuration where c ă 0.

Quantitative Hoare Logic. To prove the soundness of C4B
we found it useful to go through an intermediate step using

a quantitative Hoare logic. This logic is at the same time a
convenient semantic tool and a clean way to interface manual
proofs with our automation. We base it on a logic for stack
usage [Carbonneaux et al. 2014], add support for arbitrary
resources, and simplify the handling of auxiliary state.

We define quantitative Hoare triples asB;R $ tQuS tQ1u
where B, R, Q, and Q1 are maps from program states to an
element of QY t8u that represents an amount of resources
available. The assertions B and R are postconditions for
the case in which the block S exits by a break or return
statement. Additionally, R depends on the return value of
the current function. The meaning of the triple tQuS tQ1u is
as follows: If S is executed with starting state σ, the empty
continuation, Q1pσq ě 0 for all state σ, and at least Qpσq
resource units available then the evaluation does not run out
of resources and there are at least Q1pσ1q resources left if the
evaluation terminates in state σ1. The logic rules are similar
to the ones in previous work.

Finally, we define a strong compositional continuation
based soundness for triples and prove the validity of all the
rules in Coq. Details about the logic and its soundness proof
are provided in the Appendix B.

The Soundness Theorem. We use the quantitative logic as
the target of a translation function for the automatic derivation
system. This reveals two orthogonal aspects of the proof: on
one side, it relies on amortized reasoning (the quantitative
logic rules), and on the other side, it uses combinatorial
properties of our linear potential functions (the automatic
analysis rules).

Technically, we define a translation function T such that
if a judgement J in the automatic analysis is derivable, T pJq
is derivable in the quantitative logic. By using T to translate
derivations of the automatic analysis to derivations in the
quantitative logic we can directly obtain a certified resource
bound for the analyzed program.

The translation of an assertion pΓ, Qq in the automatic
analysis is defined by

T pΓ, Qq :“ λσ. pΓpσqq ` ΦQpσq,

where we write ΦQ for the unique linear potential function
defined by the quantitative annotation Q. The logical context
Γ is implicitly lifted to a quantitative assertion by mapping
a state σ to 0 if Γpσq holds and to 8 otherwise. We also
need to translate the assumptions in function contexts of the
automatic analysis. We define T pΓf , Qf ,Γ1f , Q1f q :“

@z ~v v. pλ~v σ. T pΓf , Qf qpσr ~args ÞÑ~vsq,

λv σ. T pΓ1f , Q1f qpσrret ÞÑvsqq

These definitions let us translate the judgement J :“
B;R;P $ S % P 1 in the context ∆ by T pJq :“

pλf. T p∆pfqqq; T pBq; T pRq $ tT pP quS tT pP 1qu.

The soundness of the automatic analysis can now be stated
formally with the following theorem.
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Theorem 1 (Soundness of the automatic analysis). If J is a
judgement derived by the automatic analysis, then T pJq is a
quantitative Hoare triple derivable in the quantitative logic.

The proof of this theorem is constructive and maps each rule
of the automatic analysis directly to its counterpart in the
quantitative logic. The most tricky parts are the translations
of the rules for increments and decrements and the rule
Q:WEAK for weakening because they make essential use of
the algebraic properties of our linear potential functions. For
instance we prove the following lemma to show the soundness
of the translation of Q:WEAK.

Lemma 1 (Relax). If Q1 ľΓ Q and σ is a program state
such that σ |ù Γ then we have ΦQ1pσq ě ΦQpσq.

Proof. We observe the following inequations.

ΦQ1pσq “
ÿ

i

q1ifipσq

ě q0 `
ÿ

iPU
uipi ´

ÿ

iPL
lipi `

ÿ

iPU
pqi ´ piqfipσq

`
ÿ

iPL
pqi ` piqfipσq `

ÿ

iRUYL
qi

ě ΦQpσq `
ÿ

iPU
pui ´ fipσqqpi `

ÿ

iPL
pfipσq ´ liqpi

ě ΦQpσq.

Since σ |ù Γ, using the transitivity of |ù and the definition of
U and L we get @i P L. li ď fipσq and @i P U . fipσq ď ui.
These two inequalities justify the last step.

We prove similar lemmas for the rules that deal with as-
signment. With the computational content of the proof, we
have an effective algorithm to construct certificates for upper
bounds derived automatically.

8. Experimental Evaluation
We have experimentally evaluated the practicality of our
automatic amortized analysis with more than 30 challenging
loop and recursion patterns from open-source code and the
literature [Gulwani et al. 2009b,a; Gulwani and Zuleger 2010].
A full list of examples together with the derived bounds is
given in Appendix C.

Figure 9 shows five representative loop patterns from
the evaluation. Example t09 is a loop that performs an
expensive operation every 4 steps. C4B is the only tool able
to amortize this cost over the input parameter x. Example
t19 demonstrates the compositionality of the analysis. The
program consists of two loops that decrement a variable i. In
the first loop, i is decremented down to 100 and in the second
loop i is decremented further down to ´1. However, between
the loops we assign i “ i` k` 50. So in total the program
performs 52`|r´1, is|`|r0, ks| ticks. Our analysis finds this
tight bound because our amortized analysis naturally takes
into account the relation between the two loops. Example t30

int srch(

int t[], int n, /* haystack */

int p[], int m, /* needle */

int b[]

) { int i=0, j=0, k=-1;

while (i < n) {

while (j >= 0 && t[i]!=p[j]) {

k = b[j];

assert(k > 0 && k <= j + 1);

j -= k; tick(1)

}

i++, j++;

if (j == m) break;

tick(1);

}

return i;

}
C4B 1`2|r0, ns|
Rank Opn2q

LOOPUS 2`3maxpn, 0q

Figure 10: The Knuth-Morris-Pratt algorithm for string
search.

decrements both input variables x and y down to zero in an
unconventional way. In the loop body, first x is decremented
by one. Then the values of the variables x and y are switched
using the local variable t as a buffer. Our analysis infers
the tight bound |r0, xs| ` |r0, ys|. Sometimes we need some
assumptions on the inputs in order to derive a bound. Example
t15 is such a case. We assume here that the input variable
y is non-negative and write assert(y>=0). The assignment
x -= y+1 in the loop is split in x-- and x -= y. If we enter
the loop then we know that x ą 0, so we can obtain constant
potential from x--. Then we know that x ě y ě 0, as a
consequence we can share the potential of |r0, xs| between
|r0, xs| and |r0, ys| after x -= y.

Example t13 shows how amortization can be used to find
linear bounds for nested loops. The outer loop is iterated
|r0, xs| times. In the conditional, we either (the branching
condition is arbitrary) increment the variable y or we execute
an inner loop in which y is counted back to 0. C4B computes
a tight bound. Again, the constants 0 and 1 in the inner loop
can as well be replace by something more interesting, say 9
and 10 like in Example t08. Then we still obtain a tight linear
bound.

Finally, Figure 10 contains the search function of the
Knuth-Morris-Pratt algorithm for string search. Our auto-
matic amortized analysis finds the tight linear bound 1 `
2|r0, ns|. We need to assert that the elements brjs of the fail-
ure table b are in the interval r1, j ` 1s. This is guaranteed by
construction of the table in the initialization procedure of the
algorithm, which we can also analyze automatically. We need
the assertion since we do not infer any logical assertions on
the contents of the heap. Rank derives a complex quadratic
bound and LOOPUS derives a linear bound.

To compare our tool with existing work, we focused on
loop bounds and use tick statements to counts the number of
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t09 t19 t30 t15 t13
i=1; j=0;

while (j<x) {

j++;

if (i>=4)

i=1, tick(40);

else i++;

tick(1); }

while (i>100) {

i--; tick(1);

} i += k+50;

while (i>=0) {

i--; tick(1);

}

while (x>0) {

x--;

t=x, x=y, y=t;

tick(1);

}

assert(y>=0);

while (x > y) {

x -= y+1;

for (z=y; z>0; z--)

tick(1);

tick(1);

}

while (x>0) {

x--;

if (*) y++;

else

while (y>0)

y--, tick(1);

tick(1); }

C4B 11|r0, xs| 50`|r´1, is|`|r0, ks| |r0, xs|`|r0, ys| |r0, xs| 2|r0, xs|`|r0, ys|

Rank 23¨x´ 14 54` k ` i — 2` 2x´ y 0.5¨y2`yx . . .

LOOPUS 41maxpx, 0q
maxpi´100, 0q

`maxpk`i`51, 0q
— —

2maxpx, 0q
`maxpy, 0q

Figure 9: Comparison of resource bounds derived by different tools on several examples with linear bounds. The output of
Rank has been manually simplified to fit the table.

KoAT Rank LOOPUS SPEED C4B

#bounds 9 24 20 14 32
#lin. bounds 9 21 20 14 32

#best bounds 0 0 11 14 29
#tested 14 33 33 14 33

Table 1: Comparison of C4B with other automatic tools.

Function LoC Bound Time (s)
adpcm coder 145 1` |r0,Ns| 0.6
adpcm decod 130 1` |r0,Ns| 0.2
BF cfb64 enc 151 1` 2|r´1,Ns| 0.7
BF cbc enc 180 2` 0.25|r´8,Ns| 1.0
mad bit crc 145 61.19`0.19|r´1,Ns| 0.4

mad bit read 65 1` 0.12|r0,Ns| 0.05
MD5Update 200 133.95`1.05|r0,Ns| 1.0

MD5Final 195 141 0.22
sha update 98 2` 3.55|r0,Ns| 1.2

PackBitsDecode 61 1` 65|r´129, ccs| 0.6
KMPSearch 20 1` 2|r0, ns| 0.1
ycc rgb conv 66 nr ¨ nc 0.1

uv decode 31 log2pUV NVSq ` 1 0.1

Table 2: Derived bounds for functions from cBench.

back edges (i.e., number of loop iterations) that are followed
in the execution of the program because most other tools
only bound this specific cost. In Figure 9, we show the
bounds we derived (C4B) together with the bounds derived
by LOOPUS [Sinn et al. 2014] and Rank [Alias et al. 2010].
We also contacted the authors of SPEED but have not been
able to obtain this tool. KoAT [Brockschmidt et al. 2014] and
PUBS [Albert et al. 2012a] currently cannot operate on C
code and the examples would need to be manually translated
into a term-rewriting system to be analyzed by these tools.
For Rank it is not completely clear how the computed bound
relates to the C program since the computed bound is for
transitions in an automaton that is derived from the C code.
For instance, the bound 2` y ´ x that is derived for t08 only
applies to the first loop in the program.

Table 1 summarizes the results of our experiments. It
shows for each tool the number of derived bounds (#bounds),
the number of asymptotically tight bounds (#lin. bounds),
the number of bounds with the best constant factors in
comparison with the other tools (#best bounds), and the

number of examples that we were able to test with the tool
(#tested). Since we were not able to run the experiments for
KoAT and SPEED, we simply used the bounds that have been
reported by the authors of the respective tools. The results
show that our automatic amortized analysis outperforms
the existing tools on our example programs. However, this
experimental evaluation has to be taken with a grain of
salt. Existing tools complement C4B since they can derive
polynomial bounds and support more features of C. We were
particularly impressed by LOOPUS which is very robust,
works on large C files, and derives very precise bounds. We
did not include the running times of the tools in the table
since all tested tools work very efficiently and need less then
a second on every tested example.

Table 2 contains a compilation of the results of our
experiments with the cBench benchmark suite. It shows a
representative list of automatically derived function bounds.
In total we analyzed more than 2900 lines of code. In the
LoC column we not only count the lines of the analyzed
function but also the ones of all the function it calls. The line
count is computed on pre-processed C with all unnecessary
declarations removed. We analyzed the functions by giving
a cost 1 to all the back-edges in the control flow (loops, and
function calls). The bounds for the functions ycc rgb conv
and uv decode have been inferred with user interaction as
described in Section 6. The most challenging functions for
C4B have unrolled loops where many variables are assigned.
This stresses our analysis because the number of LP variables
has a quadratic growth in program variables. Even on these
stressful examples, the analysis could finish in less than
2 seconds. These times can be reduced by adding manual
annotations to indicate C4B that certain variables do not have
to be tracked. We could also envision to implement heuristics.
For example, the sha update function is composed of one
loop calling two helper functions that in turn have 6 and
1 inner loops. In the analysis of the SHA algorithm, the
compositionality of our analysis is essential to get a tight
bound since loops on the same index are sequenced 4 and 2
times without resetting it. All other tools derive much larger
constant factors.

Since we have a formal cost semantics, we can run our
examples with this semantics for different inputs and measure
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Figure 11: The automatically derived bound 1.33|rx, ys| `
0.33|r0, xs| (blue lines) and the measured runtime cost (red
crosses) for Example t08. For x ě 0 the bound is tight.

the cost to compare it to our derived bound. Figure 11 shows
such a comparison for Example t08, a variant of t08a from
Section 3. One can see that the derived constant factors are
the best possible if the input variable x is non-negative. If x
is negative then the bound is only slightly off.

9. Related Work
Our work has been inspired by type-based amortized resource
analysis for functional programs [Hofmann and Jost 2003;
Hoffmann and Hofmann 2010; Hoffmann et al. 2012]. Here,
we present the first automatic amortized resource analysis for
C. None of the existing techniques can handle the example
programs we describe in this work. The automatic analysis of
realistic C programs is enabled by two major improvements
over previous work. First, we extended the analysis system to
associate potential with not just individual program variables
but also multivariate intervals and, more generally, auxiliary
variables. In this way, we solved the long-standing open prob-
lem of extending automatic amortized resource analysis to
compute bounds for programs that loop on (possibly negative)
integers without decreasing one individual number in each
iteration. Second, for the first time, we have combined an
automatic amortized analysis with a system for interactively
deriving bounds. In particular, recent systems [Hoffmann and
Shao 2014] that deal with integers and arrays cannot derive
bounds that depend on values in mutable locations, possibly
negative integers, or on differences between integers.

A recent project [Carbonneaux et al. 2014] has imple-
mented and verified a quantitative logic to reason about stack-
space usage, and modified the verified CompCert C compiler
to translate C level bound to x86 stack bounds. This quantita-
tive logic is also based on the potential method but has very
rudimentary support for automation. It is not based on effi-
cient LP solving and cannot automatically derive symbolic
bounds. In contrast, our main contribution is an automatic
amortized analysis for C that can derive parametric bounds
for loops and recursive functions fully automatically. In this
article, we also use a more general quantitative Hoare logic
that is parametric in the resource of interest.

In the development of our quantitative Hoare logic we
have drawn inspiration from mechanically verified Hoare
logics. Nipkow’s [Nipkow 2002] description of his imple-
mentations of Hoare logics in Isabelle/HOL has been helpful
to understand the interaction of auxiliary variables with the
consequence rule. Appel’s separation logic for CompCert
Clight [Appel et al. 2013] has been a blueprint for the general
structure of the quantitative logic. Since we do not deal with
memory safety, our logic is much simpler and it would be
possible to integrate it with Appel’s logic. The continuation
passing style that we use in the quantitative logic is not only
used by Appel [Appel et al. 2013] but also in Hoare logics
for low-level code [Ni and Shao 2006; Jensen et al. 2013].

There exist quantitative logics that are integrated into
separation logic [Atkey 2010; Hoffmann et al. 2013] and they
are closely related to our quantitative logic. However, the
purpose of these logics is slightly different since they focus
on the verification of bounds that depend on the shape of
heap data structures and they are not implemented for C. Also
closely related to our logic is a VDM-style logic for reasoning
about resource usage of an abstract fragment of JVM byte
code by Aspinall et al. [Aspinall et al. 2007]. Their logic is
not Hoare-style, does not target C code, and is not designed
for interactive bound development but to produce certificates
for bounds derived for high-level functional programs.

There exist many tools that can automatically derive
loop and recursion bounds for imperative programs such
as SPEED [Gulwani et al. 2009b; Gulwani and Zuleger
2010], KoAT [Brockschmidt et al. 2014], PUBS [Albert et al.
2012a], Rank [Alias et al. 2010], ABC [Blanc et al. 2010]
and LOOPUS [Zuleger et al. 2011; Sinn et al. 2014]. These
tools are based on abstract interpretation–based invariant
generation and/or term rewriting techniques, and they derive
impressive results on realistic software. The importance of
amortization to derive tight bounds is well known in the
resource analysis community [Alonso-Blas and Genaim 2012;
Hofmann and Moser 2014; Sinn et al. 2014]. Currently, the
only other available tools that can be directly applied to C
code are Rank and LOOPUS. As demonstrated, C4B is more
compositional than the aforementioned tools. Our technique,
is the only one that is able to generate resource specifications
for functions, deal with resources like memory that might
become available, generates proof certificates for the bounds,
and has support for user guidance that separates qualitative
and quantitative reasoning.

There are techniques [Braberman et al. 2008] that can
compute the memory requirements of object oriented pro-
grams with region-based garbage collection. These systems
infer invariants and use external tools that count the number
of integer points in the corresponding polytopes to obtain
bonds. The described technique can handle loops but not re-
cursive or composed functions. We are only aware of two
verified quantitative analysis systems. Albert et al. [Albert
et al. 2012b] rely on the KeY tool to automatically verify
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previously inferred loop invariants, size relations, and rank-
ing functions for Java Card programs. However, they do not
have a formal cost semantics and do not prove the bounds
correct with respect to a cost model. Blazy et al. [Blazy et al.
2013] have verified a loop bound analysis for CompCert’s
RTL intermediate language. However, this automatic bound
analysis does not compute symbolic bounds. Furthermore,
there is no way to interactively derive bounds or to deal with
resources like memory usage.

10. Conclusion
We have developed a novel analysis framework for compo-
sitional and certified worst-case resource bound analysis for
C programs. The framework combines ideas from existing
abstract interpretation–based techniques with the potential
method of amortized analysis. It is implemented in the pub-
licly available tool C4B. To the best of our knowledge, C4B
is the first analysis tool for C programs that automatically
reduces the derivation of symbolic bounds to LP solving.

We have demonstrated that our approach improves the
state-of-the-art in resource bound analysis for C programs in
three ways. First, our technique is naturally compositional,
tracks size changes of variables, and can abstractly specify
the resource cost of functions (Section 3). Second, it is easily
combined with established qualitative verification to guide
semi-automatic bound derivation (Section 6). Third, we have
shown that the local inference rules of the derivation system
automatically produce easily checkable certificates for the
derived bounds (Section 7). Our system is the first amortized
resource analysis for C programs. It addresses the long-
standing open problem of extending automatic amortized
resource analysis to compute bounds for programs that loop
on signed integers and to deal with non-linear control flow
that is introduced by break and return statements.

This work is the starting point for several projects that
we plan to investigate in the future, such as the extension
to concurrency, better integration of low-level features like
memory caches, and the extension of the automatic analysis
to multivariate resource polynomials [Hoffmann et al. 2011].

A. Syntax and Semantics
We implemented our cost semantics and the quantitative
Hoare logic in Coq for CompCert Clight. Clight is the most
abstract intermediate language used by CompCert. Mainly,
it is a subset of C in which loops can only be exited with a
break statement and expressions are free of side effects.

Syntax. We describe our system for a subset of Clight that
is sufficient to discuss the general ideas. This subset is given
by the following grammar.

S :“ assert E | skip | break | return x | xÐ E | xÐ fpx˚q

| loop S | ifpEq S else S | S;S | tickpnq

Expressions E are left abstract in our presentation. For our
analysis framework, it is only important that they are side-
effect free. The most notable difference to full Clight is that
we can only assign to variables and thus do not consider
operations that update the heap or the stack through a pointer.
Moreover, function arguments and return values are assumed
to be variables. This is only for simplifying the presentation;
in the implementation we can deal with heap updates and
general function calls and returns. However, we have not
implemented our framework for function pointers, goto
statements, continue statements, and stack variables that have
their address taken.

We include the built-in primitive assert e that terminates
the program if the argument e evaluates to false and has
no effect otherwise. This is useful to express assumptions
on the inputs of a program for the automatic analysis. We
also add the built-in function tickpnq that can be called with
a constant rational number n as a flexible way to model
resource consumption or release (if n is negative).

Semantics. Figure 12 contains the reduction rules of the
semantics. The rules define a rewrite system for program con-
figurations of the form pσ, S,K, cq, where σ is the program
state, S is the statement being executed, K is a continuation
that describes what remains to be done after the execution of
S, and c P Q is the amount of resources available for further
execution. All the rules have the implicit side condition that
the resource quantity available before the step is non-negative.
This means that we allow pσ, S,K, cq with c ă 0 on the right-
hand side transition relationÑ˚ to indicate that the execution
ran out of resources. However, every execution that reaches
such a state is stuck.

A continuation K represents the context of the execution
of a given statement. A continuation can be the empty
continuation Kstop (used to start a program), a sequenced
computation KseqS K, a loop continuation KloopS K, or
the continuation Kcall r θK of a function call.

K :“ Kstop | KseqS K | KloopS K | Kcall r θK

During the execution we assume a fixed function context
Σ that maps function names to a list of variables and the
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istrue JeKσ
pσ, assert e,K, cq Ñ pσ, skip,K, cq

(S:ASSERT)
pσ, break,KseqS K, cq Ñ pσ, break,K, cq

(S:BRKSEQ)

pσ, break,KloopS K, cq Ñ pσ, skip,K, cq
(S:BRKLOOP)

pσ, return x,KseqS K, cq Ñ pσ, return x,K, cq
(S:RETSEQ)

pσ, return x,KloopS K, cq Ñ pσ, return x,K, cq
(S:RETLOOP)

σ “ p , γq σ1 “ pθ, γqrr ÞÑ σpxqs

pσ, return x,Kcall r θK, cq Ñ pσ1, skip,K, cq
(S:RETCALL)

σ1 “ σrx ÞÑ JeKσs
pσ, xÐ e,K, cq Ñ pσ1, skip,K, cqq

(S:UPDATE)

Σf “ p~x, Sf q σ “ pθ, γq σ1 “ p~x ÞÑ σp~yq, γq

pσ, r Ð fp~yq,K, cq Ñ pσ1, Sf ,Kcall r θK, cq
(S:CALL)

pσ, loop S,K, cq Ñ pσ, S,KloopS K, cq
(S:LOOP)

pσ, skip,KloopS K, cq Ñ pσ, loop S,K, cq
(S:SKIPLOOP)

istrue JeKσ
pσ, ifpeq S1 else S2,K, cq Ñ pσ, S1,K, cq

(S:IFTRUE)

isfalse JeKσ
pσ, ifpeq S1 else S2,K, cq Ñ pσ, S2,K, cq

(S:IFFALSE)
pσ, S1;S2,K, cq Ñ pσ, S1,KseqS2K, cq

(S:SEQ)

pσ, skip,KseqS K, cq Ñ pσ, S,K, cq
(S:SKIPSEQ)

pσ, tickpnq,K, cq Ñ pσ, skip,K, c´ nq
(S:TICK)

Figure 12: Rules of the operational semantics of statements.

statement that defines the function body. It is used in the rule
S:CALL.

The intuitive meaning of an evaluation pσ, S,K, cq Ñ˚

pσ1, S1,K 1, c1q is the following. If the statement S is executed
in program state σ, with continuationK, and with c resources
available then—after a finite number of steps—the evaluation
will reach the new machine state pσ1, S1,K 1, c1q and there are
c1 resources available. If c1 ě 0 then the execution did not
run out of resources and the resource consumption up to this
point is c ´ c1. If this difference is negative then resource
became available during the execution. If however c1 ă 0
then the execution ran out of resources and is stuck. The cost
of the execution is then c ě 0.

Lemma 2 summarizes the main properties of the resource
counter of the semantics. It can be proved by induction on
the number of steps.

Lemma 2. 1. If pσ, S,K, cq Ñk pσ1, S1,K 1, c1q and n ě 0
then pσ, S,K, c`nq Ñk pσ1, S1,K 1, c1`nq.

2. If pσ, S,K, cq Ñk pσ1, S1,K 1, c1q and pσ, S,K, dq Ñk

pσ1, S1,K 1, d1q then c´ c1 “ d´ d1.

B. Quantitative Hoare Logic
In this section we describe a simplified version of the quanti-
tative Hoare logic that we use in Coq to interactively prove
resource bounds. We generalize classic Hoare logic to ex-
press not only classical boolean-valued assertions but also
assertions that talk about the future resource usage. Instead

of the usual assertions P : State Ñ bool of Hoare logic we
use assertions

P : State Ñ QY t8u .

This can be understood as a refinement of boolean assertions
where false is8 and true is refined by Q`0 . We write Assn
for State Ñ Q Y t8u and K for λσ.8. We sometimes
call assertions potential functions. To use Coq’s support for
propositional reasoning, assertions have the type State Ñ
Q Ñ Prop in the implementation. For a given σ P State,
such an assertion can be seen as a set B Ď Q. However, we
find the presentation in this article easier to read.

Due to break and return statements of Clight, there are
different possible ways to exit a block of code. We also have
to keep track of the resource specifications of functions. To
account for this in the logic, our quantitative Hoare triples
have the form

∆;B;R $L tQuS tQ
1u .

The triple tQuS tQ1u consists of a statement S and two
assertions Q,Q1 : Assn . It corresponds to triples in classic
Hoare logic and the intuitive meaning is as follows. If S is
executed with starting state σ, with the empty continuation
Kstop,Q1 ě 0, and at leastQpσq resources available then the
evaluation does not run out of resources and there are at least
Q1pσ1q resources left if the evaluation terminates in state σ1.
The assertion B : Assn provides the postcondition for the
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∆;B;R $L tQu skip tQu
(L:SKIP)

∆;B;R $L tBu break tQu
(L:BREAK)

n ă 0 ùñ Q ě 0

∆;B;R $L tQu tickpnq tQ´ nu
(L:TICK)

∆;B;R $L tR pσpxqqu return x tQu
(L:RETURN)

∆;B;R $L tistrue JeKσ ùñ Qu assert e tQu
(L:ASSERT)

∆;B;R $L tλσ.Qσrx ÞÑ JeKσsuxÐ e tQu
(L:UPDATE)

I ě Q ∆;Q;R $L tIuS tIu

∆;B;R $L tIu loop S tQu
(L:LOOP)

∆;B;R $L tP uS1 tQ
1u

∆;B;R $L tQ
1uS2 tQu

∆;B;R $L tP uS1;S2 tQu
(L:SEQ)

∆;B;R $L tistrue JeKσ ` P uS1 tQu ∆;B;R $L tisfalse JeKσ ` P uS2 tQu

∆;B;R $L tP u ifpeq S1 else S2 tQu
(L:IF)

∆pfq “ @z ~v v.pPf z ~v,Qf z vq P ě Pf y pσp~xqq `A @v. pQf y v `A ě λσ.Qσrr ÞÑ vsq

∆;B;R $L tP u r Ð fp~xq tQu
(L:CALL)

∆Y∆1;B;R $L tP uS tQu Pf ě 0
@f Pf Qf .∆

1pfq “ @z ~v v.pPf z ~v,Qf z vq Ñ @y ~v. p∆Y∆1;K;Qf y $L tPf y ~vuSf tKuq

∆;B;R $L tP uS tQu
(L:EXTEND)

∆;B1;R1 $L tP
1uS tQ1u

P ě P 1 Q1 ě Q B1 ě B @v. pR1 v ě Rvq

∆;B;R $L tP uS tQu
(L:WEAKEN)

∆;B;R $L tP uS tQu x P Q`0
∆;B ` x;R` x $L tP ` xuS tQ` xu

(L:FRAME)

Figure 13: Rules of the Quantitative Hoare Logic

case in which the code block S is exited by a break statement.
So if the execution is terminated in state σ1 with a break then
Bpσ1q resources are available. Similarly, R : Z Ñ Assn
is the postcondition for the case in which the code block
S is exited by a return x statement. The integer argument
of R is the return value. Finally, the function context of
judgements that we write ∆ is a mapping from function
names to specifications of the form

@z ~v v.pPf z ~v,Qf z vq.

The assertion Pf z ~v is the precondition of the function f
and the assertion Qf z v is its postcondition. They are both
parameterized by an arbitrary logical variable z (which can
be a tuple) that relates the function arguments with the
return value. The precondition also depends on ~v, the values
of the arguments at the function invocation. Similarly, the
postcondition depends on the return value v of the function.
The use of logical variables to express relations between
different states of an execution is a standard technique of
Hoare logic. To ensure soundness, we require that Pf and
Qf do not depend on the local variables on the stack, that is,
@z ~v θ θ1 γ. Pf z ~v pθ, γq “ Pf z ~v pθ

1, γq.
For two assertions P,Q : Assn , we write P ě Q to if for

all program state σ, P pσq ě Qpσq.

Rules of the Quantitative Logic. Figure 13 shows the in-
ference rules of the quantitative logic. The rules are slightly
simplified in comparison to the implemented rules in Coq.
The main difference is that the presented version does not
formalize the heap operations.

In the rule L:SKIP, we do not have to account for any
resource consumption. As a result, the precondition Q can be
any (potential) function and we only have to make sure that
we do not end up with more potential. Since the execution of
skip leaves the program state unchanged, we can simply use
the precondition as postcondition. The potential functions B
for the break and R for the return part of the postcondition
are not reachable and can therefore be arbitrary.

The L:TICK rule accounts for the cost n of the tick
statement. This rule is the only one to account directly for a
cost on in the assertions because calling the tick function is
the only way to change the amount of resource available. The
rule also has a side condition that ensures that the potential
remains positive during all the program execution. It is an
essential semantic property of this system.

In the rule L:ASSERT, we use the notation istrue JeKσ ùñ
Q to express that we require potentialQ in the precondition if
e evaluates to true in the current program state. If e evaluates
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to false then the potential in the precondition can be any
non-negative number since the program will be terminated.

In the rules L:BREAK and L:RETURN, the postcondition
can be arbitrary since it is unreachable. Instead, we have to
justify the potential functionsB andR that hold after a return
and a break, respectively. In L:BREAK, we require to have
potential B in the precondition to pay for the potential after
the break. In L:RETURN we only require to have potential R
in the precondition to pay for the potential after the return.

The rule L:UPDATE is the standard assignment rule of
Hoare logic. With the substitution σrx ÞÑ JeKσs in the
precondition we ensure that Q evaluates to the same number
as in the postcondition.

The rule L:SEQ rule is crucial to understand how the
quantitative Hoare logic works. To account for early exits
of statements, we must ensure in the break part B of S1’s
judgement that the break part B of of S1;S2 holds. The same
is true for the return part R of the judgements for S1 and S2.
The interaction between the actual pre- and postconditions is
analogous to standard Hoare logic.

In the rule L:LOOP, the break part of the loop body S
becomes the postcondition of the loop statement. We use an
arbitraryB as the break part of the judgement for loopS since
its operational semantics ensures that it can only terminate
with a skip or a return. The precondition I of the loop is the
loop invariant. That is why we require to have potential I
available in the precondition of the loop body S.

The L:IF is similar to the rule for the conditional in classic
Hoare logic. In the preconditions of the judgments for the two
branches S1 and S2 we lift the boolean assertions isfalse JeKσ
and isfalse JeKσ to quantitative assertions.

The pre- and postcondition Pf andQf used in the L:CALL
rule are taken from the function context ∆. The assertions in
the context are parametric with respect to both the values of
the function arguments and the return value. This allows us to
specify a bound for a function whose resource consumption
depends on its arguments. The arguments are instantiated by
the call rule using the result of the evaluation of the argument
variables in the current state. Recall that we require that Pf
and Qf do not depend on the local variables on the call stack,
that is, @z ~v θ θ1 γ. Pf z ~v pθ, γq “ Pf z ~v pθ

1, γq. To transfer
potential that depends on local variables of the callee from the
precondition P to the postcondition Q, we use an assertion
A : Assn that is independent of global variables, that is,
@θ γ γ1. Apθ, γq “ Apθ, γ1q. It is still possible to express
relations between global and local variables using logical
variables (see the following paragraph for details).

Finally, we describe the rules which are not syntax di-
rected. There are two weakening rules available in the quanti-
tative Hoare logic. The framing rule L:FRAME is designed
to weaken a statement by stating that if S needs P resources
to run and leaves Q resources available after its execution,
then it can very well run with P ` c resources and return
Q` c resources. The consequence L:CONSEQ rule is directly

imported from classical Hoare logic except that instead of
using the logical implication ñ we use the quantitative ě.
This rule indeed weakens the statement since it requires more
resource to run the statement and yields less than what has
been proved to be available after its termination.

Logical Variables and Shallow Embedding. When speci-
fying a program, it is often necessary to relate certain in-
variants in the pre- and postcondition. A standard solution
of Hoare logic is to use logical variables [Kleymann 1999].
These additional variables (also called auxiliary state in the
literature) are constant across the derivation. For example,
if Z is such a logical variable, we can specify the function
doublepq which doubles the global variable x as

tz “ Zu doublepq tx “ 2 ¨ Zu.

When formalizing Hoare logics in a proof assistant one can
either fully specify the syntax and semantics of assertions and
hence get a deep embedding, or use the assertions of the host
theory to get a shallow embedding. Because of its flexibility,
we used the latter approach in our development. This choice
makes it possible to have logical variables almost for free:
we can simply use the variable and binding mechanisms of
Coq, our host theory. When a logical variable is needed we
introduce it using a universal quantifier of Coq before using
the logic to derive triples. For example, the Coq theorem for
the above example would look as follows.

Theorem dbl_triple: forall Z,

qtriple (λσ.σ(x)=Z) (doublepq) (λσ.σ(x)=2*Z).

However, this trick alone is often not sufficient when work-
ing with a recursive function f . In that case we apply the
L:EXTEND rule of the logic. First we add a specification
@z ~v v.pPf z ~v,Qf z vq of f to the function context ∆. Then
we proceed to prove the function body Sf with this induction
hypothesis. In this process it can be the case that we have
to use the induction hypothesis with a different value of a
logical variable (e.g., because the values of the arguments in
the recursive call differ from the values of the arguments of
the callee). To cope with this problem, assumptions in the
function context ∆ are universally quantified over logical
variables. The L:EXTEND rule uses the host proof assistant to
require that the triple on f ’s body is proved for every possible
logical variable y.

Using the Quantitative Logic. In the following we demon-
strate the use of the logic with two example derivations.

In the example in Figure 14 we derive a precise runtime
bound on a program that searches a maximal element in
an array. Because of the location of the tick statements, the
resource cost is closely related to the number of times the test
aris ą m is true during the execution. If we define

Apiq “ #tk | i ď k ă N ^ @ 0 ď j ă k. arjs ă arksu .

where we write #S for the cardinal of the set S thenAp1q`1
is the number of “maximum candidates” in the array a seen
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tAp0q `Nu
i=1; tick(1); m=a[0]; tick(1);

while (i < N) {

tpm “ maxkPr0,i´1s arksq `Apiq ` pN ´ iqu
if (a[i] > m)

m=a[i], tick(1);

tpm “ maxkPr0,is arksq `Api` 1q ` pN ´ iqu
i=i+1;

tpm “ maxkPr0,i´1s arksq `Apiq ` pN ´ iq ` 1u
tick(1);

tpm “ maxkPr0,i´1s arksq `Apiq ` pN ´ iqu
} t0u

Figure 14: Example derivation where we wrote Apiq for
#tk | i ď k ď N ^ @ 0 ď j ă k. arjs ă arksu, we use
ticks in this example to count the number of assignments
performed by the program.

by the algorithm. Ap1q is bounded by N , the size of the array.
So any automated tool would at best derive the linear bound
2 ¨N for that program. But with the expressivity of our logic
it is possible to use the previous set cardinal directly and
precisely tie the bound to the initial contents of the array. The
non-trivial part of this derivation is finding the loop invariant
pm “ maxkPr0,i´1s arksq ` Apiq ` pN ´ iq for the while
loop. When the condition aris ą m is true, we know that we
encountered a “maximum so far” because m is a maximal
element of ar0 . . . is, thus Apiq “ 1 ` Api ` 1q and we
get one potential unit to pay for the tick in the conditional.
In the other case, no maximum so far is encountered so
Apiq “ Api` 1q. As a side remark, if K ě 0, it is possible
to have tAp0q `N `Ku and tKu as pre- and postcondition
of the same program. It can be done either by adapting the
proof or by applying the L:FRAME rule one top of the triple
already derived. More generally, without function calls, the
L:FRAME rule is admissible in our system.

The example in Figure 15 shows a use case for logi-
cal variables. On this example, we model the stack con-
sumption: we account a constant cost for a function call
(Mf ą 0) that is returned after the call (Mr “ ´Mf ă 0).
We are interested in showing that a binary search func-
tion bsearch has logarithmic stack consumption. We use
a logical variable Z in the function specification tpZ “

log2ph ´ lqq ` Z ¨Mbsearchu tZ ¨Mbsearchu to express that
the stack required by the function is returned after the
call. The critical step in the proof is the application of the
L:CALL rule to the recursive call. At this point the context
∆ contains the specification @y px, l, hq .ppλy p , l, hq. py “
log2ph´lqq`y¨Mbsearchq, pλy . y¨Mbsearchqq. Using the rule
L:CALL it is possible to instantiate y with Z ´ 1. The rest of
the proof is here to make sure that the first tick can be paid
for using regular algebra on the log2 function.

Soundness of Quantitative Hoare Triples. We already
gave an intuition of the meaning of judgements derived
in the logic. We start by defining an indexed predicate ¨ Ón

P pZq :“ tpZ “ log2ph´ lqq ` Z ¨Mbsearchu

bsearch(x,l,h) {

if (h-l > 1) {

tpZ ě 1^ Z “ log2ph´ lqq ` Z ¨Mbsearchu

m = h + (h-l)/2;

tpm “ h`l
2
^ Z ě 1^ Z “ log2ph´ lqq ` Z ¨Mbsearchu

if (a[m]>x) h=m; else l=m;

tpZ ´ 1 “ log2ph´ lqq ` pZ ´ 1q ¨Mbsearch `Mbsearchu

tick(Mbsearch);

tP pZ ´ 1qu l = bsearch(x,l,h); tQpZ ´ 1qu
tick(´Mbsearch);

} tpZ ´ 1q ¨Mbsearch ´ p´Mbsearchqu

return l;

} QpZq :“ tZ ¨Mbsearchu

Figure 15: Example derivation of a stack usage bound for
a binary search program. The stack usage is modeled by
adding a cost Mbsearch before the function call and´Mbsearch

after the call. Mbsearch is the stack frame size of the function
bsearch. Z is a logical variable.

that defines a resource-safe program configuration:

pσ, S,K, cq Ón :“

@m ď n.@c1. pσ, S,K, cq Ñm p , , , c1q ùñ 0 ď c1.

This predicate means that a program configuration can ex-
ecute for a certain number of steps without running out of
resources. Note that nothing is said about the program safety,
i.e. a stuck configuration C will satisfy @n.C Ón. This is
because our logic does not prove any safety or correctness
theorems but only focuses on resource usage. We can now
be used to define the resource safety of a configuration with
respect to a quantitative assertion.

safepn, P, S,Kq :“

@σ c. P pσq ď c ùñ 0 ď c^ pσ, S,K, cq Ón .

Once again, we use an index in the definition of the pred-
icate, it is used to perform proofs by induction for the
function-call and loop rules of the logic. An interesting and
essential property of the previous predicate is that safepn`
1, P, S,Kq ùñ safepn, P, S,Kq. To prove this weakening
property, we use the quantification over all numbers smaller
than n in the definition of ¨ Ón.

The resource safety of a continuation K is defined using
three assertions, one for each of the possible outcomes of a
program statement. We define it as follows.

safeK pn,B,R,Q,Kq :“ safepn,B, break,Kq

^@x.safepn, λσ.R pσpxqq, return x,Kq

^safepn,Q, skip,Kq

We can now define the semantic validity of a judgement
B;R $L tP uS tQu of the quantitative logic without func-
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tion context as validpn,B,R, P, S,Qq :“

@m ď n.@x ě 0.@K.

safeK pm,B`x,R`x,Q`x,Kq

ùñ safepm,P ` x, S,Kq.

Note how the validity of a triple embeds the frame rule of our
logic. This refinement is necessary to have a stronger induc-
tion hypothesis available during the proof. We again need to
add the auxiliarym to ensure that validpn`1, B,R, P, S,Qq
implies validpn,B,R, P, S,Qq.

Using the semantic validity of triples we define the validity
of a function context ∆, written validC pn,∆q, as

@f.∆pfq “ @z ~v v. pPf z ~v,Qf z vq ùñ

@z ~v. validpn,K, Qf z, Pf z ~v, Sf ,Kq,

where Sf is the body of the function f . A full judgement that
mentions a non-empty function context ∆ is in fact a guarded
statement: it makes assumptions on some functions’ behavior.
The predicate validC pn,∆q gives the precise meaning of
the assumptions made. It is also step-indexed to prove the
soundness of the L:EXTEND rule by induction. We are now
able to state the soundness of the quantitative logic.

Theorem 2 (Soundness). If ∆;B;R $L tP uS tQu is deriv-
able then @n. validC pn,∆q ùñ validpn`1, B,R, P, S,Qq.

The difference δ “ 1 between the index in the triple validity
and the one in context validity arises from the soundness
proofs of L:CALL and L:EXTEND. For L:CALL, the lan-
guage semantics makes one step and proceeds with the func-
tion body, so we must have δ ď 1 to use the assumptions in
∆. For L:EXTEND, we have to show that ∆Y∆1 is a valid
context for n steps. The induction hypothesis in that case says
that if ∆Y∆1 is valid form steps, ∆1 is valid form`δ steps.
So if we want to solve this goal by induction, it is necessary
that δ ě 1. These two constraints force δ to be exactly one in
the theorem statement.

Assume that S is a complete program and ∆ is empty. By
expanding the definitions we see that ∆ is valid for every n
and that Kstop is safe for every n if both Q, R, and B are
non-negative on all possible program states. So the Theorem
2 becomes

∆;B;R $L tP uS tQu ùñ @n. safepn, P, S,Kstopq.

This means that from any starting state σ, P pσq provides
enough resources for any run of the program S. This setting
is actually the main use case of the previous theorem which
is stated as a stronger result to allow a proof by induction.

C. Catalog of Automatically Analyzed
Programs

In this appendix we provide a non-exhaustive catalog of
classes of programs that can be automatically analyzed by

our system. For simplicity, and to compare our analysis with
existing tools, the examples are automatically instrumented
with tick statements to count the number of loop iterations
and function calls. This is the only resource that can be
measured by tools like KoAT [Brockschmidt et al. 2014]
and LOOPUS [Sinn et al. 2014]. Sometimes we use tick
statements explicitely to discuss features such as resource
restitution.

We assume that free variables in the code snippets are
the inputs of the program. Some of the examples contain
constants on which the computed bound depends. These
constants are randomly chosen to present an example but
the analysis works for other constants as well. Note however
that it is sometimes crucial that constants are positive (or
negative) or that other relations hold.

Table 3 contains the details of our comparative evaluation.

Amortization and Compositionality Figures 16, 17, and 18
show code snippets that need amortization and composition-
ality to obtain a whole program bound.

Example t07 demonstrates two different features of the
analysis. For one thing it shows that we can precisely track
size changes inside loops. In the first loop, we increment y by
2 in each of the |r0, xs| iterations. An in the second loop, we
decrement y. For another thing it shows that we automatically
recognize dead code if we find conflicting assertions on a
branching path: After the second loop we know y ď 0 and
as a result can assign arbitrary potential inside the third loop
where we know that y ą 0. As a result, we obtain a tight
bound.

Example t08 shows the ability of the analysis to handle
negative and non-negative numbers. Note that there are no
restrictions on the signs of y and x. We also see again that
we accurately track the size change of x in the first loop.
Furthermore, t08 shows that we do not handle the constants
1 or 0 in any special way. In all examples you could replace
0 and 1 with other constants like we did in the second loop
and still derive a tight bound. The only information, that the
analyzer needs is x ě c before assigning x “ x´ c.

In Example t10 we also do not restrict the inputs x and
y. They can be negative, positive, or zero. The star * in the
conditional, stands for an arbitrary assertion. In each branch
of the conditional we can obtain the constant potential 1 since
the interval size |ry, xs| is decreasing.

Example t13 shows how amortization can be used to
handle tricky nested loops. The outer loop is iterated |r0, xs|
times. In the conditional, we either (the branching condition
is again arbitrary) increment the variable y or we execute
an inner loop in which y is counted back to 0. The analysis
computes a tight linear bound for this program. Again, the
constants 0 and 1 in the inner loop can as well be replace by
something more interesting, say 9 and 10 like in Example t08.
Then we still obtain a tight linear bound.

Example t27 is similar to Example t13. Instead of decre-
menting the variable x in the outer loop we this time in-
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while (y-x>0) {

x = x+1;

}

while (x>2) {

x=x-3;

}

1.33|rx, ys| ` 0.33|r0, xs|

t08

while (x-y>0) {

if (*)

y=y+1;

else

x=x-1;

}

|ry, xs|

t10

while (x>0) {

x=x-1;

if (*)

y=y+1;

else {

while (y>0)

y=y-1;

}

}

2|r0, xs| ` |r0, ys|

t13

while (n<0) {

n=n+1;

y=y+1000;

while (y>=100 && *){

y=y-100;

}

}

11|rn, 0s| ` 0.01|r0, ys|

t27
Figure 16: Amortization and Compositionality (a).

while (x>0) {

x=x-1;

y=y+2;

}

while (y>0) {

y=y-1;

}

while (y>0) {

y=y+1;

}

1` 3|r0, xs| ` |r0, ys|

t07

while (x>y) {

x=x-1;

x=x+1000;

y=y+1000;

}

while (y>0) {

y=y-1;

}

while (x<0) {

x=x+1;

}

1002|ry, xs| `
|rx, 0s| ` |r0, ys|

t28

assert (y>=0);

while (x-y>0) {

x=x-1;

x=x-y;

z=y;

while (z>0) {

z=z-1;

}

}

|r0, xs|

t15

assert (y>=0);

while (x-y>0) {

x=x-1;

x=x-y;

z=y;

z=z+y;

z=z+100;

while (z>0) {

z=z-1;

}

}

101|ry, xs|

t16

i=1;

j=0;

while (j<x) {

j++;

if (i>=4) {

i=1;

tick(40);

} else

i++;

tick(1);

}

11|r0, xs|

t09
Figure 17: Amortization and Compositionality (b).

while (i>100) {

i--;

}

i=i+k+50;

while (i>=0) {

i--;

}

50` |r´1, is| ` |r0, ks|

t19

while (x<y) {

x=x+1;

}

while (y<x) {

y=y+1;

}

|rx, ys| ` |ry, xs|

t20

while (x>0) {

x=x-1;

t=x;

x=y;

y=t;

}

|r0, xs| ` |r0, ys|

t30

flag=1;

while (flag>0) {

if (n>0 && *) {

n=n-1;

flag=1;

} else

flag=0;

}

1` |r0, ns|

t47
Figure 18: Amortization and Compositionality (c).
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crement the variable n till n “ 0. In each of the |rn, 0s|
iterations, we increment the variable y by 1000. We then exe-
cute an inner loop that increments y by 100 until y “ 0. The
analysis can derive that only the first execution of the inner
loop depends on the initial value of y. We again derive a tight
bound.

Example t28 is particularly interesting. In the first loop we
decrement the size |ry, xs|. However, we also shift the interval
ry, xs to the interval ry ` 1000, x` 1000s. The analysis can
derive that this does not change the size of the interval and
computes the tight loop bound |ry, xs|. The additional two
loops are in the program to show that the size tracking in
the first loop works accurately. The second loop is executed
|r0, ys| ` 1000|ry, xs| times in the worst case. The third loop
is executed |rx, 0s| ` |ry, xs| in the worst case (if x and y are
negative).

Sometimes we need some assumptions on the inputs in
order to derive a bound. Example t15 is such a case. We
assume here that the input variable y is non-negative and write
assertpy ą“ 0q. The semantic of assert is that it has no effect
if the assertion is true and that the program is terminated
without further cost otherwise. If we enter the loop then
we know that x ą 0 and we can obtain constant potential
from the assignment x “ x´ 1. After the assignment we
know that x ě y and y ě 0. As a consequence, we can
share the potential |r0, xs| before the assignment x “ x´ y
between |r0, xs| and |r0, ys| after the assignment. In this way,
we derive a tight linear bound.

Example t16 is an extension of Example t15. We again
assume that y is non-negative and use the same mechanism to
iterate the outer loop as in t15. In the inner loop, we also count
the variable z down to zero and perform |r0, zs| iterations.
However, instead of assigning z “ y, we assign z “ 2y ` 100.
The analysis computes the linear bound 101|r0, xs|. The
assignment of potential to the size interval |r0, xs| in instead
of |ry, xs| is a random choice of the LP solver.

Example t09 shows how amortized reasoning handles pe-
riodically expensive operations. The top-level loop is iterated
x times in a regular fashion, but every 4 iterations of this loop
an expensive operation modeled by tickp40q is performed.
Taking the worst case of the loop body would yield the pes-
simistic bound 41|r0, xs|, however our tool is able to amortize
the expensive operation and derives instead the tight bound
11|r0, xs|.

Example t19 consists of two loops that decrement a
variable i. In the first loop, i is decremented down to 100
and in the second loop i is increment further down to ´1.
However, between the loops we assign i “ i` k ` 50. So in
total the program performs 50` |r´1, is| ` |r0, ks| iterations.
Our analysis finds this tight bound because our amortized
analysis naturally takes into account the relation between the
two loops. Techniques that do not use amortization derive a
more conservative bound such as 50` |r´1, is| ` |r0, ks| `
|r100, is|.

Example t20 shows how we can handle programs in which
bounds contain absolute values like |x ´ y|. The first loop
body is only executed if x ă y and the second loop body is
only executed if y ă x. The analyzer finds a tight bound.

At first sight, Example t30 appears to be a simple loop that
decrements the variable x down to zero. However, a closer
look reveals that the loop actually decrements both input
variables x and y down to zero before terminating. In the
loop body, first x is decremented by one. Then the values of
the variables x and y are switched using the local variable t as
a buffer. Our analysis infers the tight bound |r0, xs| ` |r0, ys|.

Example t47 demonstrates how we can use integers as
Booleans to amortize the cost of loops that depend on boolean
flags. The outer loop is executed as long as the variable flag is
“true”, that is, flag ą 0. Inside the loop, there is a conditional
that either (if n ą 0) decrements n and assigns flag “ 1, or
(if n ě 0) leaves n unchanged and assigns flag “ 0. The
analyzer computes the tight bound 1` |r0, ns|. The potential
in the loop invariant is |r0,flags|`|r0, ns|. In the then branch
of the conditional, we use the potential |r0, ns| and the fact
that n ą 0. In the else branch, we use the potential |r0,flags|
and the fact that flag “ 1.

From the Literature Our analyzer can derive almost all
linear bounds for programs that have been described as
challenges in the literature on bound generation. We found
only one program with a linear bound for which our analyzer
could not find a tight bound: Example (fig4 5) from [Gulwani
et al. 2009a] requires path-sensitive reasoning to derive a
bound.

Examples fig2 1 and fig2 2 are taken from Gulwani et
al [Gulwani et al. 2009b]. They are both handled by the
SPEED tool but require inference of a disjunctive invariant.
In the abstract interpretation community, these invariants are
known to be notoriously difficult to handle. In Example fig2 1
we have one loop that first increments variable y up to m and
then increments variable x up to n. We derive the tight bound
|rx, ns|`|ry,ms|. Example fig2 2 is more tricky and trying to
understand how it works may be challenging. However, with
the amortized analysis in mind, using the potential transfer
reasoning, it is almost trivial to prove a bound. While the
SPEED tool has to find a fairly involved invariant for the
loop, our tool is simply reasoning locally and works without
any clever tricks. We obtain the tight bound |rx, ns|` |rz, ns|.

Example nested multiple is similar to Example fig2 1.
Instead of incrementing variable y in the outer loop, y is here
potentially incremented multiple times in each iteration of
the outer loop. The idea of Example nested single is similar.
However, instead of incrementing variable y in the inner
loop, we increment x, the counter variable of the outer loop.
Our analyzer derives a tight bound for both programs. Note
that a star * in a branching condition denotes an arbitrary
boolean condition that might of course change while iterating
(non-deterministic choice).
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while (n>x) {

if (m>y)

y = y+1;

else

x = x+1;

}

|rx, ns| ` |ry,ms|

fig2 1

while (x<n) {

if (z>x)

x=x+1;

else

z=z+1;

}

|rx, ns| ` |rz, ns|

fig2 2

while (x<n) {

while (y<m) {

if (*) break;

y=y+1;

}

x=x+1;

}

|rx, ns| ` |ry,ms|

nested multiple

x=0;

while (x<n) {

x=x+1;

while (x<n) {

if (*) break;

x=x+1;

}

}

|r0, ns|

nested single
Figure 19: Examples from Gulwani et al’s SPEED [Gulwani et al. 2009b] (a).

x=0;

while (x<n) {

if (*) break;

x=x+1;

}

while (x<n)

x=x+1;

|r0, ns|

sequential single

x=0; y=0;

while (x<n) {

if (y<m)

y=y+1;

else

x=x+1;

}

|r0,ms| ` |r0, ns|

simple multiple

x=0;

while (x<n) {

if (*)

x=x+1;

else

x=x+1;

}

|r0, ns|

simple single

x=0; y=0;

while (*) {

if (x<N) {

x=x+1; y=y+1;

} else if (y<M ) {

x=x+1; y=y+1;

} else

break;

}

|r0,M s| ` |r0, N s|

simple single 2
Figure 20: Examples from Gulwani et al’s SPEED [Gulwani et al. 2009b] (b).

assert n>0;

assert m>0;

va = n; vb = 0;

while (va>0 && *) {

if (vb<m) {

vb=vb+1;

va=va-1;

} else {

vb=vb-1;

vb=0;

}

}

1` 2|r0, ns|

fig4 2

assert (0<m);

i = n;

while (i>0 && *) {

if (i<m)

i=i-1;

else

i=i-m;

}

|r0, ns|

fig4 4

assert (0 < m < n);

i=m;

while (0<i<n) {

if (dir==fwd) i++;

else i--;

}

´´´

fig4 5
Figure 21: Examples from [Gulwani et al. 2009a].
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i=0;

while (i<n) {

j=i+1;

while (j<n) {

if (*) {

tick(1);

j=j-1; n=n-1;

}

j=j+1;

}

i=i+1;

}

|r0, ns| ticks

ex1

while (n>0 && m>0) {

n--; m--;

while (nondet()) {

n--; m++;

};

tick(1);

}

|r0, ns| ticks

ex2

while (n>0) {

t = x;

n=n-1;

while (n>0) {

if (*) break;

n=n-1;

}

}

|r0, ns|

ex3

flag=1;

while (flag>0) {

flag=0;

while (n>0 && *) {

n=n-1;

flag=1;

}

}

1` 2|r0, ns|

ex4
Figure 22: Examples from [Gulwani and Zuleger 2010].

Example sequential single is like Example nested single.
The only difference is that the inner loop of nested single is
now evaluated after the outer loop. Example simple multiple
is a variant of Example fig2 1 and simple single is a simple
variant of nested single. We derive tight bounds for all
aforementioned programs.

Example simple single 2 uses conditionals and a break
statement to control loop iterations. If x ă N then variables
x and y are incremented. Otherwise, if y ăM then the same
increment is executed. If y ě M and x ě N then the loop
is terminated with a break. Our tool computes the bound
|r0,M s| ` |r0, N s|. This bound is tight in the sense that there
are inputs (such as M “ ´100 and N “ 100) for which
the bound precisely describes the execution cost. However,
SPEED can compute the more precise bound maxpN,Mq.
We currently cannot express this bound in our system.

Example fig4 2 from [Gulwani et al. 2009a] is quite
involved. Amortized reasoning helps to understand how
we derive the bound 1 ` 2|r0, ns|. We start with potential
1 ` 2|r0, ns| and use the fact that vb “ 0 to establish the
potential 1`2|r0, ns|`|r0, vbs| that serves as a loop invariant.
In the if branch of the conditional, we use the constant
potential 1 of the invariant to pay for the potential of |r0, vbs|.
Since we also know that |r0, ns| ą 0 we obtain constant
potential 2 that we use to pay for the loop iteration (1 unit)
and to establish the loop invariant again (1 unit). In the else
branch, we use the potential |r0, vbs| and the fact vb ą 0 to
obtain 1 potential units to pay for the loop iteration.

In Example fig4 4 it is essential that m is positive. That
ensures that we can obtain constant potential for the interval
size |r0, is| in the else branch of the conditional since |r0, is|
decreases. Example fig4 5 is an examples that we can not
handle automatically. The execution is bounded because the
boolean value of the test dir ““ fwd does not change during
the iteration of the loop. As a result, the variable i is either
counted down to 0 or up to n. Our tool cannot handle Example
fig4 5 because we don’t do path sensitive reasoning. Note

however that it would be more efficient to move the test
dir ““ fwd outside of the loop (this would be also done by
an optimizing compiler). The resulting program can then be
analyzed by our tool.

Example ex1 from [Gulwani and Zuleger 2010] specifi-
cally focuses on the code in the if statement. So we insert
tickp1q inside the if statement to derive a bound on the num-
ber of times the code in the if statement is executed. Note that
we cannot derive a bound for the whole program since the
outer loop is executed a quadratic number of times. Never-
theless it is straightforward to derive a bound on the number
of ticks using the amortized approach: In the if statement we
know that n ą 0 and assign n “ n´ 1. So we can use the
potential of the interval size |r0, ns| to pay for the tick.

Similar to Example ex1, Example ex2 form [Gulwani and
Zuleger 2010] focuses on the number of iterations of the
outer loop. While the whole program is not terminating, the
number of iterations of the outer loop is bounded by |r0, ns|.
Finally, Example ex2 is similar to example nested single, and
ex3 is a variant of Example t47.

Recursive Functions Our approach can naturally deal with
mutually-recursive functions. The recursion patterns can be
exactly the same that are used in iterations of loops. In the
following, we present three simple examples that illustrate
the analysis of functions.

Example t37 illustrates that the analyzer is able to perform
inter-procedural size tracking. The function copy adds the
argument x to the argument y if x is positive. However, this
addition is done in steps of 1 in each recursive call. The
function count down recursively decrements its argument
down to 0. The derived bound 3` 2|r0, xs| ` 2|r0, ys| is for
the function main in which we first add x to y using the
function copy and then count down the variable y using the
function count down. The derived bound is tight.

Example t39 uses mutual recursion. The function count down
is similar to the function with the same name in Example t37.

Extended Version 23 2015/1/6



void count_down (int x) {

int a = x;

if (a>0) {

a = a-1;

count_down(a);

}

}

int copy (int x, int y) {

if (x>0) {

x = x-1;

y = y+1;

y=copy(x,y);

};

return y;

}

void start (int x,int y) {

y = copy (x,y);

count_down(y);

}

3` 2|r0, xs| ` |r0, ys|

t37

void count_down (int x,int y)

{ int a = x;

if (a>y) {

a = a-1;

count_up(a,y);

}

}

void count_up (int x, int y)

{ int a = y;

if (a+1<x) {

a = a+2;

count_down(x,a);

}

}

void start (int y, int z) {

count_down(y,z);

}

1.33` 0.67|rz, ys|

t39

void produce () {

while (x>0) {

tick(-1); x=x-1; y=y+1;

}

}

void consume () {

while (y>0) {

y=y-1; x=x+1; tick(1);

}

}

void start (int y, int z) {

consume(); produce(); consume();

}

|r0, ys| ticks

t46
Figure 23: Programs with (recursive) functions

int srch(

int t[], int n, /* haystack */

int p[], int m, /* needle */

int b[]

) {

int i=0, j=0, k=-1;

while (i < n) {

while (j >= 0

&& t[i]!=p[j]) {

k = b[j];

assert(k > 0);

assert(k <= j + 1);

j -= k;

}

i++, j++;

if (j == m)

break;

}

return i;

}

1` 2|r0, ns|

Knuth-Morris-Pratt

int gcd(int x, int y) {

if (x <= 0)

return y;

if (y <= 0)

return x;

for (;;) {

if (x>y) x -= y;

else if (y>x) y -= x;

else return x;

}

}

|r0, xs| ` |r0, ys|

Greatest Common Divisor

void qsort(

int a[], int lo, int hi

) {

int m1, m2, n;

if (hi - lo < 1) return;

n = nondet(); /* partition */

assert( n > 0 );

assert( lo + n <= hi );

m1 = n + lo;

m2 = m1 - 1;

qsort(a, m1, hi);

qsort(a, lo, m2);

}

void start(int a[], int len) {

qsort(a, 0, len);

}

1` 2|r0, lens|

Quick Sort
Figure 24: Well-Known Algorithms

Extended Version 24 2015/1/6



However, we do not count down to 0 but to a variable y that
is passed as an argument and we call the function count up
afterwards. The function count up is dual to count down.
Here, we count up y by 2 and recursively call count down.
For the function main, which calls count downpy, zq, the
analyzer computes the tight bound 1.33` 0.67|rz, ys|.

Example t46 shows a program that uses and returns re-
sources. Again, we use the function tick to describe the
resource usage. The function produce produces |r0, xs| re-
sources, that is, in each of the |r0, xs| iterations, it receives
one resource unit. Similarly, the function consume consumes
|r0, ys| resources. The analyzer computes the tight bound
|r0, ys| for the function main. This is only possible since
amortized analysis naturally tracks the size changes to the
variables x and y, and the interaction between consume and
produce.

Well-Known Algorithms Figure 24 shows well-known al-
gorithms that can be automatically analyzed in our framework.
Example Knuth-Morris-Pratt shows the search function of
the Knuth-Morris-Pratt algorithm for string search. To derive
a bound for this algorithm we have add an assertion that indi-
cates the bounds of the values that are stored in the array b.
Using this information we derive a tight linear bound.

Example Greatest Common Divisor is the usual imple-
mentation of the GCD algorithm. We automatically derive
a linear bound. Note that the two tests at the beginning that
check if the inputs are positive are essential. Finally, Exam-
ple Quick Sort shows a skeleton of the quick sort sorting
algorithm. Since we can only derive linear bounds we left
out the inner loop that swaps the array elements and deter-
mines the position n` lo of the pivot. We only assert that
lo ă n` lo ă“ hi. We then derive a tight linear bound.
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File KoAT Rank LOOPUS SPEED C4B

gcd.c ? ppp2`1q . . . Opnq — ? |r0, xs|`|r0, ys|

kmp.c ? ppp2`pn` . . . Opn2q mxpn, 0q . . . Opnq ? 1`2|r0, ns|

qsort.c ? — — ? 1`2|r0, lens|
speed pldi09

fig4 2.c
— ppp2`nq . . . Opnq — n

m
` n 1`2|r0, ns|

speed pldi09

fig4 4.c
— ppp2`p´1 . . . Opnq — n

m
`m |r0, ns|

speed pldi09

fig4 5.c

28d`
7g ` 27

Opnq ppp2`p´1 . . . Opnq — mxpn, n´mq —

speed pldi10

ex1.c
— — — n |r0, ns|

speed pldi10

ex3.c
— ppp2`p´1 . . . Opnq 2¨mxpn, 0q Opnq n |r0, ns|

speed pldi10

ex4.c

110a`
33

Opnq — — n` 1 1`2|r0, ns|

speed popl10

fig2 1.c

9a`
9b` . . .

Opnq pp2`pp´y . . . Opnq
mxp0, n´xq `
mxp0,m´yq

Opnq
mxp0, n´xq `
mxp0,m´yq

|rx, ns|`|ry,ms|

speed popl10

fig2 2.c

6a`9b`
3c` 5

Opnq pp2´x . . . Opnq
mxp0, px`
1´zq . . .

Opnq
mxp0, n´xq `
mxp0, n´zq

|rx, ns|`|rz, ns|

speed popl10

nstd multiple.c
— pp2´x`n . . . Opn2q

mxp0,m´yq `
mxp0, n´xq

Opnq mxp0,m´yq`
mxp0, n´xq

|rx, ns|`|ry,ms|

speed popl10

nstd single.c
48b` 16 Opnq ppp1´x`n . . . Opnq mxp0,n´1q . . . Opnq n |r0, ns|

speed popl10

sqntl single.c
21b` 6 Opnq pp2´ x`n . . . Opnq 2¨mxpn, 0q Opnq n |r0, ns|

speed popl10

smpl multiple.c

9c`
10d` 7

Opnq pp2´y`m. . . Opnq
mxpn, 0q `
mxpm, 0q

Opnq n`m |r0,ms|`|r0, ns|

speed popl10

smpl single2.c

20d`
12c` 17

Opnq — mxpn, 0q `
mxpm, 0q

Opnq n`m |r0, ns|`|r0,ms|

speed popl10

smpl single.c
4b` 6 Opnq pp2´x`n . . . Opnq mxpn, 0q Opnq n |r0, ns|

t07.c ? 2` x Opnq mxpx, 0q . . . Opnq ? 1`3|r0, xs|`|r0, ys|

t08.c ? pp2`z´y . . . Opnq mxp0,y´2q . . . Opnq ?
1.33|ry, zs|`0.33|r0, ys|

t10.c ? pp2´y`x . . . Opnq mxp0, x´yq Opnq ? |ry, xs|

t11.c ? pp2´y`m. . . Opnq
mxp0, n´xqq`
mxp0,m´yq

Opnq ? |rx, ns|`|ry,ms|

t13.c ? ppp1`y2{2 . . . Opn2q
2¨mxpx, 0q `
mxpy, 0q

Opnq ? 2|r0, xs|`|r0, ys|

t15.c ? pp1`x . . . Opnq — ? |r0, xs|

t16.c ? pp´99¨y . . . Opnq — ? 101|r0, xs|

t19.c ? pp153`k . . . Opnq
mxp0,i´102q`
mxp0,k`i`51q

Opnq ? 50`|r´1, is|`|r0, ks|

t20.c ? p2´y`x . . . Opnq
2¨mxp0,y´xq`
mxp0,x´yq

Opnq ? |rx, ys|`|ry, xs|

t27.c ? — 103mxp0,
´nq. . .

Opnq ?
0.01|rn, ys|`11|rn, 0s|

t28.c ? pp1´y`x . . . Opnq
103 mxp0, x´

yq . . .
Opnq ? |rx, 0s|`|r0, ys|

`1002|ry, xs|

t30.c ? — — ? |r0, xs|`|r0, ys|

t37.c ? — — ? 3`2|r0, xs|`|r0, ys|

t39.c ? — — ? 1.33`0.67|rz, ys|

t46.c ? — — ? |r0, ys|

t47.c ? 4` n Opnq 1`mxpn, 0q Opnq ? 1`|r0, ns|

Table 3: Experimental evaluation comparing the bounds generated KoAT, Rank, LOOPUS, SPEED, and our automatic amortized
analysis on several challenging linear examples. Results for KoAT and SPEED were extracted from previous publications
because KoAT cannot take C programs as input in its current version and SPEED is not available. Entries marked with ? indicate
that we cannot test the respective example with the tool. Entries marked with — indicate that the tool failed to produce a result.
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