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Abstract

Proof-carrying code (PCC) allows a code producer to provide to a host a program along with
its formal safety proof. The proof attests to a certain safety policy enforced by the code, and can
be mechanically checked by the host. While this language-based approach to code certi"cation
is very general in principle, existing PCC systems have only focused on programs whose safety
proofs can be automatically generated. As a result, many low-level system libraries (e.g., memory
management) have not yet been handled. In this paper, we explore a complementary approach in
which general properties and program correctness are semi-automatically certi"ed. In particular,
we introduce a low-level language, CAP, for building certi"ed programs and present a certi"ed
library for dynamic storage allocation.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Proof-carrying code (PCC) is a general framework pioneered by Necula and Lee
[15,13]. It allows a code producer to provide a program to a host along with a formal
safety proof. The proof is incontrovertible evidence of safety which can be mechanically
checked by the host; thus the host can safely execute the program even though the
producer may not be trusted.
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Although the PCC framework is general and potentially applicable to certifying ar-
bitrary data objects with complex speci"cations [14,2], generating proofs remains dif-
"cult. Existing PCC systems [16,12,3,1] have only focused on programs whose safety
proofs can be automatically generated. As a result, many low-level system libraries,
such as dynamic storage allocation, have not been certi"ed. Nonetheless, building cer-
ti"ed libraries, especially low-level system libraries, is an important task in certifying
compilation. It not only helps increase the reliability of “infrastructure” software by
reusing provably correct program routines, but also is crucial in making PCC scale for
production.
On the other hand, Hoare logic [7,8], a widely applied approach in program veri"ca-

tion, allows programmers to express their reasonings with assertions and the application
of inference rules, and can be used to prove general program correctness. In this paper,
we introduce a conceptually simple low-level language for certi"ed assembly program-
ming (CAP) that supports Hoare-logic style reasoning. We use CAP to build a certi"ed
library for dynamic storage allocation, and further use this library to build a certi"ed
program whose correctness proof can be mechanically checked. Applying Hoare-logic
reasoning at an assembly-level, our paper makes the following contributions:

• CAP is based on a common instruction set so that programs can be executed on
real machines with little eHort. The expected behavior of a program is explicitly
written as a speci"cation using higher-order logic. The programmer proves the well-
formedness of a program with respect to its speci"cation using logic reasoning, and
the result can be checked mechanically by a proof-checker. The soundness of the
language guarantees that if a program passes the static proof-checking, its run-time
behavior will satisfy the speci"cation.

• Using CAP, we demonstrate how to build certi"ed libraries and programs. The spec-
i"cations of library routines are precise yet general enough to be imported in various
user programs. Proving the correctness of a user program involves linking with the
library proofs.

• We implemented CAP and the dynamic storage allocation routines using the Coq
proof assistant [20], showing that this library is indeed certi"ed. The example pro-
gram is also implemented. All the Coq code is available [21].

• Lastly, memory management is an important and error-prone part of most non-trivial
programs. It has been a hard problem to address in previously developed frameworks
for certi"ed code—most of these assume its correctness and build the rest of the
system on top of it. We present a provably correct implementation of a typical
dynamic storage allocation algorithm. To the authors’ knowledge, it is so far the
only such certi"ed library for memory management.

2. Dynamic storage allocation

In the remainder of this paper, we focus on the certi"cation and use of a library
module for dynamic storage allocation. In particular, we implement a storage allocator
similar to that described in [10,11].
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Fig. 1. Free list and free blocks.

The interface to our allocator consists of the standard malloc and free functions.
The implementation keeps track of a free list of blocks which are available to satisfy
memory allocation requests. As shown in Fig. 1, the free list is a null-terminated list
of (non-contiguous) memory blocks. Each block in the list contains a header of two
words: the "rst stores a pointer to the next block in the list, and the second stores the
size of the block. The allocated block pointer that is returned to a user program points
to the useable space in the block, not to the header (although the header is always
carried with the allocated block as well).
The blocks in the list are sorted in order of increasing address and requests for

allocation are served based on a "rst-"t policy; hence, we implement an address-
ordered 0rst-0t allocation mechanism. If no block in the free list is big enough, or if
the free list is empty, then malloc requests more memory from the operating system as
needed. When a user program is done with a memory block, it is returned to the free
list by calling free, which puts the memory block into the free list at the appropriate
position.
Our implementation in this paper is simple enough to understand, yet faithfully repre-

sents mechanisms used in traditional implementations of memory allocators [22,10,11].
For ease of presentation, we assume our machine never runs out of memory so malloc
will never fail, but otherwise many common low-level mechanisms and techniques used
in practice are captured in this example, such as use of a free list, in-place header "elds,
searching and sorting, and splitting and coalescing (described below). We thus believe
our techniques can be as easily applied to a variety of other allocator implementations.
In the remainder of this section, we describe in detail the functionality of the malloc

and free library routines (Fig. 2), and give some “pseudo-code” for them. We do not
show the calloc (allocate and initialize) and realloc (resize allocated block) routines
because they essentially delegate their tasks to the two main functions described below.

free. This routine puts a memory block into the free list. It takes a pointer (ptr)
to the useable portion of a memory block (preceded by a valid header) and does not
return anything. It relies on the preconditions that ptr points to a valid “memory block”
and that the free list is currently in a good state (i.e., properly sorted). As shown in
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Fig. 2. Pseudo-code of allocation routines.
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Fig. 2, free works by walking down the free list to "nd the appropriate (address-
ordered) position for the block. If the block being freed is directly adjacent with either
neighbor in the free list, the two are coalesced to form a bigger block.

malloc. This routine is the actual storage allocator. It takes the size of the new
memory block expected by the user program, and returns a pointer to an available
block of memory of that size. As shown in Fig. 2, malloc calculates the actual size
of the block needed including the header and then searches the free list for the "rst
available block with size greater than or equal to what is required. If the size of the
block found is large enough, it is split into two and a pointer to the tail end is returned
to the user.
If no block in the free list is large enough to ful"ll the request, more memory

is requested from the system by calling more mem. Because this is a comparatively
expensive operation, more mem requests a minimum amount of memory each time to
reduce the frequency of these requests. After getting a new chunk of memory from
the system, it is appended onto the free list by calling free. The search loop is then
restarted because the new chunk of memory might have been coalesced with a previous
block during the call to free.
These dynamic storage allocation algorithms often temporarily break certain invari-

ants, which makes it hard to automatically prove their correctness. During intermediate
steps of splitting, coalescing, or inserting memory blocks into the free list, the state
of the free list or the memory block is not valid for one or more instructions. Thus,
a traditional type system would need to be extremely specialized to be able to handle
such code.

3. A language for certi�ed assembly programming (CAP)

To write our certi"ed libraries, we use a low-level assembly language, CAP, "tted
with speci"cations reminiscent of Hoare-logic. The assertions that we use for verify-
ing the particular dynamic allocation library described in this paper are inspired by
Reynolds’ “separation logic” [19,18].
The syntax of CAP is given in Fig. 3. A complete program (or, more accurately,

machine state) consists of a code heap, a dynamic state component made up of the
register "le and data heap, and an instruction sequence. The instruction set captures the
most basic and common instructions of an assembly language, and includes a primitive
alloc command which can be viewed as a system call. The register "le is made up of
32 registers and we assume an unbounded heap with integer words of unlimited size
for ease of presentation.
Our type system, as it were, is a very general layer of speci"cations such that

assertions can be associated with programs and instruction sequences. Our assertion
language (Assert) is the calculus of inductive constructions (CiC) [20,17], an extension
of the calculus of constructions [4] which is a higher-order typed lambda calculus that
corresponds to higher-order predicate logic via the formulae-as-types principle (Curry–
Howard isomorphism [9]). In particular, we implement the system described in this
paper using the Coq proof assistant [20]. Assertions are thus de"ned as Coq terms of
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Fig. 3. Syntax of CAP.

Fig. 4. Auxiliary state update macro.

type State→ Prop, where the various syntactic categories of the assembly language
(such as State) have been encoded using inductive de"nitions. We give examples of
inductively de"ned assertions used for reasoning about memory in later sections.

3.1. Operational semantics

The operational semantics of the assembly language is fairly straightforward and is
de"ned in Figs. 4 and 5. The former "gure de"nes a “macro” relation detailing the eHect
of simple instructions on the dynamic state of the machine. Control-Bow instructions,
such as jd (jump direct to a label), jmp (jump to an address in a register), or bgt
(conditional branch), do not aHect the data heap or register "le. The domain of the
heap is altered by an alloc command, which increases the domain with a speci"ed
number of labels mapped to unde"ned 1 data. The ld and st commands are used to
access or update the value stored at a given label.
Since we intend to model realistic low-level assembly code, we do not have a “halt”

instruction. In fact, termination is undesirable since it means the machine has reached

1 We use to indicate an indeterminate value. Note that this feature causes the operational semantics to
be non-deterministic.
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Fig. 5. Operational semantics.

a “stuck” state where, for example, a program is trying to branch to a non-existent
code label, or access an invalid data label. We present in the next section a system
of inference rules for speci"cations which allow one to statically prove that a program
will never reach such a bad state.

3.2. Inference rules

We de"ne a set of inference rules allowing us to prove speci"cation judgments of
the following forms:

� � {a}P (well-formed program);
� � C (well-formed code heap);
� � {a} I (well-formed instruction sequence):

Programs in our assembly language are written in continuation-passing style because
there are no call/return instructions. Hence, we only specify preconditions for instruction
sequences (preconditions of the continuations actually serve as the postconditions). If
a given state satis"es the precondition, the sequence of instructions will run without
reaching a bad state. Furthermore, in order to check code blocks, which are potentially
mutually recursive, we require that all labels in the code heap be associated with a
precondition—this mapping is our code heap speci"cation, �.
Well-formed code heap and programs. A code heap is well-formed if the code block

associated with every label in the heap is well-formed under the corresponding precon-
dition. Then, a complete program is well-formed if the code heap is well-formed, the
current instruction sequence is well-formed under the precondition, and the precondition
also holds for the dynamic state.
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� = {f1 ❀ a1 : : : fn ❀ an} � � {ai} Ii ∀i ∈ {1 : : : n}
� � {f1 ❀ I1 : : : fn ❀ In} (1)

� � C � � {a} I (a S)
� � {a} (C;S; I) (2)

It should be noted, as will be formally established at the end of this section, that � is
more than the “normal” structural, syntactic code typing environment. The assertions
that are mapped to labels in � are fully arbitrary predicates on the state that must be
satis"ed for the code at that label to be safe to run.
Well-formed instructions: Pure rules. The inference rules for instruction sequences

can be divided into two categories: pure rules, which do not interact with the data
heap, and impure rules, which deal with access and modi"cation of the data heap.
The structure of many of the pure rules is very similar. They involve showing that

for all states, if an assertion a holds, then there exists an assertion a′ which holds on
the state resulting from executing the current command and, additionally, the remainder
of the instruction sequence is well-formed under a′. We use the auxiliary state update
macro de"ned in Fig. 4 to collapse the rules for arithmetic instructions into a single
schema. For control Bow instructions, we instead require that if the current assertion a
holds, then the precondition of the label that is being jumped to must also be satis"ed.

c ∈ {add; addi; sub; subi;mov;movi}
∀H:∀R: a (H;R)⊃a′ (AuxStep(c; (H;R))) � � {a′} I

� � {a} c; I (3)

∀H:∀R: (R(rs)6 R(rt))⊃a (H;R)⊃a′ (H;R)
∀H:∀R: (R(rs)¿ R(rt))⊃a (H;R)⊃a1 (H;R)
� � {a′} I �(f) = a1

� � {a} bgt rs; rt ; f; I (4)

∀H:∀R: (R(rs)6 i)⊃a (H;R)⊃a′ (H;R)
∀H:∀R: (R(rs)¿ i)⊃a (H;R)⊃a1 (H;R)
� � {a′} I �(f) = a1

� � {a} bgti rs; i; f; I (5)

∀S: a S⊃a1 S where �(f) = a1

� � {a} jd f
(6)

∀H:∀R: a (H;R)⊃a1 (H;R) where �(R(r)) = a1

� � {a} jmp r
(7)

Well-formed instructions: Impure rules. As mentioned previously, these rules involve
accessing or modifying the data heap.

∀H:∀R:a (H;R) ⊃ a′(H{1❀ ; : : : ; 1 + i − 1❀ };R{rd ❀ 1})
where R(rs) = i and {1; : : : ; 1 + i − 1} ∩ dom(H) = ∅
� � {a′}I

� � {a}alloc rd[s]; I
(8)



D. Yu et al. / Science of Computer Programming 50 (2004) 101–127 109

∀H:∀R:a (H;R ⊃ ((R(rs) + i) ∈ dom(H)) ∧ (a′ (H;R{rd ❀ H(R(rs) + i}))
� � {a′}I

� � {a}ld rd; rs(i); I
(9)

∀H:∀R:a (H;R ⊃ ((R(rd) + i) ∈ dom(H)) ∧ (a′ (H;R{rd + i ❀ R(rs)};R))
� � {a′}I

� � {a}st rd; rs(i); I
(10)

3.3. Soundness

We establish the soundness of these inference rules with respect to the operational
semantics of the machine following the syntactic approach of proving type soundness
[23]. From “Type Preservation” and “Progress” lemmas (proved by induction on I),
we can guarantee that given a well-formed program, the current instruction sequence
will be able to execute without getting “stuck.” Furthermore, at the point when the
current instruction sequence branches to another code block, the machine state will
always satisfy the precondition of that block.

Lemma 1 (Type Preservation). If � � {a} (C;S; I) and (C;S; I) P, then there
exists an assertion a′ such that � � {a′}P.

Lemma 2 (Progress). If � � {a} (C;S; I), then there exists a program P such that
(C;S; I) P.

Theorem 1 (Soundness). If � � {a} (C;S; I), then for all natural number n, there
exists a program P such that (C;S; I) n P, and
• if (C;S; I) ∗(C;S′; jd f), then �(f) S′;
• if (C;S; I) ∗(C; (H;R); jmp rd), then �(R(rd)) (H;R);
• if (C;S; I) ∗(C; (H;R); (bgt rs; rt ; f)) and R(rs)¿ R(rt), then �(f) (H;R);
• if (C;S; I) ∗(C; (H;R); (bgti rs; i; f)) and R(rs)¿ i, then �(f) (H;R).

It should be noted here that this soundness theorem establishes more than simple type
safety. In addition to that, it states that whenever we jump to a block of code in the
heap, the speci"ed precondition of that code (which is an arbitrary assertion) will hold.
It may seem that the inference rules given above for instructions will be hard to

apply since they require the introduction of assertions which are not mentioned in the
syntax of the program. Of course, these assertions must be produced somehow, either
automatically or by the programmer. Additionally, it would be possible to extend the
de"nition of the syntax of CAP so that every instruction in a sequence is annotated
with its precondition. Such a user-friendly, but verbose, syntax has been used in the
presentation of CAP programs in the Appendix. Ultimately, however, recall that we
will be using the CAP system to convey PCC packages. In this scenario, what the
code recipient gets from the producer will be a complete proof of the well-formedness
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of a program. The proof will consist of a tree of applications of the appropriate CAP
inference rules and embedded therein will be any necessary information, especially
preconditions at the intermediate steps of a code block. To keep the presentation less
cluttered, we have de"ned the syntax of CAP to only provide assertions at the entry
points of code blocks; the code producer (a human or an automatic process like a
certifying compiler) will somehow have to keep track of any intermediate assertions,
and all these will eventually be packaged in the complete proof that is provided to the
code recipient.

4. Certi�ed dynamic storage allocation

Equipped with CAP, we are ready to build the certi"ed library. In particular, we
provide a provably correct implementation for the library routines free and malloc. The
main diPculties involved in this task are: (1) to give precise yet general speci"cations
to the routines; (2) to prove as theorems the correctness of the routines with respect to
their speci"cations; (3) the speci"cations and theorems have to be modular so that they
can interface with user programs. In this section, we discuss these problems for free
and malloc respectively. From now on, we use the word “speci"cation” in the wider
sense, meaning anything that describes the behavior of a program. To avoid confusion,
we call the language construct � a code heap spec, or simply spec.
Before diving into certifying the library, we de"ne some assertions related to memory

blocks and the free list as shown in Fig. 6. These de"nitions make use of some basic
operators (which we implement as shorthands using primitive constructs) commonly
seen in separation logic [19,18]. In particular, emp asserts that the heap is empty;
e 
→ e′ asserts that the heap contains one cell at address e which contains e′; and
separating conjunction p*q asserts that the heap can be split into two disjoint parts in
which p and q hold, respectively.
Memory block (MBlkpq s) asserts that the memory at address p is preceded by a

pair of words: the "rst word contains q, a (possibly null) pointer to another memory
block, and the second word contains the size, s, of the memory block itself (including
the two-word header preceding p).
Memory block list (MBlkLst np q) models an address-ordered list of blocks. n is the

number of blocks in the list, p is the starting pointer and q is the ending pointer. This
assertion is de"ned inductively and is a specialized version of the singly linked list
introduced by Reynolds [19,18]. However, unlike that somewhat informal de"nition of
singly linked list, MBlkLst has to be de"ned formally for mechanical proof-checking.
Thus we use a Coq inductive de"nition for this purpose.
A list segment with a particular ending block (EndL 9istpq) is de"ned as a list 9ist

of memory blocks with p pointing at the last block whose forward pointer is q. In the
special case that 9ist is an empty list, p is nil.
(MidL 9istpq) models a list with a block B in the middle, where the list starts from
9ist, and the block B is speci"ed by the position p and the forward pointer q. This
assertion is de"ned as the separating conjunction of a list with ending block B and a
null-terminated list starting from the forward pointer of B.
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Fig. 6. Assertions on free list.

Finally, we de"ne a good free list (Good) as a null-terminated memory block list.
It is easy to show the relation between MidL and Good as described.

free. Putting aside the CAP syntax for the moment, a speci"cation of the expected
behavior of free can be written as the following Hoare triple:

{PRE} free(fptr) {POST};
where PRE ≡ Pred ∗ (MBlk fptr ) ∗ (Good 9ist)

POST ≡ Pred ∗ (Good 9ist)

Assertion PRE states the precondition. It requires that the heap can be separated into
three disjoint parts, where fptr points to a memory block to be freed; 9ist points
to a good free list; and the remaining part satis"es the user speci"ed assertion Pred.
Assertion POST states the postcondition. Since the memory block is placed into the free
list, the heap now can be separated into two disjoint parts: 9ist still points to a good
free list, and the remaining part of the heap still satis"es Pred because it is untouched.
Note that this does not totally specify all the behaviors of free. For example, it is

possible to add in the postcondition that the memory block that fptr pointed to is now
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in the free list. However, this is irrelevant from a library user’s point of view. Thus we
favor the above speci"cation, which guarantees that free does not aHect the remaining
part of the heap.
Now we write this speci"cation in CAP, where programs are written in continuation-

passing style. Before free completes its job and jumps to the return pointer, the
postcondition should be established. Thus the postcondition can be interpreted as the
precondition of the code referred to by the return pointer. Suppose r0 is the return
pointer; a valid library call to free should require that POST implies �(R(r0)) for all
states (which we write as POST =⇒�(R(r0))). In fact, this condition is required for
type-checking the returning code of free (i.e., jmp r0). As a library routine, free is ex-
pected to be used in various programs with diHerent code heap specs (�). So the above
condition has to be established by the user with their knowledge of the actual, complete
�. When proving the well-formedness of free, this condition is taken as a premise.
At an assembly-level, most non-trivial programs are expressed as multiple code

blocks connected together with control Bow instructions (jd, jmp, and bgt). The set
of code blocks implementing the free routine is given in Fig. 11. Type-checking these
control Bow instructions requires similar knowledge about the code heap spec �. For
instance, at the end of the initial code block free, 2 an assertion Aiter (i.e., the precon-
dition of jd iter) is established about the current state, and the control is transferred
to the code block iter with a direct jump. When type-checking this direct jump (i.e.,
jd iter) against the assertion Aiter , the inference rule 6 requires that Aiter implies
�(iter) for all states. These requirements are also taken as premises in the well-
formedness theorem of free. Thus the speci"cation of free is actually as follows:

∀Pred:∀�:∀f: (POST =⇒�(f)) ∧ (Aiter=⇒�(iter))
⊃� � {PRE ∧ R(r0) = f}C(free)

where C(free) is the code block labeled free, r0 holds the return location, and
universally quanti"ed Pred occurs inside the macros PRE and POST as de"ned before.
This is de"ned as a theorem and formally proved in Coq.
The "rst hypothesis, POST =⇒�(f), ensures that the entire free routine can even-

tually be exited by jumping to r0; the second establishes that the initial free block
can be left by jumping to iter.
Following similar ideas, the well-formedness of all the other code blocks implement-

ing the library routine free are also modeled and proved as theorems, with the premises
changed appropriately according to which labels they refer to. See Section 5.1 and the
appendix for details.
Using the Coq proof assistant, proving these theorems is not diPcult. Pure instruc-

tions only aHect the register "le; they are relatively easy to handle. Impure instructions
aHect the heap. Nonetheless, commonalities on similar operations can be factored out
as lemmas. For instance, writing into the “link” "eld of a memory block header occurs
in various places. By factoring out this behavior as a lemma and applying it, the proof
construction becomes simple routine work. The only tricky part lies in proving the

2 Note we use a diHerent font to distinguish between free, which is the collection of code blocks imple-
menting the “free” procedure, and free, which is the individual code block labeled “free.”
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code which performs coalescing of free blocks. This operation essentially consists of
two steps: one to modify the size "eld; the other to combine the blocks. No matter
which one is performed "rst, one of the blocks has to be “broken” from being a valid
memory block as required by MBlk. This behavior is hard to handle in conventional
type systems, because it tends to break certain invariants captured by the type system.
In contrast, since the predicates of CAP are expressed using the complete generality
of the higher-order logic, the intermediate steps of an operation can be veri"ed, for
example, by expressing in the assertions exactly how the blocks are being broken up
and put back together again to form a larger (valid) block. In our case, we used an
abstraction inspired by separation logic to allow more intuitive reasoning about these
low-level memory operations.
In Fig. 11 of Appendix A, we give the routine free written in CAP. This program

is annotated with assertions at various program points. It contains the spec templates
(the assertions at the beginning of every code block), and can be viewed as an outline
of the proof. In this program, variables are used instead of register names for ease
of understanding. We also assume all registers to be caller-saved, so that updating
the register "le does not aHect the user customized assertion Pred. Typically, relevant
states are saved in activation records in a stack when making function calls, and Pred
would be dependent only on the stack. In the current implementation, we have not
yet provided certi"ed activation records; instead, we simply use diHerent registers for
diHerent programs. (For a more complete implementation, we would need a more
robust way of interfacing between the library and user code—using a stack, calling
conventions, etc.)
A certi"ed library routine consists of both the code and the proof. Accordingly, the

interface of such a routine consists of both the signature (parameters) and the spec
templates (e.g., PRE; POST ). When the routine is used by a user program, both the
parameters and the spec templates should be instantiated properly. The well-formedness
of free is also a template which can be applied to various assertions Pred, code heap
specs � and return labels f. If a user program contains only one call-site to free,
the corresponding assertion for free should be used in �. However, if a user program
contains multiple call-sites to free, a “suPciently weak” assertion for free must
be constructed by building a “tagged” disjunction of all the individually instantiated
assertions. 3 The following derived Rule 11 (which is proved by induction on I),
together with the theorem for the well-formedness of free, guarantees that the program
type-checks.

� � {a1} I � � {a2} I
� � {a1 ∨ a2} I (11)

malloc. Just as for free, an informal speci"cation of malloc can be as follows:

{PRE} malloc(nsize;mptr) {POST};
where PRE ≡ Pred ∗ (Good 9ist) ∧ (nsize = s0 ¿ 0)

POST ≡ Pred′ ∗ (Good 9ist) ∗ (MBlk mptr s) ∧ (s0 + 26 s)

3 See the discussion in Section 5.1.
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The precondition PRE states that 9ist points to a good free list, user customized as-
sertion Pred holds for the remaining part of the heap, and the requested size nsize
is larger than 0. The postcondition POST states that part of the heap is the newly
allocated memory block pointed to by mptr whose size is at least the requested one,
9ist still points to a good free list, and another assertion Pred′ holds for the remaining
part of the heap. Pred′ may be diHerent from Pred because malloc modi"es register
mptr. The relation between these two assertions is described by SIDE as follows:

SIDE ≡ ∀(H;R):Pred (H; R) ⊃ Pred ′ (H;R{mptr ❀ })
Typically, Pred does not depend on mptr. So Pred′ is the same as Pred and the above
condition is trivially established.
To type-check the control-Bow instructions of the malloc routine without knowing

the actual code heap spec �, we add premises to the well-formedness theorem of
malloc just as we did for free. The speci"cation in CAP is as follows:

∀Pred:∀Pred′:∀s0:∀�:∀f: SIDE ∧ (POST =⇒�(f)) ∧ (Ainit=⇒�(init))
⊃� � {PRE ∧ R(r1) = f}C(malloc)

where C(malloc) is the code block labeled malloc, universally quanti"ed Pred, Pred′

and s0 occur inside the macros PRE, POST and SIDE, init is the label of a code
block that malloc refers to, and Ainit is the assertion established when malloc jumps
to init. Because malloc calls free in the course of its execution, we use a diHerent
register r1 to hold the return location for the malloc routine, due to the lack of certi"ed
activation records. The well-formedness of all the other code blocks implementing the
malloc routine are modeled similarly.
Proving these theorems is not much diHerent than proving those of free. A tricky

part is the splitting of memory blocks. Similar to coalescing, splitting temporarily
breaks certain invariants; thus it is hard to handle in conventional type systems. The
annotated malloc routine in CAP is shown in Fig. 12.

5. Example: copy program

With the certi"ed implementation (i.e., code and proof) of free and malloc, we now
implement a certi"ed program, copy. As shown in Fig. 7, this copy program takes a
pointer to a list as the argument, makes a copy of the list, and disposes the original
one.
To make use of the certi"ed routines free and malloc, we de"ne assertions for the

list data structure as shown in Fig. 8. (Pairp x q) de"nes a pair at location p which
stores values x and q; it carries the fact that it resides inside a “malloced” memory
block. (Slist � p q) de"nes a list with the help of Pair; it represents a list segment from
p to q representing the sequence �. The structure of the Slist de"nition is close to that
of MBlkLst and Reynolds’ singly-linked list [19,18].
The MBlk assertion carried inside Pair is crucial for the memory block to be “freed”

when required. It has to be preserved throughout the copy program. Typically when
operating on a pair at location p, only locations p and p+ 1 are referred to. Thus as
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Fig. 7. Pseudo-code of copy.

Fig. 8. Pair and Slist.

long as the header of the memory block is untouched, preserving MBlk is straightfor-
ward.
Certifying the copy program involves the following steps: (1) write the plain code;

(2) write the code heap spec; (3) prove the well-formedness of the code with respect
to the spec, with the help of the library proofs. Fig. 13 of the Appendix shows the
copy program with annotations.
The spec for the code blocks that implement the copy program depends on what

property one wants to achieve. In our example, we specify the partial correctness that
if copy ever completes its task (by jumping to halt), the result list contains the same
sequence as the original one.
We get the specs of the library blocks by instantiating the spec templates of the

previous section with appropriate assertion Pred. The only place where malloc is
called is in block nxt0 of copy. Inspecting the assertion at that place and the spec
template, we instantiate Pred appropriately to get the actual spec. Although free is
called only once in program copy (in block nxt1), it has another call-site in block
more of malloc. Thus for any block of free, there are two instantiated specs, one
customized for copy (A1) and the other for malloc (A2). The actual spec we use is the
disjunction of these two (A1 ∨ A2).
The well-formedness of the program can be derived from the well-formedness of

all the code blocks. We follow the proof outline in Fig. 13 to handle the blocks
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of copy. For the blocks of routine malloc, we directly import their well-formedness
theorems described in the previous section. Proving the premises of these theorems
(e.g., Ainit =⇒ �(init)) is trivial (e.g., Ainit is exactly �(init)). For routine free,
whose spec has a disjunctive form, we apply Rule 11 to break up the disjunction
and apply the theorems twice. Proving the premises of these theorems (e.g., Aiter=⇒
�(iter) where �(iter) has the form Aiter ∨ A′

iter) involves ∨-introduction, which is
also trivial. We refer interested readers to our implementation [21] for the exact details.

5.1. Higher-order code pointers

We have previously mentioned several times the need for instantiating speci"cations
with a disjunction of assertions. This arises from a de"ciency in Hoare logic’s handling
of higher-order, or embedded, code pointers. It is an issue that has also been mentioned
in [19] and which has been inherited by the version of the CAP language presented
in this paper. A simple outline of the problem is as follows: We wish to specify a
precondition for free, for example, which says that there is some return code address
(g) in register r0, that g has its own particular assertion about the state of the memory
and register "le (Ag), and that at the point when the code of free is entered, Ag and
some other separate assertion, Afree, must hold. 4 Thus, we would like to express the
speci"cation for the free block as follows:

�(free) = {∃g:R(r0) = g ∧�(g) = Ag ∧ Ag ∗ Afree}:
Unfortunately, the reader will note that this results in a circular de"nition of �. The
approach taken to circumvent this in this paper is, as mentioned previously, to explicitly
list all possible return code addresses and their preconditions in the speci"cation of free.
Thus, in the case of the copy program, by analyzing the call paths to free, we see that
when the free block is entered, the return code address will either be nxt0 or nxt1,
and each of those blocks has its own associated assertion, Antx0 and Antx1. Thus, we
give the free block the speci"cation:

�(free) = {((R(r0) = nxt0 ∧ Anxt0) ∨ (R(r0) = nxt1 ∧ Antx1)) ∗ Afree}:
This is what is meant by instantiating Pred with a disjunction of assertions, as discussed
in the previous subsection. Now, each particular code block of the free routine has its
own speci"cation about the state that is needed to prove it safe, just as free has Afree.
The precondition of each code block, then, is a combination of the disjunction related
to the return code addresses and the speci"c assertion about the memory and register
"le that is needed by that code block to reason safety of its operations. While jumping
between the code blocks implementing the free routine, we can keep the disjunctive
assertions consistent by checking the value of the return address in r0.
Clearly, this method of handling return code addresses is far from satisfactory. Al-

though it is somewhat alleviated by introducing the derived Rule 11, we have already

4 Here, Ag and Afree correspond to Pred and ((MBlk fptr ) ∗ (Good 9ist)), respectively, in the precondi-
tion, PRE, of free described in Section 4.
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worked on developing the next generation of CAP, which more properly addresses this
problem.

6. Implementation

6.1. Overview

Before presenting the implementation, we "rst clarify and emphasize some important
points. Firstly, the goal of this paper has been to present a framework for proof-carrying
code. In the context of the most foundational form of PCC (e.g., [1]), the framework
basically includes only the actual machine (which we use an idealized one in this
presentation) and a logic in which proofs about the safety of the machine state and its
operation are given. The logic we are using is CiC (Coq), as mentioned previously.
Thus, the presentation of the CAP language in Fig. 3 is somewhat inverted, since the
elided de"nition of Assert (which is the complete syntax of Coq) is really the only
syntax of our system. All the other parts of that "gure are actually de"ned as Coq
terms as will be detailed further in this section. Since the entire CAP language is
actually embedded in Coq, we have the use of Coq’s full expressiveness, including its
facility for inductive de"nitions, as shown especially in the beginning of Section 4.
Furthermore, the operational semantics and typing rules presented in Section 3 are

also de"ned as a collection of relations in Coq. Ultimately, they allow one to formally
prove the CAP soundness theorem, which ensures the stated properties of the machine’s
execution, given a Coq term that represents a well-formed CAP program.
Our implementation [21] in Coq covers the language CAP and its soundness, the

certi"ed routines free and malloc, and the example program copy. The code and initial
state of the library routines and program are Coq terms with appropriate types. Their
well-formedness is a Coq theorem which is constructed interactively using tactics with
the help of the Coq proof assistant.

6.2. Syntax

Most of the de"nitions for CAP syntax are fairly intuitive. For better correspondence
with the presentation in Fig. 3, we present the de"nitions top-down. In the actual Coq
implementation, they are de"ned bottom-up so that de"nitions only refer to others
which are already de"ned.
A program is a triple consisting of a code heap, a dynamic state and an instruction

sequence. The code heap is inductively de"ned; it exhibits a list structure. Although
the de"nition itself does not prevent the same label from being mapped to multiple
targets, the lookup relation lookupC, which corresponds to the judgment “C(f) = I”,
makes sure that only the right-most one is visible.

Definition prog := (codeheap * (state * iseq)).

(* code labels are defined as natural numbers *)
Definition lab := nat.
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Inductive codeheap : Set :=
| emptyC : codeheap
| consC : lab -> iseq -> codeheap -> codeheap.

Inductive lookupC : codeheap -> lab -> iseq -> Prop := ...

The dynamic state is made up of the data heap and the register "le. The heap is
de"ned as a partial function from heap labels to word values. In this encoding, if a
heap maps a label to none, it indicates that the label is not in the domain of the heap.
A library of utility functions and lemmas is built to help manipulate heaps and proving
their properties in this encoding. The register "le is inductively de"ned; its structure
is similar to that of the code heap. Registers are de"ned as an inductive set with 32
constructors—one for each register that we have in CAP. The function lookupR looks
up a value in the register "le.

Definition state := (heap * rfile).

(* heap labels and word values are defined as natural numbers *)
Definition addr := nat.
Definition wordval := nat.

Definition heap : Set := (addr -> (option wordval)).

Inductive rfile : Set :=
| emptyR : rfile
| consR : rfile -> reg -> wordval -> rfile.

Inductive reg : Set := r0 : reg | r1 : reg | r2 : reg | ...

Definition lookupR : rfile -> reg -> int := ...

The de"nitions of instruction sequences and commands are straightforward. Code
heap types are de"ned similarly as code heaps, except that the range of the mapping
is assertions (which are simply predicates on states).

Inductive iseq : Set :=
| seq : comm -> iseq -> iseq
| jd : lab -> iseq
| jmp : reg -> iseq.

Inductive comm : Set :=
| add : reg -> reg -> reg -> comm
| addi : reg -> reg -> nat -> comm
| bgt : reg -> reg -> lab -> comm
| alloc : reg -> reg -> comm
| ld : reg -> reg -> nat -> comm
| st : reg -> nat -> reg -> comm
| ...

Definition assert := state -> Prop.
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Fig. 9. Coq encoding of CAP operational semantics.

Inductive codeheapty : Type :=
| emptyCT : codeheapty
| consCT : lab -> assert -> codeheapty -> codeheapty.

Inductive lookupCT : codeheapty -> lab -> assert -> Prop := ...

6.3. Operational semantics, inference rules and soundness

The operational semantics is encoded as a relation between programs. Every case
of the operational semantics corresponds to a constructor of the inductively de"ned
Step relation. Representative cases of the Step de"nition are shown in Fig. 9, where
lookupR and updateR are utility functions de"ned to look up and update the register
"les respectively.
Each judgment form of the inference rules is encoded as a relation using an inductive

de"nition. Part of these de"nitions are shown in Fig. 10.
The soundness of CAP trivially follows from the “Progress” and “Type Preservation”

lemmas. The proofs of these lemmas are straightforward by induction on the instruction
sequence I.
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Fig. 10. Coq encoding of CAP inference rules.
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Lemma Progress : (ct:codeheapty; a:assert)
(ch:codeheap; s:state; I:iseq)
(InferP ct a (ch, (s, I))) -> (EX P:prog | (Step (ch, (s, I)) P)).

Lemma Preservation : (ct:codeheapty; a:assert)
(ch:codeheap; s:state; I:iseq; P:prog)
(InferP ct a (ch, (s, I))) -> (Step (ch, (s, I)) P)
-> (EXT a’:assert | (InferP ct a’ P)).

6.4. Proof construction for libraries and programs

The code, speci"cation templates and proof outlines of the library routines free and
malloc and the example program copy can be found in Appendix A. Once the behavior
of common operations is factored out as lemmas, proof construction becomes largely
routine work. During our implementation, it took only two weeks for a single graduate
student, who was a beginner at using the Coq proof assistant and hence only used
the most basic Coq tactics, to construct all the proofs for free and malloc, including
proving all the related lemmas.
Now we conclude this section by giving the declarations of some lemmas that are

commonly used in proving the well-formedness of the free and malloc routines. In
these declarations, star is the encoding of the separating conjunction operator * (i.e.,
(star a1 a2) stands for a1*a2), MBlk and MBlkLst are the encodings of the corre-
sponding assertions de"ned in Section 4, and (hwrite H p q’) returns a heap which
is the original heap H updated so that the location p stores the value q’.

(* symmetricity of separating conjunction *)
Lemma star_sym : (a1,a2:assert; s:state)
(star a1 a2 s) -> (star a2 a1 s).

(* to update the ‘‘link" field of a memory block header *)
Lemma Write_MBlk_lnk : (H:heap; R:rfile; p,q,q’:addr; siz:nat)
(MBlk (plus (2) p) q siz (H,R))
-> (MBlk (plus (2) p) q’ siz ((hwrite H p q’),R)).

(* to compose a longer MBlkLst by adding an MBlk at the end *)
Lemma Compose_MBlkLst_MBlk_to_MBlkLst :
(n:nat; s:state; flist,p,q:addr; siz:nat)
(star (MBlkLst n flist p) (MBlk (plus (2) p) q siz) s)
-> ((lt p q) \/ (q=pnil)) (* pnil -- the null pointer *)
-> (MBlkLst (S n) flist q s).

7. Related work and future work

Dynamic storage allocation. Wilson et al. [22] categorized allocators based on
strategies (which attempt to exploit regularities in program behavior), placement poli-
cies (which decide where to allocate and return blocks in memory), and mechanisms
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(which involve the algorithms and data structures that implement the policy). We be-
lieve that the most tricky part in certifying various allocators is on the low-level mech-
anisms, rather than the high-level strategies and policies. Most allocators share some
subsidiary techniques, such as splitting and coalescing. Although we only provide a sin-
gle allocation library implementing a particular policy, the general idea used to certify
the techniques of splitting and coalescing can be applied to implement other policies.
Hoare logic. Our logical reasoning about memory properties directly follows

Reynolds’ separation logic [19,18]. However, being at an assembly level, CAP has
some advantages in the context of mechanical proof-checking. CAP provides a "xed
number of registers so the dynamic state is easier to model than using in"nite number
of variables, and programs are free of variable shadowing. Being at a lower-level im-
plies that the compiler to the "nal machine code is easier to build, hence it involves a
smaller trusted computing base (TCB). Embedding our language for assertions directly
in CiC is also crucial for mechanical proof-checking and PCC. Another diHerence is
that we establish the soundness property of our language using a syntactic approach.
Filliâtre [6,5] developed a software certi"cation tool Why which takes annotated pro-

grams as input and outputs proof obligations based on Hoare logic for proof assistants
Coq and PVS. It is possible to apply Why in the PCC framework, because the proof
obligation generator is closely related to the veri"cation condition generator of PCC.
However, it is less clear how to apply Why to Foundational PCC because the proof
obligation generator would have to be trusted. On the other hand, if Why is applied
to certify memory management, it is very likely to hit problems such as expressing
inductively de"ned assertions. Our treatment of assertions in mechanical proof-checking
can be used to help.
Certifying compilation. This paper is largely complementary to existing work on

certifying compilation [16,12,3,1]. Existing work has only focused on programs whose
safety proofs can be automatically generated. In contrast, we support general properties
and partial program correctness, but we rely on the programmer to construct the proof.
Nevertheless, we believe this is necessary for reasoning about program correctness. Au-
tomatic proof construction is infeasible because the problem in general is undecidable.
Our language can be used to formally present the reasonings of a programmer. With
the help of proof assistants, proof construction is not diPcult, and the result can be
mechanically checked.
Future work. CAP is a small, generic, yet fairly realistic language. It suggests an

elegant framework for code certi"cation. However, admittedly, the simplicity of CAP
limits its expressiveness in the context of modularity. To get around this limitation, we
designed the library specs and their well-formedness theorems to be templates which
can be instantiated according to the user programs. The modularity we achieved here
is sub-optimal in the sense that, ideally, a library routine should be given a unique and
full-Bedged spec and well-formedness theorem. Supporting modularity in this optimal
sense is hard, especially with higher-order code pointers involved. We are currently
working on the next generation of CAP which addresses these issues.
Additionally, our further development of CAP will involve its application to a real

machine model, for example, the Intel x86 architecture, instead of the idealistic machine
used in this paper. This will allow us to produce “runnable” packages of PCC.
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Fig. 11. Annotated program of free.
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Fig. 12. Annotated program of malloc.
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Fig. 13. Annotated program of copy: copies a null-terminated list from src to tgt.
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By exploring the design space that lies between Hoare-logic and type systems, we
intend to begin modeling types as assertion macros in CAP to ease the tasks associated
with certifying code. For instance, a useful macro would be the type of a memory block
(MBlk). With lemmas (“typing rules”) on how this macro interacts with commands,
users can propagate it conveniently. If one is only interested in simple properties (e.g.,
operations are performed only on allocated blocks), it may be possible to achieve proof
construction with little or no user interaction.
In the future, it would be interesting to develop high-level (e.g., C-like or Java-like)

surface languages with similar explicit speci"cations so that programs are written at
a higher-level. “Proof-preserving” compilation from those languages to CAP may help
retain a small trusted computing base.

8. Conclusion

Existing certifying compilers have only focused on programs whose safety proofs
can be automatically generated. Adopting a complementary approach, we explore in
this paper Complementary to these works, we explored in this paper how to certify
general properties and program correctness in the PCC framework, letting programmers
develop proofs semi-automatically with help of a proof assistant. In particular, we have
presented a certi"ed library for dynamic storage allocation—an area hard to handle
using conventional type systems. The logical reasoning about memory management
largely follows the style of separation logic. In general, it seems that working towards
an interface between Hoare-logic reasoning and type systems will yield interesting
results in the context of PCC.

Appendix A. Annotated programs

The programs in this section have interspersed assertions in the code blocks, which
does not strictly follow the syntax of CAP presented in the main portion of the paper.
These annotations really correspond to the assertions a′ that must be provided in the
CAP inference rules for well-formed instruction sequences. The assertion at the very
beginning of each code block label is what that label would be mapped to in the code
heap spec (see Figs. 11–13).
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