
CertiKOS: An Extensible Architecture for
Building Certified Concurrent OS Kernels

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjöberg, David Costanzo

Yale University

OS Kernel

2

OS Kernel
error

Complete formal verification is the only
known way to guarantee that a system
is free of programming errors.

“
”

only

—

error
seL4 [SOSP’09]

seL4
[SOSP’09]

Verve
[PLDI’10]

Ironclad
[OSDI’14]

mCertiKOS
[POPL’15]

FSCQ
[SOSP’15]

CoGENT
[ASPLOS’16]…

seL4
[SOSP’09]

mCertiKOS
[POPL’15]

FSCQ
[SOSP’15]

CoGENT
[ASPLOS’16]…

verified sequential kernels

Verve
[PLDI’10]

Ironclad
[OSDI’14]

seL4
[SOSP’09]

mCertiKOS
[POPL’15]

FSCQ
[SOSP’15]

CoGENT
[ASPLOS’16]…

verified software stacks

Ironclad
[OSDI’14]

Verve
[PLDI’10]

seL4
[SOSP’09]

mCertiKOS
[POPL’15]

FSCQ
[SOSP’15] …
verified sequential file systems

CoGENT
[ASPLOS’16]

Ironclad
[OSDI’14]

Verve
[PLDI’10]

seL4
[SOSP’09]

Verve
[PLDI’10]

Ironclad
[OSDI’14]

mCertiKOS
[POPL’15]

CoGENT

shared-memory 
concurrency?

seL4
[SOSP’09]

Verve
[PLDI’10]

Ironclad
[OSDI’14]

mCertiKOS
[POPL’15]

FSCQ
[SOSP’15]

CoGENT
[ASPLOS’16]…

shared-memory 
concurrency?

seL4
[SOSP’09]

Proofs about concurrent programs are
hard, much harder than proofs about
sequential programs.

“
”

hard

seL4
[SOSP’09]

Verve
[PLDI’10]

Ironclad
[OSDI’14]

mCertiKOS
[POPL’15]

FSCQ
[SOSP’15]

CoGENT
[ASPLOS’16]…

hard

[…]multiprocessor support, which  
may require global changes […]

“
”

global changes

FSCQ
[SOSP’15]

multiprocessor

hard

[…]multiprocessor support, which  
may require global changes […]

“
”

global changesFSCQ
[SOSP’15]

multiprocessor

hard

multiprocessor

I/O concurrency

multi-thread

global changes
hard

I/O concurrency

multi-thread

multiprocessor

I/O concurrency
multi-thread

global changes
hard

multiprocessor

I/O concurrency

multi-thread

multiprocessor

I/O concurrency
multi-thread

global changes
hard

multiprocessor

I/O concurrency

multi-thread

Big
Lock

multiprocessor

I/O concurrency

multi-thread
fine-grained lock

fine-grained lock
fine-grained lock

fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

the verification to a kernel version
with fine-grained locking will far
exceed the cost already paid for
verifying the single core version.

“
”

fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hardS.Peters et al.

[APSys’15]

S.Peters et al.
[APSys’15]

fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

the verification to a kernel version
with fine-grained locking will far
exceed the cost already paid for
verifying the single core version.

“
”

What to prove?

functional correctness

liveness system calls will eventually return

fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hardconcurrent OS kernel

concurrent OS kernel

C

AsmAsm

Compiler
liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

”

formal reasoning about concurrency
seems to be still in the early stages[…]
Addressing these basic questions is
critical to make progress on OS
verification.

liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler
cost

solves all these challenges

”

formal reasoning about concurrency
seems to be still in the early stages[…]
Addressing these basic questions is
critical to make progress on OS
verification.

CertiKOS
liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler
cost

solves all these challenges

mC2, the first formally
verified concurrent OS kernel
with fine-grained locks.

CertiKOS

mC2

liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

contributions

CertiKOS
mC2

liveness

fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

mC2, the first formally
verified concurrent OS kernel
with fine-grained locks.

contributions

CertiKOS
mC2

liveness

fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

both functional correctness
and liveness

contributions

CertiKOS
mC2

liveness
fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

contributions

both functional correctness
and liveness

CertiKOS

certified concurrent layers

mC2

liveness
fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

contributions

CertiKOS
mC2

liveness
fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost

reuses sequential verification 
techniques.

contributions

certified concurrent layers

CertiKOS
mC2

liveness
fine-grained lock

multiprocessor

I/O concurrency
multi-threadglobal changes

hard

asm&C
compiler

cost

contributions

reuses sequential verification 
techniques.

certified concurrent layers

CertiKOS
mC2

liveness
fine-grained lock

multiprocessor

I/O concurrency
multi-threadreuse of techs

hard

asm&C
compiler

cost

handles all 3 kinds of
concurrency

contributions

certified concurrent layers

CertiKOS
mC2

liveness
fine-grained lock

multiprocessor

I/O concurrency
multi-thread

reuse of techs

hard

asm&C
compiler

cost

contributions

handles all 3 kinds of
concurrency

certified concurrent layers

CertiKOS
mC2

liveness
fine-grained lock

mix of 3
reuse of techs

hard

asm&C
compiler

cost

C

Asm

contributions

6100

400 LOC

LOC

CertiKOS hard

asm&C

compiler

cost

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

C

Asm

6100

400 LOC

LOC

contributions

CertiKOS hard

compiler

cost

asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs C

AsmAsm

CompCertX

6100

400

contributions

CertiKOS hard

compiler

cost

C

AsmAsm

CompCertXasm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs 6100

400

contributions

CertiKOS hard

cost

C Asm
asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

6100 400

CompCertX
model

checking
SMT

solver
Coq

machine-checkable proof

verified

contributions

CertiKOS hard

cost

asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

CompCertX

machine-checkable
proof AsmAsmAsm

C Asm

6100 400

verified

contributions

CertiKOS hard

cost

asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

CompCertX

machine-checkable
proof AsmAsmAsm executable

C Asm

6100 400

verified

contributions

CertiKOS hard

cost

asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

CompCertX

machine-checkable
proof AsmAsmAsm executable

C Asm

6100 400

verified
certified

contributions

CertiKOS hard

cost

CompCertX
asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

certified

mCertiKOS
[POPL’15]

1 py

+ extensions 0.5 py
+ device
[PLDI’16]

0.5 py

+ concurrency 2 py

contributions

CertiKOS

cost

extensibility
CompCertX
asm&C

mC2

liveness
fine-grained lock

mix of 3
reuse of techs

certified

contributions

certified concurrent layers

cost

extensibility
CompCertX

asm&C
mix of 3

new technical
contributions

certified

multicore machine lifting

logical log + hardware scheduler
+ environment context

push/pull model

certified concurrent layerssequential

cost

extensibility
CompCertX

asm&C
mix of 3

contributions

certified

11

certified objects

specification of modules to trust

1

certified concurrent layerssequential

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

certified concurrent layerssequential

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

abs-state

certified concurrent layerssequential

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

11

1

primitives

abs-state

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

memory

code

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111
A
T

implementation

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111
A
T

specification

implementation

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

111
A
T

implementation

specification

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

simulation proof

specification

implementation

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

kernelverify a sequential
[POPL’15]

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

kernel

MM

TM

PM

Trap

code

seq machine

TM

PM

Trap

MM

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

seq machine

mem

MM

TM

PM

Trap

memory management

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

seq machine

Trap

PM

MM

TM

TM

PM

Trap

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

seq machine

mem

thread

proc

trap

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified

Trap

PM

TM

mem

thread

proc

trap

seq machine

verified sequential kernel
MM

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified
mem

thread

proc

trap

seq machine

2 py

extensibility
CompcertX

asm&C
3 concurrency

contribution

certified
mem

thread

proc

trap

seq machine

mem

thread

proc

trap

cost

extensibility
CompcertX

asm&C
3 concurrency

contributions

certified
seq machine

1 person year 
(cost for tool construction excluded)

Trap

PM

MM

TM

mem

thread

proc

trap

extensibility
CompcertX

asm&C
3 concurrency

certified
seq machine

VM

cost

contributions

Trap

PM

MM

TM

extensibility
CompcertX

asm&C
3 concurrency

certified
seq machine

VM

cost

mem

thread

proc

trap

contributions

mem

thread

proc

Trap

PM

MM

TM

extensibility
CompcertX

asm&C
3 concurrency

certified
seq machine

VM

cost

trap

contributions

Trap

PM

MM

TM

trap

extensibility
CompcertX

asm&C
3 concurrency

certified
seq machine

VM

VM

virt

cost

mem

thread

proc

contributions

Trap

PM

MM

TM

verified hypervisor

extensibility
CompcertX

asm&C
3 concurrency

certified
seq machine

VM

cost

trap

virt

mem

thread

proc

contributions

cost

extensibility
CompcertX

asm&C
3 concurrency

certified
extensibility is the key to support

concurrency

seq machine

contributions

mem

thread

proc

cost

CompcertX
asm&C

mix of 3

certified

trap

virt

multicore machine

seq machine

contributions
support concurrency

extensibility

mem

thread

proc

trap

virt

multicore machine

CPU-local machine 1 1

cost

CompcertX
asm&C

mix of 3

certified

reuse

contributions

extensibility

mem

thread

proc

cost

CompcertX
asm&C

mix of 3

certified

multicore machine

CPU-local machine 1 1

trap

virt

spin-lock

reuse

contributions

extensibility

cost

CompcertX
asm&C

mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

reuse

1 1

contributions

extensibility

cost

CompcertX
asm&C

mC2

mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

reuse

1 1

contributions

extensibility

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

local objects

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

k
atomic objects

logical log
multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

a sequence of events

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

k

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

k

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

certified concurrent layers

k

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

share

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

k

cost

extensibility
CompcertX

asm&C

fine-grained lock

mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

k k

cost

extensibility
CompcertX

asm&C

fine-grained lock

mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

1 1cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

step 0: raw x86 multicore model

CPU0

CPU1

atom

private

share

atom

0.a

1.a

assume sequential consistency

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

0.a 1.alogical log

CPU0

CPU1

atom

private

share

atom

non-determinism
step 0: raw x86 multicore model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

non-determinism
step 0: raw x86 multicore model

0.a 1.a

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0.a

1.a

0 1

1 0

non-determinism
step 0: raw x86 multicore model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0.a

1.a

0 1 1 0

non-determinism

oracle

hardware scheduler
step 0: raw x86 multicore model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0.a

1.a

0 1 1 0

non-determinism

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler
purely logical

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CPU0

CPU1

atom

private

share

atom

0 1 1 0

non-determinism

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

0.a 1.a

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler
purely logical

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virtnon-determinism

?8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler
purely logical

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 1: hardware scheduler

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

share

shared
mem

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU0 share

shared
mem

pull

logical
copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

sharepull

shared
mem

logical
copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

sharepull

shared
mem

logical
copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

CPU1 pull

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

share

shared
mem

pull

logical
copy

push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

share

shared
mem

pull

logical
copy

push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU0

step 2: push/pull model

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0

CPU1

atom

private

private

atom

0.a

1.a

0 1 1 0

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 3: per-CPU machine

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0

CPU1

atom

private

private

atom

0.a

1.a

1 1 0

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

0

step 3: per-CPU machine

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

CPU1 private atom

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0 atom private

0.a

0

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

1 1 0

1.a

step 3: per-CPU machine

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

machine with local copy

CPU0 atom private

0.a

0

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

1 1 01.aE

step 3: per-CPU machine

environment context

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

share privateatom pull push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 4: remove unnecessary
interleaving

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

shuffle

share privateatom pull push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 4: remove unnecessary
interleaving

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

merge

share privateatom pull push

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

step 4: remove unnecessary
interleaving

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

machine with hardware scheduler

CPU i machine CPU j machine

machine with local copy

atom

reuse

8

be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

shared1CPU0 pull1 push1

shared
mem at i

shared1

invalid

log

x y z invalid

atom1 shared1 CPU0 pull1 push1shared1

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

hardware scheduling

switch
event

returned
events

...

pull1 push1

pull1 push1

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110

0 1 1 00.a 1.a

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

1 1

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

specificationacq-lock

logical
copysafely

pull

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

specificationacq-lock

logical
copysafely

pull
pull will

eventually return

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

specificationacq-lock

logical
copymutual

exclusion liveness

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

ticket lock

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

get_now

pull

FAI 
ticket

mutual exclusion liveness+

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

get_now

pull

FAI 
ticket

get 
now

mutual exclusion liveness+

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

pull

FAI 
ticket

get 
now

get_now get 
now

mutual exclusion liveness+

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

pull

FAI 
ticket

get 
now

get_now

get 
now

pull

mutual exclusion liveness+

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

pull

FAI 
ticket

get 
now

get_now

get 
now pull

mutual exclusion liveness+

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

pull

FAI 
ticket

get 
now

get_now

get 
now pull

mutual
exclusion

liveness+

unique t

#CPUs < max_uint

cost

extensibility
CompcertX

asm&C
mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

void acq_lock (uint i)
{

uint t = FAI_ticket (i);

while (get_now (i) != t)
{ }

 pull (i);
}

FAI_ticket

pull

FAI 
ticket

get 
now

get_now

get 
now pull

contributions

liveness }
bounded

mutual exclusion liveness+

#CPUs is bounded
a fair scheduler
lock holders will release lock

cost

extensibility
CompcertX

asm&C
mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

liveness

acq_lock

acq_lock acq 
lock

contributions

FAI 
ticket

get 
now

get 
now pull

cost

extensibility
CompcertX

asm&C
mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

acq_lock

acq_lock
acq 
lock

FAI 
ticket

get 
now

get 
now pull

liveness

contributions

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

1 1

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

local
memory

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

local
memory

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

logical
copy

shared
memory

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

logical
copy

shared
memory

acq
lock

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

logical
copy

shared
memory

acq
lock

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

logical
copy

shared
memory

acq
lock

rel
lock

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

shared
memory

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

enq

shared
memory

cost

extensibility
CompcertX

asm&C
mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

cost

extensibility

mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virtvoid yield ()
{

uint t = tid();
…
 (t, rdq());

uint s = (rdq());
…
 (t, s)

}

enq

deq

context_switchCompcertX
asm&C

cost

extensibility
CompcertX
asm&C

mix of 3

certified

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virtvoid yield ()
{

uint t = tid();
…
 (t, rdq());

uint s = (rdq());
…
 (t, s)

}

enq

deq

context_switch

cost

extensibility
CompcertX

asm&C
mix of 3

certified

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

yield

sleep

software schedulercontribution

wakeup

extensibility

mix of 3

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CompcertX
asm&C

2 person year
Coq&machine checkable

extensibility

mix of 3

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CompcertX
asm&C

2 person year
Coq&machine checkable

IPC

CV

2 person year

extensibility

mix of 3

Coq &machine checkable

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CompcertX
asm&C

evaluation:  
proof effort for concurrency(LOC)

top spec: 450
machine model: 943
intermediate spec: 40K
proof(concurrency): 50K

2 person year

extensibility

mix of 3

Coq &machine checkable

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CompcertX
asm&C

mC2 is comparable with kvmmC2

evaluation:
performance

2 person year

extensibility

mix of 3

Coq &machine checkable

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CompcertX
asm&C

mC2 is comparable with kvmmC2

evaluation:
performance

2 person year

extensibility

mix of 3

Coq &machine checkable

contribution

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CompcertX
asm&C

limitations & future work

bootloader

assembler of CompCert

sequential consistency
machine model is in the TCB

file system & network stack

2 person year

extensibility

mix of 3

Coq &machine checkable

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

1 1

CompcertX
asm&C CertiKOS

2 person year

extensibility

mC2

mix of 3
reuse

Coq &machine checkable

contributions

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

fine-grained lock
liveness

CompcertX
asm&C CertiKOS

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

CertiKOS

2 person year

extensibility

mix of 3

Coq &machine checkable

contributions

CompcertX
asm&C

the first formally verified
concurrent OS kernel.

mC2

multicore machine

CPU-local machine

thread-local machine

mem

thread

spin-lock

proc

trap

virt

2 person year

extensibility

mix of 3

Coq &machine checkable

contributions

CompcertX
asm&C

CertiKOS
certified concurrent layers

multicore machine lifting

logical log + hardware scheduler
+ environment context

push/pull model

new technical contributions

