
CertiKOS: An Extensible Architecture for 
Building Certified Concurrent OS Kernels 

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, 
Vilhelm Sjöberg, David Costanzo 

Yale University 



OS Kernel

2



OS Kernel
error



Complete formal verification is the only 
known way to guarantee that a system 
is free of programming errors.
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Proofs about concurrent programs are 
hard, much harder than proofs about 
sequential programs.
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may require global changes […]
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the verification to a kernel version 
with fine-grained locking will far 
exceed the cost already paid for 
verifying the single core version.

“
”

fine-grained lock

multiprocessor

I/O concurrency
multi-thread

global changes
hardS.Peters et al. 

[APSys’15]



S.Peters et al. 
[APSys’15]

fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

the verification to a kernel version 
with fine-grained locking will far 
exceed the cost already paid for 
verifying the single core version.

“
”



What to prove?

functional correctness

liveness system calls will eventually return

fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard



liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hardconcurrent OS kernel



concurrent OS kernel

C

AsmAsm

Compiler
liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard



liveness
fine-grained lock
multiprocessor

I/O concurrency
multi-thread

global changes
hard

asm&C
compiler

cost



”

formal reasoning about concurrency 
seems to be still in the early stages[…] 
Addressing these basic questions is 
critical to make progress on OS 
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consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:
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●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)
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110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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:
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
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is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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:
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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by this execution is as follows:
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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private1 atom2

shared1CPU0
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hardware scheduling
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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returned
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pull1 push1 

We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)

110
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
hs

:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
●(0.pull1)●(0� 0)●(0� 0)●(0� 0)●(0.push1)●(0� 1)
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be modeled as a sequence of shared memory access events, which is sequentially

consistent. Therefore, by showing that the cCertiKOS kernel is data-race free, we

have that this sequential consistency assumption is valid.

5.2.2 Partial machine with hardware scheduler

As a first step toward abstracting away the low-level details of concurrent CPUs, we

introduce a new partial machine (⌦hs) configured with a hardware scheduler (E
hs

)

that specifies a particular interleaving for an execution. This results in a deterministic

machine model. To take a program from ⇧x86mc and run it on top of ⌦hs, we insert a

logical switch point (denoted as “▷”) before each assembly instruction. Each switch

point switch pointyields to the hardware scheduler and generates a switch event

c � hs, which is a local step ⇧hs.�. Then, the machine has to take an environment

step to query the hardware scheduler and get the CPU id c′ to execute next. This

decision made by E
hs

is stored in the log as a switch event hs � c′. The previous

example on ⇧x86mc can be simulated by the following E
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:
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We write (c � c′) as an abbreviation of (c � hs)●(hs � c′). Thus, the log recorded

by this execution is as follows:

(0� 0)●(0.atom1)●(0� 1)●(1� 1)●(1� 1)●(1.atom2)●(1� 0)
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