
Algorithm-independent framework for verifying integer constraints∗

David Teller† Zhong Shao
dtelle@ens-lyon.fr shao@cs.yale.edu

Abstract

Proof-carrying code (PCC), as pioneered by Necula and Lee, al-
lows a code producer to provide a compiled program to a host,
along with a formal proof of safety. The PCC-based systems of-
ten rely on solving integer constraints to prove the soundness of
the index types and to control resource consumption. Unfortu-
nately, existing approaches often require the inclusion of an oracle-
like constraints solver into the trusted computing base (TCB) or at
least lock the safety policy with one particular solver. This paper
presents a feasibility study for dissociating the constraints solver
from the TCB and the safety policy from the actual solver algo-
rithm. To demonstrate this, we produce a simple framework, we
show how to adapt the popular solvers such as the Omega test and
the Simplex method into this framework and we study some of its
properties.

keywords : certified code, certified array bounds checking
elimination, certified parallelization, certified Omega test, certified
formal calculus, axiomatization ofZ

1 Introduction

In proof-carrying code (PCC) [8, 10], a code producer and a code
consumer (host) start by agreeing on a safety policy. This policy
is specified as a set of axioms for reasoning about safety. The
code producer will then ship a compiled program to the consumer,
along with a formal proof of its safety. Of course, the formal proof
must be expressed in term of those axioms. Common examples
of such policies include memory soundness, security, CPU time
bounds and other resource control. Someday, banking applets will
presumably comply with money-transfer soundness policies.

PCC relies on the same formal methods as does program ver-
ification; but it has the significant advantage that safety properties
are much easier to prove than program correctness. The producer’s
formal proof will not, in general, prove that the code produces a
correct or meaningful result; but it guarantees that execution of the
code can do no harm. Thus, it cannot replace other methods of pro-
gram assurance. On the other hand, the proofs can be mechanically
checked by the host; the producer need not be trusted at all, since a
valid proof is incontrovertible evidence of safety.

Using PCC allows to remove many run-time checks without
sacrificing safety. For example, the Touchstone compiler [10] can
∗This research was sponsored in part by the Defense Advanced Research Projects

Agency ISO under the title “Scaling Proof-Carrying Code to Production Compilers
and Security Policies,” ARPA Order No. H559, issued under Contract No. F30602-
99-1-0519 and in part by NSF Grants CCR-9901011. The views and conclusions
contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.
†This work was done while the first author was visiting the FLINT group in the

Department of Computer Science at Yale University.

prove the memory safety of the compiled programs. In other words,
Touchstone-compiled programs can be trusted to run on devices
without memory protection. Recently, Xi [20, 18] introduced a
dependent type system in which the costly process of array bounds
checking can be removed—a method which has been adapted to do
so in a provably safe way.

CPU time bounding [9, 5], memory soundness [8, 7, 1], and
array bounds checking [20], all require some kind of integer con-
straints handling. So does automatic parallelization [14]. And so
do presumably many unmentioned processes. To be more specific,
they require solving a set of integer equality or inequality equa-
tions to prove the soundness of the index types and to control re-
source consumption. Unfortunately, existing approaches either in-
clude the constraints solver into the trusted computing base (e.g.,
Xi’s DML [18] and DTAL [19]), or lock the safety policy with one
particular solver logic (e.g., Necula’s Simplex solver logic [10, 9]).

The goal of this work is to study the feasibility of producing
a generic framework where the constraints solver does not have
to be in the TCB and the safety policy is independent of the actual
solver algorithm. This is important because it would allow the code
producer to choose the constraints solver most appropriate to a par-
ticular application. The producer will have much more flexibility in
the manner in which the mobile code is proved safe. Furthermore,
by removing the solver algorithm or the specific solver logic infer-
ence rules from the TCB, we get a higher-assurance system: any
assumption about a particular solver algorithm must be proved.

2 Background and motivation

2.1 Solving integer constraints

Trying to solve all integer constraints is a somewhat ambitious task.
As a matter of fact, this would mean solving Hilbert’s tenth prob-
lem “ Determination of the solvability of a Diophantine equation.
Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.”
A problem which has been showed undecidable.

Hence, no solver handles just any integer constraints. Most of
them only handle linear integer constraints. Some of them contain
extensions to simple families of polynomials. We will follow the
wise precedents and only attack linear constraints, for now.

Three families of solvers are currently used :

• Fourier-Motzkin’s variable elimination [6]
• SUP-INF [3]
• The Simplex algorithm [11]

The most commonly used algorithm is the Omega test [13],
a variant on Fourier-Motzkin’s variable elimination [6]. Suppos-

edly, it is the fastest and most complete algorithm currently in
use. For now, suffice to say that it works by eliminating trivial
equalities and inequalities, reducing non-trivial equalities into triv-
ial equalities by applying a variant of themod operator, reducing
non-trivial inequalities into trivial equalities by projection in some
n-dimensional space and checking exhaustively for solutions when
the formal methods do not work. Since this is the most commonly
used algorithm and this it is definitely non-trivial, we used it as a
basis for our research.

The Simplex algorithm, noticeably used by Necula in [Necula
1998], is a much simpler algorithms which proceeds by some linear
algebra transformations on the matrix representation of the con-
straints. Since this algorithm is fairly simple, completely differ-
ent from the Omega test, and since Necula has already made some
steps to make it produce proofs, we used it as a confirmation of the
genericity of this work.

2.2 Verifying integer constraints

2.2.1 Dissociating collection and verification

The first approach one can think of for the verification of integer
constraints-related policies is the definition of a source-level se-
mantic/logic. In other words, a set of inference rules which would
be applied directly to the source code, would check all integer-
related operations and decide, for example, of the satisfiability of
problematic cases. This verification could take, for example, the
form of a type-checking algorithm.

A variant of this approach would imply the translation into a
simpler language, say some form ofλ-calculus, which would allow
the use of a smaller set of rules.

The shortcoming of this method is in its definition : interleaved
collection and resolution of integer constraints - both of which are
undecidable problems - make this semantic bigger, more complex,
harder to maintain. And, of course, if the security policy is to
change, the whole semantic will be due for change.

Dissociating both aspects is not going to solve anything by it-
self, of course. But it allows to work on both aspects separately,
and to find separate solutions. For example, using Xi’s dependent
type system [18] or an annotation system for the collection of inte-
ger constraints makes it possible to overcome the undecidability of
constraints collection.

2.2.2 Dissociating the policy from the constraints
checker

The logical successor of the former approach is a two-level archi-
tecture : one constraints collecter and one policy checker/prover.
However, this is still no solution.

Some program require different security policies. For example,
two different optimizations such as array bounds checking elim-
ination and automatic parallelization may not be proved valid by
the same set of criteria. A program taking advantage of both opti-
mizations will hence be collected for constraints and then policy-
checked/policy-proved twice. However, both policies rely on inte-
ger constraints verification. In other words, it might be that only
one step of both policy solver/checker is different.

In other words, the size of the proof and the time required to
produce and then check it can be reduced by just dissociating the
policy checker and the constraints solver. For example, the Omega
Test [13] is an “as generic as it gets” integer constraints solver.

2.2.3 Proving the result

The next step is that of solving the constraints, which can be han-
dled by classical algorithms such as the Omega Test or the Simplex
for given families of integer constraints.

This is, however, not the last step. For the receiving host still
has to be convinced of the (un)satisfiability of the set of constraints.

The satisfiability is rather trivial to prove, since it only requires
a numerical certificate. In other words, a numerical example. How-
ever, the unsatisfiability is a much harder problem. In practice,
when the enforcement of the policy requires the unsatisfiability of
a set of constraints, two distinct methods are used to check that the
security policy is enforced.

Solver algorithm in TCB The first solution is to include the
decision algorithm in the trusted computing base. In other words,
the run-time proof checking system contains the Omega test, for
example, and is submitted a set of linear equations and inequations,
which it solves, just like the compiler did. The method seems to
have been implicitly used by Xi [18].

This method is not without advantages :

• It is simple to implement.
• The included Omega test might be very low level and fast.
• Carried proofs can be very short.

However, it has serious drawbacks :

• Since the whole set of equations and inequations is solved
again, it requires lots of possibly useless calculations.

• The algorithm used cannot be changed, which prevents, for
example, from adding the capability of solving some simple
kind of polynomial constraints, to the solver.

• The TCB must be expanded with a possibly complex algo-
rithm, thus increasing the risks of bugs, leading to unsound-
ness.

• If the run-time system has to be ported to another platform,
the included test makes it bigger, hence probably harder to
port.

• Since no integer constraints solving algorithm is complete,
some kinds of constraints cannot be checked at compile-time.
In particular, if the type system requires these constraints,
as is the case with dependent/indexed type systems [18], the
compiler will flatly refuse perfectly sound programs.

Solver-logic in TCB Another simple idea, introduced by Nec-
ula [10], is to define a set of deduction/inference rules encompass-
ing all the steps in the algorithm and proving the result using these
rules. In fact, this is the same thing as introducing a new logic
adapted to the solver.

Once again, this has advantages:

• The algorithm does not need to be included in the TCB as
such.

• Some useless calculations can be removed from the proof,
hence resulting in faster checks.

However, similar drawbacks can be found:

• The TCB is still expanded, this time with a specific logical
system, which is almost as hard to trust as the algorithm itself.

• The system is still locked with a particular algorithm and mi-
nor variations on this algorithm. This approach still prevents
some optimizations and still refuses some sound programs.

3 Solver2FOL

3.1 Presentation

One of the next logical steps of modularization in the verification
of integer constraints is that of rendering the algorithm independent

2

from the proof. That of getting rid of the limits of the approaches
previously exposed.

Solver2FOL is a small contribution to this task: a study of the
feasibility of this dissociation. Although this work is no way related
to the semantic model for PCC introduced by Appel and Felty [1],
it can be seen as a complementary module: where Appel and Felty
introduce a semantic model to describe types and machine instruc-
tions, in order to achieve language independence in PCC, we in-
troduce a model to describe constraints solvers, in order to achieve
algorithm independence in PCC.

Solver2FOL is a set of tools designed to allow the translation
of integer constraints solving algorithms into algorithms building
First Order Logic (FOL) proofs. It is composed of :

• A syntax to express constraints.
• A minimal semantics on the constraints.
• A minimal list of trusted operations.
• A collection of formal definitions to enrich the constraints us-

ing usual comparisons and operations.
• A collection of basic theorems, all of them formally proved,

which prove the use of these enrichments valid.
• A collection of general-purpose lemmas, formally proved us-

ing these theorems.

In addition, we provide as an example Omega2FOL and Sim-
plex2FOL, formally proved “Solver2FOL-izations” of the Omega
test and of the Simplex.

FOL vs. set of rules First Order Logic was chosen instead of
a custom set of rules since First Order Logic allows to express the
kind of rules such a work would need as a set of axioms. Using
a custom set of rules would provide shorter proofs but would not
allow us to use the full power of First Order Logic. Unless, of
course, we want to reexpress FOL into this set of rules.

And of course, using a custom set of rules is the first step toward
defining and locking the algorithm by the mere description of the
proof system - which is exactly what we want to avoid. FOL allows
us to ignore this pitfall.

FOL vs. HOL First Order Logic was chosen because FOL rules
and axioms tend to be simpler and more readable than true Higher
Order Logics. However, we will show that this approach has sev-
eral drawbacks.

Formalism Solver2FOL redefines most operations onZ using
formal notations. This redefinition allows us to producepurely
formal proofsof lemmas and theorems. In time, these purely for-
mal proofs may be shipped and mechanically verified by a theorem
checker.

3.2 Constructs

3.2.1 Grammar

Figure 1 gives the grammar for Solver2FOL.Tests are to be talen
asFirst Order Logicterms.

This grammar is chosen as to make the basic set of axioms be
as minimal as possible. In particular, the grammar does not con-
tain inequalities or division—all these can be built on top of this
skeleton.

This grammar is also designed to be fairly generic, so it can
express the expressions as seen by the solver algorithm. For ex-
ample, the Omega test mostly works with expressions of form
“Term � 0” along sometimes with “a⊗z � α” and “β � b⊗z”,
whereas the Simplex only uses “Term � 0” and “Term≈Term”.

Test ::= Term≈Term (term comparison)

Term ::= V ar ∈ V (unknown variable)
| Int ∈ mathbbZ (integer constant)
| Term⊕ Term (term addition)
| Term⊗ Term (term multiplication)

WhereV is a countable infinite set.

Figure 1: Grammar for Solver2FOL

These design decisions allow the translated Solver2FOL algo-
rithm to use the exact same set of conditions as the original algo-
rithm as well as to reflect directly its inner workings. The other
reasons for our choice are to serve as a place-holder for future ex-
tensions on polynomials and to pave the way to render the transla-
tion from an algorithm into Solver2FOL semi-automatic.

3.2.2 Semantics

Constants

Comparisons on constants Classical comparisons onZ
such as≤, <, =, >, ≥ and | are supposed to be already imple-
mented and trusted. This represents the fact that all those opera-
tions are already part of the CPU, hence already trusted in order to
run the proof-checking system.

Operations on constants Classical operations onZ such
as addition, multiplication, floor division (b ��c), ceil division (d ��e),
modulo and absolute value are supposed to be already implemented
and “mostly trusted”. This represents the fact that all those opera-
tions are already part of the CPU, hence already trusted in order to
run the proof-checking system - but that exceptions can occur.

“Mostly trusted” means that operations are trusted as long as
no exceptions are thrown (division by zero, overflow, underflow).
The semantics of exceptions in Solver2FOL is that if any excep-
tion should be raised, then the whole proof is considered false.
Although this is not a fully satisfactory arrangement, it is not in-
coherent : if a proof contains such an exception, it probably means
that the prover forgot to catch the same exception. However, this
might not be true in case of cross-platform proof-building.

Variables

Operations on variables Although most of the times in-
teger constants will not be effectively substituted to variables, the
semantics of Solver2FOL is designed for “constant place-holders”-
variables.

In other words, variables stand for unknown constants.

Terms

Definition Terms are members of setT defined by the gram-
mar of Solver2FOL. Terms can be considered as an extension of
integers with integer variables. For the sake of simplicity, we will
considerT as a superset ofZ.

3

Comparisons on terms Classical comparisons onZ such
as≤, <, =, >, ≥ and | can be extended to terms. However, the
only needed comparison is the equality law≈ , defined by{

≈ is an equivalence law onT
≈ is compatible with= onZ

Operations on terms Classical operations onZ such as
addition, multiplication, division (b ��c) can be extended to terms.
However, the only needed operations are addition⊕ and multipli-
cation⊗, defined by

⊕ is an internal composition law onT
⊕ is commutative, associative, distributive on⊗
0 is neutral for⊕
⊕|Z ≡def +

⊗ is an internal composition law onT
⊗ is commutative, associative
0 is absorbant for⊗
1 is neutral for⊗
⊗|Z ≡def ·

3.3 Definitions as axioms

3.3.1 First generation

Syntactical conventions

• Operators onT have the same precedence as their counter-
parts inZ.

• In case of ambiguity, all operations are supposed left-
parenthesized.

• X 	 Y is a syntactical shortcut forX ⊕ ((−1)⊗ Y)

• lowercase letters stand for integers constants
• uppercase letters stand for expressions

Presentation The basic axioms are presented in Figure 2.
They are translations of the semantics of the basic constructs of
Solver2FOL.

3.3.2 Second generation

Definition Operators�\� and�%� are the respective counterparts
of b ��c and� mod � onT . Binary relations‖, �, ≺, �, � are the
respective counterparts of|,≤,<,>,≥. They are defined by :

X\a≈Y iff for some b in[0, a− 1], X≈a⊗ Y ⊕ b
X%a≈b iff b is in [0, a− 1] and for some Y,X≈a⊗ Y ⊕ b
a ‖ X iff X%a≈0
X � Y iff for some non-negative b,Y ≈X ⊕ b
X ≺ Y iff for some strictly positive b,Y ≈X ⊕ b
X � Y iff for some non-negative b,X≈Y ⊕ b
X � Y iff for some strictly positive b,X≈Y ⊕ b

Axiomatization The axiomatization of these operators and re-
lations is immediate. It is presented on figure 3.

Equality
∀X X≈X (equ ref)
∀X,Y X≈Y ⇒ Y ≈X (equ sym)
∀X,Y, Z X≈Y ∧Y ≈Z ⇒ X≈Z (equ trans)
∀a, b a≈b⇒ a = b (equ onZ)
∀X ∃a,X ≈ a (equ int)
Addition
∀X X ⊕ 0≈X (add 0)
∀X,Y X ⊕ Y ≈Y ⊕X (add comm)
∀X,Y, Z X ⊕ (Y ⊕ Z)≈(X ⊕ Y)⊕ Z (add assoc)
∀X,Y, Z X≈Y ⇒ X ⊕ Z≈Y ⊕ Z (add eq)
∀a, b a⊕ b≈a+ b (add onZ)
Multiplication
∀X 0⊗X≈0 (mult 0)
∀X 1⊗X≈X (mult 1)
∀X,Y X ⊗ Y ≈Y ⊗X (mult comm)
∀X,Y, Z X ⊗ (Y ⊗ Z)≈(X ⊗ Y)⊗ Z (mult assoc)
∀X,Y, Z (X ⊕ Y)⊗ Z≈(X ⊗ Z)⊕ (Y ⊗ Z) (add/mult dist)
∀X,Y, Z X≈Y ⇒ X ⊗ Z≈Y ⊗ Z (mult eq)
∀a, b a⊗ b≈a · b (mult onZ)

Figure 2: Basic axioms for Solver2FOL

Definition of operators
∀X,Y, a X\a≈Y ≡def ∃b,

0 ≤ b∧b < a∧X≈a⊗ Y ⊕ b (dodiv)
∀X, a, b X%a≈b ≡def ∃Y,

0 ≤ b∧b < a∧X≈a⊗ Y ⊕ b (mod)
Definition of relations
∀X, a a ‖ X ≡def X%a≈0 (isdiv)
∀X,Y X � Y ≡def ∃b, 0 ≤ b∧Y ≈X ⊕ b (leq)
∀X,Y X ≺ Y ≡def ∃b, 1 ≤ b∧Y ≈X ⊕ b (lt)
∀X,Y X � Y ≡def ∃b, 0 ≤ b∧X≈Y ⊕ b (geq)
∀X,Y X � Y ≡def ∃b, 1 ≤ b∧X≈Y ⊕ b (gt)

Figure 3: The second wave of definitions

3.4 Basic theorems

The following set of theorems will prove that the newly introduced
operators are what they seem - namely that they can be used as their
integer counterparts. Purely formal proofs are given in appendix.

Basic theorem 1 (dodiv onZ) The definition of�\� is compatible
with b ��c onZ. In other words, for any integers a, b,a\b≈ba

b
c.

Basic theorem 2 (mod onZ) The definition of�%� is compati-
ble with � mod � on Z. In other words, for any integers a, b,
a%b≈a mod b.

Basic theorem 3 (isdiv on Z) The definition of‖ is compatible
with | onZ. In other words, for any integers a, b,a ‖ b ⇐⇒ a|b

Basic theorem 4 (leq onZ) The definition of� is compatible with
≥ onZ. In other words, for any integers a, b,a � b ⇐⇒ a ≥ b

Basic theorem 5� defines a partial order onT . In other words, ∀X X � X (geq ref)
∀X,Y X � Y ∧Y � X ⇒ X≈Y (geq antis)
∀X,Y, Z X � Y ∧Y � Z ⇒ X � Z (geq trans)

4

Basic theorem 6 (gt onZ) The definition of� is compatible with
> onZ. In other words, for any integers a, b,a � b ⇐⇒ a > b

Basic theorem 7 (lt on Z) The definition of≺ is compatible with
< onZ. In other words, for any integers a, b,a ≺ b ⇐⇒ a < b

Basic theorem 8 (leq onZ) The definition of� is compatible with
≤ onZ. In other words, for any integers a, b,a � b ⇐⇒ a ≤ b

Basic theorem 9� defines a partial order onT . In other words, ∀X X � X (leq ref)
∀X,Y X � Y ∧Y � X ⇒ X≈Y (leq antis)
∀X,Y, Z X � Y ∧Y � Z ⇒ X � Z (leq trans)

Basic theorem 10 (leq equiv geq)� and� are each other’s sym-
metric. In other words,̀ X � Y ⇐⇒ Y � X.

Basic theorem 11 (lt equiv gt)≺ and� are each other’s symmet-
ric. In other words,̀ X ≺ Y ⇐⇒ Y � X.

Basic theorem 12 (lt as leq)�=≺ ∪≈ . In other words,̀ X �
Y ⇐⇒ (X ≺ Y ∨X≈Y).

Basic theorem 13 (gt as geq)�=� ∪≈ . In other words,̀ X �
Y ⇐⇒ (X � Y ∨X≈Y).

Basic theorem 14 (eq as ineq)� ∩ �= ≈ . In other words,X �
Y ∧X � Y ` X≈Y .

Basic theorem 15 (absurd ineq)≺ ∩ �= ∅. In other words,X ≺
Y ∧X � Y `⊥.

3.5 General-purpose lemmas

Formal proofs are given in appendix.

Main lemma 1 (opp add) Opposite addition is provable using
Solver2FOL. In other words,̀ Y 	 Y ≈0

Main lemma 2 (add eq2) A second formulation for addition on
each side of an equality can be proved using Solver2FOL. In other
words,X≈Y ` Z ⊕X≈Z ⊕ Y

Main lemma 3 (mult eq2) A second formulation for addition on
each side of an equality can be proved using Solver2FOL. In other
words,X≈Y ` Z ⊗X≈Z ⊗ Y

Main lemma 4 (add eq3) General addition on both side of the
equality sign can be proved using Solver2FOL. In other words,
X≈Y ∧Z≈T ` X ⊕ Z≈Y ⊕ T

Main lemma 5 Substraction in equality (sub equ) is provable us-
ing Solver2FOL. In other words,{

X ⊕ Y ≈Z ` X≈Z 	 Y
Z≈X ⊕ Y ` Z 	 Y ≈X

Main lemma 6 (sub ineq) Substraction in an inequality is prov-
able with Solver2FOL. In other words,

X ⊕ Y � Z ` X � Z 	 Y

Main lemma 7 (mult sum) The propagation of multiplication in a
sum is provable with Solver2FOL. In other words,

` p⊗ Σi∈IXi≈Σi∈Ip⊗Xi

Main lemma 8 (var isol) The isolation against a variable in a sum
is provable with Solver2FOL. In other words, for any j in I,

` Σi∈IXi≈(Σi∈I\{j}Xi)⊕Xj

Main lemma 9 (var resol) The resolution against a variable of an
equality between a sum and a constant is provable in Solver2FOL.
In other words, for any k in I,

Σi∈IXi≈c ` Xk≈c⊕ Σi∈I\{k}	Xi

Main lemma 10 (0 add2)` X≈X ⊕ 0

Main lemma 11 (div sum) The propagation of�\p in a sum where
all elements are divisible by p is provable using Solver2FOL.
In other words, if p|a1, p|a2, . . . p|an then ` (Σi∈[1,n]ai ⊗
Xi)\p≈Σi∈[1,n]

ai
p
⊗Xi

Main lemma 12 (mult ineq) Multiplication in inequality is prov-
able using Solver2FOL. In other words,

X � Y ∧0 � Z ` Z ⊗X � Z ⊗ Y

3.6 Summary

Once this set of theorems and lemmas is proved, we have a full
syntax and its associated semantics to handle formal expressions.
Note that as opposed to Xi’s approach, for example, quantifiers are
not handled by Solver2FOL - they don’t need to, since they are
already handled by First Order Logic.

Also note that the trusted computing base is very small: it con-
sists of classical integer operations and very few (and very basic)
properties of⊗ and⊕. Thus, complex proofs can be traced back to
a base of axioms which can easily be checked and trusted.

4 The Omega test

4.1 The original algorithm

The input of the Omega test is a set of linear equalities and linear
inequalities involving only integer values. All the conditions are
supposed to have formΣi=ni=1ai · xi ≤ c or Σi=ni=1ai · xi = c.

Removing equality constraints

• Equalities of the formΣi=ni=1ai · xi = c are divided by the
greatest common divisor ofa1, . . . , an. If this leads to a for-
mula with non-integer values, the test has failed and the sys-
tem is unsatisfiable.

• If two equalities are visibly incompatible, the set is unsatisfi-
able.

• If one of the equalities contains a variable with coefficient 1
or -1, remove this equality and eliminate the variable.

• Otherwise, choose one equalityΣi=ni=1ai · xi = c and replace
it with −|ak · xk| · σ + Σi=n,i6=ki=1 (bai/m+ 1/2c+ aiµm) ·
xi whereaµb ≡def a − b · ba/b + 1/2c andm · σ ≡def
Σi=ni=1 (aiµm) · xi = c

• Proceed until there are no more equality constraints.

Removing inequality constraints

• Inequalities of the formΣi=ni=1ai · xi ≤ c are divided by the
greatest common divisor ofa1, . . . , an, rounding down c/g.

• If inequalities can be merged into equalities, merge them.
• If two inequalities are redundant, remove the weakest one.

5

• If inequalities are visibly incompatible, the set is unsatisfi-
able.

• If there are no more equalities and if there is a variable with-
out upper bound or without lower bound, remove all the in-
equations involving this variable.

• Compute thereal shadowof the set of inequalities along z by
merging two constraints such asa · z ≤ α andβ ≤ b · z into
constrainta · β ≤ b · α, where a and b are positive integers.

• Compute theinteger shadowof the set of inequalities along
z by merging the two same constraints intob · α − a · β ≥
(a− 1) · (b− 1).

• If both shadows are identical, the system is satisfiable iff there
are integer solutions to the (common) shadow

• otherwise

– if there are no integer solutions to the real shadow, the
set is unsatisfiable

– if there are integer solutions to the integer shadow, the
set is satisfiable

– otherwise

∗ determine the largest coefficienta of z in any up-
per boundα ≥ az on z and for each lower bound
bz ≥ β on z, for eachi in [0, (ab− a− b)/a] do
solve the problem combined withbz = β + i

– Proceed until there is at most one inequality. If this
happens the system is satisfiable. Otherwise, it is not.

4.2 Omega2FOL

Let us consider a reduced version Omega’ of the known Omega
test. This Omega’ is a subset of the Omega test where two op-
timizations have been remove for the sake of simplicity. These
optimizations are not required to run the Omega test :

Coefficients reduction We have not tried to prove this step yet.
However, our work so far seems to indicate that this step will
require a more complete work on the Omega test, including
completeness studies.

Fusion of opposite inequalitiesThis step is trivial but meaning-
less without coefficients reduction.

Construct 1 There exists an algorithm Omega2FOL based on
Solver2FOL which :

• can solve the same set of constraints as Omega’.

• instead ofY es/No, returnsproofs of unsatisfiability when-
ever Omega’ decides that the set is unsatisfiable.

Steps All these steps have been formally proved using
Solver2FOL. Proofs are presented in annex.

Algorithm step 1 “Equality normalization” is provable us-
ing Solver2FOL. In other words, ifp|a1, p|a2, . . . p|an then
Σi∈[1,n]ai ⊗Xi≈c ` Σi∈[1,n]

ai
p
⊗Xi≈b cpc

Algorithm step 2 “Unsatisfiable equality” is provable using
Solver2FOL. In other words,

p|a1∧p|a2∧ . . . ∧p|an∧Σi=ni=1ai ⊗Xi≈c ` p|c

Algorithm step 3 “Inequality tightening” is provable using
Solver2FOL. In other words, ifp|a1, p|a2, . . . p|an, then

Σi∈Iai ⊗Xi � c ` Σi∈I
ai
p
⊗Xi � b

c

p
c

Algorithm step 4 “Real shadow” can be proved using
Solver2FOL. In other words, if1 ≤ a, 1 ≤ b then
a⊗ Z � A∧B � b⊗ Z ` a⊗B � b⊗A.

Algorithm step 5 “Exhaustive check” can be proved using
Solver2FOL. In other words, if1 ≤ a∧1 ≤ b, (a− 1) · (b− 1) �
b ⊗ A 	 a ⊗ B∧a ⊗ ξ ≤ A∧B ≤ b ⊗ ξ ` ∃i, 0 ≤ i∧i · a ≤
(a · b− a− b)∧b⊗ ξ ≈ B ⊕ i

Corollaries :

• Omega’ was proved.

• We can produce Omega2FOL.

Informal listing of Omega2FOL For the sake of readability,
this listing is an informal presentation of the decision procedure.
For example, it does not detail the instantiation of each lemma, nor
does it explicitly show that it tries to simplify the handled equations
at each step, by turning multiplication by 0 into 0, by removing
addition of 0, etc...

Also note that this algorithm returns a formal proof where
Omega’ would have returnedNo and Maybe where Omega’
would have returnedY es. This seemed more appropriate in ab-
sence of any completeness study on Omega’.

Removing equality constraints
If there is at least one unnormalized equality leftE

Normalize
Call Omega2FOL with a system containing the normalized

equalityF instead of the unnormalized one.
If the test returnsMaybe, returnMaybe
Otherwise, if the test returns proof P

Return the composition of proof̀ E ⇒ F (built by
lemma “Equality normalization”) and P

If we can find an unsatisfiable equalityE

Return lemma “Unsatisfiable equality” applied toE
If we can find two contradictory equalities A and B

Return lemma “eq trans” applied to A and B

If there is one equalityE which involves a variableξ with coeffi-
cient 1

Remove one variable
Let (Fi)i be the set of equations and inequations. Call

Omega2FOL with a system containing(F ′i)i, the set
of all equalities/inequalities in which the formal value
associated toξ has been substituted toξ itself.

If the test returnsMaybe, returnMaybe.
Otherwise, if the test returns proof P

Return the composition of the proof of the formal
value ofξ (built by lemma “variable resolution”),
the proofs̀ Fi ⇒ F ′i (built by lemma “variable
isolation in a sum” and lemma “add eq2”) and P.

If there is one equalityE which involves a variable with coeffi-
cient -1

Remove one variable
Call Omega2FOL with a system containing the opposed

equalityF in which the -1 has been fully propagated.
If the test returnsMaybe, returnMaybe
Otherwise, if the test returns proof P

Return the composition of proof̀ E ⇒ F (built by
lemma “eq mult” and lemma “sum mult”) and P

6

Otherwise, if there is still at least one equality, letX≈c be one of
the equalities left

Call Omega2FOL with a system containingX � c andc �
X instead ofX≈c

If the test returnsMaybe, returnMaybe
Otherwise, if the test returns proof P

Return the composition of proof̀ X≈c ⇒ X �
c∧X � c (built by lemma “eq as ineq”) and P

Removing inequality constraints
If we can find two redundant constraints

Call Omega2FOL with a system containing all the con-
straints minus the weakest of the two redundant con-
straints. Return the result.

If we can find two contradictory inequalities A and B

Return lemma “leq trans” applied to A and B

If there are no more equalities and if we can find a variable without
upper bound or without lower bound.

Call Omega2FOL with a system containing only compar-
isons which do not involve this variable. Return the
result.

If there is a variableζ, along with one lower bound condition
B � b ⊗ ζ and one upper bound conditiona ⊗ ζ ≤ A such
asa = 1 and1 ≤ b or b = 1 and1 ≤ a.

Both shadows are identical
Call Omega2FOL with a system containinga⊗B � b⊗A

instead of both conditions
If the test returnsMaybe, returnMaybe
Otherwise, if the test returns proof P

Return the composition of proof̀B � b⊗ζ∧a⊗ζ ≤
A ⇒ a ⊗ B � b ⊗ A (built by lemma “Real
shadow”) and P

If there is a variableζ, along with one lower bound conditionB �
b⊗ ζ and one upper bound conditiona⊗ ζ � A (a, b ∈ N∗).
Ideally, choose the largesta andb available.

Shadows are not identical
Call Omega2FOL with a system containinga⊗B � b⊗A

instead of both conditions
If the test returnsMaybe

Call Omega2FOL with a system containing(a − 1) ·
(b−1) � b⊗A	a⊗B instead of both conditions

If the test returnsMaybe, returnMaybe
Otherwise, if the test returns proof P

Try all possibilities
for each i in[0, ab−a−b

a
] do

Call Omega2FOL with a system containing
b⊗ ζ≈B ⊕ i instead ofB � b⊗ ζ
If the test returnsMaybe, returnMaybe
Otherwise, letPi be the proof returned by
the test

Return the composition of(Pi)i and lemma “Ex-
haustive check” composed itself with P

return the proof
Otherwise, if the test returns proof P

Return the composition of P and lemma “Real
shadow”

If there is only one condition left, and if it is an inequality involv-
ing a variable, returnMaybe

X 	 Y ≈0 is an equality involving variable X with coefficient 1
Resolution of the equality against X
S ` X≈Y (proved by lemma “variable resolution”)

Introduction of the value of X intoX ⊕ Y ≈0
S ` Y ⊕X≈0 (proved by lemma “variable isolation”)
S ` Y ⊕ Y ≈0 (proved by axiom “add eq”)

Introduction of the value of X intoX � −1
S ` Y � −1 (proved by “eq as ineq”)

Factorization ofY ⊕ Y ≈0
S ` 1⊗ Y ⊕ Y ≈0 (proved by “add eq” and “mult 1”)
S ` 1⊗ Y ⊕ 1⊗ Y ≈0 (proved by “add eq” and “mult 1”)
S ` 2⊗ Y ≈0 (proved by “mult/add dist”)

Equality normalization of2⊗ Y ≈0
S ` Y ≈0 (proved by “equality normalization”)
Y ≈0 is an equality involving variable Y with coefficient 1

Resolution of the equality against Y
S ` Y ≈0 (already proved)

Introduction of the value of Y intoY � −1
S ` 0 � −1 (proved by “eq as ineq”)
S ` 0 � −1 Is a constraint without any variables.
S ` 0 ≤ −1 (proved by “leq onZ”)
S `⊥

Figure 4: Example of a resolution using Omega2FOL (outline)

4.3 An example

Consider the system
X 	 Y ≈ 0
X ⊕ Y ≈ 0
X � −1
S ≡def X 	 Y ≈0∧X ⊕ Y ≈0∧X � −1

If we ignore the omnipresent “eq trans” axiom (transitivity of
equality), the resolution will look like figure 4

5 Simplex

The Simplex algorithm is a well known integer constraints solving
algorithm. Noticeably, it has been used by Necula and Lee [10] in
order to produce proofs in the Touchstone compiler.

Using Necula’s work, the Simplex can be seen as a deci-
sion procedure building proofs using 9 simple logical rules : the
Simplex-logic rules, presented on figure 5. Of these rules,geqgeq,
gtgeq, leqgeq, ltgeq, eqgeq, geq0are already axioms or lemma of
Solver2FOL and the three other ones can be very easily translated
to Solver2FOL.

Construct 2 There exists an algorithm Simplex2FOL based on
Solver2FOL which :

• can solve the same set of constraints as the Simplex.

• instead ofY es/No, returnsproofs of unsatisfiability when-
ever the Simplex decides that the set is unsatisfiable.

Corollary :

Construct 3 Solver2FOL’s logic is complete with respect to linear
integer constraints.

The proof is straightforward : Solver2FOL’s logic can express Sim-
plex2FOL’s results, Simplex2FOL can produce results for the same

7

` X � y
` X 	 Y � 0

geqgeq
` X � y

` X 	 Y 	 1 � 0
gtgeq

` X � y
` Y 	X � 0

leqgeq
` X ≺ y

` Y 	X 	 1 � 0
ltgeq

` X≈Y
` X � Y

eqgeq
` 0 � 0

geq0

` X � 0 ` Y � 0 ` n ≥ 0

` X ⊕ n⊗ Y � 0
geqadd

` X � 0 ` Y � 0 m⊗X≈n⊗ Y m ≥ 0− 1− n ≥ 0

`⊥ falsei

` a⊗ (X 	 Y)≈ 	 Z ` Z � 0
` b⊗ (Y 	X)≈ 	 T ` T � 0
` a ≥ 0 b ≥ 0

` X≈Y eqi

Figure 5: Simplex-logic rules

Simplex-logic style :P,Q are proofs,r is the number of cur-
rent row,maxProof is an auxiliary function,geqct(c) is a
construct meaning “c is non-negative”
mkEqProof(X,Y) =

r ← r + 1
fill row r with coefficients forX 	 Y
(a, Z, P)← maxProof(r)
fill row r with coefficients forY 	X
(b, T,Q)← maxProof(r)
r ← r − 1
return eqi(arith(a⊗ (X 	 Y),	Z), P, geqct(a),

arith(b⊗ (Y 	X),	T), Q, geqct(b))
Solver2FOL style : the return statement changes and becomes

return lemma “equi”[“a”← a, “b” ← b
“X” ← X, “Y” ← Y , “Z” ← Z
“T” ← T](P,Q)

Figure 6: Translation from Simplex-logic style to Solver2FOL
(fragment)

set of constraints as the Simplex, Simplex is complete with respect
to linear integer constraints.

In order to build Solver2FOL proofs using the Simplex, the
only things one has to do is :

• keep the core of the Simplex decision procedure

• modify the proof-generating components so as to compose
proofs using eithermodus ponenson Solver2FOL lemmas or
lemma composition of Solver2FOL lemmas instead of rules
composition of Simplex-logic rules. The example of such a
modification is given on figure 6.

This transformation procedure is straightforward - and probably
automatizable, once the lemmas have been proved. As a matter of
fact, it does not require understanding the algorithm itself, only
changing its return statements.

6 Properties of Solver2FOL

6.1 Representation power

6.1.1 Introduction

It is clear that any set of inequalities and equalities involving only
integer linear relations can be represented using Solver2FOL. It

x 7−→ bf(x) = 2xc

or

i=2N∨
i=0

(x≈ i ∧ f(x)≈2i) ∨ (x ≺ 0 ∧ f(x)≈0)

Figure 7: A represented non-representable function.

is also clear that polynomial constraints can be represented using
Solver2FOL.

A valid question is : can more complex conditions be repre-
sented using Solver2FOL ?

6.1.2 Expressing complex functions through brute
force

A function such asn 7→ b2nc cannot be represented as a finite
expression in Solver2FOL’s expression language onN.

However, for any value ofN , as figure 7 shows, it can be rep-
resented as one disjunction ofO(2N) conjunctions of equalities on
]− 2N , 2N] plus one inequality. If we give toN a good value, say
the size in bits of an memory word, we have, as far as the computer
is concerned, represented our function.

As a matter of fact, all functions can be represented with
Solver2FOL using such a trick, provided they stay into the inte-
ger domain of the computer. However, since this form potentially
requires as many disjunctions as there are integer which can be rep-
resented by the machines, or as there are memory words which can
be addressed by the hardware, this simple remark does not mean
much about the expressiveness of the language : such representa-
tions are, computationally speaking, infinite.

6.1.3 Lessons from the brute-force approach

The brute force approach teaches us that the real limitation of the
expressiveness using Solver2FOL is in fact a size limitation.

Disjunctive Normal Forms

Property 1 Let us considert : k 7→ 2k. Let [0, B[be the range
of addressable memory in a machine M. LetS be the memory size
of an representation oft in Disjunctive Normal Form (DNF) us-
ing Solver2FOL for array bounds checking elimination or dynamic
memory protection elimination on M.

S > B

Corollary : As such, t cannot be represented in DNF using
Solver2FOL.

Proof of property 1 Let] − R,R] be the range of representable
integers on a given computer.

The simple study conducted in annex B.1 proves that any
representation of functiont in Disjunctive Normal Form using
Solver2FOL will require at leastR/4 terms.

If we assume that Solver2FOL is used for dynamic array
bounds checking elimination or for dynamic memory checking
elimination, we need the range of computable integers to be able to
represent the whole range of addressable memory. In other words,
R ≥ B.

8

T (x, y) ≡def

 x ≺ 0∧y≈0
∨ x≈0∧y≈1
∨ T (x	 1, z)∧z≈y\2

Figure 8: A possible definition oft : n 7→ 2n

If we assume that each term will require at least eight bytes of
memory allocation, the total amount of memory required for repre-
sentation oft will be at leastS = 2 ·R.

Hence,
S > B

Recursivity However, as shown in figure 8 a logic with some
notion of recursive definition would allow a simple definition of
function t in DNF. Such a logic would allow a more complete
or/and simpler expression language.

6.1.4 Summary

Solver2FOL’s expression language is powerful enough to represent
linear and polynomial expressions. Since most operations which
require integer constraints solving, such as array bounds checking
optimization of automatic loops parallelization, most often imply
only linear constraints, seldom polynomials, and almost never more
complicated expressions, this language can be considered complete
enough.

However, more specialized security policies might require even
more expressive languages. We handle this issue in section 7.2.

6.2 Expressiveness of proofs

As proved in section 5, Solver2FOL is complete with respect to
linear integer constraints.

What can be said beyond that ?
Well, we can say that Solver2FOL knows no such thing as

an induction proof. This means that theorems handling general-
ized sums, such as lemma 7, cannot be expressed entirely within
Solver2FOL’s logic.They must rely on a meta-logic and, for each
given sum met during a proof, they must be instantiated for the
number of terms in the sum.

This means that Solver2FOL will produce numerous large
proofs where there could have been only one relatively simple proof
in a proof library. This issue is also handled in section 7.2 .

7 From theory to implementation

7.1 Integrating Solver2FOL in a real system

So far, Solver2FOL has not been introduced as a part of a real
system. We plan to incorporate this work into the FLINT sys-
tem [15] by extending the typed intermediate language with depen-
dent types. In the following, we briefly discuss how Solver2FOL
may be integrated with some existing dependently typed languages.

Xi’s dependent type system [18], which has been used for array-
bounds checking elimination, relies on an external constraints
solver, symbolized by|= in Xi [21]. In practice, for integers, this
constraints solver is some (simplified) variant of the Omega test.

Since we are replacing the Omega test by Omega2FOL, one of
the next natural steps would be to insert Omega2FOL in the depen-
dent type system. However, this is not as trivial as it sounds, since
an implicit requirement on the external constraints solver seems to
be completion. A lack of completion resulting in an incomplete
type-checker and, as far as PCC is concerned, the rejection of per-
fectly sound programs for arbitrary reasons. Of course, the Omega

test is not complete on the set of diophantine equations. No algo-
rithm is.

So, how do we introduce Solver2FOL in here ? A conve-
nient answer would be that if Solver2FOL can do everything the
Omega test can, then of course it can serve as the external solver
in a dependent type system. However, this is not true. Since the
external solver is supposed complete, neither the Omega test nor
Omega2FOL nor any other algorithm is powerful enough as to
serve as such a solver.

Before introducing effectively Omega2FOL in the dependent
type system, we will have to determine exactly what set of con-
straints can be solved with Omega2FOL or, for that matter, any
* 2FOL solver.

Or we can use another approach. After all, the whole point of
Solver2FOL is not to be locked with any solver algorithm, even
if it is a * 2FOL solver. Turning the dependent type system from
Omega test-dependent to Omega2FOL-dependent is only a small
improvement.

The idea would be, simply put, to make the dependent type
system solver-independent. In other words, replacing|= by `. Re-
placing “my algorithm can prove this” by “there is an algorithm
which can prove this, here is how”. And this algorithm may be
Omega2FOL, Simplex2FOL,* 2FOL. Or Twelf [12], or Coq [4],
or the user himself. And the algorithm does not have to be trusted.

This is one of the next steps in the evolution of Solver2FOL.

7.2 Twelf

We have begun working on integration using the Edinburgh Logical
Framework (LF) [2] through Twelf. In other words, we are trying
to encode the whole Solver2FOL system into LF and to translate
proofs into the Twelf system. This task has been undertaken with
the support of Princeton’sPCC team, using PCC team’s meta-logic
for Twelf.

Using some meta-language (such as LF) and some concrete im-
plementation of it (like Twelf) to describe Solver2FOL allows to
turn Solver2FOL into a really trustable and extensible part of the
trusted computing base. Extensions to Solver2FOL are new def-
initions, such as new operators, and new hard-to-prove-but-fully-
trusted “axioms”. For example, Fermat’s theorem might be needed
some day or maybe some specialized theorems related to bank ac-
counting.

Additionally, the Twelf meta-logic we are using allows us a rea-
soning of somewhat higher order. Axioms of induction onN, for
example, let us overcome the size problem of induction proofs (cf.
section 6.2). New functions can be defined and seamlessly inte-
grated, which is a solution to the potential expressiveness problem
presented in section 6.1.4.

8 Future work

8.1 Implementation

Our implementation of Solver2FOL in Twelf is not complete yet,
since the PCC team’s libraries we are basing our work on are still in
early development. For example, since the libraries do not include
full support for lists yet, and sinceΣ sums rely on lists, we have
had to pause development to contribute to this non-trivial part of
the libraries.

8.2 Extensions to non-linear constraints

Recent versions of the Omega test and of other tests handle some
limited kinds of non-linear constraints, using several techniques
such as polynomials factoring or linear approximation on segments.
We are planning to prove as many as possible of these extensions
using Solver2FOL and to add them to Omega2FOL.

9

8.3 Exceptions handling

As explained earlier, the semantics of Solver2FOL do not handle
integer arithmetic exceptions in a fully satisfactory way. One sat-
isfactory way would be to introduce some “non-bounded” integers,
using either either unary integers or some fancy Big Integer con-
struct. The first possibility would be simpler, hence easier to trust.

Another way would be to create proof templates instead of
proofs. In this case, the templates would be instantiated at check-
time with platform-dependent information. We have not pursued
this trail any further yet. It promises to be very complicated as well
as very rewarding.

9 Related work

The idea of PCC was first proposed by Necula and Lee [10]. To
handle integer constraints, they introduce the Simplex-Logic, a
form of minimalistic logic tailored for proving results obtained by
the Simplex algorithm. However, since this logic is very specific,
they can neither express proofs using any other algorithm or ex-
tend their algorithm to more generic constraints. Xi [21, 19], on
the other hand, proposes a dependent type system, which totally
abstracts the the solver algorithm, considering it as a prerequisite.
Several other works require integer constraints solving algorithms
in PCC and would benefit from a generic framework. Among
them, TAL [7], Crary and Weirich [5]’s resource bound certifita-
tion, Wang and Appel [17]’s safe garbage collection and an attempt
at making the whole PCC system more generic proposed by Appel
and Felty [1].

10 Conclusion

We presented a feasibility study for the elaboration of an algo-
rithm independent framework for verifying and proving integer
constraints. Our framework, Solver2FOL, is simple and can rep-
resent all commonly used integer constraints. Moreover, although
its proof power is necessarily limited, it can be used at least on the
whole range of linear integer constraints, which are by far the most
common constraints encountered at compilation-time. We also pre-
sented our solution for overcoming expressiveness limitations and
overgrown proofs size for its implementation in Twelf. We plan to
implement this framework into the FLINT system [15].

References

[1] A. Appel and A. Felty. A semantic model of types and machine
instructions for proof-carrying code. InProc. 27th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
pages 243–253. ACM Press, 2000.

[2] A. Avron, F. Honsell, and I. Mason. An overview of the edinburgh
logical framework, 1989.

[3] W. W. Bledsoe. The Sup-Inf method in praesburger arithmetic. Tech-
nical report, University of Texas Math Dept., December 1974.

[4] C. Cornes. Compilation du filtrage de motifs avec types dépendants
dans le syst̀eme coq. InActes des Jourńees du GDR Programmation
1996, Orleans, France, Novembre 1996.

[5] K. Crary and S. Weirich. Resource bound certification. InProc.
27th Annual ACM SIGPLAN-SIGACT Symp. on Principles of Pro-
gramming Languages. ACM Press, 2000.

[6] G. B. Dantzig and B. C. Eaves. Fourier-Motzkin elimination and its
dual. J. Combin. Theo. A, 14:288–297, 1973.

[7] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to
typed assembly language. InProc. 25rd Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, pages 85–
97. ACM Press, 1998.

[8] G. Necula. Proof-carrying code. InTwenty-Fourth Annual ACM
Symp. on Principles of Prog. Languages, pages 106–119, New York,
Jan 1997. ACM Press.

[9] G. Necula and P. Lee. Safe, untrusted agents using proof-carrying
code. InSpecial Issue on Mobile Agent Security: LNCS Vol 1419.
Springer-Verlag, October 1997.

[10] G. C. Necula.Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Sept. 1998.

[11] G. Nelson. Techniques for program verification. Technical Report
CSL-81-10, Xerox Palo Alto Research Center, 1981.

[12] F. Pfenning and C. Schürmann. System description: Twelf — a
meta-logical framework for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Auto-
mated Deduction (CADE-16), pages 202–206, Trento, Italy, July
1999. Springer-Verlag LNAI 1632.

[13] W. Pugh. A practical algorithm for exact array dependence analysis.
Commun. ACM, 35(8):102–115, August 1992.

[14] W. Pugh and D. Wonnacott. An exact method for analysis of value-
based array data dependences. InProceedings of the Sixth Annual
Workshop on rogramming Languages and Compilers for Parallel
Computing, Dec 93.

[15] Z. Shao. An overview of the FLINT/ML compiler. InProc. 1997 ACM
SIGPLAN Workshop on Types in Compilation. Published as Boston
College Computer Science Dept. Technical Report BCCS-97-03, June
1997.

[16] D. Teller. Algorithm-independent framework for verifying inte-
ger constraints. Technical report, Dept. of Computer Science,
Yale University, New Haven, CT, March 2000. Available at URL
flint.cs.yale.edu/flint/publications .

[17] D. Wang and A. Appel. Safe garbage collection = regions + inten-
tional type analysis. Technical report, Dept. of Computer Science,
Princeton University, July 1999.

[18] H. Xi. Dependent Types in Practical Programming. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, Sept. 1998.

[19] H. Xi and R. Harper. A dependently typed assembly language.
Technical Report CMU-CS-99-xxx, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, July 1999.

[20] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. InProc. ACM SIGPLAN ’98 Conf. on Prog. Lang.
Design and Implementation, pages 249–257, New York, 1998. ACM
Press.

[21] H. Xi and F. Pfenning. Dependent types in practical programming.
In Proceedings of ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 214–227, San Antonio, January 1999.

A Proofs built using Solver2FOL

A.1 Foreword

This appendix contains purely formal proofs built using
Solver2FOL. However, since the formal proofs are extremely large,
we could only present a handful of then in the article version of this
presentation. The full proofs can be found in the companion tech-
nical report [16] of this paper, available at the FLINT web site:
http://flint.cs.yale.edu/flint/publications .

A.2 Syntactical conventions

• A name or a number alone in a formal proof is a reference to
the corresponding lemma, theorem, axiom, definition. Only
sub-lemmas are referred to by their number. Other lemmas,
theorems, axioms, definitions are referred to by their name.

• Notation

{somelemma}
H ` � is a shortcut for the utilization of

themodus ponenson an instantiation of lemma (or theorem,
or axiom, ...)sommelemma.

10

• Σi=ni=1Xi is a shortcut for(((X1 ⊕X2)⊕) · · ·Xn)

• Σi∈IXi is a shortcut for some left-parenthesized sum (using
⊕) of all terms of(Xi)i∈I 1

A.3 Basic theorems

Proof for basic theorem 1 LetH ≡def 0 ≤ e∧e < b∧a≈b⊗c⊕e
andK ≡def 0 ≤ d∧d < b∧a = b · c+ d.

Sub lemma 1` b⊗ c⊕ e≈b · c⊕ e

Proof of sub lemma 1

{“mult on Z” }
` b⊗ c≈b · c

{“add eq”}
` �

` b⊗ c⊕ e≈b · c⊕ e

Sub lemma 2H ` a≈b · c⊕ e

Proof of sub lemma 2

H ` a≈b⊗ c⊕ e
{1}

` b⊗ c⊕ e≈b · c⊕ e
H ` a≈b⊗ c⊕ e∧b⊗ c⊕ e≈b · c⊕ e

{“eq trans”}
H ` �

H ` a≈b · c⊕ e

Sub lemma 3H ` a = b · c+ e

Proof of sub lemma 3

{2}
H ` a≈b · c⊕ e

{“add onZ” }
H ` b · c⊕ e≈b · c+ e

H ` a≈b · c⊕ e∧b · c⊕ e≈b · c+ e

{“eq trans”}
H ` �

H ` a≈b · c+ e

{“eq onZ” }
H ` �

H ` a = b · c+ e

Sub lemma 4 a\b≈c ` ba
b
c = c

Proof of sub lemma 4

H ` 0 ≤ e H ` e < b

{3}
H ` a = b · c+ e

H ` 0 ≤ e∧e < b∧a = b · c+ e

∃e, 0 ≤ e∧e < b∧a≈b⊗ c⊕ e ` ∃e, 0 ≤ e∧e < b∧a = b · c+ e

a\b≈c ` ba
b
c = c

Sub lemma 5` b · c+ d≈b⊗ c⊕ d

Proof of sub lemma 5

{1}
` b⊗ c⊕ d≈b · c⊕ d

{“add in Z” }
` b · c⊕ d≈b · c+ d

` b⊗ c⊕ d≈b · c⊕ d∧b · c⊕ d≈b · c+ d

` b⊗ c⊕ d≈b · c+ d

{“eq ref” }
` �

` b · c+ d≈b⊗ c⊕ d

Sub lemma 6K ` a≈b⊗ c⊕ d

1The left-parenthesized convention has been adopted for the sake of simplicity of
proofs. However, there is no obligation of expressing sums like this.

Proof of sub lemma 6

K ` a = b · c+ d

K ` a≈b · c+ d

{5}
K ` b · c+ d≈b⊗ c⊕ d

K ` a≈b · c+ d∧b · c+ d≈b⊗ c⊕ d
{“eq trans”}
K ` �

K ` a≈b⊗ c⊕ d

Sub lemma 7 ba
b
c = c ` a\b≈c

Proof of sub lemma 7

K ` 0 ≤ d K ` d < b

{6}
K ` a≈b⊗ c⊕ d

K ` 0 ≤ d∧d < b∧a≈b⊗ c⊕ d
∃d, 0 ≤ d∧d < b∧a = b · c+ d ` ∃d, 0 ≤ d∧d < b∧a≈b⊗ c⊕ d

ba
b
c = c ` a\b≈c

Hence,

{7}
ba
b
c = c ` a\b≈c

` ba
b
c = c⇒ a\b≈c

{4}
a\b≈c ` ba

b
c = c

` a\b≈c⇒ ba
b
c = c

` a\b≈c⇒ ba
b
c = c∧bab c = c⇒ a\b≈c

` a\b≈c ⇐⇒ ba
b
c = c

Proof for basic theorem 2 LetH ≡def 0 ≤ e∧e < b∧a≈b⊗c⊕e
andK ≡def 0 ≤ e∧e < b∧a = b · c+ e.

Sub lemma 8 a%b≈e ` a mod b = e

Proof of sub lemma 8

H ` 0 ≤ e H ` e < b

{3}
H ` a = b · c+ e

H ` 0 ≤ e∧e < b∧a = b · c+ e

∃c, 0 ≤ e∧e < b∧a≈b⊗ c⊕ e ` ∃d, 0 ≤ e∧e < b∧a = b · d+ e

a%b≈e ` a mod b = e

Sub lemma 9 a mod b = e ` a%b≈e

Proof of sub lemma 9

K ` 0 ≤ e K ` e < b

{6}
K ` a≈b⊗ d⊕ e

K ` 0 ≤ e∧e < b∧a≈b⊗ d⊕ e
∃c, 0 ≤ e∧e < b∧a = b · d+ e ` ∃c, 0 ≤ e∧e < b∧a≈b⊗ c⊕ e

a mod b = e ` a%b≈e

Hence,

{8}
a%b≈e ` a mod b = e

` a%b≈e⇒ a mod b = e

{9}
a mod b = e ` a%b≈e

` a mod b = e⇒ a%b≈e

` a%b≈e⇒ a mod b = e∧a mod b = e⇒ a%b≈e

` a%b≈e ⇐⇒ a mod b = e

11

A.4 Main lemmas

Proof for main lemma 1

{“eq mult” }
` Y 	 Y ≈0⊗ Y

{“0 mult” }
` 0⊗ Y ≈0

{“eq trans”}
` �

` Y 	 Y ≈0

Proof for main lemma 2 Sub lemma 10X≈Y ` X ⊕ Z≈Z ⊕ Y

Proof of sub lemma 10

{“add eq”}
X≈Y ` X ⊕ Z≈Y ⊕ Z

{“add comm”}
` Z ⊕ Y ≈Y ⊕ Z

X≈Y ` X ⊕ Z≈Y ⊕ Z∧Z ⊕ Y ≈Y ⊕ Z
{“eq trans”}
` �

X≈Y ` X ⊕ Z≈Z ⊕ Y

Hence,

{10}
` Z ⊕X≈X ⊕ Z

{“add comm”}
` Z ⊕X≈X ⊕ Z

X≈Y ` X ⊕ Z≈Z ⊕ Y ∧Z ⊕X≈X ⊕ Z
{“eq trans”}
` �

X≈Y ` Z ⊕X≈Z ⊕ Y

B Proofs on Solver2FOL

B.1 Expression through Disjunctive Normal Form

Property 2 Let]−R,R] be the range of representable integers for
a given computer.

Let us consider functiont : x 7→ 2x

In Solver2FOL’s language, any expression of functionf as a
Disjunctive Normal Form (DNF) which is exact on[0, R] will re-
quire at leastR/4 elementary conjunctions.

Proof of property 2 Suppose thatt can be represented on[0, R]
as

T (x, y) ≡def
i=n∨
i=1

Ci(x, y)

where
T (x, y) ≡ y = t(x)

andCi(x, y) is a conjunction of elementary (linear) constraints.
Supposen < R/4.
This means that at least oneCi(x, y) will hold a constraint

which will be valid for at least 3 values ofx. Additionally, since
Ci(x, y) is in normal form, this means that these constraints define
an integer interval and that the value ofy will be defined by the
same formula.

In other words, y = a · x+ b
2 · y = a · (x+ 1) + b
4 · y = a · (x+ 2) + b

A resolution of this system gives :

a = 0, b = 0, y = 0

Since all values ofx considered are in[0, R], we necessarily
havey > 0. Hence, contradiction.

Sincen > R/4, there are at leastR/4 elementary conjunc-
tions.

12

