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Motivation 
How to build reliable & secure system software stacks?   

system software stacks 



Motivation 
  Android architecture & system stack 

 

From https://thenewcircle.com/s/post/1031/android_stack_source_to_device & 
http://en.wikipedia.org/wiki/Android_(operating_system) 

 



Motivation 

  Visible software components of the Linux desktop stack 
 

From http://en.wikipedia.org/wiki/Linux 
 



Motivation 
  Software stack for HPC clusters  

 

From http://www.hpcwire.com/2014/02/24/comprehensive-flexible-software-stack-hpc-clusters/ 
 
 

 



Motivation 
  Cisco’s FAN (Field-Area-Network) protocol layering  

 

From https://solutionpartner.cisco.com/web/cegd/overview 
 



Motivation 
Apollo Mobile Communication Stack    
http://www.layer2connections.com/apollo_clients.html 

 
 

Web Application Development Stack  
From http://www.brightware.co.uk/Technology.aspx 

 
 

 



Motivation (cont’d) 
•  Common themes: all system stacks are built based on 

abstraction, modularity,  and layering 
 

•  Abstraction layers are ubiquitous! 

Such use of abstraction, modularity, and 
layering is “the key factor that 
drove the computer industry 
toward today’s explosive levels 
of innovation and growth because 
complex products can be built from 
smaller subsystems that can be 
designed independently yet function 
together as a whole.” 
 

Baldwin & Clark “ Design Rules: Volume 1, 
The Power of Modularity”, MIT Press, 2000  



Do We Understand Abstraction? 

•  Mostly informal & language-
neutral (APIs, sys call libraries) 

•  Specification describes full 
functionality (but in English) 

•  Implementation is a black box 
(in theory); an abstraction layer 
hides all things below 

•  The “implements” relation 
between the impl. & the spec 

In the PL community: 
   (abstraction in the small)  

•  Mostly formal but tailored within 
a single programming language 
 (ADT, objects, existential types)  

•  Specification only describes type 
or simple pre- & post condition 

•  Hide concrete data 
representation (we get the nice 
repr.  independence property) 

•  Well-formed typing or Hoare-
style judgment between the impl. 
& the spec. 

In the System world: 
   (abstraction in the large)  



Problems 

•  What is an abstraction layer?  

•  How to formally specify an abstraction layer?  

•  How to program, verify, and compile each layer?  

•  How to compose abstraction layers?  

•  How to apply certified abstraction layers to build reliable 
and secure system software?   



Our Contributions 
•  We introduce deep specification and present a language-

based formalization of certified abstraction layer  

•  We developed new languages & tools in Coq 
–  A formal layer calculus for composing certified layers 

–  ClightX for writing certified layers in a C-like language  

–  LAsm for writing certified layers in assembly  

–  CompCertX that compiles ClightX layers into LAsm layers 

•  We built multiple certified OS kernels in Coq 
–  mCertiKOS-hyper consists of 37 layers, took less than one-

person-year to develop, and can boot Linux as a guest 



What is an Abstraction Layer? 
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Example: Page Tables 

concrete C  types







struct PMap {	

    char * page_dir[1024];	

    uint  page_table[1024][1024];	

};	

	







abstract Coq spec




Inductive PTPerm: Type := 	
     | PTP 	
     | PTU 	
     | PTK.	
	

Inductive PTEInfo:= 	
     | PTEValid (v : Z) (p :  PTPerm) 	
     | PTEUnPresent.	
	

Definition PMap := ZMap.t PTEInfo.	



memory	

Example: Page Tables 

abstract 
layer spec


  char * page_dir[1024];	
	
  uint page_table[1024][1024]; 	

C functions	
int page_table_init() { … }	
int page_table_insert { … }	
int page_table_rmv() { … }	
int page_table_read() { … }	

abstract state	

PMap := ZMap.t PTEInfo	
    (* vaddr ⇀ (paddr,  perm)  *)	

	

Invariants:  kernel page table is 	
a direct map; user parts are isolated	

abstract primitives 
(Coq functions)	

Function page_table_init = …	
Function page_table_insert =…	
Function page_table_rmv = …	
Function page_table_read = …	

concrete C

implementation




Formalizing Abstraction Layers 

calling abstract 

primitives in L1


spec  L2  with 

abstract state  abs


  


R





spec  L1

  


 simulation (implements)

 relation    R(abs, mem)


overlay 

interface


module M   with 
concrete state:   mem


C or Asm 

implementation


underlay 

interface


What is a certi:ied abstraction layer  (L1,  M,  L2)  ?


Recorded as the well-formed layer judgment
 L1  ⊢R  M  :  L2




The Simulation Relation 

mem2
mem1
 〖 M  〗(L1)(f)


R
 R


L2    ≤R   〖 M  〗 L1


Forward Simulation:  

•  Whenever L2(f) takes abs1 to abs2 in one step, and R(abs1, mem1) holds,    

•  then there exists mem2 such that  〖 M 〗(L1)(f)  takes mem1 to mem2 in 

zero or more steps , and R(abs2, mem2) also holds.


abs1
 abs2

 L2 (f)


for each function f  in Dom(L2) 


compositional 
per-module 

semantics   〖 • 〗

L1  ⊢R  M  :  L2




 〖M 〗 (L1)  and  L2 simulates each other! 




L2 captures everything about running M over L1 


Reversing the Simulation Relation 

〖 M  〗 L1    ≤R   L2 


If   〖M 〗 (L1)   is 
deterministic relative 

to external events 

( a la  CompCert )


〖 M  〗 L1   ∼R    L2


L2    ≤R   〖 M  〗 L1
L1  ⊢R  M  :  L2




Deep Specification 

L2 is a deep speciSication of M over L1 

if under any valid program context  P  of L2 , 


  【 P ⊕M 】 (L1)  and  【P 】(L2) are 

observationally equivalent 





L2


M
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R


Making it “contextual” using 

the whole-program semantics 【•】


 〖M 〗 (L1)  and  L2 simulates each other! 




L2 captures everything about running M over L1 


〖 M  〗 L1   ∼R    L2




Why Deep Spec is Really Cool?  

Deep spec L  captures all we need to know about a layer M 


•  No need to ever look at M  again! 


•  Any property about M  can be proved using L  alone. 




Impl. Independence : any two implementations of the same deep 
spec  are contextually equivalent


L2 is a deep speciSication of M over L1 

if under any valid program context  P  of L2 , 


  〖 P ⊕M 〗 (L1)  and  〖P 〗(L2)are 

observationally equivalent 





L2
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L1


R




Is Deep Spec Too Tight? 
•  Not really!  It still abstracts away: 

–  the efficient concrete data repr & impl. algorithms & strategies 
 

•  It can still be nondeterministic: 
–  External nondeterminism (e.g., I/O or scheduler events) modeled as a set 

of deterministic traces relative to external events (a la CompCert)  

–  Internal nondeterminism (e.g., sqrt, rand, resource-limit) is also OK, but 
any two implementations must still be observationally equivalent  

•  It adds new logical info to make it easier-to-reason-about: 
–  auxiliary abstract states to define the full functionality & invariants 
–  accurate precondition under which each primitive is valid 



Problem w. Shallow Specs 

C & Asm Module 
Implementation


C & Asm Modules 
w. Shallow Spec A


C or Asm module
  shallow spec A


Want to prove 
another spec B ?


 shallow spec B


?      ?     ?

Need to 
revisit & 
reverify 
all the 
code!




Shallow vs. Deep Specifications 

C & Asm Module 
Implementation


C & Asm Modules 
w. Shallow Specs


C & Asm Modules 
w. Deep Specs


C or Asm module
  shallow spec
  deep spec




How to Make Deep Spec Work? 
No languages/tools today support deep spec & 
certified layered programming 

Challenges: 
 

•  Implementation done in C or assembly or … 

•  Specification done in richer logic (e.g., Coq) 

•  Need to mix both and also simulation proofs 

•  Need to compile C layers into assembly layers 

•  Need to compose different layers 



Our Contributions 
•  We introduce deep specification and present a language-

based formalization of certified abstraction layer  

•  We developed new languages & tools in Coq 
–  A formal layer calculus for composing certified layers 

–  ClightX for writing certified layers in a C-like language  

–  LAsm for writing certified layers in assembly  

–  CompCertX that compiles ClightX layers into LAsm layers 

•  We built multiple certified OS kernels in Coq 
–  mCertiKOS-hyper consists of 37 layers, took less than one-

person-year to develop, and can boot Linux as a guest 



What We Have Done 
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LayerLib: Vertical Composition 
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Example: Thread Queues 

Concrete 
Memory 

head tail 

Low 
Abs-State 

High 
Abs-State 1
 0
 2
:: :: :: nil 

tcbp[0] tcbp[1] tcbp[2] 

head tail 

Ready
 0


tcbp(0) tcbp(1) tcbp(2) 

Ready


tcbp(0) 

Ready


tcbp(1) 

Ready


tcbp(2) 



Ready




Ready
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Example: Thread Queues 
C  Implementation





typedef enum {

   TD_READY, TD_RUN, 

   TD_SLEEP, TD_DEAD

}  td_state;




struct tcb {

   td_state tds;

   struct tcb  *prev,  *next;

};




struct tdq {

  struct tcb  *head,  *tail;

};



struct tcb tcbp[64];

struct tdq tdqp[64];



struct tcb * dequeue 

       (struct tdq *q)  {

               ……   }


Low Layer Spec in Coq




Inductive td_state :=

| TD_READY | TD_RUN

| TD_SLEEP | TD_DEAD.



Inductive tcb :=

| TCBV (tds : td_state)

               (prev next : Z)



Inductive tdq :=

| TDQV (head tail: Z)



Record abs:={

             tcbp :  ZMap.t tcb;

             tdqp : ZMap.t tdq }




Function dequeue 

          (d : abs) (i : Z) := 

………………


High Layer Spec in Coq




Inductive td_state :=

| TD_READY | TD_RUN

| TD_SLEEP | TD_DEAD.



DeSinition tcb := td_state.



DeSinition tdq := List Z.



Record abs':={

              tcbp : ZMap.t tcb;

              tdqp : ZMap.t tdq }



Function dequeue 

        (d : abs') (i : Z) :=

match (d.tdqp i) with

    | h :: q' =>

          Some(set_tdq d i q', h)

    | nil => None

end






Example: Dequeue  

Concrete 
Memory 

tail head 
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tail head 

Ready


tcbp(0) tcbp(1) tcbp(2) 

Ready


tcbp(0) 

Ready


tcbp(1) 

Ready


tcbp(2) 



Ready




Ready
 





Ready
 0
1
 2
 Ready
 0


Ready
 






L1   with  abs1

  


R1


module M1


L2   with  abs2

  


R2


module M2





interface  L   with abstract state:   abs

  


R


module   M   with concrete state:   mem


R





client program    P




Conflicting Abstract States? 

?	



LayerLib: Horizontal Composition 
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•  L1 and L2 must have the same abstract state

•  both layers must follow the same simulation relation R




Programming & Compiling Layers 

L1   ≤R   〖 Mc  〗ClightX (L)
L  ⊢R  Mc  :  L1


CompCertX  correctness theorem (where minj  is a special kind of memory injection)




〖 Mc  〗ClightX (L)   ≤minj   〖 CompCertX[L](Mc )〗LAsm (L)


L1   ≤R ◦ minj   〖 CompCertX[L](Mc )〗LAsm (L)


R  must absorb such memory injection:   R ◦ minj = R     then we have:




L1   ≤R   〖 CompCertX[L](Mc )〗LAsm (L)


Let  Ma = CompCertX[L](Mc )   then     L  ⊢R  Ma  :  L1


ClightX


LAsm




Our Contributions 
•  We introduce deep specification and present a language-

based formalization of certified abstraction layer  

•  We developed new languages & tools in Coq 
–  A formal layer calculus for composing certified layers 

–  ClightX for writing certified layers in a C-like language  

–  LAsm for writing certified layers in assembly  

–  CompCertX that compiles ClightX layers into LAsm layers 

•  We built multiple certified OS kernels in Coq 
–  mCertiKOS-hyper consists of 37 layers, took less than one-

person-year to develop, and can boot Linux as a guest 



Case Study: mCertiKOS            
Single-core version of CertiKOS 
(developed under DARPA CRASH & 
HACMS programs), 3 kloc, can boot Linux 

 

Aggressive use of abstraction over 
deep specs (37 layers in ClightX & 
LAsm) 



Decomposing mCertiKOS 

Based on the abstract machine 
provided by boot loader 

Current Target: Single-Core CertiKOS 

Physical Memory and 
Virtual Memory 
Management 
(11 Layers)	



Decomposing mCertiKOS (cont’d) 
Current Target: Single-Core CertiKOS 

 Thread and Process 
Management 
(14 Layers)	



Decomposing mCertiKOS (cont’d) 
Current Target: Single-Core CertiKOS 

 Virtualization 
Support 

(9 Layers)	



Decomposing mCertiKOS (cont’d) 
Current Target: Single-Core CertiKOS 

 Syscall and Trap 
Handlers 
(3 Layers)	
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PreInit	
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MPTInit	
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Variants of mCertiKOS Kernels 



Example: Page Fault Handler Example: Page Fault Handler 
TSysCall(

TTrap(

TTrapArg(

PProc(

PCID(

PMap(

MPTOp(

MPTIntro(

MAT(

MATOp(

PUCtx(

pagefault_handler(

save_uctx(

proc_start(

pf_resv(

set_err(

set_uctx(

PT_resv(
cid_get(

PT_insrt(

set_PTE(

palloc(

PreInit(

at_get( at_set(

pf_get(ikern_set(

proc_exit(

setpmi(

setcr3(



Conclusions 
•  Great success w. today’s system software … but why? 

•  We identify, sharpen, & formalize two possible ingredients 
–  abstraction over deep specs 

–  a compositional layered methodology  

•  We build new lang. & tools to make layered programming 
rigorous & certified --- this leads to huge benefits: 
–  simplified design & spec;  reduced proof effort; better extensibility 

•  They also help verification in the small 
–  hiding implementation details as soon as possible 

•  Still need better PL and tool support  (Coq / ClightX / LAsm) 



Thank You! 
 
 

Interested in working on the CertiKOS project? 
we are hiring & recruiting at all levels:   

 

postdocs,  

research scientists,  

PhD students, and visitors  



A Subtlety for LAsm 

  〖 Ma  〗LAsm (L)  ≤R   L2 


Problem: per-module 
semantics   〖Ma 〗LAsm (L)   is 

NOT deterministic relative to 
external events 


L2  ≤R   〖 Ma 〗LAsm (L)
L  ⊢R  Ma  :  L2


Fortunately, whole-machine semantics  【•】LAsm (L) is deterministic 
relative to external events, so it can still be reversed:


∀P .  【P ⨁ Ma 】LAsm (L)   ∼R  【P 】LAsm (L2)


Some functions (e.g., kernel context switch) do not follow the C calling 
convention and must be programmed in LAsm[L]. 




Layer Pattern 1: Getter/Setter 

memory	

memory	

primitives	

primitives	

abs-state	

abs-state	

Load/
Store


R


 L2
 ab
s


m
em




L1


C or Asm 

implementation


Hide concrete memory;   replace it with Abstract State	
Only the getter and setter primitives can access memory  	

get 
set	



Layer Pattern 2: AbsFun 
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Memory does not change	
New implementation code does not access memory directly!   	
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Development Cost 
Development of ClightX and CompCertX 10 pm
Development of VCGen for ClightX 1.5 pm

Verification of mm

Design: first 3 layers 0.5 pm
Design: the rest 8 0.5 pm

Refinement Proof: first 2 1.2 pm
Refinement Proof: the rest 1 pm

C verification 2.5 pm

Verification of proc
Design: 14 layers 1 pm
Refinement Proof 0.5 pm

C Verification 1 pm

Verification of virt
Design: 9 layers 0.6 pm

Refinement Proof 0.4 pm
C Verification 0.3 pm

Verification of trap
Design: 3 layers 0.2 pm

Refinement Proof 0.1 pm
C Verification 0.1 pm

Table 1. Effort on tool development and verification

time of proving one layer was dramatically reduced to less than
0.2pm. The current average effort for one layer is shown below:
• Layer definition: 3,000 lines of Coq code and 2 person days.
• Refinement proof: 2,000 lines of Coq code and 1 person day.
• C code verification: 20 lines of Coq code for one line of C code.

We could see it is quite cheap to add more layers to our
framework. The Coq code size is still large since we did not adopt
the way of developing many Coq tactics to reduce the size of
proof scripts. To prove a new layer, we simply copy and paste
the proof template, with some proof holes inside. Most parts of
the proof for different layers are similar and could be generated
semi-automatically. The major proof effort for a new layer is only
about filling out the holes left. We could also write more powerful
and effective Coq tactics to accelerate the proving process further in
the future.

Furthermore, in most cases, we also found that the cost of
changes in our layered approach is quite small. Before we introduced
the Virtualization module, we did not model guest mode at all in
the LSem(L) for memory management and process management.
Thanks to our compositional specification and proofs, it only took us
one person week to introduce the guest mode into our entire layers
and port memory management and process management with the
modified machine definition and semantics.

Performance We have tested mCertiKOS in QEMU 1.0 with
KVM. The host machine of QEMU is equipped with an AMD
Athlon II X4 645 processor (4 cores) and 16 GB memory, and
running a standard Ubuntu 12.04.3 with Linux kernel 3.5.0.

We first booted mCertiKOS in QEMU and then mCertiKOS
boots the unmodified Ubuntu Linux 12.04.2. The boot time of Linux
is nearly 2 minutes 20 seconds, which is slower than the 30 seconds
if Ubuntu Linux is directly running in QEMU. The main reason is
due to the naive IDE disk driver used by mCertiKOS. It works in
PIO mode and uses polling instead of interrupts to get notified when
the disk operations are completed. An early version of mCertiKOS
which used a sophisticated AHCI-SATA driver took less than 1
minute to boot up the same Ubuntu Linux.

Trusted computing base The mCertiKOS kernel relies on a boot-
loader and a preinit procedure to boot up. The kernel and the preinit
procedure are complied and linked as a small ELF file, thus we
only require the bootloader to be able to load the ELF file. After
booting up, mCertiKOS starts the preinit procedure to initialize a
few hardware drivers which are needed for booting Linux. Device
drivers are not verified because our current machine semantics lacks
device models for expressing the corresponding semantics.

The trusted computing base of mCertiKOS also contains around
300 lines of C code and 170 lines of assembly code that are
unverified. The unverified C code falls into the following two
categories:

1. C functions, such as memcpy, are not supported by the current
CompCert memory model and thus can not be verified in
ClightX(L). On the other hand, they can be implemented in
assembly and verified at the assembly level, which we leave for
future work.

2. Some C features are not supported by the current CompCert, e.g.
functions with varying number of arguments, and the GCC-style
inline assembly. They can also be verified in assembly.

The unverified assembly code are for the switches between
ring0 and ring3, and between the host and the guest. Our machine
semantics (LSem(L)) models these switches as pseudo primitives.
They can be verified if we model more detailed hardware behaviors
and instructions in LSem(L).

7. Related Work and Conclusions
Abstract machines and hierarchical decomposition Dijkstra [7]
proposed to “realize” a complex program by decomposing it into a
hierarchy of linearly ordered abstract machines. Based on this idea,
the PSOS team at SRI [21] developed the Hiearchical Development
Methodology (HDM) and applied HDM to design and specify an OS
using 20 hiearchically organized modules. HDM was later also used
to design and implement the KSOS system [25]. HDM was difficult
to be rigorously applied in practice, probably because of the lack of
powerful specification and proof tools. In this paper, we advance the
HDM paradigm by showing how to use contextual refinement as a
unifying correctness property for connecting multiple abstraction
layers, and by implementing all abstract machines and refinement
proofs in a modern proof assistant. We also pursued decomposition
much more aggressively since it made the verification task much
easier. Our use of a verified compiler is another interesting addition
since the ClightX languages were not placed directly in the same
layer hierarchy (see Figure 1).
OS kernel verification Bevier [4] is the first to build a full correct-
ness proof for a highly idealised kernel in an automated theorem
prover. The Verisoft team [23] has done a large body of work aiming
to verify OS kernels and hypervisors [14, 1]. The Verve project [30]
managed to prove the type safety of an entire kernel by combin-
ing the partial correctness proof of a nucleus and the type-safety
guarantee from a certifying C# compiler (for the rest of the kernel);
by using powerful automated proving tools (e.g., Boogie and Z3),
Verve managed to certify the nucleus in 9 person-months.

The seL4 team [13, 20] was the first to build a proof of func-
tional correctness as well as information-flow noninterference for a
realistic microkernel. Their work is impressive in that all the proofs
were done inside a modern mechanized proof assistant [24]. They
have shown that the behaviors of 7500 lines of their C code always
follow an abstract specification of their kernel. To make verification
easier, they introduced an intermediate executable specification to
hide C specifics. Both their abstract and executable specifications are
“monolithic” as they are not divided into layers to support abstraction
among different kernel modules. These kernel interdependencies
led to more complex invariants which may explain why their proof
effort took 11 person years.

Their proof of information-flow noninterference [20] was done
on top of their abstract model, but with the functional correctness
proof of the kernel, it also applies to the C implementation itself.

The initial seL4 effort was done completely at the C level, so
it does not support many assembly level features such as address
translation. This also made verification of assembly code and kernel

9 2013/11/18

5.7 pm 

2.5 pm 

1.3 pm 

0.4 pm 

Total: 9.9 pm + VCG Dev: 1.5 pm  


