
Deep Specifications and Certified
Abstraction Layers

Ronghui Gu Jérémie Koenig Tahina Ramananandro Zhong Shao
Newman Wu Shu-Chun Weng Haozhong Zhang1 Yu Guo1

Yale University 1University of Science and Technology of China

January 17, 2015

http://flint.cs.yale.edu

Motivation
How to build reliable & secure system software stacks?

system software stacks

Motivation
 Android architecture & system stack

From https://thenewcircle.com/s/post/1031/android_stack_source_to_device &
http://en.wikipedia.org/wiki/Android_(operating_system)

Motivation

 Visible software components of the Linux desktop stack

From http://en.wikipedia.org/wiki/Linux

Motivation
 Software stack for HPC clusters

From http://www.hpcwire.com/2014/02/24/comprehensive-flexible-software-stack-hpc-clusters/

Motivation
 Cisco’s FAN (Field-Area-Network) protocol layering

From https://solutionpartner.cisco.com/web/cegd/overview

Motivation
Apollo Mobile Communication Stack
http://www.layer2connections.com/apollo_clients.html

Web Application Development Stack
From http://www.brightware.co.uk/Technology.aspx

Motivation (cont’d)
•  Common themes: all system stacks are built based on

abstraction, modularity, and layering

•  Abstraction layers are ubiquitous!

Such use of abstraction, modularity, and
layering is “the key factor that
drove the computer industry
toward today’s explosive levels
of innovation and growth because
complex products can be built from
smaller subsystems that can be
designed independently yet function
together as a whole.”

Baldwin & Clark “ Design Rules: Volume 1,
The Power of Modularity”, MIT Press, 2000

Do We Understand Abstraction?

•  Mostly informal & language-
neutral (APIs, sys call libraries)

•  Specification describes full
functionality (but in English)

•  Implementation is a black box
(in theory); an abstraction layer
hides all things below

•  The “implements” relation
between the impl. & the spec

In the PL community:
 (abstraction in the small)

•  Mostly formal but tailored within
a single programming language
 (ADT, objects, existential types)

•  Specification only describes type
or simple pre- & post condition

•  Hide concrete data
representation (we get the nice
repr. independence property)

•  Well-formed typing or Hoare-
style judgment between the impl.
& the spec.

In the System world:
 (abstraction in the large)

Problems

•  What is an abstraction layer?

•  How to formally specify an abstraction layer?

•  How to program, verify, and compile each layer?

•  How to compose abstraction layers?

•  How to apply certified abstraction layers to build reliable
and secure system software?

Our Contributions
•  We introduce deep specification and present a language-

based formalization of certified abstraction layer

•  We developed new languages & tools in Coq
–  A formal layer calculus for composing certified layers

–  ClightX for writing certified layers in a C-like language

–  LAsm for writing certified layers in assembly

–  CompCertX that compiles ClightX layers into LAsm layers

•  We built multiple certified OS kernels in Coq
–  mCertiKOS-hyper consists of 37 layers, took less than one-

person-year to develop, and can boot Linux as a guest

What is an Abstraction Layer?

memory	

memory	

primitives	

primitives	

abs-state	

abs-state	

M

R

overlay L2
 ab
s

m
em

underlay L1

C or Asm module

implementation

Example: Page Tables

concrete C types

struct PMap {	

 char * page_dir[1024];	

 uint page_table[1024][1024];	

};	

	

abstract Coq spec

Inductive PTPerm: Type := 	
 | PTP 	
 | PTU 	
 | PTK.	
	

Inductive PTEInfo:= 	
 | PTEValid (v : Z) (p : PTPerm) 	
 | PTEUnPresent.	
	

Definition PMap := ZMap.t PTEInfo.	

memory	

Example: Page Tables

abstract
layer spec

 char * page_dir[1024];	
	
 uint page_table[1024][1024]; 	

C functions	
int page_table_init() { … }	
int page_table_insert { … }	
int page_table_rmv() { … }	
int page_table_read() { … }	

abstract state	

PMap := ZMap.t PTEInfo	
 (* vaddr ⇀ (paddr, perm) *)	

	

Invariants: kernel page table is 	
a direct map; user parts are isolated	

abstract primitives
(Coq functions)	

Function page_table_init = …	
Function page_table_insert =…	
Function page_table_rmv = …	
Function page_table_read = …	

concrete C

implementation

Formalizing Abstraction Layers

calling abstract

primitives in L1

spec L2 with

abstract state abs

R

spec L1

 simulation (implements)

 relation R(abs, mem)

overlay

interface

module M with
concrete state: mem

C or Asm

implementation

underlay

interface

What is a certi:ied abstraction layer (L1, M, L2) ?

Recorded as the well-formed layer judgment
 L1 ⊢R M : L2

The Simulation Relation

mem2
mem1
 〖 M 〗(L1)(f)

R
 R

L2 ≤R 〖 M 〗 L1

Forward Simulation:

•  Whenever L2(f) takes abs1 to abs2 in one step, and R(abs1, mem1) holds,

•  then there exists mem2 such that 〖 M 〗(L1)(f) takes mem1 to mem2 in

zero or more steps , and R(abs2, mem2) also holds.

abs1
 abs2

 L2 (f)

for each function f in Dom(L2)

compositional
per-module

semantics 〖 • 〗

L1 ⊢R M : L2

 〖M 〗 (L1) and L2 simulates each other!

L2 captures everything about running M over L1

Reversing the Simulation Relation

〖 M 〗 L1 ≤R L2

If 〖M 〗 (L1) is
deterministic relative

to external events

(a la CompCert)

〖 M 〗 L1 ∼R L2

L2 ≤R 〖 M 〗 L1
L1 ⊢R M : L2

Deep Specification

L2 is a deep speciSication of M over L1

if under any valid program context P of L2 ,

 【 P ⊕M 】 (L1) and 【P 】(L2) are

observationally equivalent

L2

M

L1

R

Making it “contextual” using

the whole-program semantics 【•】

 〖M 〗 (L1) and L2 simulates each other!

L2 captures everything about running M over L1

〖 M 〗 L1 ∼R L2

Why Deep Spec is Really Cool?

Deep spec L captures all we need to know about a layer M

•  No need to ever look at M again!

•  Any property about M can be proved using L alone.

Impl. Independence : any two implementations of the same deep
spec are contextually equivalent

L2 is a deep speciSication of M over L1

if under any valid program context P of L2 ,

 〖 P ⊕M 〗 (L1) and 〖P 〗(L2)are

observationally equivalent

L2

M

L1

R

Is Deep Spec Too Tight?
•  Not really! It still abstracts away:

–  the efficient concrete data repr & impl. algorithms & strategies

•  It can still be nondeterministic:
–  External nondeterminism (e.g., I/O or scheduler events) modeled as a set

of deterministic traces relative to external events (a la CompCert)

–  Internal nondeterminism (e.g., sqrt, rand, resource-limit) is also OK, but
any two implementations must still be observationally equivalent

•  It adds new logical info to make it easier-to-reason-about:
–  auxiliary abstract states to define the full functionality & invariants
–  accurate precondition under which each primitive is valid

Problem w. Shallow Specs

C & Asm Module
Implementation

C & Asm Modules
w. Shallow Spec A

C or Asm module
 shallow spec A

Want to prove
another spec B ?

 shallow spec B

? ? ?

Need to
revisit &
reverify
all the
code!

Shallow vs. Deep Specifications

C & Asm Module
Implementation

C & Asm Modules
w. Shallow Specs

C & Asm Modules
w. Deep Specs

C or Asm module
 shallow spec
 deep spec

How to Make Deep Spec Work?
No languages/tools today support deep spec &
certified layered programming

Challenges:

•  Implementation done in C or assembly or …

•  Specification done in richer logic (e.g., Coq)

•  Need to mix both and also simulation proofs

•  Need to compile C layers into assembly layers

•  Need to compose different layers

Our Contributions
•  We introduce deep specification and present a language-

based formalization of certified abstraction layer

•  We developed new languages & tools in Coq
–  A formal layer calculus for composing certified layers

–  ClightX for writing certified layers in a C-like language

–  LAsm for writing certified layers in assembly

–  CompCertX that compiles ClightX layers into LAsm layers

•  We built multiple certified OS kernels in Coq
–  mCertiKOS-hyper consists of 37 layers, took less than one-

person-year to develop, and can boot Linux as a guest

What We Have Done

L1

Ma

L

R
L3

Na

L

R

L1

Mc

L

R

Extended

 Asm Language

LAsm

Clight

Asm

CompCert

CompCertX[L]

compositional

compiler

ClightX[L]

LAsm[L]

Layer Spec

L

Coq
 L2

Nc

L

R

LayerLib
calculus

Parametrize it w.
abstract states &
primitives in L

Layered
prog. in
ClightX

Layered
prog. in
LAsm

Link
everything

together

LayerLib: Vertical Composition

L2

M

L1

R

L3

N

L2

S

L3

M ⊕N

L1

R o S

L2

M

L1

R

L3

N

S

Example: Thread Queues

Concrete
Memory

head tail

Low
Abs-State

High
Abs-State 1
 0
 2
:: :: :: nil

tcbp[0] tcbp[1] tcbp[2]

head tail

Ready
 0

tcbp(0) tcbp(1) tcbp(2)

Ready

tcbp(0)

Ready

tcbp(1)

Ready

tcbp(2)

Ready

Ready

Ready
 1
 2
 Ready
 0

Ready

Example: Thread Queues
C Implementation

typedef enum {

 TD_READY, TD_RUN,

 TD_SLEEP, TD_DEAD

} td_state;

struct tcb {

 td_state tds;

 struct tcb *prev, *next;

};

struct tdq {

 struct tcb *head, *tail;

};

struct tcb tcbp[64];

struct tdq tdqp[64];

struct tcb * dequeue

 (struct tdq *q) {

 …… }

Low Layer Spec in Coq

Inductive td_state :=

| TD_READY | TD_RUN

| TD_SLEEP | TD_DEAD.

Inductive tcb :=

| TCBV (tds : td_state)

 (prev next : Z)

Inductive tdq :=

| TDQV (head tail: Z)

Record abs:={

 tcbp : ZMap.t tcb;

 tdqp : ZMap.t tdq }

Function dequeue

 (d : abs) (i : Z) :=

………………

High Layer Spec in Coq

Inductive td_state :=

| TD_READY | TD_RUN

| TD_SLEEP | TD_DEAD.

DeSinition tcb := td_state.

DeSinition tdq := List Z.

Record abs':={

 tcbp : ZMap.t tcb;

 tdqp : ZMap.t tdq }

Function dequeue

 (d : abs') (i : Z) :=

match (d.tdqp i) with

 | h :: q' =>

 Some(set_tdq d i q', h)

 | nil => None

end

Example: Dequeue

Concrete
Memory

tail head

Low
Abs-State

High
Abs-State 0
 2
1
 :: :: :: nil

tcbp[0] tcbp[1] tcbp[2]

tail head

Ready

tcbp(0) tcbp(1) tcbp(2)

Ready

tcbp(0)

Ready

tcbp(1)

Ready

tcbp(2)

Ready

Ready

Ready
 0
1
 2
 Ready
 0

Ready

L1 with abs1

R1

module M1

L2 with abs2

R2

module M2

interface L with abstract state: abs

R

module M with concrete state: mem

R

client program P

Conflicting Abstract States?

?	

LayerLib: Horizontal Composition

L1

M

L

R

L2

N

L

R

L1+L2

M ⊕N

L

 R

•  L1 and L2 must have the same abstract state

•  both layers must follow the same simulation relation R

Programming & Compiling Layers

L1 ≤R 〖 Mc 〗ClightX (L)
L ⊢R Mc : L1

CompCertX correctness theorem (where minj is a special kind of memory injection)

〖 Mc 〗ClightX (L) ≤minj 〖 CompCertX[L](Mc)〗LAsm (L)

L1 ≤R ◦ minj 〖 CompCertX[L](Mc)〗LAsm (L)

R must absorb such memory injection: R ◦ minj = R then we have:

L1 ≤R 〖 CompCertX[L](Mc)〗LAsm (L)

Let Ma = CompCertX[L](Mc) then L ⊢R Ma : L1

ClightX

LAsm

Our Contributions
•  We introduce deep specification and present a language-

based formalization of certified abstraction layer

•  We developed new languages & tools in Coq
–  A formal layer calculus for composing certified layers

–  ClightX for writing certified layers in a C-like language

–  LAsm for writing certified layers in assembly

–  CompCertX that compiles ClightX layers into LAsm layers

•  We built multiple certified OS kernels in Coq
–  mCertiKOS-hyper consists of 37 layers, took less than one-

person-year to develop, and can boot Linux as a guest

Case Study: mCertiKOS
Single-core version of CertiKOS
(developed under DARPA CRASH &
HACMS programs), 3 kloc, can boot Linux

Aggressive use of abstraction over
deep specs (37 layers in ClightX &
LAsm)

Decomposing mCertiKOS

Based on the abstract machine
provided by boot loader

Current Target: Single-Core CertiKOS

Physical Memory and
Virtual Memory
Management
(11 Layers)	

Decomposing mCertiKOS (cont’d)
Current Target: Single-Core CertiKOS

 Thread and Process
Management
(14 Layers)	

Decomposing mCertiKOS (cont’d)
Current Target: Single-Core CertiKOS

 Virtualization
Support

(9 Layers)	

Decomposing mCertiKOS (cont’d)
Current Target: Single-Core CertiKOS

 Syscall and Trap
Handlers
(3 Layers)	

MAT	
MATOp	
MATIntro	
PreInit	

MPMap	
MBit	
MPTInit	
MPTKern	
MPTComm	
MPTOp	
MPTIntro	

PThread	
PSched	
PCID	
PAbQueue	
PTDQInit	
PTDQIntro	
PTCBInit	
PTCBIntro	
PKCtxOp	
PKCtx	

PProc	
PUCtx	
PIPC	
PIPCIntro	

TSysCall	
TTrap	
TTrapArg	

VVM	
VSVM	
VVMCBOp	
VSVMIntro	
VVMCBInit	
VVMCBIntro	
VSVMSwitch	
VNPTInit	
VNPTIntro	

TRAP	

THR	
PROC	

VM	
MM	

(base)	

				PROC	
THR	

MM	

(emb)	(hyp)	

VIRT	
TRAP	

THR	
PROC	

VM	
MM	

(rz)	

VIRT	
TRAP	

THR	
				PROC	

VM	
MM	

Variants of mCertiKOS Kernels

Example: Page Fault Handler Example: Page Fault Handler
TSysCall(

TTrap(

TTrapArg(

PProc(

PCID(

PMap(

MPTOp(

MPTIntro(

MAT(

MATOp(

PUCtx(

pagefault_handler(

save_uctx(

proc_start(

pf_resv(

set_err(

set_uctx(

PT_resv(
cid_get(

PT_insrt(

set_PTE(

palloc(

PreInit(

at_get(at_set(

pf_get(ikern_set(

proc_exit(

setpmi(

setcr3(

Conclusions
•  Great success w. today’s system software … but why?

•  We identify, sharpen, & formalize two possible ingredients
–  abstraction over deep specs

–  a compositional layered methodology

•  We build new lang. & tools to make layered programming
rigorous & certified --- this leads to huge benefits:
–  simplified design & spec; reduced proof effort; better extensibility

•  They also help verification in the small
–  hiding implementation details as soon as possible

•  Still need better PL and tool support (Coq / ClightX / LAsm)

Thank You!

Interested in working on the CertiKOS project?
we are hiring & recruiting at all levels:

postdocs,

research scientists,

PhD students, and visitors

A Subtlety for LAsm

 〖 Ma 〗LAsm (L) ≤R L2

Problem: per-module
semantics 〖Ma 〗LAsm (L) is

NOT deterministic relative to
external events

L2 ≤R 〖 Ma 〗LAsm (L)
L ⊢R Ma : L2

Fortunately, whole-machine semantics 【•】LAsm (L) is deterministic
relative to external events, so it can still be reversed:

∀P . 【P ⨁ Ma 】LAsm (L) ∼R 【P 】LAsm (L2)

Some functions (e.g., kernel context switch) do not follow the C calling
convention and must be programmed in LAsm[L].

Layer Pattern 1: Getter/Setter

memory	

memory	

primitives	

primitives	

abs-state	

abs-state	

Load/
Store

R

 L2
 ab
s

m
em

L1

C or Asm

implementation

Hide concrete memory; replace it with Abstract State	
Only the getter and setter primitives can access memory 	

get
set	

Layer Pattern 2: AbsFun

memory	

memory	

primitives	

primitives	

abs-state	

abs-state	

M

L2

L1

C or Asm

implementation

Memory does not change	
New implementation code does not access memory directly! 	

get
set	

Development Cost
Development of ClightX and CompCertX 10 pm
Development of VCGen for ClightX 1.5 pm

Verification of mm

Design: first 3 layers 0.5 pm
Design: the rest 8 0.5 pm

Refinement Proof: first 2 1.2 pm
Refinement Proof: the rest 1 pm

C verification 2.5 pm

Verification of proc
Design: 14 layers 1 pm
Refinement Proof 0.5 pm

C Verification 1 pm

Verification of virt
Design: 9 layers 0.6 pm

Refinement Proof 0.4 pm
C Verification 0.3 pm

Verification of trap
Design: 3 layers 0.2 pm

Refinement Proof 0.1 pm
C Verification 0.1 pm

Table 1. Effort on tool development and verification

time of proving one layer was dramatically reduced to less than
0.2pm. The current average effort for one layer is shown below:
• Layer definition: 3,000 lines of Coq code and 2 person days.
• Refinement proof: 2,000 lines of Coq code and 1 person day.
• C code verification: 20 lines of Coq code for one line of C code.

We could see it is quite cheap to add more layers to our
framework. The Coq code size is still large since we did not adopt
the way of developing many Coq tactics to reduce the size of
proof scripts. To prove a new layer, we simply copy and paste
the proof template, with some proof holes inside. Most parts of
the proof for different layers are similar and could be generated
semi-automatically. The major proof effort for a new layer is only
about filling out the holes left. We could also write more powerful
and effective Coq tactics to accelerate the proving process further in
the future.

Furthermore, in most cases, we also found that the cost of
changes in our layered approach is quite small. Before we introduced
the Virtualization module, we did not model guest mode at all in
the LSem(L) for memory management and process management.
Thanks to our compositional specification and proofs, it only took us
one person week to introduce the guest mode into our entire layers
and port memory management and process management with the
modified machine definition and semantics.

Performance We have tested mCertiKOS in QEMU 1.0 with
KVM. The host machine of QEMU is equipped with an AMD
Athlon II X4 645 processor (4 cores) and 16 GB memory, and
running a standard Ubuntu 12.04.3 with Linux kernel 3.5.0.

We first booted mCertiKOS in QEMU and then mCertiKOS
boots the unmodified Ubuntu Linux 12.04.2. The boot time of Linux
is nearly 2 minutes 20 seconds, which is slower than the 30 seconds
if Ubuntu Linux is directly running in QEMU. The main reason is
due to the naive IDE disk driver used by mCertiKOS. It works in
PIO mode and uses polling instead of interrupts to get notified when
the disk operations are completed. An early version of mCertiKOS
which used a sophisticated AHCI-SATA driver took less than 1
minute to boot up the same Ubuntu Linux.

Trusted computing base The mCertiKOS kernel relies on a boot-
loader and a preinit procedure to boot up. The kernel and the preinit
procedure are complied and linked as a small ELF file, thus we
only require the bootloader to be able to load the ELF file. After
booting up, mCertiKOS starts the preinit procedure to initialize a
few hardware drivers which are needed for booting Linux. Device
drivers are not verified because our current machine semantics lacks
device models for expressing the corresponding semantics.

The trusted computing base of mCertiKOS also contains around
300 lines of C code and 170 lines of assembly code that are
unverified. The unverified C code falls into the following two
categories:

1. C functions, such as memcpy, are not supported by the current
CompCert memory model and thus can not be verified in
ClightX(L). On the other hand, they can be implemented in
assembly and verified at the assembly level, which we leave for
future work.

2. Some C features are not supported by the current CompCert, e.g.
functions with varying number of arguments, and the GCC-style
inline assembly. They can also be verified in assembly.

The unverified assembly code are for the switches between
ring0 and ring3, and between the host and the guest. Our machine
semantics (LSem(L)) models these switches as pseudo primitives.
They can be verified if we model more detailed hardware behaviors
and instructions in LSem(L).

7. Related Work and Conclusions
Abstract machines and hierarchical decomposition Dijkstra [7]
proposed to “realize” a complex program by decomposing it into a
hierarchy of linearly ordered abstract machines. Based on this idea,
the PSOS team at SRI [21] developed the Hiearchical Development
Methodology (HDM) and applied HDM to design and specify an OS
using 20 hiearchically organized modules. HDM was later also used
to design and implement the KSOS system [25]. HDM was difficult
to be rigorously applied in practice, probably because of the lack of
powerful specification and proof tools. In this paper, we advance the
HDM paradigm by showing how to use contextual refinement as a
unifying correctness property for connecting multiple abstraction
layers, and by implementing all abstract machines and refinement
proofs in a modern proof assistant. We also pursued decomposition
much more aggressively since it made the verification task much
easier. Our use of a verified compiler is another interesting addition
since the ClightX languages were not placed directly in the same
layer hierarchy (see Figure 1).
OS kernel verification Bevier [4] is the first to build a full correct-
ness proof for a highly idealised kernel in an automated theorem
prover. The Verisoft team [23] has done a large body of work aiming
to verify OS kernels and hypervisors [14, 1]. The Verve project [30]
managed to prove the type safety of an entire kernel by combin-
ing the partial correctness proof of a nucleus and the type-safety
guarantee from a certifying C# compiler (for the rest of the kernel);
by using powerful automated proving tools (e.g., Boogie and Z3),
Verve managed to certify the nucleus in 9 person-months.

The seL4 team [13, 20] was the first to build a proof of func-
tional correctness as well as information-flow noninterference for a
realistic microkernel. Their work is impressive in that all the proofs
were done inside a modern mechanized proof assistant [24]. They
have shown that the behaviors of 7500 lines of their C code always
follow an abstract specification of their kernel. To make verification
easier, they introduced an intermediate executable specification to
hide C specifics. Both their abstract and executable specifications are
“monolithic” as they are not divided into layers to support abstraction
among different kernel modules. These kernel interdependencies
led to more complex invariants which may explain why their proof
effort took 11 person years.

Their proof of information-flow noninterference [20] was done
on top of their abstract model, but with the functional correctness
proof of the kernel, it also applies to the C implementation itself.

The initial seL4 effort was done completely at the C level, so
it does not support many assembly level features such as address
translation. This also made verification of assembly code and kernel

9 2013/11/18

5.7 pm

2.5 pm

1.3 pm

0.4 pm

Total: 9.9 pm + VCG Dev: 1.5 pm

