A Representation of F,, in LF

Carsten Schiirmann, Dachuan Yu*, and Zhaozhong Ni

Department of Computer Science
Yale University
{carsten,yu,nzz}cs.yale.edu

Abstract. We study how the type theory F,, can be adequately repre-
sented in the meta-logical framework Twelf [16]. This development puts
special emphasis on the way how terms, types, and kinds are represented
in that it uses higher-order abstract syntax to model variable binding
and dependent types to model typing constraints. Furthermore our de-
sign ensures that only well-typed terms and well-kinded types can be
constructed. A possible application of this work lies in the development
of safe intermediate languages for compilation.

1 Introduction

Modern compilers employ sophisticated compilation technology to guarantee
safety conditions of the generated binary. An important class of safety conditions
is captured by type systems with which compilers attempt to maintain type
information across an entire cascade of intermediate languages throughout a
compilation process. The cascade starts with a source language and typically
ends in a machine language. A variety of techniques have been proposed to
express safety conditions, such as PCC [12] and TAL [11].

Intermediate languages are typically designed in such a way that the concep-
tual difference between the individual languages is small and manageable, the
properties of each particular language are provable, and the relationship between
different intermediate languages is analyzable. In this paper we concentrate on
one particular intermediate language F,, and its properties, which forms the
basis of FLINT [18] and TILT [8].

In general, compilation from one language to another is expressed by judg-
ments and inference rules. The soundness argument is often left to language
designers who typically reason about the language’s properties informally, with
pencil and paper. Given that the design of those intermediate languages is a chal-
lenging engineering task in itself, and that in terms of safety so much depends on
it, the question of whether the desired properties are really satisfied is of crucial
importance. Examples of those properties include the correctness of static and
dynamic semantics, subject reduction, progress, termination properties, observa-
tional equivalence, and soundness and completeness of the compilation. Informal
proofs are often error prone. From an engineering point of view, it is difficult to

* This work was supported in part by NSF Grants CCR-9901011 and CCR-0081590

maintain a valid set of theorems and proofs while a formal development evolves.
For this reason we advocate in this paper the use of meta-logical frameworks to
specify, implement, and verify designs.

Different meta-logical frameworks have different advantages. Coq [4], Nuprl [1],
and Isabelle/HOL [13] for example offer extremely elaborate and sophisticated
interactive proof search tools. In order to use those tools, one must commit to a
particular way of representing the inference systems involved. In particular, rep-
resentations of typing relations, and operational semantics, for example, which
have in general extremely elegant and expressive higher-order encodings are not
directly supported in Coq, Nuprl, or Isabelle/HOL, because the question what
induction principles to use is problematic [3,9]. However, true higher-order en-
codings of those systems provide enormous advantages in that certain lemmas
related to substitution and weakening are implicitly supported, and need not
be implemented by the language designer. In this paper, we use Twelf [16] as
representation language of specifications, algorithms, and their meta-theory.

From an implementors point of view, each intermediate language and each
types system requires a different implementation of a type checker. We show
in this paper with F, as example, how static typing can become part of the
representation. Consequently, the LF type checker can decide if a term is well-
typed or not. Ill-typed terms in F,, are simply not typable in our representation.
We show an implemented proof of type soundness for this design.

This paper is organized as follows. We discuss Twelf in Section 2, introduce
F,, in Section 3, discuss issues concerning substitution in Section 4, and give a
reduction semantics in Section 5 before we show type soundness in Section 6.
An example of how to use our encoding is given in Section 7. Section 8 outlines
future work and assesses results.

2 Twelf

The Twelf system [16] is a meta-logical framework and a tool for experimentation
in the theory of programming languages and logics. It supports a variety of tasks
such as the specification of object languages and their semantics, implementa-
tions of algorithms manipulating object-language expressions and deductions,
and formal development of the meta-theory of an object language. Twelf imple-
ments the logical framework LF [7] and it employs the judgments-as-types, and
derivations-as-objects methodology for specification. Our formulation of LF is
standard.

Kinds K u=type|lz: A K|A—>K
Types Auv=a|AM|Hx: A;. As | Ay — Ay
Objects M u=c|z|Az:7.e| My M,
Signature ¥ ==-| Y, c: K| X,a: A
Signature I' ==-|I,z: A

We use a for type constants, ¢ for objects constant, and x for variables. The
signature X' is used below to declare the constants related to our encoding.

Following standard practice [14] we assume substitutions to be capture avoiding
and we omit all leading IT-abstractions prefixes from types. Sn-convertibility is
taken as the underlying notion of definitional equality [2]. A — K and A1 — A»
are used as abbreviations for [Tz : A. K and ITz : A;. A> if does not occur free
in K and As, respectively. Sometimes we write Ay + A; for A; — As.

As typing judgments for LF we write I" = M : A if object M has type A
in context I', and I' M :. A if M is well-typed and in addition a canonical
(B-normal, n-long) form. The corresponding inference rules can be found in [7].

3 F,

F, is a type theory which has been introduced by Girard in his thesis [5] as a tool
to prove properties about higher-order logics. In type-directed compilation, F,’s
expressive power has made it an attractive choice for the core of the FLINT sys-
tem [18] and TILT [8]. It extends the simply-typed A-calculus by polymorphism
and type constructors.

Kinds k =0 | k1 = Ko
Types T o= |=| 7 | A k.7 |Va: k. T
Termse s=x | Az :T.e| ey ex | Aa: k.e| e[T]

There are different ways to encode F,, into LF. One way, for example, is to
represent expressions, types, and kinds as individual syntactic categories, and
then to encode the related typing relations explicitly. For the purpose of this
work however, we have chosen an “implicit” representation to index types by
kinds, and terms by types (see below).

kd : type
o :kd
= :kd - kd — kd

We write ™7 for the (polymorphic) representation function that embeds the
syntactic categories of F, into LF.

Theorem 1 (Adequacy of encoding: kinds). If k is a kind, then -+ "k7 :,
kd. And conversely, if I' = M :. kd for some object K, then, there exists a kind
K, such that "k = M.

The type system of F,, is strongly normalizing which seems to make LF’s
simply typed A-calculus a good candidate to represent F,,’s type level directly.
However such a encoding would be unsatisfactory because polymorphic quan-
tification cannot be directly supported. Therefore we encode F,-types in LF as
type family indexed by their respective kinds.

tp :kd — type

='":tp (0=>0=>0)

@ 1 tp (K1$>K2)—>tpK1 — tp K>
A (tp K1 — tp K») — tp (K = K»)
V' :(tp K > tpo) = tpo

We mark these newly defined constants with a prime, because we reuse the
same names for other inference rules defining atomic and canonical forms below.
This choice makes signatures that encode theorems and proofs more readable.

Theorem 2 (Adequacy of encoding: types). If 7 is a type of kind k with free
type variables oy @ Ki,...,0n : Kp, then ag : Tk Yoo ap c TE, TR TT D dp TR
And conversely, if ay : "k, ..., ap Tk, 'E M : tp Tk then there exists a type
Tk, s.t. "7 = M."-Vis compositional in that [t /a]T' T = (Aa : Tr.TFT) T

F,, allows S-reduction on the type level which induces an equality relation
among well-kinded types which we denote by I' - 7 = 75 : k. In order to avoid
notational clutter, we suppress context I" and kind x and simply write 7, = 7 for
this judgment. However, it is important to note that all of the defining inference
rules rely on the participating types to be well-kinded.

tbeta = ——— teta (a not free in 7)
(Aa: k. 1) T2 = [12/a]n1 T=A:K.TQ
r=1 r=1
tall tlam
Va:k. T=Va:k. T k. T=d k. T
=T T =Ty
tarr — tapp
>== T To =T Ty
T = T2 Ty = T3 T = T2
tref ttra tsymm
T=T T = T3 T =T1

The type level of F, forms a strongly normalizing A-calculus [5]. Without
further discussion and formalization, we assume this fact as given and leave a
formulation of meta-level properties about this congruence relation to future
work. F,, also satisfies several inversion principles, two of which are important
for this work.

Lemma 1 (Admissible rules of inference).

1. If = 1y == 7 7} then 75 = T3).
2. IfVa : k.1 =Va: k.12 and 7 = 15 then 1] /a]r = [15/a]T2.

The congruence relation and the two parts of Lemma 1 are expressed in LF
by the signature depicted in Figure 1. The encoding of the judgment alone forces
the left hand side and right hand side of a congruence to be of the same kind.

= :tp K — tp K — type

theta : (N (Aa:tp K. T\ a)) @ Tb) =T) Th

teta T =X (Aa:tp K.T @ q)

tarr L =

ttra =Ty 5T =T — T, =T;s

tall (Ta:tpK.a=a—-Tia=Tia) =V Th =V T]
tapp T1ET{—)TQETé—)Tl@,TQET{@,Té

tlam :(Ha:tpK.aEa—}TlaET{a)—}S\'lejJT{
tsymm:T1 ETQ-}TQETl

tinv L= @,Tl @,Tz == @ITI, @’ Té—)TzETé
tinvall :VTi =VT - T =Ty - T1 To =T, T4

Fig. 1. Encoding of = and Lemma 1

Theorem 3 (Adequacy of encoding: congruence relation). If R is a

derivation of 71 = T with free variables among ay : Ki,...,Qn @ Ky, then

C e . = LT 7 . = TR . T = M7
ap TR Uy = Q0 TRy WUy gy =0, TR T = T
And conversely, if aq : "k, up a1 S @y, 0 TKy LUty = a, B M

Tr 7 ="y then there exists a derivation R of 1 = 12, s.t. "R = M.

In addition ™-7is compositional, but only in as far as derivations of 7 = 7 are
concerned. This limited property of compositionality alone, however, is insuffi-
cient for the general case. That even derivations of 7 = 7' can be substituted for
any of the u;’s in Theorem 3 is the main result of Lemma, 4.

An implementation of this congruence relation is given in [17]. The rule ‘tref’
from above is also an admissible rule of inference, however we have chosen not
to encode it as such, but instead to implement the admissibility proof.

Lemma 2 (Identity lemma). For all types T it holds that T = T.

Its encoding in Twelf as type family with a set of defining constant declarations
can be found in [17].

id: T :tp K. T =T — type

In F,,, every equivalence class of types modulo congruence has a unique
representative. They are called canonical forms and they are in S(tbeta)-normal
n(teta)-long form [5]. Canonical forms are defined in terms of two judgments, one
for canonical types whose definition is kind-directed and one for atomic types
which is type directed. The “|” rule holds only for types of kind o.

IalkkF7T{o Nalki Ttk I'7lo
A
I'VYa:k.7qo FAa: k.71 kL = Ko I'7tfo
alkel I'trlke=kr Itk
= Q@

€
Fl—ain F|—=>J,O:}S>O;‘E>O F"TlTQJ,Iil

can : tp K — type

1 tp K — type

: (ITa:tp K.at a — can (T a)) — can (V' T)
: (ITa : tp K.at a — can (T a)) — can (X' T)
cat (T :tpo) > can T

rat =’

s at T1 — can T2 — at (Tl @’ T2)

ey —>»< &

Fig. 2. Encoding of canonical and atomic types.

The representation of atomic and canonical terms in LF is given in Figure 2.
The type ascription (T : tp o) in the declaration of | is necessary because Twelf
would otherwise infer the more general type ‘tp K’ as argument type.

Theorem 4 (Adequacy of encoding: canonical and atomic forms). If C

is a canonical form derivation of type T with free type variables ay : K1,...,ap :
Kn, then a1 : Tk1 ur t at aq,...,0n @ "Kp Ytun 2 at ap ETC7 : can "7 And
conversely, if a1 : "ky L uy : at ay,...,qn "Ky LYUun :oat ap B M : can "7

then there ezists a derivation C that T is canonical, s.t. "C" = M. A symmetric
property holds for atomic forms.

Note that in this case -7 is compositional, but only in the sense that atomic
derivations can be substituted for atomic assumptions. The more general case
of substituting canonical derivations for atomic assumptions also holds and is
shown in Lemma 5. The introduction of canonical and atomic forms brings other
benefits such as additional inversion lemmas (of which we only show one here).

Lemma 3 (Inversion). IfVa: k.7 =7 and I' - 7' {} o then 7" =Va : k. 7"
for some 7.

What differentiates Lemma 3 from Lemma 1 is that 7/ and Va : k. 7" are syn-
tactical identical and not only convertible. Consequently this lemma is directly
supported by LF and need not to be encoded extra.

Following our original proposal we make the well-typedness condition part
of the Twelf encoding and avoid therefore an explicit encoding of the typing
relationship. This technique relieves us from having to run a separate type-
checking and type-normalization phase once a term has been constructed in LF.
The well-typedness condition is built into the representation.

exp :can (T : tp o) — type
abs : (exp C1 = exp C2) = exp (| (= @ C1) QCh)
app :exp (| (= @(Cy) @ () = exp C1 — exp Cz
Abs : (IIa:tp K. IIu: at a.a = a — exp (C a u)) — exp (V C)
App :exp (V(C : IIa: tp K.at a — can (T1 a)))
— HOT :tp K.IIC' : can T.IIR : T'T = T>. IIC" : can Ts.exp C"”

Fig. 3. Encoding of terms

I'(z)=rT1 I'rte:m =71
- var cong
I'Fz:71 I'kFe:7
Iz:mmbFe:n I'Fei:m—omn I'Fey:m
abs a
' Xe:m.e:m = I'tejey:m
Na:kke:r I'+te:VYa:k.1 I'Frn:k
Abs App
I'FAa:k.e:Va:k.T I'te[m] : [r2/a]n

How should terms be represented? The obvious solution to introduce a type
family and index it by types is insufficient, because typing is not unique. Each
term has several types modulo applications of the ‘cong’ rule, and consequently
none of the desired inversion principles on the type level exist. The alternative
and successful solution is to stipulate that all types in the rules must be canon-
ical. This solution amounts to omitting ‘cong’ from the list of rules above, and
rewriting ‘App’ rule in such a way that it satisfies this new constraint. [r2/a]m
does not necessarily yield a type of canonical form, but it is known be to con-
gruent to one.

're:Va:k.my T'bFn:ik [n/an=71

App
I'te[r]:7

If all types of terms are canonical, the term formation rules are directly repre-
sentable as type family in LF, indexed by the a proof object that certifies the
canonicity of its type. The respective constant declarations are given in Figure 3.

We would like to make two comments about this representation. First, the
annotation (T : tp o) in the first declaration restricts terms to be of a type
of kind o. Second, the formulation of all rules presented so far, but these in
particular, take full advantage of Twelf’s powerful type reconstruction abilities.

(| (= @ (i) @ (), for example, is a proof of ‘abs E’ canonicity. It almost
reads as its type. For reasons related to adequacy, Abs’s type is parametric in a
proof that parameter a is atomic. The additional hypothesis a = a extends the
convertibility relation on types by reflexivity on parameters.

Theorem 5 (Adequacy of encoding: terms). Let e be a term of type T and
C a derivation that T is canonical. If e contains free type variable oy : K1, ...Qp :
Km and free term variables x1 : 71, ..., Tn : Tn, (and C; proofs of their canonicity)
,then ay 1 tp "Tky ooy ctp TRy Lxy sexp TC1 Yo,y exp TCLTTE Te
exp "C7. And conversely, if ay :tp "k .oy i tp TRy 2 texp TCL L Ty
exp"Cp ' M :exp"C™. then there exists a terme: 7', s.t. "Te'=M and T = 7'.

The bijection between terms and their representation in LF is compositional
only for terms, but not for types.

4 Substitutions

The particular encoding of F,’s syntactic categories from the previous section
brings many advantages, but also some disadvantages. Only well-typed F,, terms
are representable, however, whenever polymorphic application is used, explicit
proofs for the equivalence of types and the corresponding canonical forms must
be provided. Consequently, even though we are using higher-order abstract syn-
tax to encode the rule for polymorphic abstraction ‘Abs’, we cannot use LF
application to mimic substitution. The representation of terms is not composi-
tional when it comes to instantiating free type variables assumed to be atomic
by types that are canonical. Instead we have to instantiate all free hypotheses
in a hypothetical canonicity proof and convert the result into a canonical form
proof by the means of a substitution lemma. In this section, we discuss the ap-
propriate substitution lemmas for the congruence relation, canonical forms, and
terms. In fact, those lemmas establish generalized compositionality properties
for Theorem 3, Theorem 4, and Theorem 5, respectively. For the remainder of
this section, recall, that we assume all terms to be well-typed, and all types to
be well-kinded.

Lemma 4 (Substitution into the congruence relation). Let 5 = 74 be of
kind '. If, under the hypothesis that o is a type variable of kind k', 7 = 15 is
of kind k then [t3/a]m = [14/a]s.

This proof extends Pfenning’s representation of the substitution lemma [15]
by polymorphic quantification. It is encoded as a type family

thm-sub-c: (IHa:tp K'.a=a— (Ty a:tp K) =T a)
T3 =Ty
TV T3=T5 T,
— type.

and the implementation of the proof is given in [17]. The type annotation (7} a :
tp K) signals Twelf’s type reconstruction algorithm, that K cannot depend on
types. The substitution lemma holds not only for the congruence relation, but
also for types.

Lemma 5 (Substitution into canonical/atomic forms).

1. For all proofs that I'ya: k1 & 7' Y ke and I' + 7} k1 there exists a 7', such
that [T/a]m’ = 1" and a proof of I' 7" 1} Ka.

2. For all proofs that I''a : k1 = 7' | ky and I' - 7 {} k1 there exists a 7", such
that [T/a]m’ = 1" and either a proof that I' = 7" {y k2 or I' - 7" | Ka.

And again, this lemma can be formalized in LF by two mutual dependent
type families. An encoding of this proof is given in [17]. The main difficulty is
the disjunction in the second part of the lemma: 7"’ is either canonical or atomic.
Pushing this logical connective into LF suggests an auxiliary intermediate type
family “canvat”.

canvat : tp K — type.
iscan :can1 — canVat T.
isat cat T — canVat T

substc : (IIa:tp K.at a — can (T a)) - can T
= (T'"T)=T" — can T" — type

substa : (Ila:tp K.at a — at (T a)) > can T
= (T"T)=T" — canvat T" — type

Lastly, we define substitution [o]e on the term level. Substitutions are defined
as o0 =11 /ayq,...,Tn/ay and all 7; are in canonical form. As usual, we assume
that these substitutions are capture avoiding through tacit variable renaming.

[0](z) = o(z)
[o](Az : T.e) = Az : 7. [0, z/z]e where [0](T) = 7’ and 7' canonical
[7](e1 e2) = ([o]er) ([o]e2)
[0](Aa : k.e) = Aa : k. [0,/ ale
[o](e[r]) = ([o]e)['] where [0](7) = 7’ and 7’ canonical
[0](a) = o()
[ol(=) ==
[o)(T1 T2) =7 where ([o]r1) ([o]2) =7’

and 7' canonical
where [0, a/a]T = 7' and 7' canonical
where [0, a/a]T = 7' and 7' canonical

Unlike applications of term substitutions e/z, which are encoded as S-redices,
the representation of type substitution application 7/« cannot take advantage
B-redices. Both, term variables and type variables are represented via higher-
order abstract syntax, but S-reduction models substitution only for the former.
For the latter we observe that with any instantiation of free type variables the
canonicity proofs recorded with “exp” are likely to change. Consequently, this
form of substitution application must be defined externally. Its definition is quite
involved and implements the proof of the following substitution lemma.

Lemma 6 (Substitution into terms). For all proofs that I''a : &' F e : 7 and
' 7' k' there exists a ", such that [T'/a]T = 7" and a proof of I' = 7" 1} ka
and I' = [7'/ale: 7.

Proof. By induction on e. We consider only case e = ey[r1]. All other cases are
similar.

C'=T'tr (K by assumption
Dula:k Fen]:T by assumption
Eiula:k'Fe VB :k". 1 by inversion on D
CruTa:k'F7m K" by inversion on D
R:[n/Bl =71 by inversion on D
R" [T a](VB : k") = 7" by induction hypothesis on &;
T =Vp: k" 7} by Lemma 3
C":TEVYB:k". Tt o by induction hypothesis on &;
E" Tk [r'/alel :VB: k" T4 by induction hypothesis on &
Ry = /alm =1 by Lemma 5 on Cq,C’
CiuTlFre" by Lemma 5 on Cq,C’
R" [[a][r1 /B2 = [71/B]7% by Lemma 1 (2) on R", R}
C"=T,p:k"F1ifo by inversion on C"’
RE [/BT =14 by Lemma 5 on C",C;
ChoT'Frfo by Lemma 5 on C", (]
L7 =7 by Lemma 2 on 7'
Qq : [T'/)d][r/B]me = [7'/a]T by Lemma 4 on R,T
Qi [T/l = [T /][/B]T by tsymm on Q
Qs [t /a]r =1 /BT =Tu by ttra on Q2, R", R}
Q Ik ([r'/alen)[r]] : 1a by App on £",C{, R}
Q Ik [r/al(er[r]) : 1a by definition substitution

When substituting a type for a type variable in an expression, it is the proof of
Lemma 6 that contains an algorithm on how to reestablish the canonicity proofs
of the types of the resulting objects. In fact, this algorithm defines how to apply
a substitution and it is formalized in Twelf as follows:

subst : IIC : (ITa : tp K. ITu : at a.can (T a)).
(Ha:tp K.ITu : at a. lle : a = a.exp (C au))
—scanT - (TT)=T1T"

— IIC" : can T".exp C" — type

The one discussed case of the proof is depicted in Figure 4. All other cases can
be found in [17]. In this representation, substituting types for type variables is
more than just an algorithm acting on terms. It simultaneously enforces that all
representation invariants are satisfied during execution. With this substitution
lemma at hand, it is possible to define an evaluation semantics for F,, and prove
progress, termination, and eventually type soundness.

spapp : subst(Aa : tp K'. Au: at a. D a u)
(Aa :tpK'. Au:at a. i : a = a.
app(Erawi) (Th a) (Crawu) (Rai) (Dau))C

(ttra (ttra (tsymm Q1) (tinvall R” R})) R5) C
(App E" Ts O} R} C%)

+ subst (Aa:tp K. Au:at a.V (Aa1 : tp K. Aa2 : at a1. C a w a1 az))
M:tpK' . Mu:ata.Eiau)C'R' (V' C") E"

+ substc C; C' R} C]

« substc C"" C| R, C}

— idT'I

+ thm-sub-c (Aa:tp K'. Mi:a=a. Rai) I Q:

Fig. 4. Representation of Lemma 6, case e = e1[71]

5 Operational Semantics

The evaluation semantics of F,, preserves types. Only well-typed expressions
evaluate to expressions of the same type. We write e — €’ for the judgment
that denotes that expression e evaluates to e’ in one step and e ~ €' if it does
so in arbitrary but finitely many steps. The left and the right hand side of the
evaluation symbols are always well-typed.

ev_beta ev_pbeta
Az :T.e)v e [v/x]e (Aa: k.e)[r] = [T/a]e
e1 €} es > ey e e
evapp, - evapp, —— " ev.papp
e e3> €] ey el e > e ey e[r] — €'[7]

Without loss of generality, F,,’s evaluation semantics requires the argument of
a (-redex to be a value. Only A- and A-abstractions are considered values. The
representation of the rules is given in Figure 5.

6 Type Soundness

By construction, the operational semantics of F,, is type preserving. A quick
inspection of the evaluation rules reveals that repeated applications of individual
reduction steps must terminate, because the number of S-redices in a term (on
term and type level) decreases with every individual step.

Theorem 6 (Termination). If - e : 7, then all sequences of evaluation steps
originating from e are finite.

We can assume the context in which e is well-typed to be empty, because the
evaluation semantics does not evaluate under A-binders. Therefore, the question
of type soundness reduces to the question of progress which ensures that the
evaluation never gets stuck.

val s exp C — type

vallam : val (abs C)

valplam : val (Abs C)

— :exp (C :can T) — exp (C : can T') — type.

ev_beta : (app (abs E) V)= (EV) « val V.

ev_pbeta : (App (Abs E) T C7 RC') — E' < subst Co E Cr R' C' E'.
ev_app; :app F1 E2+— app E1' E2 «+ E1 — E1'.

evapp, :appV B2+ appV E2' < valV < E2 — E2.

evpapp :AppEACARP— AppE' ACARP+ E— E'.

*

— :exp C — exp C — type.

ev_trans : E2+5 E3 — E1— E2 —» E1 % E3.
evrel :ESE.

Fig. 5. Encoding of the operational semantics

Theorem 7 (Progress). If - - e : 7 then either e is a value or there exists a
e, st.e—e.

The proof of this theorem is by induction on e. Unfortunately, Twelf’s auto-
matic deduction facilities are currently still in preliminary state and cannot be
employed to prove the progress theorem automatically. A hand-coded proof is
feasible and can be found in [17]. The disjunction used in the formulation of
Theorem 7 is pushed down again to the LF level and called “valVeval”.

valVeval : exp C' — type
ve_val :val E — valveval E
veeval : E+— E' — valveval E

progress : IIE : exp C.valVeval E — type

The representation of the progress proof in LF is mostly straightforward,
however it relies on the property that substitution of types into terms from
the previous section is total. Informally true, this property must be formalized
explicitly in LF. For a complete development of this (and related) theorems and
their proofs consult [17].

7 Example

F,, can be used to define new types, values, and the corresponding elimination
principles for Booleans, natural numbers, pairs, and sum types [6]. By construc-
tion all formally encoded objects, types and kinds are well-typed and well-kinded,
respectively. We demonstrate how to use our encoding of F, by defining Booleans
values and the corresponding elimination principle as depicted in Figure 6.

bool =V (Aa:tpo.du:ata.| = Q(|u)Q (] = Q(|u) Q(|u)))
true : exp bool
=A (Aa:tpo.A\u:ata.\i:a=a.
XN (At:exp (Ju). N (Af:exp (| u). t)))
false : exp bool
=A (Aa:tpo.A\u:ata.\i:a=a.
N (Ot : exp (|). N (Af - exp (| w). 1))
if :exp (VY (Ma:tpo.Au:ata.
= @(u)6(= 6(ua(= @bool@(u)))
=A (Ma:tpo.du:ata. Ai:a=a.
N (Az:exp (Ju). A (Ay :exp (] u). X (Xe : exp bool.
(app (app (Appea (| u)
(tapp (tapp tarr i) (tapp (tapp tarr i) 7))
(1= @a(wa(=a(ua/(u)))

Fig. 6. Encoding of Booleans in F,,

Using Twelf, we can experiment easily with this encoding, and verify that
the standard properties hold, namely that

ifla] e; es true Fy eq
if[a] e; es false s eq

for any type a, and well-typed terms e;, es. On the other hand, all terms that use
the rule of polymorphic application, such as ‘if[a]’, tend to become very large.
This is due to the fact that all assumptions about canonicity and congruence
relation are expected to be made explicit. On the other hand these annotations
can be automatically generated especially in the setting where we foresee this
encoding of F,, to be used: as a target language inside the implementation of a
compiler.

8 Conclusion

The main contribution of this paper is an encoding of F,, in the meta-logical
framework Twelf. It is elegant, precise, and its main benefits include a formal
representation of well-typed terms and a type-preserving operational semantics.
We have shown in Twelf that F,, is type sound. The main benefits of this en-
coding is that the LF type checker suffices to decide well-typedness. Terms are
indexed by proofs that witness the canonicity of its type, which in turn contain
all necessary kind information.

We view this paper as a case study on how to use meta-logical frameworks
in the design, implementation, and verification process of datastructures and
algorithms. Specifically, the main motivation of this work stems from the area
of safe intermediate languages. The encoding and the properties of F,, are not

just of significant theoretical interest, but have also many practical applications,
related to compilers and proof carrying code.

In future work we plan to extend F, to Mini-FLINT [10] by adding other
features namely row polymorphism, type tuples, sum types, existentials, fixed-
point and contextual recursive types. Mini-FLINT can serve as target language
for compiling Featherweight Java [10]. We also plan to develop a compiler from
mini-FLINT to typed assembly language [18] and to develop verifiable safe com-
pilation techniques within the meta-logical framework, possibly all the way down
to machine code. Finally, we plan to extend F,, to support intensional type analy-
sis in the spirit of [8,19]. Applications of intensional type analysis include tagless
garbage collection and polymorphic marshalling.

Acknowledgements We would like to thank Valery Trifonov and Zhong Shao
for many helpful discussions.

References

1. Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof De-
velopment System. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

2. Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 255-279. Cambridge
University Press, 1991.

3. Joélle Despeyroux, Frank Pfenning, and Carsten Schiirmann. Primitive recursion
for higher-order abstract syntax. In R. Hindley, editor, Proceedings of the Third
International Conference on Typed Lambda Calculus and Applications (TLCA’97),
pages 147-163, Nancy, France, April 1997. Springer-Verlag LNCS. An extended
version is available as Technical Report CMU-CS-96-172, Carnegie Mellon Univer-
sity.

4. Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy, Catherine
Parent, Christine Paulin-Mohring, and Benjamin Werner. The Coq proof assistant
user’s guide. Rapport Techniques 154, INRIA, Rocquencourt, France, 1993. Version
5.8.

5. J.-Y. Girard. Interpretation fonctionelle et elimination des coupures de
P’arithmetique d’ordre superieur. These D’Etat, Universite Paris VII, 1972.

6. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7. Cambridge University Press, 1988.

7. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143-184, January 1993.

8. Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 130-141, San Fran-
cisco, California, 1995.

9. Martin Hofmann. Semantical analysis for higher-order abstract syntax. In
G. Longo, editor, Proceedings of the 14th Annual Symposium on Logic in Com-
puter Science (LICS’99), pages 204-213, Trento, Italy, July 1999. IEEE Computer
Society Press.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Christopher League, Valery Trifonov, and Zhong Shao. Type-preserving compila-
tion of featherweight Java. In Foundations of Object-Oriented Languages (FOOLS),
London, January 2001.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed as-
sembly language. In In 25th ACM SIGPLANSIGACT Symposium on Principles
of Programming Languages, pages 85-97, San Diego California, USA, 1998. ACM
Press.

George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Conference Record
of the 24th Symposium on Principles of Programming Languages (POPL’97), pages
106-119, Paris, France, January 1997. ACM Press.

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS
828, 1994.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge
University Press, 1991.

Frank Pfenning. A proof of the Church-Rosser theorem and its representation
in a logical framework. Journal of Automated Reasoning, 1993. To appear. A
preliminary version is available as Carnegie Mellon Technical Report CMU-CS-92-
186, September 1992.

Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-
logical framework for deductive systems. In H. Ganzinger, editor, Proceedings
of the 16th International Conference on Automated Deduction (CADE-16), pages
202-206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

Carsten Schiirmann, Dachuan Yu, and Zhaozhong Ni. A representation of F,, in
LF. http://www.cs.yale.edu/~carsten/public/merlin0O1.elf, 2001.

Zhong Shao. Implementing typed intermediate language. In Proc. 1998 ACM
SIGPLAN International Conference on Functional Programming (ICFP’98), pages
313-323, Baltimore, Maryland, September 1998.

Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive intensional type
analysis. In Proc. 2000 ACM SIGPLAN International Conference on Functional
Programming (ICFP’00), pages 82-93. ACM Press, September 2000.

