
Fully Reflexive Intensional Type Analysis in Type Erasure Semantics∗

Bratin Saha Valery Trifonov Zhong Shao
Department of Computer Science

Yale University
{saha,trifonov,shao}@cs.yale.edu

Abstract

Compilers for polymorphic languages must support runtime type
analysis over arbitrary source language types for coding applica-
tions like garbage collection, dynamic linking, pickling,etc. On
the other hand, compilers are increasingly being geared to gen-
erate type-safe object code. Therefore, it is important to support
runtime type analysis in a framework that generates type correct
object code. In this paper we show how to integrate runtime type
analysis over all types of a higher order typed source language,
including quantified types, into a system that can propagate type
information through all compilation phases.

Keywords: runtime type analysis, type-safe object code

1 Introduction

Modern programming paradigms increasingly rely on applica-
tions requiring runtime type analysis, like dynamic linking,
garbage collection, and pickling. For example, Java adopts dy-
namic linking and garbage collection as central features. Dis-
tributed programming requires that code and data on one ma-
chine be pickled for transmission to a different machine. In a
polymorphic language, the compiler must rely on runtime type
information to implement these applications. Furthermore, these
applications may operate on arbitrary runtime values; therefore,
the compiler must support the analysis of the types of arbitrary
source language terms, which we refer to asfully reflexive type
analysis.

On the other hand, generation of certified code [11] is ap-
pealing for a number of reasons. We no longer need to trust
the correctness of the compiler; instead, we can verify the cor-
rectness of the generated code. Checking the correctness of a
compiler-generated proof (of a program property) is much easier
than proving the correctness of the compiler. Moreover, since we
can verify code before executing it, we are no longer restricted to
executing code generated only by trusted compilers.
∗This research was sponsored in part by the Defense Advanced Research

Projects Agency ISO under the title “Scaling Proof-Carrying Code to Production
Compilers and Security Policies,” ARPA Order No. H559, issued under Con-
tract No. F30602-99-1-0519, and in part by NSF Grants CCR-9633390 and CCR-
9901011. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

A necessary step in building a certifying compiler is to have
the compiler generate code that can be type-checked before exe-
cution. The type system ensures that the code accesses only the
provided resources, makes legal function calls, etc. Therefore, it
is important to support runtime type analysis (over types of ar-
bitrary source language terms) in a framework that can generate
type-correct object code. Craryet al. [3] proposed a framework
that can propagate types through all phases of compilation. The
main idea is to construct and pass terms representing types, in-
stead of the types themselves, at runtime. This allows the use of
existing term operations to process runtime type information. Se-
mantically, singleton types are used to connect a type to its repre-
sentation. From an implementor’s point of view, this framework
(hereafter referred to as the CWM framework) seems to sim-
plify some phases in a type-preserving compiler; most notably,
typed closure conversion [9]. However, the framework proposed
in [3] supports only the analysis of types with no binding struc-
ture; specifically, it does not support the analysis of polymorphic
or recursive types. This limits the applicability of their system
since most type-analyzing applications must deal with recursive
objects or polymorphic code blocks.

In this paper, we extend the CWM framework and encode a
language supporting fully reflexive type analysis into this frame-
work. The language is based on our previous work [13]; accord-
ingly, it introduces polymorphism at the kind level to handle the
analysis of quantified types. This requires a significant extension
of the CWM framework. Moreover, even with kind polymor-
phism, recursive types pose a problem, which requires constrain-
ing the analysis of recursive types in the source language, and
introducing unconventionalfold andunfold constructs in the tar-
get language.

The rest of the paper is organized as follows. We give an
overview of intensional type analysis in Section 2. We present
the source languageλP+

i in Section 3. Section 4 shows the tar-
get languageλPR that extends the CWM framework. We offer a
translation fromλP+

i to λPR in Section 5.

2 Intensional type analysis

Harper and Morrisett [7] proposed intensional type analysis and
presented a type-theoretic framework for expressing computa-
tions that analyze types at runtime. They introduced two oper-
ators for explicit type analysis:typecase for the term level and

Typerec for the type level. For example, a polymorphic subscript
function for arrays might be written as the following pseudo-
code:

sub = Λα. typecase α of
int ⇒ intsub
real⇒ realsub
β ⇒ boxedsub [β]

Heresub analyzes the typeα of the array elements and returns
the appropriate subscript function. We assume that arrays of type
int and real have specialized representations, sayintarray and
realarray, and therefore have specialized subscript functions; all
other arrays use the default (boxed) representation.

Typing this subscript function is more interesting, because it
must have all of the typesintarray → int → int, realarray →
int→ real, andboxedarray (α)→ int→ α for α other thanint
andreal. To assign a type to the subscript function, we need a
construct at the type level that parallels thetypecase analysis at
the term level. The subscript operation would then be typed as

sub : ∀α.Array (α)→ int→ α
where Array = λα.Typecase α of

int ⇒ intarray
real⇒ realarray
β ⇒ boxedarrayβ

TheTypecase construct in the above example is a special case of
theTyperec construct in [7], which supports primitive recursion
over types.

3 The source language λP+
i

To illustrate our ideas, we define theλP+
i calculus with syntax

shown in Figures 1 and 2. The static semantics ofλP+
i uses the

following three environments:

sort environment E ::= ε | E , χ
kind environment ∆ ::= ε | ∆, α :κ
type environment Γ ::= ε | Γ, x :τ

It can be shown that the formation rules in Figure 3 enforce the
requirement that the environments are well-formed, and more-
over, all inferred types and kinds are also well-formed. Thus, in
the type formation ruleE ; ∆ ` τ : κ, we have thatE ` ∆ and
E ` κ. In the term formation ruleE ; ∆; Γ ` e : τ , we have that
E ` ∆ andE ; ∆ ` Γ andE ; ∆ ` τ : Ω. Reduction in the type
language is defined according to the rules in Figure 4. The re-
duction rules for the term level type analysis constructtypecase
can be found in Figure 5.

The languageλP+
i extends the languageλPi proposed in [13]

with recursive types, and some additional constructs for analyz-
ing recursive types. This section only gives an overview of the
language, the reader may refer to [13] for more details.

In the impredicative calculusFω the polymorphic types∀α :
κ. τ can be viewed as generated by an infinite set of type con-
structors∀κ of kind (κ → Ω) → Ω, one for each kindκ. The
type∀α :κ. τ is then represented as∀κ (λα :κ. τ). The kinds of

(kinds) κ ::= Ω | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+
| lu | Place

| α | Λχ. τ | λα :κ. τ | τ [κ] | τ τ ′
| Typerec τ of (τint; τ→; τ∀; τ∀+)

(values) v ::= i | Λ
+
χ. v | Λα :κ. v | λx :τ. e | fixx :τ. v

| fold[τ] v

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| fold[τ] e | unfold[τ] e
| typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ)

Figure 1: Syntax of theλP+
i language

τ → τ ′ ≡ ((→→) τ) τ ′

∀α :κ. τ ≡ (∀∀ [κ]) (λα :κ. τ)

∀
+
χ. τ ≡ ∀∀

+
(Λχ. τ)

Figure 2: Syntactic sugar forλP+
i types

constructors that can generate types of kindΩ would then be

int : Ω
→→ : Ω→ Ω→ Ω
∀Ω : (Ω→ Ω)→ Ω
. . .
∀κ : (κ→ Ω)→ Ω
. . .

We can avoid the infinite number of∀κ constructors by defining
a single constructor∀∀ of polymorphic kind∀χ. (χ→ Ω)→ Ω
and then instantiating it to a specific kind before forming poly-
morphic types. More importantly, this technique also removes
the negative occurrences ofΩ from the kind of the argument
of some constructors,e.g. ∀Ω; these occurrences makeΩ non-
inductive, so that defining aTyperec-like “iterator” overΩ would
break the crucial strong normalization property of the type lan-
guage. Hence in ourλP+

i calculus we extendFω with variable
and polymorphic kinds (χ and∀χ. κ) and add a type constant∀∀
of kind ∀χ. (χ → Ω) → Ω to the type language. The polymor-
phic type∀α :κ. τ is now represented as∀∀ [κ] (λα :κ. τ).

While analyzing a polymorphic type∀∀ [κ] τ , the kindκ must
be held abstract to ensure termination of the analysis [13]. There-
fore, theTyperec operator needs a kind abstraction in the branch
corresponding to the∀∀ constructor. We provide kind abstraction
Λχ. τ and kind applicationτ [κ] at the type level. The formation
rules for these constructs, excerpted from Figure 3, are

E ` ∆ E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

Similarly, at the term level, thetypecase operator must analyze
polymorphic types where the quantified type variable may be of
an arbitrary kind. To avoid the necessity of analyzing kinds, the

2

Kind formation E ` κ

E ` Ω

χ ∈ E
E ` χ

E ` κ E ` κ′

E ` κ→ κ′
E , χ ` κ
E ` ∀χ. κ

Kind environment formation E ` ∆

E ` ε
E ` ∆ E ` κ
E ` ∆, α :κ

Type formation E ; ∆ ` τ : κ

E ` ∆

E ; ∆ ` int : Ω
E ; ∆ ` (→→) : Ω→ Ω→ Ω
E ; ∆ ` ∀∀ : ∀χ. (χ→ Ω)→ Ω

E ; ∆ ` ∀∀
+

: (∀χ.Ω)→ Ω
E ; ∆ ` lu : (Ω→ Ω)→ Ω
E ; ∆ ` Place : Ω→ Ω

E ` ∆ α :κ in ∆

E ; ∆ ` α : κ

E ` ∆ E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

E ; ∆, α :κ ` τ : κ′

E ; ∆ ` λα :κ. τ : κ→ κ′

E ; ∆ ` τ : κ′ → κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` τ τ ′ : κ

E ; ∆ ` τ : Ω
E ; ∆ ` τint : Ω
E ; ∆ ` τ→ : Ω→ Ω→ Ω→ Ω→ Ω
E ; ∆ ` τ∀ : ∀χ. (χ→ Ω)→ (χ→ Ω)→ Ω
E ; ∆ ` τ∀+ : (∀χ.Ω)→ (∀χ.Ω)→ Ω

E ; ∆ ` Typerec τ of (τint; τ→; τ∀; τ∀+) : Ω

Type environment formation E ; ∆ ` Γ

E ` ∆

E ; ∆ ` ε
E ; ∆ ` Γ E ; ∆ ` τ : Ω

E ; ∆ ` Γ, x :τ

Term formation E ; ∆; Γ ` e : τ

E ; ∆; Γ ` e : τ E ; ∆ ` τ ; τ ′ : Ω

E ; ∆; Γ ` e : τ ′

E ; ∆ ` Γ

E ; ∆; Γ ` i : int

E ; ∆ ` Γ x :τ in Γ

E ; ∆; Γ ` x : τ

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆, α :κ; Γ ` v : τ

E ; ∆; Γ ` Λα :κ. v : ∀α :κ. τ

E ; ∆; Γ, x :τ ` e : τ ′

E ; ∆; Γ ` λx :τ. e : τ → τ ′

E ; ∆; Γ ` e : ∀∀
+
τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ [κ]

E ; ∆; Γ ` e : ∀∀ [κ] τ E ; ∆ ` τ ′ : κ

E ; ∆; Γ ` e [τ ′] : τ τ ′

E ; ∆; Γ ` e : τ ′ → τ E ; ∆; Γ ` e′ : τ ′

E ; ∆; Γ ` e e′ : τ

E ; ∆; Γ, x :τ ` v : τ

τ = ∀
+
χ1 . . . χn.∀α1 :κ1 . . . αm :κm. τ1 → τ2

n ≥ 0,m ≥ 0

E ; ∆; Γ ` fixx :τ. v : τ

E ; ∆ ` τ : Ω→ Ω E ; ∆; Γ ` e : τ (luτ)

E ; ∆; Γ ` fold[τ] e : luτ

E ; ∆ ` τ : Ω→ Ω E ; ∆; Γ ` e : luτ

E ; ∆; Γ ` unfold[τ] e : τ (luτ)

E ; ∆ ` τ : Ω→ Ω
E ; ∆ ` τ ′ : Ω
E ; ∆; Γ ` eint : τ int
E ; ∆; Γ ` e→ : ∀α :Ω.∀α′ :Ω. τ (α→ α′)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀α :χ→ Ω. τ (∀∀ [χ]α)

E ; ∆; Γ ` e∀+ : ∀α : (∀χ.Ω). τ (∀∀
+
α)

E ; ∆; Γ ` eµ : ∀α :Ω→ Ω. τ (luα)

E ; ∆; Γ ` typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ) : τ τ ′

Figure 3: Formation rules ofλP+
i

3

Type reduction E ; ∆ ` τ1 ; τ2 : κ

E ; ∆, α :κ′ ` τ : κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` (λα :κ′. τ) τ ′ ; τ{τ ′/α} : κ

E , χ; ∆ ` τ : κ E ` κ′

E ; ∆ ` (Λχ. τ) [κ′] ; τ{κ′/χ} : κ{κ′/χ}

E ; ∆ ` τ : κ→ κ′ α /∈ ftv(τ)

E ; ∆ ` λα :κ. τ α ; τ : κ→ κ′
E ; ∆ ` τ : ∀χ′. κ χ /∈ fkv(τ)

E ; ∆ ` Λχ. τ [χ] ; τ : ∀χ′. κ

E ; ∆ ` Typerec int of (τint; τ→; τ∀; τ∀+) : Ω

E ; ∆ ` Typerec int of (τint; τ→; τ∀; τ∀+) ; τint : Ω

E ; ∆, α :κ′ ` Typerec (τ α) of (τint; τ→; τ∀; τ∀+) ; τ ′ : Ω

E ; ∆ ` Typerec (∀∀ [κ′] τ) of (τint; τ→; τ∀; τ∀+)
; τ∀ [κ′] τ (λα :κ′. τ ′) : Ω

E ; ∆ ` Typerec τ1 of (τint; τ→; τ∀; τ∀+) ; τ ′1 : Ω
E ; ∆ ` Typerec τ2 of (τint; τ→; τ∀; τ∀+) ; τ ′2 : Ω

E ; ∆ ` Typerec ((→→) τ1 τ2) of (τint; τ→; τ∀; τ∀+)
; τ→ τ1 τ2 τ

′
1 τ
′
2 : Ω

E , χ; ∆ ` Typerec (τ [χ]) of (τint; τ→; τ∀; τ∀+) ; τ ′ : Ω

E ; ∆ ` Typerec (∀∀
+
τ) of (τint; τ→; τ∀; τ∀+) ; τ∀+ τ (Λχ. τ ′) : Ω

E ; ∆ ` Typerec (Place τ) of (τint; τ→; τ∀; τ∀+) : Ω

E ; ∆ ` Typerec (Place τ) of (τint; τ→; τ∀; τ∀+) ; τ : Ω

E ; ∆, α :Ω ` Typerec (τ (Placeα)) of (τint; τ→; τ∀; τ∀+) ; τ ′ : Ω

E ; ∆ ` Typerec (lu τ) of (τint; τ→; τ∀; τ∀+) ; lu (λα :Ω. τ ′) : Ω

Figure 4: SelectedλP+
i type reduction rules

typecase must bind a kind variable to the kind of the quantified
type variable. For that purpose we introduce kind abstraction

Λ
+
χ. v and kind applicatione [κ]

+
at the term level. To assign

types to these new constructs at the term level, we need a type

level construct∀
+
χ. τ that binds the kind variableχ in the type

τ . The formation rules are shown below.

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆; Γ ` e : ∀
+
χ. τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ{κ/χ}

Furthermore, since our goal is fully reflexive type analysis, we
need to analyze kind-polymorphic types as well. As with poly-

morphic types, we can represent the type∀
+
χ. τ as the applica-

tion of a type constructor∀∀
+

of kind (∀χ.Ω) → Ω to the type
Λχ. τ .

The Typerec operator is used for type analysis at the type
level. In fact, it allows primitive recursion at the type level. It
operates on types of kindΩ and returns a type of kindΩ (Fig-
ure 4). Depending on the head constructor of the type being an-
alyzed,Typerec chooses one of the branches. At theint type, it
returns theτint branch. At the function typeτ → τ ′, it applies
theτ→ branch to the componentsτ andτ ′, and to the results of
recursively processingτ andτ ′.

Typerec (τ → τ ′) of (τint; τ→; τ∀; τ∀+) ;

τ→ τ τ
′ (Typerec τ of (τint; τ→; τ∀; τ∀+))
(Typerec τ ′ of (τint; τ→; τ∀; τ∀+))

When analyzing a polymorphic type, the reduction rule is

Typerec (∀α :κ′. τ) of (τint; τ→; τ∀; τ∀+) ;

τ∀ [κ′] (λα :κ′. τ) (λα :κ′.Typerec τ of (τint; τ→; τ∀; τ∀+))

Sinceτ∀ must be parametric in the kindκ′ (to ensure termination,
there are no facilities for kind analysis in the language [13]), it
can only apply its second and third arguments to locally intro-
duced type variables of variable kind, instantiated toκ′ during
the analysis. We believe this restriction, which is crucial for pre-
serving strong normalization of the type language, is quite rea-
sonable in practice. For instanceτ∀ can yield a quantified type
based on the result of the analysis.

The reduction rule for analyzing a kind-polymorphic type is

Typerec (∀
+
χ. τ) of (τint; τ→; τ∀; τ∀+) ;

τ∀+ (Λχ. τ) (Λχ.Typerec τ of (τint; τ→; τ∀; τ∀+))

The ∀∀
+
-branch ofTyperec gets as arguments the body of the

quantified type and a kind function encapsulating the result of
the analysis on the body of the quantified type.

The treatment of recursive types is similar to that in the lan-
guageλQi of [13], but simplified. They are formed using thelu
constructor of kind(Ω → Ω) → Ω. Following ideas due to
Fegaras and Sheard [6], for the analysis of recursive types we in-
troduce a unary constructorPlace of kind Ω → Ω, which is not
intended for use by the programmer; the term language provides
no constructors to create a non-variable object of typePlace τ
for anyτ .

The simpler kind language ofλP+
i (in comparison withλQi)

comes at the price of restricting the result of the analysis of re-
cursive types by aTyperec to always be a recursive type. Thus
we avoid a problem arising when the analysis of a recursive type
yields a result unrelated to the analysis of its unfolding, described
further in Section 4.4.

Since the argument of thelu constructor has a negative oc-
currence of the kindΩ, this case must be handled differently.

4

typecase[τ] int of (eint; e→; e∀; e∀+; eµ) ; eint

typecase[τ] (τ1→τ2) of (eint; e→; e∀; e∀+; eµ) ; e→ [τ1][τ2]

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀ [κ]
+

[τ ′]

typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀+ [τ ′]

typecase[τ] (lu τ
′) of (eint; e→; e∀; e∀+; eµ) ; eµ [τ ′]

typecase[τ] (Place τ ′) of (eint; e→; e∀; e∀+; eµ) ;

typecase[τ] (Place τ ′) of (eint; e→; e∀; e∀+; eµ)

Figure 5: Selected term reduction rules ofλP+
i

Typerec does not act as an iterator for thelu constructor. In-
stead, it analyzes the body of the type with theµ-bound variable
protected under thePlace constructor. SincePlace is the right
inverse ofTyperec (Figure 4), the analysis terminates when it
reaches such a type variable.

Typerec (lu τ) of (τint; τ→; τ∀; τ∀+) ;

lu (λα :Ω.Typerec (τ (Placeα)) of (τint; τ→; τ∀; τ∀+))

In essence, we have made thelu constructor transparent to the
analysis. Operationally, the number of nestedlu constructors in
the type analyzed by aTyperec strictly decreases at every reduc-
tion involving lu, ensuring termination after a finite number of
steps.

The term expressions are mostly standard. We use the stan-
dard fold andunfold constructs to implement the isomorphism
between a recursive type and its unfolding. Type analysis at the
term level is performed using thetypecase operator. Since the
term level includes a fixed-point operator,typecase is not itera-
tive; it inspects a given typeτ ′ and passes its constituents to the
corresponding branch. The reduction rules fortypecase are in
Figure 5.

Existential types can be handled similarly to polymorphic
types. We define a type constructor∃∃ of kind ∀χ. (χ →
Ω) → Ω. The existential type∃α : κ. τ is then equivalent to
∃∃ [κ] (λα : κ. τ). Typerec andtypecase are augmented withτ∃
and e∃ branches respectively. The reduction rules are exactly
analogous to those for the polymorphic type.

To illustrate the type level analysis we will use theTyperec
operator to define the class of types admitting equality com-
parisons. We will extend the example in [7] to handle quan-
tified types. The type operatorEq : Ω → Ω, defined below,
maps function and polymorphic types to the typeVoid. (Here
Void ≡ ∀α : Ω. α is a type with no values). To make the exam-
ple more realistic, we extend the language with a product type
constructor (××) of the same kind as (→→). The type analysis con-
structs operate on the×× constructor in a manner similar to the
→→ constructor. For ease of presentation we use ML-style pattern

fix toString :∀α :Ω. α→ string.
= Λα :Ω.

typecase[λγ :Ω. γ → string] α of
int ⇒ intToString
string⇒ λx :string. x
×× ⇒ Λβ1 :Ω.Λβ2 :Ω. λx :β1 × β2.

toString [β1] (x.1) ˆ toString [β2] (x.2)
→→ ⇒ Λβ1 :Ω.Λβ2 :Ω. λx :β1 → β2. “function

′′

∀∀ ⇒ Λ
+
χ.Λβ :χ→ Ω. λx :∀∀ [χ]β. “polymorphic′′

∀∀
+

⇒ Λβ :∀χ.Ω. λx :∀∀
+
β. “kind polymorphic′′

lu ⇒ Λβ :Ω→ Ω. λx : luβ.
toString [β (luβ)] (unfold[β] x)

Figure 6: The function toString

matching syntax to define a type involvingTyperec: Instead of

t = λα :Ω.Typerec α of (τint; τ→; τ∀∀; τ∀+)
where τ→ = λα1 :Ω. λα2 :Ω. λα′1 :κ. λα′2 :κ. τ ′→

τ∀∀ = Λχ. λα :χ→ Ω. λα′ :χ→ κ. τ ′∀∀
τ∀+ = λα : (∀χ.Ω). λα′ : (∀χ. κ). τ ′

∀+

we write

t (int) = τint

t (α1 → α2) = τ ′→{t (α1), t (α2)/α′1, α
′
2}

t (∀∀ [χ]α) = τ ′∀∀{λα1 :χ. t (αα1)/α′}
t (∀∀

+
α) = τ ′

∀+
{Λχ. t (α [χ])/α′}

In this syntax theEq type operator is defined as:

Eq (int) = int
Eq (α1 × α2) = Eq (α1)× Eq (α2)
Eq (α1 → α2) = Void
Eq (∀∀ [χ]α) = Void

Eq (∀∀
+
α) = Void

Eq (luα) = lu (λα1 :Ω.Eq (α (Placeα1)))

where the last line of the definition is not under programmer con-
trol.

As an example of the term level analysis inλP+
i , consider

the functiontoString shown in Figure 6. This function uses the
type of a value to produce its string representation; we assume
having a nullary type constructorstring in the language. The
primitive function intToString converts an integer to its string
representation, and use ˆ to denote string concatenation.

The languageλP+
i has the following properties, with proofs

similar to those for the languageλPi in [13].

Proposition 3.1 (Strong Normalization) Reduction of well-
formed types is strongly normalizing.

Proposition 3.2 (Confluence)Reduction of well-formed types
is confluent.

Proposition 3.3 (Type Safety) If ` e :τ , then eithere is a value,
or there exists a terme′ such thate ; e′ and` e′ :τ .

5

3.1 Type analysis in λP+
i

In our previous work [13], we proposed the languageλQi which
supports the analysis of recursive types without any restrictions.
However, the resulting language gets complex and the translation
into a CWM framework is not clear. Therefore, type analysis in
λP+
i is restricted in two ways. First, theTyperec operator must

return a type of kindΩ. Second, the result of analyzing a recur-
sive type is always a recursive type. We believe that these restric-
tions do not reduce significantly the usefulness of the language
in practice.

The main purpose ofTyperec is to provide types totypecase
terms; every branch of theTyperec types the corresponding
branch of thetypecase. Since the type of a term is always of
kind Ω, the result of theTyperec must also be of kindΩ. Thus,
in practice, aTyperec will be employed to form types of kindΩ.

In some cases aTyperec is used to enforce typing
constraints—for example, in the case of polymorphic equality
above, aTyperec was used to express the constraint that the set
of equality types does not include function or polymorphic types.
In these cases theTyperec merely verifies that an input type is
well-formed, while preserving its structure. This means that the
Typerec will map a recursive type into a recursive type.

Other applications of type analysis also follow this pattern.
Consider a copying garbage collector [14]. Its copying function
would use aTyperec to express that data from a particular region
has been copied into a different region. Since the structure of the
data remains the same after being copied, a recursive type would
still be mapped into a recursive type. The same holds true while
flattening tuples. Flattening involves traversing the input type
tree, and converting every tuple into the corresponding flattened
type; therefore, the structure of the input type is preserved.

Our language allows the analysis of recursive types within
both the term language and the type language, but combining
them is subject to severe limitations. For instance, one can write
a polymorphic printer that analyses types at runtime, and one
can write a type operator, likeEq, to enforce invariants at the
type level. However, it is not possible to write a polymorphic
equality function that analyzes types at runtime and has the type
∀α :Ω.Eqα→ Eqα→ bool. The reason is that when the recur-
sive typeEq (luτ) is unfolded, the result isEq (τ (Place (luτ))).
The equality function must now analyze the typeτ (Place (luτ)),
which requires it to analyze aPlace type. However, no useful
term can be provided in the corresponding branch oftypecase.
This problem does not affect thelu-free segment of the language
and its translation.

4 The target language λPR

Figure 7 shows the syntax of theλPR language, the target of our
translation, which reflects type information at the term level in
preparation for type erasure. To make the presentation simpler,
we will describe many of the features ofλPR in the context of the
translation fromλP+

i .

(kinds) κ ::= Ω | T | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+
| lu | Pl | R

| Tint | T→ | T∀ | T∀+ | Tµ | Tpl | TR
| α | Λχ. τ | τ [κ] | λα :κ. τ | τ τ ′
| Tagrec τ of (τint; τ→; τ∀; τ∀+; τR)

(values) v ::= i | Λ
+
χ. v | Λα :κ. v | λx :τ. e | fixx :τ. v

| fold[τ] v
| Rint | R→ | R→ [τ] | R→ [τ] v
| R→ [τ] v [τ ′] | R→ [τ] v [τ ′] v′

| R∀ | R∀ [κ]
+
| R∀ [κ]

+
[τ] | R∀ [κ]

+
[τ] [τ ′]

| R∀ [κ]
+

[τ] [τ ′] v
| R∀+ | R∀+ [τ] | R∀+ [τ] v
| Rµ | Rµ [τ] | Rµ [τ] v
| Rpl | Rpl [τ] | Rpl [τ] v
| RR | RR [τ] | RR [τ] v

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| fold[τ] e | unfold[τ] e
| repcase[τ] e of (eint; e→; e∀; e∀+; eR; eµ; epl)

Figure 7: Syntax of theλPR language

4.1 The analyzable components in λPR

In λPR, the type calculus is split into types and tags: While types
classify terms, tags are used for analysis. We extend the kind
language to distinguish between the two: KindΩ is assigned to
types, while kindT is assigned to tags. For every constructor
yielding a type of kindΩ we have a corresponding constructor
that generates a tag of kindT; for example,Tint corresponds to
int andT→ corresponds to→→. The type analysis construct at the
type level isTagrec, which operates only on tags.

At the term level, we add representations for tags. The term
level operator (now calledrepcase) analyzes these representa-
tions. All the primitive tags have corresponding term level rep-
resentations; for example,Tint is represented byRint. Given any
tag, the corresponding term representation can be constructed in-
ductively.

4.2 Typing term representations

The type calculus inλPR includes a unary type constructorR of
kind T → Ω to type the term level representations. Given a
tagτ (of kind T), the term representation ofτ has the typeRτ .
For example,Rint has the typeRTint. Semantically,Rτ is in-
terpreted as a singleton type that is inhabited only by the term
representation ofτ [3].

The functionality ofR is generalized at higher kinds byRκ,
a type function of kindκ→ Ω, such thatRκ τ is the type of the
term representation for typeτ of kindκ. For instance, if the tagτ
is of a function kindκ→ κ′, then the term representation ofτ is

6

|Ω| = T |κ→ κ′| = |κ| → |κ′|
|χ| = χ |∀χ. κ| = ∀χ. (χ→ Ω)→ |κ|

Figure 8: Translation ofλP+
i kinds toλPR kinds

a polymorphic function from representations to representations:

Rκ→κ′ τ ≡ ∀β :κ.Rκ β → Rκ′ (τ β)

However a problem arises ifτ is of a variable kindχ. The only
way of knowing the type of its representationRχ is to construct
it when χ is instantiated. Hence programs translated intoλPR
must be such that for every kind variableχ in the program, a
corresponding type variableαχ, representing the type of the term
representation for a tag of kindχ, is also available.

In comparison, the source language of CWM [3] does not in-
clude kind polymorphism, which means that the types of all rep-
resentations are known statically. We need to extend the frame-
work with types of representations of variable kinds.

Consider for instance the type∀∀ [κ] τ in λP+
i . The∀∀ branch

of a typecase construct must reduce to an abstractionΛ
+
χ.Λα :

χ → Ω. e. After translation toλPR, in order to compute the type
of the representation ofα in e, we need to know the type of the
representations of types of kindχ. Therefore this type must be
passed as an extra argument to the∀∀ branch, which means it
must be “packed” together withκ andτ using the translated∀∀
constructor. Thus, if mapped to a constructor for kindΩ in λPR,
its kind would be∀χ. (χ → Ω) → (χ → Ω) → Ω, adding a
parameter of kindχ→ Ω associated with the kind variableχ. A

similar situation arises with∀∀
+
, only this time with an unpleasant

twist: The kind of the translated constructor must be(∀χ. (χ →
Ω) → Ω) → Ω, in which there is a double-negative occurrence
of Ω, makingΩ non-inductive.

To preserve the inductive structure of the kinds, we split the
type calculus into types and tags. The new constructorT∀+ is
of kind (∀χ. (χ → Ω) → T) → T, which does not suffer
from negative occurrences sinceΩ is defined independently of
T. Type analysis is restricted to tags since they carry the infor-
mation needed to reconstruct the types of representations.

This leads us to the kind translation fromλP+
i to λPR (Fig-

ure 8). Since the analysis inλPR is on kindT, theλP+
i kind Ω

is mapped toT. The polymorphic kind∀χ. κ is translated to
∀χ. (χ → Ω) → |κ|. Note that every kind variableχ must now
have a corresponding type variableαχ of kindχ→ Ω, providing
the type of term representations for types of kindχ.

Lemma 4.1 |κ{κ′/χ}| = |κ|{|κ′|/χ}

Proof By induction over the structure ofκ. 2

Figure 9 shows the functionRκ. Supposeτ is aλP+
i type of

kind κ and|τ | is its translation intoλPR. The functionRκ gives
the type of the term representation of|τ |. Since this function is
used by the translation fromλP+

i toλPR, it is defined by induction
onλP+

i kinds.

E ` ∆

E ; ∆ ` RΩ ≡ R : T→ Ω

E ; ∆ ` αχ : χ→ Ω

E ; ∆ ` Rχ ≡ αχ : χ→ Ω

E ; ∆ ` Rκ ≡ τ : |κ| → Ω E ; ∆ ` Rκ′ ≡ τ ′ : |κ′| → Ω

E ; ∆ ` Rκ→κ′ ≡ λα : |κ→ κ′|.∀β : |κ|. τ β → τ ′ (αβ)
: |κ→ κ′| → Ω

E , χ; ∆, αχ :χ→ Ω ` Rκ ≡ τ : |κ| → Ω

E ; ∆ ` R∀χ. κ ≡ λα : |∀χ. κ|.∀
+
χ.∀αχ :χ→ Ω. τ (α [χ]αχ)

: |∀χ. κ| → Ω

Figure 9: Types of representations at higher kinds

Lemma 4.2 (Rκ){|κ′|, Rκ′/χ′, αχ′} = Rκ{κ′/χ′}

Proof By induction over the structure ofκ. 2

The formation rules for tags are displayed in Figure 10. Since
the translation mapsλP+

i type constructors to these tags, a type
constructor of kindκ is mapped to a corresponding tag of kind
|κ|. Thus, while the∀∀ type constructor has the kind∀χ. (χ →
Ω)→ Ω, theT∀ tag has the kind∀χ. (χ→ Ω)→ (χ→ T)→
T.

Figure 10 also shows the type of the term representation
of the primitive type constructors. These types agree with the
definition of the functionRκ; for example, the type ofR→ is
RΩ→Ω→Ω (T→). The term formation rules in Figure 10 use a
tag interpretation functionF that is explained in Section 4.4.

4.3 Tag analysis in λPR

We now consider the tag analysis constructs in more detail.
The term level analysis is done by therepcase construct. Fig-
ures 10 and 11 show its static and dynamic semantics respec-
tively. The expression being analyzed must be of typeRτ ; there-
fore, repcase always analyzes term representation of tags. Oper-
ationally, it selects a branch according to the top constructor of
the representation, and passes the components of the representa-
tion to it.

Type level analysis is performed by theTagrec construct.
The language must be fully reflexive, soTagrec includes an ad-
ditional branch for the new type constructorTR . Since only the
kind of Tµ contains the kindT in a doubly-negative position
(Figure 10), we can defineTagrec as an iterator over the kind
T, and treatTµ specially (like thelu constructor inλP+

i).

Figure 12 shows the reduction rules for theTagrec, which are
similar to the reduction rules for the source languageTyperec:
given a tag, it recurses on the components of the tag and then
passes the result of the recursive calls, along with the original
components, to the corresponding branch. Recursive tags are
handled in a manner similar to recursive types inλP+

i . The re-
sult is constrained to be a recursive tag. The analysis proceeds
directly to the body of the tag function, with the bound variable
protected under aTpl tag, which is the right inverse ofTagrec.

The reduction rules also include a rule for thePl constructor.
ThePl constructor is used to handle recursive tags in theF func-

7

Type formation E ; ∆ ` τ : κ

E ` ∆

E ; ∆ ` R : T→ Ω
E ; ∆ ` Pl : Ω→ T
E ; ∆ ` Tint : T
E ; ∆ ` T→ : T→ T→ T
E ; ∆ ` T∀ : ∀χ. (χ→ Ω)→ (χ→ T)→ T
E ; ∆ ` T∀+ : (∀χ. (χ→ Ω)→ T)→ T
E ; ∆ ` Tµ : (T→ T)→ T
E ; ∆ ` Tpl : T→ T
E ; ∆ ` TR : T→ T

E ; ∆ ` τ : T
E ; ∆ ` τint : T
E ; ∆ ` τ→ : T→ T→ T→ T→ T
E ; ∆ ` τ∀ : ∀χ. (χ→ Ω)→ (χ→ T)→ (χ→ T)→ T
E ; ∆ ` τ∀+ : (∀χ. (χ→ Ω)→ T)→ (∀χ. (χ→ Ω)→ T)→ T
E ; ∆ ` τR : T→ T→ T

E ; ∆ ` Tagrec τ of (τint; τ→; τ∀; τ∀+; τR) : T

Term formation E ; ∆; Γ ` e : τ

E ; ∆ ` Γ

E ; ∆; Γ ` Rint : RTint

E ; ∆; Γ ` R→ : RΩ→Ω→Ω (T→)
E ; ∆; Γ ` R∀ : R∀χ. (χ→Ω)→Ω (T∀)
E ; ∆; Γ ` R∀+ : R(∀χ.Ω)→Ω (T∀+)
E ; ∆; Γ ` RR : RΩ→Ω (TR)
E ; ∆; Γ ` Rµ : R(Ω→Ω)→Ω (Tµ)
E ; ∆; Γ ` Rpl : RΩ→Ω (Tpl)

E ; ∆ ` τ : T→ T E ; ∆; Γ ` e : F (τ (Tµ τ))

E ; ∆; Γ ` fold[τ] e : F (Tµ τ)

E ; ∆ ` τ : T→ T E ; ∆; Γ ` e : F (Tµ τ)

E ; ∆; Γ ` unfold[τ] e : F (τ (Tµ τ))

E ; ∆ ` τ : T→ Ω
E ; ∆; Γ ` e : Rτ ′

E ; ∆; Γ ` eint : τ Tint

E ; ∆; Γ ` e→ : ∀α1 :T. Rα1 → ∀α2 :T. Rα2 → τ (T→ α1 α2)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀αχ :χ→ Ω.
∀α :χ→ T. Rχ→Ω (α)→ τ (T∀ [χ]αχ α)

E ; ∆; Γ ` e∀+ : ∀α :∀χ. (χ→ Ω)→ T. R∀χ.Ω (α)→ τ (T∀+α)
E ; ∆; Γ ` eR : ∀α :T. Rα→ τ (TR α)
E ; ∆; Γ ` eµ : ∀α :T→ T. RΩ→Ω (α)→ τ (Tµ α)
E ; ∆; Γ ` epl : ∀α :T. Rα→ τ (Tpl α)

E ; ∆; Γ ` repcase[τ] e of (eint; e→; e∀; e∀+; eR; eµ; epl) : τ τ ′

Figure 10: Formation rules for the new constructs inλPR

repcase[τ] Rint of (eint; e→; e∀; e∀+; eR; eµ; epl) ; eint

repcase[τ] R→ [τ1] (e1) [τ2] (e2) of
(eint; e→; e∀; e∀+; eR; eµ; epl) ; e→ [τ1] (e1) [τ2] (e2)

repcase[τ] R∀ [κ]
+

[τκ] [τ ′] (e′) of

(eint; e→; e∀; e∀+; eR; eµ; epl) ; e∀ [κ]
+

[τκ] [τ ′] (e′)

repcase[τ] R∀+ [τ ′] (e′) of (eint; e→; e∀; e∀+; eR; eµ; epl) ;

e∀+ [τ ′] (e′)

repcase[τ] RR [τ ′] (e′) of (eint; e→; e∀; e∀+; eR; eµ; epl) ;

eR [τ ′] (e′)

repcase[τ] Rµ [τ ′] e′ of (eint; e→; e∀; e∀+; eR; eµ; epl) ;

eµ [τ ′] (e′)

repcase[τ] Rpl [τ ′] (e′) of (eint; e→; e∀; e∀+; eR; eµ; epl) ;

epl [τ ′] (e′)

Figure 11: Selected term reduction rules ofλPR

tion (Section 4.4). This constructor is again an implementation
artifact inλPR and has no counterpart in the source language. Its
reduction rule will never be used in a program translated from
λP+
i .

4.4 The tag interpretation function

Programs inλPR pass tags at runtime since only tags can be ana-
lyzed. However, abstractions and the fixpoint operator must still
carry type information for type checking. Therefore, these anno-
tations must be defined using a function mapping tags to types.
Since these annotations are always of kindΩ, this function must
be of kindT→ Ω. We can use an iterator over tags to define the
function as follows:

F (Tint) = int
F (T→ τ1 τ2) = F (τ1)→ F (τ2)
F (T∀ [χ]αχ τ) = ∀α :χ. αχ α→ F (τ α)
F (T∀+ τ) = ∀χ.∀αχ :χ→ Ω.F (τ [χ]αχ)
F (Tµ τ) = lu(λα :Ω.F (τ (Plα)))
F (Pl τ) = τ
F (TR τ) = int
F (Tpl τ) = int

The functionF takes a type of kindT and converts it to the cor-
responding type of kindΩ. The branches for theTR and theTpl
tags are bogus but of the correct kind. The languageλPR is only
intended as a target for translation fromλP+

i —the only inter-
esting programs inλPR are the ones translated fromλP+

i ; there-
fore, theTR branch ofF will remain unused. Similarly, since the
source language hides thePlace constructor completely from the
programmer, it does not appear inλP+

i programs; hence theTpl
branch ofF will also remain unused.

The type interpretation function has the following properties.

Lemma 4.3 (F (τ)){τ ′/α} = F (τ{τ ′/α})

8

E ; ∆ ` Tagrec Tint of (τint; τ→; τ∀; τ∀+; τR) : T

E ; ∆ ` Tagrec Tint of (τint; τ→; τ∀; τ∀+; τR) ; τint : T

E ; ∆ ` Tagrec τ1 of (τint; τ→; τ∀; τ∀+; τR) ; τ ′1 : T
E ; ∆ ` Tagrec τ2 of (τint; τ→; τ∀; τ∀+; τR) ; τ ′2 : T

E ; ∆ ` Tagrec (T→ τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR) ;

τ→ τ1 τ2 τ
′
1 τ
′
2 : T

E ; ∆, α :κ′ ` Tagrec (τ2 α) of (τint; τ→; τ∀; τ∀+; τR) ;

τ ′ : T

E ; ∆ ` Tagrec (T∀ [κ′] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR) ;

τ∀ [κ′] τ1 τ2 (λα :κ′. τ ′) : T

E , χ; ∆, αχ :χ→ Ω `
Tagrec (τ [χ]αχ) of (τint; τ→; τ∀; τ∀+; τR) ; τ ′ : T

E ; ∆ ` Tagrec (T∀+ τ) of (τint; τ→; τ∀; τ∀+; τR) ;

τ∀+ τ (Λχ. λαχ :χ→ Ω. τ ′) : T

E ; ∆ ` Tagrec τ of (τint; τ→; τ∀; τ∀+; τR) ; τ ′ : T

E ; ∆ ` Tagrec (TRτ) of (τint; τ→; τ∀; τ∀+; τR) ;

τR τ τ
′ : T

E ; ∆, α :T `
Tagrec (τ (Tpl α)) of (τint; τ→; τ∀; τ∀+; τR) ; τ ′ : T

E ; ∆ ` Tagrec (Tµ τ) of (τint; τ→; τ∀; τ∀+; τR) ;

Tµ (λα :T. τ ′) : T

E ; ∆ ` Tagrec (Tpl τ) of (τint; τ→; τ∀; τ∀+; τR) : T

E ; ∆ ` Tagrec (Tpl τ) of (τint; τ→; τ∀; τ∀+; τR) ; τ : T

E ; ∆ ` Tagrec (Pl τ) of (τint; τ→; τ∀; τ∀+; τR) : T

E ; ∆ ` Tagrec (Pl τ) of (τint; τ→; τ∀; τ∀+; τR) ; Pl τ : T

Figure 12: Reduction rules forλPR Typerec

Proof Follows from the fact that none of the branches ofF has
free type variables. 2

Lemma 4.4 (F (τ)){κ/χ} = F (τ{κ/χ})

Proof Follows from the fact that none of the branches ofF has
free kind variables. 2

The languageλPR has the following properties.

Proposition 4.5 (Type Reduction) Reduction of well formed
types is strongly normalizing and confluent.

Proposition 4.6 (Type Safety) If ` e :τ , then eithere is a value,
or there exists a terme′ such thate ; e′ and` e′ :τ .

Note that the rules forfold andunfold in Figure 10 unfold a
recursive type (of kindT) under the tag interpretation function.
If we allowed aTyperec, and therefore aTagrec, to have user-
defined result for the analysis of recursive types, this would have

|α| = α

|int|= Tint |Λχ. τ |= Λχ. λαχ :χ→ Ω. |τ |
|→→|= T→ |τ [κ]|= |τ | [|κ|]Rκ
|∀∀| = T∀ |λα :κ. τ |=λα : |κ|. |τ |

|∀∀
+
| =T∀+ |τ τ ′|= |τ | |τ ′|
|µ| = Tµ |Place|=Tpl

|Typerec τ of (τint; τ→; τ∀; τ∀+)| =
Tagrec |τ | of (|τint|; |τ→|; |τ∀|; |τ∀+|; λ :T. λ :T. |τint|)

Figure 13: Translation ofλP+
i types toλPR tags

allowed one to write type functions like

τ = λα :T.Tagrec α of (. . . ; Tµ ⇒ Tint)

with the property thatF (τ (Tµ τ)) = int, butF (Tµ τ) = lu (λα :
Ω. α), breaking the type safety theorem.

5 Translation from λP+
i to λPR

In this section, we show a translation fromλP+
i to λPR. The lan-

guages differ mainly in two ways. First, the type calculus inλPR
is split into tags and types, with types used solely for type check-
ing and tags used for analysis. Therefore, type passing inλP+

i

will get converted into tag passing inλPR. Second, thetypecase
operator inλP+

i must be converted into arepcase operating on
term representation of tags.

Figure 13 shows the translation ofλP+
i types intoλPR tags.

The primitive type constructors get translated into the corre-
sponding tag constructors. TheTyperec gets converted into a
Tagrec. The translation inserts an arbitrarily chosen well-kinded
result into the branch for theTR tag since the source contains no
such branch.

The term translation is shown in Figure 14. The translation
must maintain two invariants. First, for every kind variableχ in
scope, it adds a corresponding type variableαχ; this variable
gives the type of the term representation for a tag of kindχ.
At every kind application, the translation uses the functionRκ
(Figure 9) to compute this type. Thus, the translations of kind
abstractions and kind applications are

|Λ
+
χ. v| = Λ

+
χ.Λαχ :χ→ Ω. |v| |e [κ]

+
| = |e| [|κ|]

+
[Rκ]

Second, for every type variableα in scope, a term variablexα is
introduced, providing the corresponding term representation of
α. At every type application, the translation uses the function
<(τ) (Figure 15) to construct this representation. Furthermore,
type application gets replaced by an application to a tag, and to
the term representation of the tag. Thus the translations for type
abstractions and type applications are

|Λα :κ. v| = Λα : |κ|. λxα :Rκ α. |v| |e [τ]| = |e| [|τ |]<(τ)

As pointed out before, the translations of abstraction and the
fixpoint operator use the tag interpretation functionF to map tags
to types.

9

|i| = i

|x| = x

|Λ
+
χ. v| = Λ

+
χ.Λαχ :χ→ Ω. |v|

|e [κ]
+
| = |e| [|κ|]

+
[Rκ]

|Λα :κ. v| = Λα : |κ|. λxα :Rκ α. |v|
|e [τ]| = |e| [|τ |]<(τ)

|λx :τ. e| = λx :F |τ |. |e|
|e e′| = |e| |e′|

|fixx :τ. v| = fixx :F |τ |. |v|
|fold[τ] e| = fold[|τ |] |e|

|unfold[τ] e| = unfold[|τ |] |e|
|typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ)|

= repcase[λα :T.F (|τ |α)] <(τ ′) of
Rint ⇒|eint|
R→⇒|e→|
R∀ ⇒|e∀|
R∀+⇒|e∀+|
RR ⇒Λβ :T. λx :Rβ. fixx :F (|τ | (TR β)). x
Rµ ⇒|eµ|
Rpl ⇒Λβ :T. λx :Rβ. fixx :F (|τ | (Tpl β)). x

Figure 14: Translation ofλP+
i terms toλPR terms

We show the term representation of types in Figure 15. The
primitive type constructors get translated to the corresponding
term representation. The representations of type and kind func-
tions are similar to the term translation of type and kind abstrac-
tions. The only involved case is the term representation of a
Typerec. SinceTyperec is recursive, we use a combination of
a repcase and afix. We will illustrate only one case here; the
other cases can be reasoned about similarly.

Consider the reduction ofTy (τ ′ → τ ′′), whereTy τ stands
for Typerec τ of (τint; τ→; τ∀; τ∀+). This type reduces to
τ→ τ

′ τ ′′ (Ty (τ ′)) (Ty (τ ′′)) . Therefore, in the translation, the
term representation ofτ→ must be applied to the term repre-
sentations ofτ ′, τ ′′, and the result of the recursive calls to the
Typerec. The representations ofτ ′ andτ ′′ are bound to the vari-
ablesxα andxβ ; by assumption the representations for the re-
sults of the recursive calls are obtained from the recursive calls
to the functionf.

In the following propositions the originalλP+
i kind environ-

ment∆ is extended with a kind environment∆(E) which binds
a type variableαχ of kind χ → Ω for eachχ ∈ E . Similarly
the term-level translations extend the type environmentΓ with
Γ(∆), binding a variablexα of typeRκ α for each type variable
α bound in∆ with kind κ.

Proposition 5.1 If E ; ∆ ` τ : κ holds in λP+
i , then

|E|; |∆|, ∆(E) ` |τ | : |κ| holds inλPR.

Proof Follows directly by induction over the structure ofτ . 2

Proposition 5.2 If E ; ∆ ` τ : κ andE ; ∆ ` Γ hold in λP+
i ,

then|E|; |∆|, ∆(E); |Γ|, Γ(∆) ` <(τ) : Rκ |τ | holds inλPR.

<(int) = Rint

<(→→) = Λα :T. λxα :Rα.Λβ :T. λxβ :Rβ.
R→ [α] (xα) [β] (xβ)

<(∀∀) = Λ
+
χ.Λαχ :χ→ Ω.Λα :χ→ T. λxα :Rχ→Ω (α).

R∀ [χ]
+

[αχ] [α] (xα)

<(∀∀
+
) = Λα : (∀χ. (χ→ Ω)→ T). λxα :R∀χ.Ω (α).

R∀+ [α] (xα)
<(lu) = Λα :T→ T. λαx :RΩ→Ω (α).Rµ [α] (xα)

<(Place) = Λα :T. λxα :Rα.Rpl [α] (xα)

<(α) = xα

<(Λχ. τ) = Λ
+
χ.Λαχ :χ→ Ω.<(τ)

<(τ [κ]) = <(τ) [|κ|]
+

[Rκ]

<(λα :κ. τ) = Λα : |κ|. λxα :Rκ α.<(τ)

<(τ τ ′) = <(τ) [|τ ′|] (<(τ ′))

<(Typerec τ of (τint; τ→; τ∀; τ∀+)) =
(fix f :∀α :T. Rα→ R (τ∗ α).

Λα :T. λxα :Rα.
repcase[λα :T. R (τ∗ α)] xα of

Rint ⇒<(τint)
R→⇒Λα :T. λxα :Rα.Λβ :T. λxβ :Rβ.

<(τ→) [α] (xα) [β] (xβ)
[τ∗ α] (f [α]xα) [τ∗ β] (f [β]xβ)

R∀ ⇒Λ
+
χ.Λαχ :χ→ Ω.Λα :χ→ T. λxα :Rχ→Ω (α).

<(τ∀) [χ]
+

[αχ] [α] (xα) [λβ :χ. τ∗ (αβ)]
(Λβ :χ. λxβ :αχ β. f [αβ] (xα [β]xβ))

R∀+⇒Λα : (∀χ. (χ→ Ω)→ T). λxα :R∀χ.Ω (α).
<(τ∀+) [α] (xα) [Λχ. λαχ :χ→ Ω. τ∗ (α [χ]αχ)]

(Λ
+
χ.Λαχ :χ→ Ω. f [α [χ]αχ] (xα [χ]

+
[αχ]))

RR ⇒Λα :T. λxα :Rα.<(τint)
Rµ ⇒Λα :T→ T. λxα :RΩ→Ω (α).

Rµ [λβ :T. τ∗ (α (Tpl β))]
(Λβ :T. λxβ :Rβ.

f [α (Tpl β)] (xα [Tpl β] (Rpl [β] (xβ))))
Rpl ⇒Λα :T. λxα :Rα. xα)

[|τ |]
<(τ)

where
τ∗ = |λα :Ω.Typerec α of (τint; τ→; τ∀; τ∀+)|

Figure 15: Representation ofλP+
i types asλPR terms

Proof By induction over the structure ofτ . The only inter-
esting case is that of a kind application which uses Lemma 4.2.
2

Proposition 5.3 If E ; ∆; Γ ` e : τ holds in λP+
i , then

|E|; |∆|, ∆(E); |Γ|, Γ(∆) ` |e| : F |τ | holds inλPR.

Proof This is proved by induction over the structure ofe, using
Lemmas 4.3 and 4.4. 2

10

(values) v ::= i | λx.e | fixx.v | fold v
| Rint | R→ | R→ 1 | R→ 1 v
| R→ 1 v 1 | R→ 1 v 1 v′

| R∀ | R∀ 1 | R∀ 1 1 | R∀ 1 1 1
| R∀ 1 1 1 v
| R∀+ | R∀+ 1 | R∀+ 1 v
| Rµ | Rµ 1 | Rµ 1 v
| Rpl | Rpl 1 | Rpl 1 v
| RR | RR 1 | RR 1 v

(terms) e ::= v | x | e e′ | fold e | unfold e
| repcase e of (eint; e→; e∀; e∀+; eR; eµ; epl)

Figure 16: Syntax of the untyped languageλPR
◦

i◦ = i

(Λ
+
χ. v)

◦
= λ .v◦

(Λα :κ. v)◦ = λ .v◦

(λx :τ. e)◦ = λx.e◦

(fixx :τ. v)◦ = fixx.v◦

(fold[τ] e)◦ = fold e◦

(unfold[τ] e)◦ = unfold e◦

(e [κ]
+
)
◦

= e◦ 1

(e [τ])◦ = e◦ 1

(e e1)◦ = e◦ e1
◦

Rint
◦ = Rint

R→
◦ = R→

(R→ [τ])◦ = R→ 1

(R→ [τ] e)◦ = R→ 1 e◦

(R→ [τ] e [τ ′])
◦

= R→ 1 e◦ 1

(R→ [τ] e [τ ′] e1)
◦

=
R→ 1 e◦ 1 e1

◦

R∀
◦ = R∀

(R∀ [κ]
+
)
◦

= R∀ 1

(R∀ [κ]
+

[τ])
◦

= R∀ 1 1

(R∀ [κ]
+

[τ] [τ ′])
◦

= R∀ 1 1 1

(R∀ [κ]
+

[τ] [τ ′] e)
◦

= R∀ 1 1 1 e◦

R∀+
◦ = R∀+

(R∀+ [τ])◦ = R∀+ 1

(R∀+ [τ] e)◦ = R∀+ 1 e◦

Rµ
◦ = Rµ

(Rµ [τ])◦ = Rµ 1

(Rµ [τ] e)◦ = Rµ 1 e◦

Rpl
◦ = Rpl

(Rpl [τ])◦ = Rpl 1

(Rpl [τ] e)◦ = Rpl 1 e◦

RR
◦ = RR

(RR [τ])◦ = RR 1

(RR [τ] e)◦ = RR 1 e◦

(repcase[τ] e of (eint; e→; e∀; e∀+; eR; eµ; epl))
◦ =

repcase e◦ of (eint
◦; e→

◦; e∀
◦; e∀+

◦; eR
◦; eµ

◦; epl
◦)

Figure 17: Translation ofλPR to λPR
◦

6 The untyped language

This section shows that inλPR types are not necessary for com-
putation. Figure 16 shows an untyped languageλPR

◦
. We show a

translation fromλPR to λPR
◦

in Figure 17. The expression1 is the
integer constant one.

The translation replaces type and kind applications (abstrac-
tions) by a dummy application (abstraction), instead of erasing
them. In the typed language, a type or a kind can be applied to
a fixpoint. This results in an unfolding of the fixpoint. There-
fore, the translation inserts dummy applications to preserve this
unfolding.

The untyped language has the following property which
shows that term reduction inλPR

◦
parallels term reduction inλPR.

Proposition 6.1 If e ;∗ e1, thene◦ ;∗ e1
◦.

7 Related work and conclusions

Our work closely follows the framework proposed in Craryet
al. [3]. They consider a language with analyzes over types with
no binding structure. Extending the analysis to arbitrary types
makes the translation much more complicated. The splitting of
the type calculus into types and tags, and defining an interpre-
tation function to map between the two, is related to the ideas
proposed by Crary and Weirich for the language LX [2], which
provides a powerful kind calculus and a construct for primitive
recursion over types. This allows the user to define new kinds
and recursive operations over types of these kinds.

This framework also resembles the dictionary passing style in
Haskell [12]. The term representation of a type may be viewed
as corresponding to the dictionary for that type (for some class).
However, the authors consider dictionary passing in an untyped
calculus; moreover, they do not consider the intensional analysis
of types. Duboiset al. [4] also pass explicit type representations
in their extensional polymorphism scheme. However, they do
not provide a mechanism for connecting a type to its represen-
tation. Minamide’s [8] type-lifting procedure is also related to
our work. His procedure maintains interrelated constraints be-
tween type parameters; however, his language does not support
intensional type analysis.

Duggan [5] proposes another framework for intensional type
analysis. His system allows for the analysis of types at the term
level only. It adds a facility for defining type classes and al-
lows type analysis to be restricted to members of such classes.
Yang [15] presents some approaches to enable type-safe pro-
gramming of type-indexed values in ML which is similar to term
level analysis of types. Aspinall [1] studied a typedλ-calculus
with subtypes and singleton types.

Necula [11] proposed the idea of a certifying compiler and
showed the construction of a certifying compiler for a type-safe
subset ofC. Morrisettet al. [10] showed that a fully type pre-
serving compiler generating type safe assembly code is a practi-
cal basis for a certifying compiler.

We have presented a framework that supports the analysis
of arbitrary source language types; while the handling of poly-
morphic and existential types appears adequate, problems remain
open in the treatment of recursive types in our source language.
The framework does not rely on explicit type passing; instead,
term level representations of types are passed at runtime. This
allows the use of term level constructs to handle type informa-
tion at runtime.

Acknowledgements

We are grateful to the anonymous referees for their insightful
comments and suggestions on improving the presentation.

References

[1] D. Aspinall. Subtyping with singleton types. InProc. 1994 CSL.
Springer Lecture Notes in Computer Science, 1995.

11

[2] K. Crary and S. Weirich. Flexible type analysis. InProc. 1999 ACM
SIGPLAN International Conference on Functional Programming,
pages 233–248. ACM Press, Sept. 1999.

[3] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism
in type-erasure semantics. InProc. 1998 ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 301–312.
ACM Press, Sept. 1998.

[4] C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism.
In Proc. 22nd Annual ACM Symp. on Principles of Programming
Languages, pages 118–129. ACM Press, 1995.

[5] D. Duggan. A type-based semantics for user-defined marshalling
in polymorphic languages. In X. Leroy and A. Ohori, editors,Proc.
1998 International Workshop on Types in Compilation, volume
1473 ofLNCS, pages 273–298, Kyoto, Japan, Mar. 1998. Springer-
Verlag.

[6] L. Fegaras and T. Sheard. Revisiting catamorphism over datatypes
with embedded functions. In23rd Annual ACM Symp. on Princi-
ples of Programming Languages, pages 284–294. ACM Press, Jan.
1996.

[7] R. Harper and G. Morrisett. Compiling polymorphism using inten-
sional type analysis. InProc. 22nd Annual ACM Symp. on Princi-
ples of Programming Languages, pages 130–141. ACM Press, Jan.
1995.

[8] Y. Minamide. Full lifting of type parameters. Technical report,
RIMS, Kyoto University, 1997.

[9] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conver-
sion. InProc. 23rd Annual ACM Symp. on Principles of Program-
ming Languages, pages 271–283. ACM Press, 1996.

[10] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. InProc. 25th Annual ACM Symp. on
Principles of Programming Languages, pages 85–97. ACM Press,
Jan. 1998.

[11] G. C. Necula.Compiling with Proofs. PhD thesis, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA, Sept.
1998.

[12] J. Peterson and M. Jones. Implementing type classes. InProc.
ACM SIGPLAN Conf. on Programming Language Design and Im-
plementation, pages 227–236. ACM Press, June 1993.

[13] V. Trifonov, B. Saha, and Z. Shao. Fully reflexive intensional type
analysis. InProc. 2000 ACM SIGPLAN International Conference
on Functional Programming. ACM Press, 2000.

[14] D. Wang and A. Appel. Safe garbage collection = regions + inten-
sional type analysis. Technical report, Dept. of Computer Science,
Princeton University, July 1999.

[15] Z. Yang. Encoding types in ML-like languages. InProc. 1998 ACM
SIGPLAN International Conference on Functional Programming,
pages 289–300. ACM Press, 1998.

12

