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Abstract
Garbage-collected languages such as Java and C# are becoming
more and more widely used in both high-end software and real-
time embedded applications. The correctness of the GC implemen-
tation is essential to the reliability and security of a large portion
of the world’s mission-critical software. Unfortunately, garbage
collectors—especially incremental and concurrent ones—are ex-
tremely hard to implement correctly. In this paper, we present a
new uniform approach to verifying the safety of both a mutator
and its garbage collector in Hoare-style logic. We define a formal
garbage collector interface general enough to reason about a variety
of algorithms while allowing the mutator to ignore implementation-
specific details of the collector. Our approach supports collectors
that require read and write barriers. We have used our approach
to mechanically verify assembly implementations of mark-sweep,
copying and incremental copying GCs in Coq, as well as sample
mutator programs that can be linked with any of the GCs to produce
a fully-verified garbage-collected program. Our work provides a
foundation for reasoning about complex mutator-collector interac-
tion and makes an important advance toward building fully certified
production-quality GCs.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifica-
tion — correctness proofs, formal methods

General Terms Languages, Verification

Keywords Garbage Collection, Abstract Data Type, Assembly
Code Verification, Separation Logic, Proof-Carrying Code

1. Introduction
Type-safe programming languages with automatic memory man-
agement such as Java [15] and C# [21] allow the automatic veri-
fication of basic program properties, improving software security
and reliability. However, implementations of these languages are
not truly safe unless their entire runtime systems, including their
garbage collectors, are safe. Because of this, errors in the GC can
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lead to security problems. This is especially bad because garbage
collectors are often used when running untrusted code.

Unfortunately, garbage collectors—especially incremental and
concurrent ones—are extremely hard to implement correctly. Bugs
can be caused by incorrect interaction of the collector and the
mutator or the violation of complex unstated invariants. These
bugs are also often difficult to find and fix. This is not merely
a theoretical concern—last year, GC-related bugs were fixed in
the Mozilla and Internet Explorer web browsers which had the
possibility of allowing remote attackers to run arbitrary code [34,
36], due to either the violation of a mutator invariant or an incorrect
garbage collector implementation.

The importance of correct garbage collector implementation
will only grow as more system critical code is written in garbage
collected languages. For instance, the Singularity Project [22] is
working on building an operating system using as much “managed
code” as possible. As efforts like this and the Verisoft Project [38]
check more of the operating system kernel, garbage collectors will
make up an increasing portion of possibly unsafe code, if left
unverified.

Formally verifying the safety of the mutator, the garbage col-
lector, and the interaction between them in a single system will
improve the reliability of systems with automated memory man-
agement. This is because we will only need to trust a proof checker
and definitions of the machine’s behavior and safety, not the imple-
mentation of the mutator or garbage collector.

Java and C# programs run on a wide variety of computing plat-
forms ranging from small embedded devices, to multi-core ma-
chines, to large-scale parallel computers. To support these pro-
grams efficiently and reliably on different platforms, the underlying
run time system will likely provide a variety of garbage collectors,
and we must be able to reason about all of them.

In this paper, we present a powerful new framework for reason-
ing about general mutator-collector interfaces and building certified
garbage collectors. We have used our framework to mechanically
verify the safety of assembly language implementations of mark-
sweep, Cheney copying and Baker incremental copying collectors.
While there has been much previous work on garbage collector ver-
ification (such as [11, 3, 41, 19, 4, 44, 30, 20]), our system formal-
izes GC safety in a way that allows separate verification of both
the mutator and the collector by abstracting away implementation-
specific details of the collector from the mutator, while still allow-
ing verification of partial correctness. We show how this approach
is used in a Hoare-style logic, using a MIPS-like abstract machine.
After we present the general methodology, we discuss how to apply
it to verify a mutator program and the assembly-code implementa-
tion of a few standard GC algorithms—including an incremental
copying collector that requires a read barrier. We view the verifi-
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Figure 1. High level view of mutator and GC as threads

cation of incremental collectors, which are finer grained than stop-
the-world collectors, as a stepping stone towards our ultimate goal
of verifying concurrent collectors, which are notoriously difficult
to implement correctly [11]. Our paper builds upon previous work
on program verification but makes the following new contributions:

• As far as we know, our work is the first to successfully cer-
tify the real machine-level implementation of mutator programs
together with a variety of standard garbage collectors. Doing
our verification at the assembly level—on real code—forces us
to address every aspect of the mutator-collector interaction in-
cluding read and write barriers and other low-level operations
which are often abstracted away at the source level. Our sys-
tem is fully mechanized in Coq [10] and can be directly used to
construct foundational proof-carrying code [1]. Our implemen-
tation is available at [29].

• In fact, as we’ll show later in the paper, our framework can cer-
tify the mutator-collector interface for many different GC al-
gorithms. The properties verified about the GC can range from
simple type safety to partial correctness, allowing the GC to
be used with mutator programs with different correctness re-
quirements. Our thread-centric view of GC safety also extends
naturally to the concurrent setting.

• More specifically, we introduce two novel concepts—an ab-
stract state representation predicate repr and a garbage collec-
tor behavior relation gcStep—to help define a uniform and gen-
eral mutator-collector interface. The repr predicate relates an
abstract state seen by the mutator to its concrete binary rep-
resentation seen by the collector. The gcStep relation specifies
the high-level behavior of the garbage collector. We show that
these concepts capture the essence of mutator-collector interac-
tion even in the presence of read and write barriers.

• As far as we know, our work is the first mechanized verification
of the Baker incremental copying garbage collector.

Our intention is to support languages like Java and C# as mutators
using a GC-aware certifying compiler that emits typed assembly
language (TAL). Prior work describes how to translate Java-like
languages into TAL [9] and how to represent TAL using our style
of program logic [12]. In addition, Lin et al. have demonstrated how
to represent TAL within our garbage collection framework [27].

The rest of this paper is organized as follows: we first discuss
the generic interface using examples and then describe the abstract
machine and its program logic. We then present the generic inter-
face in more detail, giving specifications for the interface of the
collector, and some abstract guarantees for GCs. In Section 5, we
discuss the specification and verification of an example. Section 6
discusses the specifications of the heaps for some actual GCs. In
Section 7 we discuss our Coq implementation. Finally, we discuss
related work and conclude.

2. A general garbage collector interface
There are a wide variety of garbage collection algorithms [26],
which interact in a variety of ways with mutators. At the same

listSum (word* list) {
int sum = 0;
while (list != NULL) {

sum += first(list);
list = second(list);

}
return sum;

}

Figure 2. Example mutator
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time, there are a range of properties about the mutators we may
wish to verify, from type safety to partial correctness. Informally,
we can think of the mutator and the garbage collector as two
separate threads, interacting via a fixed number of operations, as
illustrated in Figure 1. Each of these “threads” has its own view of
the machine, which we want to formalize.

2.1 Basic operations
Three basic operations comprise the mutator’s interface with the
object heap, and thus the garbage collector: the mutator can read
the field of an object, write a new value to a field of an object, or
allocate a fresh object. We also refer to reads and writes as read
barriers and write barriers. Collection may occur during any of
these operations, depending on the algorithm.

Consider the pseudo code program listSum in Figure 2 that
sums up a linked list. We will use this as a running example. The
procedure takes a single argument list that is a linked list. It loops
through the list, adding the value stored in each element, until it
reaches the end. The fourth and fifth lines of this procedure use
read barriers to retrieve the first and second fields of list. For the
purposes of this paper, we will be attempting to verify that this
procedure correctly computes the sum of the list in the presence of
garbage collection.

2.2 Abstract and concrete states
By looking at the implementation of one of these operations in a
particular collector we can develop a specification given in terms
of the gritty garbage collector machinery, but the entire purpose of
read and write barriers is to allow the mutator to go about its busi-
ness without concern for the cruel realities of the world. It would
be a shame if we had to give that up simply because we want to
mechanically verify our programs. To avoid this, we make explicit
the white lies the collector tells the mutator. Instead of having the
mutator reason about the harsh concrete state that is the actual heap
and registers of the machine our program is running on, we permit
it to primarily reason about a higher level abstract state. Because
different collectors can have the same abstract interface, we can
verify a mutator once and combine it with different collectors. The
abstract state corresponds to what can be observed of the concrete
state using only the basic operations given in Sec 2.3.

In Figure 3, we give an example of an abstract state. For sim-
plicity, in this section we will refer to an object containing a value
n in the first field as object n. The root points to a cyclic linked list
containing the objects 1, 3 and 5. Object 7 is unreachable and points
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Figure 4. Baker collector concrete heap

to object 5. This is the sort of view we want the mutator to have,
where, say, dereferencing the second field of object 5 will give us
a pointer to object 1. If we allocate a new object, a fresh object is
produced, but the mutator doesn’t care where it came from.

Next, consider Figure 4, where we give a possible concrete rep-
resentation of this abstract heap in a Baker collector [2]. One differ-
ence from the abstract heap is that we have a block of memory that
f ree points to, where new objects are allocated from. But there are
more differences than that. The Baker collector is an incremental
copying collector (discussed in more detail in Section 6.3), which
means that collection is done by copying all reachable objects from
one area (the from-space) to another (the to-space), and further that
this copying is done a little bit at a time, so the mutator may run in
a state where the heap has been only partially copied.

In this example, object 1 has been copied from the from-space to
the to-space, and its fields have been updated (it is a black object),
and object 3 has been copied to the to-space, but its fields have not
been updated (it is a gray object). Finally, objects 5 and 7 have not
been copied (and are thus white objects). Assigning these classes
of objects these 3 colors is known as the tricolor abstraction [11].
In addition to these objects, we also have the original copies of
objects 1 and 3, which contain, in their first fields, pointers to the
new locations of these objects. We call these map objects.

Object 1 points to a to-space object, while objects 3, 5 and 7
still point to from-space objects, Object 5 points to the old copy of
object 1. If the mutator could suddenly load the value of the second
field of object 5, then load the first field of that object, it would
be able to discover the GC is lying because the value would be
a pointer, and not 1 as expected. We must carefully construct our
interface to prevent this, and require that all interaction with the
object heap occurs through read or write barriers.

In our example, we have seen three types of abstraction. First,
there is the simple hiding of heap data: the collector knows about
the free block (and will update it as objects are allocated and col-
lected), but the mutator does not. Second, constraints on the object
heap are hidden: the collector knows that objects 5 and 7 are in the
from-space and objects 1 and 3 are in the to-space, but the mutator
does not. Finally, and perhaps most dramatically, the state of the ob-
jects or even the roots may differ between views: in our example,
the mutator and collector do not agree, for instance, on the value
of the second field of object 5. This last type of abstraction is not
needed for stop-the-world or non-copying incremental collectors.

2.3 The collector interface
To allow the mutator to reason about the abstract level, we must
create an abstract garbage collector interface. This interface has
three parts:

mutator

GC
readStep allocStepwriteStep

abstract
repr

concrete

readStep writeStep allocStep

reprrepr repr repr repr reprrepr

Figure 5. High level view of GC interface
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Figure 6. Connecting collector and mutator

1. the abstract specification of each operation, including the be-
havior (given by readStep, writeStep and allocStep), along with
the specification of the actual collection, again at the abstract
level, which is given by a binary state predicate gcStep

2. a representation predicate repr that defines the representation
of an abstract state within a concrete state, along with rules to
allow some manipulation of the state

3. an embedding function that transforms an abstract specification
to a concrete specification using repr

We show how the interface is related to the concrete behavior of
the machine in Figure 5. The top box contains the series of abstract
states seen by the mutator. Edges corresponding to GC activity
are labeled with the abstract specification of that action, while
unlabeled edges represent mutator activity. The abstract behavior
of the allocator (allocStep) is given in terms of the abstract behavior
of the collector (gcStep). We can change gcStep depending on the
property of the mutator, such as type safety or partial correctness,
that we wish to verify.

The lower box contains the series of concrete states of the actual
execution of the program, and corresponds to the diagram shown
in Figure 1. The specification of the concrete behavior of the GC is
derived from the abstract behavior by the function b c, defined in
Section 4.3. For example, the concrete behavior of the read barrier
is breadStepc. Each abstract state in the upper box is related to a
concrete state in the lower box by the relation repr. If at a given
point in the execution the abstract state is A and the concrete state
is S, then the relation repr S A holds. A key point is that the mutator
only needs to know a few basic properties of repr, not its definition.

2.4 Connecting the collector and the mutator
We want to be able to separately verify the mutator and the col-
lector. This goal affects how each part is verified and how they are
combined. Figure 6 gives an overview of this process. The collec-
tor and the mutator are each verified separately. The collector is
shown to match some interface, while the mutator assumes there is
a collector with some other interface. The two interfaces are then



(Program) P ::= (C,S,I)
(CodeHeap) C ::= { f ; I}∗

(State) S ::= (H,R)
(Heap) H ::= {l ; w}∗
(RegFile) R ::= {r ; w}∗

(Reg) r ::= {rk}k∈{0...31}

(Nat) w, f ::= 0 | 1 | 2 | ...
(Addr) l ::= 0 | 4 | 8 | ...
(InstrSeq) I ::= c;I | beq rs,rt , f ;I | bne rs,rt , f ;I

| j f | jal f , fret | jr rs
(Command) c ::= addu rd ,rs,rt | addiu rd ,rs,w

| subu rd ,rs,rt | sltu rd ,rs,rt | andi rd ,rs,1
| lw rd ,w(rs) | sw rs,w(rd)

Figure 7. Machine Syntax

shown to be compatible using a lemma, which allows the two veri-
fied components to be combined into a verified program.

In more detail, to verify the mutator, we select a gcStep that suits
the needs of the mutator, which will simplify reasoning and allow
the mutator to be combined with more collectors. We also do not
pick a particular heap representation repr. Instead, we parameterize
our verification of the mutator by a representation, a few standard
properties of that representation, and a verified collector implemen-
tation (including the read and write barriers) that uses that represen-
tation. In Coq, this can be done using a functor. Later, we can in-
stantiate a verified mutator with any verified collector that matches
the specification to produce a fully verified implementation.

The mutator can only access the garbage collected heap using
the barriers because the actual representation is hidden from the
mutator, but the soundness of our approach does not rely on this:
if a mutator is verified in terms of a specific repr, the soundness
of the underlying program logic keeps the mutator from calling the
collector unless the heap is well-formed.

Verifying the collector is more straightforward: we select a
gcStep specific to the style of GC, and verify it as you would any
program. The abstract specifications of each collector must be the
same as that of the mutator, modulo the choice of gcStep.

When it comes time to link the collector and the mutator, we
must first coerce the collector to match the specification expected
by the mutator. We can show that if a GC implements the interface
with some gcStep, and that any time we take a gcStep we also
take a gcStep’, then the GC also implements the interface with
gcStep’. In the Coq implementation, this fact is embodied by a
functor that takes a collector with one interface along with a proof
of compatibility with another interface and produces a collector
with the second interface. Using this, we convert the GC to use the
mutator’s interface, without having to reverify the entire collector.
After the collector has been coerced, it can be combined with the
mutator to produce an entire verified program.

We will discuss more details of this approach after we have
described the system we use to reason about programs.

3. Preliminaries
Before we can describe our approach in detail, we must present
the formal setting, based on existing work, that we are using. This
has three parts: the abstract machine, the program logic SCAP, and
separation logic, used to reason about heaps.

3.1 Machine
The abstract machine we use is a MIPS-like architecture. The
syntax is given in Figure 7. A program P is a code heap, a state,

(C,S,I) 7−→ P where
if I = then P =
c;I′ (C,S′,I′) if Nextc(S) = S

′

beq rs,rt , f ;I′
{

(C,S,C( f )) if S(rs) = S(rt)
(C,S,I′) otherwise

bne rs,rt , f ;I′
{

(C,S,C( f )) if S(rs) 6= S(rt)
(C,S,I′) otherwise

j f (C,S,C( f ))
jal f , fret (C,S{r31 ; fret},C( f ))
jr rs (C,S,C(S(rs)))

where

if c = then Nextc(S) =
addu rd ,rs,rt S{rd ; S(rs)+S(rt)}
addiu rd ,rs,w S{rd ; S(rs)+w}
subu rd ,rs,rt S{rd ; S(rs)−S(rt)}
sltu rd ,rs,rt S{rd ; k} if S(rs) < S(rt), k = 1, else k = 0
andi rd ,rs,1 S{rd ; k} if S(rs) is odd, k = 1, else k = 0
lw rd ,w(rs) S{rd ; S(S(rs)+w)}
sw rs,w(rd) S{(S(rd)+w) ; S(rs)} if (S(rd)+w) ∈ dom(S)

Figure 8. Machine step

(Prop) P ::= ...

(SPred) p ∈ State → Prop
(Guar) g ∈ State → State → Prop
(BlockSpec) σ ::= (p,g)
(CodeHeapSpec) Ψ ::= { f : σ}∗

A ::= S

Figure 9. Specification syntax

and an extended basic block. The basic block takes the place of a
program counter, which simplifies the operational semantics.

A code heap C maps natural numbers to instruction sequences.
A state is a heap and a register file. A heap is a partial mapping
of addresses to words, while a register file is a partial mapping of
registers to words. There are 31 registers. Register r0 always has the
value 0. A nat or word is any natural number, while an address is
any natural number that is a multiple of 4. An instruction sequence
I is an extended basic block, and is either a command followed
by another instruction sequence, a branch to f if rs is equal to rt ,
a branch to f if rs is not equal to rt , a jump to block f , a call
to the function at f (returning to fret ), or an indirect jump to the
address stored in register rs. A command c is either an unsigned
addition of a register and a register or a constant, the subtraction
of two registers, the less-than comparison of registers rs and rt , the
bitwise-and of a register with 1, a load, or a store.

The machine has a standard small step dynamic semantics,
given in Figure 8. The step relation P 7−→ P

′ says that P steps to
P
′. Nextc(S) is the state that results from executing a non-control

flow command c in state S, if one exists. We write X(z) for the
binding of z in any partial map X when z is in the domain of X ,
and X{z ; v} for the addition of a binding of z to v (where an
old binding of z, if any, is removed), for various X and z. We write
(H,R)(r) for R(r) and (H,R)(l) for H(l). We write (H,R){l ; w}
for (H{l ; w},R) and (H,R){r ; w} for (H,R{r ; w}). We
write (H,R) for H or R, when it is obvious from context. We
define dom(H,R) = dom(H)∪ dom(R). dom(H) is the domain of
H, while dom(R) is the domain of R.

3.2 Program logic
To reason about programs, we use the Hoare-logic-based language
SCAP (for Stack-based Certified Assembly Programming) [13]. An
assembly program that is valid in SCAP will run forever without,



` P ok (Well-formed program)
Ψ ` C : Ψ p S Ψ;(p,g) ` I ok Ψ ` (g S) WFST

` (C,S,I) ok
(PROG)

Ψ′ ` C : Ψ (Well-formed code heap)
∀ f ∈ dom(Ψ). Ψ′;Ψ( f ) ` C( f ) ok

Ψ′ ` C : Ψ
(CDHP)

Ψ ` p WFST (Well-formed call stack)
∀S. p S → False

Ψ ` p WFST
(BASE)

Ψ( f ) = (p,g) ∀S. p0 S → S(r32) = f ∧ p S

Ψ ` (λS
′. ∃S. p0 S∧g S S

′) WFST

Ψ ` p0 WFST
(FRAME)

Ψ;σ ` I ok (Well-formed instruction sequence)
Ψ;(p′,g′) ` I ok ∀S. p S →∃S

′.NextcS = S
′ ∧ p′ S

′∧
∀S

′′. g′ S
′
S
′′ → g S S

′′

Ψ;(p,g) ` c;I ok
(SEQOK)

Ψ( f ) = (p′,g′) Ψ;(p′′,g′′) ` I ok
(iop,op) ∈ {(beq,=),(bne, 6=)}
∀S. p S →
(S(rs) op S(rt) → p′ S∧∀S

′. g′ S S
′ → g S S

′) ∧
(¬S(rs) op S(rt) → p′′ S∧∀S

′. g′′ S S
′ → g S S

′)

Ψ;(p,g) ` iop rs,rt , f ;I ok

(BROK)

Ψ( f ) = (p′,g′) ∀S. p S → p′ S∧∀S
′. g′ S S

′ → g S S
′

Ψ;(p,g) ` j f ok
(J)

Ψ( f ) = (p′,g′) Ψ( fret) = (p′′,g′′)
∀S. p S → p′ S{r31 ; fret}∧∀S

′. g′ S{r31 ; fret} S
′ →

p′′ S
′ ∧∀S

′′. g′′ S
′
S
′′ → g S S

′′

∀S,S′. g S S
′ → S(r31) = S

′(r31)

Ψ;(p,g) ` jal f , fret ok

(CALL)

∀S. p S → g S S

Ψ;(p,g) ` jr ra ok
(RETURN)

Figure 10. Typing rules for SCAP

for instance, trying to load from an invalid memory address. We
use SCAP to verify our mutators and collectors. With the power
of SCAP and other CAP-style systems [45, 12] (which can be
integrated with SCAP), our framework can be directly applied to
support a wide range of mutator languages.

The specification syntax is given in Figure 9. Propositions P are
propositions in the Calculus of Inductive Constructions (CIC) [39],
a higher order predicate logic extended with inductive definitions.
A state predicate p describes a single state, while a guarantee g
relates a pair of states. State predicates are used to specify the
precondition of an instruction block, which ensures that executing
the instruction block is safe. Guarantees describe the behavior of an
instruction block by relating the current state to the state in which
the current procedure returns. An instruction block specification
σ is a precondition and a guarantee. A code heap specification Ψ
gives a specification for each instruction block in the code heap.

The inference rules for SCAP are given in Figure 10. There are
four judgments for static checking in SCAP. ` P ok holds if P is
well-formed. For this to hold, the code heap must be closed, a pre-
condition p must hold on the current state, the current instruction

sequence must be safe to execute assuming p and have a guarantee
g. Finally, the stack must be well formed assuming g holds on the
current state. Ψ′ `C : Ψ holds if C implements the specifications in
Ψ, assuming code with specs Ψ is available. The rule for this judg-
ment simply checks that each spec in Ψ is properly implemented
by the corresponding code block.

Ψ ` p WFST holds if any state that satisfies p implies a well-
formed call stack in which is okay to immediately return. If this
precondition cannot be satisfied by any state, then this is a top-
level function that cannot be returned from. Otherwise, the precon-
dition must imply that the return register contains some return code
pointer f of a function that has a specification (p,g). The current
state must satisfy the p, to allow the function to return, and when f
has finished executing, it is okay to return once more.

Finally, Ψ;σ ` I ok holds if, assuming code with specs Ψ is
available, sequence I matches specification σ. These rules each
ensure that it is safe to take a step and that the guarantee correctly
describes the behavior of the function until a return is executed.
In the RET rule, p must imply that g holds with the current state as
both arguments. A typical g for this rule specifies that the two states
are equal. For the call rule, we must ensure that it is safe to call the
function f , and that it will be safe to call fret after we return from
f . In addition, we require that the behavior of the call instruction
combines the behavior of the functions f and fret .

The soundness theorem for SCAP states that a well-formed
program can always take a step to another well-formed program.

3.3 Separation logic
We describe heaps using separation logic [40]. We define separa-
tion logic predicates, written A and B, as state predicates, based
on Reynolds’s semantics [40]. A S holds if state S satisfies the state
predicate A. We define this judgment in terms of standard CIC pred-
icates, allowing us to use separation logic predicates in our speci-
fications. The syntax of the fragment of separation logic we use in
this paper is as follows:

A,B ::= n 7→ m | true | A∗B | A∧B | ∃x. A | ...
In the verification itself we use other separation logic connec-

tives, such as iterated separating conjunction [4]. n 7→ m holds on a
state if and only if the state’s heap is {n ; m}. true holds on all
states. A ∗B holds if the state’s heap can be split into two disjoint
parts such that A holds on one and B on the other. A∧B holds if
both A and B hold on the entire state. ∃x. A holds if there exists an
x such that A x holds on the state.

4. The garbage collector-mutator interface
The garbage collector may require that various exotic invariants
hold on the object heap, but the mutator does not have to worry
about these details as long as it interacts with the object heap only
through the appropriate barriers. We hide these details away by
having the mutator reason about an abstract state, which presents
a high-level view of the concrete state which represents the ac-
tual machine state. For instance, in a mark-sweep garbage collec-
tor space is set aside for the collector to track which objects are
marked, but the mutator never directly interacts with this mark data,
so it shouldn’t have to keep track of it. Or, as we described earlier,
in an incremental copying collector the object heap might be in a
partially copied state, with old and new copies of objects coexist-
ing. We can hide this mess from the mutator, and as long as the
mutator only uses the operations we provide, it will never discover
the deception.

We write A for a state that is intended to be an abstract state. It is
represented in the same way as a concrete state S, but for a particu-
lar state will not be the same. In this section, we give specifications
for the three garbage collector operations we discussed previously,
then discuss the specification of the behavior of the garbage col-



readPrek A ::= {rroot,A(rroot)+4k} ⊆ dom(A)
readStepk A A

′ ::= A
′ = A{v0 ; A(A(rroot)+4k)}

writePrek A ::= {rroot,a0,A(rroot)+4k} ⊆ dom(A)
writeStepk A A

′ ::= A
′ = A{A(rroot)+4k ; A(a0)}

allocPre A ::= rroot ∈ dom(A)
allocStep A A

′′ ::=
∃A

′. gcStep A A
′ ∧

(∀p. p A
′ → (p ∗ A

′′(v0) 7→ NULL,NULL) A
′′) ∧

A
′(rroot) = A

′′(rroot)

Figure 11. Abstract specifications for basic operations

lector that the mutator can observe. Finally, we discuss the general
mechanism for relating the abstract and concrete states.

4.1 The operations
The three garbage collector operations are reading from an object,
writing to an object, and allocating a new object. Here we define
their basic specifications, in Figure 11, ignoring the effects of any
garbage collection that may occur. To simplify the presentation
(and our implementation), we only allow registers to be roots. The
set of roots is the set of registers in the domain of A. For example,
for a read operation, initially the register rroot must be a root.
Afterwards, all of the registers that were roots are still roots, plus
register v0.

The specifications for the read and write are parameterized by
the field k being operated on. For the read to be executed, rroot
must be in the domain of the abstract state, and must contain a
valid pointer to the field of interest. After the read is performed, the
return register v0 contains the value of the root’s kth field, but the
state is otherwise unchanged. For a write to be executed, rroot must
again be in the domain of the heap, and contain a valid pointer to
the kth field. In addition, register a0 must be in the domain of the
abstract state, indicating it contains a valid abstract value. After
the write is done, the kth field of the root is updated, but the state
otherwise remains the same. To safely perform an allocation, all
roots must be in the domain of the abstract state to ensure they
are valid abstract values, which is needed to ensure a collection
will work. Afterwards, the collector has taken a step, as defined by
gcStep, and a fresh object has been allocated, initialized, and placed
in register v0. We can, if we want, similarly add a gcStep to the
read or write specifications. This can be useful if the read or write
barrier performs some collection work that is not hidden from the
mutator, or if, as in a collector that uses reference counting, objects
are actually collected during reading or writing.

4.2 Abstract collection
During any of these operations, in particular allocation, the GC
might do some collection work, which will affect the abstract state.
We specify this behavior with a binary state predicate gcStep that
relates the abstract state before the GC executes with the abstract
state after it executes. The definition of gcStep is fixed for a partic-
ular mutator, as it describes the behavior of the GC that the mutator
can see.

In Figure 12 we define two basic GC step relations. The first,
basicGcStep, says that the roots are the same after the GC runs,
and that all objects in the heap that are reachable from the roots
in the initial state are exactly the same in the final state. The
definition requires the definition of two other heap predicates. The
first, minObjHp(x) holds on any heap that contains exactly the
objects reachable from x. The second, heq H, simply holds on
any state where the heap is H. Essentially what we are doing is
scooping out a heap H from the initial state that contains the objects

basicGcStep A A
′ ::=

(∀H. ((minObjHp(A(rroot))∧heq H)∗true) A →
(heq H∗true) A

′) ∧
A(rroot) = A

′(rroot)

typesafeGcStep A A
′ ::=

∀Γ. stateHasType(Γ) A → stateHasType(Γ) A
′

Figure 12. Basic GC step relations

b(p,g)c ::= (bpc,bgc)

bpc ::= λS. ∃A. repr A S ∧ p A

bgc ::= λS,S′. ∀A. repr A S →∃A
′. repr A

′
S
′ ∧ g A A

′

Figure 13. Specification lifting functions

reachable from the root, and saying that the final state also contains
this heap H. Therefore, if you can show that an object is reachable
in the initial state A you can show that it is part of S, and thus
has the same value in the final state A

′. Secondly, this step relation
guarantees that the roots remain the same.

The second GC step relation we define, typesafeGcStep, is an
example of how a step relation for type safety could be defined.
We assume that Γ is a map from registers to types and predicate
stateHasType(Γ) holds on a state if the registers can be given the
types specified in Γ. The step relation simply says that the final state
has the same type as the initial state.

We can also define more application-specific GC steps. Basic
type safety is too weak to verify the partial correctness of our
list summation example, while basicGcStep is stronger than is
necessary. Instead, we can use a GC step that specifies that the GC
is list sum preserving, so that the the initial and final states contain
linked lists with the same sum and heads.

4.3 From abstract to concrete
While we want the mutator to reason abstractly as much as possible,
at some point we must connect the abstract and concrete behaviors.
This is done using a binary state predicate repr A S which holds if
the state S is a concrete representation of the abstract state A. Each
garbage collector will have its own repr.

The verification of a mutator is parameterized over a verified
implementation of a GC, which includes the definition of repr,
keeping it abstract. This allows us to instantiate the verified mutator
with different collectors as needed. While it is mostly abstract, we
need to give some additional rules to reason about the representa-
tion. The most important rules are the following: if an abstract or
concrete root is atomic (i.e., not an object pointer), the abstract and
concrete values of the root are equal; a value can be copied from
one root to another; a root can always be assigned an atomic value.
These rules allows the mutator to reason about and manipulate the
roots in a few specific circumstances.

Given a predicate repr, we can define a function b c in Figure 13
that lifts an abstract specification to a concrete specification. We use
the lifted forms of the specifications to verify the implementations
of the three GC operations. A specification is lifted by lifting
the precondition and the guarantee. A precondition p is lifted by
requiring that there exists an abstract state A that is represented in
the current state S, such that p holds on A. A guarantee is lifted by
requiring that for all abstract states A represented in the initial state
S, there exists some other abstract state A

′ represented in the final
concrete state S

′, such that A and A
′ are related by g.



menter:
addiu rsum,r0,1
j mloop

mloop:
addiu rtemp,r0,NULL
beq rroot, rtemp, mret
jal read1, mloop2

mret:
jr ra

mloop2:
addiu rtemp,rzero,1
subu v0,v0,rtemp
addu rsum,rsum,v0
jal read2, mloop3

mloop3:
addiu rroot,v0,0
j mloop

Figure 14. List sum implementation

5. Mutator specification and verification
Now that we have defined our formal system, we can return to our
list summation example. Most mutator programs will be the re-
sult of compilation of a high-level language using a compiler that
generates typed assembly language (TAL) [33]. We can then em-
bed TAL into a SCAP-style system by representing the state typing
judgment as a state predicate and showing that the typing rules for
instructions are admissible. For more details on this embedding,
please see the companion paper [27]. To avoid introducing another
formal system, for our example we will instead verify the partial
correctness of the list sum example using SCAP. We show the as-
sembly implementation, then discuss the specification and, briefly,
the verification. The assembly implementation (of the pseudo code
from Figure 2) is given in Figure 14. Our goal is to verify that the
mutator correctly sums a list.

For our example, all atomic values are odd, allowing us to
easily distinguish them from object pointers. With this encoding,
an integer n would be stored in the state as 2n + 1. The translation
is straightforward, aside from the need to add in extra arithmetic
to properly handle the integer encoding: 0 is encoded as 1, and we
must subtract 1 from a value we load before using it to increment
the sum. The calls to first and second in the pseudo code have
been changed to calls to read1 and read2. We use register rtemp
to hold intermediate values. As before, register r0 is always 0.

For the specification, we must define a list predicate which holds
on a state that contains a linked list starting at address x that has the
sum n. This can be inductively defined in a straightforward manner
and is defined as LListSumAt(n,x).

Using this predicate, we can define the abstract specifications of
the mutator entry point menter and the loop header mloop. These
blocks have the same precondition, which requires that the register
rroot contains a linked list, with some sum n. More formally, this is
defined as

mpre A ::= ∃n. rroot ∈ dom(A)∧ LListSumAt(n,A(rroot)) A

The loop header guarantees that if rsum initially contains the
encoding of some n and rroot contains a linked list with the sum
m, then in the state in which we return rsum contains the encoding
of n + m. The guarantee for the entire function is very similar. For
simplicity, we do not specify that the heap is unchanged in the final
state. Formally, the abstract loop guarantee is:

loopGuar A A
′ ::= ∀m,n. A(rsum) = 2n+1 →

LListSumAt(m,A(rroot)) A →
A
′(rsum) = 2(n+m)+1

In order to actually verify this mutator, we need to specify
what behavior we expect from the collector by defining gcStep. We
cannot simply require that the GC preserves the sum of the list in
the root, because this allows the head of the list to change whenever
we perform a read, if gcStep is in the specification of the read. As
we read the head of the list before the tail, the old value we loaded
from the head might become invalid, preventing us from verifying
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Figure 15. Mark-sweep heap

idRepr (H,R) (H′,R′) ::= (H = H
′)∧ (R ⊆ R

′)

msRepr A S ::=
(∃objs, free,ohpSt,ohpEnd, freePtr,stBot,stTop.

(objHp(objs,objs)∧ idRepr A) ∗
objHdrs (objs∪ free,0) ∗
freeList (freePtr, free)∗buffer(stTop,stBot) ∗
msAuxOk(A,objs, free,ohpSt,ohpEnd,stBot,stTop, freePtr)) S

Figure 16. Mark-sweep predicate

the mutator. Instead, we require that the GC does not change rroot
if it is null, or if it is not null, it will not change the head, but can
change the tail to another list with the same length. Finally, the
value of rsum cannot be changed.

With the specification of the mutator and the main loop deter-
mined, along with the behavior of the read barriers, the basic out-
line of the verification is complete. Verification is more difficult
than it would be in the absence of garbage collection, but the ab-
straction limits the complexity.

6. Collector specification and verification
In this section, we discuss the collector’s view of the state by dis-
cussing how various collectors represent the abstract state. Addi-
tional details about the collectors we verified can be found in the
extended version of this paper [28].

6.1 Stop-the-world mark-sweep
A mark-sweep garbage collector, as you might infer from the name,
has two phases: mark and sweep. In the mark phase, all reachable
objects are marked by a depth-first traversal of the heap, using
a mark stack to hold objects that remain to be examined. In our
example collector, the mark is held in an object header. In the
sweep phase, the object heap is traversed. Any object that remains
unmarked must not be reachable from the root, and thus can be
added safely to the free list, which is also done during this phase,
along with the resetting of the marks. Figure 15 is diagram of a
possible concrete mark-sweep heap for the abstract heap given in
Figure 3.

We define the representation predicate for a mark-sweep collec-
tor in Figure 16. We need a few auxiliary heap predicates to de-
scribe the heap. idRepr A S holds if S is a simple representation of
A, where A and S share the heap, and the register file of A is a sub-
set of the register file of S. objHp(objs′,objs) holds on a heap if it
exactly contains the objects in objs, and all of the object pointers in
the heap are elements of objs′. Thus if objHp(objs,objs) holds on
a heap, that heap is closed. objHdrs (objs,n) holds on a heap that
consists entirely of object headers for the objects in objs, where the
headers all have the value n. We use 0 to indicate unmarked objects.



7 3 51

freePtr fromEndfromSt

toSt toEnd

Figure 17. Cheney heap

isoState (H,R) (H′,R′) ::=
∃objs,objs′,φ.

objHp(objs,objs) H ∧objHp(objs′,objs′) H
′ ∧

objs′ ∼=φ objs ∧
∀x ∈ objs′. objIsFwdedφ H

′
H x ∧

∀r ∈ dom(R). φ∗(R′(r)) = R(r)

chRepr A ::=
∃objs, fromSt, fromEnd, toSt, toEnd, freePtr.

(objHp(objs,objs)∧ isoState A) ∗
buffer(freePtr, fromEnd)∗buffer(toSt, toEnd) ∗
chAuxOk(objs, fromSt, fromEnd, toSt, toEnd, freePtr)

Figure 18. Cheney collector state predicate

freeList (n,S) holds on a heap that is a linked list of pairs starting
at n, and contains the objects in the set S in some order. A heap
satisfies buffer(x,y) if it contains a buffer from address x to y, not
including y. For the mark-sweep collector this is used to hold the
mark stack. Finally, we have a predicate msAuxOk which ensures
various constraints hold on the auxiliary variables, such as ensur-
ing that the set of objects matches up with the heap pointers, and
checking that the registers are well-typed.

To put these all together, we first require that one part of the
heap both contains a closed set of objects objs (which msAuxOk
will ensure includes all of the roots) and also contains the abstract
heap. The identity representation is sufficient because the mutator
and collector views of this part of the heap coincide. Other than
that, we require the state contain headers for the objects, a free list
containing objects free, space for a mark stack, and whatever is
needed to ensure the auxiliary variables are valid.

6.2 Stop-the-world copying
In a copying collector, the heap is divided into two semi-spaces.
One, the from-space, contains all of the allocated objects, all in a
row, and all of the free objects, also all in a row. The other semi-
space, the to-space, lays fallow. During collection, the reachable
objects in the from-space are copied to the to-space, then their fields
are forwarded and finally the roles of the semi-spaces are swapped.
All of the unreachable objects will be automatically reused next
cycle. In a Cheney collector [26], no extra space is needed for for-
warding pointers, because they can be stored within the abandoned
hulks of the copied objects.

The representation of objects within the concrete state depends
on the abstract behavior of the GC, as defined by gcStep. If gcStep
can be satisfied even if the objects are moved around, then we
can use a simple object representation like idRepr. This will be
the case if gcStep only guarantees type safety, because the type of
an object does not depend on its location, or if we simply state
in gcStep that the objects might be copied. On the other hand, if
we want to use basicGcStep, we must hide any copying from the
mutator. This can be done by maintaining an isomorphism φ from

fwdObj(word* obj) {
if (free == alloc)

while(1) {}; // no space left: give up
x = obj[0]; // copy 1st field
free[0] = x;
x = obj[1]; // copy 2nd field
free[1] = x;
obj[0] = free; // store forwarding pointer in obj
x = free;
free += 2; // increment free by two words
return x; // return location of new object

}

fromSpacePtr (x) {
return !(x & 1) && x >= fromStart && x < fromEnd;

}

toSpacePtr (x) {
return !(x & 1) && x >= toStart && x < toEnd;

}

Figure 19. Baker pseudo code (auxiliary functions)

the concrete object addresses to the abstract addresses: whenever
we move objects in the concrete state we can update φ instead
of updating the abstract state. The interface for representations
does not tell the mutator anything about the relationship between
concrete and abstract pointers, so the collector can change this
relationship (which in this case is precisely given by φ) at any time
without the mutator being able to tell. The end result is that we can
give an implementation of a copying collector the same interface as
a mark-sweep collector.

We define a representation in Figure 18 that uses this approach
to hide the action of the copying collector. The from-space ranges
from fromSt to fromEnd and the to-space ranges from toSt to toEnd.
The free pointer freePtr divides the from-space into allocated and
unallocated parts. objs is the set of objects in the allocated portion.
Instead of using idRepr, we define a new binary state predicate
isoState A S, which holds if there exists an isomorphism φ between
the objects in A and those in S. We write φ∗ for the extension of φ
by identity on non-pointers. We require that every object in the heap
of S is forwarded to A using φ, which can be defined following [4].
Roughly, if an object is located at x in S, then it must be located at
φ(x) in A, with the fields mapped by φ∗. In addition, all of the roots
must be forwarded with φ∗.

chAuxOk describes the various constraints on the auxiliary vari-
ables, such as that the allocated and free objects must cover the
from-space, and, importantly, that the from- and to-spaces have the
same size. This will let the collector run safely without a bounds
check.

For the actual representation, the state must contain a closed
well-formed object heap containing all of the objects in objs. This
ensures that we can safely trace the heap. This part of the heap
must be isomorphic to the abstract state A. Next we have buffers
containing the free space and the to-space. We use buffers because
we don’t care about their contents. Finally, we must ensure that all
the auxiliary variables are properly accounted for.

6.3 Incremental copying
Baker’s algorithm [2] is a variant of Cheney’s algorithm that sup-
ports incremental collection. The basic layout of the Baker collec-
tor heap has already been shown in Figure 4, but we discuss here
it in more detail. We give an excerpt from the pseudo code for this
collector in Figures 19 and 20. See the extended version [28] for the
full pseudocode and assembly implementations of this collector.

Figure 19 contains the pseudocode implementation of the aux-
iliary functions of the Baker collector. fwdObj copies the object



bakerScanField (word* fieldPtr) {
fval = *fieldPtr;
if (fromSpacePtr(fval)) {

field1 = fval[0];
if (toSpacePtr(field1))

*fieldPtr = field1;
else

*fieldPtr = fwdObj(fval);
}

}

bakerGC(word* root) {
count = 0;
if (free == alloc) {

... // flip spaces, scan root
}
while (scan != free && count < scan_per_gc) {

bakerScanField(scan);
bakerScanField(scan + 1);
scan = scan + 2;
count = count + 1;

}
}

Figure 20. Baker pseudo code (collector)

bakerRepr A ::=
∃B,B′,G,W,M,φ,S.

∃ohpSt,ohpEnd, toSt, toEnd, freePtr,allocPtr,scanPtr.
((φ∗∪ idto∪W )◦S) = A ∧
((objHp(to,B∪B′)∗objHp(to∪ fr,G)∗objHp(fr,W )) ∧
idRepr S) ∗

mapHp(M,φ)∗buffer(freePtr,allocPtr) ∗
bAuxOk(B,B′,G,W,M, to, fr,φ,ohpSt,ohpEnd,

toSt, toEnd,scanPtr,allocPtr, freePtr)
where to = B∪B′∪G and fr = W ∪M

Figure 21. Baker collector state predicate

located at obj to the start of the free space, which begins at free,
stores the forwarding pointer in obj, and returns the location of
the newly created object. fromSpacePtr returns true if the argu-
ment x is not atomic, and is between the bounds of the from-space,
given by the variables fromStart and fromEnd. toSpacePtr is
the analogous function for the to-space.

Figure 20 is the pseudocode implementation of the main func-
tions of the Baker collector. bakerScanField is the most complex
part of the collector. It forwards the value of the field of an ob-
ject pointed to by the argument fieldPtr, if necessary. The value
of this field, fval, is either atomic, a to-space space pointer, or
a from-space pointer. In the first two cases, nothing needs to be
done because the field value will still be valid after the collection is
done. If the field contains a from-space pointer, then the collector
must determine if the object has been forwarded already. It does
this by loading the first field of the object into field1. field1
will either be a to-space pointer, an atomic value, or a from-space
pointer. In the first case, field1 must be the forwarding pointer
of fval, so the collector update the field of the original object to
fval. Otherwise the object must be forwarded using fwdObj.

The function bakerGC is the main part of the collector. This
function is invoked on every allocation and takes a single root
value as an argument. If free is equal to alloc, then there is
no more free space, so the collector must flip the semi-spaces and
scan the root. After this check, the collector begins scanning gray
objects, which lie between scan and free. This is an incremental

collector, so the GC will not scan more than scan per gc objects
per invocation. An object is scanned by scanning each object, then
updating the scan pointer and the count.

While the implementation of the Baker collector is similar to
that of the Cheney collector, the invariants are more complex,
because invoking the Baker collector only partially processes the
heap.

The most interesting part of the Baker state representation is
how we reason about the partially-copied heap. For simplicity,
we assume a gcStep which permits moving objects. (To avoid
this, and allow the use of basicGcStep, we can use the technique
described in Section 6.2 for hiding copying by introducing an
isomorphism between concrete and abstract addresses, but having
two isomorphisms would obscure the issues specifically related to
incremental copying collection.) As we discussed before, reasoning
about the heap of an incremental copying collector is difficult
because object references may be out of date, pointing to the old
copies of objects. We avoid this by making the abstract heap a
forwarded version of the concrete object heap. In some sense,
the abstract heap is what the object heap will look like after the
collector has finished1.

The specification for the Baker heap is given in Figure 21. First,
we describe the different auxiliary variables. Black objects (B)
have been copied to the to-space and their fields forwarded. The
GC will not visit them again. New black objects (B′) have been
allocated during the current cycle, starting from the end of the to-
space, and will not be visited by the GC. Gray objects (G) have
been copied, but not forwarded. The GC will eventually forward
these objects. Gray objects can contain to-space objects because
the mutator may write to them before the collector scans them.
White objects (W ) have not been examined by the GC. Map objects
(M) store the mapping φ from the old location of objects in M
to their new location in the to-space: if an object at w has been
forwarded to w′, then φ(w) = w′ and the heap contains w′ at address
w. This allows the collector to forward fields while ensuring that no
object is copied more than once. ohpSt and ohpEnd are the bounds
of from-space, while toSt and toEnd are the bounds of to-space.
freePtr and allocPtr point to the start and end of the free space,
respectively, which is located within the to-space. scanPtr marks
the separation between black and gray objects in the to-space. The
from-space objects (M and W ) together cover the entire from-space.
The collector relies on the fact that objects in the from-space can
be dynamically distinguished from objects in the to-space.

As for the actual constraints, the first requirement relates the
abstract state A to the part of the concrete state that contains the
objects, given by S. We transform the concrete state to the abstract
state by mapping the range of S, including its registers. To forward
the fields, we must map everything in M using φ and all non-
pointers, to-space pointers, and pointers in W using the identity
function, because these field values do not need to be changed. We
write idS for the identity on set S, and as before, we write φ∗ for the
function φ extended by the identity function on non-pointers. We
scoop S out of the entire concrete state in the same manner as in
the mark-sweep collector representation predicate, except that we
have three groups of objects instead of one. Black objects can only
point to to-space objects, white objects can contain only point to
from-space objects, and gray objects can point to either.

mapHp(M,φ) holds on a state that contains the mapping φ,
along with the rest of the objects in M. The buffer contains the free
space still left in the to-space. Finally, the predicate bAuxOk en-

1 This is not strictly true, because the collector may copy additional objects
later. It is impossible to predict how this copying will occur because it
depends on mutator behavior, but this doesn’t matter because as we said
above our gcStep allows the collector to move objects freely.



read1 (word* root) {
word* fieldVal = root[0];
if (fromSpacePointer(fieldVal))

fieldVal = fwdObj(fieldVal);
return fieldVal;

}

Figure 22. Baker read barrier

forces the rest of the constraints on the auxiliary variables, includ-
ing the requirement that φ is an isomorphism from M to (B∪G).
This constraint is the reason we must keep B and B′ separate. It
also enforces the requirement that the roots must be in to-space.
Note that while we must describe the entire heap at the boundaries
of the GC, within the GC we use more “local reasoning” [4] that
does not explicitly describe the entire state. We omit further details
of bAuxOk in the interest of space.

6.3.1 Read barrier
Because the root set can only contain to-space objects, any write
will preserve the color invariant, so the write barrier can be imple-
mented using a single store instruction. However, we do need to
use a read barrier because if a root object is gray loading a field
may break the color invariant for the root set, because gray objects
can contain pointers to from-space objects. The read barrier, seen
in pseudo code form in Figure 22, forwards the value loaded (copy-
ing if needed) if it is a pointer to the from-space. This maintains the
invariant, and thus the read barrier satisfies the specification dis-
cussed in Section 4, though we must use the variation discussed
in that section that includes a gcStep, because an object may be
copied. If we use the more complex representation that is able to
hide copying, then we can use the simpler specification (because
this read barrier does not perform any collection) and thus make
the read barrier look like just a load operation.

6.4 Other collectors
There are a variety of other collectors that can be verified using
our methods. There is the Brooks collector [6], which is a vari-
ation of the Baker collector that uses a write barrier instead of a
read barrier. We believe that an alteration of the repr predicate for
the Baker collector would serve that collector, as the relationship
between the objects in the concrete state and the objects in the
abstract state is the same: only the auxiliary data structures used
by the collector change. There are also incremental and concurrent
mark-sweep collectors, which must maintain complex color invari-
ants [11, 46, 18, 26]. We have begun investigating this type of col-
lector, and at least the incremental collectors seem to be a fairly
natural extension of the stop-the-world mark-sweep collector, in
the same way that the Baker collector is a fairly natural extension
of the Cheney collector. Mark-sweep collectors do not move ob-
jects around, so the relationship between the concrete objects and
the abstract objects is the same.

6.5 Conservative collectors
Up until now, we have only discussed precise collectors, where the
collector is always able to tell if a value is an object pointer. Con-
servative collectors [5] relax this constraint, greatly reducing the
impact of garbage collection on the mutator at a cost of decreased
precision. In terms of the interface, the collector can no longer ab-
stract object pointers, because it does not know exactly what is
a pointer. The practical implication of this is that we must add a
lemma to the collector interface that says that the representation of
all heap values is the identity function. The interface still allows us
to hide auxiliary data structures and constraints from the mutator.
For instance, the collector may require mark bits, or segregate ob-

component # of lines
core machine definitions 433
SCAP definition and soundness 975
separation logic library 4326
finite set library 3858
map libraries 1112
basic GC definitions 2258
dummy GC 1106
mark-sweep GC 10744
incremental mark-sweep GC 11016
Cheney copying GC 7775
Baker incremental copy GC 17252
list sum and reverse examples 2832
misc. utility files 1310

Figure 23. Length of proof scripts

jects by size, but the particular details of this should not affect the
mutator. Aside from these additional constraints the collector may
use to improve precision, the actual representation of objects within
the concrete state will likely use something like idRepr, as defined
in Section 6.1. For details on how our approach can be used with a
conservative collector, see [27].

7. Implementation
The focus and key novelty of our paper is the development of a
general framework for reasoning about mutator-garbage collector
interaction. We discuss our mechanized proofs primarily to support
our claim of generality. In our Coq implementation [29] we have
defined the machine semantics, implemented and proved sound
SCAP and our fragment of separation logic. We have also verified
the list sum mutator example to match the specification described
in the paper, along with a list reversal example not mentioned
here. We have verified the safety of an assembly implementation
of a minimal stub GC, a mark-sweep GC, a Cheney collector, a
Baker collector, and shown that these collectors satisfy the abstract
interface described in this paper. We have also undertaken a large
part of the verification of an incremental mark-sweep GC. The
mark-sweep collectors use a gcStep similar to basicGcStep, while
the copying collectors use a gcStep similar to the heap isomorphism
relation of [8]. Consequently, the Baker representation predicate is
slightly different than that presented in this paper.

The Coq implementation is around 64,000 lines, including com-
ments and whitespace, although most of this is proofs. Figure 23
gives a breakdown of number of lines in the proof scripts for vari-
ous components. The length of the collectors includes their defini-
tions and verification. The work has taken many man months. Our
Coq proofs do not use any axioms and pass the Coq proof checker.

For Coq proofs, lines of code is probably a reasonable measure
of effort, but a poor metric of complexity, as the length of a proof
can vary greatly depending on how aggressively tactics are used.
We found that the verification of more complex collectors was
“denser” than those of simpler ones, as we had improved the tool
set enough as we were working to make things easier later. Also,
there is some redundancy in the proofs, because the incremental
versions of stop-the-world collectors use altered versions of the
original proofs. While we made some effort to reduce the size of the
proof scripts, there is probably a lot of room for improvement. A
reworking of the verification of the mark-sweep collector reduced
the size by two-thirds.

The verification of a basic block can be broken into a few
steps. First, we automatically infer a simple verification condition
in terms of explicit machine steps. This may produce a few simple
side conditions. After those have been shown, we compute, step-



by-step, the final machine state of the block. For instructions that
are always safe this is trivial, but for instructions that operate on
memory we must prove that the location being accessed is valid. In
the event of a branch, we must consider both cases. Finally, we have
a description of the final state in terms of the initial state. From this,
we must show the final state satisfies the precondition of whatever
code block we will end up in, and that the behavior of this block
plus the behavior of the rest of the procedure satisfies the specifi-
cation of this block. This final step constitutes the overwhelming
portion of verifying a block, as it involves manipulating the high-
level predicates involved in the specifications.

To simplify the verification work, we use a wide variety of
tactics. We use Coq’s tactic for automatically applying a set of
rewriting rules to simplify the state where possible. For instance,
S{r′ ; n}(r) is equal to n when r′ = r and equal to S(r) when
r′ 6= r. We have 8 such rules. This tactic greatly simplifies verifying
blocks of code that are mostly sequences of arithmetic instructions.
The Omega tactic, provided by Coq, does the bulk of the arithmetic
reasoning we need. Another set of heavily used tactics manipulate
proofs of separation logic predicates. One pair of tactics automat-
ically performs simplification of assumptions or goals. These sim-
plifications include combining together all instances of true, rear-
ranging nested uses of ∗ into a right-normal form, introducing or
eliminating existentials, and taking advantage of the fact that we
can prove anything from a proof of H ` x 7→ m∗x 7→ n∗A. Another
set of tactics can be used to try to match up a separation logic goal
with a hypothesis, with varying degrees of aggressiveness about re-
ordering.

8. Related work and conclusion
There is a large body of work on verifying garbage collector algo-
rithms (such as [16, 17, 11, 3, 14]), including mechanized verifi-
cation in a variety of formal systems (such as [41, 24, 19, 35, 7])
This work mostly focuses on verifying more abstract algorithms,
in contrast to our focus on the verification of actual machine level
implementations being executed on a (more or less) realistic ma-
chine. We also want to verify mutator and collector separately, with
a well-defined interface between them, instead verifying a model of
the entire system at once. On the other hand, their work generally
is able to verify liveness, while it is not clear how to handle it in our
system. Their work also has verified concurrent algorithms, while
we have not. Higher level verification is of course also very useful
when doing lower level verification.

Vechev et al. [43] discuss a way to apply a series of correctness-
preserving transformations to a very abstract concurrent mark-
sweep algorithm, thereby deriving a more realistic (and still cor-
rect) algorithm. Their work focuses on explaining the behavior of
variants of a single class of collectors (concurrent mark-sweep)
within a single framework, while we are attempting to describe a
broader class of algorithms, but we are focusing mostly on gener-
alizing the interface, and only on correctness. Morrisett et al. [32]
discuss a high level semantics of garbage collection, which is sim-
ilar to our work in that it involves reasoning about interference be-
tween the mutator and the garbage collector.

Our work builds on work by Birkedal et al. on verifying the im-
plementation of a Cheney collector [4]. They use separation logic
combined with Hoare logic to reason about GC implementations,
and the same kind of heap isomorphism predicate to describe the
behavior of a copying collector. However, they only consider the
verification of the collector and do not consider hiding the rep-
resentation of the garbage collected heap. Our main contribution
over [4] is the general framework for verifying mutator and collec-
tor together while using different levels of abstraction, even in the
presence of read/write barriers needed for incremental collection.

Additionally, we have verified more algorithms, and our proofs are
machine checked.

Other work focuses on the mutator side of mutator-GC inter-
action. Calcagno et al. [8] give a means of reasoning about the
behavior of a copying collector from the perspective of the mu-
tator, and develop a program logic that is sound in the presence
of garbage collection being performed at any step. Hunter and
Krishnamurthi [23] show that adding garbage collection (as an
atomic step) to a formal model of Java is sound. Vanderwaart and
Crary [42] present a type system able to describe the interface of
the mutator with a modern, realistic garbage collector. While this
work all provides a variety of useful models for GC interfaces, it
does not deal with the verification of the collector itself, and thus is
unable to verify an entire program within a single system.

There is also prior work focusing on type safe garbage collec-
tion [44, 30, 31, 20]. This work allows verifying the safety of both
mutator and collector in a single framework, while giving a well-
defined interface between the two that allows them to be separately
checked. However, these seem fairly linked to particular algorithms
(aside from [20]) and notions of safety. If you wanted to prove a
stronger property than memory safety, you would need to construct
a more expressive type system and reprove soundness.

Hawblitzel et al. [20] mechanically verify the safety of an im-
plementation of the Cheney collector. Their implementation uses
a more complex object model, but for safety has an unnecessary
bounds check that we are able to avoid. While it may be possible
for them to avoid this, their system still cannot prove partial correct-
ness, in contrast to our system. Additionally, the overall soundness
of their system is dependent on a paper proof of the safety of their
type system, and on their own implementation of a type checker
for their system, while our system is entirely mechanically veri-
fied using Coq, an existing general purpose proof system (except
of course for the definitions of safety and the machine semantics).

O’Hearn et al. [37] also combine separation logic with a form
of abstraction. Their approach uses a ”hypothetical frame rule” that
allows one part of a program (like a garbage collector) to hide some
of the heap from another part of a program (like the mutator), in
contrast to our approach of using an abstract heap representation
predicate repr to hide information. While the hypothetical frame
rule can completely hide parts of the heap, it is very coarse-grained:
to the client each slice of the heap is either completely hidden
or completely exposed. This seems insufficient to, for instance,
give the Cheney and Baker collectors the same interface, as our
approach is able to do. Furthermore, in contrast to our approach,
the soundness of the hypothetical frame rule depends on the heap
predicates being restricted in some way.

As previously mentioned, our work also draws heavily on prior
work on formal reasoning about programs, such as Hoare logic,
rely guarantee reasoning about concurrent programs [25], and sep-
aration logic [40].

We have demonstrated a framework for the formal verification
of garbage collectors, including the specification of a general in-
terface that is general enough to handle a variety of collectors. By
combining this work with existing work on typed compilation and
machine level Hoare logics for concurrency [45], it should be pos-
sible to produce FPCC [1] using a modern concurrent garbage col-
lector.
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