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Compilers for polymorphic languages can use run-time type inspection to support advanced imple-
mentation techniques such as tagless garbage collection, polymorphic marshalling, and flattened
data structures. Intensional type analysis is a type-theoretic framework for expressing and certify-
ing such type-analyzing computations. Unfortunately, existing approaches to intensional analysis
do not work well on quantified types such as existential or polymorphic types. This makes it im-
possible to code (in a type-safe language) applications such as garbage collection, persistency, or
marshalling which must be able to examine the type of any run-time value.

We present a typed intermediate language that supports the analysis of quantified types. In
particular, we provide both type-level and term-level constructs for analyzing quantified types.
Our system supports structural induction on quantified types yet type checking remains decidable.
We also show that our system is compatible with a type-erasure semantics.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Polymorphism; D.3.4 [Programming Languages]: Processors—Compilers; F.3.3
[Logic and Meanings of Programs]: Studies of Program Constructs—Type Structure
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1. INTRODUCTION

Run-time type analysis is used extensively in various applications and pro-
gramming situations. Run-time services such as garbage collection, dynamic
linking, and reflection, applications such as marshalling and pickling, type-
safe persistent programming, and unboxing implementations of polymorphic
languages all analyze types at run time. Most existing compilers use untyped
intermediate languages for compilation; therefore, they support run-time type
inspection in a type-unsafe manner. In this paper, we present a statically typed
intermediate language that allows run-time type analysis to be coded within
the language. This allows us to leverage the power of dynamically typed lan-
guages, yet retain the advantages of static type checking.

Supporting run-time type analysis in a type-safe manner has been an active
area of research. This paper builds on existing work [Harper and Morrisett
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1995; Crary et al. 1998] and makes several important new contributions. We
show how to support analysis of all well-formed quantified types, with bound
variables ranging over arbitrary kinds, at both the term level and the type
level. At the term level this enables programs to analyze run-time values
such as function closures and polymorphic data structures. At the type level,
type analysis provides accurate specifications for term-level type-analyzing
programs. In addition, type transformations (such as those performed dur-
ing closure conversion and CPS conversion), that could hitherto be expressed
only in a meta language, can now be expressed within the type language it-
self [Shao et al. 2002]. We prove that the language is sound and that type
reduction is strongly normalizing and confluent. Finally, we provide a transla-
tion to a language with type erasure semantics.

The rest of this paper is organized as follows. In Section 2 we argue the case
for intensional analysis of quantified types, and describe the obstacles on the
possible roads to it. Section 3 introduces our intensional polymorphic lambda
calculus λω

i , equipped with polymorphic kinds, which allow us to make use of
kind parametricity at the type level in order to restore the inductive structure
of the base kind. We also present some semantic properties of λω

i and examples
of its applications in Section 3. A possible path for implementing λω

i is outlined
in Section 4, where we develop a language for intensional type analysis of
quantified types which has type-erasure semantics, and in Section 5, where
we show how to translate λω

i terms into it. A brief review of the related work
can be found in Section 6, and proofs of the properties of λω

i are included in the
Appendix.

2. MOTIVATION AND APPROACH

The core issue that we address in this paper is the design of a statically typed
intermediate language that supports run-time type analysis. Why is this im-
portant? Modern programming paradigms are increasingly giving rise to ap-
plications that rely critically on type information at run time, for example:

—Java adopts dynamic linking as a key feature. To ensure safe linking, an ex-
ternal module must be dynamically verified to satisfy the expected interface
type.

—A precise garbage collector must keep track of all live heap objects, and for
that type information must be kept at run time to allow traversal of data
structures.

—In a distributed computing environment, code and data on one machine may
need to be pickled for transmission to a different machine, where the un-
pickler reconstructs the data structures from the bit stream. If the type of
the data is not statically known at the destination (as is the case for the
environment components of function closures), the unpickler must use type
information, encoded in the bit stream, to correctly interpret the encoded
value.

—Type-safe persistent programming requires language support for dynamic
typing: the program must ensure that data read from a persistent store is of
the expected type.
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—Finally, in polymorphic languages like ML, the type of a value may not be
known statically; therefore, compilers have traditionally used inefficient,
uniformly boxed representation. To avoid this, several modern compilers
[Shao and Appel 1995; Shao 1997a; Tarditi et al. 1996] use run-time type
information to support unboxed representation.

Most existing compilers use an untyped intermediate language for compiling
code that involves run-time type inspection. They reify types into values and
discard type information at some early stage during compilation. However,
this approach is infeasible in a certifying compiler [Necula 1998].

Code certification is appealing for a number of reasons. In a certifying frame-
work, one need not trust the correctness of the compiler that generated the cer-
tified code; instead, one can verify that the generated code satisfies the proper-
ties it claims, for instance type safety, or a specific security policy. Checking the
correctness of a compiler-generated proof (of a program property) is much eas-
ier than proving the correctness of the compiler. Furthermore, with the growth
of web-based computing, programs are increasingly being developed at remote
sites and shipped to clients for execution. Client programs may also download
modules dynamically as they need them. In this context, the compiler may
not even be known to the client, and trusting it is not sufficient either—the
client must now also trust the medium. For such a system to be practical, a
client should be able to accept code from untrusted sources, but have a means
of verifying its behavior before execution. This again requires compilers that
generate certified code.

A necessary step in building a certifying compiler is to have the compiler
generate code that can be type-checked before execution. The type system en-
sures that the code uses only granted resources, makes legal function calls, etc.
Generated code which performs run-time type analysis must also be verifiable
in this type system.

Moreover, type-safe run-time type analysis is also required for type-safe im-
plementations of runtime services. The safety of a mobile code system depends
not only on the downloaded code, but also on the safety of all the applications
and services that the runtime system provides (since the downloaded code may
execute these applications). These include services such as garbage collection,
linking, etc. Typically, this code constitutes the trusted computing base of the
system—it is assumed that the code is correct. However, there are significant
advantages to independently verifying these runtime services. Lifting these
services out of the trusted computing base makes the system more reliable.
The services can be then structured as libraries, offering opportunities for code
reuse.

Finally, it is essential to support analysis of quantified types. Most type-
analyzing applications must handle arbitrary heap values. For example, a
garbage collector needs to traverse all live data structures in the heap. In a
type-preserving compiler, a closure would have an existential type [Minamide
et al. 1996] and a polymorphic function would have a polymorphic type. Thus
analysis of quantified types is essential in supporting these applications.
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2.1 Background

Harper and Morrisett [1995] proposed intensional type analysis and presented
a type-theoretic framework for expressing computations that analyze types at
run time. They considered a language with operators for type analysis, both at
the term level and at the type level. Type-dependent primitive functions use
these operators to analyze types and select the appropriate code. For example,
suppose that arrays of values of type int and real have specialized representa-
tions (with types, say, intarray and realarray), and are therefore accessed using
special subscript functions intsub and realsub, while arrays of elements of any
other type τ have the default boxed representation, have type boxedarray τ , and
are subscripted using boxedsub [τ ]. A polymorphic subscript function for arrays
might be written using a term-level type analysis operator typecase as the fol-
lowing pseudo-code:

sub = Λα. typecase α of
int ⇒ intsub
real⇒ realsub
β ⇒ boxedsub [β]

Thus sub analyzes the type α of the array elements and returns the appropriate
subscript function.

Finding a type for this subscript function is more interesting, because it can
be instantiated to have any one of the types intarray → int → int, realarray →
int → real, and ∀α. boxedarray α → int → α. Since the type of an instance of
sub depends on the type argument, in order to assign a type to the function we
need a type-level construct, say Typecase, that parallels the typecase analysis
at the term level. In general, this facility is crucial since many type-analyzing
operations like flattening and marshalling transform types in a non-uniform
way. The subscript operation would then be typed as

sub : ∀α. Array (α) → int → α
where Array =λα. Typecase α of

int ⇒ intarray
real⇒ realarray
β ⇒ boxedarrayβ.

The Typecase construct in the above example is a special case of the Typerec con-
struct of Harper and Morrisett [1995], which supports primitive recursion over
the monotypes (type constructors) of their language λML

i . Their term language
cannot express general recursion, either, and is also equipped with a construct
for primitive recursion over types.

2.2 The Problem

The language of Harper and Morrisett only allows the analysis of monotypes;
it does not support analysis of types with binding structure (e.g., polymorphic
or existential types). Therefore, type analyzing primitives that handle poly-
morphic code blocks, or closures, cannot be written in their language. The
types in their language (in essence shown in Figure 1) are separated into two
universes, constructors and types. The constructor calculus is a simply typed
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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(kinds) κ ::= Ω | κ → κ′

(constructors) τ ::= int | τ → τ ′ | α | λα :κ. τ | τ τ ′ | Typerec τ of (τint; τ→)

(types) σ ::= τ | ∀α :κ. σ

Fig. 1. The type language of Harper and Morrisett

lambda calculus, with no polymorphic types. The Typerec operator analyzes
only constructors of the base kind Ω:

int : Ω
→ : Ω → Ω → Ω

The kinds of the arguments of these constructors do not contain any negative
occurrences of the kind Ω (that is, occurrences to the left of an odd number of
arrows). Thus the kind Ω is inductive. The Typerec operator provides a form
of primitive recursion over this inductively defined set of types. Each instance
of Typerec must specify the result of the analysis in the case of the nullary
constructor int, as well as an operator to combine the subterms τ1 and τ2 of a
function type τ1 → τ2 and the results of the iteration over them. The reduction
rules for Typerec can be written as

Typerec int of (τint; τ→) � τint

Typerec (τ1 → τ2) of (τint; τ→)
� τ→ τ1 (Typerec τ1 of (τint; τ→)) τ2 (Typerec τ2 of (τint; τ→)).

Operationally, the reduction of Typerec examines the head constructor of the
type being analyzed and chooses a branch accordingly. If the constructor is int,
the type reduces to the τint branch. If the constructor is of the form τ1 → τ2, the
analysis proceeds recursively on its subterms τ1 and τ2. The Typerec operator
then applies the τ→ branch to the components τ1 and τ2, and to the result of
the iteration over these components.

Types with binding structure can be constructed using higher-order abstract
syntax. For example, the polymorphic type constructor ∀Ω could be given the
kind (Ω → Ω) → Ω, so that the type ∀α : Ω. α → α could be represented as
∀Ω (λα : Ω. α → α). It would seem plausible to define an iterator with the
reduction rule

Typerec (∀Ω τ) of (τint; τ→; τ∀) � τ∀ τ (λα :Ω. Typerec (τ α) of (τint; τ→; τ∀)).

However the negative occurrence of Ω in the kind of the argument of ∀Ω poses a
problem: this iterator may fail to terminate! Consider the following example:
Assuming I ≡ λα : Ω. α and τ∀ ≡ λβ1 : Ω → Ω. λβ2 :Ω → Ω. β2 (∀Ω β1), the
following reduction sequence will go on indefinitely:

Typerec (∀Ω I) of (τint; τ→→; τ∀)
� τ∀ I (λα :Ω. Typerec (I α) of (τint; τ→; τ∀))
�3 Typerec (I (∀Ω I)) of (τint; τ→; τ∀)
� Typerec (∀Ω I) of (τint; τ→→; τ∀)
� . . .
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Clearly this makes the standard method of typechecking (by comparing normal
forms of types) fail. More generally, the existence of an injection ∀Ω from Ω → Ω
to Ω, and projections from Ω to Ω → Ω, for instance

A ≡ λα :Ω. Typerec α of (I ;
λ :Ω. λ :Ω → Ω. λ :Ω. λ :Ω → Ω. I ;
λα′ :Ω → Ω → Ω. λ :Ω → Ω. α′),

such that A (∀Ω τ) = τ for all τ of kind Ω → Ω, means that for every term of the
untyped lambda calculus one can construct a corresponding well-formed term
of this type language, under a correspondence which is preserved under the
reductions in both languages and maintains the equivalence relation on their
respective normal forms, by appropriately inserting applications of ∀Ω and A
(since every untyped lambda term can be translated into a term of the lambda
calculus with recursive types and given the type µα. α → α by inserting ap-
propriate applications of fold and unfold). Since equivalence of untyped lambda
terms is undecidable, typechecking a language with the above ∀Ω and Typerec
is also undecidable.

2.3 Requirements for a Solution

Let us present the central requirements for supporting intensional analysis of
quantified types in a typed intermediate language.

Consider a type-directed serializer that converts a value of an arbitrary type
to external representation. We will show that at the term level, the analysis
must proceed inside a quantified type. Suppose we want to pickle the closure
of a function of type τ1 → τ2. After type-preserving compilation, this closure
may be represented as a term of an existential type similar to ∃αenv :Ω. αenv×
(αenv ×τ1 → τ2), where the type αenv of the environment is held abstract. A
general pickler should process this type as any other existential, and analyze
its body; thus it will have to analyze the witness type for αenv . Even if the
pair-and-code part is hard-coded as a special case, the pickler must inspect the
witness type in order to pickle the environment. A similar issue arises in the
comparison of two values of an existential type.

In a type-preserving compiler every phase transforms terms as well as their
types to maintain type-correctness. The type transformations are defined in-
ductively on the structure of types. For example, closure conversion would
transform types as follows:

|int| = int
|τ1×τ2| = |τ1|×|τ2|
|τ1 → τ2| = ∃α :Ω. α×(α×|τ1| → |τ2|)

· · ·
Such type transformations [Harper and Lillibridge 1993] are conventionally
expressed in a metalanguage. However, when transforming polymorphic types
like ∀α :Ω. τ , it is not obvious in general how to transform α (and other normal
forms with free variables). A metalanguage transformation must define |α| as
some type in the target language. Since α can be instantiated (at the point of
type application) to any type τ ′, it is “too early” to choose some type construc-
tor for |α|. The only reasonable alternative seems to be to define |α| as another
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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variable β, appropriately introduced; in turn this implies that the transforma-
tion has been shifted to the type arguments τ ′. This is not always possible,
because the transformation may depend on the context of α in τ ; worse yet,
in a language with type analysis α may be analyzed in τ , and it would be im-
possible to invert the transformation of |τ ′| so the results of its analysis are
consistent with the source.

One way out is to use intensional type analysis to specify the transformation
within the language itself, which gives the additional advantage that proving
type correctness of the transformation reduces to checking well-formedness.
Of course this is only possible if the analysis is defined on quantified types.
A further requirement is that |α| must be defined as a normal form, so that
the transformation can “continue operating” appropriately on the arguments
at type applications, which are left unchanged.

Another serious problem in analyzing quantified types involves both the
type-level and the term-level operators. Recent work on typed compilation of
ML and Java [Shao 1998; 1999; League et al. 1999] has shown how to compile
both languages using higher-order type constructors with arbitrarily complex
kinds; there have been so far no results on type-preserving compilation of these
languages which uses a fixed set of kinds. Consequently, typed intermediate
languages such as FLINT [Shao 1997b] and TIL [Tarditi 1996] are based on
calculi derived from Fω [Girard 1972; Reynolds 1974], in which the quantified
type variables are not restricted to a base kind Ω and can have arbitrary kinds.
In the case of Java [League et al. 1999], existential quantification over higher
kinds appears in the types of objects, which are prime candidates for inten-
sional type analysis for the support of reflection. To do anything nontrivial
when analyzing a package of type ∃α :κ. τ at the term level, we must open the
package, for which we need to know the kind κ. Having an infinite number
of branches in the typecase so we can handle all possible kinds is impractical.
The alternative to restrict type analysis to a finite set of kinds would make it
impossible to use the known type-preserving compilation schemes for ML and
Java.

Furthermore, by generalization of the result of Section 2.2 it can be shown
that, if the representation of quantified types is based on higher-order abstract
syntax, when the kind of the bound variable is a known constant in the corre-
sponding branch of the Typerec construct, decidability of type-checking is lost.

This leads us to the following set of requirements for the intensional type
analysis. First, the analysis must be primitively-recursive, in the style of
Harper and Morrisett, the expressiveness of which has been established. Sec-
ond, the analysis must proceed inside the body of a quantified type, as op-
posed to mapping all quantified types to the same result, for example. Third,
a Typerec term analyzing a type variable must be a normal form. Fourth, the
kind of quantified variables in analyzable types should not be restricted, be-
cause this would prevent the use of the current compilation techniques for
higher-order typed languages. As further illustrated in Section 3.1, many in-
teresting type-directed operations require these properties.
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2.4 Problems with the Use of deBruijn Notation

The key problem in analyzing quantified types such as the polymorphic type
∀α : Ω. α → α is to determine what happens when the iteration reaches a free
occurrence of the bound type variable α, or more generally a normal form which
does not have a (saturated) application of a constructor of Ω in its head.

Crary and Weirich [1999] propose the use of deBruijn indices (i.e., natural
numbers) to represent quantifier-bound variables. To analyze quantified types,
the iterator carries an environment that maps indices to types. When the it-
erator reaches a type variable, which is now represented as just another con-
structed type (encoding a natural number), it returns the corresponding type
from the environment. This method, however, has several major problems:

—The analysis is restricted to types with quantification only over variables of
kind Ω. Extending it to handle a larger set of kinds is difficult, since one
would have to maintain a kind environment to ensure well-formedness.

—The technique is “limited to parametrically polymorphic functions, and can-
not account for functions that perform intensional type analysis” [Crary and
Weirich 1999, Section 4.1]. For example polymorphic and existential types
such as ∀α :Ω. Typerec α of . . . are not analyzable in their framework.

—A Typerec term analyzing a quantifier-bound type variable (rather, its de-
Bruijn index) is not in normal form, hence this technique cannot be used to
encode type transformations associated with closure conversion, etc.

—The correctness of the structure of a type encoded using deBruijn notation
cannot be verified by the kind language (indices not corresponding to bound
variables go undetected, so the environment must provide a default type
for them). This does not break the type soundness, but opens the door for
programmer mistakes.

2.5 Our Solution

To account for non-parametrically polymorphic functions, we must analyze the
quantified type variable. Moreover, we want to have confluence in the type
language, so β-reduction should be transparent to the iterator. This is possi-
ble only if no reduction rules apply at the head of (Typerec τ of . . .) when τ
is not (a saturated application of) a constructor of Ω. Thus the analysis “gets
suspended” when it reaches a type variable of kind Ω (or an irreducible appli-
cation, etc.), and resumes when the variable is substituted with a constructed
type. For example, the result of analyzing the body α → int of the polymorphic
type ∀α :Ω. α → int is

Typerec (α → int) of (τint; τ→; τ∀) � τ→ α (Typerec α of (τint; τ→; τ∀)) int τint.

The other problem is to analyze quantified types when the quantified vari-
able can be of an arbitrary kind. In our language the solution is similar at both
the type and the term levels: we use kind polymorphism! We introduce kind
abstractions at the type level (Λχ. τ ) and at the term level (Λ

+
χ. e) to bind the

kind of the quantified variable. The details are presented Section 3.
It is important to note that our language provides no facilities for kind anal-

ysis, thus every type function of polymorphic kind is parametrically polymor-
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(kinds) κ ::= Ω | κ → κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀+ | α | Λχ. τ | λα :κ. τ | τ [κ] | τ τ ′

| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

(values) v ::= i | Λ
+
χ. e | Λα :κ. e | λx :τ. e | fixx :τ. v

(terms) e ::= v | x | e [κ]
+ | e [τ ] | e e′ | typecase[τ ] τ ′ of (eint; e→; e∀; e∀+)

Fig. 2. Syntax of the λω
i language

τ → τ ′ ≡ ((→→) τ) τ ′

∀α :κ. τ ≡ (∀∀ [κ]) (λα :κ. τ)

∀+χ. τ ≡ ∀∀+(Λχ. τ)

Fig. 3. Syntactic sugar for λω
i types

phic. Analyzing the kind κ of the bound variable α in the type ∀α :κ. τ would let
us, for instance, synthesize a type of the same kind, for every kind κ. This type
could then be used to create non-terminating reduction sequences [Harper and
Mitchell 1999].

3. ANALYZING QUANTIFIED TYPES

In the impredicative calculus Fω the polymorphic types ∀α :κ. τ can be viewed
as generated by an infinite set of type constructors ∀κ of kind (κ → Ω) → Ω,
one for each kind κ, so that the type ∀α :κ. τ is represented as ∀κ (λα :κ. τ). The
kinds of constructors that can be used to create types of kind Ω would then be

int : Ω
→→ : Ω → Ω → Ω
∀Ω : (Ω → Ω) → Ω

· · ·
∀κ : (κ → Ω) → Ω

· · ·
However, having an infinite number of ∀κ constructors is not a real option;
more importantly, all of them have kinds with negative occurrences of Ω in
their domains. We can replace all of them by a single constructor ∀∀ of poly-
morphic kind ∀χ. (χ → Ω) → Ω (where χ stands for a kind variable) and then
instantiating it to a specific kind before forming polymorphic types. Thus our
intensional polymorphic lambda calculus λω

i (with syntax shown in Figure 2)
extends Fω with polymorphic kinds ∀χ. κ and adds the type constructor ∀∀ to the
type language. The polymorphic type ∀α :κ. τ is now a derived form (Figure 3)
represented as ∀∀ [κ] (λα : κ. τ); the construct τ [κ] denotes kind application at
the type level.

When analyzing a type τ (of kind Ω) with the Typerec operator, the argu-
ments of the outermost type constructor of τ must be passed to the correspond-
ing branch of Typerec. In the case of polymorphic types represented using ∀∀
these arguments are types with bound variables of arbitrary kinds. Thus the
corresponding branch of the operator must bind the kind of the quantified type
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variable to a kind variable; for that purpose the language provides kind ab-
straction (Λχ. τ ) at the type level.

Similarly, when analyzing a polymorphic type at the term level, the con-
struct typecase must bind the kind of the quantified type variable to a kind
variable, which necessitates the introduction of kind abstraction (Λ

+
χ. e) and

kind application (e [κ]
+
) at the term level. A term-level kind abstraction must

be given a kind-polymorphic type, so we need a type construct ∀+
χ. τ that binds

the kind variable χ in the type τ . However our goal is to ensure that all types,
now including kind-polymorphic types, can be analyzed. As with polymorphic
types, the solution is to represent the type ∀+

χ. τ as the application of a type
constructor ∀∀+

of kind (∀χ. Ω) → Ω to a (type-level) kind abstraction Λχ. τ . Thus
the kinds of the constructors for types of kind Ω are as follows.

int : Ω
→→ : Ω → Ω → Ω
∀∀ : ∀χ. (χ → Ω) → Ω
∀∀+

: (∀χ. Ω) → Ω

The kind Ω is not in a negative positions in the kind of any of these con-
structors’ arguments, hence Ω is now defined inductively by these construc-
tors. Typerec is then the iterator over this kind. To save space in figures we
use desugared syntax for Typerec and typecase, with their branches listed in
fixed order and without pattern matching for their parameters; however we
use friendlier syntax in examples.

The static semantics of λω
i is displayed in Figures 4 and 5 as a set of rules

for judgments, where the kind environment E is a list of kind variables.
Perhaps the easiest way to understand the semantics of Typerec is to consider

first its reduction rules, given in Figure 5. Depending on the head constructor
of the type τ being analyzed, Typerec chooses one of the branches. Similarly to
Harper/Morrisett’s construct, when τ is int, the result is the τint branch, and
when τ is the function type τ1 → τ2, the result is obtained by applying the
τ→ branch to the components τ1 and τ2 and to the results of the iteration over
them.

When analyzing a polymorphic type, the reduction rule is

Typerec[κ] (∀α :κ′. τ) of (τint; τ→; τ∀; τ∀+)
� τ∀ [κ′] (λα :κ′. τ) (λα :κ′. Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)).

Thus the ∀-branch of Typerec receives as arguments the kind of the bound vari-
able, the abstraction representing the quantified type, and a type function en-
capsulating the result of the iteration on the body of the quantified type. Since
τ∀ must be parametric in the kind κ′ (there are no facilities for kind analysis in
the language), it can only apply its second and third arguments to locally in-
troduced type variables of kind κ′. We believe this restriction, which is crucial
for preserving strong normalization of the type language, is quite reasonable
in practice. For instance τ∀ can yield a quantified type based on the result of
the iteration.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Kind formation E � κ

E � Ω

χ ∈ E
E � χ

E � κ E � κ′

E � κ → κ′
E , χ � κ

E � ∀χ. κ

Type environment formation E � ∆

E � ε

E � ∆ E � κ

E � ∆, α :κ

Type formation E ; ∆ � τ : κ

E � ∆

E ;∆ � int : Ω

E ;∆ � (→→) : Ω → Ω → Ω
E ;∆ � ∀∀ : ∀χ. (χ → Ω) → Ω

E ;∆ � ∀∀+ : (∀χ. Ω) → Ω

E � ∆ E , χ; ∆ � τ : κ

E ; ∆ � Λχ. τ : ∀χ. κ

E ;∆ � τ : ∀χ. κ E � κ′

E ;∆ � τ [κ′] : κ{κ′/χ}

E � ∆ α :κ in ∆

E ; ∆ � α : κ

E ; ∆, α :κ � τ : κ′

E ;∆ � λα :κ. τ : κ → κ′
E ; ∆ � τ : κ′ → κ E ;∆ � τ ′ : κ′

E ;∆ � τ τ ′ : κ

E ;∆ � τ : Ω
E ;∆ � τint : κ E ;∆ � τ→ : Ω → κ → Ω → κ → κ
E ;∆ � τ∀ : ∀χ. (χ → Ω) → (χ → κ) → κ E ;∆ � τ∀+ : (∀χ. Ω) → (∀χ. κ) → κ

E ;∆ � Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) : κ

Term environment formation E ;∆ � Γ

E � ∆

E ;∆ � ε

E ;∆ � Γ E ;∆ � τ : Ω

E ;∆ � Γ, x :τ

Term formation E ; ∆;Γ � e : τ

E ;∆; Γ � e : τ E ; ∆ � τ �→ τ ′ : Ω

E ; ∆;Γ � e : τ ′

E ;∆ � Γ E , χ; ∆;Γ � e : τ

E ;∆;Γ � Λ
+
χ. e : ∀+χ. τ

E ;∆; Γ � e : ∀∀+τ E � κ

E ;∆; Γ � e [κ]
+

: τ [κ]

E ;∆ � Γ

E ;∆;Γ � i : int

E � ∆ E ; ∆, α :κ; Γ � e : τ

E ; ∆;Γ � Λα :κ. e : ∀α :κ. τ

E ;∆;Γ � e : ∀∀ [κ] τ E ; ∆ � τ ′ : κ

E ; ∆;Γ � e [τ ′] : τ τ ′

E ;∆ � Γ x :τ in Γ

E ; ∆;Γ � x : τ

E ; ∆;Γ, x :τ � e : τ ′

E ; ∆;Γ � λx :τ. e : τ → τ ′
E ;∆;Γ � e : τ ′ → τ E ; ∆;Γ � e′ : τ ′

E ;∆; Γ � e e′ : τ

E ;∆; Γ, x :τ � v : τ

E ;∆;Γ � fixx :τ. v : τ
where
τ = ∀+χ1 . . . χn.

∀α1 :κ1 . . . αm :κm.
τ1 → τ2

E ;∆ � τ : Ω → Ω
E ;∆ � τ ′ : Ω
E ;∆; Γ � eint : τ int
E ;∆; Γ � e→ : ∀α :Ω.∀α′ :Ω. τ (α → α′)
E ;∆; Γ � e∀ : ∀+χ.∀α :χ → Ω. τ (∀∀ [χ]α)

E ;∆; Γ � e∀+ : ∀α : (∀χ.Ω). τ (∀∀+α)

E ; ∆;Γ � typecase[τ ] τ ′ of (eint; e→; e∀; e∀+) : τ τ ′

Fig. 4. Formation rules of λω
i

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.
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Type reduction E ; ∆ � τ1 �→ τ2 : κ

E ;∆, α :κ′ � τ : κ E ;∆ � τ ′ : κ′

E ;∆ � (λα :κ′. τ) τ ′ �→ τ{τ ′/α} : κ

E , χ;∆ � τ : ∀χ. κ E � κ′

E ;∆ � (Λχ. τ) [κ′] �→ τ{κ′/χ} : κ{κ′/χ}

E ;∆ � τ : κ → κ′ α /∈ ftv(τ)

E ; ∆ � λα :κ. τ α �→ τ : κ → κ′
E ; ∆ � τ : ∀χ′. κ χ /∈ fkv(τ)

E ;∆ � Λχ. τ [χ] �→ τ : ∀χ′. κ

E ;∆ � Typerec[κ] int of (τint; τ→; τ∀; τ∀+) : κ

E ;∆ � Typerec[κ] int of (τint; τ→; τ∀; τ∀+) �→ τint : κ

E ; ∆ � Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+) �→ τ ′
1 : κ

E ; ∆ � Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+) �→ τ ′
2 : κ

E ;∆ � Typerec[κ] ((→→) τ1 τ2) of (τint; τ→; τ∀; τ∀+) �→ τ→ τ1 τ ′
1 τ2 τ ′

2 : κ

E ; ∆, α :κ′ � Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+) �→ τ ′ : κ

E ; ∆ � Typerec[κ] (∀∀ [κ′] τ) of (τint; τ→; τ∀; τ∀+)

�→ τ∀ [κ′] τ (λα :κ′. τ ′) : κ

E , χ;∆ � Typerec[κ] (τ [χ]) of (τint; τ→; τ∀; τ∀+) �→ τ ′ : κ

E ;∆ � Typerec[κ] (∀∀+τ) of (τint; τ→; τ∀; τ∀+) �→ τ∀+ τ (Λχ. τ ′) : κ

Fig. 5. Selected λω
i type reduction rules

The reduction rule for analyzing a kind-polymorphic type is

Typerec[κ] (∀+
χ. τ) of (τint; τ→; τ∀; τ∀+)

� τ∀+ (Λχ. τ) (Λχ. Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)).

The arguments of the τ∀+ are the kind abstraction underlying the kind-polymor-
phic type, and a kind abstraction encapsulating the result of the iteration on
the body of the quantified type.

The formation rule for Typerec then follows naturally from the requirement
that the above reductions preserve well-formedness. The general correspon-
dence between the kind of a constructor of Ω and the kind of its Typerec branch
[Pfenning and Paulin-Mohring 1989] is in essence that for each Ω in (a posi-
tive position in) the kinds of the arguments of the constructor we get a pair
of types, one of kind Ω (the subterm itself) and the other of the kind κ of the
result of the iterative invocation of Typerec. However, since λω

i has no pairs at
the type level, we use currying; we also have to propagate kind quantification
accordingly.

Proofs of the following properties of the type language of λω
i , which entail

decidability of its type checking by reduction of types to their unique normal
forms, can be found in Appendix A.

PROPOSITION 3.1 (STRONG NORMALIZATION). Reduction of well-formed λω
i

types is strongly normalizing.
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(λx :τ. e) v � e{v/x}

(Λα :κ. e) [τ ] � e{τ/α}

(Λ
+
χ. e) [κ]

+
� e{κ/χ}

(fix x :τ. v) v′ � (v{fix x :τ. v/x}) v′

(fix x :τ. v) [τ ′] � (v{fix x :τ. v/x}) [τ ′]

(fix x :τ. v) [κ]
+

� (v{fix x :τ. v/x}) [κ]
+

e � e′

e e1 � e′ e1

e � e′

v e � v e′
e � e′

e [τ ] � e′ [τ ]

e � e′

e [κ]
+

� e′ [κ]
+

typecase[τ ] int of (eint; e→; e∀; e∀+) � eint

typecase[τ ] (τ1 → τ2) of (eint; e→; e∀; e∀+) � e→ [τ1] [τ2]

typecase[τ ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+) � e∀ [κ]
+

[τ ′]

typecase[τ ] (∀∀+τ ′) of (eint; e→; e∀; e∀+) � e∀+ [τ ′]

ε; ε � τ ′ �→∗ ν′ :Ω ν′ is a normal form

typecase[τ ] τ ′ of (eint; e→; e∀; e∀+) � typecase[τ ] ν′ of (eint; e→; e∀; e∀+)

Fig. 6. Operational semantics of λω
i

PROPOSITION 3.2 (CONFLUENCE). Reduction of well-formed λω
i types is con-

fluent.

At the term level type analysis is carried out by the typecase construct; we
do not define it as an iterator since the term language already has a recursion
primitive, fix. Figure 6 displays the operational semantics of the term language
of λω

i , which shows that the ∀∀ branch of typecase receives the kind and the type
abstraction carried by the type constructor ∀∀, while the ∀∀+

branch gets the kind
abstraction carried by ∀∀+

. The static semantics guarantees type safety of λω
i

programs, as shown in Appendix A.

PROPOSITION 3.3 (TYPE SAFETY). If � e : τ , then either e is a value or
there exists an e′ such that � e′ :τ and e � e′.

3.1 Applications

The power of intensional type analysis is in its ability to break the abstraction
barriers raised by parametric polymorphism. As a consequence, however, like
many other programming language features intensional type analysis “cuts
both ways”—many useful properties of programs are lost in a language that
offers it in its plain form. Nevertheless we believe its use is appropriate at
certain levels of an implementation of a programming language, which need
to know about data representation held abstract at higher levels. Typical ex-
amples include memory management, serialization, and reflection; however
the detailed development of such examples is beyond the scope of this paper.
In this section, we illustrate the usefulness of type-level and term-level anal-
yses of types. We encode a type-safe marshalling primitive, and show how
type classes can be simulated. The interested reader may refer to Monnier
et al. [2001] for a more realistic example that involves type-checking a copying
garbage collector.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



14 · Bratin Saha et al.

To make the examples slightly more readable we will use ML-style pattern-
matching syntax when writing types defined by Typerec. Instead of

f = λα :Ω. Typerec[κ] α of (τint; τ→; τ∀; τ∀+)
where τ→ = λα1 :Ω. λα′

1 :κ. λα2 :Ω. λα′
2 :κ. τ ′

→
τ∀ = Λχ. λα :χ → Ω. λα′ :χ → κ. τ ′

∀
τ∀+ = λα : (∀χ. Ω). λα′ : (∀χ. κ). τ ′

∀+

we will write
f (int) = τint

f (α1 → α2) = τ ′→{f (α1), f (α2)/α′
1, α

′
2}

f (∀∀ [χ] α) = τ ′
∀{λα1 :χ. f (α α1)/α′}

f (∀∀+
α) = τ ′

∀+{Λχ. f (α [χ])/α′}.
3.1.1 Marshalling. One of the examples that Harper and Morrisett [1995]

use to illustrate the power of intensional type analysis is based on the exten-
sion of ML for distributed computing proposed by Ohori and Kato [1993]. The
idea is to convert values into a form which can be used for transmission over a
network. An integer value may be transmitted directly, but a function may not;
instead, a globally unique identifier is transmitted that serves as a proxy at the
remote site. These identifiers are associated with their functions by a name
server that may be contacted through a primitive addressing scheme. The re-
mote sites use the identifiers to make remote calls to the function. Harper and
Morrisett show how to define types of transmissible values as well as functions
for marshalling to and unmarshalling from these types using intensional type
analysis. However, the predicativity of their type language prevents it from
handling the full calculus of Ohori and Kato, which also includes the remote
representation of polymorphic functions and remote type application.

In λω
i marshalling of polymorphic values is straightforward; in fact it offers

more flexibility than the calculus of Ohori and Kato needs, since polymorphic
functions become first-class values, and polymorphic types can be used in re-
mote type applications. Adapting the constructs of Harper and Morrisett to λω

i ,
we introduce a type constructor Id :Ω → Ω. A value of type τ has a global iden-
tifier of type Id τ . The Typerec and typecase operators are similarly extended, for
example, the following rule is added to the definition of type reduction.

Typerec[κ] (Id τ) of (τint; τ→; τ∀∀; τ∀+; τId)
� τId τ (Typerec[κ] τ of (τint; τ→; τ∀∀; τ∀+; τId))

The type of the remote representation of values of type τ is Tran τ , defined by
Harper and Morrisett using intensional analysis of τ . Values of type Tran τ
do not contain any abstractions; all the abstractions are wrapped inside an Id
constructor. We can extend the Harper/Morrisett definition of Tran to handle
the quantified types of λω

i as follows.

Tran (int) = int
Tran (α1 → α2) = Id (Tran α1 → Tran α2)
Tran (∀∀ [χ] α) = Id (∀α′ :χ. (λα1 :χ. Tran (α α1)) α′)
Tran (∀∀+

α) = Id (∀+χ′. (Λχ. Tran (α [χ])) [χ′])
Tran (Id α) = Id α
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To clarify the connection with the Typerec-based representation, we write the
right-hand sides exactly as obtained by expanding the pattern-matching syn-
tax introduced earlier; the redexes ostensibly present here do not exist in
Typerec notation. The last clause is due to the global identifiers being mar-
shalled as themselves.

At the term level the system provides primitives for creating global identi-
fiers and performing remote invocations.1

newid : ∀α1 :Ω. ∀α2 :Ω. (Tran α1→Tran α2)→Tran (α1→α2)
rapp : ∀α1 :Ω. ∀α2 :Ω. Tran (α1→α2)→Tran α1→Tran α2

newpid : ∀+
χ. ∀α :χ→Ω. (∀α′ :χ. Tran (α α′))→Tran (∀∀ [χ] α)

rtapp : ∀+
χ. ∀α :χ → Ω. Tran (∀∀ [χ] α) → ∀α′ :χ. Tran (α α′)

For completeness in our system we also need to handle kind polymorphism and
remote kind applications.

newkpid : ∀α : (∀χ. Ω). (∀+
χ. Tran (α [χ])) → Tran (∀∀+α)

rkapp : ∀α : (∀χ. Ω). Tran (∀∀+α) → ∀+χ. Tran (α [χ])

Operationally, given a function or a polymorphic value respectively, the new-id
functions generate a new, globally unique identifier, and tell the name server
to associate that identifier with the value on the local machine. The remote
applications take a proxy identifier of a remote function and a transmissible
argument value. The name server is contacted to get the site where the remote
function exists; the argument is sent to this machine, and the result of the
application transmitted back as the result of the operation.

Marshalling and unmarshalling of values from transmissible representa-
tions are performed by the mutually recursive functions M : ∀α : Ω. α → Tranα
and U :∀α :Ω. Tran α → α. They are defined as follows (using pattern-matching
syntax and implicit recursion instead of typecase and fix).

M [int] = λx : int. x
M [α1 → α2] = λx :α1 → α2. newid [α1] [α2] (λx′ :Tran α1. M [α2] (x (U [α1] x′)))
M [∀∀ [χ] α] = λx :∀∀ [χ] α. newpid [χ]

+
[α] (Λα′ :χ. M [α α′] (x [α′]))

M [∀∀+
α] = λx :∀∀+

α. newkpid [α] (Λ
+
χ. M [α [χ]] (x [χ]

+
))

M [Id α] = λx : Id α. x

U [int] = λx :Tran (int). x
U [α1 → α2] = λx :Tran (α1 → α2). λx′ :α1. U [α2] (rapp [α1] [α2] x (M [α1] x′))
U [∀∀ [χ] α] = λx :Tran (∀∀ [χ] α). Λα′ :χ. U [α α′] (rtapp [χ]

+
[α] x [α′])

U [∀∀+α] = λx :Tran (∀∀+
α). Λ

+
χ. U [α [χ]] (rkapp [α] x [χ]

+
)

U [Id α] = λx :Tran (Id α). x

We assume that a type or a kind does not need to be transformed in order to
be transmitted; an implementation could use symbolic representation of types
(including types of higher kind) to achieve this. A more realistic implemen-
tation would be based on a language with type-erasure semantics (Section 4),

1Ohori and Kato define one primitive for creating identifiers for both term and type abstraction.
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where types of higher kind are represented by term-level abstractions, which
could be marshalled using globally unique identifiers. However developing the
details of such an implementation here would take us too far from our goal of
illustrating how the new constructs of λω

i enable the analysis of all run-time
values.

3.1.2 Polymorphic Equality. Another illustration of how term-level analy-
sis of quantified types can be used to gain access to representation information
is provided by an example involving the comparison of values of existential
type. At the type-level we will use the Typerec operator to define the class of
types admitting equality comparisons. To make the example less trivial we
extend the language with a product type constructor ×× of the same kind as →→,
and with existential types with type constructor ∃∃ of kind identical to that of
∀∀, writing ∃α :κ. τ for ∃∃ [κ] (λα :κ. τ). The term constructs for introduction and
elimination of existential types have the following formation rules.

E ; ∆; Γ � e : (λα :κ. τ) τ ′

E ; ∆; Γ � 〈α :κ = τ ′, e :τ〉 : ∃α :κ. τ

E ; ∆; Γ � e : ∃∃ [κ] τ E ; ∆ � τ ′ : Ω
E ; ∆, α :κ; Γ, x :τ α � e′ : τ ′

E ; ∆; Γ � open e as 〈α :κ, x :τ α〉 in e′ : τ ′

Correspondingly we extend Typerec with a product branch τ× and an existential
branch τ∃ which behave in exactly the same way as the τ→ branch and the τ∀
branch respectively. We will use Bool instead of int.

A polymorphic function eq comparing two objects for equality is not defined
on values of function or polymorphic types. Following Harper and Morrisett
[1995], we can enforce this restriction statically if we define a type operator
Eq of kind Ω → Ω, which maps function and polymorphic types to the type
Void ≡ ∀α : Ω. α (a type with no values), and require the arguments of eq to be
of type Eq τ for some type τ . Thus, given any type τ , the function Eq serves to
verify that a non-equality type does not occur inside τ .

Eq (Bool) = Bool
Eq (α1 → α2) = Void
Eq (α1×α2) = Eq (α1)×Eq (α2)
Eq (∀∀ [χ] α) = Void

Eq (∀∀+
α) = Void

Eq (∃∃ [χ] α) = ∃∃ [χ] (λα1 :χ. Eq (α α1))

The property is enforced even on hidden types in an existentially typed pack-
age by the reduction rule for Typerec, which suspends its action on normal
forms with variable head. For instance a term e can only be given type

Eq (∃α :Ω. α × α) = ∃α :Ω. Eqα × Eqα

if it can be shown that e is a pair of terms of type Eq τ for some τ , i.e., terms of
equality type.

The polymorphic equality function eq is defined in Figure 7 (we use a letrec
construct derived from our fix). The domain type of the function is restricted
to types of the form Eq τ to ensure that only values of types admitting equality
are compared.
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letrec
heq :∀α :Ω.∀α′ :Ω.Eq α → Eq α′ → Bool

= Λα :Ω.Λα′ :Ω.
typecase[λγ :Ω.Eq γ → Eq α′ → Bool] α of

Bool ⇒ λx :Bool.
typecase[λγ :Ω.Eq γ → Bool] α′ of

Bool ⇒ λy :Bool. primEqBool x y
. . . ⇒ . . . false

β1×β2 ⇒ λx :Eq β1×Eq β2.
typecase[λγ :Ω.Eq γ → Bool] α′ of

β′
1×β′

2 ⇒ λy :Eq β′
1×Eq β′

2.
heq [β1] [β′

1] (x.1) (y.1) and heq [β2] [β′
2] (x.2) (y.2)

. . . ⇒ . . . false
∃∃ [χ]β ⇒ λx : (∃β1 :χ.Eq (β β1)).

typecase[λγ :Ω.Eq γ → Bool] α′ of
∃∃ [χ′] β′⇒ λy : (∃β′

1 :χ′.Eq (β′ β′
1)).

open x as 〈β1 :χ, xc :Eq (β β1)〉 in
open y as 〈β′

1 :χ′, yc :Eq (β′ β′
1)〉 in

heq [β β1] [β′ β′
1] xc yc

. . . ⇒ . . . false
. . .

in let eq :∀α :Ω.Eq α → Eq α → Bool
= Λα :Ω. λx :Eq α. λy :Eq α. heq [α] [α] x y

in . . .

Fig. 7. Polymorphic equality in λω
i

Consider the following two packages.

v = 〈α :Ω = Bool, false :α〉
v′ = 〈α :Ω = Bool×Bool, 〈true, true〉 :α〉

Both are of type ∃α : Ω. α, which makes the invocation eq [∃α : Ω. α] v v ′ legal.
But when the packages are open, the types of the packaged values turn out to
be different. Therefore we need the auxiliary function heq to compare values
of possibly different types by comparing their types first. The function cor-
responds to a matrix on the types of the two arguments, where the diagonal
elements compare recursively the constituent values, while the off-diagonal
elements return false and are abbreviated in the figure.

The only interesting case is that of values of an existential type. Opening
the packages provides access to the witness types β1 and β′

1 of the arguments
x and y. As shown in the typing rules, the actual types of the packaged values,
x and y, are obtained by applying the corresponding type functions β and β ′ to
the respective witness types. This yields a perhaps unexpected semantics of
equality. Consider this invocation of the eq function, which evaluates to true:

eq [∃α :Ω. α]
〈α :Ω = ∃β :Ω. β, 〈β :Ω = Bool, true :Eq β〉 :Eq α〉
〈α :Ω = ∃β :Ω → Ω. β Bool,

〈β :Ω → Ω = λγ :Ω. γ, true :Eq (β Bool)〉 :Eq α〉.
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At run time, after the two packages are opened, the call to heq is

heq [∃β :Ω. β] [∃β :Ω → Ω. β Bool]
〈β :Ω = Bool, true :Eqβ〉
〈β :Ω → Ω = λγ :Ω. γ, true :Eq (β Bool)〉.

This term evaluates to true even though the type arguments are different. The
reason is that heq actually compares the types of the values before hiding the
respective witness types. Tracing the reduction of this term to the recursive
call heq [β β1] [β′ β′

1] xc yc we find out it is instantiated to

heq [(λβ :Ω. β) Bool] [(λβ :Ω → Ω. β Bool) (λγ :Ω. γ)] true true

which reduces to heq [Bool] [Bool] true true and thus to true.
However this result is justified, since the above two packages of type ∃α :Ω. α

will indeed behave identically in all contexts. An informal argument in support
of this claim is that the most any context could do with such a package is open
it and inspect the type of its value using typecase, but this will only provide
access to a type function τ representing the inner existential type. Since the
kind κ of the domain of τ is unknown statically, the only nontrivial operation
on τ is its application to the witness type of the package, which is the only
available type of kind κ. As we saw above, this operation will produce the
same result (namely Bool) in both cases. Thus, since the two arguments to eq
are indistinguishable by λω

i contexts, the above result is perfectly sensible.

3.2 Discussion

Before we move on, it is worthwhile to take another look at the λω
i language.

Specifically, what is the price in terms of complexity of the type theory that can
be attributed to the requirements that we imposed?

In Section 2.3 we saw that an iterative type operator is essential to type-
checking many type-directed operations. Even when the focus is on compiling
ML, we still have to consider analysis of polymorphic types of the form ∀α :Ω. τ ,
and their ad hoc inclusion in kind Ω makes the latter non-inductive. Therefore,
even for this simple case, we need kind polymorphism in an essential way in
order to handle the negative occurrence of Ω in the domain of ∀∀. In turn, kind
polymorphism allows us to analyze at the type-level types quantified over any
kind; hence the extra expressiveness comes for free. Moreover, adding kind
polymorphism does not entail any heavy type-theoretic machinery—the kind
and type language of λω

i is a minor extension (with primitive recursion) of the
well-studied calculus F2; we use the basic techniques developed for F2 [Girard
et al. 1989] to prove properties of our type language.

The kind polymorphism of λω
i is parametric, i.e., kind analysis is not possi-

ble. This property prevents in particular the construction of non-terminating
types based on variants of Girard’s J operator using a kind-comparing opera-
tor [Harper and Mitchell 1999].

For analysis of quantified types at the term level we have the new construct
Λ

+
χ. e and the corresponding application. This does not result in any additional

complexity at the type level—although we introduce a new type constructor ∀∀+
,
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the kind of this construct is defined completely by the original kind calculus,
and the kind and type calculus is still essentially F2.

Restricting the type analysis at the term level to a finite set of kinds would
help avoid the term-level kind abstraction. However even in this case we would
need kind abstraction to implement the translation to type-erasure semantics,
described in Section 5.

4. TYPE-ERASURE SEMANTICS

In this section, we show that the language λω
i is compatible with type-erasure

semantics [Crary et al. 1998]. In a type-erasure framework, types used for the
purpose of type analysis are represented at run time by terms; consequently
type annotations have no run-time significance and can be erased before exe-
cution. From an implementor’s point of view, this framework seems to simplify
certain phases in a type-preserving compiler; most notably, typed closure con-
version [Minamide et al. 1996]. Therefore, accounting for type erasure is an
important step in propagating types through all phases of a type-preserving
compiler.

4.1 Analyzable Elements at the Type Level

Following the ideas of Crary, Weirich, and Morrisett [1998], the run-time anal-
ysis of types is replaced by analysis of terms representing types (for instance
Rint represents int). The type parameters of a polymorphic function have their
representation terms passed as additional term-level parameters of the func-
tion; correspondingly for every type parameter α there is a term parameter
xα which is to be bound to the term representing the type that α gets bound
to. Since the type language must be kept independent of the term language
in order to have decidable type checking, this analysis can only be performed
at the term level. The term-level operator (now called repcase) analyzes these
representation terms.

For the analysis of representation terms to indeed mirror the analysis of
types in λω

i , it must hold that a term e representing type τ has e.g., the value
Rint if and only if τ = int. In [Crary et al. 1998] this is achieved by defining the
representation terms so that e represents τ if and only if e has type R τ , where
R is a new type constructor, and ensuring that the type R τ is singleton, i.e.,
contains exactly one value.

Having solved the problem for representing types of kind Ω, Crary, Weirich,
and Morrisett extend this solution to types of higher kinds. For instance, if
α is a type parameter of kind Ω → Ω, for the purpose of type analysis there
must be a way to obtain a term representing α τ for every type τ of kind Ω,
given the terms representing α and τ . This implies that the representation
of α must be a term which defines a function from R τ to R (α τ); taking into
account the requirement for polymorphism, the representation of α is of type
∀β :Ω. R β → R (α β). In the language of [Crary et al. 1998], which has no kind
polymorphism, this construction generalizes (by induction on the structure of
kinds) to the following definition of the type Rκ (τ) of terms representing the
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type τ of kind κ:

RΩ (τ) ≡ R τ
Rκ→κ′ (τ) ≡ ∀β :κ. Rκ (β) → Rκ′ (τ β).

In the absence of kind abstraction and application, Rκ (τ) can be expanded
statically for any κ. However in λω

i there are polymorphic kinds and kind vari-
ables, and clearly a problem arises when κ is a variable χ. If τ is of kind χ,
since the language does not offer kind analysis, there is no way to find the
type Rχ (τ) of the representation of τ , unless—similarly to the term-level rep-
resentation of type variables—the type operator Rχ is provided as an extra
type-level parameter αχ of the kind abstraction for χ. Hence for every kind
variable χ the translation of a λω

i program to the type-erasure language must
add a type variable αχ which represents the type of term-level representations
for types of kind χ. The type of terms representing τ is then αχ τ ; hence the
kind of αχ must be χ → Ω.

As we show next, however, the straightforward inclusion of these type-level
parameters breaks the inductiveness of Ω in the type-erasure language.

Recall that the term translation introduces a new term parameter of type
Rκ (α) for every type parameter α of kind κ. Thus a λω

i term of type ∀α : κ. τ
will be translated to a term having a type of the form ∀α : κ. Rκ (α) → · · ·.
Therefore the translation must also change type annotations of term-level pa-
rameters of polymorphic type (as in λx : ∀α : κ. τ. · · ·) to match the new types
of the arguments. However, due to the polymorphism, it cannot be determined
statically if a function will be invoked with an argument of polymorphic type,
for instance the polymorphic identity combinator I ≡ Λα :Ω. λx :α. x is invoked
with itself as an argument in I [∀α :Ω. α → α] I. Note further that it is infeasible
for the translation to change the structure of the type argument ∀α :Ω. α → α,
because it may be analyzed by the function using Typerec.

There is a solution: the translation can apply to the type annotations inter-
pretation operators which map the λω

i -style type arguments to the types ex-
pected after the translation. In fact, since the types of the arguments are in
general determined in type contexts unrelated to the context of the function,
these operators cannot take advantage of free type variables and must be the
same closed type operator, call it F. So I could be mapped to Λα :Ω. λx :F α. x.

Since the result of F depends on the structure of its argument (e.g., func-
tion types are just iterated through, while polymorphic types are transformed
as shown above), it must be defined using type analysis. In the case of poly-
morphic types, F (∀∀ [κ] τ) must yield ∀∀ [κ] (λα : κ. Rκ (α) → F (τ α)), for any κ.
But here we have the old problem again: there is no way to construct Rκ for
unknown κ.

The old solution—add a parameter providing Rχ, this time for a type-level
kind abstraction on χ, as in the ∀ branch of Typerec—is the only reasonable way
out. However we must also ensure that there is an argument we can supply for
this parameter, in particular when reducing a Typerec applied to a polymorphic
type. The type Rκ depends on the kind κ carried by the constructor ∀∀, hence
we can only have it if it was passed together with the ∀∀ as an additional argu-
ment. So the polymorphic type must have the shape ∀∀ [κ] Rκ τ , where ∀∀ is the
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(kinds) κ ::= Ω | T | κ → κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀+ | R | Tint | T→ | T∀ | T∀+ | TR

| α | Λχ. τ | τ [κ] | λα :κ. τ | τ τ ′ | Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τR )

(values) v ::= i | Λ
+
χ. v | Λα :κ. e | λx :τ. e | fixx :τ. v

| Rint | R→ | R→ [τ ] | R→ [τ ] v | R→ [τ ] v [τ ′] | R→ [τ ] v [τ ′] v′

| R∀ | R∀ [κ]
+ | R∀ [κ]

+
[τ ] | R∀ [κ]

+
[τ ] [τ ′] | R∀ [κ]

+
[τ ] [τ ′] v

| R∀+ | R∀+ [τ ] | R∀+ [τ ] v | RR | RR [τ ] | RR [τ ] v

(terms) e ::= v | x | e [κ]
+ | e [τ ] | e e′ | repcase[τ ] e of (eint; e→; e∀; e∀+; eR )

Fig. 8. Syntax of the λω
R language

polymorphic type constructor in the type-erasure language, which must have
kind ∀χ. (χ → Ω) → (χ → Ω) → Ω.

Thus the translation must replace kind applications of ∀∀; however ∀∀ is a
first-class type in λω

i , so for instance the type

(λα : (∀χ. (χ → Ω) → Ω). α [Ω] (λβ :Ω. β → β)) ∀∀
is well-formed. Consequently a compositional translation must augment all
kind abstractions and applications with corresponding type abstractions and
applications, and (in order to maintain kind-correctness) adjust the polymor-
phic kinds. Denoting the translation of κ by |κ|, we need

|∀χ. κ| ≡ ∀χ. (χ → Ω) → |κ|.
One can expect the types of kind κ → κ′ to be uneventfully translated to types
of kind |κ → κ′| ≡ |κ| → |κ′|, and Ω to be mapped to Ω.

Consider now the constructor ∀∀+
, of kind (∀χ. Ω) → Ω. The kind of its image

under our hypothetical translation is (∀χ. (χ → Ω) → Ω) → Ω, which has a
negative occurrence of Ω in its domain. With a constructor of this kind, the
kind Ω in the target language is not inductive.

As we just saw, for each kind variable we need the type operator generating
the types of term-level representations of types of this variable kind. Note,
however, that types of representations are not analyzed—they are only used
in annotations, to verify that the terms represent the claimed types. Thus
the result kind for the extra type argument does not have to be the kind of
analyzable types.

This is the idea we apply in our intensional polymorphic lambda calculus
with erasure, λω

R. We define two kinds for the two different purposes that Ω
is being used for in λω

i : the kind of types of terms, and the kind of analyzable
types. In λω

R we reuse the name Ω for the former, while the analyzable types
are called tags, and their kind is denoted by T. The kind Ω is defined as in
λω

i , so it is inductive; the kind T is also inductive, because in the kinds of its
constructors only Ω and variables, but not T, occur in the domains’ negative
positions. In particular, the problematic ∀∀+

is mapped to a constructor T∀+ of
kind (∀χ. (χ → Ω) → T) → T, in which the occurrence of Ω is acceptable, since
T∀+ is a constructor of T.
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|Ω| = T |κ → κ′| = |κ| → |κ′| |χ| = χ |∀χ. κ| = ∀χ. (χ → Ω) → |κ|

Fig. 9. Translation of λω
i kinds to λω

R kinds

E � ∆

E ; ∆ � RΩ ≡ R : T → Ω

E ;∆ � Rκ ≡ τ : |κ| → Ω E ;∆ � Rκ′ ≡ τ ′ : |κ′| → Ω

E ;∆ � Rκ→κ′ ≡ λα : |κ → κ′|.∀β : |κ|. τ β → τ ′ (α β)
: |κ → κ′| → Ω

E ;∆ � αχ : χ → Ω

E ; ∆ � Rχ ≡ αχ : χ → Ω

E , χ;∆, αχ :χ → Ω � Rκ ≡ τ : |κ| → Ω

E ;∆ � R∀χ. κ ≡ λα : |∀χ. κ|.∀+χ.∀αχ :χ → Ω. τ (α [χ]αχ)
: |∀χ. κ| → Ω

Fig. 10. Types of representations at higher kinds

The syntax of λω
R is shown in Figure 8. The type calculus of λω

R contains types
and tags, distinguished by their kind; while types (of kind Ω) classify terms,
tags (of kind T) are used for analysis. For every constructor that generates a
type of kind Ω there is a corresponding constructor that generates a tag of kind
T, e.g., for int we have T int, and for →→ we have T→. The type analysis construct
at the type level is Tagrec and it operates on tags.

At the term level we have representations for tags, since they are the ana-
lyzable elements. The primitive tags have corresponding term-level represen-
tations; for example, Tint is represented by Rint. (All well-formed applications of
the term-level representation constructors, including partial applications, are
values.) The type calculus in λω

R includes a unary type constructor R of kind
T → Ω, which is used in the types of term-level representations. Given a tag
τ (of kind T), the term representation of τ is constructed inductively and has
type R τ ; for example, Rint, representing Tint, has type R Tint. Semantically, as
in [Crary et al. 1998], R τ is interpreted as a singleton type inhabited only by
(the equivalence class of) the term representation of τ .

4.2 Static and Dynamic Semantics of λω
R

Before we present the formation rules for λω
R types and terms, it is useful to de-

fine more precisely the types of representation terms for types of higher kinds.
Since the goal is to represent λω

i types (all analyzable in λω
i ), the definitions

follow the structure of λω
i kinds. First, in Figure 9 we have the inductively de-

fined translation of kinds from λω
i to λω

R. Since the analyzable elements of λω
R

are of kind T, the λω
i kind Ω is mapped to T. On the other hand the polymorphic

kind ∀χ. κ is translated to ∀χ. (χ → Ω) → |κ|, since we must add a parameter
for the types of representation terms for types of kind χ, but the types of repre-
sentations are not analyzed, so the parameter’s kind is χ → Ω. Next, Figure 10
defines (again by induction on λω

i kinds) the type operator Rκ of kind |κ| → Ω,
mapping types of kind |κ| to the types of their term-level representations. Note
that for every kind variable χ a corresponding type variable αχ of kind χ → Ω
is introduced.

The formation rules for constructors for kind Ω in λω
R are as in λω

i , with
the additional constructor R; the rules for R and the tags are displayed in
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Kind formation E � κ

E � T

Type formation E ; ∆ � τ : κ

E � ∆

E ;∆ � R : T → Ω
E ;∆ � Tint : T
E ;∆ � T→ : T → T → T
E ;∆ � T∀ : ∀χ. (χ → Ω) → (χ → T) → T
E ;∆ � T∀+ : (∀χ. (χ → Ω) → T) → T

E ;∆ � TR : T → T

E ;∆ � τ : T
E ;∆ � τint : κ
E ;∆ � τ→ : T → κ → T → κ → κ
E ;∆ � τ∀ : ∀χ. (χ → Ω) → (χ → T) → (χ → κ) → κ
E ;∆ � τ∀+ : (∀χ. (χ → Ω) → T) →

(∀χ. (χ → Ω) → κ) → κ
E ;∆ � τR : T → κ → κ

E ;∆ � Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τR ) : κ

Term formation E ; ∆;Γ � e : τ

E ; ∆ � Γ

E ;∆; Γ � Rint : R Tint

E ;∆; Γ � R→ : RΩ→Ω→Ω (T→)
E ;∆; Γ � R∀ : R∀χ. (χ→Ω)→Ω (T∀)

E ;∆; Γ � R∀+ : R(∀χ. Ω)→Ω (T∀+)

E ;∆; Γ � RR : RΩ→Ω (TR )

E ;∆ � τ : T → Ω
E ;∆; Γ � e : R τ ′
E ;∆; Γ � eint : τ Tint

E ;∆; Γ � e→ : ∀α1 :T. R α1 → ∀α2 :T. R α2 → τ (T→ α1 α2)

E ;∆; Γ � e∀ : ∀+χ. ∀αχ :χ → Ω.
∀α :χ → T. Rχ→Ω α → τ (T∀ [χ]αχ α)

E ;∆; Γ � e∀+ : ∀α : (∀χ. (χ → Ω) → T). R∀χ. Ω α → τ (T∀+ α)

E ;∆; Γ � eR : ∀α :T. R α → τ (TR α)

E ;∆; Γ � repcase[τ ] e of (eint; e→; e∀; e∀+; eR ) : τ τ ′

Fig. 11. Formation rules for the new constructs in λω
R

Figure 11. Our intention is to translate the λω
i constructors of Ω, when used for

type analysis, to the constructors of T, hence the kinds of the Ω constructors are
mapped by |·| to the kinds of the corresponding tag constructors. Thus the kind
of T∀ is |∀χ. (χ → Ω) → Ω| = ∀χ. (χ → Ω) → (χ → T) → T; the new argument of
kind χ → Ω can be used by the ∀ branch of the tag analysis construct Tagrec to
form types of representation terms for types of kind χ.

To allow analysis of all tags, Tagrec includes an additional branch for the tag
constructor T

R
corresponding to R.

Figure 12 shows the reduction rules for Tagrec, which are similar to the re-
duction rules for the source language’s Typerec: given a tag, it calls itself recur-
sively on the components of the tag and then passes the result of the recursive
calls, along with the original components, to the corresponding branch. Thus
the reduction rule for the function tag is

Tagrec[κ] (T→ τ τ ′) of (τint; τ→; τ∀; τ∀+; τ
R
)

� τ→ τ (Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τ
R
))

τ ′ (Tagrec[κ] τ ′ of (τint; τ→; τ∀; τ∀+; τ
R
)).

Similarly, the reduction for the polymorphic tag is

Tagrec[κ] (T∀ [κ] τκ τ) of (τint; τ→; τ∀; τ∀+; τ
R
)

� τ∀ [κ] τκ τ (λα :κ. Tagrec[κ] (τ α) of (τint; τ→; τ∀; τ∀+; τ
R
)).

Figure 11 also shows the typing rules for the term representations of con-
structors of T and for the repcase construct. These rules use the type operator
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E ;∆ � Tagrec[κ] Tint of (τint; τ→; τ∀; τ∀+; τR ) : κ

E ;∆ � Tagrec[κ] Tint of (τint; τ→; τ∀; τ∀+; τR ) � τint : κ

E ; ∆ � Tagrec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τR ) � τ ′
1 : κ

E ; ∆ � Tagrec[κ] τ2 of (τint; τ→; τ∀; τ∀+; τR ) � τ ′
2 : κ

E ; ∆ � Tagrec[κ] (T→ τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR ) � τ→ τ1 τ ′
1 τ2 τ ′

2 : κ

E ;∆, α :κ′ � Tagrec[κ] (τ2 α) of (τint; τ→; τ∀; τ∀+; τR ) � τ ′ : κ

E ;∆ � Tagrec[κ] (T∀ [κ′] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR ) � τ∀ [κ′] τ1 τ2 (λα :κ′. τ ′) : κ

E , χ;∆, αχ :χ → Ω � Tagrec[κ] (τ [χ]αχ) of (τint; τ→; τ∀; τ∀+; τR ) � τ ′ : κ

E ; ∆ � Tagrec[κ] (T∀+ τ) of (τint; τ→; τ∀; τ∀+; τR ) � τ∀+ τ (Λχ. λαχ :χ → Ω. τ ′) : κ

E ;∆ � Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τR ) � τ ′ : κ

E ;∆ � Tagrec[κ] (TR τ) of (τint; τ→; τ∀; τ∀+; τR ) � τR τ τ ′ : κ

Fig. 12. Non-standard reduction rules for λω
R types

(Λ
+
χ. v) [κ]

+
� v{κ/χ}

(Λα :κ. e) [τ ] � e{τ/α}

(λx :τ. e) v � e{v/x}

(fixx :τ. v) [τ ] � (v{fix x :τ. v/x}) [τ ]

(fixx :τ. v) [κ]
+

� (v{fix x :τ. v/x}) [κ]
+

(fixx :τ. v) v′ � (v{fix x :τ. v/x}) v′

e � e1

e e′ � e1 e′
e � e1

v e � v e1

e � e1

e [τ ] � e1 [τ ]

e � e1

e [κ]
+

� e1 [κ]
+

repcase[τ ] Rint of (eint; e→; e∀; e∀+; eR ) � eint

repcase[τ ] R→ [τ1] (v1) [τ2] (v2) of (eint; e→; e∀; e∀+; eR ) � e→ [τ1] (v1) [τ2] (v2)

repcase[τ ] R∀ [κ]
+

[τκ] [τ ′] (v) of (eint; e→; e∀; e∀+; eR ) � e∀ [κ]
+

[τκ] [τ ′] (v)

repcase[τ ] R∀+ [τ ′] (v) of (eint; e→; e∀; e∀+; eR ) � e∀+ [τ ′] (v)

repcase[τ ] RR [τ ′] (v) of (eint; e→; e∀; e∀+; eR ) � eR [τ ′] (v)

e � e′

repcase[τ ] e of (eint; e→; e∀; e∀+; eR ) � repcase[τ ] e′ of (eint; e→; e∀; e∀+; eR )

Fig. 13. Term reduction rules of λω
R

Rκ as defined in Figure 10 (to save ink we are a bit sloppy with the notation,
using Rκ directly as a type instead of including its formation in the premises).
The typing of repcase can be derived from its reduction rules, displayed in Fig-
ure 13. The expression being analyzed must be of type R τ ′, since repcase an-
alyzes term representation of tags. Operationally, it examines the head of the
representation, selects the corresponding branch, and passes the components
of the representation to the selected branch.
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(values) v ::= i | λx.e | fixx.v | Rint | R→ | R→ 1 | R→ 1 v | R→ 1 v 1 | R→ 1 v 1 v′
| R∀ | R∀ 1 | R∀ 1 1 | R∀ 1 1 1 | R∀ 1 1 1 v | R∀+ | R∀+ 1 | R∀+ 1 v

| RR | RR 1 | RR 1 v

(terms) e ::= v | x | e e′ | repcase e of (eint; e→; e∀; e∀+; eR )

(λx :τ. e) v �◦ e{v/x} (fixx :τ. v) v′ �◦ (v{fix x :τ. v/x}) v′
e �◦ e1

e e′ �◦ e1 e′
e �◦ e1

v e �◦ v e1

repcase Rint of (eint; e→; e∀; e∀+; eR) �◦ eint

repcase R→ 1 v 1 v′ of (eint; e→; e∀; e∀+; eR) �◦ e→ 1 v 1 v′

repcase R∀ 1 1 1 v of (eint; e→; e∀; e∀+; eR) �◦ e∀ 1 1 1 v

repcase R∀+ 1 v of (eint; e→; e∀; e∀+; eR) �◦ e∀+ 1 v

repcase RR 1 v of (eint; e→; e∀; e∀+; eR) �◦ eR 1 v

e �◦ e′

repcase e of (eint; e→; e∀; e∀+; eR ) �◦repcase e′ of (eint; e→; e∀; e∀+; eR )

Fig. 14. Syntax and semantics of the untyped language λω◦
R

(Λ
+
χ. v)

◦
= λ .v◦

(Λα :κ. e)◦ = λ .e◦

(λx :τ. e)◦ = λx.e◦

(fix x :τ. v)◦ = fixx.v◦

(e [κ]
+
)
◦

= e◦ 1

(e [τ ])◦ = e◦ 1

(e e′)◦ = e◦ e′◦

x◦ = x

i◦ = i

Rint
◦ = Rint

R→◦ = R→
R∀◦ = R∀

R∀+
◦ = R∀+

RR
◦ = RR

(repcase[τ ] e of (eint; e→; e∀; e∀+; eR ))◦ = repcase e◦ of (eint
◦; e→◦; e∀◦; e∀+

◦; eR
◦)

Fig. 15. Translation of λω
R to λω◦

R

The language λω
R enjoys the following properties.

PROPOSITION 4.1 (TYPE REDUCTION). Reduction of well-formed types is
strongly normalizing and confluent.

PROPOSITION 4.2 (TYPE SAFETY). If � e : τ , then either e is a value, or
there exists a term e′ such that e � e′ and � e′ :τ .

The proofs of these propositions are similar to the proofs of the corresponding
propositions for λω

i .

4.3 The Untyped Language

To demonstrate that the types in λω
R are not necessary for computation, we

present an untyped language λω◦
R in Figure 14, and a translation from λω

R to
λω◦

R in Figure 15; the expression 1 in these figures is the integer constant. The
untyped language has the following property which shows that term reduction
�◦ in it parallels the term reduction in λω

R.

PROPOSITION 4.3. If e � e1, then e◦ �◦ e1
◦.
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COROLLARY 4.4. If � e :τ and e◦ �◦ e′0, then there exists e′ such that � e′ :τ
and e′◦ = e′0.

Proof From � e : τ by Proposition 4.2 we have that either e is a value, or
e � e′ for some e′ such that � e′ : τ . Since (by inspection of the definition of
values in Figures 13 and 14) the erasure of a value is a value, and if v is a
value, then v �◦ e′0 for no e′0, it follows that e is not a value. Thus there exists
e′ such that e � e′ and � e′ : τ . By Proposition 4.3, e◦ �◦ e′◦. By induction on
the structure of untyped terms, for any untyped term e0 at most one derivation
exists deriving e0 �◦ e1 for some e1. Thus from e◦ �◦ e′0 and e◦ �◦ e′◦ we have
e′0 = e′◦.

COROLLARY 4.5 (SAFETY OF λω◦
R ). If � e : τ and e◦ �∗

◦ e′0 for some untyped
term e′0, then either e′0 is a value, or there exists an untyped term e ′′

0 such that
e′0 �◦ e′′0 .

Proof By induction on the length of the reduction sequence deriving e ◦ �∗◦
e′0. If the length is zero, by Proposition 4.2 either e is a value, in which case its
erasure e◦ is a value, or e � e′ for some e′, and then by Proposition 4.3 e◦ �◦
e′◦. In the inductive case, assuming the statement holds for all sequences of
length n and given a sequence of length n+1, let the first step of the sequence
be e◦ �◦ e′1. Then by Corollary 4.4 there exists e′ such that � e′ :τ and e′◦ = e′1.
Since the rest of the sequence derives e′

1 �∗
◦ e′0, the result follows directly by

the inductive hypothesis applied to e′.
The translation replaces type and kind applications (abstractions) by dummy

applications (abstractions), instead of erasing them. This peculiarity is due to
the semantics of the fix construct in our typed languages: A type or kind ap-
plication of a fixpoint term reduces by unfolding the fixpoint. The translation
inserts the dummy applications and parameters to ensure the corresponding
unfolding in the untyped language.

5. TRANSLATION FROM λω
i TO λω

R

In this section, we show a translation from λω
i to λω

R. The languages differ
mainly in two ways. First, the type calculus in λω

R is split into tags and types,
with types used solely for type checking and tags used for analysis. Since any
type argument in λω

i can potentially be analyzed, type passing in λω
i will be

translated to tag passing in λω
R, while type annotations will be reconstructed

from the tags. Second, the typecase operator in λω
i must be translated to a

repcase operating on term representations of tags.
Figure 16 shows the translation of λω

i types into λω
R tags. The primitive type

constructors are mapped to the corresponding primitive tag constructors. No-
tice all closed λω

i types in normal forms are translated into similarly structured
λω

R tag types (except that T∀ now takes an extra argument)—this is important
since any nontrivial structural changes may alter the results of analysis via
Typerec. The Typerec is translated to a Tagrec; the translation inserts an arbi-
trarily chosen result of the correct kind into the branch for the T

R
tag since the

source contains no such branch.
The term translation is shown in Figure 17. The translation must maintain

two invariants. First, for kind variable χ in scope there is a corresponding
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Intensional Analysis of Quantified Types · 27

|Λχ. τ |= Λχ. λαχ :χ → Ω. |τ | |λα :κ. τ |= λα : |κ|. |τ | |int|= T int |∀∀|= T∀

|τ [κ]|= |τ | [|κ|]Rκ |τ τ ′|= |τ | |τ ′| |→→|= T→ |∀∀+|= T∀+

|α|= α

|Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)| = Tagrec[|κ|] |τ | of (|τint|; |τ→|; |τ∀|; |τ∀+|; λ :T. λ : |κ|. |τint|)

Fig. 16. Translation of λω
i types to λω

R tags

|i| = i

|x| = x

|Λ+
χ. e| = Λ

+
χ.Λαχ :χ → Ω. |e|

|e [κ]
+| = |e| [|κ|]+ [Rκ]

|Λα :κ. e| = Λα : |κ|.λxα :Rκ α. |e|
|e [τ ]| = |e| [|τ |]�(τ)

|λx :τ. e| = λx :F |τ |. |e|
|e e′| = |e| |e′|

|fixx :τ. v| = fixx :F |τ |. |v|

|typecase[τ ] τ ′ of (eint; e→; e∀; e∀+)|
= repcase[λα :T. F (|τ |α)] �(τ ′) of

Rint ⇒|eint|
R→ ⇒|e→|
R∀ ⇒|e∀|
R∀+ ⇒|e∀+|
RR ⇒Λβ :T. fixx :Rβ → F (|τ | (TR β)). λx′ :R β. x x′

Fig. 17. Translation of λω
i terms to λω

R terms

�(int) = Rint

�(→→) = Λα :T. λxα :Rα. Λβ :T. λxβ :R β.R→ [α] (xα) [β] (xβ)

�(∀∀) = Λ
+
χ.Λαχ :χ → Ω.Λα :χ → T. λxα :Rχ→Ω (α). R∀ [χ]

+
[αχ] [α] (xα)

�(∀∀+) = Λα : (∀χ. (χ → Ω) → T). λxα :R∀χ. Ω (α). R∀+ [α] (xα)

�(α) = xα

�(Λχ. τ) = Λ
+
χ.Λαχ :χ → Ω.�(τ)

�(τ [κ]) = �(τ) [|κ|]+ [Rκ]

�(λα :κ. τ) = Λα : |κ|. λxα :Rκ α.�(τ)

�(τ τ ′) = �(τ) [|τ ′|] (�(τ ′))

�(Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)) =

(fix f :∀α :T. R α → R (τ∗ α).
Λα :T. λxα :R α.
repcase[λα :T. R (τ∗ α)] xα of

Rint ⇒�(τint)
R→ ⇒Λα :T. λxα :R α.Λβ :T. λxβ :R β.

�(τ→) [α] (xα) [τ∗ α] (f [α]xα) [β] (xβ) [τ∗ β] (f [β]xβ)

R∀ ⇒Λ
+
χ. Λαχ :χ → Ω.Λα :χ → T. λxα :Rχ→Ω (α).

�(τ∀) [χ]
+

[αχ] [α] (xα) [λβ :χ. τ∗ (α β)] (Λβ :χ. λxβ :αχ β. f [α β] (xα [β]xβ))
R∀+ ⇒Λα : (∀χ. (χ → Ω) → T). λxα :R∀χ. Ω (α).

�(τ∀+) [α] (xα) [Λχ.λαχ :χ → Ω. τ∗ (α [χ]αχ)]

(Λ
+
χ. Λαχ :χ → Ω. f [α [χ]αχ] (xα [χ]

+
[αχ]))

RR ⇒Λα :T. λxα :R α.�(τint))
[|τ |]
�(τ)

where
τ∗ = |λα :Ω.Typerec[κ] α of (τint; τ→; τ∀; τ∀+)|

Fig. 18. Representation of λω
i types as λω

R terms
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type variable αχ, which gives the type of the term representation for a tag
of kind χ. At every kind application, the translation uses the function Rκ

(Figure 10) to compute this type. (Rκ is defined at the meta-level by induction
on κ, but for every κ the result is a type in λω

R.) Thus, the translations of kind
abstractions and kind applications introduce an additional type abstraction
and application, respectively.

Second, for every type variable α in scope there is a term variable xα, pro-
viding the term representation of α. At every type application, the translation
uses the meta-function 	 (Figure 18) to construct this representation. Further-
more, type application is replaced by a type application to the tag correspond-
ing to the type argument, followed by an application to the term representation
of this tag.

Programs in λω
R pass tags at run time since only tags can be analyzed. How-

ever, abstractions and the fixpoint construct must still carry type annotations
for type checking. These annotations are reconstructed from the tags corre-
sponding to the λω

i types by the tag interpretation operator F, defined within
the λω

R type language using Tagrec. Since the annotations are always of kind Ω,
this operator must map tags of kind T to types of kind Ω. In pattern-matching
syntax the operator is defined as follows:

F (Tint) = int
F (T→ α1 α2) = F (α1) → F (α2)
F (T∀ [χ] αχ α) = ∀β :χ. αχ β → F (α β)
F (T∀+ α) = ∀+

χ. ∀αχ :χ → Ω. F (α [χ] αχ)
F (T

R
α) = R α

The function F maps a tag representing a λω
i type to the corresponding λω

R type.
Thus it maps the tag Tint to the type int, and recursively converts the compo-
nents of other tags to the corresponding types before combining the results
with Ω constructors. The branch for the T

R
tag is irrelevant, as long as it has

the correct kind, since the language λω
R is only intended as a target for trans-

lation from λω
i —the only interesting programs in λω

R are the ones translated
from λω

i , in which the T
R

branch of F is never reached.
The tag interpretation function F is another example of a type transforma-

tion defined within the type language instead of at the meta level (cf. the dis-
cussion in Section 2.3).

The following two properties hold since the branches of F have no free type
or kind variables.

LEMMA 5.1. (F (τ)){τ ′/α} = F (τ{τ ′/α})
LEMMA 5.2. (F (τ)){κ/χ} = F (τ{κ/χ})
We show the term representation of types in Figure 18. The primitive type

constructors get translated to the corresponding term representation. The rep-
resentations of type and kind functions are similar to the term translation of
type and kind abstractions. The only involved case is the term representation
of a Typerec. Since Typerec is recursive, we use a combination of a repcase and
a fix. Note that the translation of type-level kind polymorphism in λω

i requires
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Intensional Analysis of Quantified Types · 29

term-level kind polymorphism in λω
R, e.g., the ∀∀ branch of Typerec is translated

using term-level kind abstraction.
By induction on the structure of kinds we have the following properties of

the translation.

LEMMA 5.3. |κ{κ′/χ}| = |κ|{|κ′|/χ}
LEMMA 5.4. (Rκ){|κ′|, Rκ′/χ′, αχ′} = Rκ{κ′/χ′}

In the following propositions the original λω
i kind environment ∆ is extended

with a kind environment ∆(E) which binds a type variable αχ of kind χ → Ω
for each χ ∈ E , under the assumption that αχ /∈ ∆. Similarly the term-level
translations extend the type environment Γ with Γ(∆), binding a variable xα

of type Rκ α for each type variable α bound in ∆ with kind κ.

PROPOSITION 5.5 (WELL-FORMEDNESS OF TRANSLATED TYPES).
If E ; ∆ � τ : κ holds in λω

i , then |E|; |∆|, ∆(E) � |τ | : |κ| holds in λω
R.

Proof Follows directly by induction over the structure of τ .

PROPOSITION 5.6 (TYPES OF REPRESENTATION TERMS).
If E ; ∆ � τ : κ and E ; ∆ � Γ hold in λω

i , then |E|; |∆|, ∆(E); |Γ|, Γ(∆) � 	(τ) :
Rκ |τ | holds in λω

R.

Proof By induction over the structure of τ . The only interesting case is that
of a kind application which uses Lemma 5.4.

PROPOSITION 5.7 (WELL-FORMEDNESS OF TRANSLATED TERMS).
If E ; ∆; Γ � e : τ holds in λω

i , then |E|; |∆|, ∆(E); |Γ|, Γ(∆) � |e| : F |τ | holds in
λω

R.

Proof By induction over the structure of e, using Lemmas 5.1 and 5.2.

6. RELATED WORK

The work of Harper and Morrisett [1995] introduced intensional type analy-
sis and pointed out the necessity for type-level type analysis operators which
inductively traverse the structure of types. The domain of their analysis is re-
stricted to a predicative subset of the type language, which prevents its use in
programs which must support all types of values, including polymorphic func-
tions, closures, and objects. This paper builds on their work by extending type
analysis to include the full type language.

Crary and Weirich [1999] propose a very powerful type analysis framework.
They define a rich kind calculus that includes sum kinds and inductive kinds.
They also provide primitive recursion at the type level. Therefore, they can
define new kinds within their calculus and directly encode type analysis oper-
ators within their language. They also include a novel refinement operation at
the term level. However, their type analysis is “limited to parametrically poly-
morphic functions, and cannot account for functions that perform intensional
type analysis” [Crary and Weirich 1999, Section 4.1]. Our type analysis can
also handle polymorphic functions that analyze the quantified type variable.
Moreover, their type analysis is not fully reflexive since they can not handle
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arbitrary quantified types; quantification must be restricted to type variables
of kind Ω.

Duggan [1998] proposes another framework for intensional type analysis;
however, he allows the analysis of types only at the term level but not at the
type level. Yang [1998] presents some approaches to enable type-safe program-
ming of type-indexed values in ML which is similar to term-level analysis of
types. Having term-level analysis only is not enough for applications such as
type safe garbage collectors [Monnier et al. 2001] (where type-level analysis is
used to certify the memory interface between the mutator and the collector).

Necula [1998] proposed the ideas of a certifying compiler and implemented
a certifying compiler for a type-safe subset of C. Morrisett et al. [1998] showed
that a fully type-preserving compiler generating type-safe assembly code is a
practical basis for a certifying compiler.

The idea of programming with iterators is explained by Pierce et al. [1989].
Pfenning and Paulin-Mohring [1989] show how inductively defined types can
be represented by closed types. They also construct representations of all prim-
itive recursive functions over inductively defined types.

Despeyroux et al. [1997] proposed a technique for performing primitive re-
cursion on higher-order abstract syntax in a logic framework. While there
are some similarities on the surface, there are also many subtle differences
between their systems and ours. In their system, there is a clear distinction
between the object language (the logic they are representing) and the meta lan-
guage (the underlying logic framework) so that the adequacy (for the represen-
tation) can be established. Our system, however, are not trying to representing
one language inside another; instead, our calculus is just a typed intermediate
language. Despeyroux et al. use modal logic to clearly identify the set of terms
that can be analyzed, while we use kind polymorphism to achieve parametric-
ity. Their method does not apply in our context because it can only analyze
fully closed terms. Our technique, on the other hand, does support intensional
analysis on types with free variables.

The type erasure semantics follows the idea proposed in Crary et al. [1998].
However, they consider a language that analyzes only first order types. Ex-
tending the analysis to arbitrary types makes the translation into a type era-
sure semantics much more complicated. The splitting of the type calculus into
types and tags and defining an interpretation function to map between the
two are related to the ideas proposed by Crary and Weirich for the language
LX [Crary and Weirich 1999].

The erasure framework also resembles the dictionary passing style in Haskell
[Peterson and Jones 1993]. The term representation of a type may be viewed
as the dictionary corresponding to the type. However, the authors consider
dictionary passing in an untyped calculus; moreover, they do not consider the
intensional analysis of types. Dubois et al. [1995] also pass explicit type rep-
resentations in their extensional polymorphism scheme. However, they do not
provide a mechanism for connecting a type to its representation. Minamide’s
type-lifting procedure [Minamide 1997] is also related to our work. His pro-
cedure maintains interrelated constraints between type parameters; however,
his language does not support intensional type analysis. Weirich [2000] pre-
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sented a technique for encoding intensional analysis of (non-quantified) types
using Haskell type classes, but her scheme only supports term-level analysis.

7. CONCLUSIONS

We presented a type-theoretic framework for analyzing quantified (such as
polymorphic and existential) types. It makes possible the analysis of arbi-
trary quantified types both at the type level and at the term level. The central
idea is to use higher-order abstract syntax to represent quantified types, and
to introduce parametric kind polymorphism to retain inductiveness of the an-
alyzable kind. The analysis is not restricted to parametric quantified type; it
can also handle types that analyze the quantified type variable. The calculus
λω

i is sound and its type checking remains decidable.
We also gave a translation of our calculus to a language λω

R with type-erasure
semantics, which is more suitable for implementation due to the elimination
of run-time significance of types; the latter point is made clear by establishing
a correspondence with the reductions in an untyped language.

For completeness of the type analysis and for the purpose of this translation
both λω

i and λω
R introduce kind abstraction and application at the term level,

and a corresponding type constructor ∀∀+
. This does not increase the complexity

of the type languages, which are essentially F2 with primitive recursion. The
term languages become extensions of Girard’s λU calculus [Girard 1972], hence
not strongly normalizing; however strong normalization is not a requirement
for a term-level language, and our term languages already includes the general
recursion construct fix, necessary in a realistic programming language.

APPENDIX

A. PROPERTIES OF λω
i

A.1 Soundness of the λω
i Type System

The rules for single-step reduction in λω
i are shown in Figure 6, and are stan-

dard except for those involving the typecase construct. The typecase chooses
a branch depending on the head constructor of the type being analyzed and
passes to it as arguments the subterms of the type. For example, while ana-
lyzing the polymorphic type ∀∀ [κ] τ , it applies the ∀∀ branch (e∀ in the figure) to
the kind κ and the type function τ . The last rule ensures that the type being
analyzed is first reduced to its unique normal form (Theorem A.48).

We prove soundness of the system using contextual semantics in the style
of Wright and Felleisen [1994]. The reduction rules for the redexes r are as
shown in Figure 6, and we define evaluation contexts E in Figure 19. We
assume unique variable names. The notation � e : τ is used a shorthand for
ε; ε; ε � e :τ .

Since the reduction of typecase in λω
i depends on the form of a type, we intro-

duce normal forms ν of types in Figure 20.

LEMMA A.1. If ε; ε � ν : Ω, then ν is one of int, ν1 → ν2, ∀∀ [κ] ν1, or ∀∀+
ν1.

Proof Since ν is well-formed in an empty environment, it does not contain
any free type or kind variables. Therefore ν can not be a ν 0 since the head of
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(value) v ::= i | Λ
+
χ. e | Λα :κ. e | λx :τ. e | fixx :τ. v

(context) E ::= [ ] | E e | v E | E [τ ] | E [κ]
+

(redex) r ::= (Λ
+
χ. e) [κ]

+ | (Λα :κ. e) [τ ] | (λx :τ. e) v

| (fixx :τ. v) [κ]
+ | (fix x :τ. v) [τ ′] | (fix x :τ. v) v′

| typecase[τ ] τ ′ of (eint; e→; e∀; e∀+)

| typecase[τ ] int of (eint; e→; e∀; e∀+) | typecase[τ ] (τ → τ ′) of (eint; e→; e∀; e∀+)

| typecase[τ ] (∀∀ [κ] τ) of (eint; e→; e∀; e∀+) | typecase[τ ] (∀∀+τ) of (eint; e→; e∀; e∀+)

Fig. 19. Term contexts

ν0 ::= α | ν0 ν | ν0 [κ] | Typerec[κ] ν0 of (νint; ν→; ν∀; ν∀+)

ν ::= ν0 | int | →→ | (→→) ν | (→→) ν ν ′ | ∀∀ | ∀∀ [κ] | ∀∀ [κ] ν | ∀∀+ | ∀∀+ν

| λα :κ. ν, where ∀ν0. ν �= ν0 α or α ∈ ftv(ν0)
| Λχ. ν, where ∀ν0. ν �= ν0 [χ] or χ ∈ fkv(ν0)

Fig. 20. Normal forms in the λω
i type language

a ν0 is a type variable. The lemma now follows by inspecting the remaining
possibilities for ν.

LEMMA A.2 (DECOMPOSITION OF TERMS). If � e :τ , then either e is a value
or it can be decomposed into unique E and r such that e = E{r}.

This is proved by induction over the derivation of � e : τ , using Lemma A.1
in the case of the typecase construct.

COROLLARY A.3 (PROGRESS). If � e : τ , then either e is a value or there
exists an e′ such that e �→ e′.

Proof By Lemma A.2, we know that if � e : τ and e is not a value, then there
exist some E and redex e1 such that e = E{e1}. Since e1 is a redex, there exists
a contraction e2 such that e1 � e2. Therefore e �→ e′ for e′ = E{e2}.

LEMMA A.4. If � E{e} :τ , then there exists a τ ′ such that � e :τ ′, and for all
e′ such that � e′ :τ ′ we have � E{e′} :τ .

Proof The proof is by induction on the derivation of � E{e} : τ . The different
forms of E are handled similarly; we will show only one case here.

—case E = E1 e1: We have that � (E1{e}) e1 : τ . By the typing rules, this
implies that � E1{e} :τ1 → τ , for some τ1. By induction, there exists a τ ′ such
that � e : τ ′ and for all e′ such that � e′ : τ ′, we have that � E1{e′} : τ1 → τ .
Therefore � (E1{e′}) e1 :τ .

As usual, the proof of soundness depends on several substitution lemmas;
these are shown below. The proofs are fairly straightforward and proceed by
induction on the derivation of the judgments. The notion of substitution is
extended to environments in the usual way.

LEMMA A.5. If E , χ � κ and E � κ′, then E � κ{κ′/χ}.
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LEMMA A.6. If E , χ; ∆ � τ : κ and E � κ′, then E ; ∆{κ′/χ} � τ{κ′/χ} :
κ{κ′/χ}.

LEMMA A.7. If E , χ; ∆; Γ � e : τ and E � κ, then E ; ∆{κ/χ}; Γ{κ/χ} �
e{κ/χ} : τ{κ/χ}.

LEMMA A.8. If E ; ∆, α :κ′ � τ : κ and E ; ∆ � τ ′ : κ′, then E ; ∆ � τ{τ ′/α} : κ.

LEMMA A.9. If E ; ∆, α : κ; Γ � e : τ and E ; ∆ � τ ′ : κ, then E ; ∆; Γ{τ ′/α} �
e{τ ′/α} : τ{τ ′/α}.

Proof We prove this by induction on the structure of e. We demonstrate the
proof here only for a few cases; the rest follow analogously.

—case e = e1 [τ1]: We have that E ; ∆ � τ ′ : κ. and also that E ; ∆, α : κ; Γ �
e1 [τ1] : τ . By the typing rule for a type application we get that E ; ∆, α :κ; Γ �
e1 : ∀β : κ1. τ2, E ; ∆, α : κ � τ1 : κ1, and τ = τ2{τ1/β}. By induction on e1,
E ; ∆; Γ{τ ′/α} � e1{τ ′/α} : ∀β :κ1. τ2{τ ′/α}. By Lemma A.8, E ; ∆ � τ1{τ ′/α} :
κ1. Therefore

E ; ∆; Γ{τ ′/α} � (e1{τ ′/α}) [τ1{τ ′/α}] : (τ2{τ ′/α}){τ1{τ ′/α}/β}.
But this is equivalent to

E ; ∆; Γ{τ ′/α} � (e1{τ ′/α}) [τ1{τ ′/α}] : (τ2{τ1/β}){τ ′/α}.
—case e = e1 [κ1]

+
: We have that E ; ∆, α :κ; Γ � e1 [κ1]

+
: τ and E ; ∆ � τ ′ : κ. By

the typing rule for kind application, E ; ∆, α :κ; Γ � e1 : ∀χ. τ1, τ = τ1{κ1/χ},
and E � κ1. By induction on e1, E ; ∆; Γ � e1{τ ′/α} : ∀χ. τ1{τ ′/α}. Therefore
E ; ∆; Γ � (e1{τ ′/α}) [κ1]

+
: (τ1{τ ′/α}){κ1/χ}. Since χ does not occur free in τ ′

we have (τ1{τ ′/α}){κ1/χ} = (τ1{κ1/χ}){τ ′/α}.
—case e = typecase[τ0] τ1 of (eint; e→; e∀; e∀+): We have that E ; ∆ � τ ′ : κ and
E ; ∆, α :κ; Γ � typecase[τ0] τ1 of (eint; e→; e∀; e∀+) : τ0 τ1. Using Lemma A.8 on
the kind derivation of τ0 and τ1, and the inductive assumption on the typing
rules for the subterms we get

E ; ∆ � τ0{τ ′/α} : Ω → Ω
E ; ∆ � τ1{τ ′/α} : Ω
E ; ∆; Γ{τ ′/α} � eint{τ ′/α} : (τ0 int){τ ′/α}
E ; ∆; Γ{τ ′/α} � e→{τ ′/α} : (∀α1 :Ω. ∀α2 :Ω. τ0 (α1 → α2)){τ ′/α}
E ; ∆; Γ{τ ′/α} � e∀{τ ′/α} : (∀+

χ. ∀α :χ → Ω. τ0 (∀∀ [χ] α)){τ ′/α}
E ; ∆; Γ{τ ′/α} � e∀+{τ ′/α} : (∀α :∀χ. Ω. τ0 (∀∀+

α)){τ ′/α}
The above typing judgments are equivalent to

E ; ∆ � τ0{τ ′/α} : Ω → Ω
E ; ∆ � τ1{τ ′/α} : Ω
E ; ∆; Γ{τ ′/α} � eint{τ ′/α} : (τ0{τ ′/α}) int
E ; ∆; Γ{τ ′/α} � e→{τ ′/α} : ∀α1 :Ω. ∀α2 :Ω. (τ0{τ ′/α}) (α1 → α2)
E ; ∆; Γ{τ ′/α} � e∀{τ ′/α} : ∀+

χ. ∀α :χ → Ω. (τ0{τ ′/α}) (∀∀ [χ] α)
E ; ∆; Γ{τ ′/α} � e∀+{τ ′/α} : ∀α :∀χ. Ω. (τ0{τ ′/α}) (∀∀+

α)

from which the statement of the lemma follows directly.
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LEMMA A.10. If E ; ∆; Γ, x : τ ′ � e : τ and E ; ∆; Γ � e′ : τ ′, then E ; ∆; Γ �
e{e′/x} : τ .

Proof Proved by induction over the structure of e. The different cases are
proved similarly. We will show only two cases here.

—case e = Λα : κ. e1: We have that E ; ∆; Γ, x : τ ′ � Λα : κ. e1 : ∀α : κ. τ and
E ; ∆; Γ � e′ : τ ′. Since e can always be alpha-converted, we assume that α is
not previously defined in ∆. This implies E ; ∆, α :κ; Γ, x : τ ′ � e1 : τ . Since α
is not free in e′, we have E ; ∆, α : κ; Γ � e′ : τ ′. By induction, E ; ∆, α : κ; Γ �
e1{e′/x} : τ . Hence E ; ∆; Γ � Λα :κ. e1{e′/x} : ∀α :κ. τ .

—case e = typecase[τ0] τ1 of (eint; e→; e∀; e∀+): We have that E ; ∆; Γ � e′ : τ ′

and E ; ∆; Γ, x : τ ′ � typecase[τ0] τ1 of (eint; e→; e∀; e∀+) : τ0 τ1. By the typecase
typing rule we get

E ; ∆ � τ0 : Ω → Ω and
E ; ∆ � τ1 : Ω and
E ; ∆; Γ, x :τ ′ � eint : τ0 int and
E ; ∆; Γ, x :τ ′ � e→ : ∀α1 :Ω. ∀α2 :Ω. τ0 (α1 → α2) and
E ; ∆; Γ, x :τ ′ � e∀ : ∀+

χ. ∀α :χ → Ω. τ0 (∀∀ [χ] α) and
E ; ∆; Γ, x :τ ′ � e∀+ : ∀α :∀χ. Ω. τ0 (∀∀+

α)

Applying the inductive hypothesis to each of the subterms e int, e→, e∀, e∀+
yields directly the claim.

DEFINITION A.11. e evaluates to e′ (written e �→ e′) if there exist E, e1, and
e2 such that e = E{e1} and e′ = E{e2} and e1 � e2.

THEOREM A.12 (SUBJECT REDUCTION). If � e :τ and e �→ e′, then � e′ :τ .

Proof By Lemma A.2, e can be decomposed into unique E and unique redex
e1 such that e = E{e1}. By definition, e′ = E{e2} and e1 � e2. By Lemma A.4,
there exists a τ ′ such that � e1 :τ ′. By the same lemma, all we need to prove is
that � e2 : τ ′ holds. This is proved by considering each possible redex in turn.
We will show only two cases, the rest follow similarly.

—case e1 = (fix x :τ1. v) v′: Then e2 = (v{fixx :τ1. v/x}) v′. We have that � (fix x :
τ1. v) v′ : τ ′. By the typing rules for term application we get that for some
τ2, � fixx : τ1. v : τ2 → τ ′ and � v′ : τ2. By the typing rule for fix we get that,
� τ1 = τ2 → τ ′ and ε; ε; ε, x : τ2 → τ ′ � v : τ2 → τ ′. Using Lemma A.10 and
the typing rule for application, we obtain the desired judgment � (v{fix x :
τ1. v/x}) v′ :τ ′.

—case e1 = typecase[τ0] τ1 of (eint; e→; e∀; e∀+): If τ1 is not in normal form, the
reduction is to e2 = typecase[τ0] ν1 of (eint; e→; e∀; e∀+), where ε; ε � τ1 �→∗ ν1 :
Ω. The latter implies ε; ε � τ0 τ1 = τ0 ν1 : Ω, hence � e2 : τ ′ follows directly
from � e1 :τ ′.
If τ1 is in normal form ν1, by the second premise of the typing rule for typecase
and Lemma A.1 we have four cases for ν1. In each case the contraction has
the desired type τ0 ν1, according to the corresponding premises of the typecase
typing rule and the rules for type and kind applications.
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(β1) (λα :κ. τ) τ ′ � τ{τ ′/α}
(β2) (Λχ. τ) [κ] � τ{κ/χ}
(η1) λα :κ. (τ α) � τ α /∈ ftv(τ)
(η2) Λχ. (τ [χ]) � τ χ /∈ fkv(τ)

(t1) Typerec[κ] intof (τint; τ→; τ∀; τ∀+) � τint

(t2) Typerec[κ](τ → τ ′)of (τint; τ→; τ∀; τ∀+) � τ→ τ (Typerec[κ]τ of (τint; τ→; τ∀; τ∀+))

τ ′ (Typerec[κ]τ ′ of (τint; τ→; τ∀; τ∀+))

(t3) Typerec[κ](∀∀ [κ] τ)of (τint; τ→; τ∀; τ∀+) � τ∀[κ] τ (λα :κ.Typerec[κ](τ α)of (τint; τ→; τ∀; τ∀+))

(t4) Typerec[κ](∀∀+τ)of (τint; τ→; τ∀; τ∀+) � τ∀+ τ (Λχ. Typerec[κ](τ [χ])of (τint; τ→; τ∀; τ∀+))

Fig. 21. Type reductions

A.2 Strong Normalization in the λω
i Type Language

Notation. In this section we occasionally write Typerec[κ] τ of (
τ ) instead of
Typerec[κ] τ of (τint; τ→; τ∀; τ∀+). We use A to denote a sequence {A1, . . . , An},
and B{A/a} for the result of applying a sequence of substitutions.

The single-step reduction relation � on types is the union of the relations
defined by the rules in Figure 21.

LEMMA A.13. If τ1 � τ2, then τ1{τ/α} � τ2{τ/α}.

Proof Consider the possible reductions from τ1 to τ2.
case β1: In this case, τ1 = (λβ :κ. τ ′) τ ′′ and τ2 = τ ′{τ ′′/β}, for some τ ′, τ ′′, and
β, and without loss of generality β can be assumed not to occur free in τ . This
implies that

τ1{τ/α} = (λβ :κ. (τ ′{τ/α})) (τ ′′{τ/α})
The right-hand side reduces by β1 to (τ ′{τ/α}){τ ′′{τ/α}/β}. Since β does not
occur free in τ , this type is equivalent to (τ ′{τ ′′/β}){τ/α}.
case β2: In this case, τ1 = (Λχ. τ ′) [κ] and τ2 = τ ′{κ/χ}. Hence τ1{τ/α} =
(Λχ. τ ′{τ/α}) [κ], which reduces by β2 to (τ ′{τ/α}){κ/χ} = (τ ′{κ/χ}){τ/α}.
case η1: We have that τ1 = λβ :κ. (τ ′ β), τ2 = τ ′, and β does not occur free in τ ′

and τ . Hence τ1{τ/α} = λβ :κ. ((τ ′{τ/α}) β). Since β still does not occur free in
τ ′{τ/α}, this type reduces by η1 to τ ′{τ/α}.
case η2: In this case, τ1 = Λχ. τ ′ [χ], τ2 = τ ′, and χ does not occur free in τ ′

and τ . We get that τ1{τ/α} = Λχ. (τ ′{τ/α}) [χ]. Since χ does not occur free in
τ ′{τ/α}, by η2 this type reduces to τ ′{τ/α}.
The cases of reductions of Typerec are similar; we show only
case t3: τ1 = Typerec[κ] (∀∀ [κ′] τ ′) of (τint; τ→; τ∀; τ∀+) and

τ2 = τ∀ [κ′] τ ′ (λβ :κ′. Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ∀+))

We get that

τ1{τ/α} = Typerec[κ] (∀∀ [κ′] τ ′{τ/α}) of (τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α})
This reduces by t3 to

τ∀{τ/α} [κ′] (τ ′{τ/α})
(λβ :κ′. Typerec[κ] ((τ ′{τ/α}) β) of (τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}))

which is syntactically equivalent to τ2{τ/α}.
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LEMMA A.14. If τ1 � τ2, then τ1{κ′/χ′} � τ2{κ′/χ′}.

Proof By case analysis of the type reduction relation.
case β1: In this case, τ1 = (λβ :κ. τ ′) τ ′′ and τ2 = τ ′{τ ′′/β}. This implies that

τ1{κ′/χ′} = (λβ :κ{κ′/χ′}. τ ′{κ′/χ′}) τ ′′{κ′/χ′},
which reduces by β1 to (τ ′{κ′/χ′}){τ ′′{κ′/χ′}/β}, which in turn is equivalent to
(τ ′{τ ′′/β}){κ′/χ′}.
case β2: In this case, τ1 = (Λχ. τ ′) [κ] and τ2 = τ ′{κ/χ}. Then

τ1{κ′/χ′} = (Λχ. τ ′{κ′/χ′}) [κ{κ′/χ′}],
which reduces by β2 to τ ′{κ′/χ′}{κ{κ′/χ′}/χ}. Since w.l.o.g. χ is not free in κ′,
the latter is equivalent to (τ ′{κ/χ}){κ′/χ′}.

The other cases follow similarly.

DEFINITION A.15. A type τ is strongly normalizable if every reduction se-
quence from τ terminates into a normal form (with no redexes). We use ν(τ) to
denote the length of the largest reduction sequence from τ to a normal form.

DEFINITION A.16. We define neutral types, n, as
n0 ::= Λχ. τ | λα :κ. τ
n ::= α | n0 τ | n τ | n0 [κ] | n [κ] | Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

DEFINITION A.17. A reducibility candidate (also referred to as simply a
candidate) of kind κ is a set C of types of kind κ such that

(1) if τ ∈ C, then τ is strongly normalizable.
(2) if τ ∈ C and τ � τ ′, then τ ′ ∈ C.
(3) if τ is neutral and if for all τ ′ such that τ � τ ′, we have that τ ′ ∈ C, then

τ ∈ C.

This implies that the candidates are never empty since if α has kind κ, then
α belongs to candidates of kind κ.

DEFINITION A.18. Let κ be an arbitrary kind. Let Cint be a candidate of
kind κ, C→ be a candidate of kind Ω → κ → Ω → κ → κ, C∀ be a candidate of
kind ∀χ. (χ → Ω) → (χ → κ) → κ, and C∀+ be a candidate of kind (∀χ. Ω) →
(∀χ. κ) → κ. The set RΩ of types of kind Ω is then defined as

{τ | for all τint ∈ Cint, τ→ ∈ C→, τ∀ ∈ C∀, and τ∀+ ∈ C∀+,

Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) ∈ Cκ}.
LEMMA A.19. RΩ is a candidate of kind Ω.

Proof We will prove RΩ satisfies the requirements of Definition A.17. In
each of the cases below, let C0, C→, C∀, and C∀+ be candidates of kinds κ, Ω →
κ → Ω → κ → κ, ∀χ. (χ → Ω) → (χ → κ) → κ, and (∀χ. Ω) → (∀χ. κ) → κ,
respectively, and τint, τ→, τ∀, and τ∀+ be elements of the respective candidates.

(1) Suppose that τ is in RΩ, and let τ1 ≡ Typerec[κ] τ of (
τ ). By Definition A.18
τ1 belongs to C0. By property 1 of Definition A.17, τ ′ is strongly normaliz-
able, therefore τ is strongly normalizable.
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(2) Suppose τ � τ ′, and again let τ1 ≡ Typerec[κ] τ of (
τ ). Then we have that
τ1 � Typerec[κ] τ ′ of (
τ ). Since τ1 ∈ C0, by property 2 of Definition A.17
Typerec[κ] τ ′ of (
τ ) belongs to C0. Therefore, by Definition A.18, τ ′ ∈ RΩ.

(3) Suppose τ is neutral, and for all τ ′, if τ � τ ′, then τ ′ ∈ RΩ. Let τ1 ≡
Typerec[κ] τ of (
τ ). Note that, since by assumption τint, τ→, τ∀, and τ∀+
are members of the appropriate candidates, by Definition A.18 this implies
that Typerec[κ] τ ′ of (
τ ) ∈ C0. Furthermore, the four branches are strongly
normalizable, hence we can proceed by induction on the length of τ 1 defined
by len(τ1) ≡ ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) to prove that τ1 always reduces
to a type that belongs to C0.
—len(τ1) = 0. Then τ1 � Typerec[κ] τ ′ of (
τ ) is the only possible reduction

since τ is neutral.
—len(τ1) = k + 1. In this case the inductive hypothesis is that any type of

the form Typerec[κ] τ of (
τ ) of length k reduces to a type that belongs to
C0. Now τ1 can either reduce to Typerec[κ] τ ′ of (
τ ), which (we showed) is
in C0, or to
Typerec[κ] τ of (τ ′

int; τ→; τ∀; τ∀+), when τint � τ ′
int,

Typerec[κ] τ of (τint; τ ′→; τ∀; τ∀+), when τ→ � τ ′→,
Typerec[κ] τ of (τint; τ→; τ ′

∀; τ∀+), when τ∀ � τ ′
∀, or

Typerec[κ] τ of (τint; τ→; τ∀; τ ′
∀+), when τ∀+ � τ ′

∀+.
By property 2 of Definition A.17, each of τ ′

int, τ ′→, τ ′
∀, and τ ′

∀+ also belongs
to the appropriate candidate, and the length of each of the reducts is k.
Therefore, by the inductive hypothesis, each of the reducts belongs to C0.

Therefore Typerec[κ] τ of (
τ ) always reduces to a type that belongs to C0. By
property 3 of Definition A.17, Typerec[κ] τ of (
τ ) also belongs to C0. Hence
τ ∈ RΩ.

DEFINITION A.20. Let C1 and C2 be two candidates of kinds κ1 and κ2. We
then define the set C1 → C2, of types of kind κ1 → κ2, as {τ | for all τ1 ∈ C1,
τ τ1 ∈ C2}.

LEMMA A.21. If C1 and C2 are candidates of kinds κ1 and κ2, then C1 → C2

is a candidate of kind κ1 → κ2.

Proof We will prove C1 → C2 satisfies the requirements of Definition A.17.

(1) Suppose τ of kind κ1 → κ2 is in C1 → C2. By definition, if τ ′ ∈ C1, then
τ τ ′ ∈ C2. Since C2 is a candidate, τ τ ′ is strongly normalizable. Therefore,
τ must be strongly normalizable since for every sequence of reductions
τ � τ1 . . . τk . . ., there is a corresponding sequence of reductions τ τ ′ �

τ1 τ ′ . . . τk τ ′ . . ..
(2) Suppose τ of kind κ1 → κ2 belongs to C1 → C2, and τ � τ ′. Let τ1 ∈ C1; then

by Definition A.20 τ τ1 ∈ C2. But τ τ1 � τ ′ τ1. By Definition A.17, property
2, τ ′ τ1 ∈ C2; therefore, τ ′ ∈ C1 → C2.

(3) Consider a neutral τ of kind κ1 → κ2. Suppose that for all τ ′, if τ � τ ′, then
τ ′ ∈ C1 → C2. Consider τ τ1 where τ1 ∈ C1. Since τ1 is strongly normalizable,
we use induction over ν(τ1). If ν(τ1) = 0, then τ τ1 � τ ′ τ1. But τ ′ τ1 ∈ C2

(by the assumption on τ ′), and since τ is neutral, no other reduction is
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



38 · Bratin Saha et al.

possible. If ν(τ1) > 0, then τ1 � τ ′
1 for some τ ′

1. In this case, τ τ1 may
reduce to either τ ′ τ1 or to τ τ ′

1. We saw that the first reduct is in C2. By
property 2 of Definition A.17, τ ′

1 ∈ C1; also ν(τ ′
1) < ν(τ1). By the inductive

hypothesis we get that τ τ ′
1 ∈ C2. Then by property 3 of Definition A.17,

τ τ1 ∈ C2. This implies that τ ∈ C1 → C2.

DEFINITION A.22. Let χ be the sequence of all free kind variables in kind
κ, κ be a sequence of closed kinds of the same length, and C be a sequence of
candidates of the corresponding kinds. Define the set Sκ[C/χ] of types of kind
κ{κ/χ} inductively on the structure of κ as follows:

—if κ = Ω, then Sκ[C/χ] = RΩ.
—if κ = χi, then Sκ[C/χ] = Ci.
—if κ = κ1 → κ2, then Sκ[C/χ] = Sκ1 [C/χ] → Sκ2 [C/χ].
—if κ = ∀χ. κ′, then Sκ[C/χ] is the set of types τ of kind κ{κ/χ} such that for

every kind κ′′ and candidate C ′′ of kind κ′′, τ [κ′′] ∈ Sκ′ [C, C′′/χ, χ].

LEMMA A.23. Sκ[C/χ] is a reducibility candidate of kind κ{κ/χ}.

Proof We prove the statement by induction on the structure of κ. For κ = Ω,
the result follows from Lemma A.19; for κ = χ, directly from the definition
of Sχ[C/χ]. If κ = κ1 → κ2, we can apply the inductive hypothesis on κ1 and
κ2 and Lemma A.21. We only need to prove the case for κ = ∀χ. κ ′. Let χ
containing all the free kind variables of κ.

(1) Suppose τ ∈ S∀χ. κ′ [C/χ]. By Definition A.22, for any kind κ1 and corre-
sponding candidate C1, τ [κ1] ∈ Sκ′ [C, C1/χ, χ]. Applying the inductive hy-
pothesis to κ′, we get that Sκ′ [C, C1/χ, χ] is a candidate. Therefore, τ [κ1] is
strongly normalizable, which implies that τ is strongly normalizable.

(2) Suppose τ ∈ S∀χ. κ′ [C/χ] and τ � τ1. For any kind κ1 and corresponding
candidate C1, by definition, τ [κ1] ∈ Sκ′ [C, C1/χ, χ]. But τ [κ1] � τ1 [κ1]. By
the inductive hypothesis on κ′ we have that Sκ′ [C, C1/χ, χ] is a candidate;
then by property 2 of Definition A.17, τ1 [κ1] ∈ Sκ′ [C, C1/χ, χ]. Therefore,
τ1 ∈ S∀χ. κ′ [C/χ].

(3) Consider a neutral τ so that for all τ1, if τ � τ1, then τ1 ∈ S∀χ. κ′ [C/χ].
Consider an arbitrary kind κ1 and a corresponding candidate C1. Since τ is
neutral, the only possible reduction of τ [κ1] is to τ1 [κ1]. By the assumption
on τ1 we have τ1 [κ1] ∈ Sκ′ [C, C1/χ, χ]. By the inductive hypothesis on κ′ it
follows that Sκ′ [C, C1/χ, χ] is a candidate. By property 3 of Definition A.17,
τ [κ1] ∈ Sκ′ [C, C1/χ, χ]. Therefore τ ∈ S∀χ. κ′ [C/χ].

LEMMA A.24. Sκ{κ′/χ′}[C/χ] = Sκ[C,Sκ′ [C/χ]/χ, χ′]

Proof The proof is by induction over the structure of κ. We will show only
the case for polymorphic kinds, the others follow directly by induction. Suppose
κ = ∀χ′′. κ′′. Then the LHS is the set of types τ of kind (∀χ′′. κ′′{κ′/χ′}){κ/χ}
such that for every kind κ′′′ and corresponding candidate C ′′′, τ [κ′′′] belongs to
Sκ′′{κ′/χ′}[C, C′′′/χ, χ′′]. Applying the inductive hypothesis to κ′′, this is equal to
Sκ′′ [C, C′′′,Sκ′ [C, C′′′/χ, χ′′]/χ, χ′′, χ′]. But χ′′ does not occur free in κ′ (variables
in κ′ can always be renamed), hence τ [κ′′′] is in Sκ′′ [C, C′′′,Sκ′ [C/χ]/χ, χ′′, χ′].
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The RHS consists of types τ ′ of kind (∀χ′′. κ′′){κ, κ′{κ/χ}/χ, χ′} (which is equiv-
alent to (∀χ′′. κ′′{κ′/χ′}){κ/χ}) such that for every kind κ′′′ and corresponding
candidate C ′′′, τ ′ [κ′′′] belongs to Sκ′′ [C,Sκ′ [C/χ], C ′′′/χ, χ′, χ′′], i.e., the same set
as the LHS.

DEFINITION A.25. From Lemma A.23, we know that for every kind κ and
sequences of variables χ and candidates C, Sκ[C/χ] is a candidate of kind
κ{κ/χ}, that SΩ→κ→Ω→κ→κ[C/χ] is a candidate of kind (Ω → κ → Ω → κ →
κ){κ/χ}, that S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ] is a candidate of kind (∀χ. (χ → Ω) →
(χ → κ) → κ){κ/χ}, and S(∀χ. Ω)→(∀χ. κ)→κ[C/χ] is a candidate of kind ((∀χ. Ω) →
(∀χ. κ) → κ){κ/χ}. Throughout the rest of the section, leaving κ, χ, and C to be
determined by the context, we define 
τ as a quadruple of types τ int, τ→, τ∀, and
τ∀+, which are elements of the above respective candidates.

LEMMA A.26. int ∈ RΩ = SΩ[C/χ].

Proof Suffices to prove that τ ≡ Typerec[κ{κ/χ}] int of (
τ ) is in Sκ[C/κ],
whenever 
τ are constrained by Definition A.25. The proof is by induction on
len(τ) ≡ ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+).

—len(τ) = 0. Then τ can reduce only to τint, which is by Definition A.25 in
Sκ[C/κ].

—len(τ) = k + 1. Then the inductive hypothesis is that any Typerec of length
k on int reduces to a type that belongs to Sκ[C/χ]. By property 3 of Defini-
tion A.17 this implies that any Typerec of length k on int belongs to Sκ[C/χ].
When len(τ) = k +1, we have that τ either reduces to τint, which is in Sκ[C/χ]
by Definition A.25, or to
Typerec[κ{κ/χ}] int of (τ ′

int; τ→; τ∀; τ∀+), for τint � τ ′
int,

Typerec[κ{κ/χ}] int of (τint; τ ′
→; τ∀; τ∀+), for τ→ � τ ′

→,
Typerec[κ{κ/χ}] int of (τint; τ→; τ ′

∀; τ∀+), for τ∀ � τ ′
∀, or

Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ ′
∀+), for τ∀+ � τ ′

∀+.
By property 2 of Definition A.17, each of τ ′

int, τ ′
→, τ ′

∀, τ ′
∀+ belongs to the same

candidate as the respective initial type. Moreover, the length of each of the
reducts is k. Therefore, by the inductive hypothesis, each of the reducts is in
Sκ[C/χ].

Hence Typerec[κ{κ/χ}] int of (
τ ) always reduces to a type in Sκ[C/χ]. Then by
property 3 of Definition A.17, Typerec[κ{κ/χ}] int of (
τ ) is also in Sκ[C/χ]. Thus
int ∈ RΩ.

LEMMA A.27. →→ ∈ RΩ → RΩ → RΩ = SΩ→Ω→Ω[C/χ].

Proof →→ ∈ RΩ → RΩ → RΩ if for all τ1 ∈ RΩ it follows that (→→)τ1 ∈ RΩ →
RΩ. This is true if for all τ2 ∈ RΩ, it follows that (→→)τ1 τ2 ∈ RΩ. Suffices
then to prove that τ ≡ Typerec[κ{κ/χ}] (→→)τ1 τ2 of (
τ ) is in Sκ[C/χ], under
the conditions in Definition A.25. Since τ1, τ2, τint, τ→, τ∀, and τ∀+ are strongly
normalizable, we can proceed by induction on the length len(τ) ≡ ν(τ1)+ν(τ2)+
ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+).
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—len(τ) = 0. The only reduction of τ is to

τ ′ ≡ τ→ τ1 (Typerec[κ{κ/χ}] τ1 of (
τ ))
τ2 (Typerec[κ{κ/χ}] τ2 of (
τ ))

Since both τ1 and τ2 are in RΩ, it follows that Typerec[κ{κ/χ}] τ1 of (
τ ) and
Typerec[κ{κ/χ}] τ2 of (
τ ) are in Sκ[C/χ]. This implies that τ ′ also belongs to
Sκ[C/χ].

—len(τ) = k + 1. The case of the head reduction is similar to the previous
one. The other possible reductions come from reducing one of the constituent
types τ1, τ2, τint, τ→, τ∀, and τ∀+; the proofs are similar to the proof of the last
case in Lemma A.26.

Since τ is neutral, by property 3 of Definition A.17 τ ∈ Sκ[C/χ].

LEMMA A.28. If τ is such that for all τ1 ∈ Sκ1 [C/χ] we have τ{τ1/α} ∈
Sκ2 [C/χ], then λα :κ1{κ/χ}. τ ∈ Sκ1→κ2 [C/χ].

Proof Consider the neutral type τ0 = (λα : κ1{κ/χ}. τ) τ1. We have that τ1

is strongly normalizable and τ{α′/α} is strongly normalizable. Therefore, τ is
also strongly normalizable. We proceed by induction on len(τ0) ≡ ν(τ) + ν(τ1)
to prove that τ0 always reduces to a type that belongs to Sκ2 [C/χ].

—len(τ0) = 0. There are two possible reductions. A β1 reduction yields τ{τ1/α},
which is by assumption in Sκ2 [C/χ]. If τ = τ0 α and α does not occur free in
τ0, there is an η1 reduction to τ0 τ1; but in this case τ{τ1/α} = τ0 τ1.

—len(τ0) = k + 1. The inductive hypothesis is that for all τ and τ1, if ν(τ) +
ν(τ1) = k, τ1 ∈ Sκ1 [C/χ], and τ{τ1/α} ∈ Sκ2 [C/χ], then (λα : κ1{κ/χ}. τ) τ1

always reduces to a type in Sκ2 [C/χ].
The β1 and possible η1 reductions are handled similarly to the base case.
There are two additional reductions. If ν(τ1) �= 0, then τ0 can reduce to
(λα :κ1{κ/χ}. τ) τ ′

1 where τ1 � τ ′
1. By property 2 of Definition A.17, τ ′

1 belongs
to Sκ1 [C/χ]. Therefore τ{τ ′

1/α} ∈ Sκ2 [C/χ]. Moreover, ν(τ)+ν(τ ′
1) = k. By the

inductive hypothesis, (λα :κ1. τ) τ ′
1 always reduces to a type that belongs to

Sκ2 [C/χ]. By property 3 of Definition A.17, (λα :κ1. τ) τ ′′
1 is in Sκ2 [C/χ].

Alternatively, if ν(τ) �= 0, then τ0 can reduce to (λα : κ1{κ/χ}. τ ′) τ1 where
τ � τ ′. By Lemma A.13, τ{τ1/α} � τ ′{τ1/α}. By property 2 of Defini-
tion A.17, τ ′{τ1/α} ∈ Sκ2 [C/χ]. Moreover, ν(τ ′) + ν(τ1) = k. Therefore, by
the inductive hypothesis, (λα :κ1{κ/χ}. τ ′) τ1 always reduces to a type in
Sκ2 [C/χ]. By property 3 of Definition A.17, (λα :κ1{κ/χ}. τ ′) τ1 belongs to
Sκ2 [C/χ].

Therefore, the neutral type τ0 always reduces to a type in Sκ2 [C/χ]. By property
3 of Definition A.17, τ0 ∈ Sκ2 [C/χ]. Therefore, λα : κ1{κ/χ}. τ is in Sκ1 [C/χ] →
Sκ2 [C/χ]. This implies that λα :κ1{κ/χ}. τ belongs to Sκ1→κ2 [C/χ].

LEMMA A.29. ∀∀ ∈ S∀χ. (χ→Ω)→Ω[C/χ].

Proof We need to show that for any kind κ1{κ/χ} and corresponding candi-
date C1, the type ∀∀ [κ1{κ/χ}] is in S(χ→Ω)→Ω[C, C1/χ, χ], or equivalently

∀∀ [κ1{κ/χ}] ∈ Sχ→Ω[C, C1/χ, χ] → SΩ[C, C1/χ, χ],
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which follows if for all τ ∈ Sχ→Ω[C, C1/χ, χ] we have ∀∀ [κ1{κ/χ}] τ ∈ SΩ[C, C1/χ, χ],
i.e., ∀∀ [κ1{κ/χ}] τ ∈ RΩ. For this to hold, the type

τ ′ ≡ Typerec[κ{κ/χ}] (∀∀ [κ1{κ/χ}] τ) of (
τ )

must be in Sκ[C/χ] whenever the conditions in Definition A.25 are met. Since
each of the types τ , τint, τ→, τ∀, and τ∀+ belongs to a candidate, they are strongly
normalizable. Thus we can proceed by induction on len(τ ′) ≡ ν(τ) + ν(τint) +
ν(τ→) + ν(τ∀) + ν(τ∀+) to prove τ ′ always reduces to a type that belongs to
Sκ[C/χ].

—len(τ ′) = 0. Then the only possible reduction of τ ′ is to τ ′
1 ≡ τ∀ [κ1{κ/χ}] τ (λα :

κ1{κ/χ}. τ ′′), where τ ′′ = Typerec[κ{κ/χ}] τ α of (
τ ). For all τ1 ∈ C1, the type
τ ′′{τ1/α} reduces to Typerec[κ{κ/χ}] τ τ1 of (
τ ). By assumption, τ belongs to
Sχ[C, C1/χ, χ] → SΩ[C, C1/χ, χ], which is the same set as C1 → RΩ, hence τ τ1 ∈
RΩ. This implies Typerec[κ{κ/χ}] τ τ1 of (
τ ) belongs to Sκ[C/χ]. Therefore, by
Lemma A.28 (replacing Sκ1 [C/χ] with C1 in the lemma), λα : κ1{κ/χ}. τ ′′ be-
longs to C1 → Sκ[C/χ].
By assumption τ∀ ∈ S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ]. Therefore, τ∀ [κ1{κ/χ}] is in
S(χ→Ω)→(χ→κ)→κ[C, C1/χ, χ]. This implies that τ∀ [κ1{κ/χ}] τ is in the set
S(χ→κ)→κ[C, C1/χ, χ]. The latter is equal to Sχ→κ[C, C1/χ, χ] → Sκ[C, C1/χ, χ],
which in turn expands to (C1 → Sκ[C, C1/χ, χ]) → Sκ[C, C1/χ, χ]. But χ does
not occur free in κ, so the latter can be written as (C1 → Sκ[C/χ]) → Sκ[C/χ].
This implies that τ ′

1 belongs to Sκ[C/χ].
—len(τ ′) = k + 1. The other possible reductions come from the reduction of

one of the constituent types τ , τint, τ→, τ∀, and τ∀+. The proof in this case is
similar to the proof of the last case in Lemma A.26.

Since τ ′ is neutral, by property 3 of Definition A.17 τ ′ ∈ Sκ[C/χ].

LEMMA A.30. If for every kind κ′ and reducibility candidate C ′ of this kind
τ{κ′/χ′} ∈ Sκ[C, C′/χ, χ′], then Λχ′. τ ∈ S∀χ′. κ[C/χ].

Proof Consider the neutral type τ ′ = (Λχ′. τ) [κ′] for an arbitrary kind κ′.
Since τ{κ′/χ′} is strongly normalizable, τ is strongly normalizable, so we can
prove the statement by induction over ν(τ), showing that τ ′ always reduces to
a type that belongs to Sκ[C, C′/χ, χ′], given that τ{κ′/χ′} ∈ Sκ[C, C′/χ, χ′].

—ν(τ) = 0. There are two possible reductions. A β2 reduction yields τ{κ′/χ′},
which is by assumption in Sκ[C, C′/χ, χ′]. If τ = τ0 [χ′] and χ′ does not occur
free in τ0, then the η2 reduction yields τ0 [κ′]. But in this case τ{κ′/χ′} = τ0 [κ′].

—ν(τ) = k + 1. There is one additional reduction, (Λχ′. τ) [κ′] � (Λχ′. τ1) [κ′],
where τ � τ1. By Lemma A.14, we know that τ{κ′/χ′} � τ1{κ′/χ′}. By prop-
erty 2 of Definition A.17, τ1{κ′/χ′} ∈ Sκ[C, C′/χ, χ′]. Moreover, ν(τ1) = k.
Therefore, by the inductive hypothesis, (Λχ′. τ1) [κ′] always reduces to a type
in Sκ[C, C′/χ, χ′]. By property 3 of Definition A.17, (Λχ′. τ1) [κ′] belongs to
Sκ[C, C′/χ, χ′].

Therefore, the neutral type τ ′ always reduces to a type in Sκ[C, C′/χ, χ′]. By
property 3 of Definition A.17, τ ′ ∈ Sκ[C, C′/χ, χ′]. Therefore, Λχ′. τ belongs to
S∀χ′. κ[C/χ].
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LEMMA A.31. If τ ∈ S∀χ. κ[C/χ], then for every kind κ′ we have τ [κ′{κ/χ}] ∈
Sκ{κ′/χ}[C/χ].

Proof By Definition A.22 τ [κ′{κ/χ}] belongs to Sκ[C, C′/χ, χ], for every kind
κ′ and reducibility candidate C ′ of this kind. Set C′ = Sκ′ [C/χ]. Applying
Lemma A.24 leads to the result.

LEMMA A.32. ∀∀+∈ S(∀χ. Ω)→Ω[C/χ].

Proof We need to show that for all τ ∈ S∀χ. Ω[C/χ] we have ∀∀+
τ ∈ RΩ. The

latter holds if τ ′ ≡ Typerec[κ{κ/χ}] (∀∀+
τ) of (
τ ) belongs to Sκ[C/χ] under the

conditions in Definition A.25. We will prove by induction on len(τ ′) ≡ ν(τ) +
ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) that the type Typerec[κ{κ/χ}] (∀∀+

τ) of (
τ ) always
reduces to a type in Sκ[C/χ].

—len(τ ′) = 0. Then the only possible reduction of τ ′ is to τ∀+ τ (Λχ. τ ′′), where
τ ′′ = Typerec[κ{κ/χ}] (τ [χ]) of (
τ ). For an arbitrary kind κ′, τ ′′{κ′/χ} is equal
to Typerec[κ{κ/χ}] τ [κ′] of (
τ ). By the assumption on τ , we get that τ [κ′] ∈ RΩ.
Therefore, by Definition A.18 τ ′′{κ′/χ} ∈ Sκ[C/χ]. Since χ does not occur free
in κ, we can write this as τ ′′{κ′/χ} ∈ Sκ[C, C′/χ, χ] for any candidate C ′ of
kind κ′. Thus by Lemma A.30 Λχ. τ ′′ ∈ S∀χ. κ[C/χ]. By the assumptions on
τ∀+ and τ , τ∀+ τ (Λχ. τ ′′) is in Sκ[C/χ].

—len(τ ′) = k + 1. The other possible reductions come from the reduction of
one of the constituent types τ , τint, τ→, τ∀, and τ∀+. The proof in this case is
similar to the proof of the last case in Lemma A.26.

Since τ ′ is neutral, by property 3 of Definition A.17, τ ′ ∈ Sκ[C/χ].

We now come to the main result of this section.

THEOREM A.33 (CANDIDACY). Let τ be a type of kind κ. Suppose all the
free type variables of τ are in α1 . . . αn of kinds κ1 . . . κn and all the free kind
variables of κ, κ1 . . . κn are among χ1 . . . χm. If C1 . . .Cm are candidates of
kinds κ′

1 . . . κ′
m and τ1 . . . τn are types of kind κ1{κ′/χ} . . . κn{κ′/χ} which are

in Sκ1 [C/χ] . . .Sκn [C/χ], then τ{κ′/χ}{τ/α} belongs to Sκ[C/χ].

Proof The proof is by induction over the structure of τ .
The cases of int, →→, ∀∀, ∀∀+

are covered by Lemmas A.26, A.27, A.29, and A.32.
Suppose τ = αi and κ = κi. Then τ{κ′/χ}{τ/α} = τi. By assumption, this

belongs to Sκi [C/χ].
Suppose τ = τ ′

1 τ ′
2. Then τ ′

1 is of kind κ′ → κ and τ ′
2 of kind κ′ for some

kind κ′. By the inductive hypothesis, τ ′
1{κ′/χ}{τ/α} belongs to Sκ′→κ[C/χ] and

τ ′
2{κ′/χ}{τ/α} belongs to Sκ′ [C/χ]. Therefore, (τ ′

1{κ′/χ}{τ/α}) (τ ′
2{κ′/χ}{τ/α})

is in Sκ[C/χ].
Suppose τ = τ ′ [κ′]. Then τ ′ is of kind ∀χ1. κ1 for some χ1, κ1; also κ =

κ1{κ′/χ1}. By the inductive hypothesis, τ ′{κ′/χ}{τ/α} belongs to S∀χ1. κ1 [C/χ].
By Lemma A.31 τ ′{κ′/χ}{τ/α} [κ′{κ′/χ}] is in Sκ1{κ′/χ1}[C/χ], which is equiva-
lent to Sκ[C/χ].

Suppose τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+). Then the kinds of τ ′, τint, τ→,
τ∀, and τ∀+ are Ω, κ, Ω → κ → Ω → κ → κ, ∀χ. (χ → Ω) → (χ → κ) → κ, and
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(type context) C ::= [ ] | Λχ.C | C [κ] | λα :κ.C | C τ | τ C

| Typerec[κ] C of (τint; τ→; τ∀; τ∀+)

| Typerec[κ] τ of (C; τ→; τ∀; τ∀+) | Typerec[κ] τ of (τint; C; τ∀; τ∀+)

| Typerec[κ] τ of (τint; τ→; C; τ∀+) | Typerec[κ] τ of (τint; τ→; τ∀; C)

Fig. 22. Type contexts

(∀χ. Ω) → (∀χ. κ) → κ, respectively. By the inductive hypothesis we have

τ ′{κ′/χ}{τ/α} ∈ RΩ

τint{κ′/χ}{τ/α} ∈ Sκ[C/χ]
τ→{κ′/χ}{τ/α} ∈ SΩ→κ→Ω→κ→κ[C/χ]
τ∀{κ′/χ}{τ/α} ∈ S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ]

τ∀+{κ′/χ}{τ/α} ∈ S(∀χ. Ω)→(∀χ. κ)→κ[C/χ]

Then by definition of RΩ,

Typerec[κ{κ′/χ}] τ ′{κ′/χ}{τ/α} of (τint{κ′/χ}{τ/α};
τ→{κ′/χ}{τ/α};
τ∀{κ′/χ}{τ/α};
τ∀+{κ′/χ}{τ/α})

belongs to Sκ[C/χ].
Suppose τ = λα′ :κ′. τ1. Then τ1 has some kind κ′′ such that κ = κ′ → κ′′, and

the free type variables of τ1 are in α1, . . . , αn, α′. By the inductive hypothesis,
τ1{κ′/χ}{τ, τ ′/α, α′} is in Sκ′′ [C/χ], where τ ′ is of kind κ′{κ′/χ} and belongs to
Sκ′ [C/χ]. This implies that (τ1{κ′/χ}{τ/α}){τ ′/α′} belongs to Sκ′′ [C/χ] (since
α′ occurs free only in τ1). By Lemma A.28, λα′ :κ′{κ′/χ}. (τ1{κ′/χ}{τ/α}) is in
Sκ′→κ′′ [C/χ].

Suppose τ = Λχ′. τ ′. Then the kind of τ ′ is κ′′, and κ = ∀χ′. κ′′. By the
inductive hypothesis, τ ′{κ′, κ′/χ, χ′}{τ/α} belongs to Sκ′′ [C, C′/χ, χ′] for an ar-
bitrary kind κ′ and candidate C ′ of kind κ′. Since χ′ occurs free only in τ ′, we
get that (τ ′{κ′/χ}{τ/α}){κ′/χ′} is in Sκ′′ [C, C′/χ, χ′]. By Lemma A.30 the type
Λχ′. (τ ′{κ′/χ}{τ/α}) is in S∀χ′. κ′′ [C/χ].

Suppose SNi is the set of strongly normalizable types of kind κi.

COROLLARY A.34. All types are strongly normalizable.

Proof Follows from Theorem A.33 by setting Ci = SNi and τi = αi.

A.3 Confluence in the λω
i Type Language

To prove confluence of the reduction in the type language of λω
i , we first define

the compatible extension �→ of the one-step reduction �. Let the set of type
contexts (ranged over by C) be defined inductively as shown in Figure 22. A
context is thus a “type term” with a hole [ ]; the term C{τ} is defined as the
type obtained by replacing the hole in C by τ .

DEFINITION A.35. τ1 �→ τ2 iff there exist types τ ′
1 and τ ′

2 and a type context
C such that τ1 = C{τ ′

1}, τ2 = C{τ ′
2}, and τ ′

1 � τ ′
2.
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Let as usual �→∗ denote the reflexive and transitive closure of �→.

LEMMA A.36. If τ �→ τ ′, then C{τ} �→ C{τ ′}.

Proof From compositionality of contexts, i.e., since for all contexts C1 and
C2 and types τ , C1{C2{τ}} = C{τ} for some context C, which is constructed
inductively on the structure of C1.

COROLLARY A.37. If τ �→∗ τ ′, then C{τ} �→∗ C{τ ′}.

The following lemmas are proved by induction on the structure of contexts.

LEMMA A.38. If τ1 �→ τ2, then τ1{τ/α} �→ τ2{τ/α}.

Proof Sketch Follows from Lemma A.13.

LEMMA A.39. If τ1 �→ τ2, then τ1{κ/χ} �→ τ2{κ/χ}.

Proof Sketch Follows from Lemma A.14.

LEMMA A.40. If E ; ∆ � C{τ} : κ, then there exist E ′, ∆′, and κ′ such that
E ′; ∆′ � τ : κ′; furthermore, if E ′; ∆′ � τ ′ : κ′, then E ; ∆ � C{τ ′} : κ.

By induction on the structure of types we prove the following substitution
lemmas.

LEMMA A.41. If E ; ∆, α :κ′ � τ : κ and E ; ∆ � τ ′ : κ′, then E ; ∆ � τ{τ ′/α} :
κ.

LEMMA A.42. If E , χ; ∆ � τ : κ and E � κ′, then E ; ∆{κ′/χ} � τ{κ′/χ} :
κ{κ′/χ}.

Now we can show subject reduction for �.

LEMMA A.43. If E ; ∆ � τ : κ and τ � τ ′, then E ; ∆ � τ ′ : κ.

Proof Sketch Follows by case analysis of the reduction relation � and the
substitution Lemmas A.41 and A.42.
Then we have subject reduction for �→ as a corollary of Lemmas A.43 and A.40.

COROLLARY A.44. If E ; ∆ � τ : κ and τ �→ τ ′, then E ; ∆ � τ ′ : κ.

For our confluence proof we need another property of substitution.

LEMMA A.45. If τ1 �→ τ2, then τ{τ1/α} �→∗ τ{τ2/α}.

Proof The proof is by induction on the structure of τ . The cases when τ is a
constant, τ = α, or τ = β �= α, are straightforward.
case τ = Λχ. τ ′: W.l.o.g. assume that χ is not free in τ1, so that τ{τ1/α} =
Λχ. (τ ′{τ1/α}); then by subject reduction (Corollary A.44) χ is not free in τ2,
hence τ{τ2/α} = Λχ. (τ ′{τ2/α}). By the induction hypothesis we have that
τ ′{τ1/α} �→∗ τ ′{τ2/α}. Then by Corollary A.37 for the context Λχ. [ ] we obtain
Λχ. (τ ′{τ1/α}) �→∗ Λχ. (τ ′{τ2/α}).
The cases of τ = τ ′ [κ] and τ = λβ :κ. τ ′ are similar.
case τ = τ ′ τ ′′: By induction hypothesis we have

(1) τ ′{τ1/α} �→∗ τ ′{τ2/α}
(2) τ ′′{τ1/α} �→∗ τ ′′{τ2/α}.
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Using context [ ] (τ ′′{τ1/α}), from (1) and Corollary A.37 it follows that

τ{τ1/α} = (τ ′{τ1/α}) (τ ′′{τ1/α}) �→∗ (τ ′{τ2/α}) (τ ′′{τ1/α});

then using context (τ ′{τ2/α}) [ ], from (2) and Corollary A.37 we have

(τ ′{τ2/α}) (τ ′′{τ1/α}) �→∗ (τ ′{τ2/α}) ((τ ′′{τ2/α})) = τ{τ2/α}

and the result follows since �→∗ is closed under transitivity.
The case of τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+) is similar.

The next step is to prove local confluence of the reduction of well-formed
types.

LEMMA A.46. If E ; ∆ � τ : κ0, τ �→ τ1, and τ �→ τ2, then there exists τ0 such
that τ1 �→∗ τ0 and τ2 �→∗ τ0.

Proof The proof proceeds by induction on the structure of the derivation of
E ; ∆ � τ : κ0. For the base cases, corresponding to τ being one of the Ω con-
structors or a type variable, no rules of reduction apply, so the result is trivial.
For the other cases, let C1, C2, τ

′
1, τ

′
2, τ

′′
1 , and τ ′′

2 be such that τ = C1{τ ′
1} =

C2{τ ′
2}, τ1 = C1{τ ′′

1 }, τ2 = C2{τ ′′
2 }, and τ ′

1 � τ ′′
1 , τ ′

2 � τ ′′
2 .

case τ = Λχ. τ ′: An inspection of the definition of contexts shows that the
only possible forms for C1 and C2 are [ ] and Λχ. C. Thus, accounting for the
symmetry, there are the following three subcases:

—Both C1 and C2 are [ ]. The only reduction rule that applies then is η2, so
τ1 = τ2.

—C1 = Λχ. C ′
1 and C2 = Λχ. C ′

2. Then the result follows by the inductive
hypothesis and Corollary A.37.

—C1 = [ ] and C2 = Λχ. C ′
2. Again. the only reduction for τ ′

1 is η2, so τ ′ = τ ′′ [χ]
for some τ ′′. Then there are two cases for τ ′

2. First, if C′
2 = [ ], then τ ′

2 = τ ′,
and—by inspection of the rules—in the case of kind application the only
possible reduction is via β2, hence τ ′′ = Λχ′. τ ′′′ for some χ′ and τ ′′′. Repre-
senting the reductions diagrammatically, we have immediate confluence (up
to renaming of bound variables):

Λχ. ((Λχ′. τ ′′′) [χ])

η2

��
β2

��
Λχ′. τ ′′′ =α Λχ. τ ′′′{χ/χ′}

The second case accounts for all other possibilities for C ′
2 (which must be of

the form C ′′
2 [χ]) and reduction rules that can be applied in τ ′′ = C ′′

2 {τ ′
2} to

reduce it (by assumption) to C ′′
2 {τ ′′

2 }, which we denote by τ ′′
0 . The dashed
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arrows show the reductions that complete local confluence.

Λχ. (τ ′′ [χ])
η2

���������������
�

���������������

τ ′′

�
��������� Λχ. (τ ′′

0 [χ])

η2��� � � � � � �

τ ′′
0

case τ = τ ′ [κ]: Again by inspection of the rules we have that the contexts
are either empty or of the form C [κ]. The symmetric cases are handled as in
the case of kind abstraction above. The interesting situation is when C1 = [ ]
and C2 = C ′

2 [κ]. The only reduction rule that applies for τ1 is then β2, hence
τ ′ = Λχ. τ ′′ for some χ and τ ′′. Again we have two major cases for τ2: first, if
C′

2 = [ ], only η2 applies, so τ ′′ = τ ′′′ [χ] for some τ ′′′, thus

(Λχ. τ ′′′ [χ]) [κ]

β2

��
η2

��
τ ′′′ [χ]{κ/χ} = τ ′′′ [κ]

In all other cases we have C ′
2 = Λχ. C ′′

2 , so τ ′′ = C ′′
2 {τ ′

2} �→ C ′′
2 {τ ′′

2 }; letting τ ′′
0

stand for the latter, we have the diagram

(Λχ. τ ′′) [κ]
β2

���������������
�

���������������

τ ′′{κ/χ}

Lemma A.39 ���������
(Λχ. τ ′′

0 ) [κ]

β2��� � � � � � �

τ ′′
0 {κ/χ}

case τ = λα : κ. τ ′: The contexts can be either empty or of the form λα : κ. C.
The symmetric cases are similar to those above. In the case when C1 = [ ]
and C2 = λα : κ. C′

2, the only rule that applies for the reduction of τ ′
1 is η1, so

τ ′ = τ ′′ α for some τ ′′. Again, there are two cases for τ ′
2: First, if C′

2 = [ ], we
have τ ′

2 = τ ′ = τ ′′ α, and the only reduction rule for application is β1, hence
τ ′′ = λα′ : κ′. τ ′′′ for some α′, κ′, and τ ′′′. Since E ; ∆ � τ : κ0, the subterm
(λα′ : κ′. τ ′′′) α must be well-typed in an environment assigning kind κ to α,
hence κ′ = κ, so that

λα :κ. ((λα′ :κ. τ ′′′) α)

η1

��
β1

��
λα′ :κ. τ ′′′ =α λα :κ. τ ′′′{α/α′}
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In all other cases for C ′
2 (which are of the form C ′′

2 α), we have τ ′′ = C ′′
2 {τ ′

2} �→
C′′

2 {τ ′′
2 }; denoting the latter type by τ ′′

0 , we obtain

λα :κ. (τ ′′ α)
η1

���������������
�

���������������

τ ′′

�
��������� λα :κ. (τ ′′

0 α)

η1��� � � � � � �

τ ′′
0

case τ = τ ′ τ ′′: There are three possibilities for the contexts C1 and C2: to be
empty, of the form C τ ′, or of the form τ C. The symmetric cases proceed as
before.

When C1 = C ′
1 τ ′′ and C2 = τ ′ C′

2, the redexes in τ ′
1 and τ ′

2 are in different
subterms of the type, hence the reductions commute: we have C ′

1{τ ′
1} = τ ′

and C ′
2{τ ′

2} = τ ′′, therefore τ1 = (C ′
1{τ ′′

1 }) (C′
2{τ ′

2}) and τ2 = (C ′
1{τ ′

1}) (C′
2{τ ′′

2 }),
which both reduce to (C ′

1{τ ′′
1 }) (C′

2{τ ′′
2 }).

When C1 = [ ] and C2 = C ′
2 τ ′′, the only reduction rule that applies for τ ′

1 =
τ ′ τ ′′ is β1, hence τ ′ = λα :κ. τ ′′′ for some α, κ, and τ ′′′. As before, there are two
cases for C ′

2. If it is empty, then the only reduction rule that applies to τ ′
2 = τ ′

is η1, hence τ ′′′ = τ IV α for some τ IV , and local confluence follows by

(λα :κ. (τIV α)) τ ′′

β1

��
η1

��
τ IV τ ′′

Alternatively, C ′
2 must be of the form λα : κ. C ′′

2 , where C ′′
2 {τ ′

2} = τ ′′′. Then
τ ′′′ �→ C′′

2 {τ ′′
2 } ≡ τ ′′′

0 , and we have

(λα :κ. τ ′′′) τ ′′

β1

���������������
�

���������������

τ ′′′{τ ′′/α}

Lemma A.38 ���������
(λα :κ. τ ′′′

0 ) τ ′′

β1��� � � � � � �

τ ′′′
0 {τ ′′/α}

When C1 = [ ] and C2 = τ ′ C′
2, again the only reduction rule that applies for

τ ′
1 = τ ′ τ ′′ is β1, so τ ′ = λα :κ. τ ′′′ for some α, κ, and τ ′′′. This time, regardless of
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the structure of C ′
2, we have that τ ′′ = C ′′

2 {τ ′
2} �→ C ′′

2 {τ ′′
2 } ≡ τ ′′

0 , hence

(λα :κ. τ ′′′) τ ′′

β1

���������������
�

���������������

τ ′′′{τ ′′/α}

Lemma A.45 ���������
(λα :κ. τ ′′′) τ ′′

0

β1��� � � � � � �

τ ′′′{τ ′′
0 /α}

case τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+): The contexts can be empty or of the
forms

Typerec[κ] C of (τint; τ→; τ∀; τ∀+)
Typerec[κ] τ ′ of (C; τ→; τ∀; τ∀+)
Typerec[κ] τ ′ of (τint; C; τ∀; τ∀+)
Typerec[κ] τ ′ of (τint; τ→; C; τ∀+)
Typerec[κ] τ ′ of (τint; τ→; τ∀; C)

The symmetric cases and the non-overlapping cases are handled as before.
Accounting for the symmetry, the remaining cases are when C1 = [ ] and C2 is
not empty. Then the reduction rule for τ ′

1 must be one of t1, t2, t3, and t4. Since
there is no η rule for Typerec, the proofs are straightforward.
subcase t1: then τ ′ = int. The result of the reduction under C2 is ignored and
local confluence is trivial, unless C2 = Typerec[κ] τ ′ of (C′

2; τ→; τ∀; τ∀+). In the
latter case,

Typerec[κ] int of (τint; τ→; τ∀; τ∀+)
t1

����������������
�

���������������

τint

�
��������� Typerec[κ] int of (τ ′

int; τ→; τ∀; τ∀+)

t1��� � � � � � �

τ ′
int

subcase t2: then τ ′ = τ ′′ → τ ′′′. We will use Typerec[κ] τ ′ of τ as a short-
hand for Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+), and similarly for contexts. If C2 =
Typerec[κ] C ′

2 of τ , then there are two subcases for C ′
2 (which must have the →
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constructor at its head). Thus, if C ′
2 = C ′′

2 → τ ′′′,

Typerec[κ] (τ ′′ → τ ′′′) of τ

t2

�������������
�

�����������������

τ→ τ ′′ (Typerec[κ] τ ′′ of τ )
τ ′′′ (Typerec[κ] τ ′′′ of τ)

Lemma A.45 ���
�

�
�

�
Typerec[κ] (τ ′′

0 → τ ′′′) of τ

t2��� � � � � � �

τ→ τ ′′
0 (Typerec[κ] τ ′′

0 of τ)
τ ′′′ (Typerec[κ] τ ′′′ of τ )

where τ ′′ = C ′′
2 {τ ′

2} �→ C ′′
2 {τ ′′

2 } ≡ τ ′′
0 . The case of C ′

2 = τ ′′ → C′′
2 is similar.

Of the other cases we will only show the reduction in the position of τ→,
writing τ0 for (τint; τ→0; τ∀; τ∀+), where τ→ �→ τ→0.

Typerec[κ] (τ ′′ → τ ′′′) of τ

t2

�������������
�

�����������������

τ→ τ ′′ (Typerec[κ] τ ′′ of τ )
τ ′′′ (Typerec[κ] τ ′′′ of τ)

Lemma A.45 ���
�

�
�

�
Typerec[κ] (τ ′′ → τ ′′′) of τ0

t2��� � � � � � �

τ→0 τ ′′ (Typerec[κ] τ ′′ of τ0)
τ ′′′ (Typerec[κ] τ ′′′ of τ0)

subcases t3 and t4 are similar to t2.

COROLLARY A.47. If E ; ∆ � τ : κ, τ �→∗ ν, and τ �→∗ τ ′, then τ ′ �→∗ ν.

THEOREM A.48. If E ; ∆ � τ : κ, then there exists exactly one ν such that
τ �→∗ ν.

Proof From Corollaries A.34 and A.47.
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