
Combining Domain-Specific and Foundational Logics
to Verify Complete Software Systems

Xinyu Feng1, Zhong Shao2, Yu Guo3, and Yuan Dong4

1Toyota Technological Institute at Chicago, 2Yale University
3University of Science and Technology of China, 4Tsinghua University

Abstract. A major challenge for verifying complete software systems is their
complexity. A complete software system consists of program modules that use
many language features and span different abstraction levels (e.g., user code and
run-time system code). It is extremely difficult to use one verification system
(e.g., type system or Hoare-style program logic) to support all these features and
abstraction levels. In our previous work, we have developed a new methodol-
ogy to solve this problem. We apply specialized “domain-specific” verification
systems to verify individual program modules and then link the modules in a
foundational open logical framework to compose the verified complete software
package. In this paper, we show how this new methodology is applied to verify a
software package containing implementations of preemptive threads and a set of
synchronization primitives. Our experience shows that domain-specific verifica-
tion systems can greatly simplify the verification process of low-level software,
and new techniques for combining domain-specific and foundational logics are
critical for the successful verification of complete software systems.

1 Introduction

It is difficult to verify complete software systems because they use many different lan-
guage features and span different abstraction levels. As an example, our ongoing project
to verify a simplified operating system kernel exposes such challenges. The kernel has
a simple bootloader, kernel-level threads and a thread scheduler, synchronization prim-
itives, hardware interrupt handlers, and a simplified keyboard driver. Although it has
only around 1,300 lines of x86 assembly code, it already uses features such as dynamic
code loading, thread scheduling and context switching, concurrency, hardware inter-
rupts, device drivers and I/O. How do we verify safety and correctness of the whole
system with machine-checkable proofs?

Verifying the whole system in a single type system or program logic is impractical
because, as Fig. 1 (a) shows, such a verification system needs to consider all possible
interactions among these different features, many of which are even at different ab-
straction levels. The resulting logic, if exists, would be very complex and difficult to
use. Fortunately, in reality, programmers seem to never use all the features at the same
time. Instead, only limited combinations of features—at certain abstraction level—are
used in individual program modules. It would be much simpler to design and use spe-
cialized “domain specific” logics to verify individual program modules, as shown in
Fig. 1 (b). To allow interactions of modules and build a complete system, we need to
also support the interoperability of different logics.

L1

L2

L3

L4

(a). The One-for-All Logic (b). Domain-Specific Logics

Fig. 1. Using Domain Specific Logics to Verify Modules

In our previous work [6], we proposed a new methodology for modular verification
and linking of low-level software systems. Different type systems and program logics
can be used to verify different program modules. These verification systems (called
domain-specific systems or foreign systems) are then embedded into a foundational open
framework, OCAP, where interoperability is supported. Verified program modules in a
foreign system can be reused in the framework, given a sound embedding of the foreign
system. Safety properties of the whole program can be derived from verified modules.

In this paper, we show how to use this methodology to verify the implementations
of preemptive threads and a set of synchronization primitives extracted from our OS
kernel. As shown in Fig. 2, the modules include thread scheduling, blocking and un-
blocking, a timer interrupt handler, implementations of locks and condition variables,
and yield and sleep primitives. To verify them, we develop OCAP-x86, which adapts the
OCAP framework for the x86 architecture and extends it with the support of hardware
interrupts. We then introduce four domain-specific program logics, each designed for a
specific set of program modules that share the same abstraction level. These logics are
all embedded into OCAP-x86. The soundness of the embedding and the interoperability
of foreign logics are formally proved in the Coq proof assistant [4]. Program modules
are verified in “domain-specific” foreign logics with machine-checkable proofs.

This verification effort depends critically on our previous work on the OCAP theo-
ries [6] and specialized program logics for reasoning about interrupts [7] and runtime
stacks [9]. In this paper, instead of developing new theories or logics, we present a
case study of our methodology and report our experience in applying it to fully ver-
ify a relatively complex software package. Specifically, our experience shows that our
verification project can benefit from this new methodology in many different ways.

1. Implementations of thread primitives are at a lower abstraction level than synchro-
nization primitives. It is very natural to verify them using different logics.

2. Using specialized logics, we can hide irrelevant details about the environment from
the specification of program modules, and greatly simplify the inference rules for
reasoning about programs. These details are added back when the foreign logics
are embedded into OCAP-x86. This improves the modularity and the reusability of
the verified primitives.

3. By abstracting away the thread implementation details in the logics used to verify
synchronization primitives, we avoid supporting first-class code pointers in these

Condition Variables

void wait_m(Lock *l, CV *cv);
void signal_m(CV *cv);
void wait_h(Lock *l, CV *cv);
void signal_h(Lock *l, CV *cv);
void wait_bh(Lock *l, CV *cv);
void signal_bh(Lock *l, CV *cv);

Locks

void acq_m(Lock *l);
void rel_m(Lock *l);
void acq_h(Lock *l);
void rel_h(Lock *l);
void acq_spin(Lock *l);
void rel_spin(Lock *l);

 yield/sleep

void yield()
void sleep()

ctxt switching codenode* deQueue(queue * q)
void enQueue(queue * q, node *n)

timer_handler cli/
sti

Level S

Level C

block

void blk(queue * q)

unblock

int unblk(queue * q)

scheduler

void scheduler()

Fig. 2. The Thread Implementations

logics, even though the underlying thread primitives treat program counters saved
in thread control blocks (TCBs) as normal data.

4. Using specialized logics is an effective way to ban some instructions in certain
specific modules. For instance, the “iret” instruction is only used to “return” from
interrupt handlers to non-handler code, and should not be used outside handlers.

In the rest of this paper, we first show in Sect. 2 the challenges to verify the package
and give an overview of our solutions. We present our modeling of the x86 assembly
language in Sect. 3 and the OCAP-x86 framework in Sect. 4. We then explain in detail
the verification of thread implementations in Sect. 5 and synchronization primitives in
Sect. 6. We give more details of our Coq implementations in Sect. 7, and discuss about
related work and conclude in Sect. 8.

2 Background and Challenges
The program modules in Fig. 2 are extracted from our simplified OS kernel (for uni-
processor platforms only) which is implemented in 16-bit x86 assembly code and works
in real mode. The scheduler saves the execution context of the current thread into the
ready queue, picks another one from the queue, and switches to the execution context
of the new thread. block takes a pointer to a block queue as argument, puts the current
thread into the block queue, and switches the control to a thread in the ready queue.
unblock also takes a pointer to a block queue as argument; it moves a thread from the
block queue to the ready queue but does not do context switching. Execution of threads
may be interrupted by hardware interrupts. When the interrupt request comes, the con-
trol is transferred to the interrupt handler. To implement preemptive threads, the handler
calls scheduler before it returns. Threads can also yield the control voluntarily by call-
ing scheduler. block and unblock are used to implement synchronization primitives.

There are many challenges to fully verify these program modules. Our previous
work has solved problems related to specific language features, such as control abstrac-
tions [9] and preemptive threads with hardware interrupts [7]. However, to verify all the
modules as part of a whole system, we still need to address the following problems.
How to verify thread implementations? The code implementing synchronization prim-
itives is concurrent because it may be run by different threads and be preempted by
interrupt handlers. It needs to be verified using a concurrent program logic. However, it

is difficult to use the same logic to verify scheduler, block and unblock. Concurrent pro-
gram logics, e.g., rely-guarantee reasoning [11] or Concurrent Separation Logic [15],
usually assume built-in concurrency and abstract away schedulers. The scheduler and
the block primitives, on the other hand, switch the execution contexts of threads. They
are at a lower abstraction level than threads.

Another problem is that the thread primitives manipulate threads’ execution con-
texts containing program counters pointing to the code where threads resume execution.
These code pointers are stored in memory, thus can be read and updated as normal data.
To verify thread implementations using a concurrent program logic, we need to support
“first-class” code pointers, which is difficult in Hoare-style reasoning and the solutions
are usually heavyweight [13].

How to enforce local invariants? Program invariants play an important role in verifica-
tion. Knowing that the invariants always hold, we can use them without putting them in
specifications, which simplifies verification steps and improves modularity. Although
there is no meaningful system-wide invariants other than the most basic safety require-
ments, more refined invariants are preserved locally in different program modules. How
do we take advantage of these local invariants and ensure that they are preserved in
corresponding modules? For instance, to avoid race conditions, the implementation of
scheduler, block and unblock needs to disable interrupts. Therefore the potential inter-
rupts by interrupt handlers should never be a concern when verifying these subroutines.
Another example is that thread code, including implementations of synchronization
primitives, assumes thread queues are well-formed. Also the well-formedness is triv-
ially preserved because the thread code never directly accesses these queues other than
through thread primitives. Since these invariants are only preserved locally in individual
modules, it is difficult to enforce them globally in the program logic.

How to ban certain instructions in specific modules? As mentioned before, interrupts
are not concerned in thread primitives, assuming they are always disabled. However,
this invariant cannot be preserved if the sti instruction is executed, which enables in-
terrupts. Actually thread implementations should only use a subset of instructions and
are not supposed to execute any interrupt-related ones. Similarly, the iret instruction in
x86 is the last instruction of interrupt handlers. It returns control to the non-handler
code. This instruction cannot be used interchangeably with the normal ret instruction
for functions, and should not be used outside of interrupt handlers. We need to have a
way to ban these instructions in specific scenarios.

To solve these problems, we verify the package following the open-framework-
based methodology. As shown in Fig. 2, we split the code into two layers: the upper
level C (for “Concurrent”) and the low level S (for “Sequential”). Code at Level C is
concurrent; it handles interrupts explicitly and implements interrupt handlers but ab-
stracts away the implementation of threads. Code at Level S is sequential (always exe-
cuted with interrupt disabled); functions that need to know the concrete representations
of thread control blocks (TCBs) and thread queues are implemented at Level S.

We use a Hoare-style program logic for sequential assembly code to verify Level
S. Knowing that interrupts are always disabled, specifications for Level S do not need
to mention the fact at all. To ban interrupt-related instructions at this level, we sim-
ply exclude any rules for these instructions in the specialized logic, so code containing

(World) W ::= (C,S,pc)
(Code) C ::= {f1 ; c1, . . . ,fn ; cn}
(State) S ::= (M,R,F, isr)
(Mem) M ::= {l1 ; w1, . . . ,ln ; wn}

(RegFile) R ::= {ax ; w1, . . . ,sp ; w8}
(FlagReg) F ::= {if ; b1,zf ; b2}

(Word) w ::= i (nat numbers)
(Labels) l,f,pc ::= i (nat numbers)

(Boolean) b, isr ::= tt | ff
(Addr) d ::= i | i(r)

(Oprand) o ::= i | r

(Reg) r ::= ax | bx | cx | dx | bp | di | si | sp

(Instr) ι ::= add r,o | sub r,o | mov r,o | mov r,d | mov d,r | cmp r,o | jne f

| push o | push d | pushf | pop o | pop d | popf | sti | cli | eoi | call f

(Command) c ::= ι | jmp f | ret | iret

Fig. 3. The Machine

these instructions cannot be verified. It is also interesting to note that we do not need
to support first-class code pointers in this level to verify context switching code, be-
cause program counters saved in TCBs are treated as normal data by thread primitives.
Although they point to code at Level C, Level C is not verified within this logic.

We hide the implementation of threads from Level C. To do this, we design an
abstract machine for the higher level code, which treats scheduler, block, and unblock
as abstract primitive instructions. Thread queues are abstract algebraic structures (e.g.,
sets) instead of data structures in memory. They are inaccessible by normal instructions
except scheduler, block and unblock. Various program logics are used to verify modules
at this level. In these logics, we do not need to specify the well-formedness of thread
queues in memory. This not only improves the modularity and reusability of verified
modules, but avoids the support of first-class code pointers because code pointers in the
thread queues are no longer first-class in this abstract machine.

3 The Machine
Figure 3 shows our modeling of a subset of 16-bit x86 machines. The machine config-
uration contains the code C, the program state S and the program counter pc. The code
maps code labels to commands. The program state contains the memory, the register
file, the flag register and a special register isr.

There are several simplifications in our modeling of the x86 architecture. The code
C is not part of the heap and is read-only. The von Neumann architecture can be sup-
ported following Cai et al. [3]. We do not model the full PIC (programmable interrupt
controller). Instead, we assume only the timer interrupt is allowed and all other inter-
rupts are masked. The isr register, which is now degenerated into a binary value, records
whether the timer interrupt is currently being handled. If it is set, new interrupt requests
will not be processed. The bit needs to be cleared before the interrupt handler returns.
The instruction eoi clears isr. It is a shorthand for the real x86 instruction “out dx,al”,
with the precondition that ax and dx both contain value 0x20.

The if flag records whether interrupts are enabled. It can be set by sti and cleared
by cli. At each program point, the control is transferred to the entry point of the inter-
rupt handler if there is an incoming request and the interrupt is enabled. Otherwise the

(CHSpec) Ψ ∈ P (Labels ∗ OCdSpec)
(OCdSpec) π ::= 〈ρ,L ,θ〉 ∈ LangID∗ (ΣX :Type. X)

(LangID) ρ ::= n (nat nums)
(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L
(Assert) a ∈ CHSpec→ State→ Prop

(Interp) [[]]L ∈ L → Assert
(LangDict) D ∈ LangID ⇀ ΣX :Type. (X → Assert)

Fig. 4. Specification Constructs of OCAP-x86

next instruction at pc is executed. Instead of modeling the source of the interrupt, we
use a non-deterministic semantics and assume the interrupt may come at any moment.
Formula (1) formalizes the condition under which an interrupt request will be handled:

enable itr(S) def= (S.F(if) = tt)∧ (S.isr = ff) . (1)

Because we support only the timer interrupt, we assume there is a global entry point
ih entry of the interrupt handler. When an interrupt request is handled, the encoding of
F and pc is pushed onto the stack1; if is cleared and isr is set; and pc is set to ih entry. Se-
mantics of other instructions are standard. The formal definition of operational seman-
tics can be find in our Coq implementation [8] (the file Operational Semantics.v).

4 The OCAP-x86 Framework
OCAP-x86 adapts OCAP [6] for our x86 machine and extends it to support interrupts. It
is developed in Coq [4], which implements CiC [17] and supports mechanized theorem
proving in Higher-Order Logic. In Coq, the universe of logical propositions is Prop.
Coq can also be used as a meta-language so that domain-specific logics can be defined
using inductive definitions. These inductively defined types in Coq are in universe Type.

In OCAP-x86, the code heap specification Ψ for C associates code labels with
generic specifications π, which encapsulate concrete specifications in domain-specific
logics into a uniform format. Each π is a triple containing an identifier ρ of a domain-
specific logic, the CiC meta-type L of its specification language, and a concrete specifi-
cation θ in L . In OCAP-x86, specifications from domain-specific logics are mapped to a
foundational form a, which is a logical predicate over Ψ and program states S. For each
L , the mapping is done by the interpretation [[]]L . The dictionary D of specification
languages then maps language identifiers ρ to the specification language’s meta-type
and the corresponding interpretation. We allow one specification language L to have
multiple interpretations, each with a unique ρ in D .

(ih entry,π0) ∈Ψ ∀Ψ′,S. a Ψ′ S∧Ψ⊆Ψ′
→∃f′,S′,π′. (f′ = next pc(ι,S)(f))∧ (S′ = next(f,ι)(S))

∧(f′,π′) ∈Ψ∧ [[[π′]]]D Ψ′ S′
∧(enable itr(S)→∃S′ = next itr(S,f). [[[π0]]]D Ψ′ S′)

D;Ψ `{a}f : ι
(INS)

1 Some arbitrary value is also pushed onto stack as the “cs” register.

YX

X = ... Y = ...

= {fj : , . . . }
j = {fk : , . . . }

k

= {fj (, ,) , . . . , fk (, ,)}

= { (,) , . . . , (,) }
X Y

YY kX jX

X

j X

Y

Yk

Y
_

X
_

X
_

Y
_

OCAP-x86

call fk

`X C j : ψX `Y Ck : ψY

⇓ ⇓
D;Ψ ` C j :xψXyρX D;Ψ ` Ck :xψYyρY

︸ ︷︷ ︸
D;Ψ ` C j ∪Ck : xψXyρX ∪xψYyρY

(a) Embedding (b) Linking

Fig. 5. Interfacing and Linking Modules

The INS rule just shown is a schema in OCAP-x86 for all instructions. Informally, the
judgment D;Ψ `{a}f : ι says if the precondition a holds, it is safe to execute the in-
struction at the label f and the resulting state satisfies the post-condition in Ψ (which
is also the precondition of the following computation). D is used to interpret specifica-
tions in Ψ. next pc(ι,S)(f) and next(f,ι)(S) define the new pc and state after executing ι
at f with the initial state S. The specification at next pc(ι,S)(f) in Ψ is used as the post-
condition. In addition to the sequential execution, we also need to consider the interrupt
if enable itr(S) holds. In this case, the next state needs to satisfy the precondition π0
for the interrupt handler. next itr(S) is the next state after the interrupt comes at state S.
next pc(ι,S)(f), next(f,ι)(S) and next itr(S) are part of the operational semantics and the
details are omitted here. [[[π]]]D is the interpretation of π in D , which is defined as:

[[[〈ρ,L ,θ〉]]]D
def= λΨ,S. ∃[[]]L . D(ρ) = (L , [[]]L)∧ [[θ]]L Ψ S . (2)

The LINK rule below links separately verified modules C1 and C2.

D1;Ψ1 ` C1 :Ψ′
1 D2;Ψ2 ` C2 :Ψ′

2 D1#D2 C1#C2

D1∪D2;Ψ1∪Ψ2 ` C1∪C2 :Ψ′
1∪Ψ′

2
(LINK)

We use f # f ′ to mean the partial functions f and f ′ maps the same value to the same
image. The judgment D;Ψ ` C : Ψ′ means the module C is verified with imported
interface Ψ and exported interface Ψ′. The complete set of OCAP-x86 rules is presented
in the companion technical report [8].

How to use OCAP-x86. Inference rules of OCAP-x86 are designed for generality with
minimum constraints instead of for ease of use. Actually the rules are not intended to be
used directly by program verifiers. Instead, domain-specific logics should be designed
above the foundational framework to verify specific modules. The specifications and
rules in the domain-specific logics can be customized and simplified, given the specific
local invariants preserved in the modules.

Figure 5(a) shows two domain-specific logics with different specification languages
LX and LY. Each has its own customized rules. To prove the customization is sound, we
encode the local invariants in the interpretations [[]]X and [[]]Y, and show premises of

the customized rules imply premises of the corresponding OCAP-x86 rules, thus these
domain-specific rules are admissible in the foundational framework.

Suppose we have modules verified in LX and LY, with specifications ψX and ψY

respectively. They cannot be interfaced directly because ψX and ψY are specified in dif-
ferent languages. We map the concrete specifications (e.g., θ j and θk) into the generic
triples π in the Ψ at the OCAP-x86 level, where ρX and ρY are language IDs assigned
to LX and LY. Their interpretations are put in D . To interface modules, we match in
OCAP-x86 the interpreted specifications, which are now assertions a. Since the in-
terpretation usually encodes program invariants, matching the interfaces at this level
guarantees the local invariants are compatible at boundaries of modules.

Given the soundness of the embeddings, the modules verified in LX and LY can
be reused in OCAP-x86 without redoing the proof (see Fig. 5(b), where xψyρ maps ψ
to Ψ in OCAP-x86). Then they can be linked using the LINK rule. The soundness of
OCAP-x86 guarantees that the complete system after linking never gets stuck. Also the
interpretation of specifications in Ψ holds when the corresponding program points are
reached by jmp or call instructions.

Theorem 1 (Soundness of OCAP-x86).
If D;Ψ ` (C,S,pc), then, for all n, there exist S′ and pc′ such that (C,S,pc) 7−→n

(C,S′,pc′), and there exists Ψ′ ⊇Ψ such that the following are true:

1. if C(pc′) = jmp f, there exists π such that (f,π) ∈Ψ and [[[π]]]D Ψ′ S′;
2. ifC(pc′) = call f, there exist π and S′′ such that (f,π)∈Ψ, S′′ = next(pc′,call f)(S′),

and [[[π]]]D Ψ′ S′′;
3. if enable itr(S′), there exist π0 and S′′ such that (ih entry,π0)∈Ψ, S′′ = next itr(S′,pc′),

and [[[π0]]]D Ψ′ S′′.

Here D;Ψ `W means the whole system W is well-formed with respect to Ψ (see the
TR [8] for its definition);W 7−→n W′ means an n-step transition fromW toW′.

5 Verifying Thread Implementations
The implementation of threads contains the three thread primitives at Level S in Fig. 2.
The scheduler uses the simple FIFO scheduling policy. The thread queues are imple-
mented as doubly-linked lists containing thread control blocks (TCBs). Each TCB con-
tains the status of the thread (Ready, Idle or Blocked) and the value of the sp register
when the thread is preempted or blocked. Note that we do not need to store pc in TCB
because, by the calling convention, pc is at the top of the stack pointed by sp.

As explained in Sect. 1, the TCB of the running thread is put into the ready queue
if it is preempted or it calls scheduler voluntarily. The scheduler sets its status to Ready
unless it is an idle thread. When block is called, the current thread is put into the corre-
sponding block queue with the status Blocked. An idle thread with the status Idle would
never be blocked. This guarantees the ready queue is not empty when block is called.

To avoid race conditions, code at this level needs to disable interrupts. As a result,
the full x86 machine can be simplified into a sequential subset shown in Fig. 6, where
anything related to interrupts are removed. It is the machine model in the programmers’
mental picture while they are writing and verifying code at Level S. Correspondingly,

(State) S ::= (M,R,F,½½isr) (FlagReg) F ::= {»»»if ; b1,zf ; b2}
(Instr) ι ::= add r,o | sub r,o | mov r,o | mov r,d | mov d,r | cmp r,o | jne f

| push o | push d |»»»pushf | pop o | pop d |©©popf |½½sti |½cli |©©eoi | call f

(Command) c ::= ι | jmp f | ret |©©iret

Fig. 6. A Sequential Subset of x86 Machine

(StPred) p ∈ State→ Prop

(Guarantee) g ∈ State→ State→ Prop

(LangTy) LSCAP ::= StPred∗Guarantee
(CdSpec) θ ::= (p,g)

(LocalSpec) ψ ::= {f1 ; θ1, . . . ,fn ; θn}
Fig. 7. SCAP-x86 Specifications

we use a sequential program logic, SCAP-x86, to verify the thread implementations.
SCAP-x86 adapts the SCAP logic [9] to the x86 architectures. The specification con-
structs are shown in Fig. 7. The specification θ is instantiated using a pair (p,g). p is a
logical predicate in Coq specifying the precondition over the program state; g is a pred-
icate over a pair of states, which specifies the state transition from the current program
point to the end of the current function. The concrete specification ψ of code heaps in
SCAP-x86 maps code labels to θ. Note that we do not really implement SCAP-x86 on
the sequential machine in Fig. 6. The states specified in p and g are still x86 program
states defined in Fig. 3. However, p and g can leave if and isr unspecified, as if they are
specifying the simpler states in Fig. 6. To exclude these interrupts-related instructions,
SCAP-x86 simply does not have inference rules for them, therefore any modules using
these instructions cannot be verified in SCAP-x86.

Specifications of thread primitives. Figure 8 shows our definitions of abstract thread
queues and TCBs. The set of all threads is a partial mapping T from thread IDs to
abstract TCBs. Each tcb contains the thread status and the values of sp and pc. Note
that, in physical memory, pc is stored on top of stack instead of in the TCB. We put it in
the abstract tcb for convenience of specifications. The abstract queue Q is just a set of
thread IDs. B is a partial mapping from block queue IDs to queues for blocked threads.

The specification of scheduler is (sch pre,sch grt), as shown in Fig. 9. sch pre is
the precondition. It says that T maps the ID of the current thread to its TCB, which
has a concrete representation in memory (embed curr TCB(t, tcb)); the ready queue Q
is embedded in memory, storing TCBs in T (embed RdyQ(T,Q)); a pc is at the top of

stack pointed by sp (R(sp) = l and l
27→ pc); and there is sufficient stack space for the

scheduler function (stkSpace(l,sch stk), where sch stk is the size of the stack space for
scheduler). Here we use separating conjunction in Separation Logic [18] to mean the
current TCB, the ready queue and the stack are in different portions of memory. We use
l

27→ w to mean w is stored at l and l+1 (i.e., a 16-bit integer). Also the specification is
polymorphic over the part of memory untouched by scheduler, represented by the mem-
ory predicate m. We omit the concrete definitions of the embedding of TCBs and thread
queues here. Interested readers can refer to our Coq implementation for details [8].

(ThrdSet) T ::= {t1 ; tcb1, . . . ,tn ; tcbn}
(BlkQSet) B ::= {b1 ; Q1, . . . ,bn ; Qn}
(ThrdQ) Q ::= {t1, . . . ,tn}

(Status) s ::= Ready | Idle | Blocked

(TCB) tcb ::= (s,w,pc)
(ThrdID) t ::= n (nat nums and n > 0)
(BQID) b ::= n (nat nums and n > 0)

Fig. 8. Abstract Queues and TCBs

sch pre aux(T,t, tcb,Q,l,pc,m) def=
λ(M,R,F, isr). (T(t) = tcb)∧ (R(sp) = l)

∧(embed curr TCB(t, tcb)∗embed RdyQ(T,Q)∗ (l 27→ pc)∗ stkSpace(l,sch stk)∗m)M
sch post aux(T,t, tcb,Q,l,l0,pc0,m)

def=
λ(M,R,F, isr). (T(t) = tcb)∧ (tcb = (,l,))∧ (R(sp) = l)

∧(embed curr TCB(t, tcb)∗embed RdyQ(T,Q)∗ (l0
27→ pc0)∗ stkSpace(l0,sch stk)∗m)M

sch pre
def= λS. ∃T,t, tcb,Q,l,pc. sch pre aux(T,t, tcb,Q,l,pc, true) S

sch grt
def= λS,S′. ∀T,t, tcb,Q,l,pc,m. sch pre aux(T,t, tcb,Q,l,pc,m) S

→∃T′,t′, tcb′,Q′,l′. (T′ = T{t ; (tcb.s,l,pc)})∧ (Q∪{t}= Q′∪{t′})
∧sch post aux(T′,t′, tcb′,Q′,l′,l,pc,m) S′

Fig. 9. The Specification of scheduler

The auxiliary definition sch post aux specifies the post-condition. Here the parame-
ters (T, t, tcb etc.) refer to the state immediately before scheduler returns, except l0 and
pc0, which refer to the value of sp and pc at the beginning of the function. The guaran-
tee sch grt requires that the pre- and post-conditions hold over states at the beginning
and at the end, respectively. It also relates the auxiliary variables in sch post aux with
those in sch pre aux, and ensures that the calling thread of scheduler is added into the
ready queue Q; its sp and pc is saved in TCB and is put in T; other TCBs in T are
preserved; and the memory specified by m is unchanged. Specifications for block and
unblock are in similar forms and not shown here.

SCAP-x86 and the embedding in OCAP-x86. Inference rules in SCAP-x86 are similar
to those in the original SCAP for a MIPS-like architecture [9]. Unlike rules in OCAP-
x86, where interrupts have to be considered at every step of verification, the SCAP-x86
rules only consider the sequential execution of instructions.

To embed SCAP-x86 into OCAP-x86, we first define the interpretation below.

[[(p,g)]](ρ,D)
LSCAP

def= λΨ,S. p S ∧ (S.F(if) = ff)∧∃n. WFST(n,ρ,g,S,D,Ψ)

WFST(0,ρ,g,S,D,Ψ) def=
∀S′. g S S′→∃ra,π. (ra = Ret Addr(S′))∧ (ra,π) ∈Ψ∧ [[[π]]]D Ψ nextret(S′)

WFST(n+1,ρ,g,S,D,Ψ) def=
∀S′. g S S′→∃ra,p′,g′,S′′. (ra = Ret Addr(S′))∧ (ra,〈ρ,LSCAP,(p′,g′)〉) ∈Ψ

∧S′′ = nextret(S′)∧p′ S′′∧WFST(n,ρ,g′,S′′,D,Ψ)

The interpretation [[]](ρ,D)
LSCAP

maps (p,g) to an assertion a in OCAP-x86. It takes the id
ρ assigned to SCAP-x86 and a dictionary D as open parameters. D is used to interpret
foreign modules that will interact with modules verified in SCAP-x86; it is decided at

(World) W ::= (C,S,pc,t,T,Qr,B)
(Instr) ι ::= . . . | scheduler | block | unblock | . . .

Fig. 10. The AIM-x86 Machine

the time of linking. The invariant about interrupts is added back, although it is omitted
in p. For any p and g, we have ∀Ψ,S. [[(p,g)]](ρ,D)

LSCAP
Ψ S→¬enable itr(S) . The predicate

WFST says that, starting from S, every time a function returns (i.e., its g is fulfilled),
the return address is a valid code pointer in Ψ and its specification is satisfied after ret.
Here Ret Addr(S) gets the return address saved on the stack of S.

The embedding of SCAP-x86 into OCAP-x86 is sound. The soundness theorem
is given below. Given a program module C verified in SCAP-x86, we can apply the
theorem to convert it into a verified package in OCAP-x86. When the code at the Level
S in Fig. 2 is verified, (i.e., when ψ ` C : ψ′ is derived in SCAP-x86), we do not need
any knowledge of Level C and the foreign logics in which Level C is verified.
Theorem 2 (Soundness of the Embedding of SCAP-x86).
Suppose ρ is the id assigned to SCAP-x86. For all D, let D ′ = D{ρ ; (LSCAP, [[]](ρ,D)

LSCAP
)}.

If ψ `C:ψ′ in SCAP-x86, we have D ′;xψyρ `C:xψ′yρ in OCAP-x86, where xψyρ
def=

{(f,(ρ,LSCAP,θ)) | ψ(f) = θ}.

6 Verifying Synchronization Primitives and Interrupt Handlers
The code at Level C implements synchronization primitives and a timer interrupt han-
dler. It handles interrupts explicitly and is executed by preemptive threads. It also calls
the thread primitives at Level S, therefore thread queues need to be well-formed in
memory. However, since all accesses to thread queues are made through these thread
primitives, thread queues would always be well-formed if we treat thread primitives as
atomic operations at this level. Thus we can hide this invariant from specifications, as
we hide interrupts in SCAP-x86. Based on this idea, we develop an abstract interrupt
machine (AIM-x86), which treats thread primitives as atomic instructions. Representa-
tions of queues and TCBs (e.g., embed RdyQ(T,Q) and embed curr TCB(t, tcb)) are
abstracted away. Abstract representations in Fig. 8 are used instead.

Figure 10 shows the AIM-x86 abstract machine, a variation of our AIM machine [7].
We extend the x86 world with the thread ID of the current thread, a mapping of thread
IDs to their TCBs, a ready queue and a set of block queues, which are all defined in
Fig. 8. Then the three primitive instructions are added. The rest part of the machine are
the same as in Fig. 3. Below we show the operational semantics for scheduler:

C(pc) = scheduler F(if) = F′(if) = ff isr = ff T(t) = (s, ,) R(sp) = l+2
T′ = T{t ; (s,l,pc+1)} Qr∪{t}= Q′r∪{t′} T(t′) = (,l′,pc′) R′(sp) = l′+2

M=M1]M2 (l 27→ ∗ l−2 27→ ∗ · · · ∗ l−sch stk
27→)M2

M′ =M1]M′
2 (l 27→ ∗ l−2 27→ ∗ · · · ∗ l−sch stk

27→)M′
2

(C,(M,R,F, isr),pc,t,T,Qr,B) 7−→ (C,(M′,R′,F′, isr),pc′,t′,T′,Q′r,B)
(SCH)

Before executing scheduler, the interrupt needs to be disabled. The scheduler saves sp
(actually sp−2) and the return address (pc+1) into the TCB of the current thread. A

thread t′ is picked to run and the control is transferred to pc′, which is loaded from
the TCB of t′. The memory M can be split into M1 and M2. M2 is the stack used
by scheduler. M1 is untouched by scheduler. We can see the semantics is consistent
with sch grt in Fig. 9, modulo the fact that the SCH rule specifies states before calling
scheduler and after the return of it, while sch grt specifies states after the call and before
the return. Since pc’s in thread queues are not accessible by normal instructions, they
are not first-class data and we do not need to guarantee their validity in our program
logic, which is challenging in Hoare-style reasoning [13].
Domain-Specific Logics for Level C. We have presented a program logic for AIM [7]
in our previous work. Here we use variations of the logic to verify our code. These
variations are not developed for the extended instruction sets in the abstract AIM-x86
machine; instead, scheduler, block and unblock are treated as aliases for the real x86 in-
structions “call scheduler”, “call block” and “call unblock”. Similar to the sequen-
tial subset of x86 in Fig. 6, AIM-x86 is simply a conceptual machine model only for
the design of our domain-specific program logics; it is never implemented.

We use customized program logics, SCAP-Rdy, SCAP-Idle and SCAP-Itr, to verify
normal threads, the idle thread and interrupt handlers respectively. In SCAP-Rdy, we
exclude the inference rules for “iret” and “eoi”, which are supposed to be used only in
interrupt handlers. The set of SCAP-Idle rules is a strict subset of SCAP-Rdy excluding
the rule for “block”, so that we can guarantee there is at least one thread in the ready
queue when the running thread is blocked. SCAP-Itr has rules for “iret” and “eoi”. In the
interpretation for SCAP-Itr, we distinguish the outermost level function (the interrupt
handler) and functions called by the interrupt handler, since the former returns using
“iret”. The rules for the common instructions supported in the three logics are the same,
therefore normal functions need to be verified only once and can be reused.
Embedding in OCAP-x86. We need to define interpretations for the logics to embed
them in OCAP-x86. Since the well-formedness of thread queues (e.g., embed RdyQ(T,Q))
is assumed as invariants in the logics and is unspecified in program specifications, we
need to add it back in our interpretation so that the preconditions of thread primitives at
Level S (e.g., sch pre in Fig. 9) are satisfied when they are called from Level C.

The soundness of the embedding is similar to Theorem 2, which says inference rules
in the customized logics can be viewed as lemmas in the OCAP-x86 frame work based
on the interpretation. The following lemma says the rule for scheduler in SCAP-Rdy is
sound, given any specification of scheduler compatible with (sch pre,sch grt).

Lemma 3 (Interfacing with scheduler). Suppose ρr is the id for SCAP-Rdy. For all D ,
let D ′ = D{ρ ; (LSCAP, [[]](ρ,D)

LSCAP
),ρr ; (LRDY, [[]]ρr

RDY)} . If ψ `{(p,g)}f : scheduler
in SCAP-Rdy, Ψ = xψyρr∪{(scheduler,(ρ,LSCAP,(ps,gs)))}, and (sch pre,sch grt)⇒
(ps,gs), we have D ′,Ψ `{[[(p,g)]]ρr

RDY}call scheduler in OCAP-x86.

Here [[]]ρr
RDY is the interpretation for SCAP-Rdy, and (p,g)⇒ (p′,g′) is defined as:

(∀S. p S→ p′ S)∧ (∀S,S′. g′ S S′→ g S S′) .

We do not show the details of the program logics and their interpretations. Specifica-
tions for primitives at Level C are similar to those for the AIM implementations [7].
Interested readers can refer to the Coq implementation [8] for more details.

Component # of lines

Basic Utility Definitions & Lemmas 2,766
Machine, Opr. Semantics & Lemmas 3,269
Separation Logic, Lemmas & Tactics 6,340
OCAP-x86 & Soundness 1,711
SCAP-x86 & Soundness 1,357
Thread Queues & Lemmas 1,199
SCAP-Rdy, SCAP-Idle & SCAP-Itr 26,347

Component # of lines
Assembly Code at Level S 292∗
enQueue/deQueue 4,838
scheduler, block, unblock 7,107
Assembly Code at Level C 411∗
Timer Handler 2,344
yield & sleep 7,364
locks: acq h & rel h 10,838
cond. var.: wait m & signal m 5,440

∗ They are the Coq source files containing the encoding of the assembly code. The real assembly
code in these two files is around 300 lines.

Fig. 11. The Verified Package in Coq

7 Implementations in Coq
In our Coq implementations, we use a simplified version of OCAP-x86, which instan-
tiates the full-version OCAP-x86 with a priori knowledge of the four domain-specific
logics (SCAP-x86, SCAP-Rdy, SCAP-Idle and SCAP-Itr). The soundness of the frame-
work and the embedding of the four logics have been formally proved in Coq. We have
also verified most of the modules shown in Fig. 2, which have around 300 lines of
x86 assembly code. The whole Coq implementation has around 82,000 lines, including
1165 definitions and 1848 lemmas and theorems. Figure 11 gives a break down of the
number of lines for various components.

The implementation has taken many man-months, including the implementation of
basic facilities such as lemmas and tactics for partial mappings, queues, and separation
logic assertions. The lesson we learn is that writing proofs is very similar to developing
large-scale software systems — many software-engineering principles would be equally
helpful for proof development; especially a careful design and a proper infrastructure is
crucial to the success. We started to prove the main theorems without first developing a
proper set of lemmas and tactics. The proofs done at the beginning used only the most
primitive tactics in Coq. Auxiliary lemmas were proved on the fly and some were proved
multiple times by different team members. The early stage was very painful and some
of our members were so frustrated by the daunting amount of work. After one of us
ported a set of lemmas and tactics for separation logic from a different project [12], we
were surprised to see how the proof was expedited. The tactics manipulating separation
logic assertions, especially the ones that reorder sub-terms of separating conjunctions,
have greatly simplified the reasoning about memory.

Another observation is that verifying both the library (e.g., Level S primitives) and
its clients (e.g., Level C code) is an effective way to validate specifications. We have
found some of our initial specifications for Level S code are too strong or too weak to be
used by Level C. Also, to avoid redoing the whole proof after fixing the specifications,
it is helpful to decompose big lemmas into smaller ones with clear interfaces.

The size of our proof scripts is huge, comparing with the size of the assembly code.
This is caused in part by the duplicate proof of the same lemmas by different team mem-
bers. Another reason is the lack of proper design and abstraction: when an instruction
is seen a second time in the code, we simply copy and past the previous proof and do

some minor changes. The proof is actually developed very quickly after introducing the
tactics for separation logic. For instance, the 5440 lines Coq code verifying condition
variables is done by one of the authors in two days. We believe the size of proof scripts
can be greatly reduced with more careful abstractions and more reuse of lemmas.

8 Related Work and Conclusions
Bevier [1] verified Kit, an OS kernel implemented in machine code, using the Boyer-
Moore logic. Gargano et al. [10] showed a framework to construct a verified OS kernel
in the Verisoft project. Both kernels support process scheduling and interrupts (and
more features). Their interrupt handlers are part of the kernel, but the kernels are se-
quential and cannot be interrupted. There are no kernel level threads either. In both
cases, it is not clear how to verify the concurrent higher-level code (processes in Kit [1]
or CVMs in the Verisoft project [10]) and link it with the verified kernel as a whole sys-
tem. The CLI stack project [2] verified sub-systems at different abstraction levels and
composed them as a whole verified system. Interactions between different levels were
formalized and verified. The verification, however, was based on operational semantics
and may not be scalable to handle concurrency and higher-order code pointers. Ni et
al. [14] verified a non-preemptive thread library in XCAP [13], which treats pc stored
in TCBs as first-class continuations. The library, however, is not linked with verified
threads. Elphinstone et al. [5] proposed to implement a prototype of kernel in Haskell,
and to verify that the C implementation satisfies the Haskell specification.

In this paper, we present an application of our open-framework-based methodology
for system verification. We verify thread implementations, synchronization primitives
and interrupt handlers using domain-specific logics and link them in the open frame-
work to get a verified whole system. The work is based on our previous work addressing
various theoretical problems, i.e., the OCAP framework [6], the SCAP logic [9] and the
AIM machine and logic for preemptive threads and interrupts [7]. In our previous work
on OCAP [6], we showed how to link a verified scheduler with non-preemptive threads.
That was a proof-of-concept example, which was not developed for real machine archi-
tecture and did not support interrupts.

There might be alternative solutions to some of the problems shown in Sect. 2. For
instance, using separation logic’s hypothetical frame rules [16], it is also possible to hide
the concrete representations of thread queues for Level C. However, it is not clear how
to support first-class code pointers and to ban certain instructions in specific scenarios
in separation logic. We manage to address all these issues in a single framework. Also,
our methodology is general enough to support domain-specific logics with different
specification languages, e.g., type systems and Hoare logics [6].

On the other hand, it is important to note that our methodology and framework do
not magically solve interoperability problems for arbitrary domain-specific logics. Em-
bedding foreign logics into the framework and letting them interact with each other
involve non-trivial theoretical and engineering problems. For instance, invariants en-
forced in different logics need to be recognized and be properly encoded in the foun-
dational logic. The encoding may also require mappings of program states from higher
abstraction levels to lower levels. The problems may differ in specific applications. We
would like to apply our methodology to larger applications (e.g., verifying our 1300-line
OS kernel) to further test its applicability.

Acknowledgment
We thank anonymous referees for their suggestions and comments. Wei Wang, Haibo Wang,
and Xi Wang helped prove some of the lemmas in our Coq implementation. Xinyu Feng and
Zhong Shao are supported in part by gift from Microsoft and NSF grant CCR-0524545. Yu Guo
is supported in part by grants from National Natural Science Foundation of China (under grants
No. 60673126 and No. 90718026) and Intel China Research Center. Yuan Dong is supported
in part by National Natural Science Foundation of China (under grant No. 60573017), Hi-Tech
Research And Development Program Of China (under grant No. 2008AA01Z102), China Schol-
arship Council, and Basic Research Foundation of Tsinghua National Laboratory for Information
Science and Technology (TNList). Any opinions, findings, and contributions in this document
are those of the authors and do not reflect the views of these agencies.

References
[1] W. R. Bevier. Kit: A study in operating system verification. IEEE Trans. Softw. Eng.,

15(11):1382–1396, 1989.
[2] W. R. Bevier, W. A. Hunt, J. S. Moore, and W. D. Young. Special issue on system verifica-

tion. Journal of Automated Reasoning, 5(4):409–530, 1989.
[3] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In PLDI’07, pages 66–77,

June 2007.
[4] Coq Development Team. The Coq proof assistant reference manual. The Coq release v8.1.
[5] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, and G. Heiser. Towards a practical, verified

kernel. In Proc. 11th Workshop on Hot Topics in Operating Systems, May 2007.
[6] X. Feng, Z. Ni, Z. Shao, and Y. Guo. An open framework for foundational proof-carrying

code. In TLDI’07, pages 67–78, January 2007.
[7] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs with hardware

interrupts and preemptive threads. In PLDI’08, page to appear, June 2008.
[8] X. Feng, Z. Shao, Y. Guo, and Y. Dong. Combining domain-specific and foundational

logics to verify complete software systems, extended version and Coq implementations.
http://flint.cs.yale.edu/flint/publications/itrimp.html, 2008.

[9] X. Feng, Z. Shao, A. Vaynberg, S. Xiang, and Z. Ni. Modular verification of assembly code
with stack-based control abstractions. In PLDI’06, pages 401–414, June 2006.

[10] M. Gargano, M. A. Hillebrand, D. Leinenbach, and W. J. Paul. On the correctness of
operating system kernels. In TPHOLs’05, 2005.

[11] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Trans. on Programming Languages and Systems, 5(4):596–619, 1983.

[12] A. McCreight, Z. Shao, C. Lin, and L. Li. A general framework for certifying garbage
collectors and their mutators. In PLDI’07, pages 468–479, June 2007.

[13] Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers. In Proc.
33rd ACM Symp. on Principles of Prog. Lang., pages 320–333, 2006.

[14] Z. Ni, D. Yu, and Z. Shao. Using XCAP to certify realistic systems code: Machine context
management. In TPHOLs’07, pages 189–206, 2007.

[15] P. W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR’04, volume 3170
of LNCS, pages 49–67, 2004.

[16] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In
POPL’04, pages 268–280, Jan. 2004.

[17] C. Paulin-Mohring. Inductive definitions in the system Coq—rules and properties. In Proc.
TLCA, volume 664 of LNCS, 1993.

[18] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc.
LICS’02, pages 55–74, July 2002.

