
Abstract

A Type-Preserving Compiler Infrastructure

Christopher Adam League

Many kinds of networked devices receive and execute new programs from various

sources. Since we may not fully trust the producers of these programs, we must take

measures to ensure that such code does not misbehave. Currently deployed mobile code

formats can be checked for memory safety and other security properties, but they are

relatively high-level. A type-preserving compiler generates lower-level, more optimized

code that is still verifiable. This increases assurance by reducing the trusted computing

base; we need not trust the compiler anymore. Moreover, lower-level representations

naturally support a wider variety of source languages.

Previous research on type-preserving compilation focused on functional languages

or safe subsets of C. How to adapt this technology to more widely-used object-oriented

languages was unknown. This dissertation explores techniques that enable a single

strongly-typed intermediate language to certify programs in two very different pro-

gramming languages: Java and ML.

The major contribution is an efficient new encoding of object-oriented constructs

into a typed intermediate language. I give a complete formal translation of a Java-like

source calculus into a typed lambda calculus. I prove that both languages are sound

and decidable, and that the translation preserves types.

I also address many practical concerns, moving beyond the formal model to include

most features of the Java language. To stage the translation, I developed lambda JVM,

a novel representation of Java bytecode that is simpler to verify. I describe a prototype

compiler that supports both Java and ML, sharing the same typed intermediate language,

optimizers, code generator, and runtime system.

A Type-Preserving Compiler Infrastructure

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

By
Christopher Adam League

Dissertation Director: Zhong Shao

December 2002

©2003 Christopher Adam League. All Rights Reserved.

Contents

Contents i

List of Figures iv

Acknowledgments vii

1 Compiler Support for Safe Systems 1

1.1 Safety mechanisms . 2

1.2 Type-preserving compilers . 5

1.3 Contributions . 7

1.4 Structure of this dissertation . 8

2 Object Encoding 9

2.1 Why we need encodings . 10

2.2 Encodings must enforce safety . 11

2.3 Classic encodings . 13

2.4 Efficient encoding . 15

2.5 Another approach . 16

3 Source Language: Featherweight Java 21

3.1 Syntax . 22

3.2 Semantics . 24

i

ii Contents

4 Intermediate Language: Mini JFlint 31

4.1 Syntax . 32

4.2 Semantics . 40

4.3 Properties . 44

5 A Type-Preserving Translation 53

5.1 Self application . 53

5.2 Type translation . 58

5.3 Expression translation . 62

5.4 Class encoding . 66

5.5 Class translation . 69

5.6 Linking . 72

5.7 Separate compilation . 73

5.8 Properties . 74

5.9 Related work . 83

6 Beyond Featherweight: the rest of Java 87

6.1 Private fields . 89

6.2 Interfaces . 91

7 Functional Java Bytecode 93

7.1 Design . 94

7.2 Translation . 97

7.3 Verification . 103

7.4 Implementation . 106

7.5 Related work . 107

8 A Prototype Compiler for Java and ML 109

8.1 Design . 109

Contents iii

8.2 Synergy . 115

8.3 Implementation . 116

9 Future Directions 119

9.1 More inclusive encodings . 119

9.2 More substantial implementations . 120

Bibliography 123

List of Figures

1.1 Do you trust Microsoft? . 3

1.2 Recent CERT advisories . 5

2.1 Expanding method invocation to low-level code 11

2.2 Using an arbitrary integer as a pointer . 12

2.3 Predicate constructors in Special J . 17

3.1 Abstract syntax of Featherweight Java . 22

3.2 Sample FJ program with integers, arithmetic, and conditional expressions . . 23

3.3 Auxiliary functions for field and method lookup 24

3.4 Definition of the subtyping relation . 25

3.5 Computation rules . 25

3.6 Congruence rules . 26

3.7 Typing rules for expressions . 27

3.8 Well-typed classes and methods . 28

4.1 Abstract syntax of Mini JFlint . 32

4.2 Derived forms (syntactic sugar) . 32

4.3 Formation rules for kinds . 34

4.4 Formation rules for environments . 35

4.5 Type formation rules . 36

iv

List of Figures v

4.6 Type formation rules, continued . 37

4.7 Term formation rules . 39

4.8 Term formation rules, continued . 41

4.9 Type equivalence rules . 42

4.10 Type equivalence rules, continued . 43

4.11 Values and primitive reductions . 45

4.12 Congruence rules . 46

5.1 Casting q from Point to Object . 57

5.2 Field and method layouts for object types . 58

5.3 Definition of rows . 60

5.4 Macros for object types . 60

5.5 Rows for Point and ScaledPoint . 62

5.6 Definitions of pack and upcast transformations 62

5.7 Type-directed translation of FJ expressions . 63

5.8 Macros for dictionary, constructor, and class types 67

5.9 Translation of class declarations . 70

5.10 Translation of method declarations . 71

5.11 Program translation and linking . 72

7.1 Method syntax in λJVM . 95

7.2 A sample Java method with a loop . 97

7.3 The same method compiled to JVML . 98

7.4 The same method translated to λJVM . 98

7.5 A complex example with subroutines . 101

7.6 Translation involving subroutines . 101

7.7 Selected typing rules . 105

7.8 The need for set types . 106

vi List of Figures

8.1 Importing FLINT code from the SML/NJ static environment 110

8.2 Signature for JFlint code . 111

8.3 Constructing representations of object types . 112

8.4 Compiling invokevirtual . 112

8.5 Compiling and running a Java program in SML/NJ 113

8.6 A trivial Java program . 113

8.7 Abstract interface for JFlint type representation 117

Acknowledgments

My work was funded in part by a Yale University fellowship, NSF grants CCR-9901011

and CCR-0081590 and a DARPA OASIS grant F30602-99-1-0519.

My committee—Arvind Krishnamurthy, Carsten Schürmann, and Kim Bruce—offered

many insightful remarks and asked plenty of tough questions. This work is stronger

thanks to their commitment. Thanks also to many anonymous referees for comments

on all my papers, accepted or not. Andrew Appel’s enthusiasm for my work has been

reassuring. Phil Wadler first suggested formulating our ideas in the context of FJ.

Amy Zwarico introduced me to programming languages research…a decade ago!

Two students, John Garvin and Daniel Dormont assisted with the implementation,

especially by finding and fixing my bugs. Dachuan Yu defined the operational semantics

for Mini JFlint and supplied many details for the soundness proofs. Stefan Monnier

participated in countless hours of worthy discussion and welcome distraction. Valery

Trifonov contributed considerable insight and industry, without which this work would

not have succeeded.

When I started graduate school, I dared not dream of finding an advisor half as

capable, energetic, and dedicated as Zhong Shao. His willingness to work long hours at

the white board with us was remarkable. His insistence on finding ever simpler solutions

was critical. He knew when I needed to be pushed. And he knew, somehow, when I was

ready to work on my own. It is thanks to his grand vision and tireless recruiting that

Yale was such a stimulating place to work.

vii

viii ACKNOWLEDGMENTS

On a personal note, thanks to Adam, Antony, Bill, Manish, Marg, Mike, Patrick, Rupa,

Shamez, Sydney, Tara, Walid, et alii for your friendship. To Neeraja, for helping me

prove that the good life is not incompatible with graduate school. To older friends that

I almost lost, I hope I can make it up to you. To my parents for your love and support,

and for not asking when I would get a real job. And finally to Art, for countering

my complaints with encouragement and emotional support. May we have a long and

beautiful life together.

Chapter 1

Compiler Support for Safe Systems

Thesis: A strongly-typed compiler intermediate language can safely and efficiently ac-

commodate very different programming languages. To underscore the significance of

this statement, I will broaden my focus for a few pages to explain the motivation for

work on type-preserving compilers.

We are entering a world where many kinds of networked devices receive and execute

new programs from various sources. A handheld organizer (or even a cellular phone)

loads code from a PC conduit, from an infrared link with another device, or from a

wireless network. I can donate the idle time on my personal computer to a growing

number of projects that use widely distributed computation to crack cryptographic

protocols,1 model protein folding,2 or search for space aliens.3 Scientists upload new

programs to satellites or space exploration devices. My web browser downloads and

runs Java™ applets to provide specialized user interfaces.

In all of these applications, we may not fully trust the producers of the programs we

receive and run. We must therefore take measures to ensure their code does not mis-

behave, either intentionally or accidentally. Foreign code should not crash or hang the

1http://www.distributed.net/rc5/
2http://folding.stanford.edu/
3http://setiathome.ssl.berkeley.edu/

1

http://www.distributed.net/rc5/
http://folding.stanford.edu/
http://setiathome.ssl.berkeley.edu/

2 CHAPTER 1. COMPILER SUPPORT FOR SAFE SYSTEMS

device, exhaust precious resources, or interfere with other programs or data. Imagine

‘SETI @home’ uploading a portion of my email archive each time it exchanges data with

its server, or a pointer error in a scientist’s program causing the computer on the Mars

Explorer to freeze. In space, no one can press reset.

These examples are about preventing programs from doing bad things. Ideally, we

might also want to ensure that programs we run do the right thing—that they compute

what we intend. Verifying the correctness of some small procedures is possible, but

the technique does not scale to realistic programs. We do not usually know what we

intend for a program to compute. Indeed, I sometimes run programs just to discover

what they do! Even when our intentions are clear, specifying them formally is difficult

and prone to error—just like programming. For these reasons, I focus just on safety,

and ignore correctness.

1.1 Safety mechanisms

Currently deployed tools that attempt to address the safety of foreign code include dig-

ital signatures and reference monitors. A digital signature identifies and authenticates

the sender of a message using public-key cryptography. Perhaps you have seen a dia-

log similar to the one in figure 1.1 on the facing page. In this case, Microsoft digitally

signed the code for their Internet Explorer Service Pack. The dialog assures me (the user)

that the code I am about to install did indeed come from Microsoft, and not from some

unknown third party. (Although I should perhaps be suspicious that the signature’s

authenticity is verified by the Microsoft certification authority.)

Digital signatures can enforce trust relationships between real-world entities, but

they do not directly address safety. I must still trust Microsoft’s assertion that the

code is safe. In effect, digital signatures ensure only that I know who to blame when

something goes wrong; this is why the next dialog is typically a license agreement!

1.1. SAFETY MECHANISMS 3

Figure 1.1: Do you trust Microsoft?

Another general tool is a reference monitor. Untrusted code is confined to a sand

box, wherein it can do whatever it pleases. The boundaries of the sand box are enforced

by the monitor—it can deny, regulate, or mediate untrusted code’s access to the out-

side world. On modern workstations, the memory management hardware supports the

operating system’s reference monitor. A typical OS distinguishes between a privileged

kernel mode and an untrusted user mode. User programs run in a sand box, and must

perform a context switch into the kernel to access the machine’s resources.

Because context switches are relatively expensive (compared to a normal function

call), reference monitors typically implement fairly coarse-grained controls. Using the

technology to, for example, enforce encapsulation or access control between the mod-

4 CHAPTER 1. COMPILER SUPPORT FOR SAFE SYSTEMS

ules within one program would probably be overkill. Moreover, some very small devices

(watches or cellular phones, for example) may not have the requisite hardware support.

Implementing a reference monitor via software rewriting is possible, but this yields even

higher overhead since dynamic checks must guard every load and store.

In recent years, programming language support for safe systems is finally drawing

much-deserved attention. Array bounds checking, for example, ensures that programs

do not (accidentally or intentionally) use an array pointer to access arbitrary memory.

Similarly, garbage collection eliminates a large class of unsafe memory management

errors. Languages that enforce encapsulation ensure that a rogue module cannot ar-

bitrarily corrupt the private data of another. Exceptions encourage safe programming

because uncaught exceptions rise immediately to the top level and kill the program. The

default behavior, in other words, is to stop on failure. In a language without exceptions,

the default behavior is usually to ignore the error code and continue merrily onward.

The most fundamental language feature for ensuring safety is a strong type system.

I must assure readers accustomed only to the C language that there is much more to

modern type systems than distinguishing between int and float. A type system, just

like a formal logic, can encode complex properties that, for example, enforce abstract

data types or access control. Wallach, Appel, and Felten (2000) showed that the Java

stack inspection mechanism—used upon accessing a privileged resource to ensure the

proper chain of authorization—could be formulated within a type system.

The term type safety refers to a collection of basic properties that are somewhat

stronger than the memory safety implemented by memory management hardware. Type

safety precludes segmentation faults and stack trashing, but also ensures that program

modules respect their interfaces. Critically, a type-safe program cannot corrupt its

underlying runtime system. A type system is sound if static checking admits type-safe

programs only.

Type safety is not just necessary for a secure system, but already represents sig-

1.2. TYPE-PRESERVING COMPILERS 5

Date System Vulnerability
1/24/02 AOL ICQ remotely exploitable buffer overflow
1/14/02 Solaris CDE buffer overflow vulnerability

12/20/01 MS u-PNP buffer overflow vulnerability
12/12/01 SysV ‘login’ remotely exploitable buffer overflow
11/29/01 WU ftpd format string vulnerability;

free() on unallocated pointer
11/21/01 HP-UX lpd remotely exploitable buffer overflow
10/25/01 Oracle9i AS remotely exploitable buffer overflow
10/05/01 CDE ToolTalk format string vulnerability

Figure 1.2: Recent CERT advisories

nificant progress from the status quo. Figure 1.2 shows a sample of recent security

advisories from the Computer Emergency Response Team (CERT). A great many of the

reported vulnerabilities are buffer overflows, memory management problems, or for-

mat string bugs (referring to C’s unsafe printf routine). All such vulnerabilities could

be prevented by using type-safe languages.

1.2 Type-preserving compilers

To ensure safe execution of untrusted code, is it sufficient, then, to program in type-

safe languages? Although such a revolution would enormously improve the status quo,

I must answer no. First, companies like Microsoft are unlikely to ship the source code

for users to type-check and compile. Even if vendors distribute something close enough

to source code that type safety can still be verified—Java bytecode, for example—we

must still trust the compiler. As a large and complicated program, a compiler can con-

tain serious bugs—or even Trojan horses (Thompson 1984)—that compromise safety.

Handing carefully type-checked code to an untrusted compiler is still a serious risk.

The “orange book” (Department of Defense 1985) identifies the trusted computing

base (TCB) as the elements of a system responsible for supporting the security policy.

Identifying and minimizing code in the TCB increases assurance in the entire system.

Even when using a type-safe programming language, the compiler is part of the TCB.

6 CHAPTER 1. COMPILER SUPPORT FOR SAFE SYSTEMS

An exciting new line of research aims to enable higher assurance systems with a

minimal TCB (Appel 2001). Raw machine code, annotated with the right types and

invariants, can be verified as type-safe by an extremely small verifier. Even the type

system for the machine code can be proved sound in some machine-checkable logic.

An essential component of this system is a type-preserving or certifying compiler.

Rather than discard the source language types, such a compiler transforms them along

with the program into a strongly-typed intermediate language, and finally into a typed

assembly language. Such a compiler need not be trusted since, along with the object

code, it generates evidence that the code is safe. Type preservation is challenging,

both in theory and in practice. Lower-level code always needs more sophisticated types

to justify its safety. Unfortunately, such type systems are difficult to implement, and

can—if we are not vigilant—hinder efficient execution.

Until now, research in this area has concentrated on compiling either functional

languages or a safe subset of C. Tarditi et al. (1996) introduced TIL, a compiler for

the polymorphically-typed functional language Standard ML (Milner et al. 1997). Shao

(1997) implemented FLINT, a typed intermediate language for the Standard ML of New

Jersey compiler (Appel and MacQueen 1991). Necula and Lee (1998) pioneered the idea

of proof-carrying code and built a certifying compiler for a safe subset of C. Finally,

Morrisett et al. (1999a) created two distinct type-preserving compilers: one for Popcorn,

a safe C-like language, and another (written in Popcorn) for a subset of Scheme (Clinger

and Rees 1991), the dynamically-typed functional language.

If this technology is to succeed in the real world, certifying compilers must support

real-world programming languages and development models.

1.3. CONTRIBUTIONS 7

1.3 Contributions

This work shows that, with carefully designed encodings, a single typed intermediate

language can safely and efficiently accommodate not only a typical functional language

(Standard ML) but a typical object-oriented language (Java) as well.

Specifically, we developed a formal translation of Featherweight Java (Igarashi, Pierce,

and Wadler 2001) into a typed λ-calculus. At run time, method calls have precisely the

same operational behavior as a standard untyped implementation. Classes inherit and

override methods from super classes with no overhead. We support mutually recursive

classes while maintaining separate compilation. Dynamic casts are implemented as

polymorphic methods using tags generated at link-time. The target of this translation

(Mini JFlint) is sound and decidable, but really quite conventional—rooted in decades

of type theory research. It is a minor extension of the kind of calculus typically used to

represent functional languages in compilers (Peyton Jones et al. 1992; Shao and Appel

1995; Morrisett et al. 1996).

This work includes a formal proof that well-formed Featherweight Java programs

map to well-formed Mini JFlint programs. Since we also proved that Mini JFlint is sound,

translated programs do not become stuck at run time.

We supplement these significant theoretical results with work to address practical

concerns. We developed informal extensions to support many Java features that are not

included in Featherweight: interfaces, constructors, super calls, privacy, and exceptions,

for example. Our prototype compiler is based on Standard ML of New Jersey (Appel and

MacQueen 1991). It reads Java class files (bytecode for the Java virtual machine) and

compiles them to low level JFlint code, with type information preserved. To stage the

translation from class files to JFlint, we designed λJVM, a novel representation of Java

bytecode that is more explicit and simpler to verify. After JFlint, the compiler calls

MLRISC (George 1997) to generate machine code for a variety of architectures.

8 CHAPTER 1. COMPILER SUPPORT FOR SAFE SYSTEMS

The ML and Java front ends share optimizations and back ends. Programs from

either language run together in the same interactive runtime system with the same

garbage collector. The design of JFlint itself supports a pleasing synergy between the

encodings of Java and ML. JFlint does not, for example, treat Java classes or ML modules

as primitives. Rather, it provides a low-level abstract machine model and sophisticated

types that are general enough to prove the safety of a variety of implementations.

1.4 Structure of this dissertation

This chapter sketched the motivation for the work and outlined our contributions. The

next chapter reviews the idea of object encoding, explaining why type-safe encodings are

so important and challenging. Chapters 3 through 5 are the core theory, expanded from

our journal article, “Type-Preserving Compilation of Featherweight Java” (League, Shao,

and Trifonov 2002b). We formulate models of the source and intermediate languages,

give a formal translation between them, and prove several important properties.

The remaining chapters supplement the theory with discussions of various practical

issues. Chapter 6 addresses some of the Java features that are not covered in the formal

presentation. Chapter 7 is an expansion of a paper called “Functional Java Bytecode”

(League, Trifonov, and Shao 2001a) describing the λJVM intermediate language and the

niche it was designed to occupy. Chapter 8 summarizes the implementation of the

prototype compiler. Finally, chapter 9 concludes with some exciting ideas for future

research.

Comparisons to previous work are made throughout the dissertation. Other object

encodings are discussed in sections 2.3 and 5.9. Alternative representations of Java

bytecode are mentioned in 7.5. Certified implementations of object-oriented languages

are covered in sections 2.5 and 8.2.

Chapter 2

Object Encoding

Booch (1994, page 38) gives the following definition of object-oriented programming:

[It] is a method of implementation in which programs are organized as coop-

erative collections of objects, each of which represents an instance of some

class, and whose classes are all members of a hierarchy of classes united via

inheritance relationships.

His book describes techniques for analyzing requirements and designing software using

classes of objects as the unifying model.

I do not make any particular claims about the merits of object-oriented program-

ming, analysis, or design. It is clear, however, that objects represent a different way

of structuring software, as compared to functional or procedural programming. Fur-

thermore, there is no denying that object-oriented technology remains popular, from

the new safe languages Java (Gosling et al. 2000) and C# (Liberty 2002) to scripting lan-

guages Python (Lutz 2001) and Ruby (Thomas and Hunt 2000) to that old standby, C++

(Stroustrup 1997). Therefore, for certifying compiler technology to be viable, we must

find an efficient way to support object-oriented programming languages.

This chapter is about the art and science of object encoding—representing object-

oriented features in languages (or models of computation) that lack them. I will keep

9

10 CHAPTER 2. OBJECT ENCODING

the formal semantics and type theory to a minimum (there is plenty of space for that

in subsequent chapters), so that any student of computer science can appreciate the

significance of this work.

2.1 Why we need encodings

The von Neumann architecture—the model on which virtually all electronic computers

are based—has no notion of methods, objects, classes, or inheritance. To implement

these features, we must express them using simple instructions that load and store

words in a sequential memory. This is not surprising; such is the job of a compiler for

any high-level programming language. Object-oriented features seem particularly high-

level because they naturally decompose into operations on records and functions—the

abstractions of procedural languages.

Consider the operation to invoke some method of an object. The definition that

opened this chapter emphasized classes and inheritance, but one other feature is widely

considered essential for object-oriented programming: dynamic (or late) binding of

methods. Booch (1994, page 116) distinguishes it this way:

Inheritance without polymorphism is possible, but it is certainly not very

useful. This is the situation in Ada, in which one can declare derived types,

but because the language is monomorphic, the actual operation being called

is always known at the time of compilation.

With dynamic binding, the operation is not known at compile time. Rather, the intuition

is that we send a message to the object to request some operation, but the object itself

chooses (usually by virtue of the class that created it) which method gets invoked.

Normally, the object includes some data structure for mapping messages to function

pointers. In the case of single inheritance class-based languages (such as Java and C#),

this data structure is just a simple record, traditionally called the virtual function table,

2.2. ENCODINGS MUST ENFORCE SAFETY 11

public static void example (Object x,Object y)
{ x.toString ()

// virtual method call expands to:
if (x == null) throw NullPointerException;
r1 = x.vtbl;
r2 = r1.toString;
call r2(x);

}

Figure 2.1: Expanding method invocation to low-level code

or vtable for short. The typical syntax (after C++) even suggests that method invocation

is some combination a record access and a function call: obj.meth (args).

Indeed, methods are just standard functions with an implicit self parameter (called

this in Java) referring to the current object. All instances of the same class share the

same vtable. Subclasses append new methods and fields to the vtable and object layout,

but do not rearrange the members of super classes. This way, we always know where

to find a field in an object, even if the object was created by some unknown subclass.

To invoke a virtual method, we simply load the vtable pointer from the object, load

the function pointer from the vtable, and then call the function, providing the object

itself as the now-explicit self argument. Figure 2.1 shows Java method invocation ex-

panded into lower-level code. The identifiers r1 and r2 denote registers.

2.2 Encodings must enforce safety

A certifying compiler must justify that the indirect call to r2 is safe; this is not at all

obvious. If x is an instance of a subclass of Object, then the method in r2 might require

of x additional fields and methods that are unknown to the caller. Self-application

works thanks to a rather subtle invariant. One way to upset that invariant is to select a

method from one object and pass it another object as the self argument. For example,

replace just the last instruction above with call r2(y).

12 CHAPTER 2. OBJECT ENCODING

class Ref extends Object
{ public byte[] vec;

public String toString ()
{ vec[13] = 42;

return "Ha ha!";
}

}

class Int extends Object
{ public int n;
}

public static void deviant (Object x,Object y)
{ // as low-level code

if (x == null) throw NullPointerException;
r1 = x.vtbl; // fetch method from x
r2 = r1.toString;
call r2(y); // pass y as self argument

}

deviant(new Ref (. . .),new Int (. . .));

Figure 2.2: Using an arbitrary integer as a pointer

This might seem harmless; after all, both x and y are instances of Object. It is un-

sound, however, and any unsoundness can be exploited. Figure 2.2 contains a complete

example that exploits such code to use an arbitrary integer as the address of a byte

vector. Once we can do that, all bets are off.

Class Ref extends Object with a byte vector and overrides toString to write to the

byte vector before returning an innocuous string. Class Int extends Object with just one

integer field. Importantly, in the representations of Ref and Int objects, the byte vector

and the integer occupy the same slot.

The deviant method uses low-level code to fetch the toString method from x, and

pass it y as the self argument this. Finally, the main program calls deviant with some

Ref object as x and some Int as y . What happens? The call in deviant will jump to

Ref.toString with this bound to the Int object. That method attempts to write to the

2.3. CLASSIC ENCODINGS 13

byte vector, but finds an integer there instead. This is not type safe!

Of course, it is unlikely that a legitimate compiler would ever generate such code—

but that is no consolation. Remember, we do not trust the producer; perhaps he is

writing malicious code in assembly language. If so, we must detect it.

2.3 Classic encodings

How can a type system ensure that low-level operations properly encode objects, so

that erroneous or malicious code is detected? There is significant precedent for mod-

eling objects in typed λ-calculi (Barendregt 1992). Bruce, Cardelli, and Pierce (1999)

summarize several such results in a uniform framework.

We briefly demonstrate how one of these encodings properly rejects the code in

figure 2.2. Pierce and Turner (1994) represent objects in F≤ω (a higher-order typed λ-

calculus with subtyping) using an existential type to hide the private representations of

objects. That is, instances of class Object have type

∃s::Type. {state : s, vtbl : {toString : s→String}}

where s is a type variable that masks the types of fields. The underlying representation

is a pair containing the values of the fields (i.e., the state of the object) and the method

table (vtbl). Each method expects to receive the object state (not the whole object) as its

first argument.

The method invocation sequence for this encoding starts with an open instruction

to eliminate the existential type:

〈s1, r1〉 = open x;

r2 = r1.vtbl.toString;

call r2(r1.state);

14 CHAPTER 2. OBJECT ENCODING

The open introduces a fresh type variable s1 to represent the abstract type locally. Then,

r2 gets a function of type s1→String, and r1.state is a value of type s1, so the call is safe.

What happens if, as in figure 2.2, we try to pass y ’s state to x’s method? First, we must

open y , yielding a record r3 and a fresh type variable s2.

〈s1, r1〉 = open x;

〈s2, r3〉 = open y ;

r2 = r1.vtbl.toString;

call r2(r3.state); // type error

Since r3.state has type s2, attempting to pass it to r2 is a type error.

These object encodings detect low-level errors by embedding objects, classes, and

methods in foundational calculi that are known to be sound. They are successful models

of these features, and helpful for comparing the expressive power of object calculi with

λ-calculi. They are not, unfortunately, directly applicable for compiling modern object-

oriented languages. First, in the early object models (Abadi and Cardelli 1996) classes

and method overriding were afterthoughts, not essential features as in Java. Fisher and

Mitchell (1998) made the relationship clear by modeling classes as extensible objects,

but that does not bring us any closer to a von Neumann machine.

Second, the classic encodings have various inefficiencies, making them unsuitable

for use in compilation. For example, the aforementioned existential encoding of Pierce

and Turner (1994) seems reasonably efficient until we examine inheritance (section 6 in

their paper). To permit subclasses to extend the object representation, they introduce

function arguments get and put to coerce between the final representation and the

current representation at some level in the class hierarchy. Methods must call these

coercion functions before reading or writing the internal representation. Moreover, the

coercions grow with the depth of the hierarchy. Compiler analyses may alleviate some

2.4. EFFICIENT ENCODING 15

of the penalty, but removing the coercions entirely would require analyzing the whole

program or duplicating the inherited code in each subclass.

The recursive bounded existential of Abadi, Cardelli, and Viswanathan (1996) has

a superfluous self pointer to dereference on method invocation. The simpler recursive

record encodings are not suitable for Java: Cardelli (1988) does not handle dynamic

binding; Fisher, Honsell, and Mitchell (1994) support dynamic binding, but selecting a

method and substituting the self argument remains an atomic operation.

2.4 Efficient encoding

The fundamental contribution of our work is a simple, efficient encoding that is suitable

for compilation of modern object-oriented languages such as Java. Unlike recursive

record encodings, it supports dynamic binding with low-level primitives. Unlike Abadi,

Cardelli, and Viswanathan (1996), it needs no extra pointers. Unlike Pierce and Turner

(1994), methods can be reused in subclasses with no overhead. Moreover, the ambient

type theory is quite simple; we do not need subtypes or bounded quantification.

The classic encodings all assumed that subsumption was necessary. This is what

allows an instance of a subclass (Hexagon) to be substituted wherever a super class

(Shape) is expected. This is certainly a desirable (and nearly universal) property in

object-oriented languages at the source level. For a compiler intermediate language, it

is acceptable to require explicit upward casts instead, as long as they cost nothing at

runtime. Type manipulations (such as the open in previous examples) guide the type

checker, but are erased before the code is run. Therefore, the implicit subsumption

in previous models can be replaced with explicit type manipulations. The details and

proofs about our encoding will be explained in the next three chapters.

Concurrently with our work, two other researchers developed encodings that seem

to have similar properties. Glew (2000a) translates a class-based object calculus using a

16 CHAPTER 2. OBJECT ENCODING

special kind of existential quantifier. Crary (1999) encodes the object calculus of Abadi

and Cardelli (1996) using an existential and an intersection type:

∃α::Type. α∧ {vtbl : {toString :α→String}, . . . }

In words, an object is both abstract (having type α) and a record containing a vtable

whose methods expect a self argument of type α. Chapter 5 ends with a detailed com-

parison of these three efficient encodings.

2.5 Another approach

Rather than encode object-oriented features in a lower-level type-safe language, some

systems try to guarantee safety using the abstractions of the source language directly.

Two years ago, Colby et al. (2000) of Cedilla Systems presented initial results about

Special J, a certifying compiler for Java. They described the design, defined some of

the predicates used in verification conditions, explained their approach to exceptional

control flow, and gave some experimental results. Their running example included a

loop, an array field, and an exception handler.

The Special J system uses predicate constructors to express proof obligations and

properties about the object layout and class hierarchy. For reference, we reprint some

of the key constructors from Colby et al. (2000) in figure 2.3 on the facing page. As a

simple demonstration, consider the rules to determine whether a field access is safe.

From the source program, we would derive (ifield C O T) for some class C , offsetO, and

type T . Suppose then that (type E (jinstof C)) for some E. With these and (nonnull E)

as pre-conditions, a particular rule in the system derives (type (add E O) (ptr T)). In

words, adding offset O to the object reference yields a pointer to a field of type T . Next,

using the axiom (size (ptr _) 4), another rule concludes (saferd4 (add E O)).

2.5. ANOTHER APPROACH 17

constructor meaning
jint, jfloat, … Java primitive types
(jinstof C) the type of an instance of class C (or some subclass)
(jvtbl C) type of the virtual function table of class C
(jimplof C S) type of a method from class C with signature S
(ptr T) type of a pointer to a value of type T
(add E O) denotes the addition of offset O to address E
(size T B) a value of type T occupies B bytes
(type E T) E denotes a value of type T
(jextends C D) encodes the subclass relationship
(vmethod C O S) class C ’s vtable contains a method with signature S at offset O
(ifield C O T) instances of class C have a field of type T at offset O
(nonnull E) E is not null
(saferd4 E) it is safe to read four bytes beginning at address E.

Figure 2.3: Predicate constructors in Special J

Due to limited space, Colby et al. (2000) did not address virtual method calls in their

paper. We contacted the authors to learn the details, particularly in the context of the

malicious code we gave in figure 2.2 on page 12. From the signature of the deviant

method, their certifier establish the argument types:

(type x (jinstof Object)) (type y (jinstof Object))

A rule in the system permits x and y to be treated also as read-only pointers to the

vtable of Object (since the vtable is at offset zero). After the assignment to r1,

(type r1 (jvtbl Object))

From the class definition, we know the offset Ots of the toString method:

(vmethod Object Ots ‘()String’)

The signature ‘()String’ means that the method takes no additional arguments and

18 CHAPTER 2. OBJECT ENCODING

returns a String. After the assignment to r2,

(type r2 (jimplof Object ‘()String’))

With this knowledge of the type of r2, the certifier determines that a call to r2 is safe as

long as the self argument has type (jinstof Object). Since both x and y have this type,

the malicious code in figure 2.2 is accepted. Necula (2001) confirmed that our example

exposed an unsoundness in the inference rules of Special J. The validity of the code

certification relies critically on the assumption that the inference rules are sound—they

are part of the trusted computing base. Colby et al. (2000) did not prove a soundness

theorem for their system.

Necula (2001) proposed a solution where the predicates jvtbl and jimplof mention

the identity of the object from which they came. Then, the virtual call is safe only if the

identity of the self argument matches that of the jimplof type. It is interesting to relate

this strategy to the object encodings discussed earlier in this chapter. We believe it

bears some resemblance to the encoding of Crary (1999). Since loading the virtual table

from x introduces a type containing the identity of x, it is as if we implicitly opened a

package to introduce some abstract type. The usual rules still permit fetching methods

from x (whose types also mention x). In addition, the revised rule governing the call

has us treat x as a value of the new abstract type. Similarly, the intersection type in

Crary’s encoding permits x to be treated both as abstract and as a table of methods

(that expect x as the self argument).

Of course, resemblance to a foundational encoding does not imply soundness. A

rigorous soundness proof for a real implementation like Special J is extremely difficult.

A more reasonable approach—the one we take in this dissertation—is to formulate a

model and prove soundness for a significant subset of the real system. Having no proof

at all is dangerous.

2.5. ANOTHER APPROACH 19

We expect that a soundness proof for Special J—even for a subset—will be complex,

for a couple of reasons. First, the Special J inference rules encode much of the semantics

of Java, giving meaning to features like inheritance and virtual methods. Therefore,

the soundness of Special J subsumes the soundness of Java itself. In contrast, the

calculi used for object encoding—including Mini JFlint from chapter 4—are not at all

Java-specific. Their soundness proofs are completely independent of the soundness of

whatever object-oriented languages they support.

Another potential difficulty is the difference in granularity between the predicate

constructors and the machine instructions they describe. Many predicates deal with

high-level abstractions such as classes and virtual methods. The machine model, on the

other hand, deals with code pointers and blocks of memory. The types of Mini JFlint,

in contrast, encode the requisite invariants with precisely the granularity at which the

code operates—that of functions and records.

Chapter 3

Source Language: Featherweight Java

Our goal is a type-preserving compiler that supports Java. To ensure that the techniques

we use in this effort are sound, it is critical to study them in the context of a formal

system. By working with an idealization of the actual compiler, we can develop precise

semantics, perspicuous translations, and rigorous proofs of important properties. A

compiler is nothing more than a translator from some source language into some target

language. We must therefore formally specify these two languages; such is the aim of

this and the next chapter.

The most important property we want to prove is that our compiler maps well-typed

programs in the source language (Java) to well-typed programs in the target language

(JFlint). To prove this, we need a formalization of Java with a notion of well-typed

programs. Specifically, we need a calculus with a type system, an operational semantics,

and a soundness proof.

Concurrently with the start of our work on this project, many researchers worked

on provably type-safe idealizations of Java (Drossopoulou and Eisenbach 1999; Syme

1999; Qian 1999). The ClassicJava language by Flatt, Krishnamurthi, and Felleisen

(1999) features classes, interfaces, fields with shadowing, dynamic method binding,

abstract methods, object creation, casts, and local variables. Although our techniques

21

22 CHAPTER 3. SOURCE LANGUAGE: FEATHERWEIGHT JAVA

CL ::= class C extends C′ { C1 f1; . . .Cn fn; K M1 . . .Mm }

K ::= C (C1 f1 . . .Cn fn) { super(f1 . . . fk); this.fk+1 = fk+1; . . . this.fn = fn; }

M ::= C m (C1 x1 . . .Cn xn) { return e; }

e ::= x | e.f | e.m (e1, . . . ,en) | new C (e1, . . . ,en) | (C) e

Figure 3.1: Abstract syntax of Featherweight Java

support all those features (League, Shao, and Trifonov 1999), the complex semantics of

ClassicJava caused difficulty in proving essential properties of our translation.

Featherweight Java (FJ) is a particularly small calculus by Igarashi, Pierce, and Wadler

(2001). Its semantics and soundness proof are easy to understand, yet it still features

classes, inheritance, immutable fields, dynamic method binding, simple object creation,

and dynamic casts. Most importantly, with FJ we can demonstrate the major techniques

of our translation in a reasonably clean and comprehensible manner. The rest of this

chapter formally defines FJ. We made a few minor adaptations to the typing rules; oth-

erwise, the presentation follows very closely that of Igarashi, Pierce, and Wadler.

3.1 Syntax

Figure 3.1 contains a BNF grammar for the abstract syntax of Featherweight Java. Key-

words are marked in bold face. Class declarations (CL) contain the names of the new

class and its super class, a sequence of field declarations, a constructor (K), and a se-

quence of method declarations (M). We use letters A through E to range over class names,

f and g to range over field names, m over method names, and x over formal parameter

names. There are five forms of expressions: variable references, field selection, method

invocation, object creation, and cast. A program (CT ,e) consists of a fixed class table

(CT) mapping class names to declarations, and a main program expression e.

There are no assignments, interfaces, super calls, exceptions, or access control in

FJ. Constructors are greatly simplified: there can be only one, and it must take all the

3.1. SYNTAX 23

class Pt extends Object
{ int x;

Pt (int x) {super (); this .x = x ; }
int getx () { return this .x ; }
Pt move(int dx) { return new Pt(this .x + dx); }
Pt bump() { return this .move (1); }
Pt max (Pt p) { return this .x > p.x ? this : p ; }

}

class SPt extends Pt
{ int s ;

SPt (int x , int s) { super(x); this . s = s ; }
int gets () { return this . s ; }
Pt move(int dx) { return new SPt (this .x + this . s * dx,

this . s); }
SPt zoom(int s) { return new SPt (this .x , this . s * s); }

}

Main program:
((SPt) (new Pt (2). max(new SPt (1,2). bump ()))). zoom(3).gets ()

Figure 3.2: Sample FJ program with integers, arithmetic, and conditional expressions

fields as arguments, in the same order that they are declared in the class hierarchy. FJ

permits recursive class dependencies with the full generality of Java. A class can refer

to the name and constructor of any other class, including its sub-classes. While this

does not complicate the name-based FJ semantics, it is one of the major challenges of

our translation.

Featherweight Java is Turing complete; it is easy to embed a λ-calculus in it. Nev-

ertheless, for demonstration purposes, we will usually augment it with integers, arith-

metic, and simple conditional expressions. Figure 3.2 contains a sample program that

demonstrates many of FJ’s features, including dynamic method binding and dynamic

cast. We will revisit this example in chapter 5. Although Featherweight Java is very

restricted, its syntax is precisely a subset of Java. That is, we can directly compile the

classes of figure 3.2 with javac. By adding the main program expression to a static main

method, we can run the program and verify that the result is 6.

24 CHAPTER 3. SOURCE LANGUAGE: FEATHERWEIGHT JAVA

fields(Object) = • (3.1)

CT(C) = class C extends B { C1 f1; . . .Cn fn; K . . . }
fields(B) = B1 g1 . . .Bm gm
fields(C) = B1 g1 . . .Bm gm,C1 f1 . . .Cn fn

(3.2)

CT(C) = class C extends B { . . .K M1 . . .Mn }
∃j : Mj = D m (D1 x1 . . .Dm xm) { return e; }
mtype(m,C) = D1 . . .Dm → D
mbody(m,C) = (x1 . . .xm,e)

(3.3)

CT(C) = class C extends B { . . .K M1 . . .Mn }
m not defined in M1 . . .Mn
mtype(m,B) = D1 . . .Dm → D
mbody(m,B) = (x1 . . .xm,e)
mtype(m,C) = D1 . . .Dm → D
mbody(m,C) = (x1 . . .xm,e)

(3.4)

Figure 3.3: Auxiliary functions for field and method lookup

3.2 Semantics

The semantics of Featherweight Java consists of a set of typing rules and a small-step

computation relation. To express both of these cleanly, a few auxiliary definitions are

in order. Figure 3.3 defines several relations that describe the inheritance of fields and

the dynamic lookup of methods. fields(C) returns the sequence of all the fields found

in objects of class C. The symbol ‘•’ represents the empty sequence—class Object has

no fields in FJ. Fields are assumed to have distinct names, so we need not worry about

shadowing.

The relation mtype(m,C) finds the type signature for method m in class C by search-

ing up the hierarchy. Type signatures have the form D1 . . .Dn → D0. mbody(m,C) is the

same, but returns the names of the formal parameters and the method body expres-

sion. These relations are defined inductively on the class hierarchy, but surprisingly,

3.2. SEMANTICS 25

C <: C (3.5)

CT(C) = class C extends B { . . . } B <: A
C <: A

(3.6)

Figure 3.4: Definition of the subtyping relation

fields(C) = D1 f1 . . .Dn fn
(new C (e1 . . .en)).fi −→ ei

(3.7)

mbody(m,C) = (x1 . . .xn,e0)
(new C (e1 . . .em)).m (d1 . . .dn) −→
[d1/x1, . . . ,dn/xn,new C (e1 . . .em)/this] e0

(3.8)

C <: D
(D) new C (e1 . . .en) −→ new C (e1 . . .en)

(3.9)

Figure 3.5: Computation rules

the base case is not Object. Rather, the base case is defined in rule (3.3) as the nearest

super class containing a declaration of method m. If m is not a method of class C, the

relations are undefined.

The subtype relation <: (figure 3.4) is the reflexive, transitive closure of the relation

defined by the super class declarations (class C extends B). Igarashi, Pierce, and Wadler

(2001) add an explicit rule for transitivity; this is unnecessary and would complicate

some lemmas in chapter 5.

With these auxiliary definitions, the dynamic semantics of FJ is easily specified; ‘−→’

is a small-step reduction relation between expressions. Figure 3.5 contains the most

important rules. Since fields are immutable, order of evaluation is unimportant and

unspecified. Objects are represented simply as new expressions with their field initial-

izers. The class name following the new keyword represents the dynamic class of the

26 CHAPTER 3. SOURCE LANGUAGE: FEATHERWEIGHT JAVA

e −→ e′

e.fi −→ e′.fi
(3.10)

e −→ e′

e.m (d1 . . .dn) −→ e′.m (d1 . . .dn)
(3.11)

ei −→ e′i
e.m (. . .ei . . .) −→ e.m (. . .e′i . . .)

(3.12)

ei −→ e′i
new C (. . .ei . . .) −→ new C (. . .e′i . . .)

(3.13)

e −→ e′

(C) e −→ (C) e′
(3.14)

Figure 3.6: Congruence rules

object—it does not change, even after a cast.

A field reference on an object (rule 3.7) reduces to the field initializer expression

corresponding to the selected field. To invoke a method on an object (rule 3.8), we first

find the method in the hierarchy, searching upward from the class (C) that created the

object. Then, we substitute the actual parameters for the formal parameters and the

object itself for this and continue executing the body of the method. Finally, a cast on

an object succeeds (rule 3.9) if the dynamic class (C) of the object is a subclass of the

requested class (D).

The congruence rules (figure 3.6) are necessary but uninteresting. They enable com-

putation within expressions that are not themselves redexes. Variables are irreducible,

so none of the reduction rules apply. The computation and congruence rules comprise

the complete operational semantics of Featherweight Java.

The static semantics is mostly covered by the typing rules for expressions (figure 3.7

on the facing page). The judgment Γ ` e ∈ C means that expression e has type C in the

3.2. SEMANTICS 27

Γ ` x ∈ Γ(x) (3.15)

Γ ` e ∈ C fields(C) = D1 f1 . . .Dn fnΓ ` e.fi ∈ Di
(3.16)

Γ ` e ∈ C mtype(m,C) = D1 . . .Dn → DΓ ` ei ∈ Ci Ci <: Di (∀i ∈ {1 . . . n})Γ ` e.m (e1 . . .en) ∈ D
(3.17)

fields(C) = D1 f1 . . .Dn fnΓ ` ei ∈ Ci Ci <: Di (∀i ∈ {1 . . . n})Γ ` new C (e1 . . .en) ∈ C
(3.18)

Γ ` e ∈ D D <: CΓ ` (C) e ∈ C
(3.19)

Γ ` e ∈ D C <: D C 6= DΓ ` (C) e ∈ C
(3.20)

Γ ` e ∈ D C </: D D </: CΓ ` (C) e ∈ C
(3.21)

Figure 3.7: Typing rules for expressions

context of Γ . The environment Γ maps free variables xi to their types Di. Since FJ has

no local variables or nested methods, the context is either empty at the top level or it

contains bindings for the formal parameters of just one method.

The type of variable reference (rule 3.15) comes directly from the environment. The

type of a selected field (rule 3.16) is retrieved from the class hierarchy. To check a

method invocation (rule 3.17), we look up the type in the hierarchy above the static

class (C) of the receiver. All of the argument expressions must have types compatible

with the method signature. Note that this rule assumes that method signatures are

28 CHAPTER 3. SOURCE LANGUAGE: FEATHERWEIGHT JAVA

K = C (B1 g1 . . .Bn gn,C1 f1 . . .Cm fm)
{super(g1 . . .gn);
this.f1 = f1; . . . this.fm = fm;}

fields(B) = B1 g1 . . .Bn gn
Mi ok in C ∀i ∈ {1 . . . k}
class C extends B { C1 f1; . . .Cm fm; K M1 . . .Mk } ok

(3.22)

x1 : D1, . . . ,xn : Dn, this : C ` e ∈ E E <: D
CT(C) = class C extends B { . . . }
override(m,B,D1 . . .Dn → D)
D m (D1 x1 . . .Dn xn) { return e; } ok in C

(3.23)

mtype(m,B) = C1 . . .Cn → C0

override(m,B,C1 . . .Cn → C0)
(3.24)

¬∃T such that mtype(m,B) = T
override(m,B,C1 . . .Cn → C0)

(3.25)

Figure 3.8: Well-typed classes and methods

invariant up the hierarchy—we will check that property elsewhere.

The three different rules for cast expressions deserve some explanation. The first

(rule 3.19) is an upward cast, and is harmless. The second (3.20) is a downward or

dynamic cast, which might fail at runtime. Of course, if it succeeds then the expression

has the requested type C. Finally, rule 3.21 covers the case where the static class and the

requested class are incomparable. Igarashi, Pierce, and Wadler (2001) call this a stupid

cast; such a construct is not valid in top-level Java programs, but may arise during

the course of reduction and must be assigned a type. ClassicJava was unsound as

published due to the omission of stupid casts. Please refer to Igarashi, Pierce, and

Wadler (2001) for further explanation.

The typing rules for expressions are not the whole story. Several additional con-

straints on classes and methods must be enforced; they are covered in figure 3.8. The

override relation (rules 3.24 and 3.25) certifies that method signatures are invariant

3.2. SEMANTICS 29

up the hierarchy. In other words, overriding cannot change the type of a method—FJ

does not support overloading. Rule 3.23 ensures that the type of the method body is

compatible with the signature. Rule 3.22 enforces the rigid format of the constructor:

it must pass the initializers for inherited fields along to the super class constructor,

and then initialize its own fields, in order. Arbitrary expressions are banned from the

constructor.

The judgments on well-typed classes, methods, and expressions are all decidable,

and sound with respect to the operational semantics. Igarashi, Pierce, and Wadler (2001)

prove the standard pair of preservation and progress theorems. Please see their article

for the detailed proofs.

Chapter 4

Intermediate Language: Mini JFlint

Next, we need a sound formalization of an intermediate language. Building on a typed

λ-calculus (Barendregt 1992) is an appropriate strategy for several reasons. First, such

languages have been successful in type-based compilers for Standard ML (Shao and

Appel 1995; Morrisett et al. 1996). Perhaps this is not surprising, since untyped λ-calculi

had been used in functional language compilers for many years. Second, Morrisett

et al. (1999b) developed techniques to compile System F all the way to typed assembly

language.

Still, it was not clear when we started this work that a typed λ-calculus would be suit-

able for compiling Java. There was significant precedent for encoding object-oriented

features in variants of Fω (Bruce, Cardelli, and Pierce 1999; Hofmann and Pierce 1994;

Abadi, Cardelli, and Viswanathan 1996), but not in the context of compilers.

In the end, using Fωas a starting point was clearly a good choice. Extended with the

right primitives, and expressed in either continuation-passing style (Appel 1992) or A-

normal form (Flanagan et al. 1993), a typed λ-calculus does indeed resemble a low-level

compiler intermediate language.

31

32 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

Kinds κ ::= Type | RL | κ⇒κ′ | {(l::κ)∗}
Types τ ::= α | λα::κ. τ | τ τ′ | {(l=τ)∗} | τ·l | τ→τ′ | AbsL | l :τ ;τ′

| {τ} | 〈[τ]〉 | µα::κ. τ | ∀α::κ. τ | ∃α::κ. τ

Selectors s ::= ◦ | s·l
Terms e ::= x | λx :τ. e | e e′ | Λα::κ. e | e [τ] | injτl e

| case e of (l x ⇒ e)∗ else e | {(l= e)∗} | e.l | fix [τ] e
| 〈α::κ=τ, e :τ′〉 | open e as 〈α::κ, x :τ〉 in e′

| fold e as µα::κ. τ at λγ::κ. s[γ]
| unfold e as µα::κ. τ at λγ::κ. s[γ]
| abort [τ]

Figure 4.1: Abstract syntax of Mini JFlint

l1 :τ1, . . . , ln :τn ≡ l1 :τ1 ; . . . ln :τn ; Abs{l1...ln}

1 ≡ {Abs∅}
maybe ≡ λα::Type. 〈[some :α,none : 1]〉
some ≡ Λα::Type. λx :α. injmaybe α

some x

none ≡ Λα::Type. injmaybe α
none {}

let x :τ = e in e′ ≡ (λx :τ. e′) e

Figure 4.2: Derived forms (syntactic sugar)

4.1 Syntax

Figure 4.1 contains the BNF grammar for the abstract syntax of Mini JFlint. It is based on

the higher-order polymorphic λ-calculus Fω, described independently by Girard (1972)

and Reynolds (1974). Like Fω, Mini JFlint is an explicitly-typed calculus, with annota-

tions on formal parameters and terms for instantiating polymorphic functions. In addi-

tion, we include several well-understood features such as existential types (Mitchell and

Plotkin 1988), row polymorphism (Rémy 1993), records, sum types, and recursive types.

Several convenient syntactic forms are derived in figure 4.2. As with FJ, we augment the

language with integers and arithmetic in examples.

For compiler writers, the key features to notice are in the category of terms. λx :τ. e

4.1. SYNTAX 33

is an anonymous function with formal parameter x of type τ and body e. Functions

and other values are bound to lexically scoped variables using the let derived form. A

function call is expressed as e e′, a juxtaposition of the function expression and its

actual parameter.

Mini JFlint supports ordered, labeled records, initialized on creation: {l1= e1, l2= e2}.

As in C, the memory layout is determined by the type, so that field offsets are known

at compile time. The notation e.l selects field l from record e. Recursive records are

expressed using a lazy fixed point operator fix [τ] e where τ is a sequence of record

labels and their types, and e is a function from records to records. The fixed point is

unrolled as needed to satisfy field selection expressions. In an imperative language, it

would be implemented using assignment to create a recursive data structure.

The term injτl e tags the value of e with the label l, producing a value of type τ .

This implements algebraic data types as in functional languages, and is similar to the

tagged union idiom in C. The case expression checks the tag and provides access to

the corresponding tagged value. The default expression else e permits the cases to be

non-exhaustive.

The term abort [τ] aborts computation, but is otherwise considered to have type τ .

We use this to model a failed dynamic cast. In the operational semantics, evaluating

abort [τ] produces an infinite loop, so that “progress” is preserved. In an actual system,

abort would correspond to throwing an exception.

Language mavens are probably more interested in the typing hierarchy. As in Fω,

the type language is itself a simply-typed λ-calculus. So-called kinds classify types.

Specifically, Type is the base kind of those types that, in turn, classify terms. The arrow

kind κ⇒κ′ classifies type functions. A polymorphic array constructor, for example,

would have kind Type⇒Type. The rules for forming kinds are in figure 4.3 on the

following page.

The type function λα::κ. τ introduces the arrow kind, and τ τ′ eliminates it. That

34 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

`Type kind (4.1)

`RL kind (4.2)

`κ kind `κ′ kind
`κ⇒κ′ kind

(4.3)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})
`κi kind (∀i ∈ {1 . . . n})
`{l1 ::κ1 . . . ln ::κn} kind

(4.4)

Figure 4.3: Formation rules for kinds

is, (λα::κ. τ) τ′ is well-formed if τ′ has kind κ. It is equivalent to τ[α := τ′], which

denotes the capture-avoiding substitution of τ′ for α in τ . Labeled tuples of types are

enclosed in braces {l=τ . . .} and have tuple kinds {τ ::κ . . .}. The mid-dot syntax τ·l

denotes selection of a type from a tuple.

The single arrow τ→τ′ is the type of a function expecting an argument of type τ and

returning a result of type τ′. Our implementation supports multi-argument functions,

but for the purposes of formal presentation, we simulate them using curried arguments

(int→int→int). Polymorphic functions are introduced by the capital lambda (Λα::κ. e)

which binds α in e. This term has type ∀α::κ. τ , where e has type τ and α may appear

in τ . Thus, the polymorphic identity function is written as id = Λα::Type. λx::α.x and

has type ∀α::Type. α→α. An application of id to the integer 3 is written id [int] 3. The

definitions maybe, some, and none in figure 4.2 are good examples of higher-order

types and polymorphism.

A row is essentially a suffix (or tail) of a record type. Intuitively, rows and types are

distinct syntactic categories, but it is convenient to collapse them. Otherwise, we would

need to distinguish their quantifiers. Rémy (1993) introduced a kind RL of rows where

4.1. SYNTAX 35

` ◦ kind env (4.5)

`Φ kind env `κ kind
`Φ, α ::κ kind env

(4.6)

Φ ` ◦ type env (4.7)

Φ ` ∆ type env Φ ` τ :: TypeΦ ` ∆, x :τ type env
(4.8)

Figure 4.4: Formation rules for environments

L is the set of labels banned from the row. AbsL is an empty row of kind RL, and l :τ ;τ′

prepends a field with label l and type τ onto the row τ′. The row formation rules (4.14

and 4.15; see figure 4.5 on page 36) prohibit duplicate labels: a type variable α of kind

R{m} cannot be instantiated with a row in which the label m is already bound. Braces

{·} denote the type constructor for records; it lifts a complete row type (of kind R∅) to

kind Type. The row syntax is reused within triangle brackets 〈[·]〉 to denote sum types.

Record terms are written as a sequence of bindings in braces: {l1= e, l2= e}. Permu-

tations of rows are not considered equivalent—the labels are used only for readability.

This means that record selection e.l can be compiled using offsets that are known at

compile-time. We sometimes use commas and omit AbsL when specifying complete

rows (see the derived forms in figure 4.2). We let 1 (read ‘unit’) denote the empty record

type.

Row kinds can be used to encode functions that are polymorphic over the tail of a

record argument. For example, the function Λρ::R{l}. λx : {l : string ;ρ}.print x.l can be

instantiated and applied to any record which contains a string l as its first field.

Existential types (∃α::κ. τ) support abstraction by hiding a witness type (Mitchell

36 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

`Φ kind env Φ(α) = κΦ ` α :: κ (4.9)

Φ, α ::κ ` τ :: κ′Φ ` λα::κ. τ :: κ⇒κ′ (4.10)

Φ ` τ1 :: κ′⇒κ Φ ` τ2 :: κ′Φ ` τ1 τ2 :: κ (4.11)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})Φ ` τi :: κi (∀i ∈ {1 . . . n})Φ ` {l1=τ1 . . . ln=τn} :: {l1 ::κ1 . . . ln ::κn}
(4.12)

Φ ` τ :: {l1 ::κ1 . . . ln ::κn}Φ ` τ·li :: κi
(4.13)

`Φ kind envΦ ` AbsL :: RL
(4.14)

Φ ` τ :: Type Φ ` τ′ :: RL∪{l}Φ ` l :τ ;τ′ :: RL−{l}
(4.15)

Figure 4.5: Type formation rules

and Plotkin 1988). They are introduced at the term level by a package 〈α::κ=τ, e :τ′〉,

where τ is the witness type (of kind κ) and e has type τ′[α := τ]. The existential is

eliminated (within a restricted scope) by open; see rules 4.26 and 4.27 in figure 4.7 on

page 39.

The following example demonstrates the syntax for creating and opening existential

packages. We will package some value with a function that expects a value of the same

4.1. SYNTAX 37

Φ ` τ1 :: Type Φ ` τ2 :: TypeΦ ` τ1→τ2 :: Type
(4.16)

Φ ` τ :: R∅Φ ` {τ} :: Type
(4.17)

Φ ` τ :: R∅Φ ` 〈[τ]〉 :: Type
(4.18)

Φ, α ::κ ` τ :: κΦ ` µα::κ. τ :: κ (4.19)

Φ, α ::κ ` τ :: TypeΦ ` ∀α::κ. τ :: Type
(4.20)

Φ, α ::κ ` τ :: TypeΦ ` ∃α::κ. τ :: Type
(4.21)

Figure 4.6: Type formation rules, continued

type. Then we will hide that type from outsiders.

let x1 : (∃α::Type. {z :α, f :α→string})=

〈β::Type= int, {z=42, f = int2string} : {z :β, f :β→string}〉

in let x2 : (∃α::Type. {z :α, f :α→string})=

〈γ::Type= real, {z=3.1415, f = real2string} : {z :γ, f :γ→string}〉

in . . .

Now, the packages x1 and x2 have the same (existential) type, even though the values

inside them have different types (int and real). We used β and γ in this example to

emphasize the scopes of type variables bound in each existential package. Here is a

38 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

function that will accept x1, x2, or any similar existentially-typed value.

λy : (∃α::Type. {z :α, f :α→string}).

open y as 〈δ::Type, g : {z :δ, f :δ→string}〉

in g.f g.z

Because we packaged a method with a private value, this simple example even has the

flavor of object-oriented programming, although further apparatus is needed to support

dynamic binding.

Recursive types are mediated by explicit fold and unfold terms. These so-called

iso-recursive types—a term first used by Crary, Harper, and Puri (1999)—simplify type

checking, but are less flexible than equi-recursive types unless the calculus is equipped

with a definedness logic for coercions (Abadi and Fiore 1996). Since we use recur-

sive types at higher kinds, the syntax for folding and unfolding them deserves some

explanation. Suppose we wish to encode the following mutually recursive type abbrevi-

ations:

type even =maybe {hd : int, tl : odd}

type odd = {hd : int, tl : even}

The solution is expressed as the fixed point over a tuple:

t = µα::{even :: Type, odd :: Type}.

{even=maybe {hd : int, tl :α·odd},

odd={hd : int, tl :α·even}}

Now, the two recursive types are expressed as t·even and t·odd. There are, however, no

type equivalence rules for reducing t·even; a term having this type must first be coerced

4.1. SYNTAX 39

Φ ` ∆ type env ∆(x) = τΦ;∆ ` x :τ (4.22)

Φ;∆ ` e :τ Φ ` τ = τ′ :: TypeΦ;∆ ` e :τ′ (4.23)

Φ ` τ :: Type Φ;∆, x :τ ` e :τ′Φ;∆ ` (λx :τ. e) :τ→τ′ (4.24)

Φ;∆ ` e1 :τ′→τ Φ;∆ ` e2 :τ′Φ;∆ ` e1 e2 :τ (4.25)

Φ, α ::κ ` τ :: Type Φ ` τ′ :: κΦ;∆ ` e :τ[α := τ′]Φ;∆ ` 〈α::κ=τ′, e :τ〉 :∃α::κ. τ
(4.26)

Φ;∆ ` e :∃α::κ. τ Φ ` τ′ :: TypeΦ, α ::κ;∆, x :τ ` e′ :τ′ α ∉ dom(Φ)Φ;∆ ` open e as 〈α::κ, x :τ〉 in e′ :τ′
(4.27)

Figure 4.7: Term formation rules

to a type in which t is unfolded. We allow unfolding of recursive types within a tuple

by specifying a selector after the at keyword. Selectors are syntactically restricted to

a (possibly empty) sequence of labeled selections from a tuple. The syntax λγ::κ. s[γ]

allows identity (λγ::κ. γ), one selection (λγ::κ. γ·l1), two selections (λγ::κ. γ·l1·l2), and

so on. The formation rules (4.33 and 4.34—see figure 4.8 on page 41) further restrict the

selectors to have a result of kind Type. Thus, if e has type t·odd, then the expression

unfold e as t at λγ::{even :: Type, odd :: Type}. γ·odd

has type {hd : int, tl : t·even}. For recursive types of kind Type, the only allowed selector

is identity, so we omit it. We sometimes also omit the as annotation where it can be

40 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

readily inferred.

4.2 Semantics

The semantics of Mini JFlint consists of several kinds of static judgments, plus a small-

step operational semantics. In describing the syntax, we already referred to several of

the typing rules; now we will introduce them properly. Figure 4.3 on page 34 defines

the judgment `κ kind for well-formed kinds. The rules are quite simple; they ensure

only that tuple kinds have distinct labels.

Since both types and terms have free variables, we need environments for each. We

use Φ for the kind environment (mapping type variables to their kinds) and ∆ for the

type environment (mapping term variables to their types). The judgments defined in

figure 4.4 ensure that both sorts of environments are well-formed.

The judgment Φ ` τ :: κ states that, in the context of Φ, the type τ has kind κ.

Any free variables in τ must be in the domain of the environment Φ. The rules for this

judgment are in figures 4.5 and 4.6. They are all quite standard, but the previously

noted rules for forming rows and records are the most interesting. Because there are

tuples and functions at the type level, we need a notion of equivalence beyond syntactic

congruence. The equality relation on types Φ ` τ1 = τ2 :: κ is defined in figures 4.9 on

page 42 and 4.10 on page 43.

The typing rules for the term language are in figures 4.7 and 4.8. The judgment

Φ;∆ ` e :τ means that expression e has type τ , assuming that any free variables are in

the domain of ∆. The kind environment Φ is needed because some terms introduce new

type variables. Most of the rules are standard, but several warrant further explanation.

Rule 4.23 allows the substitution of an equivalent type anywhere in a derivation; it

is the only typing rule that is not syntax-directed. To ensure that the term-level fixed

point is used only for constructing records, the type annotation in fix [τ] e is really a

4.2. SEMANTICS 41

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})Φ;∆ ` ei :τi (∀i ∈ {1 . . . n})Φ;∆ ` {l1= e1 . . . ln= en} : {l1 :τ1 . . . ln :τn}
(4.28)

Φ;∆ ` e : {l1 :τ1 ; . . . ln :τn ;τ}Φ;∆ ` e.li :τi
(4.29)

Φ;∆ ` e : {τ}→{τ} Φ ` τ :: R∅Φ;∆ ` fix [τ] e : {τ} (4.30)

Φ ` 〈[l1 :τ1 ; . . . ln :τn ;τ]〉 :: Type Φ;∆ ` e :τiΦ;∆ ` inj〈[l1 :τ1 ; ...ln :τn ;τ]〉
li e : 〈[l1 :τ1 ; . . . ln :τn ;τ]〉 (4.31)

l′j = l′j′ ⇒ j = j′ (∀j, j′ ∈ {1 . . .m})Φ;∆ ` e : 〈[l1 :τ1 ; . . . ln :τn ;τ]〉 Φ;∆ ` e′ :τ′
∃i ∈ {1 . . . n} : li = l′j and Φ;∆, xj :τi ` ej :τ′ (∀j ∈ {1 . . .m})Φ;∆ ` case e of (l′j xj ⇒ ej)j∈{1...m} else e′ :τ′

(4.32)

Φ, α ::κ ` τ :: κ Φ ` τs :: κ⇒Type Φ;∆ ` e :τs (τ[α := µα::κ. τ])Φ;∆ ` fold e as µα::κ. τ at τs :τs (µα::κ. τ) (4.33)

Φ, α ::κ ` τ :: κ Φ ` τs :: κ⇒Type Φ;∆ ` e :τs (µα::κ. τ)Φ;∆ `unfold e as µα::κ. τ at τs :τs (τ[α := µα::κ. τ]) (4.34)

Φ, α ::κ;∆ ` e :τ Φ ` ∆ type envΦ;∆ ` (Λα::κ. e) :∀α::κ. τ (4.35)

Φ;∆ ` e :∀α::κ. τ Φ ` τ′ :: κΦ;∆ ` e [τ′] :τ[α := τ′] (4.36)

Φ ` τ :: Type Φ ` ∆ type envΦ;∆ ` abort [τ] :τ (4.37)

Figure 4.8: Term formation rules, continued

42 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

Φ ` τ1 :: κ1 Φ, α ::κ1 ` τ2 :: κ2Φ ` (λα::κ1. τ2) τ1 = τ2[α := τ1] :: κ2
(4.38)

Φ ` τ :: κ⇒κ′ α ∉ dom(Φ)Φ ` λα::κ. τ α = τ :: κ⇒κ′ (4.39)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})Φ ` τi :: κi (∀i ∈ {1 . . . n})Φ ` {l1=τ1 . . . ln=τn}·li = τi :: κi
(4.40)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})Φ ` τ :: {l1 ::κ1 . . . ln ::κn}Φ ` {l1=τ·l1 . . . ln=τ·ln} = τ :: {l1 ::κ1 . . . ln ::κn}
(4.41)

Φ ` τ :: κΦ ` τ = τ :: κ (4.42)

Φ ` τ1 = τ2 :: κΦ ` τ2 = τ1 :: κ (4.43)

Φ ` τ1 = τ2 :: κ Φ ` τ2 = τ3 :: κΦ ` τ1 = τ3 :: κ (4.44)

Figure 4.9: Type equivalence rules

row; see rule 4.30.

The rule for case expressions (4.32) ensures that the listed labels are all disjoint and

members of the sum type being eliminated. The labeled cases need not be exhaustive; we

use the else clause in the implementation of dynamic cast and class linking in chapter 5.

The operational semantics are defined in figures 4.11 on page 45 and 4.12 on page 46.

The grammar for values v defines a subset of the terms that are irreducible; these

include abstractions, records of values, tagged values, and packed or folded values.

There is just one dynamic judgment: e ; e′ means that term e reduces to term e′ in

4.2. SEMANTICS 43

Φ, α ::κ ` τ1 = τ2 :: κ′Φ ` λα::κ. τ1 = λα::κ. τ2 :: κ⇒κ′ (4.45)

Φ ` τ1 = τ′1 :: κ′⇒κ Φ ` τ2 = τ′2 :: κ′Φ ` τ1 τ2 = τ′1 τ′2 :: κ (4.46)

li = lj ⇒ i = j (∀i, j ∈ {1 . . . n})Φ ` τi = τ′i :: κi (∀i ∈ {1 . . . n})Φ `{l1=τ1 . . . ln=τn} = {l1=τ′1 . . . ln=τ′n}
:: {l1 ::κ1 . . . ln ::κn}

(4.47)

Φ ` τ = τ′ :: {l1 ::κ1 . . . ln ::κn}Φ ` τ·li = τ′·li :: κi
(4.48)

Φ ` τ1 = τ′1 :: Type Φ ` τ2 = τ′2 :: TypeΦ ` τ1→τ2 = τ′1→τ′2 :: Type
(4.49)

Φ ` τ1 = τ′1 :: Type Φ ` τ2 = τ′2 :: RL∪{l}Φ ` l :τ1 ;τ2 = l :τ′1 ;τ′2 :: RL−{l}
(4.50)

Φ ` τ = τ′ :: R∅Φ ` {τ} = {τ′} :: Type
(4.51)

Φ ` τ = τ′ :: R∅Φ ` 〈[τ]〉 = 〈[τ′]〉 :: Type
(4.52)

Φ, α ::κ ` τ1 = τ2 :: κΦ ` µα::κ. τ1 = µα::κ. τ2 :: κ (4.53)

Φ, α ::κ ` τ1 = τ2 :: TypeΦ ` ∀α::κ. τ1 = ∀α::κ. τ2 :: Type
(4.54)

Φ, α ::κ ` τ1 = τ2 :: TypeΦ ` ∃α::κ. τ1 = ∃α::κ. τ2 :: Type
(4.55)

Figure 4.10: Type equivalence rules, continued

44 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

one step. All the interesting reduction rules are in figure 4.11.

Surprisingly, the recursive record fixed point (fix [τ] e) is treated as a value. It is

unrolled only when it is the subject of a field selection; see rule 4.58. The abort primitive

is modeled as an infinite loop, as explained previously.

4.3 Properties

This formalization of our intermediate language enjoys several essential properties.

First, the static typing judgments are decidable; this is proved with the aid of the fol-

lowing lemmas.

Lemma 1 (Normalization) Type reductions are strongly normalizing.

Proof sketch The type equivalence judgments can be read left-to-right as reductions. To

demonstrate that these reductions are strongly normalizing, we view the type language

as a simply-typed λ-calculus itself, extended with records (tuples), lists with labeled

elements (rows), a base type (Type) and several constants (→, { · }, 〈[·]〉). The binding

operators (µ, ∀, ∃) are also constants, since they are neither introduced nor eliminated

by any reduction rule. Standard proofs for strong normalization of the simply-typed

λ-calculus—by Goguen (1995), for example—can be adapted to this type language. 2

Lemma 2 (Confluence) Type reductions are confluent.

Proof sketch As above, we can adapt a standard proof for confluence of the simply-

typed λ-calculus. 2

Theorem 1 (Decidability) All static judgments in the previous section are decidable.

Proof Judgments for the formation of kinds, kind environments, types, and type envi-

ronments are all syntax-directed and trivially decidable.

4.3. PROPERTIES 45

Values v ::= λx :τ. e | {(l=v)∗} | fix [τ] e | injτl v | Λα::κ. e
| 〈α::κ=τ, v :τ′〉 | fold v as µα::κ. τ at λγ::κ. s[γ]

(λx :τ. e) v ; e[x := v] (4.56)

({l1=v1 . . . ln=vn}).li ; vi
(4.57)

(fix [τ] e).l; (e (fix [τ] e)).l (4.58)

li = l′k
case inj〈[l1 :τ1 ; ...ln :τn ;τ]〉

li v of

(l′j xj ⇒ ej)j∈{1...m} else e′

; ek[xk := v]

(4.59)

li ≠ l′k (∀k ∈ {1 . . .m})
case inj〈[l1 :τ1 ; ...ln :τn ;τ]〉

li v of

(l′j xj ⇒ ej)j∈{1...m} else e′

; e′

(4.60)

unfold (fold v as τ at τs) as τ at τs ; v (4.61)

(Λα::κ. e) [τ]; e[α := τ] (4.62)

open 〈α::κ=τ′, v :τ〉 as 〈α::κ, x :τ〉 in e′

; e′[α := τ′][x := v]
(4.63)

abort [τ]; abort [τ] (4.64)

Figure 4.11: Values and primitive reductions

46 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

e ; e′

e e2 ; e′ e2
(4.65)

e ; e′

v1 e ; v1 e′
(4.66)

e ; e′

{l1=v1, . . . , li−1=vi−1, li= e, li+1= ei+1, . . . , ln= en}
; {l1=v1, . . . , li−1=vi−1, li= e′, li+1= ei+1, . . . , ln= en}

(4.67)

e ; e′

e.l; e′.l (4.68)

e ; e′

injτl e ; injτl e′
(4.69)

e ; e′

case e of (li xi ⇒ ei)i∈{1...m} else e′′

; case e′ of (li xi ⇒ ei)i∈{1...m} else e′′
(4.70)

e ; e′

fold e as τ at τs ; fold e′ as τ at τs
(4.71)

e ; e′

unfold e as τ at τs ; unfold e′ as τ at τs
(4.72)

e ; e′

e [τ]; e′ [τ] (4.73)

e ; e′

〈α::κ=τ, e :τ′〉; 〈α::κ=τ, e′ :τ′〉 (4.74)

e ; e′

open e as 〈α::κ, x :τ〉 in e1

; open e′ as 〈α::κ, x :τ〉 in e1

(4.75)

Figure 4.12: Congruence rules

4.3. PROPERTIES 47

Type equivalence is not syntax-directed. Since reductions are, however, strongly

normalizing (lemma 1) we have an algorithm for deciding type equivalence: reduce τ1

and τ2 to normal form, then test whether they are syntactically congruent (modulo

renaming of bound variables).

Term formation is syntax-directed except for rule (4.23), which accounts for type

equivalences. If an algorithm always reduces types to normal forms, then the types of

two different expressions can be checked for syntactic congruence, and rule (4.23) is

not needed. 2

Next, we give a detailed proof that the type system of Mini JFlint is sound with

respect to its operational semantics. This is expressed as the usual pair of theorems:

subject reduction and progress. The first means that each reduction preserves the type

of an expression. The second guarantees that a well-typed expression is either a value

already, or it can be further reduced. Note that, because we defined the reduction of

abort as an infinite loop, even programs which encounter an abort still make progress.

Lemma 3 (Substitution of terms) If Φ;∆ ` e′ :τ′ and Φ;∆, x :τ′ ` e :τ , then Φ;∆ `

e[x := e′] :τ .

Proof By induction on the derivation of Φ;∆, x :τ′ ` e :τ . 2

Lemma 4 (Substitution of types) If Φ ` τ′ :: κ and Φ, α ::κ;∆ ` e :τ , then Φ;∆[α :=

τ′] ` e[α := τ′] :τ[α := τ′].

Proof By induction on the derivation of Φ, α ::κ;∆ ` e :τ . 2

Theorem 2 (Subject reduction) If e ; e′ and Φ;∆ ` e :τ then Φ;∆ ` e′ :τ .

Proof By induction on the derivation of e ; e′.

Case (4.56) (λx :τ. e) v ; e[x := v]. From antecedent, Φ;∆ ` (λx :τ. e) v :τ′.

By inversion on (4.25) and (4.24), Φ;∆, x :τ ` e :τ′, and Φ;∆ ` v :τ . Finally,

Φ;∆ ` e[x := v] :τ′ using lemma 3.

48 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

Case (4.57) ({l1=v1 . . . ln=vn}).li ; vi. From antecedent,

Φ;∆ ` {l1=v1 . . . ln=vn}.li :τ . By inversion on (4.29) and (4.28), Φ;∆ ` vi :τ .

Case (4.58) (fix [τ] e).li ; (e (fix [τ] e)).li. From

antecedent, Φ;∆ ` (fix [τ] e).li :τi. By inversion on (4.29),

Φ;∆ ` fix [τ] e : {l1 :τ1 ; . . . ln :τn ;τ′}. By inversion on (4.30),

Φ;∆ ` e : {τ}→{τ}, and τ = {l1 :τ1 ; . . . ln :τn ;τ′}. Using (4.25),

Φ;∆ ` e (fix [τ] e) : {l1 :τ1 ; . . . ln :τn ;τ′}. Then, using (4.29),

Φ;∆ ` (e (fix [τ] e)).li :τi.

Case (4.59) case inj〈[l1 :τ1 ; ...ln :τn ;τ]〉
li v of (l′j xj ⇒ ej)j∈{1...m} else e′ ;

ek[xk := v] where li = l′k. From antecedent, Φ;∆ ` case . . . :τ′. By inversion on

(4.32), Φ;∆, xk :τi ` ek :τ′ and Φ;∆ ` inj...li v : 〈[l1 :τ1 ; . . . ln :τn ;τ]〉. By inversion

on (4.31) and lemma 3, Φ;∆ ` ek[xk := v] :τ′.

Case (4.60) case inj〈[l1 :τ1 ; ...ln :τn ;τ]〉
li v of (l′j xj ⇒ ej)j∈{1...m} else e′ ; e′

where li ≠ l′k,∀k ∈ {1 . . .m}. From antecedent, Φ;∆ ` case . . . :τ′. By inversion

on (4.32), Φ;∆ ` e′ :τ′.
Case (4.61) unfold (fold v as τ at τs) as τ at τs ; v . From antecedent,

Φ;∆ ` unfold . . . :τ′. By inversion on (4.34) and (4.33), τ ≡ µα::κ. τ0,

τ′ ≡ τs (τ0[α := τ]), and Φ;∆ ` v :τs (τ0[α := τ]).

Case (4.62) (Λα::κ. e) [τ] ; e[α := τ]. From antecedent,

Φ;∆ ` (Λα::κ. e) [τ] :τ′. By inversion on (4.36) and (4.35), τ′ must be in the

form of τ1[α := τ], and Φ, α ::κ;∆ ` e :τ1, and Φ ` τ :: κ. Using lemma 4,

Φ;∆ ` e[α := τ] :τ1[α := τ], i.e. Φ;∆ ` e[α := τ] :τ′.

Case (4.63) open 〈α::κ=τ′, v :τ〉 as 〈α::κ, x :τ〉 in e′ ; e′[α := τ′][x := v].

From antecedent, Φ;∆ ` open . . . :τ0. By inversion on (4.27),

Φ;∆ ` 〈α::κ=τ′, v :τ〉 :∃α::κ. τ , Φ, α ::κ;∆, x :τ ` e′ :τ0, and

4.3. PROPERTIES 49

Φ ` τ0 :: Type. By inversion on (4.26), Φ;∆ ` v :τ[α := τ′]. Using

lemma 4, Φ;∆, x :τ[α := τ′] ` e′[α := τ′] :τ0[α := τ′]. Using lemma 3,

Φ;∆ ` e′[α := τ′][x := v] :τ0[α := τ′]. This is equivalent to τ0 since α is not

free in τ0.

Case (4.64) abort [τ]; abort [τ]. Trivial.

Case (4.65) e e2 ; e′ e2 where e ; e′. From antecedent, Φ;∆ ` e e2 :τ . By

inversion on (4.25), Φ;∆ ` e :τ′→τ ; and Φ;∆ ` e2 :τ′. By induction hypothesis,

Φ;∆ ` e′ :τ′→τ . Using (4.25), Φ;∆ ` e′ e2 :τ .

The cases for all the remaining congruence rules (4.66–4.75) follow the same pattern:

invert some typing rule, apply induction hypothesis, then apply the same rule. 2

Lemma 5 (Canonical forms) If v is a value and Φ;∆ ` v :τ then v has the canonical

form given by the following table.

τ v

τ1→τ2 λx :τ1. e

{l1 :τ1 ; . . . ln :τn ;τ′} {l1=v1, . . . ,ln=vn, . . . }

or fix [l1 :τ1 ; . . . ln :τn ;τ′] e

〈[l1 :τ1 ; . . . ln :τn ;τ′]〉 injτli v
′

s[µα::κ. τ′] fold v′ as µα::κ. τ′ at λγ::κ. s[γ]

∀α::κ. τ′ Λα::κ. e

∃α::κ. τ′ 〈α::κ=τ′′, v′ :τ′〉

Proof By inspection, using lemma 2. 2

Theorem 3 (Progress) If Φ;◦ ` e :τ then either e is a value or there exists an expression

e′ such that e ; e′.

50 CHAPTER 4. INTERMEDIATE LANGUAGE: MINI JFLINT

Proof By induction on the derivation of Φ;◦ ` e :τ .

Case (4.22) impossible, since environment is empty.

Case (4.23) direct application of induction hypothesis.

Case (4.24) λx :τ. e is a value.

Case (4.25) Φ;∆ ` e1 e2 :τ where Φ;∆ ` e1 :τ′→τ . By induction hypothesis,

there are three cases: (1) e1 and e2 are both values. Using lemma 5, e1 must have

the form λx :τ. e. Using (4.56), (λx :τ. e) v ; e[x := v]. (2) e1 is a value and

e2 ; e′2; use (4.66). (3) e1 ; e′1; use (4.65).

Case (4.26) Φ;∆ ` 〈α::κ=τ′, e :τ〉 :∃α::κ. τ . By induction hypothesis, there are

two cases: (1) e is a value; then 〈α::κ=τ′, e :τ〉 is a value. (2) e ; e′; then use

(4.74).

Case (4.27) Φ;∆ ` open e as 〈α::κ, x :τ〉 in e′ :τ′. By induction hypothesis,

there are two cases: (1) e is a value of type ∃α::κ. τ . By lemma 5, it has the form

〈α::κ=τ′, e :τ〉; use (4.63). (2) e ; e′; use (4.75).

Case (4.28) Φ;∆ ` {l1= e1 . . . ln= en} : {l1 :τ1 . . . ln :τn}. By induction hypothe-

sis, there are two cases: (1) e1 . . . en are all values; then {l1= e1 . . . ln= en} is a

value. (2) ei ; e′i for some i; use (4.67).

Case (4.29) Φ;∆ ` e.li :τi. By induction hypothesis, there are three cases: (1) e

is a value, and by lemma 5, it has the form {l1=v1 . . . ln=vn}. Then, progress

can be made using rule (4.57). (2) e is a value, and by lemma 5, it has the form

fix [τ] e; then use rule (4.58). (3) e ; e′; use (4.68).

Case (4.30) fix [τ] e is a value.

Case (4.31) Φ;∆ ` injτli e :τ . By induction hypothesis, there are two cases: (1) e

is a value; thus injτli e is a value. (2) e ; e′; then, use (4.69).

4.3. PROPERTIES 51

Case (4.32) Φ;∆ ` case e of (l′j xj ⇒ ej)j∈{1...m} else e′ :τ′. By induction hy-

pothesis, there are two cases: (1) e is a value. According to lemma 5, it has the

form injτli v . Thus, either (4.59) or (4.60) applies. (2) e ; e′; use (4.70).

Case (4.33) Φ;∆ ` fold e as τ at τs :τs τ . By induction hypothesis, there are

two cases: (1) e is a value; then fold e as τ at τs is a value. (2) e ; e′; then use

(4.71).

Case (4.34) Φ;∆ ` unfold e as µα::κ. τ at τs :τ′. By induction hypothesis, there

are two cases: (1) e is a value of type τs (µα::κ. τ). By lemma 5 it has the form

fold v as µα::κ. τ at τs—use (4.61). (2) e ; e′; then use (4.72).

Case (4.35) Λα::κ. e is a value.

Case (4.36) Φ;∆ ` e [τ′] :τ[α := τ′], where Φ;∆ ` e :∀α::κ. τ . By induction

hypothesis, there are two cases: (1) e is a value. By lemma 5, it must have the

form Λα::κ. e′; use (4.62). (2) e ; e′; use (4.73).

Case (4.37) Φ;∆ ` abort [τ] :τ . Evaluates to abort [τ] using (4.64). 2

Chapter 5

A Type-Preserving Translation

In the preceding two chapters, we formally defined a source language (Featherweight

Java) and an intermediate language (Mini JFlint). This chapter is devoted to translating

one to the other.

We will begin by describing and formalizing our basic object encoding in sections 5.1

and 5.2. In section 5.3, we give a type-directed translation of FJ expressions. Inheritance,

overriding, and constructors are examined as part of the class encoding in section 5.4,

formalized in section 5.5. Next, section 5.6 covers linking and section 5.7 discusses

separate compilation. Many aspects of the translation are mutually dependent, but we

believe that this ordering yields a reasonably coherent explanation. Finally, section 5.8

contains proofs of important properties, and section 5.9 considers related work.

5.1 Self application

The standard implementation of method invocation using records functions is called

self-application (Kamin 1988). In a class-based language, the object record contains

values for all the fields of the object plus a pointer to a record of functions, traditionally

called the vtable or method suite. The vtable of a class is created once and shared

53

54 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

among all objects of the class. The functions in the vtable expect the object itself as an

argument. Suppose class Point has one integer field x and one method getx to retrieve

it. Ignoring types for the moment, the term p0 = {vtab={getx=λself. (self.x)}, x=42}

could be an instance of class Point. The self-application term p0.vtab.getx p0 invokes

the method.

What type should we assign to the self argument? The typing derivation for the

self-application term forces it to match the type of the object record itself.

Φ;∆ ` p0 : {vtab : {getx :τ→int}, x : int}

Φ;∆ ` p0.vtab : {getx :τ→int}

Φ;∆ ` p0.vtab.getx :τ→int Φ;∆ ` p0 :τ

Φ;∆ ` (p0.vtab.getx p0) : int

That is, well-typed self-application requires that p0 have type τ where

τ = {vtab : {getx :τ→int}, x : int}

Because τ appears in its own definition, the solution must involve a fixed point. The

recursive types of Mini JFlint are sufficient because augmenting the code with fold and

unfold annotations enables a proper typing derivation. Let the type of self in this ex-

ample be

τpt = µself::Type. {vtab : {getx : self→int}, x : int}

Then, we need to (1) insert an unfold inside the method, before accessing x, and (2) fold

5.1. SELF APPLICATION 55

entire object record.

p1 = fold {vtab={getx=λself :τpt. (unfold self).x}, x=42}

as τpt

This object term is indeed well-typed. The new self-application term must unfold the

object before fetching its vtable: (unfold p1).vtab.getx p1.

This is a promising start, but now suppose that class ScaledPoint extends Point with

an additional field and method. The type of an object of class ScaledPoint would be:

τsp = µself::Type. {vtab : {getx : self→int, gets : self→int}, x : int, s : int}

How can we relate the types for objects of these two classes? More to the point, how can

we make a function that expects a Point also accept a ScaledPoint? Traditional models

employ subsumption, but (1) τsp is not a subtype of τpt , so some rearrangement is

necessary; and (2) we decided to exclude subtyping from our intermediate language—

we would prefer to use explicit (but erasable) type manipulations.

Java programmers distinguish the static and dynamic classes of an object. The

type annotations on formal parameters, local variables, and fields all indicate the static

classes of the referenced objects. The dynamic class is the one named in the new

expression where each object is created. Static classes of a given object differ at different

program points; dynamic classes are unchanging. Static classes are known at compile-

time; dynamic classes are revealed at run-time only by reflection and dynamic casts.

We can implement precisely this distinction in Mini JFlint. Essentially, some prefix

of the object record—corresponding to the static class—is known, while the rest of the

record is hidden. As we have seen, rows allow one to name the suffixes of records, and

existential types are useful for data hiding. Consider this static type of a Point object; it

56 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

uses a pair of existentially-quantified rows.

τ′pt = ∃tail::{f :: R{vtab,x}, m :: Type⇒R{getx}}.

µself. {vtab : {getx : self→int ; tail·m self} ; x : int ; tail·f}

The f component of the tail tuple denotes a hidden row missing the labels vtab and x.

Subclasses of Point append new fields by packaging non-empty rows into the witness

type. Similarly, tail contains a component m for appending new methods onto the vtable.

In this case, the hidden component is a type function expecting the recursive self type,

so that it can be propagated to method types in the dynamic class, further down the

hierarchy.

Now, we can disguise objects of sub-classes to look like objects of any super class.

The Point object p1 is packaged into a term of type τ′pt using the trivial witness type

{f=Abs{vtab,x}, m=λs::Type.Abs{getx}}

To package an object of dynamic class ScaledPoint into type τ′pt we hide a non-trivial

witness type, containing the new field and method:

{f= (s : int ; Abs{vtab,x,s}),

m=λself::Type. (gets : self→int ; Abs{getx,gets})}

A packaged object can also be repackaged to match the static type of some super class—

this is simply an upward cast. The code in figure 5.1 on the facing page explicitly casts q

from Point to Object. Establishing the typing derivation (using the rules from chapter 4)

is a good way to understand this code.

This is, in essence, the object encoding we use to compile Java. Before embarking on

the formal translation, we must explore one more aspect: recursive references. Suppose

5.1. SELF APPLICATION 57

qo = open q as 〈tail::{f :: R{vtab,x}, m :: Type⇒R{getx}}, obj : . . .〉
in 〈tail′::{f :: R{vtab}, m :: Type⇒R∅}=

{f= (x : int ; tail·f), m=λs::Type. (getx : s→int ; tail·m s)},
obj :µself::Type. {vtab : {tail′·m self}; tail′·f}〉

Figure 5.1: Casting q from Point to Object

the Point class has also a method bump which returns a new Point. The type of objects of

class Point must then refer to the type of objects of class Point. This recursive reference

calls for another fixed point, outside the existential:

µtwin.∃tail. µself. {vtab : {getx : self→int ; bump : self→twin ; tail·m self};

x : int ; tail·f}

Using self as the return type would overly constrain implementations of bump, forcing

them to return objects of the same dynamic class as the receiver. In Java, type signatures

constrain static classes only. Because twin is outside the existential, its witness type can

be distinct from that of self.

This technique explains self-references, but Java supports mutually recursive refer-

ences as well. Suppose class A defines a method returning an object of class B, and vice

versa; ignoring fields entirely for a moment, define the following type:

AB ≡ µw::{A :: Type, B :: Type}.

{A=∃tail::Type⇒R{getb}. µself::Type. {getb : self→w·B ; tail self},

B=∃tail::Type⇒R{geta}. µself::Type. {geta : self→w·A ; tail self}}

Using the contextual fold and unfold described earlier, objects of class A can be folded

into the type AB·A. This is the natural generalization of the twin fixed point. In the most

general case, any class can refer to any other, so w must expand to include all classes;

this is the technique we use in the formal translation. In an actual compiler, we would

58 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

fieldvec(Object) = [(vtab, vt)] (5.1)

CT(C) = class C extends B { D1 f1; . . .Dm fm; K . . . }
fieldvec(C) = fieldvec(B)++ [(f1,D1) . . . (fm,Dm)]

(5.2)

methvec(Object) = [(dyncast, dc)] (5.3)

CT(C) = class C extends B { . . .K M1 . . .Mm }
methvec(C) = methvec(B)++addmeth(B, [M1 . . .Mm])

(5.4)

(m, __) ∈ methvec(B)
addmeth(B, [D m (D1 x1 . . .Dk xk) { return e; } M2 . . .Mm]) =

addmeth(B, [M2 . . .Mm])
(5.5)

(m, __) 6∈ methvec(B)
addmeth(B, [D m (D1 x1 . . .Dk xk) { return e; } M2 . . .Mm]) =
[(m,D1 . . .Dk → D)]++addmeth(B, [M2 . . .Mm])

(5.6)

addmeth(B, []) = [] (5.7)

Figure 5.2: Field and method layouts for object types

analyze the reference graph and cluster the strongly-connected classes only. Note that

this only addresses the typing aspect; mutual recursion has term-level implications

also—any class can cast to or construct objects of any other; see section 5.4.

5.2 Type translation

This completes our informal account of self application; we now turn to a formal trans-

lation of FJ types. Figure 5.2 defines several functions which govern the layout of fields

and methods in object types. Square brackets [·] denote sequences. The sequence

5.2. TYPE TRANSLATION 59

s1++ s2 is the concatenation of sequences s1 and s2. |s| denotes the number of ele-

ments in s. The domain of a sequence of pairs, dom(s), is a set consisting of the first

elements of each pair in s.

The function fieldvec maps a class name C to a sequence of tuples of the form (f,D),

indicating a field of type D named f—except for the first tuple in the sequence, which is

always (vtab, vt), a placeholder for the vtable. Each class simply appends its own fields

onto the sequence of fields from its super class. (In FJ, the fields of a class are assumed

to be distinct from those of its super classes.)

The layout of methods in an object type is somewhat trickier. Methods that appear in

a class definition are either new or they override methods in the super class. Overriding

methods do not deserve a new slot in the vtable. The function methvec maps a class

name C to a sequence of tuples of the form (m, T), indicating a method named m with

signature T . Signatures have the form D1 . . .Dn → D. The function addmeth iterates

through all the methods defined in the class C, adding only those methods that are new

(not just overridden). The first tuple in methvec is always (dyncast, dc), a placeholder

for the special polymorphic method used to implement dynamic casts.

Let cn denote the set of class names (including Object) in some program of interest.

For the purpose of presentation, we abbreviate the kind of a tuple of all object types as

kcn. The tuple of row kinds for class C is abbreviated ktail[C].

kcn ≡{(E :: Type) E∈cn}

ktail[C]≡{m :: Type⇒Rdom(methvec(C)), f :: Rdom(fieldvec(C))}

For brevity, we sometimes omit kind annotations. By convention, certain named type

variables are bound by particular kinds—w has kind kcn, self and u have kind Type,

and tail has kind ktail[C], where C should be evident from the context. This is just a

convention of notation, and does not imply that the names of type variable are special.

60 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

Rows[C,C] = λw::kcn. λu::Type. λtail::ktail[C]. tail (5.8)

Rows[Object,>] = λw::kcn. λu::Type. λtail::ktail[Object].
{m=λself::Type. (dyncast : self→∀α::Type. (u→maybe α)→maybe α ;

tail·m self)
f = tail·f}

(5.9)

CT(C) = class C extends B { D1 f1 . . .Dn fn K M1 . . .Mm }
Rows[B,A] = τ addmeth(B, [M1 . . .Mm]) = [(l1, T1) . . . (lm, Tm)]
Rows[C,A] = λw::kcn. λu::Type. λtail::ktail[C].
τ w u {m=λself::Type. (l1 : Ty[self; w;T1] ; . . . lm : Ty[self; w;Tm] ;

tail·m self),
f = (f1 : w·D1 ; . . . fn : w·Dn ; tail·f)}

(5.10)

Ty[self; w; D1 . . .Dn → D] = self→w·D1→ . . .w·Dn→w·D (5.11)

Figure 5.3: Definition of rows

Empty[C] ≡ {m=λself::Type.Absdom(methvec(C)), f=Absdom(fieldvec(C))}
ObjRcd[C] ≡ λw::kcn. λu::Type. λtail::ktail[C]. λself::Type.

{vtab : {(Rows[C,>] w u tail)·m self} ; (Rows[C,>] w u tail)·f }
SelfTy[C] ≡ λw::kcn. λu::Type. λtail::ktail[C]. µself::Type.ObjRcd[C] w u tail self
ObjTy[C] ≡ λw::kcn. λu::Type.∃tail::ktail[C]. SelfTy[C] w u tail
World ≡ λu::Type. µw::kcn. {(E=ObjTy[E] w u) E∈cn }

Figure 5.4: Macros for object types

In figure 5.3 we define Rows, a type operator that produces rows containing the fields

and methods introduced between two classes in a subclass relationship. Intuitively,

Rows[C,A] includes fields and methods in class C but not in its ancestor class A. Earlier

we described how to package dynamic classes into static classes; the witness type was

a tuple of rows containing the fields and methods in the dynamic class but not in the

static class. This is just one use of the Rows operator.

The type operator Rows[C,A] has kind kcn⇒Type⇒ktail[C]⇒ktail[A]; recall that ⇒

5.2. TYPE TRANSLATION 61

is the kind-level arrow in Mini JFlint. The operator’s first argument, w::kcn, is a tuple

containing object types for all classes in the compilation unit. The next argument,

u::Type, is a universal type used to implement dynamic casts. This will be explained in

section 5.4; for now, we only observe that the definitions in figure 5.3 simply propagate

u so that it can appear in the type of the dyncast pseudo-method. The final argument,

tail::ktail[C], contains the rows for some subclass of C.

Rows[C,A] is defined by three cases. First, if C and A are the same class, then the

result is just the tail—those members in subclasses of C. Second, if C is Object (the root

of the class hierarchy) and A is the special symbol > then the result is the members

declared in Object. Treating > as the trivial super class of Object permits more uniform

specifications (since Object contains members of its own). Finally, in the inductive case

(where C <: A) we look to C’s super class—let’s call it B. Rows[B,A] produces a type

operator for the members between B and A; we need only append the new members of C.

Conveniently, Rows[B,A] has a tail parameter specifically for appending new members.

The formal definition of Rows is in figure 5.3.

The new fields in C are precisely those listed in the declaration of C; we fetch their

types from w and append tail·f. The new methods in C are found using addmeth, and

their type signatures D1 . . .Dn → D are translated to arrow types: self→w·D1→ . . .w·Dn→

w·D. We use curried arguments for convenience; an actual implementation would use

multi-argument functions instead. As shown in the informal examples, the row for

methods is parameterized by the type of self. As a concrete example, the rows for Point

and ScaledPoint are in figure 5.5 on the next page.

In figure 5.4, we use the Rows operator to define macros for several variants of

the object type for any given class. Empty[C] denotes the tuple of empty field and

method rows of kind ktail[C]. ObjRcd[C] assembles the rows into records, leaving the

subclass rows and self type open. SelfTy[C] closes self with a fixed point, and ObjTy[C]

hides the sublass rows with an existential. Each of these variants is used in our term

62 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

Rows[P,Object] = λw. λu. λtail. {m=λself. (getx : self→int ; tail·m self),
f= (x : int ; tail·f)}

Rows[SP,P] = λw. λu. λtail. {m=λself. (gets : self→int ; tail·m self),
f= (s : int ; tail·f)}

Rows[SP,Object] = λw. λu. λtail.Rows[P,Object] w (Rows[SP,P] w tail)
= λw. λu. λtail. {m=λself. (getx : self→int ;

gets : self→int ; tail·m self),
f= (x : int ; s : int ; tail·f)}

Figure 5.5: Rows for Point and ScaledPoint

pack[C; u; tail; e] =
fold 〈tail′::ktail[C]= tail, e : SelfTy[C] (World u) u tail′〉

asWorld u at λγ::kcn. γ·C

upcast[C; A; u; e] =
open (unfold e asWorld u at λγ::kcn. γ·C)

as 〈tail::ktail[C], x : SelfTy[C] (World u) u tail〉
in pack[A; u; Rows[C,A] (World u) u tail;x]

Figure 5.6: Definitions of pack and upcast transformations

translation. All of them remain abstracted over both w (the types of other objects) and u

(the universal type, which is simply propagated into the type of dyncast). Finally,World

constructs a package of the types of objects of all classes, given the universal type u;

as we will see later, the actual universal type is a labeled sum of object types, and is

defined recursively usingWorld .

5.3 Expression translation

Equipped with an efficient object encoding and several type operators for describ-

ing it, we now examine the type-directed translation of FJ expressions. Figures 5.6

and 5.7 contain definitions of pack and upcast, and six rules governing the judgment

exp[Γ ; u; classes; e] = e for term translation. Here, Γ is the FJ type environment, u is the

5.3. EXPRESSION TRANSLATION 63

exp[Γ ; u; classes; x] = x (5.12)

(f, __) ∈ fieldvec(C) Γ ` e ∈ C exp[Γ ; u; classes; e] = e
exp[Γ ; u; classes; e.f] =

open (unfold e asWorld u at λγ::kcn. γ·C)
as 〈tail::ktail[C], x : SelfTy[C] (World u) u tail〉
in (unfold x).f

(5.13)

Γ ` e ∈ C (m,B1 . . .Bn → B) ∈ methvec(C) exp[Γ ; u; classes; e] = eΓ ` ei ∈ Di Di <: Bi
upcast[Di; Bi; u; exp[Γ ; u; classes; ei]] = ei, i ∈ {1..n}
exp[Γ ; u; classes; e.m (e1 . . .en)] =

open (unfold e asWorld u at λγ::kcn. γ·C)
as 〈tail::ktail[C], x : SelfTy[C] (World u) u tail〉
in (unfold x).vtab.m x e1 . . . en

(5.14)

fields(C) = B1 f1 . . .Bn fnΓ ` ei ∈ Di Di <: Bi
upcast[Di; Bi; u; exp[Γ ; u; classes; ei]] = ei, i ∈ {1..n}
exp[Γ ; u; classes; new C (e1 . . .en)] = (classes.C {}).new e1 . . . en

(5.15)

Γ ` e ∈ D D <: C
exp[Γ ; u; classes; (C) e] = upcast[D; C; u; exp[Γ ; u; classes; e]] (5.16)

Γ ` e ∈ C D <: C exp[Γ ; u; classes; e] = e
exp[Γ ; u; classes; (D) e] =

open (unfold e asWorld u at λγ::kcn. γ·C)
as 〈tail::ktail[C], x : SelfTy[C] (World u) u tail〉
in case (unfold x).vtab.dyncast x [(World u)·D] (classes.D {}).proj

of some y ⇒ y else abort [(World u)·D]

(5.17)

Figure 5.7: Type-directed translation of FJ expressions

64 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

universal sum type, classes is a record containing the runtime representations of each

class, e is an FJ expression, and e is its corresponding term in the target language. If e

has type C, then its translation e has type (World u)·C (see theorem 4 in section 5.8).

The pack operation packages and folds a recursive record term into a closed, com-

plete object whose type is selected from a mutual fixed point of the types of objects of

all classes. Suppose that tail is some row tuple in ktail[C] and e has type:

SelfTy[C] (World u) u tail

Then, the term pack[C; u; tail; e] has type (World u)·C. Since unpacking an object binds

a type variable to the hidden witness type, it is not as convenient to define as a macro,

and we perform it inline instead.

The upcast operation opens a term representing an object of class C and repackages

it as a term representing an object of some super class A. The object term e has type

(World u)·C where C <: A, but dynamically it might belong to some subclass D <: C. The

open binds the type variable tail to the hidden row types that represent members in D

but not in C. The upcast macro then uses Rows to prefix tail with the types of members

in C but not in A. Finally, upcast uses pack to hide the new tail, yielding an object term

of type (World u)·A.

These definitions simply and effectively formalize the encoding techniques demon-

strated in the previous section. Importantly, they use type manipulations only (fold,

unfold, open). Since these operations are erased before runtime, the pack and upcast

transformations have no impact on performance.

We now explain each of the translation rules in figure 5.7, beginning with (5.12).

Variables in FJ are bound as method arguments. Methods are translated as curried

abstractions binding the same variable names. Therefore, variable translation (5.12) is

trivial. An upcast expression (C) e (where Γ ` e ∈ D and D <: C) is also trivial; the rule

5.3. EXPRESSION TRANSLATION 65

(5.16) delegates its task to the macro of the same name.

The field selection expression e.f translates to an unfold-open-unfold-select idiom in

the target language (5.13). In this sequence, the select alone has runtime effect. Method

invocation e.m (e1 . . .en) augments the idiom with applications to self and the other ar-

guments, but there is one complication. The FJ typing rule permits the actual arguments

to have types that are subclasses of the types in the method signature. Since our encod-

ing does not utilize subtyping, the function selected from the vtable expects arguments

of precisely the types in the method signature. Therefore, we must explicitly upcast all

arguments. Rule (5.14) formalizes the self-application technique demonstrated earlier.

The code to create a new object of class C essentially selects and applies C’s con-

structor from the classes record. Until we explain class encoding and linking, the type

of classes will be difficult to justify. Presently it will suffice to say that classes.C applied

to the unit value {} returns a record which contains a field new—the constructor for

class C. The translation (5.15) upcasts all the arguments, then fetches and applies the

constructor.

The final case, dynamic casts, may appear quite magical until we reveal the imple-

mentation of the dyncast pseudo-method in the next section. For now it is enough to

treat dyncast as a function of type self→∀α. (u→maybe α)→maybe α, where self is the

type of the unfolded unpacked object bound to x. The argument of

(unfold x).vtab.dyncast x [τ]

is a projection function, attempting to convert a value of type u to an object of type

τ . The record classes.C {} contains, in addition to the field new, a proj field of type

u→maybe ((World u)·C). Thus if we select the dyncast method from an object, instan-

tiate it with the object type for some class C, then pass it the projection for class C,

it will return some C object if the cast succeeds, or none if it fails. In case of failure,

66 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

evaluation aborts. In full Java, we would throw a ClassCast exception.

Note that Featherweight Java’s stupid casts (Igarashi, Pierce, and Wadler 2001) are

not compiled at all. They arise in intermediate results during evaluation, but should

not appear in valid source-level programs.

The expression translation judgment exp preserves types. Informally, if e has type

C, then its translation has type (World u)·C, for some type u. The type preservation

theorem is stated formally and proved in section 5.8.

5.4 Class encoding

Apart from defining types, classes in FJ serve three other roles: they are extended,

invoked to create new objects, and specified as targets of dynamic casts. In our trans-

lation, each class declaration is separately compiled into a module exporting a record

with three elements—one to address each of these roles. We informally explain our

techniques for implementing inheritance, constructors, and dynamic casts, then give

the formal translation of class declarations.

In a class-based language, each vtable is constructed once and shared among all

objects of the same class. In addition, the code of each inherited method should be

shared by all inheritors. How might we implement the Point methods so that they can

be packaged with a ScaledPoint? We make the method record polymorphic over the tail

of the self type:

dictPT= Λtail::ktail[PT]. {getx=λself : spt. (unfold self).x}

where spt = µα. {vtab : {getx :α→int ; tail·m α} ; x : int ; tail·f}

We call this polymorphic record a dictionary. By instantiating it with different tails, we

can directly package its contents into objects of subclasses. Instantiated with empty

tails (Empty[PT], for example), this dictionary becomes a vtable for class Point. Suppose

5.4. CLASS ENCODING 67

Dict[C] ≡ λw::kcn. λu::Type. λself::Type. {(Rows[C,>] w u Empty[C])·m self}
Ctor[C] ≡ λw::kcn.w·D1→ . . .w·Dn→w·C

where fields(C) = D1 f1 . . .Dn fn
Proj[C] ≡ λw::kcn. λu::Type.u→maybe w·C
Inj[C] ≡ λw::kcn. λu::Type.w·C→u
Class[C] ≡ λw::kcn. λu::Type. {dict :∀tail::ktail[C].Dict[C] w u (SelfTy[C] w u tail),

proj : Proj[C] w u, new : Ctor[C] w }

Classes ≡ λw::kcn. λu::Type. ((E : 1→Class[E] w u ;) E∈cn Abscn)
ClassF [C] ≡ ∀u::Type. Inj[C] (World u) u→Proj[C] (World u) u→

{Classes (World u)u}→1→Class[C] (World u) u

Figure 5.8: Macros for dictionary, constructor, and class types

the ScaledPoint subclass inherits getx and adds a method of its own. Its dictionary

would be:

dictSP= Λtail::ktail[SP]. {getx= (dictPT [rsp]).getx,

gets=λself : ssp. (unfold self).s}

where rsp = Rows[SP, PT] (World u) u Empty[SP]

and ssp = µα. {vtab : {getx :α→int ; gets :α→int ; tail·m α} ;

x : int ; s : int ; tail·f}

This dictionary can be instantiated with empty tails to produce the ScaledPoint vtable.

With other instantiations, further subclasses can inherit either of these methods. The

dictionary is labeled dict in the record exported by the class translation.

Constructors in FJ are quite simple; they take all the fields as arguments in the correct

order. Fields declared in the super class are immediately passed to the super initializer.

We translate the constructor as a function which takes the fields as curried arguments,

places them directly into a record with the vtable, and then folds and packages the

object. The constructor function is labeled new in the class record. In section 6, we

describe how to implement more realistic constructors.

68 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

Implementing dynamic cast in a strongly-typed language is challenging. Somehow

we must determine whether an arbitrary, abstractly-typed object belongs to a particular

class. If it does belong, we must somehow refine its type to reflect this new information.

Exception matching in SML poses a similar problem. To address these issues, Harper and

Stone (1998) introduce tags—values which track type information at runtime. If a tag of

abstract type Tag α equals another tag of known type Tag τ , then we update the context

to reflect that α = τ . Note that this differs from intensional type analysis (Harper and

Morrisett 1995), which performs structural comparison and does not distinguish named

types.

Tags work well with our encoding; in an implementation that supports assignment

and an SML front-end, it may be a good choice. In this formal presentation, however,

type refinement complicates the soundness proof and the imperative nature of maketag

constrains the operational semantics, which is otherwise free of side effects. maketag

implements a dynamically extensible sum, which is needed for SML exceptions, but is

overkill for classes in FJ.

We propose a simpler approach, which co-opts the dynamic dispatch mechanism.

The vtable itself provides a kind of runtime class information. A designated method,

if overridden in every class, could return the receiver at its dynamic class or any super

class. We just need a runtime representation of the target class of the cast, and some

way to connect that representation to the corresponding object type. For this, we can

use the standard sum type and a ‘one-armed’ case. Let u be a sum type with a variant

for each class in the class table. The function

λx :u. case x of C y ⇒ some [ObjTy[C] (World u) u] y

else none [ObjTy[C] (World u) u]

could dynamically represent class C. To connect it to the object type, we make the

5.5. CLASS TRANSLATION 69

dyncast method polymorphic, with the type

self→∀α. (u→maybe α)→maybe α

This method can check its own class against the target class by injecting self and apply-

ing the function argument. If the result is none, then it tries again by injecting as the

super class, and so on up the hierarchy.

With this solution, we must be careful to preserve separate compilation—the univer-

sal type u includes a variant for every class in the program. Fortunately, in a particular

class declaration we need only inject objects of that class. Class declarations can treat

u as an abstract type and take the injection function as an argument. Then only the

linker needs to know the concrete u type.

5.5 Class translation

We now explore the formal translation of class declarations and construction of their

method dictionaries. In figure 5.8 we define several macros for describing dictionary

and class types. Figure 5.9 on the following page gives translations for each component

of the class declaration.

Each class is separately compiled to code that resembles an SML functor—a set of

definitions parameterized by both types and terms. Linking—the process of instanti-

ating the separate functors and combining them into single coherent program—will be

addressed in the next section. Our compilation model is the subject of section 5.7.

cdec[C] produces the functor corresponding to class C; see the definition at the top

of figure 5.9. The code has one type parameter: u, the universal type used for dynamic

casts. Following it are two function parameters for injecting and projecting objects of

class C. The next parameter is classes, a record containing definitions for other classes

70 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

Class declaration translation:

cdec[C] =Λu::Type. λinj : Inj[C] (World u) u. λproj : Proj[C] (World u) u.
λclasses : {Classes (World u)u}. λ_ : 1.
let dict :∀tail::ktail[C].Dict[C] (World u) u (SelfTy[C] (World u) u tail)

=dict[C; u; inj; classes]
in let vtab=dict [Empty[C]]

in {dict=dict,proj=proj,new=new[C; u; vtab]}

(5.18)

Dictionary construction:

dict[Object; u; inj; classes] = Λtail::ktail[Object].
{dyncast=λself : SelfTy[C] (World u) u tail.Λα::Type. λproj : u→maybe α.

proj (inj pack[Object; u; tail; self])}

(5.19)

CT(C) = class C extends B { . . . } dom(methvec(C)) = [l1 . . . ln]
dict[C; u; inj; classes] = Λtail::ktail[C].

let super : Dict[B] (World u) u (SelfTy[C] (World u) u tail)
= (classes.B {}).dict [Rows[C,B] (World u) u tail]

in {l1=meth[C; l1; u; tail; inj; classes; super], . . . ,
ln=meth[C; ln; u; tail; inj; classes; super]}

(5.20)

Constructor code:

fields(C) = D1 f1 . . .Dn fn
new[C; u; vtab] = λf1 : (World u)·D1. . . . λfn : (World u)·Dn.

let x= fold {vtab= vtab, f1= f1, . . . ,fn= fn}
as SelfTy[C] (World u) u Empty[C]

in pack[C; u; Empty[C];x]

(5.21)

Figure 5.9: Translation of class declarations

5.5. CLASS TRANSLATION 71

Method code:

meth[C; dyncast; u; tail; inj; classes; super] =
λself : SelfTy[C] (World u) u tail.Λα::Type. λproj : u→maybe α.

case proj (inj pack[C; u; tail; self])
of some x ⇒ some [α] x else super.dyncast self [α] proj

(5.22)

CT(C) = class C extends B { . . .K M1 . . .Mn }
m not defined in M1 . . .Mn
meth[C; m; u; tail; inj; classes; super] = super.m

(5.23)

CT(C) = class C extends B { . . .K M1 . . .Mn }
∃j : Mj = A m (A1 x1 . . .Am xm) { return e; }Γ = x1:A1, . . . ,xm:Am, this:C Γ ` e ∈ D D <: A
exp[Γ ; u; classes; e] = e
meth[C; m; u; tail; inj; classes; super] =

λself : SelfTy[C] (World u) u tail.
λx1 : (World u)·A1. . . . λxm : (World u)·Am.

let this : (World u)·C= pack[C; u; tail; self]
in upcast[D; A; u; e]

(5.24)

Figure 5.10: Translation of method declarations

that are mutually recursive with C (for convenience, we assume that each class refers to

all the others). The final parameter is of unit type; it simply delays references to classes

so that linking terminates.

In the functor body, we define dict (using the macro dict) and vtab (the trivial instan-

tiation of dict). dict is placed in the class record (so subclasses can inherit its methods);

vtab is passed to the new macro which creates the constructor code. The constructor is

exported so that other classes can create C objects; and, finally, the projection function

proj (a functor parameter) is exported so other classes can dynamically cast to C.

The dictionary for class Object is hard-coded as dict[Object; . . .]. It has a special

method dyncast that injects self at class Object, passes this to the proj argument and

returns the result. If the class tags do not match, dyncast indicates failure by returning

none; there is no super class to test. For all other classes, dict fetches the super class

72 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

Tagged =λu::Type. 〈[(C : (World u)·C) C∈cn]〉
Univ = µu::Type.Tagged u

prog[e] = let xcn = link {(C=cdec[C]) C∈cn} in exp[◦; Univ ;xcn; e] (5.25)

link = λx : {(C : ClassF [C]) C∈cn}.
fix [Classes (World Univ)Univ]

(λclasses : {Classes (World Univ)Univ}.
{(C=x.C [Univ] injC projC classes) C∈cn})

where

injC=λx : (World Univ)·C. fold inj
Tagged Univ
C x as Univ

projC=λx : Univ . case unfold x of C y ⇒ some [(World Univ)·C] y
else none [(World Univ)·C]

(5.26)

Figure 5.11: Program translation and linking

dictionary from classes and instantiates it as super. It then uses meth to construct code

for each method label in methvec .

meth is defined in figure 5.10 on the page before. There are three cases: it produces

the special dyncast method, which must be overridden in every class (5.22); it inherits a

method from the super class (5.23); or it constructs a new method body by translating

FJ code (5.24). Note that the inherited method has no overhead; the function pointer is

simply copied from the super class dictionary.

Proofs that the translated class declarations are well-typed are in section 5.8.

5.6 Linking

Finally, we must instantiate and link the separate class modules together into a single

program. Figure 5.11 gives the translation for a complete FJ program (definition 5.25).

The functors that result from translating each class declaration are collected into a

record and passed to the link function. The result, bound to xcn, is a record of classes.

It is used as the classes parameter in translating the main program expression e.

5.7. SEPARATE COMPILATION 73

At the type level, we build the universal sum (Univ) with a variant for the object

type of each class in the class table. This type is propagated into the translation of the

main program expression, and it is used to instantiate the functor corresponding to

each class. Unfolded, it is written as Tagged Univ .

link uses fix to create a fixed point of the record of classes. Each class functor in

the argument x has one type parameter and three value parameters. For each class,

we define injection and projection functions, injC and projC. The former tags an object

and folds to create a value of type Univ . The latter unfolds and removes the tag, where

applicable. We define these functions, and the sum type itself, at the outer level so that

classes can be compiled separately, and yet still use the universal sum type to implement

dynamic cast. The final argument to x.C is the classes record itself. Section 5.8.5 on

page 83 includes a theorem that linkage is well-typed.

5.7 Separate compilation

Our translation supports separate compilation, but the formal presentation does not

make this clear. In this section, we describe our compilation model and justify that

claim.

What must be known to compile a Java class C to native code? At a minimum, we

must know the fields and methods of all super classes, to ensure that the layout of

C’s vtable and objects are consistent. Next, it is helpful to know enough about classes

referenced by C so that the offsets of their fields and methods can be embedded in

the code. These principles do not mean that all referenced classes must be compiled

together. Indeed, as long as the above information is known, classes can be compiled

separately, in any order.

In our translation, we need not just offsets but the full type information for super

classes and referenced classes. If C refers to field x from class D, we need to know all

74 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

about the type of x as well. This clearly involves extracting type information from more

classes, although not necessarily every class in the program. Even so, each class can

still be compiled separately, in any order, assuming the requisite types are available.

A reasonable compilation strategy starts with some root set of classes and builds a

dependence graph. For a given program, the root set contains just the class with the

main method; for a library, it includes all exported classes. Next, traverse the graph

bottom-up. Compile each class separately, but propagate the necessary information

from C to all those classes that depend on it. Of course, there may be cyclic dependen-

cies, represented by strongly-connected components (clusters) in the graph. In these

cases, we extract type information from all members of the cluster before compiling

any of them. Still, each class in the cluster is compiled separately.

A hallmark of whole-program compilation is that library code must be compiled

along with application code. This is clearly not necessary in our model. Library classes

would never depend on application classes, so they can be compiled in advance. The

reason that our formal translation uses the macro World (containing object types for

every class in the program) is that, in the most general case, every class in an FJ program

refers to every other class. Thus, our translation assumes that the entire program falls

within one strongly-connected cluster. In practice, World would include just the classes

in the same cluster as the class being compiled.

5.8 Properties

This section contains formal statements and proofs of several properties of our trans-

lation. The most important is theorem 4 on page 80; it says that well-typed Feather-

weight Java expressions are translated to well-typed Mini JFlint expressions. Its proof

is straightforward if we first factor out and prove several key properties as lemmas.

First, in lemma 6 we establish a correspondence between the mtype used in the FJ

5.8. PROPERTIES 75

semantics and the methvec relation used for object layout (likewise between fields and

fieldvec ; see lemma 7). Next, in lemmas 10 and 11, we establish the correspondence

between pairs in methvec/fieldvec and elements in Rows. These correspondences are

proved by induction on the class hierarchy. Finally, we show in lemmas 13 and 14 that

the pack and upcast macros return expressions of the expected type. These can be

proved by inspection, but the latter argument requires a non-trivial coherence property

for Rows (lemma 12 on page 78). Specifically, Rows[A,>] w u (Rows[C,A] w u tail)must

be equivalent to Rows[C,>] w u tail. This is proved by induction on the derivation of

C <: A.

5.8.1 Contents of field/method vectors

Lemma 6 (Method vector) mtype(m,C) = D1 . . .Dn → D0 if and only if

(m,D1 . . .Dn → D0) ∈ methvec(C).

Proof By induction on the derivation of C <: Object. In the base case, the implication

holds trivially. Otherwise, let CT(C) = class C extends B { . . .K M1 . . .Mn }. We

distinguish two cases:

1. m is not defined in M1 . . .Mn. (=⇒) Then,

mtype(m,C) = D1 . . .Dn → D0 = mtype(m,B). Using the inductive hypothesis,

(m,D1 . . .Dn → D0) is in methvec(B) and thus it is also in methvec(C). (⇐=)

addmeth(B, [M1 . . .Mn]) could not have added m, so it must be that

(m,D1 . . .Dn → D0) ∈ methvec(B). Using the inductive hypothesis, mtype(m,B) =

D1 . . .Dn → D0 and, in this case, mtype(m,C) = mtype(m,B).

2. ∃j such that Mj = D0 m (D1 x1 . . .Dn xn) { return e; }. In this case, mtype(m,C) is

directly defined as D1 . . .Dn → D0.

(=⇒) case mtype(m,B) = C1 . . .Cn → C0 Then, from class well-formedness

we conclude that Ci = Di for i ∈ {0 . . . n}. From the inductive hypothesis,

76 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

we find that (m,C1 . . .Cn → C0) ∈ methvec(B). Thus,

(m,D1 . . .Dn → D0) ∈ methvec(C).

(=⇒) case ¬∃T such that mtype(m,B) = T From the inductive hypothesis

(in the reverse direction), ¬∃T such that (m, T) ∈ methvec(B). Given this,

we can show (by induction on j) that addmeth adds (m,D1 . . .Dn → D0) to

methvec(C).

(⇐=) case (m,C1 . . .Cn → C0) ∈ methvec(B) Therefore, by definition,

(m,C1 . . .Cn → C0) ∈ methvec(C). From class well-formedness, we argue

that Ci = Di for i ∈ {0 . . . n}.

(⇐=) case ¬∃T such that (m, T) ∈ methvec(B) Then, addmeth and

mtype(m,C) both assign m the signature D1 . . .Dn → D0. 2

Lemma 7 (Field vector) If D f ∈ fields(C), then (f,D) ∈ fieldvec(C).

Proof By induction on the derivation of C <: Object. 2

5.8.2 Object layout

Lemma 8 (Well-kinded rows) If C <: A, then

Φ ` Rows[C,A] :: kcn⇒Type⇒ktail[C]⇒ktail[A].

Proof By induction on the derivation of C <: A. Observe that `kcn kind and, for any

D ∈ cn, `ktail[D] kind . Then, the base case (C = A) holds trivially. Now, let CT(C) =

class C extends B { D1 f1; . . .Dn fn; K . . . } and B <: A. Using the inductive hypothesis,

Rows[B,A] has kind kcn⇒ Type⇒ ktail[B]⇒ ktail[A] in kind environment Φ. The rule

(5.10) constructs a tuple tail′ = {m= . . . , f= . . .}. Let Φ′ = Φ, w :: kcn, u :: Type,

tail :: ktail[C]. It remains to be shown that tail′ has kind ktail[B] in kind environment

Φ′. Consider the f component; the argument for m is similar. Using the definition of

ktail[C] and the tuple selection rule (4.13), Φ′ ` tail·f :: Rdom(fieldvec(C)). Using the

5.8. PROPERTIES 77

definition of kcn and class table well-formedness, Φ′ ` w·Dn :: Type. Finally, the row

formation rule (4.15) assigns kind Rdom(fieldvec(C))−{fn} to the row (fn : w·Dn ; tail·f).

Iterate for each label; the resulting row has kind Rdom(fieldvec(C))−{C,f1...fn} which is the

same as Rdom(fieldvec(B)). 2

Lemma 9 (Tail position) If C <: B, Φ ` w :: kcn, Φ ` tail :: ktail[C], and

Φ ` self :: Type, then (Rows[C,B] w u tail)·m self has the form (. . . ; tail·m self) and

(Rows[C,B] w u tail)·f has the form (. . . ; tail·f).

Proof By inspection. 2

Lemma 10 (Method layout) If Φ ` w :: kcn, Φ ` tail :: ktail[C], Φ ` self :: Type, and

(m, T) ∈ methvec(C), then

(Rows[C,Object] w u tail)·m self = (. . . ; m : self→Ty[self; w;T] ; . . . ; tail·m self).

Proof By induction on derivation of C <: Object. methvec(Object) is empty, so the

base case holds trivially. Otherwise, let CT(C) = class C extends B { . . . }.

Case (m, T) ∈ methvec(B) Let tail′ = {m=λself::Type. . . ., f= . . .}, as given in

rule (5.10); according to lemma 8, this has kind ktail[B]. Invoking the inductive

hypothesis (with tail′) we find that

(Rows[B,Object] w u tail′)·m self

= (. . . ; m : self→Ty[self; w;T] ; . . . ; tail′·m self)

Then, expanding the definition we get

(Rows[C,Object] w u tail)·m self

= (. . . ; m : self→Ty[self; w;T] ; ; tail·m self)

Case (m, T) 6∈ methvec(B) Then, m must be one of the names m1 . . .mn

enumerated in the definition. In this case, the row tail′·m self will contain an

78 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

element m of type self→Ty[self; w;T]. This tail′ is passed to Rows[B,Object], but

according to lemma 9, it will still appear in the result. 2

Lemma 11 (Field layout) If C <: Object, Φ ` w :: kcn, Φ ` tail :: ktail[C], and

fieldvec(C) = fieldvec(Object)++ [(l1,D1) . . . (ln,Dn)], then

Rows[C,Object] w u tail = l1 : w·D1 ; . . . ln : w·Dn ; tail·f .

Proof By induction on the derivation of C <: Object. Similar to the proof of lemma 10.

2

Lemma 12 (Rows coherence) If C <: A, Φ ` u :: Type, Φ ` w :: kcn, and

Φ ` tail :: ktail[C], then

Rows[A,Object] w u (Rows[C,A] w u tail) = Rows[C,Object] w u tail.

Proof By induction on the derivation of C <: A. The base case (C = A) holds trivially.

Now, let CT(C) = class C extends B { . . . } where B <: A. The rule for Rows[C,A]

defines a tuple {f= . . . , m= . . .} which we will call tail′. Specifically, Rows[C,A] w u tail

= Rows[B,A] w u tail′. Now, using tail′ in the inductive hypothesis, we find that

Rows[A,Object] w u (Rows[B,A] w u tail′) = Rows[B,Object] w u tail′. According to the

definition, Rows[B,Object] w u tail′ = Rows[C,Object] w u tail, where tail′ is the same

as above. Substituting equals for equals (twice) yields

Rows[A,Object] w u (Rows[C,A] w u tail) = Rows[C,Object] w u tail

2

5.8.3 Object transformations

Lemma 13 (Well-typed pack) If Φ ` tail :: ktail[C] and

Φ;∆ ` e : SelfTy[C] (World u) u tail, then Φ;∆ ` pack[C; u; tail; e] : (World u)·C.

5.8. PROPERTIES 79

Proof By inspection of the definitions, using the term formation rules for fold (4.33)

and pack (4.26). 2

Lemma 14 (Well-typed upcast) If Φ;∆ ` e : (World u)·C and C <: A, then

Φ;∆ ` upcast[C; A; u; e] : (World u)·A.

Proof By inspection of the definitions, using the term formation rules for open (4.27)

and unfold (4.34) and lemmas 8, 12, and 13. Unfolding e produces a term of type

ObjTy[C] (World u) u. Opening this introduces type variable tail :: ktail[C] and term

variable x : SelfTy[C] (World u) u tail; call this new environment Φ′;∆′. The body of the

open contains a pack expression, but in order to use lemma 13, we must establish the

following:

1. Φ′ ` Rows[C,A] (World u) u tail :: ktail[A], and

2. Φ′;∆′ ` x : SelfTy[A] (World u) u (Rows[C,A] (World u) u tail).

The first follows from lemma 8. The second reduces to

Φ′ ` SelfTy[A] (World u) u (Rows[C,A] (World u) u tail) =

SelfTy[C] (World u) u tail :: Type

By expanding the definition of SelfTy[·] and applying equivalence rules, it reduces

again to

Φ′ ` Rows[A,Object] (World u) u (Rows[C,A] (World u) u tail) =

Rows[C,Object] (World u) u tail :: ktail[Object]

which follows from lemma 12. Finally, lemma 13 can be invoked to show that the

result of the upcast has type (World u)·A. 2

80 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

5.8.4 Type preservation for expressions

FJ contexts are translated to type environments as follows:

env[u; Γ ,x : D]= env[u; Γ],x : (World u)·D

env[u; ◦]= ◦

Lemma 15 (Context translation) If Φ ` u :: Type and range(Γ) ⊆ cn, then

Φ ` env[u; Γ] type env.

Proof By inspection. 2

Theorem 4 (Type preservation) If Φ ` u :: Type, Φ;∆ ` classes : {Classes (World u) u}

and Γ ` e ∈ C, then Φ;∆,env[u; Γ] ` exp[Γ ; u; classes; e] : (World u)·C.

Proof By induction on the structure of e. We use the following abbreviations: ∆Γ for

env[u; Γ]; ∆′Γ for ∆,∆Γ ; and e for exp[Γ ; u; classes; e].

Case 5.12 e = x and, from (3.15), C = Γ(x). Thus, ∆Γ (x) = (World u)·C and

Φ;∆′Γ ` e : (World u)·C.

Case 5.13 e = e0.fi and C = Ci, where Γ ` e0 ∈ C0 and fields(C0) = C1 f1…Cn fn.

By inductive hypothesis, Φ;∆′Γ ` e0 : (World u)·C0. The code in (5.13) unfolds and

opens e0. Using the same argument as in the proof of lemma 14, this introduces

the type variable tail :: ktail[C0] and term variable x : SelfTy[C0] (World u) u tail;

call this new environment Φ′;∆′′Γ . Unfolding x yields a term of type

{vtab : . . . ; (Rows[C0,Object] (World u) u tail)·f}

Using lemma 7, (fi,Ci) ∈ fieldvec(C0). Using lemma 11, we find that the row

(Rows[C0,Object] (World u) u tail)·f contains a binding fi : (World u)·Ci. Using

5.8. PROPERTIES 81

record selection, Φ;∆′′Γ ` (unfoldx . . .).fi : (World u)·Ci. Exiting the scope of the

open, we conclude Φ;∆′Γ ` e : (World u)·Ci.

Case 5.14 e = e0.m (e1 . . .en), where Γ ` e0 ∈ C0, mtype(m,C0) = D1 . . .Dn → C,

Γ ` ei ∈ Ci, and Ci <: Di, for all i ∈ {1 . . . n}. We use the inductive hypothesis on

e0, and the same unfold-open-unfold argument as in the previous case. Selecting

vtab yields a term of type

{(Rows[C0,Object] (World u) u tail)·m (SelfTy[C0] (World u) u tail)} Using

lemma 6, (m,D1 . . .Dn → C) ∈ methvec(C0). Using lemma 10, the above record

contains a binding

m : (SelfTy[C0] (World u) u tail)→Ty[self;World u; D1 . . .Dn → C]

=m : (SelfTy[C0] (World u) u tail)→(World u)·D1→ . . .

(World u)·Dn→(World u)·C

Thus, selecting m and applying it to x yields a term of type

(World u)·D1→ . . . (World u)·Dn→(World u)·C

Now, for each i in 1 . . . n, we use the inductive hypothesis on ei, concluding that

Φ;∆′Γ ` ei : (World u)·Ci. Using this and Ci <: Di, lemma 14 l tells us that

Φ;∆′Γ ` upcast[Ci; Di; u; ei] : (World u)·Di Finally, using the application

formation rule n times, Φ;∆′Γ ` e : (World u)·C.

Case 5.15 e = new C (e1 . . .en), where Γ ` ei ∈ Ci, fields(C) = D1 f1…Dn fn, and

Ci <: Di for all i in 1 . . . n. From the premise Φ;∆ ` classes : {Classes (World u) u}

using the rules for selection (of C), application, and selection (of new), the new

component has type (World u)·D1→ . . . (World u)·Dn→(World u)·C. Just as in the

previous case, we use the inductive hypothesis and lemma 14 on each ei. Again,

82 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

using the application formation rule n times yields Φ;∆′Γ ` e : (World u)·C.

Case 5.16 follows from inductive hypothesis and lemma 14.

Case 5.17 e = (C) e0 where Γ ` e0 ∈ D. We use the inductive hypothesis on e0

and the usual unfold-open-unfold sequence. We select dyncast from the vtab and

self-apply; this produces a polymorphic function of type

∀α. (u→maybe α)→maybe α

Next we instantiate α with (World u)·C and apply to the class tag, which the

correct type: u→maybe (World u)·C. The result has type maybe (World u)·C, and

using the case formation rule, the first branch has type (World u)·C. The other

branch aborts evaluation, but is regarded as having the same type. So, finally,

Φ;∆′Γ ` e : (World u)·C. 2

5.8.5 Class components

Lemma 16 (Well-typed constructor) If Φ ` u :: Type and

Φ;∆ ` vtab : Dict[C] (World u) u (SelfTy[C] (World u) u Empty[C]), then

Φ;∆ ` new[C; u; vtab] : Ctor[C] (World u).

Proof By inspection, using lemma 11. 2

Lemma 17 (Well-typed dictionary) If Φ ` u :: Type, Φ;∆ ` inj : (World u)·C→u, and

Φ;∆ ` classes : {Classes (World u) u}, then

Φ;∆ ` dict[C; u; inj; classes] : ∀tail.Dict[C] (World u) u (SelfTy[C] (World u) u tail).

Proof By inspection, using lemma 10. 2

Theorem 5 (Well-typed class declaration) Φ;∆ ` cdec[C] : ClassF [C]

Proof By inspection, using lemmas 16 and 17 for the non-trivial class components.2

5.9. RELATED WORK 83

Theorem 6 (Well-typed linkage)

Φ;∆ ` link : {(C : ClassF [C]) C∈cn}→{Classes (World Univ) Univ}

Proof By inspection. 2

5.9 Related work

Fisher and Mitchell (1998) use extensible objects to model Java-like class constructs.

Our encoding does not rely on extensible objects as primitives, but it may be viewed as

an implementation of some of their properties in terms of simpler constructs. Rémy and

Vouillon (1997) use row polymorphism in Objective ML for both class types and type

inference on unordered records. Our calculus is explicitly typed, but we use ordered

rows to represent the open type of self.

Because it uses standard existential and recursive types, our object representation

is superficially similar to several of the classic encodings in Fω-based languages (Bruce,

Cardelli, and Pierce 1999; Pierce and Turner 1994). As in the work of Abadi, Cardelli,

and Viswanathan (1996), method invocation uses self-application; however, we hide the

actual class of the receiver using existential quantification over row variables instead of

splitting the object into a known interface and a hidden implementation. This allows

reuse of methods in subclasses without any overhead. We use an analog of the recursive-

existential encoding due to Bruce (1994) to give types to other arguments or results

belonging to the same class or a subclass, as needed in Java, without over-restricting

the type to be the same as the receiver’s.

Several other researchers describe type-preserving compilation of object-oriented

languages. Wright et al. (1998) compile a Java subset to a typed intermediate language,

but they use unordered records and resort to dynamic type checks because their sys-

tem is too weak to type self application. Crary (1999) encodes the object calculus of

Abadi and Cardelli (1996) using existential and intersection types in a calculus of coer-

84 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

cions. Glew (2000a) translates a simple class-based object calculus into an intermediate

language with F-bounded polymorphism (Canning et al. 1989; Eifrig et al. 1995) and a

special ‘self’ quantifier.

Comparing object encodings

A more detailed comparison with the work of Glew and Crary is worthwhile. The three

encodings share many similarities, and appear to be different ways of expressing the

same underlying idea. In this section, we will attempt to clarify the connections between

them. Following Bruce, Cardelli, and Pierce (1999), we can specify object interfaces as

type operators, so that the type of the self argument can be plugged in. The Point

interface, for example, would be represented as IP = λα::Type. {getx :α→int}.

An F-bounded quantifier (Canning et al. 1989) permits a quantified type variable to

appear in its own bound. Glew used a twist on F-bounded polymorphism to encode

method tables that could be reused in subclasses. This leads naturally to an object

encoding using an F-bounded existential (FBE): ∃α ≤ I(α).α, which Glew writes as

self α.I(α). Typically, the witness type is recursive; it is a subtype of its unrolling.

The connection between self and the F-bounded existential was recognized indepen-

dently by Glew (2000c) and ourselves. We can derive the rules governing self from those

for F-bounded existentials. Glew uses equi-recursive types in (2000a); a restriction to

iso-recursive types is possible, though awkward (Glew 2000b). The rules for packing and

opening self types must simultaneously fold and unfold in precisely the right places.

Self application is typable in FBE because the object, via subsumption, enjoys two

types: the abstract type α and the interface type I(α). Crary (1999) encodes precisely

the same property as an intersection type: ∃α.α ∧ I(α). Again, the witness type is

recursive. With equi-recursive types, a value of type µ I also has type I (µ I); it could be

packaged asα∧I(α). Crary makes this encoding practical using a calculus of coercions—

explicit retyping annotations. Coercions can drop fields from the end of a record, fold

5.9. RELATED WORK 85

and unfold recursive types, mediate intersection types, and instantiate quantified types.

All coercions are erasable.

We will now show how our own encoding, based on row polymorphism, relates to

these. A known technique for eliminating an F-bound is to replace it with a higher-

order bound and a recursive type. That is, we could represent ∃α ≤ I(α).α as ∃δ ≤

I.µ δ. Using a point-wise subtyping rule, the interface type operators themselves enjoy

a subtyping relationship. Iso-recursive types can be used directly with this technique

because the fixed point is separate from the existential.

Next, though it is less efficient, we can implement the higher-order subtyping with

a coercion function:

∃δ :: Type⇒Type.{c : δ(µ δ)→ I (µ δ), o : µ δ}

To select a method from an object, we first open the package, select the coercion c, and

apply it to the unfolding of o. This yields an interface whose methods are then directly

applicable to o. Now we no longer require subtyping.

Using a general function for this coercion yields more flexibility than we require to

implement Java. All the function ever needs to do is drop fields from records. With row

polymorphism, we can express the result of pre-applying the coercions at all levels. Now

we no longer require inefficient coercions. The encodings of Crary and Glew work by

supplying two distinct views of the object: an abstract subtype of a concrete interface

type. With row polymorphism, that distinction is unnecessary; we can hide just the

unknown portion of the interface directly.

All three of these encodings appear to be efficient. In an untyped dynamic semantics,

their object representations are precisely the same. The major differences among them

are in the strength of the underlying type theory: Glew uses subtyping and F-bounded

quantifiers; Crary uses intersection types; we use row polymorphism. In our experience,

86 CHAPTER 5. A TYPE-PRESERVING TRANSLATION

row polymorphism is the most conservative extension to plain Fω—they hardly affect

the soundness proof at all. Subtyping and F-bounded quantifiers are a more drastic

extension to Fω. To our knowledge, ours is the only one of these encodings to have

been implemented in a real system.

Chapter 6

Beyond Featherweight: the rest of Java

Chapters 3 through 5 presented the major theoretical results of this dissertation: an

object-oriented source language, a sound and decidable target language, a formal type-

preserving translation, and proofs of many important properties. The remaining chap-

ters supplement these theoretical results by discussing how they extend to a full system

and by examining many implementation issues.

Featherweight Java, of course, is only the most rudimentary fragment of the full Java

language. It includes classes, inheritance, dynamic dispatch, and dynamic casts. It was

ideal for the formal part of our work because it made the translation and proofs rea-

sonably comprehensible. Our implementation, however, supports many Java features

that are not part of FJ: interfaces, constructors, static members, null objects, mutable

fields, super calls, exceptions, and privacy. Some advanced features of Java are not

currently supported, but are the subject of ongoing research: protected and package

scopes, native code, dynamic class loading, the reflection API, and concurrency.

This chapter informally describes some significant extensions to our translation. We

believe that, given a Java calculus with these extensions, the type preservation theorem

would still hold. Unfortunately, Java formalizations with these additional features are

easily an order of magnitude more complex than FJ—see Drossopoulou and Eisenbach

87

88 CHAPTER 6. BEYOND FEATHERWEIGHT: THE REST OF JAVA

(1999) or Flatt, Krishnamurthi, and Felleisen (1999), for example. We have not found

a way to manage such additional complexity in our translation while still maintaining

readability and detailed proofs.

We begin with features that are handled relatively easily in our translation, even

though some of them are tough to formalize. Static members, interface fields, and

multiple parameterized constructors can be added to the class record, along with the

dictionary and tag. Mutable fields are easily modeled using mutable records. As re-

quired by the JVM, the new function allocates the object record with a default ‘zero’

value for each field. Then any public constructor can be invoked to assign new values

to the fields. Super invocations select the method statically from the super class dictio-

nary (as is currently used in dyncast). Java exceptions work similarly to those of SML.

Java’s instanceof uses the same mechanism as dynamic cast, but is simpler since it just

returns a boolean value.

Private methods are defined along with the other methods. Since they can neither

be called from subclasses nor overridden, we simply omit them from the vtable and

dictionary. We do not yet support protected and package scopes, however, because

they transcend compilation unit boundaries. In Moby, Fisher and Reppy (1999) use two

distinct views of classes, a class view and an object view. These correspond roughly to

the dict and new fields of our class encoding. If we export a class outside its definitional

package, all protected methods and fields should be hidden from the object view but

not the class view while those of package scope should be hidden from both.

Null references are easily encoded by lifting all external object types to sum types

with a null alternate (just like the maybe type). Then, all object operations must verify

that the object pointer is not null. Our target calculus, unlike JVML, can express that an

object is non-null, so null pointer checks can be safely hoisted.

6.1. PRIVATE FIELDS 89

6.1 Private fields

Private fields can be hidden from outsiders using existential types. For convenience,

assume that the private fields of each class in the hierarchy are collected into separate

records. Suppose that Point has private fields x and y, and public field z; and ScaledPoint

has private field s. The layout for a ScaledPoint object would be {vtab, Pt : {x, y}, z, SPt : {s}}.

With the private fields separated like this, it is easy to hide their types separately. (Using

a flat representation is possible, but this separation allows a simpler, more orthogonal

presentation.) We embed each class functor in an existential package, where the witness

type includes the types of the private fields of that class:

CPt = 〈priv::Type={x, y}, cdec[Pt] : . . .〉

From inside class ScaledPoint, we open the Point package, binding a type variable α to

represent the private fields of Point:

CSPt = open CPt as 〈α::Type, super : . . .〉

in 〈priv::Type={s}, cdec[SPt] : . . .〉

Then, our local view of the object from within the subclass is

{vtab, Pt :α, z, SPt : {s}}

As required, the private fields of the super class are hidden. Using dot notation (Cardelli

and Leroy 1990) for existential types (instead of open) makes this encoding more con-

venient, but is not necessary.

Unfortunately, privacy interacts with mutual recursion. Suppose that A has a pri-

vate field b of class B and that B has a method getA that returns an object of class A.

From within class A, accessing this.b is allowed, as is invoking this.b.getA(). It is more

90 CHAPTER 6. BEYOND FEATHERWEIGHT: THE REST OF JAVA

difficult to design an encoding that also allows this.b.getA().b. Using the existential

interpretation of privacy described above, each class has its own view of the types of all

other objects. From within class A, private fields of other objects of class A are visible.

Private fields of objects of other classes are hidden, represented by type variables. In

our example, this.b would have a type something like “B with private fields β” where β

is the abstract type. Likewise, from within class B, the type of method getA might be

self→(“A with private fields α”). The challenge is to allow class A to see that the α in

the type of getA is actually the known type of its own private fields.

Propagating this information is especially tricky given the limitations of the iso-

recursive types used in our target calculus. We found a solution that does not require

extending the language. We parameterize everything (including the hidden type itself)

by the types of objects of other classes. Then, each class can instantiate the types of

the rest of the world using concrete types for its own private fields (wherever they may

lurk in other classes) and abstract types for the rest. The issues are subtle, and a formal

treatment is outside the scope of my thesis.

Extending Featherweight Java with privacy would help elucidate the technique, but

this in itself is non-trivial. Were we to extend FJ and formalize a translation with privacy,

we would then like to prove that privacy is preserved in the target language. That

is, we would expect the type system to ensure that another module (even if it is not

translated from Java) cannot access the private fields. Unfortunately, this would not

be a corollary of the type preservation theorem. Rather, it is related to a property

called full abstraction, meaning that abstraction properties in the source language are

also protected in the target language. It is still unclear whether our encoding—or the

encodings of Crary (1999) or Glew (2000a), for that matter—enjoys full abstraction.

6.2. INTERFACES 91

6.2 Interfaces

Given an object of interface type, we know nothing about the shape of its vtable. There

are various ways of locating methods in interface objects. Proebsting et al. (1997) con-

struct a per-class dictionary that maps method names to offsets in the vtable. Krall

and Grafl (1997) construct a separate method table (called an itable) for each declared

interface, storing them all somewhere in the vtable. Although they are not clear on how

to use the itable, there appear to be two choices. First, we can search for the appropriate

itable in the vtable, which amounts to lookup of interface names rather than method

names. Second, when casting an object from class type to interface type, we can select

the itable and then pair it with the object itself. This avoids name lookup entirely but

requires minor coercions when casting to and between interface types.

Our translation can be extended to support both strategies. For the first strategy, all

we need is to introduce unordered records into our target language with a primitive for

dictionary lookup. This just means that records with permuted fields are considered

equivalent, and that selecting a field from a record is expensive because offsets must

be computed at run time. All the itables for a class would be collected into a separate

unordered record, itself an element of the still ordered vtable. Then, casting an object

to an interface type only requires repackaging (a runtime no-op) to hide those entries

not exported by the current interface.

We can also follow the latter strategy, representing interface objects as a pair where

the type of the underlying object is concealed by an existential type. For example, an

object which implements the Runnable interface includes a method run() which can be

invoked to start a new thread. In our target language, a Runnable object r is represented

as ∃α::Type. {itab : {run :α→1}, obj :α}. To invoke the method, we open the existential,

select the method from the itab, select the obj, and apply. With this representation,

92 CHAPTER 6. BEYOND FEATHERWEIGHT: THE REST OF JAVA

interface method invocations are about the same cost as normal method invocations:

open r as 〈β::Type, z : {itab : {run :β→1}, obj :β}〉

in z.itab.run (z.obj)

The caveat is that upward casts to interface types are no longer free. To perform the

cast, we must select the target interface’s itable from the object and pair it with the

object itself.

Chapter 7

Functional Java Bytecode

We have presented a formal translation of a Java calculus, proved that it preserves types,

and argued that it can be extended to most of Java. Now, we turn to more detailed

implementation concerns. The first design decision we encountered was whether to

accept Java source code as input! An interesting alternative is to accept the output

of javac: class files containing Java bytecode, also known as the Java Virtual Machine

Language (JVML).

Although JVML uses untyped local variables and is difficult to analyze, in some ways

it contains more information than Java source code. Identifiers are already resolved,

and the types of all fields and methods mentioned in the code are included—even if

they are defined in other classes. We decided to let javac perform these menial tasks,

so that we could concentrate on compiling JVML to a typed intermediate language. This

has been a fruitful path.

In compiling JVML, there are two orthogonal sets of issues. The first set, which

we addressed in the formal translation, concerns encoding Java features like method

invocation and dynamic cast. The second set of features has to do with control and data

flow. Java bytecode is a linear instruction stream that uses an implicit operand stack,

untyped local variables, and jumps.

93

94 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

To realize this separation of concerns in our implementation, we designed λJVM as

an intermediate language that sits between JVML and JFlint. Its control and data flow

are just like a λ-calculus, but it retains the types and primitive instructions of JVML.

Apart from its role in our system, λJVM is a good alternative to Java bytecode for

virtual machines or compilers which optimize methods and produce native code. It is

already in a form that, like static single assignment (Alpern, Wegman, and Zadeck 1988),

makes data flow explicit. In addition, λJVM is cleaner to specify and simpler to verify

than JVML.

7.1 Design

λJVM is a simply-typed λ-calculus expressed in A-normal form (Flanagan et al. 1993)

and extended with the types and primitive instructions of the Java virtual machine. The

syntax is given in figure 7.1 on the next page. We use terms e in place of the bytecode

for method bodies; otherwise the class file format remains the same. A-normal form

ensures that functions and primitives are applied to values only; the let syntax binds

intermediate values to names. A nested algebraic expression such as (3 + 4) × 5 is

expressed in A-normal form as let x = 3+ 4; let y = x × 5; return y .

By simply-typed, we mean that there are primitive and function types, but no poly-

morphic or user-defined type constructors. Types include integers I, floats F, and the

rest of Java’s primitive types. V is the void type, used for methods or functions which

do not return a value. Class or interface names c also serve as types. c0 indicates

an uninitialized object of class c. We describe our strategy for verifying proper object

initialization in section 7.3.

The set type {c} represents a union. Normally we can treat {a,b, c} as equivalent

to the name of the class or interface which is the least common ancestor of a, b, and c

in the class hierarchy. For interfaces, however, a usable ancestor does not always exist;

7.1. DESIGN 95

Types τ ::= I | F | . . . | V | c | τ[]
| c0 | {c} | (τ)→ τ

Values v ::= x | i | r | s | null[τ] | λ (x : τ) e
Terms e ::= letrec x = v. e | let x = g; e | g; e

| if br[τ] v v then e else e
| return | return v | v (v) | throw v

Guards g ::= p | p handle v (v)

Primops p ::= new c | chkcast c v | instanceof c v
| getfield fd vo | putfield fd vo v
| getstatic fd | putstatic fd v
| invokevirtual md vo (v)
| invokeinterface md vo (v)
| invokespecial md vo (v)
| invokestatic md (v)

| bo[τ] v v | neg[τ] v | convert[τ0, τ1] v

| newarray[τ] vn | arraylength[τ] va
| aload[τ] va vi | astore[τ] va vi vo

Branches br ::= eq | ne | lt | le | gt | ge
Binops bo ::= br | add | mul | div | and | or | . . .

Field descriptor fd ::= τ c.f
Method descriptor md ::= c.m(τ)τ

Figure 7.1: Method syntax in λJVM

see section 7.3. Finally, (τ)→ τ is the type of a λJVM function with multiple arguments.

Values include names x (introduced by let), constants of various types, the null

constant (null[τ] for a given array or object type τ), and, finally, anonymous functions

λ (x : τ) e. The names and types of arguments are written inside the parentheses, and

followed by e, the function body.

Terms include two binding forms: letrec binds a set of mutually recursive func-

tions; let x = g; e executes the (possibly guarded) primitive operation g, binds the

result to x, and continues executing e. If we are uninterested in the result of a primop

(or it does not produce a result), the sequencing form g; e may be used instead of

let. The guard handle v (v) on a primitive indicates where to jump if the operation

96 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

throws an exception. Conditional branches are used for numeric comparisons and for

testing whether reference values are null. For brevity, we omit the lookupswitch and

tableswitch of the Java virtual machine. Finally, the base cases can return (with an

optional value), call a function, or throw an exception.

The primitive operations cover those JVML instructions that are not for control flow

or stack manipulation. They may be grouped into three categories: object, numeric,

and array. Object primops include new, the dynamic cast and instanceof predicate,

field accesses, and method calls. Field and method descriptors include the class name

and type, just as they do in the JVM. Numeric primops are the usual arithmetic and

conversions. Branches, when used as primops, return boolean values. Array primops

create, subscript, update, and return the length of an array. We use square brackets for

type parameters which, in JVML, are part of the instruction. Thus, iadd is expressed as

add[I], fmul is mul[F], and i2f is convert[I,F]. We omit multi-dimensional arrays,

monitorenter and monitorexit for brevity.

There are three important things to note about λJVM. First, it is functional. There is

no operand stack, no local variable assignment, and all data flow is explicit. Second, it is

impossible to call a function and continue executing after it returns: lety = f (x); . . .

is not valid syntax. Therefore all function calls can be implemented as jumps. (Tail call

optimization is standard practice in compilers for functional languages.) This makes

λJVM functions very lightweight; more akin to basic blocks than to functions in C.

Third, functions are first class and lexically scoped. We use higher-order functions

to implement subroutines and exception handlers. Importantly, functions in λJVM can-

not escape from the method in which they are declared. Except for the entry point of a

method, call sites of all λ-functions are known. This means a compiler is free to use the

most efficient calling convention it can find. Typically, each higher-order function is rep-

resented as a closure—a pair of a function pointer and an environment containing values

for the free variables (Landin 1964). This representation is convenient, consistent, and

7.2. TRANSLATION 97

public static void m (int i) {
Pt p = new IntPt(i);
for (int j = 1; j < i; j *= 2) {

p = new ColorPt(j);
}
p.draw();
return;

}

Figure 7.2: A sample Java method with a loop

compatible with separate compilation, but many other techniques are available. Our

implementation currently uses defunctionalization (Reynolds 1972), but that is just a

detail.

Kelsey (1995) and Appel (1998) have observed that A-normal form for functional

programs is equivalent to the static single assignment (SSA) form used in many opti-

mizing compilers to make analyses clean and efficient. This is why λJVM is preferable

to stack-based Java bytecode for virtual machines and compilers that optimize methods

and produce native code—it is already in a format suitable for analysis, optimization,

and code generation. Furthermore, as we discuss in section 7.3, type checking for λJVM

is far simpler than standard class file verification.

7.2 Translation

In this section, we describe informally how to translate JVM bytecode to λJVM. Figure 7.2

contains a simple Java method which creates objects, invokes a method, and updates

a loop counter. Suppose that IntPt and ColorPt are both subclasses of Pt. With this

example, we will demonstrate set types and mutable variable elimination.

Figure 7.3 shows the bytecode produced by the Sun Java compiler. The first step

in transforming the bytecode to λJVM is to find the basic blocks. This method begins

with a block that allocates and initializes an IntPt, initializes j, then jumps directly

98 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

public static m(I)V
new IntPt
dup
iload_0
invokespecial IntPt.<init>(I)V
astore_1 ; p = new IntPt(i)
iconst_1
istore_2 ; j = 1
goto C

B: new ColorPt
dup
iload_2
invokespecial ColorPt.<init>(I)V
astore_1 ; p = new ColorPt(j)
iload_2
iconst_2
imul
istore_2 ; j *= 2

C: iload_2
iload_0
if_icmplt B ; goto B if j < i
aload_1 ; p.draw()
invokevirtual Pt.draw()V
return

Figure 7.3: The same method compiled to JVML

public static m(I)V = λ (i : I)
letrec C = λ (p : {IntPt,ColorPt}, j : I)

if lt[I] j i then B (p, j)
else invokevirtual Pt.draw()V p ();

return.
B = λ (p : {IntPt,ColorPt}, j : I)

let q = new ColorPt;
invokespecial ColorPt.<init>(I)V q (j);
let k = mul[I] j 2;
C (q, k).

let r = new IntPt;
invokespecial IntPt.<init>(I)V r (i);
C (r , 1)

Figure 7.4: The same method translated to λJVM

7.2. TRANSLATION 99

to block C. C does the loop test and either jumps to B (the loop body) or falls through

and returns. The loop body creates a ColorPt, updates the loop counter, and then falls

through to the loop test.

Next, data flow analysis must infer types for the stack and local variables at each

program point. This analysis is also needed during bytecode verification. In the be-

ginning, we know that local variable 0 contains the method argument i and the stack

is empty. (For virtual methods, local 0 contains this.) Symbolic execution of the first

block reveals that, upon jumping to C, local 1 contains an IntPt and local 2 contains

an int. We propagate these types into block C, and from there into block B. During

symbolic execution of B, we store a ColorPt into local 1. Since the current type of local

1 is IntPt, we must unify these. Fortunately, we can unify these in λJVM without even

knowing where they fit into the class hierarchy—we simply place them into a set type.

Now local 1 has type {IntPt,ColorPt}. If two types cannot be unified (int and IntPt,

for example), then the variable is marked as unusable (void). Block C is a successor

of B, and since the type of local 1 has changed, we must check it again. Nothing else

changes, so the data flow is complete and we know the types of the locals and the stack

at the start of each block.

Next we use symbolic execution to translate each block to a λ-function. The type

annotations within each λ-binding come directly from the type inference. For each

instruction which pushes a value onto the operand stack, we push a value (either a

fresh name or a constant) onto the symbolic stack. For each instruction which fetches

its operands from the stack, we harvest the values from the symbolic stack and emit the

corresponding primop. Figure 7.4 shows the resulting code. The method is a λ-function

with an argument i. B and C are functions implementing the basic blocks of the same

name, and the code of the first block follows. The loop counter is updated by passing a

new value to function C each time around the loop. Since the argument i is unchanged

in the method, we have lifted its binding so that the other two blocks are within its

100 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

scope.

We used this rather simple example to illustrate the basic principles, but two JVML

features prove quite challenging: subroutines and exception handlers.

7.2.1 Subroutines

The Java compiler uses subroutines to implement finally blocks (Lindholm and Yellin

1999). Other compilers that target JVML could, of course, use them for other reasons.

The jsr instruction pushes a return address onto the stack and transfers control to the

specified label. The ret instruction jumps back to the return address in the specified

local variable.

Subroutines pose three major challenges. First, they are “polymorphic over the types

of the locations they do not touch” (Stata and Abadi 1998). As long as a subroutine

ignores local 2, say, it could contain an integer at one call site and a float at another.

Second, since return addresses can be stored in local variables, subroutine calls and

returns need not obey a stack discipline. Indeed, they need not return at all. In Java, we

need only to place a break or continue inside a finally block to produce a subroutine

which ignores its return address and jumps elsewhere. Finally, a subroutine might

update a local variable. Since locals are not mutable in λJVM, the subroutine must

explicitly pass the new value back to the caller.

We solve these problems using the continuation-passing idiom from functional pro-

gramming. The subroutine takes a higher-order function (called the return continuation)

in place of a return address. Any values the subroutine might change are passed to the

return continuation as arguments; any free variables in the continuation are preserved

across the call.

An example is worthwhile; see figure 7.5 on the facing page. The subroutine S has

two call sites. In the first, local 1 is uninitialized; in the second, it contains a string. The

subroutine either updates local 0 and returns normally or jumps directly to the end of

7.2. TRANSLATION 101

public static f(I)V
jsr S
ldc "Hello"
astore_1

L: jsr S
aload_1
invoke println
goto L

S: astore_2 ; ret addr
iload_0
ifeq R
iinc 0 -1
ret 2

R: return

Figure 7.5: A complex example with subroutines

public static f(I)V = λ (n : I)
letrec S = λ (i : I, r : (I)→ V)

if eq[I] i 0 then return
else let j = add[I] i -1;

r (j).
L = λ (i : I, s : String)

S (i, λ (j : I) invoke println s; L (j, s)).
S (n, λ (j : I) L (j, "Hello"))

Figure 7.6: Translation involving subroutines

the method. Bytecode verification is much trickier in the presence of subroutines, and

our type inference phase is no different. We must unify the types of locals at different

call sites, and decide which are passed to the subroutine, which are passed back to the

caller, and which are otherwise preserved across the call.

A translation of the example appears in figure 7.6. The subroutine S takes an ar-

gument r of type (I) → V; this is the return continuation. In one branch, it returns

from the method, in the other, it jumps to the continuation, passing the new value of

local 0. Now consider the two call sites of S. Inside L the string s is a free variable of

the functional argument, so it is preserved across the call.

This solution works quite well. We used Jasmin, a JVML assembler (Meyer and Down-

102 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

ing 1997), to generate a series of convoluted test cases that do not arise from typical

Java compilers. Our code translated all of them correctly. We emphasize again that

these higher-order functions can be compiled away quite efficiently in λJVM since all

call sites are known.

7.2.2 Exception handlers

The throw expression should only be used to signal exceptions that exit the current

method. For exceptions handled within the current method, we jump directly to a

block implementing the handler. The handle suffix on primitive operations is inspired

by the also-unwinds-to feature of C–– (Ramsey and Peyton Jones 2000), and it serves two

distinct purposes.

Consider a primitive (such as getfield) that might raise an exception, but that will

later be expanded to low-level code. The code will first perform a null check. If it

succeeds, the offset corresponding to the field is dereferenced. If the check fails, then

an exception is thrown. In this case, once the null check is expanded, the failure branch

jumps directly to the handler and the handle annotation disappears.

Primitives, such as method invocation, that involve out-of-method function calls

work differently. In these cases, the exception could be thrown further down the call

stack. The handle annotation indicates to the compiler that the function has an abnor-

mal return path. The throw, then, is just an abnormal return. Ramsey and Peyton Jones

(2000) describe a code generation trick due to Atkinson, Liskov, and Scheifler (1978)

where a table of continuation branches follows the call instruction. By adding an offset

to the return address, the callee can select which return path to take.

In contrast to Java, λJVM does not specify a series of handlers based on the exception

sub-class. The single handler must explicitly query the dynamic class of the exception

and dispatch accordingly.

7.3. VERIFICATION 103

7.3 Verification

The JVM specification (Lindholm and Yellin 1999) defines a conservative static analy-

sis for verifying the safety of a class file. Code which passes verification should not,

among other things, be able to corrupt the virtual machine which executes it. One of the

primary benefits of λJVM is that verification reduces to simple type checking. Most of

the analyses required for verification are performed during translation to λJVM. The re-

sults are then preserved in type annotations, so type checking can be done in one pass.

Our type checker is less than 260 lines of ML code, excluding the λJVM data structure

definitions.

Two of the most complex aspects of class file verification are subroutines (Stata

and Abadi 1998) and object initialization (Freund and Mitchell 1999). We have already

seen how subroutines disappear, but let us explore in detail the problem of object

initialization.

7.3.1 Object initialization

Our explanation of the problem follows that of Freund and Mitchell (1999). In Java

source code, the new syntax allocates and initializes an object simultaneously:

Pt p = new Pt(i); p.draw();

In bytecode, however, these are separate instructions:

new Pt ; alloc
dup
iload_0
invokespecial Pt.<init>(I)V ; init
invokevirtual Pt.draw()V ; use

Between allocation and initialization, the pointer can be duplicated, swapped, stored in

local variables, etc. Once we invoke the initializer, all instances of the pointer become

safe to use. We must track these instances with some form of alias analysis. The

104 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

following code creates two points; the verifier must determine whether the drawn point

is properly initialized.

1: new Pt
2: dup
3: new Pt
4: swap
5: invokespecial Pt.<init>()V
6: pop
7: invokevirtual Pt.draw()V

This code would be incorrect without the pop.

Lindholm and Yellin (1999) describe the conservative alias analysis used by the Sun

verifier. The effect of the new instruction is modeled by pushing the Pt type onto the

stack along with an ‘uninitialized’ tag and the offset of the instruction which created it.

To model the effect of the initializer, update all types with the same instruction offset,

marking them as initialized. Finally, uninitialized objects must not exist anywhere in

memory during a backward branch.

In λJVM, many aliases disappear with the local variable and stack manipulations.

Every value has a name and a type. The new primop introduces a name with uninitialized

object type c0. The initializer then updates the type of its named argument in the

environment. After translating the previous example to λJVM, it is clear that the drawn

object is initialized:

let x = new Pt;
let y = new Pt;
invokespecial Pt.<init>()V x;
invokevirtual Pt.draw()V x;

After invokespecial, the type environment contains x 7→ Pt and y 7→ Pt0.

Aliases can also occur in λJVM when the same pointer is passed as two arguments to

a basic block. Translating the Java statement new Pt (f? x : y) to JVML introduces

a branch between the new and the invokespecial. A naïve translation to λJVM might

introduce an alias because the same pointer exists in two locations across basic blocks.

7.3. VERIFICATION 105

c ∈ {c}
c à {c}

{c1} ⊆ {c2}
{c1} à {c2}

τ à τ′

τ[] à τ′[]
c à c′ ∀c ∈ {c}

{c} à c′
(∗)

Figure 7.7: Selected typing rules

Our inference algorithm employs the same technique as the Sun verifier—mark the

uninitialized object arguments with the offset of the new instruction. Then, we recognize

arguments that are aliases and coalesce them.

7.3.2 Subtyping and set types

Two other interesting aspects of the λJVM type system are the subtype relation and the

set types. The subtype relation (τ à τ′) handles numeric promotions such as I à F. On

class and interface names it mirrors the class hierarchy. The rules for other types are

in figure 7.7. The curly typewriter braces { · } are the λJVM set types and the Roman

braces {·} are standard set notation.

The set elimination rule (∗) is required when a value of set type is used in a primop

with a field or method descriptor. In function C of figure 7.4, for example, p is used as

the self argument for method draw in class Pt. The type of p is {IntPt,ColorPt}, so

the type checker requires IntPt à Pt and ColorPt à Pt.

In our example, we could have used the super class type Pt in place of the set

{IntPt,ColorPt}, but with interfaces and multiple inheritance, this is not always pos-

sible. Both Goldberg (1998) and Qian (1999) have observed this problem; the example

in figure 7.8 on the next page is from Knoblock and Rehof (2000). What is the type of x

after the join? The only common super type of A and B is Object. But then the method

invocations would not be correct. We must assign to x the set type {A,B}. For the first

method invocation, the type checker requires that {A,B} à SA. For the second invo-

106 CHAPTER 7. FUNCTIONAL JAVA BYTECODE

interface SA { void saMeth(); }
interface SB { void sbMeth(); }
interface A extends SA, SB {…}
interface B extends SA, SB {…}

public static void (boolean f, A a, B b) {
if (f) { x = a; }
else { x = b; }
x.saMeth();
x.sbMeth();

}

Figure 7.8: The need for set types

cation, {A,B} à SB. These subtyping judgments are easily derived from the interface

hierarchy (A à SA, B à SA, A à SB, and B à SB) using the set elimination rule (∗).

We utilize subtypes either by subsumption (if v has type τ and τ à τ′ then v also

has type τ′) or as explicit coercions (let x = convert[τ, τ′] v; . . . where τ à τ′).

Our type checker accepts the former but can automatically insert explicit coercions as

needed.

7.4 Implementation

We have implemented the translation from Java class files to λJVM. After parsing the

class file into a more abstract form, methods are split into basic blocks. Next, type

inference determines the argument types for each basic block. It determines subroutine

calling conventions and eliminates aliased arguments. Finally, the translation phase

uses the results of type inference to guide conversion to λJVM. Our type checker verifies

that the translation produced something sensible and checks those JVM constraints that

were not already handled during parsing and inference. λJVM is a significant component

of our prototype; some measurements are given in the next chapter.

Because our application does not require it, we have not implemented serialization

7.5. RELATED WORK 107

for λJVM programs. We could borrow the byte codes from JVML for primops, and then

use relative instruction offsets for representing let-bound names. Or we could follow

Amme et al. (2001), who describe two innovative encoding techniques—referential in-

tegrity and type separation—in which only well-formed programs can be specified. That

is, programs are well-formed by virtue of their encoding.

7.5 Related work

Katsumata and Ohori (2001) translate a subset of JVML into a λ-calculus by regarding

programs as proofs in different systems of propositional logic. JVML programs corre-

spond to proofs of the sequent calculus; λ-programs correspond to natural deductions.

Translations between these systems yield translations of the underlying programs. This

is a very elegant approach—translated programs are type-correct by construction. Un-

fortunately, it seems impossible to extend it to include JVML subroutines and excep-

tions.

Gagnon, Hendren, and Marceau (2000) give an algorithm to infer static types for

local variables in JVML. Since they do not use a single-assignment form, they must

occasionally split variables into their separate uses. Since they do not support set types,

they insert explicit type casts to solve the multiple interface problem described above.

Amme et al. (2001) translate Java to SafeTSA, an alternative mobile code represen-

tation based on SSA form. Since they start with Java, they avoid the complications of

subroutines as well as the multiple interface problem. Basic blocks must be split wher-

ever exceptions can occur, and control-flow edges are added to the catch and finally

blocks. Otherwise, SafeTSA is similar in spirit to λJVM.

Chapter 8

A Prototype Compiler for Java and ML

Previous chapters of this dissertation defined a flexible typed intermediate language,

proposed efficient implementations of many Java features within that language, and

described a high-level representation of Java bytecode. To demonstrate these ideas with

real programs, we synthesized all of them within a prototype compiler. It compiles both

Java and ML programs using the same back end support and runtime system.

8.1 Design

We started with version 110.30 of the Standard ML of New Jersey compiler (Appel and

MacQueen 1991), featuring the FLINT typed intermediate language (Shao 1997; Shao,

League, and Monnier 1998). Our first step was to develop and export support modules

within the compiler that enable regular SML programs to build, compile, and link FLINT

code directly. Previously, the FLINT functionality was available only as an integrated

part of the SML compiler.

Figure 8.1 on the following page gives the signature of a support module that queries

the SML/NJ static environment and provides representations of ML types, constructors,

and values that can be linked into a new FLINT program before it is compiled. For

109

110 CHAPTER 8. A PROTOTYPE COMPILER FOR JAVA AND ML

signature IMPORTS = sig
type imports
val empty : imports
val importVal : imports × string

→ imports × FLINT. lvar × FLINT. ty
val importTyc : string → Access. consig × FLINT. ty
val importCon : string → FLINT.dcon
val close : imports × JFlint .exp → JFlint .prog
exception Unbound of string

end

Figure 8.1: Importing FLINT code from the SML/NJ static environment

example, to use the input/output library of ML from FLINT code, one will need the type

of a text output stream:

Imports.importTyc "TextIO.outstream"

The imports type tracks all the values that are imported while building a piece of FLINT

code, so that the close function can link them into create a closed program, ready to

pass to the type checker or back end.

We added row kinds and existential types to FLINT and called this extension JFlint—

figure 8.2 on the next page contains part of its signature. Compared to the abstract

syntax of figure 4.1, the implemented version is in A-normal form. Expressions ending

with id × exp bind their result to identifier id in the scope of exp. We updated the type

checker and optimization phases to recognize the new features in JFlint, but left the

code generator and runtime system unchanged.

Finally, we implemented the Java front end as a regular SML program. It parses Java

class files, analyzes their methods, and translates them to λJVM. At this stage, we could

perform class hierarchy analysis or other object-aware optimizations (Dean, Grove, and

Chambers 1995; Dean et al. 1996) because the classes and method calls are still explicit.

From the constant pool, the front end determines what other classes must be loaded.

8.1. DESIGN 111

signature JFLINT = sig
datatype value (* identifiers and constants *)

= Var of id | Int of Int32 . int | String …

datatype exp
= Letrec of fundec list × exp
| Let of id × exp × exp
| Switch of value × (id × exp) list
| Call of id × value list
| Return of value
| Primop of primop × value list × id × exp
| Record of value list × id × exp
| Load of value × int × id × exp
| Store of value × int × value × exp

…
(* type manipulation instructions *)

| Inst of id × ty list × id × exp
| Fold of value × ty × id × exp
| Unfold of value × id × exp
| Pack of ty list × (value × ty) list × id × exp
| Open of value × id list × (id × ty) list × exp

…
withtype fundec = id × (id × ty) list × exp

end

Figure 8.2: Signature for JFlint code

It recursively parses and analyzes the requisite classes, then computes the strongly-

connected components of the dependence graph. Finally, each mutually-dependent

cluster of classes is translated separately to JFlint.

Intuitively, there are two stages to this translation. First, we analyze the class dec-

laration to determine the layout of the fields and methods, and to generate representa-

tions of the object and class types. Figure 8.3 on the following page contains a fragment

of ML code for this stage. Although not all the constructors are defined, its resemblance

to the object type macros in figure 5.4 (page 60) should be clear.

The next stage does case analysis on the λJVM code and builds the corresponding

lower-level JFlint representation. Figure 8.4 on the next page contains a code fragment

for this stage. It shows two helper functions that build an unfold and open term,

112 CHAPTER 8. A PROTOTYPE COMPILER FOR JAVA AND ML

val objRcd = T.lam ([T.ktyp , T.ksubm nm, T.ksubf nf , T.ktyp],
T. rcd (T.row (T.rcd (T.app (T. proj (allInst , 0),

[T. var (1,3)])),
T. proj (allInst , 1))))

val selfFn = T.lam ([T.ktyp , T.ksubm nm, T.ksubf nf],
T. fix (T.ktyp , T.app (objRcd,

[T. var (2,0), T. var (2,1), T. var (2,2), T. var (1,0)])))

val objTy = T. fix (T.ktyp ,
T. exist ([T.ksubm nm, T.ksubf nf],

[T.app (selfFn , [T. var (2,0), T. var (1,0), T. var (1,1)])]))

val selfTy = T.app (selfFn , [objTy , T. var (1,0), T. var (1,1)])

Figure 8.3: Constructing representations of object types

(* generate unfold and open terms, in continuation passing style: *)
fun unfold (tyc , v , k) =
let val x = T.mkLvar()
in F. Unfold (v , tyc , T. id , x , k (F .Var x))

end

fun unpack (ks , tyc , v , k) =
let val x = T.mkLvar()

fun f k = (T.mkLvar (), k)
in F.Open (v , map f ks , [(x , tyc)], k (F .Var x))

end

(* from case analysis on lambda JVM terms: *)
| INVK (m, VIRTUAL, v0 , vs) =>

let val (im , acc) = memberAccess (im, m)
val { objTy , selfTy , nm, nf , ...} = classInfoM m

in compileValue (env , v0 , fn v0 =>
valueOf (objTy , v0 , fn v0 =>
unfold (objTy , v0 , fn v0 =>
unpack ([T.ksubm nm, T.ksubf nf], selfTy , v0 , fn v0 =>
unfold (selfTy , v0 , fn v1 =>
select (SOME v1, acc , fn vm =>
compileValues (env , vs , fn vs =>
F. Let ([y], F . Call (vm, v0 :: vs),
nextExp)))))))))

end

Figure 8.4: Compiling invokevirtual

8.1. DESIGN 113

Standard ML of New Jersey v110.30 [JFLINT 1.2]
- Java.classPath := ["/home/league/r/java/tests"];
val it = () : unit
- val main = Java.run "Hello";
[parsing Hello]
[parsing java/lang/Object]
[compiling java/lang/Object]
[compiling Hello]
[initializing java/lang/Object]
[initializing Hello]
val main = fn : string list -> unit
- main ["Duke"];
Hello, Duke
val it = () : unit
- main [];
uncaught exception ArrayIndexOutOfBounds
raised at: Hello.main([Ljava/lang/String;)V

- ˆD

Figure 8.5: Compiling and running a Java program in SML/NJ

class Hello {
public static void main(String [] args) {

System.out . println (" Hello , " + args [0]);
}

}

Figure 8.6: A trivial Java program

respectively. They each have a continuation argument to receive the new value and

continue generating code. Again, some functions are omitted, but the resemblance to

the formal method call translation (figure 5.7, rule 5.14, page 63) should be clear.

On the generated JFlint code, we run several contraction optimizations (inlining,

common subexpression elimination, and so on), and type-check the code after each

pass. We discard the type information before converting to MLRISC (George 1997) for

final instruction selection and register allocation. To generate typed machine code, we

would need to preserve types throughout the back end. The techniques of Morrisett

et al. (1999b) would apply directly, since JFlint is based on System F.

114 CHAPTER 8. A PROTOTYPE COMPILER FOR JAVA AND ML

Figure 8.5 on the preceding page shows the SML/JFlint system in action. The slanted

text represents user input. The top-level loop accepts Standard ML code, as usual. The

JFlint front end is controlled via the Java structure; its members include:

• Java.classPath : string list ref Initialized from the CLASSPATH variable,

this is a list of directories where the loader will look for class files.

• Java.load : string -> unit looks up the named class using classPath, re-

solves and loads any dependencies, then compiles the byte codes and executes

the class initializer.

• Java.run : string -> string list -> unit ensures that the named class

is loaded, then attempts to call its main method with the given arguments.

• Java.flush : unit -> unit forces the Java subsystem to forget all previously

loaded classes. Normally, loaded classes persist across calls to load and run; after

flush, they must be loaded and initialized again.

The session in figure 8.5 sets the classPath, then loads the Hello class, and binds its

main method, using partial application of Java.run. The method is then invoked twice

with different arguments. The second invocation erroneously accesses argv[0]; this

error surfaces as the ML exception Java.ArrayIndexOutOfBounds. The source code

for the Hello class is in figure 8.6 on the page before.

In this prototype, SML code interacts only with a complete Java program. Since

both run in the same runtime system, very fine-grained interactions are possible, but

have not been our focus. Benton and Kennedy (1999) designed extensions to SML to

allow seamless interaction with Java code when both are compiled for the Java virtual

machine. Their design should work quite well in our setting also—and since JFlint is

more expressive than JVML, we do not need to monomorphize functors and polymorphic

functions.

8.2. SYNERGY 115

This is essentially a static Java compiler, as it does not handle dynamic class loading

or the java.lang.reflectAPI. These features are more difficult to verify using a static

type system, but they are topics of ongoing research. The SML runtime system does not

yet support kernel threads, so we have also ignored Java’s concurrency features. Also,

the runtime system does not, for now, dynamically load native code. This is a dubious

practice anyway; such code has free reign over the runtime system, thus nullifying any

safety guarantees won by verifying the pure Java code. Nevertheless, this restriction is

unfortunate because it limits the set of existing Java libraries that we can use.

8.2 Synergy

One of the benefits of our design is the synergy between the encodings of Java and ML.

JFlint does not have classes, methods, or modules as primitives. Rather, the records in

JFlint model Java objects, vtables, classes and interfaces, plus ML records and the value

parts of ML modules. Neither Java nor ML has a universal quantifier, but it is useful

for encoding both Java inheritance and ML’s parametric polymorphism. The existential

type is essential for object encoding, but also useful for ML closures and abstract data

types.

Contrast this with other common typed intermediate formats. JVM class files are

very high-level and quite partial to the Java language. The bytecode language (JVML)

includes no facilities for specifying data layouts or expressing many common optimiza-

tions. Compiling other languages for the JVM means making foreign constructs look

and act like Java classes or objects. That so many translations exist (Tolksdorf) is a

testament to the utility of the mobile code concept, and to the ubiquity of the JVM itself.

To some extent, the Microsoft Common Language Infrastructure (CLI) alleviates

these problems (Microsoft Corp., et al.). It supports user-defined value types, stack

allocation, tail calls, and pointer arithmetic (which is outside the verifiable subset). CLI

116 CHAPTER 8. A PROTOTYPE COMPILER FOR JAVA AND ML

has the tendency to incorporate the union of all requested features. Its instructions

distinguish, for example, between loading functions vs. values from objects vs. classes.

Still, it tends to prefer a single-inheritance class-based language. A recent proposal to

extend CLI for functional language interoperability (Syme 2001) added no fewer than 6

new types and 12 new instructions (bringing the total number of call instructions to

5) and it still does not support ML’s higher-order modules (Harper, Mitchell, and Moggi

1990) or Haskell’s constructor classes (Jones 1995).

We believe this synergy speaks well of our approach in general. Still, it does not

mean that we can support all type-safe source languages equally well. Java and ML still

have much in common; they work well with precise generational garbage collection and

their exception models are similar enough. Weakly typed formats, such as C–– (Peyton

Jones, Ramsey, and Reig 1999; Ramsey and Peyton Jones 2000), are more ambitious in

supporting a wider variety of language features, including different exception and mem-

ory models. Practical type systems to support that level of flexibility are challenging,

but are interesting for future work.

8.3 Implementation

To support efficient compilation, types are represented differently from code. Figure 8.7

contains part of the abstract interface to our type system. Compared to the syntax of

figure 4.1 on page 32, the record labels are missing. We use integer offsets exclusively.

Further, we use de Bruijn indices rather than named type variables.

If a type-preserving compiler is to scale well, extreme care must be taken in imple-

menting the type representations and operations. Several years ago, we presented a

series of techniques which, taken together, made the FLINT typed IL practical enough

to use in a production compiler (Shao, League, and Monnier 1998). Different type struc-

tures arise in the Java encodings, but the techniques are as successful as ever.

8.3. IMPLEMENTATION 117

signature JTYPE = sig
type ty
val var : int × int → ty (* type variable *)
val prim : primtyc → ty
val arrow : ty list × ty → ty (* function type *)
val record : ty → ty (* record types *)
val row : ty × ty → ty
val empty : int → ty
… (* quantified types *)
val forall : kind list × ty list → ty
val exists : kind list × ty list → ty
val fixpt : kind list × ty list → ty
val lam : kind list × ty → ty (* higher-order *)
val app : ty × ty list → ty

end

Figure 8.7: Abstract interface for JFlint type representation

We represent types as directed acyclic graphs. Part of what the JTYPE interface hides

is automatic hashing to ensure maximal sharing in the graph representation. Type

variables are represented as pairs of integers which represent the lexical binding depth

and offset. This means that types which differ only in their variable names share the

same representation. Therefore, the equivalence of two types in normal form is simply

pointer equivalence.

A common operation on types is the substitution of types for variables. Replacing

variables using assignment is not an option because so much of the graph is shared.

We create the instantiated type lazily, memoizing each result so that the next time we

need the same substitution it is available immediately.

With these techniques, compile and verification times remain reasonable. A full type-

preserving compile of the 12 classes in the CaffeineMark™ 3.0 embedded benchmark

series takes 2.4 seconds on a 927 MHz Intel Pentium III Linux workstation. This is about

60% more than gcj, the GNU Java compiler (Bothner 1997). Since gcj is written in C

and our compiler in SML, the gap is easily attributed to linguistic differences. Verifying

both the λJVM and the JFlint code adds another half second.

118 CHAPTER 8. A PROTOTYPE COMPILER FOR JAVA AND ML

Run times are promising, but can be improved. Our goal, of course, is to preserve

type safety; speed is secondary. CaffeineMark runs at about a third the speed in SML/NJ

compared to gcj -O2. This difference should not be attributed to type preservation;

we have already shown that, with types erased, our object layouts and operations are

just like the standard untyped implementations. The difference has more to do with

many other properties of our compiler. First, many standard optimizations, especially

on loops, have not been implemented in JFlint yet. Second, the code generator is still

heavily tuned for SML; record representations, for example, are more boxed than they

need to be. Finally, the runtime system is also tuned for SML; to support callcc, every

activation record is heap-allocated and subject to garbage collection.

Chapter 9

Future Directions

We have shown that a strongly-typed compiler intermediate language can safely and

efficiently accommodate two very different programming languages. The intermediate

language, JFlint, is sound, decidable, and already supports ML. We developed novel,

efficient techniques for compiling Java and have shown that well-typed Featherweight

Java programs are mapped to well-typed Mini JFlint programs. Moreover, the encodings

are synergetic with the translation of ML. In this final chapter, we briefly survey a few

interesting avenues for future research.

9.1 More inclusive encodings

We developed our techniques in the context of Java, and they should apply to sim-

ilar languages, such as C# (Liberty 2002). There are, however, more experimental

languages—Moby (Fisher and Reppy 1999) and Loom (Bruce, Fiech, and Petersen 1997),

for example—with different object models. They allow classes as module parameters,

treat them as first-class values, and use different notions of subtyping. It is still not

clear how to map these features efficiently to a typed λ-calculus (Vanderwaart 1999).

Fisher, Reppy, and Riecke (2000) proposed λinkς (read “links”), an untyped calculus

119

120 CHAPTER 9. FUTURE DIRECTIONS

that can express and optimize the object models of a variety of languages, including

Java, Moby, Loom, and OCaml. λinkς reasons about slots to build method suites either

at compile time or link time. It also features dictionaries to dynamically map method

labels to slots. With this flexibility, designing a sound type system for λinkς seems a

daunting task.

Some recent work demonstrates that such reasoning just might be within the purview

of a decidable type system. Shao et al. (2002), for example, reason about integers and

integer addition at the type level so that array bounds checks can be optimized away. In

their system, records and arrays are both defined using an underlying tuple construc-

tor, where the length can be known either statically or dynamically. Perhaps the method

suites of λinkς could be typed using similar ideas.

9.2 More substantial implementations

Our prototype shows that the encodings we developed can be implemented in a real

compiler. It is not, unfortunately, substantial enough that it could be used as a drop-in

replacement for a Java virtual machine. Certainly, there is more to be learned in the

realm of efficient and effective implementation of type-preserving compilers.

We recently started to collaborate with a group at Intel Labs on their IA64 just-in-time

compiler for the Microsoft .NET platform. The Intel group already found that limited

type information preserved in the compiler is useful for optimization (disambiguating

memory references, for example) and for accurate garbage collection (Stichnoth, Lueh,

and Cierniak 1999; Cierniak, Lueh, and Stichnoth 2000). They understand that a more

rigorous typing discipline would bring security benefits, and are curious about the im-

pact type-preservation might have on the performance, reliability, and maintainability

of their system.

This project is exciting for several reasons. First, .NET is a more ambitious platform

9.2. MORE SUBSTANTIAL IMPLEMENTATIONS 121

than Java, somewhat less partial to a single source language. Also, just-in-time compi-

lation imposes new requirements, most notably on the speed of the compiler. Finally,

working with researchers and developers in industry would help bring pragmatic con-

cerns to the foreground. The project would certainly yield an exciting new batch of

practical and theoretical problems to solve.

Bibliography

Abadi, Martín, and Luca Cardelli. 1996. A Theory of Objects. New York: Springer.

Abadi, Martín, Luca Cardelli, and Ramesh Viswanathan. 1996, January. “An Interpre-
tation of Objects and Object Types.” Proc. Symp. on Principles of Programming
Languages. New York: ACM, 396–409.

Abadi, Martín, and Marcelo P. Fiore. 1996, July. “Syntactic Considerations on Recursive
Types.” Proc. 11th Annual IEEE Symp. on Logic in Computer Science. 242–252.

Alpern, Bowen, Mark Wegman, and F. Kenneth Zadeck. 1988, January. “Detecting equal-
ity of variables in programs.” Proc. Symp. on Principles of Programming Languages.
1–11.

Alves-Foss, Jim, ed. 1999. Formal Syntax and Semantics of Java. Volume 1523 of
Lecture Notes in Computer Science. Springer.

Amme, Wolfram, Niall Dalton, Jeffery von Ronne, and Michael Franz. 2001. “SafeTSA:
A Type Safe and Referentially Secure Mobile-Code Representation Based on Static
Single Assignment Form.” Proc. Conf. on Programming Language Design and Im-
plementation. ACM.

Appel, Andrew W. 1992. Compiling with Continuations. Cambridge University Press.

. 1998. “SSA is Functional Programming.” ACM SIGPLAN Notices, April.

. 2001, June. “Foundational Proof-Carrying Code.” Proc. IEEE Symp. on Logic in
Computer Science (LICS).

Appel, Andrew W., and David B. MacQueen. 1991, August. “Standard ML of New Jer-
sey.” Edited by Martin Wirsing, 3rd Int’l Symp. on Program. Lang. Impl. and Logic
Program., Volume 528 of LNCS. New York: Springer-Verlag, 1–13.

Atkinson, Russell R., Barbara H. Liskov, and Robert W. Scheifler. 1978. “Aspects of
implementing CLU.” Proc. ACM Annual Conference. 123–129.

Barendregt, Henk. 1992. “Typed Lambda Calculi.” In Handbook of Logic in Computer
Science, edited by Samson Abramsky, Dov Gabbay, and Tom Maibaum, Volume 2.
Oxford.

Benton, Nick, and Andrew Kennedy. 1999. “Interlanguage Working Without Tears:
Blending SML with Java.” Proc. Int’l Conf. Functional Programming. ACM, Paris,
126–137.

123

124 Bibliography

Booch, Grady. 1994. Object-Oriented Analysis and Design, with Applications. 2nd edi-
tion. Addison-Wesley.

Bothner, Per. 1997. “A GCC-based Java Implementation.” Proc. IEEE Compcon.

Bruce, Kim B. 1994. “A Paradigmatic Object-Oriented Programming Language: Design,
Static Typing and Semantics.” J. Functional Programming 4 (2): 127–206.

Bruce, Kim B., Luca Cardelli, and Benjamin C. Pierce. 1999. “Comparing Object Encod-
ings.” Information and Computation 155 (1–2): 108–133.

Bruce, Kim B., Adrian Fiech, and Leaf Petersen. 1997. “Subtyping is not a good ‘Match’
for Object-Oriented Languages.” Proc. European Conf. Object-Oriented Prog., Vol-
ume 1241 of LNCS. Berlin: Springer-Verlag, 104–127.

Canning, Peter, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. 1989,
September. “F-bounded polymorphism for object-oriented programming.” Proc.
Int’l Conf. on Functional Programming and Computer Architecture. ACM, 273–280.

Cardelli, Luca. 1988. “A Semantics of Multiple Inheritance.” Information and Compu-
tation 76 (2/3): 138–164 (February/March).

Cardelli, Luca, and Xavier Leroy. 1990, April. “Abstract Types and the Dot Notation.”
Proc. IFIP Working Conf. on Programming Concepts and Methods. Israel, 466–491.

Cierniak, Michał, Guei-Yuan Lueh, and James Stichnoth. 2000, June. “Practicing JUDO:
Java Under Dynamic Optimizations.” Proc. Conf. on Programming Language Design
and Implementation. ACM, Vancouver.

Clinger, William, and Jonathan Rees. 1991, November. Revised4 Report on the Algo-
rithmic Language Scheme.

Colby, Christopher, Peter Lee, George C. Necula, Fred Blau, Ken Cline, and Mark Plesko.
2000, June. “A Certifying Compiler for Java.” Proc. Conf. on Programming Language
Design and Implementation. ACM, Vancouver.

Crary, Karl. 1999, January. “Simple, Efficient Object Encoding using Intersection
Types.” Technical Report CMU-CS-99-100, Carnegie Mellon University, Pittsburgh.

Crary, Karl, Robert Harper, and Sidd Puri. 1999. “What is a Recursive Module?” Proc.
Conf. on Programming Language Design and Implementation. New York: ACM.

Dean, Jeffrey, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers. 1996,
October. “Vortex: An Optimizing Compiler for Object-Oriented Languages.” Proc.
Conf. on Object-Oriented Programming Systems, Languages, and Applications. ACM,
San Jose, 83–100.

Dean, Jeffrey, David Grove, and Craig Chambers. 1995. “Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis.” Proc. European Conf.
Object-Oriented Programming.

Department of Defense. 1985, December. Trusted Computer System Evaluation Crite-
ria. 5200.28-STD.

Drossopoulou, Sophia, and Susan Eisenbach. 1999. “Describing the Semantics of Java
and Proving Type Soundness.” In Alves-Foss 1999, 41–82.

Bibliography 125

Eifrig, Jonathan, Scott Smith, Valery Trifonov, and Amy Zwarico. 1995. “An Interpre-
tation of Typed OOP in a Language with State.” Lisp and Symbolic Comput. 8 (4):
357–397.

Fisher, Kathleen, Furio Honsell, and John C. Mitchell. 1994. “A Lambda Calculus of
Objects and Method Specialization.” Nordic Journal of Computing 1:3–37.

Fisher, Kathleen, and John C. Mitchell. 1998. “On the Relationship between Classes,
Objects and Data Abstraction.” Theory and Practice of Object Systems 4 (1): 3–25.

Fisher, Kathleen, and John Reppy. 1999. “The design of a class mechanism for MOBY.”
Proc. Conf. on Programming Language Design and Implementation. New York: ACM.

Fisher, Kathleen, John Reppy, and Jon G. Riecke. 2000. “A Calculus for Compiling and
Linking Classes.” Proc. European Symp. on Program. 135–149.

Flanagan, Cormac, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993, June. “The
Essence of Compiling with Continuations.” Proc. Conf. on Programming Language
Design and Implementation. Albuquerque, 237–247.

Flatt, Matthew, Shriram Krishnamurthi, and Matthias Felleisen. 1999. “A Programmer’s
Reduction Semantics for Classes and Mixins.” In Alves-Foss 1999, 241–269.

Freund, Stephen N., and John C. Mitchell. 1999. “A Type System for Object Initializa-
tion in the Java Bytecode Language.” ACM Trans. on Programming Languages and
Systems 21 (6): 1196–1250.

Gagnon, Etienne, Laurie Hendren, and Guillaume Marceau. 2000. “Efficient Inference
of Static Types for Java Bytecode.” Proc. Static Analysis Symp.

George, Lal. 1997. “Customizable and Reusable Code Generators.” Technical Report,
Bell Labs.

Girard, J. Y. 1972. “Interpretation Fonctionnelle et Elimination des Coupures dans
l’Arithmetique d’Ordre Superieur.” Ph.D. diss., University of Paris VII.

Glew, Neal. 2000a, October. “An Efficient Class and Object Encoding.” Proc. Conf. on
Object-Oriented Programming Systems, Languages, and Applications. ACM.

. 2000b, January. “Low-Level Type Systems for Modularity and Object-Oriented
Constructs.” Ph.D. diss., Cornell University.

. 2000c, August. Personal communication.

Goguen, Healfdene. 1995. “Typed Operational Semantics.” In Typed Lambda Calculi
and Applications, edited by Mariangiola Dezani-Ciancaglini and Gordon Plotkin, Vol-
ume 902 of LNCS, 186–200. Berlin: Springer-Verlag.

Goldberg, Allen. 1998. “A Specification of Java Loading and Bytecode Verification.”
Conf. on Computer and Communications Security. ACM, 49–58.

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha. 2000. The Java Language Spec-
ification. 2nd edition. The Java Series. Reading, Mass.: Addison-Wesley.

Harper, Robert, John C. Mitchell, and Eugenio Moggi. 1990. “Higher-Order Modules
and the Phase Distinction.” Proc. Symp. on Principles of Programming Languages.
ACM, 341–354.

126 Bibliography

Harper, Robert, and Greg Morrisett. 1995, January. “Compiling Polymorphism Using
Intensional Type Analysis.” Proc. Symp. on Principles of Programming Languages.
New York: ACM, 130–141.

Harper, Robert, and Chris Stone. 1998. “A Type-Theoretic Interpretation of Standard
ML.” Chapter 12 of Proof, Language, and Interaction: Essays in Honour of Robin Mil-
ner, edited by Gordon Plotkin, Colin Stirling, and Mads Tofte, 341–388. Cambridge,
Mass.: MIT Press.

Hofmann, Martin, and Benjamin C. Pierce. 1994. “A Unifying Type-Theoretic Frame-
work for Objects.” Journal of Functional Programming, January.

Igarashi, Atsushi, Benjamin C. Pierce, and Philip Wadler. 2001. “Featherweight Java: A
Minimal Core Calculus for Java and GJ.” ACM Trans. on Programming Languages
and Systems 23 (3): 396–450 (May).

Jones, Mark P. 1995. “A system of constructor classes: overloading and implicit higher-
order polymorphism.” J. Functional Programming 5 (1): 1–35.

Kamin, Samuel. 1988, January. “Inheritance in Smalltalk-80: A Denotational Defi-
nition.” Proc. Symp. on Principles of Programming Languages. New York: ACM,
80–87.

Katsumata, Shin-ya, and Atsushi Ohori. 2001, April. “Proof-Directed Decompilation of
Low-Level Code.” Proc. 10th European Symp. on Programming (ESOP), Volume 2028
of LNCS. Geneva.

Kelsey, Richard. 1995, March. “A correspondence between continuation passing style
and static single assignment form.” Proc. Workshop on Intermediate Representa-
tions. ACM, 13–22.

Knoblock, Todd, and Jakob Rehof. 2000. “Type Elaboration and Subtype Completion
for Java Bytecode.” Proc. Symp. on Principles of Programming Languages. 228–242.

Krall, Andreas, and Reinhard Grafl. 1997. “CACAO—A 64-bit Java VM Just-In-Time
Compiler.” Proc. ACM PPoPP’97 Workshop on Java for Science and Engineering Com-
putation.

Landin, P. 1964. “The Mechanical Evaluation of Expressions.” Computer J. 6 (4): 308–
320.

League, Christopher, Zhong Shao, and Valery Trifonov. 1999, September. “Represent-
ing Java Classes in a Typed Intermediate Language.” Proc. Int’l Conf. Functional
Programming. Paris: ACM, 183–196.

. 2002a, March. “Precision in Practice: A Type-Preserving Java Compiler.” Tech-
nical Report 1223, Yale University, New Haven.

. 2002b. “Type-Preserving Compilation of Featherweight Java.” ACM Trans. on
Programming Languages and Systems 24, no. 2 (March).

League, Christopher, Valery Trifonov, and Zhong Shao. 2001a, July. “Functional Java
Bytecode.” Proc. 5th World Conf. on Systemics, Cybernetics, and Informatics. Work-
shop on Intermediate Representation Engineering for the Java Virtual Machine.

. 2001b, January. “Type-Preserving Compilation of Featherweight Java.” Proc.
Int’l Workshop on Foundations of Object-Oriented Languages. London.

Bibliography 127

Liberty, Jesse. 2002. Programming C#. 2nd edition. O’Reilly.

Lindholm, Tim, and Frank Yellin. 1999. The Java Virtual Machine Specification. 2nd

edition. Addison-Wesley.

Lutz, Mark. 2001. Programming Python. 2nd edition. O’Reilly.

Meyer, Jon, and Troy Downing. 1997. Java Virtual Machine. O’Reilly.

Microsoft Corp., et al. “Common Language Infrastructure.” Drafts of the ECMA
TC39/TG3 standardization process. http://msdn.microsoft.com/net/ecma/.

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen. 1997. The Definition
of Standard ML (Revised). MIT Press.

Mitchell, John C., and Gordon D. Plotkin. 1988. “Abstract Types have Existential Type.”
ACM Transactions on Programming Languages and Systems 10 (3): 470–502 (July).

Morrisett, Greg, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. 1999a, May. “TALx86:
A Realistic Typed Assembly Language.” Proc. Workshop on Compiler Support for
Systems Software. New York: ACM, 25–35.

Morrisett, Greg, David Tarditi, Perry Cheng, Chris Stone, Robert Harper, and Peter
Lee. 1996. “The TIL/ML Compiler: Performance and Safety Through Types.” Proc.
Workshop on Compiler Support for Systems Software. New York: ACM.

Morrisett, Greg, David Walker, Karl Crary, and Neal Glew. 1999b. “From System F to
Typed Assembly Language.” ACM Trans. on Programming Languages and Systems
21 (3): 528–569 (May).

Necula, George C. 2001, September and October. Personal communication.

Necula, George C., and Peter Lee. 1998, June. “The Design and Implementation of a
Certifying Compiler.” Proc. Conf. on Programming Language Design and Implemen-
tation. ACM, Montréal, 333–344.

Peyton Jones, Simon, Norman Ramsey, and Fermin Reig. 1999. “C––: a Portable Assem-
bly Language that Supports Garbage Collection.” In Proc. Conf. on Principles and
Practice of Declarative Programming, edited by Gopalan Nadathur, Volume 1702 of
LNCS, 1–28. Springer.

Peyton Jones, Simon L., Cordelia Hall, Kevin Hammond, Will Partain, and Philip Wadler.
1992, December. “The Glasgow Haskell Compiler: A Technical Overview.” Proc. UK
Joint Framework for Information Technology.

Pierce, Benjamin C., and David N. Turner. 1994. “Simple Type-Theoretic Founda-
tions for Object-Oriented Programming.” J. Functional Programming 4 (2): 207–247
(April).

Proebsting, Todd A., Gregg Townsend, Patrick Bridges, John H. Hartman, Tim New-
sham, and Scott A. Watterson. 1997. “Toba: Java for Applications: A Way Ahead
of Time (WAT) Compiler.” Proc. Third Conf. on Object-Oriented Technologies and
Systems (COOTS’97).

Qian, Zhenyu. 1999. “A Formal Specification for Java Virtual Machine Instructions for
Objects, Methods, and Subroutines.” In Alves-Foss 1999, 271–312.

http://msdn.microsoft.com/net/ecma/

128 Bibliography

Ramsey, Norman, and Simon Peyton Jones. 2000. “A Single Intermediate Language that
Supports Multiple Implementations of Exceptions.” Proc. Conf. on Programming
Language Design and Implementation. ACM, 285–298.

Rémy, Didier. 1993. “Syntactic theories and the algebra of record terms.” Technical
Report 1869, INRIA.

Rémy, Didier, and Jérôme Vouillon. 1997, January. “Objective ML: A Simple Object-
Oriented Extension of ML.” Proc. Symp. on Principles of Programming Languages.
New York: ACM, 40–53.

Reynolds, John C. 1972. “Definitional Interpreters for Higher-Order Programming
Languages.” Proc. 25th ACM Nat’l Conf. Boston, 717–740.

. 1974. “Towards a Theory of Type Structure.” Proc. Colloque sur la Program-
mation, Volume 19 of LNCS. Berlin: Springer-Verlag, 408–425.

Shao, Zhong. 1997, June. “An Overview of the FLINT/ML Compiler.” Proc. Int’l Workshop
on Types in Compilation. Amsterdam.

Shao, Zhong, and Andrew W. Appel. 1995, June. “A Type-Based Compiler for Standard
ML.” Proc. Conf. on Programming Language Design and Implementation. La Jolla:
ACM, 116–129.

Shao, Zhong, Christopher League, and Stefan Monnier. 1998, September. “Implement-
ing Typed Intermediate Languages.” Proc. Int’l Conf. Functional Programming. Bal-
timore: ACM, 313–323.

Shao, Zhong, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. 2002, January.
“A Type System for Certified Binaries.” Proc. Symp. on Principles of Programming
Languages. Portland, 217–232.

Stata, Raymie, and Martín Abadi. 1998, January. “A Type System for Java bytecode
subroutines.” Proc. Symp. on Principles of Programming Languages. ACM, San
Diego, 149–160.

Stichnoth, James M., Guei-Yuan Lueh, and Michał Cierniak. 1999, May. “Support for
Garbage Collection at Every Instruction in a Java Compiler.” Proc. Conf. on Program-
ming Language Design and Implementation. ACM, Atlanta, 118–127.

Stroustrup, Bjarne. 1997. The C++ Programming Language. 3rd edition. Addison-
Wesley.

Syme, Don. 1999. “Proving Java Type Soundness.” In Alves-Foss 1999, 83–118.

. 2001. “ILX: Extending the .NET Common IL for Functional Language Interop-
erability.” Proc. BABEL Workshop on Multi-Language Infrastructure and Interoper-
ability. ACM.

Tarditi, David, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter
Lee. 1996. “TIL: A Type-Directed Optimizing Compiler for ML.” Proc. Conf. on
Programming Language Design and Implementation. New York: ACM.

Thomas, David, and Andrew Hunt. 2000. Programming Ruby: A Pragmatic Program-
mer’s Guide. Addison-Wesley.

Thompson, Ken. 1984. “Reflections on Trusting Trust.” Communications of the ACM
27 (8): 761–763. Turing Award lecture.

Bibliography 129

Tolksdorf, Robert. “Programming Languages for the JVM.” http://flp.cs.
tu-berlin.de/˜tolk/vmlanguages.html.

Vanderwaart, Joseph C. 1999. “Typed Intermediate Representations for Compiling
Object-Oriented Languages.” Williams College Senior Honors Thesis.

Wallach, Dan S., Andrew W. Appel, and Edward W. Felten. 2000. “SAFKASI: A Security
Mechanism for Language-Based Systems.” ACM Trans. on Software Engineering and
Methodology 9, no. 4.

Wright, Andrew, Suresh Jagannathan, Cristian Ungureanu, and Aaron Hertzmann.
1998, March. “Compiling Java to a Typed Lambda-Calculus: A Preliminary Re-
port.” Proc. Int’l Workshop on Types in Compilation, Volume 1473 of LNCS. Berlin:
Springer, 1–14.

http://flp.cs.tu-berlin.de/~tolk/vmlanguages.html
http://flp.cs.tu-berlin.de/~tolk/vmlanguages.html

	Contents
	List of Figures
	Acknowledgments
	Compiler Support for Safe Systems
	Safety mechanisms
	Type-preserving compilers
	Contributions
	Structure of this dissertation

	Object Encoding
	Why we need encodings
	Encodings must enforce safety
	Classic encodings
	Efficient encoding
	Another approach

	Source Language: Featherweight Java
	Syntax
	Semantics

	Intermediate Language: Mini JFlint
	Syntax
	Semantics
	Properties

	A Type-Preserving Translation
	Self application
	Type translation
	Expression translation
	Class encoding
	Class translation
	Linking
	Separate compilation
	Properties
	Related work

	Beyond Featherweight: the rest of Java
	Private fields
	Interfaces

	Functional Java Bytecode
	Design
	Translation
	Verification
	Implementation
	Related work

	A Prototype Compiler for Java and ML
	Design
	Synergy
	Implementation

	Future Directions
	More inclusive encodings
	More substantial implementations

	Bibliography

