
Safety and Liveness of MCS Lock—Layer by Layer

Jieung Kim, Vilhelm Sjöberg, Ronghui Gu, and Zhong Shao

Yale University

Abstract. The MCS Lock, a small but complex piece of low-level software, is a
standard algorithm for providing inter-CPU locks with FIFO ordering guarantee
and scalability. It is an interesting target for verification—short and subtle, involv-
ing both liveness and safety properties. We implemented and verified the MCS
Lock algorithm as part of the CertiKOS kernel [8], showing that the C/assem-
bly implementation contextually refines atomic specifications of the acquire and
release lock methods. Our development follows the methodology of certified
concurrent abstraction layers [7, 9]. By splitting the proof into layers, we can
modularize it into separate parts for the low-level machine model, data abstraction,
and reasoning about concurrent interleavings. This separation of concerns makes
the layered methodology suitable for verified programming in the large, and our
MCS Lock can be composed with other shared objects in CertiKOS kernel.

1 Introduction
The MCS algorithm for scalable fair inter-CPU mutex locks makes for an interesting case
study in program verification. Although the program is short, the proof is challenging.
First, the implementation of a lock algorithm can not itself use locks, so it has to rely
solely on atomic memory instructions and be robust against any possible interleavings
between CPUs. This is the most challenging type of concurrency, so-called lock-free
programming. Second, unlike algorithms which only promise mutual exclusion, the
MCS algorithm also aims for fairness among CPUs. To check that it got it right, our
correctness theorem needs to guarantee not only mutual exclusion (a safety property)
but also bounded waiting time (a liveness property).

Previous work [18, 21] has studied the correctness of the algorithm itself, but those
verification efforts did not produce executable code, and did not explore how to integrate
the proof of the algorithm into a larger system. We have created a fully verified imple-
mentation and addeded it as part of the CertiKOS kernel [8], which consists of 6500
lines of C and assembly implementation and 135K lines of Coq proofs.

In order to manage such a large verification effort, the CertiKOS team developed
a methodology known as certified (concurrent) abstraction layers, as well as a set of
libraries and theorems to support it. Previous papers [7, 9] described this framework, but
many readers found them dense and hard to follow because they immediately present
the formalism at its most abstract and general. This paper aims to be a complement:
by zooming in on the implementation of one small part of the kernel (the MCS Lock
module), we illustrate what it is like to use the framework, how to write specifications in
the “layers” style, and what the corresponding proof obligations are. We hope this paper
will be an easier entry point for understanding our verification framework.

As we will see, CertiKOS-style verification has several distinctive features which
stem from the requirements of a large kernel. First, it is suitable for dealing with low-
level code. To make the proofs tractable we mainly work at the C level (relying on the

CompCert verified compiler [16]), but sometimes we need to go lower. For example the
MCS algorithm needs to use atomic CPU instructions (fetch-and-store and compare-
and-swap), so we need a way to mix C and assembly code, while stating precisely
what semantics we assume that the assembly code has. At the same time, C itself is too
low-level to conveniently reason about, so we need data abstraction to hide the details
about representation in memory.

Second, in order to handle large developments we need separation of responsibil-
ities. In a small proof of an algorithm in isolation, you can state the specification as
a single pre- and post-condition which specifies the shape and ownership of the data
structure, the invariants (e.g. mutual exclusion), the liveness conditions, and even the
behavior of the lock’s client code (the critical section code). But such a proof is not
modular and not re-usable. In our development, these are done as separate refinement
steps, in separate modules with explicit interfaces, and can even be the responsibility of
different software developers.

Finally, the layers approach is general purpose, in the sense that the same semantic
framework can be used for proving all kinds of properties. The model of program
execution exposed to the programmer is simple, mostly the same as for sequential code
and with a notion of logs of events to model concurrency. Unlike working in a special-
purpose program logic, we did not have to add any features to show a liveness property,
because we can directly reason in Coq about how long an execution will take.

In the remaining parts of the paper, we first explain the C code that we will be
verifying (Sec. 2). Then in the bulk of the paper, we explain our proof strategy by going
through each abstraction layer in turn, concluding with the safety and starvation freedom
properties (Sec. 4). Finally we explain how our proofs fit as a part of the larger CertiKOS
development (Sec. 5) and discuss related and future work (Sec. 6). We revisit several
points that have been mentioned in previous publications:

– We show how to customize the machine model by adding a trusted specification of
particular instructions that we need. (Sec. 4.1.)

– We locally verify the execution of a single CPU, and treat the rest of the system as
an opaque concurrent context. (Sec. 4.2.)

– We illustrate how to abstract away from a C implementation, by refining it into a
functional specification which can be conveniently reasoned about. (Sec. 4.3.)

– Similarly, we show how the same type of refinement can be used to gradually add
ghost state to a specification while hiding un-needed details. (Sec. 4.4.)

We also make novel contributions:
– It provides a concrete example of CertiKOS-style verification; in particular we can

see how to customize the machine model (Sec. 4.1) and how to split the verification
effort into CPU-local reasoning (Sec. 3.1 and 4.2).

– We show a way to prove that an atomic specification refines a concurrent implemen-
tation, while still using downward rather than upward simulations. The trick is to
provide a function from low-level to high-level logs of events. (Sec. 4.5–4.6.)

– We propose a new way to specify the desired—atomic—behavior of the lock/unlock
methods. To ensure liveness, the specification of the lock method itself includes a
promise to later call unlock; we do this using a bounding counter. (Sec. 4.5.)

2

– And of course, we provide the first implementation of the MCS algorithm that
has been both rigorously verified (with a mechanized proof) and at the same time
realized (as part of a running kernel).

2 The MCS algorithm
The MCS algorithm [20] is a list-based queuing lock, which provides a fair and scalable
mutex mechanism for multi-CPU computers. Fairness means that CPUs that compete
for the lock are guaranteed receive it in the same order as they asked for it (FIFO order).
With an unfair lock, CPUs that try to take the lock can get nondeterministically passed
over (even a million times in a row [3]) creating unpredictable latency.

Fairness is also important to verification, because without it there is the possibility
that one particular CPU is continuously passed over so it loops forever—this is infinitely
improbable, but not impossible. So unless the lock guarantees fairness, there is no way
to prove a termination-sensitive refinement between the implementation and a simple
(terminating) specification. With a non-fair lock, we would have to settle for either an
ugly specification that allowed non-termination, or for a weaker notion of correctness
such as termination-insensitive refinement.

1 typedef struct _mcs_node{
2 uint next;
3 uint busy;
4 uint _node_padding[14];
5 }mcs_node;

6 typedef struct _mcs_lock{
7 uint last;
8 uint _lock_padding[15];
9 mcs_node ndpool[TOTAL_CPU];

10 }mcs_lock;

1 void mcs_acquire(uint lk_id){
2 uint cpuid, prev;
3 cpuid = get_CPU_ID();
4 LK[lk_id].ndpool[cpuid].busy = BUSY;
5 LK[lk_id].ndpool[cpuid].next =

TOTAL_CPU;
6 prev = FAS(&(LK[lk_id].last),cpuid);
7 if(prev == TOTAL_CPU) return;
8 LK[lk_id].ndpool[prev].next = cpuid;
9 while(LK[lk_id].ndpool[cpuid].busy==

BUSY);
10 return;

11 }
12 void mcs_release(uint lk_id){
13 uint cpuid, nid;
14 cpuid = get_CPU_ID();
15 if(CAS(&(LK[lk_id].last),cpuid,

TOTAL_CPU) return;
16 while (LK[lk_id].ndpool[cpuid].next==

TOTAL_CPU);
17 nid = LK[lk_id].ndpool[cpuid].next;
18 LK[lk_id].ndpool[nid].busy = FREE;
19 return;
20 }

Fig. 1: Data Structure and the implementation of MCS Lock (in C).

The data structure of an MCS Lock (Fig. 1) has one global field pointing to the
last node of the queue structure, and per-CPU nodes forming each node in the queue.
This is similar to an ordinary queue data structure(, but note that it only has a pointer
to the tail, not the head of the queue). If the queue is empty, we set last to the value
TOTAL CPU, which acts as a null value (we could also have used e.g. -1). The queue is
used to order the waiting CPUs, in order to ensure that lock acquisition is FIFO. The
structs also include padding to take up a full cache lines and avoid false sharing. Each
node is owned by one particular CPU (the array is indexed by CPU id). This is what
makes the lock scalable: a CPU looping waiting for the lock will only read its own busy

3

flag, so there is no cache-line bouncing. Simpler lock algorithms make all the CPUs read
the same memory location, which does not scale past 10-40 CPUs [1].

Fig. 1 shows the code for the acquire lock and release lock operations. The acquire
lock function uses an atomic fetch-and-store expression to fetch the current last value
and store its CPU-id as the last value of the lock in a single action (line 7). Then, if the
previous last value was TOTAL CPU, the CPU can directly acquire the lock and enter the
critical section (line 9). If the previous last value was not TOTAL CPU, it means that some
other CPUs are in the critical section or in the queue waiting to enter it (line 10 to line
13). In this case, the current CPU will wait until the previous node in the queue sets the
current CPU’s busy flag as FREE during the lock release.

Release lock also has two execution paths, based on the result of an atomic operation,
compare-and-swap (line 21). The CAS operation succeeds, immediately releasing the
lock, if the current CPU is the only one in the queue. If the CAS fails, this implies that
some other CPU has already performed the fetch-and-store operation (line 7). Thus, the
current CPU busy waits until that other CPU sets the next field (line 10), and then passes
the lock to the head of the waiting queue by assigning busy.

Fig. 2: A possible execution sequence for an MCS Lock.

Fig. 2 illustrates a possible sequence of states taken by the algorithm. At the beginning
(a), the lock is free, and CPU 1 can take it in a single atomic FAS operation (b). Since
CPU 1 did not have to wait for the lock, it does not need to update its next-pointer. After
that, CPUs 2 and 3 each try to take the lock ((c) and (d)). The last value will be updated
correctly thanks to the property of the atomic expression. However, there can be some
delay in-between a CPU updating the tail pointer, and it adjusting the next-pointer of
the previous node in the queue; as this example illustrates, that means although there
are three nodes which logically makes up the queue of waiting CPUs, any subset of
the next-pointers may be unset. At (e), although CPU 1 wants to release the lock, the
CAS call will return false (because tail is 3, not 1). In this case, CPU 1 has to wait in a
busy-loop until CPU 2 has set its next-pointer (f). After that, the CPU 1 can set the busy
flag to FREE for the next node in the queue, CPU 2’s node, which releases the lock (g).

Because the algorithm is fair, it satisfies a liveness property:

“Suppose all clients of the lock are well-behaved, i.e. whenever they acquire
a lock they release it again after some finite time, and suppose the schedul-
ing of operations from different CPUs is fair. Then whenever mcs acquire or
mcs release are called they will succeed within some finite time.”

A big part of our formal development is devoted to stating and proving this. Let us give a
an informal proof sketch here. Consider a CPU which starts executing mcs acquire. At
this time, the queue contains a finite number of CPUs already waiting for the lock. By

4

fairness of scheduling, the CPU at the head of the queue will get scheduled periodically,
say every F steps. Each time it is scheduled, it will go through three phases. First, it
will execute the code in mcs acquire; because it is at the head of the queue the loop will
terminate immediately. Then it executes the code in the critical section; by assumption
this is over after some finite number k of operations. Finally it executes mcs release;
this either finishes immediately, or enters the waiting loop, in which case it will complete
as soon as the next CPU in the queue gets scheduled.

3 Abstraction Layers

The most distinctive thing about CertiKOS-style verification is the notion of abstraction
layers [7]. Of course, any large-scale programming or verification project uses layers of
abstraction, but typically these are merely an informal organization that the programmer
has in mind when writing the program. In CertiKOS, we formalize layers as objects
defined in Coq, these layers are treated as first-class objects, and we use the framework
to vertically compose them. We split the MCS Lock verification into five layers, each
building on the interface exposed by the layer below.

Our notion of a “layer interface” is a particular style of state machine where the
transitions correspond to function calls, while a “layer” in our development is a proof
of refinement between interfaces. More formally, an abstraction layer is a tuple (L1,
M , L2), together with a refinement proof showing that the code M , when run on top
of a system specified by the interface L1, faithfully implements the interface L2. Then
another layer (L2, M 1, L3) can run on top of the first one. Functions in M 1 can call
functions in M , but we only need to look at the specification L2 to prove them correct.

The code M is a set of functions written in C or assembly, and the entire stack of
layers can be compiled to executable code using a modified version of CompCert called
CompCertX [7]. It is also possible to have a layer with no code at all. Such a “pure
refinement” layer represents a proof that the interfaces L1 and L2 are equivalent. The
last two layers in our development are pure refinements.

Each layer interface L is a pair L “ pA,P q, where A is Coq data type (usually a
record type) which we call the abstract state type, and P is a set of named primitive
specifications which describe the behavior of C/assembly functions. Each primitive
specification σ P P is written as a Coq function of type σ : pval˚ ˆ mem ˆ Aq Ñ
option pval ˆ mem ˆ Aq. The types val and mem are borrowed from CompCert’s
operational semantics for C; val and val˚ are the type of C values and lists of values
(for the function return value and arguments), and mem is the type of C memory states.

The idea is that a pair pm, dq : mem ˆ A represents the state of the computer. A
typical refinement proof for a layer ppA1, P1q,M, pA2, P2qq will give a relationR saying
that the fields in A2 represents certain objects stored in memory. Then the high-level
specifications in P2 can refer to the abstract value d when specifications in P1 had to talk
about the memory state m. In particular, in Sec. 4.1 we will define a layer which proves
a relation between the array LK (see Fig. 1) and an abstract state. The specifications in all
layers about it never need to mention memory again, so they avoid all the side conditions
to do with C memory accesses.

5

3.1 Events, logs, and concurrent contexts
In order to handle concurrent programs, the verification framework imposes some
structure on the specifications [9]. Each record type A must include at least a log of
events (written l) and a concurrent context (written ε, further explained in Sec. 4.2).
For almost all of the MCS Lock development, these are the only two fields that matter.
Instead of representing the state of shared memory by an arbitrary type A, it will be
represented using the log.

1 Inductive TicketOracleEvent :=
2 // Events for MCS-lock primitives
3 | SWAP_TAIL (bound: nat) (IS_CPU_NUM: bool) | CAS_TAIL (success : bool)
4 | GET_NEXT | SET_NEXT (old_tail: Z) | GET_BUSY (busy : bool) | SET_BUSY
5 // Events for the high-level queue-lock
6 | WAIT_LOCK (n: nat) | REL_LOCK.
7

8 Inductive SharedMemEvent := ...

Fig. 3: Event set for MCS Lock

An event is any action which has observable consequences for other CPUs. Each
specification must define events for all the points in the program where it reads or writes
to shared memory (but not for accesses to thread-local memory) The log is a list of
events, representing all actions that have happened in the computer since it began running.
Actions from different CPUs are interleaved in the list. When we write a specification we
can chose the set of events, as long as it is fine-grained enough to capture all scheduling
interleavings that may happen. Fig. 3 shows the event definition used to model lock
acquire and release. They correspond to the part of the MCS lock source code in Fig. 1
and releasing the lock after we show starvation freedom.

Because all CPUs see a single linear log, this model assumes that the machine is
sequentially consistent. Even with this assumption, verifying the MCS algorithm is not
easy (the other proofs we are aware of assume sequential consistency too), so we leave
weak memory models to future work.

SWAP TAIL bound success event is for the operations from line 5 to 7 in Fig. 1 and
takes two arguments. The second argument is a boolean flag indicating whether the
previous “last” value of MCS lock was MCS TOTAL CPU, which means it records whether
the if-statement at line 9 took the fast path or not. The first argument is the bound number,
which is a key idea in our development. Every client that invokes mcs_acquire has to
promise a bound for the critical section. This number does not influence the compiled
code in any way, but the specification says that it is invalid to hold the critical section
for longer than that (c.f. the counter c1 in Sec. 4.4). This bound number enables local
reasoning about liveness. For the thread waiting for acquiring or releasing a lock, its
wait time can be estimated based on other threads’ bound number. For the lock holder,
it has to guarantee to exit the critical section within its own bound. Thus, by showing
that each thread follows this protocol, we can derive the liveness property for the whole
system. (To be precise, the bound number is a limit on the number of events that can
get appended to the log, see the counter c1 in Sec. 4.4. Every CPU adds at least one
event every time it ”does something”, e.g. each loop iteration in mcs_release appends

6

a GET NEXT event, so as we will see in Sec. 4.5 this sufficies to give a bound of the
number of loop iterations in the lock acquire function. In the following we often speak
of “number of operations”, which does not mean single CPU instructions, but instead
whatever operation is represented by particular events.)

SET NEXT prev last event corresponds to the code at line 10. the prev last represents
the prev id in the code.

GET BUSY busy event shows the busy waiting in the acquire lock function. The first
argument will be true when the last value is same with the current CPU-id that calls the
primitive which generates this event. It will be false when the last value is not same with
the current CPU-id that calls the primitive.

CAS TAIL busy represents the atomic expression at line 21 in Fig. 1. In addition, the
“busy” corresponds to the result of the CAS operation in Fig. 1.

GET NEXT corresponds to the primitive that try to get the next value of the current CPU’s
node, and abstracts busy waiting in release lock function.

SET BUSY represents the last three lines in mcs release.
Those six events are used to show the functional correctness of an MCS Lock.

However, for clients that use the MCS Lock to build shared objects they expose too
much implementation details. In Sec. 4.5 we will prove linearizability and starvation
freedom, to replace them with just two events
WAIT LOCK bound corresponds to lock acquire. The “bound” number in here is exactly
same with the “bound” number in SWAP TAIL bound success event.

REL LOCK corresponds to the lock release.

In addition to the above eight events, which are generated by the lock acquire and
release functions, the clients of the lock will also generate events while they are in the
critical section. Mutex locks in CertiKOS are used to protect blocks of shared memory,
so we call the events generated by the client code shared memory events. The final
specification we prove will entail that a shared memory event from CPU i can only
happen in the interval between an lock acquire event for i and a lock release event for i,
which is how we express the mutual exclusion property.

4 Verification—Layer by layer

We build five layers, starting from a base layer which represents the machine model
that our compiled code will run on.Fig. 4 shows the overall structure of our develop-
ment. For simplicity the figure only includes lock primitives, and not primitives passed
through from below. The arrows show dependencies between adjacent layers, for ex-
ample the definition of wait lock in MMCSLockOp uses three primitives (mcs swap tail,
mcs set next, and mcs get busy) from the MMCSLockAbsIntro layer.

The layers MCSMCurID through MMCSLockAbsIntro introduces getter and setter func-
tions for accessing memory (Sec. 4.1 and 4.2). These layers also contain logical primi-
tives which record events to the log; we are in effect manually implementing a model of
concurrent execution by extending a sequential operational semantics for C.

7

Fig. 4: MCS Lock Layers

The layer MMCSLockOp contains the C code from Fig. 1. This layer proves low-level
functional correctness, i.e. it reasons about the C code and abstracts away details about
memory accesses, integer overflows, etc, to expose an equivalent specification written as
a Coq function (Sec. 4.3).

The two top layers, MQCSLockOp and MHMCSLockOp, do not introduce any new prim-
itives. They simplify the specifications of the release- and acquire lock functions
(pass lock and wait lock), i.e. each layer ascribes a different specification (with a
different log replay function and set of events) to the same C function. Those specifica-
tion names are notated inside the square bracket in Fig. 4.

The layer MQMCSLockOp adds ghost state, keeping track of a queue of waiting CPUs.
(Sec 4.4). This queue is key to the liveness proof but is not explicitly represented in the
C implementation. The top layer MHMCSLockOp proves starvation freedom and liveness
(Sec 4.5). This lets us ascribe atomic specifications where taking or releasing a lock
generates just a single event to the log.

4.1 Memory operations layers
Although we glossed over this in Fig. 1, our actual C implementations of msc_acquire
and msc_release do not access memory directly. Instead, they call a collection of helper
functions with names like mcs_set_next. The lowest two layers in our proofs are devoted
to implementing these helper functions.

We first describe the first and the lowest tuple in our proofs, (L0, M , L1). The
interface (L0) represents the machine model that our compiled code will run on. All
primitives defined in L0 are part of the trusted computing base, and correspond to empty
functions in our compiled code.

Eight of the primitives in L0 are closely related to the MCS Lock verification:
tatomic mcs log, atomic mcs SWAP, atomic mcs CAS, mcs init node log,

mcs GET NEXT log, mcs SET NEXT log, mcs GET BUSY log, mcs SET BUSY logu

8

Two primitives, atomic mcs SWAP and atomic mcs CAS are for the two atomic instructions
fetch-and-store and compare-and-swap, and will be further discussed below.

The other six are used to update the log. As we noted in Sec. 3.1, the log is part of
the abstract state. Ordinary assembly instructions only modify physical memory, not
abstract state, so in order for programs to be able to append events to the log we include
these six primitives in L0. For example, the specification of mcs SET NEXT log updates
the log by adding one (SET NEXT prev id) event as follows:

1 Function mcs_SET_NEXT_log_spec(abid cpuid prev_id: Z)(adt:RData): option RData:=
2 ...
3 match ZMap.get abid (multi_log adt) with
4 | MultiDef l =>
5 let l’ := (... (SET_NEXT prev_id))) :: l in
6 Some adt {multi_log: ZMap.set abid (MultiDef l’) (multi_log adt)}
7 ...
8 end.

In the compiled code, these primitives appear as empty functions that do nothing, they
are only used to modify the logical state.

The code M in the layer contains the functions which actually modifies the memory
in the way the event announces. Each function in M calls the corresponding prim-
itive from MCSMCurID inside the function to add the event to the log. For example,
mcs SET NEXT, one function in M , writes to next and also calls the empty function
mcs SET NEXT log:

1 void mcs_SET_NEXT(uint lk_id, uint cpuid, uint pv_id) {
2 mcs_SET_NEXT_log(lk_id, cpuid, pv_id);
3 (LK[lk_id].ndpool[pv_id]).next = cpuid; }

Fig. 5: The structure of the memory operations layer
The interface MMCSLockIntro contains the high level specification for each function

defined in M . The high level specifications works on the log instead of the exact memory
slot LK. Therefore, after proving the refinement between the memory (LK in Fig. 5) and
the abstract state (log in Fig. 5), we only need to care about the abstract state.

For the refinement proof, we need two more ingredients. The first one is a log replay
function. A log is merely a list of events, but what specifications need to know is what the
state of the system will look like after those events have executed, and a replay function
calculates that. Different layers may define different replay functions in order to interpret
the same log in a way that suits their proofs. In L1, we define CalMCSLock, which has
the following type:

9

1 CalMCSLock : MultiLog -> option MCSLock

where

1 Inductive MCSLock :=
2 | MCSLOCK (tail: Z) (lock_array: ZMap.t (bool * Z)) ...

The return type of this log replay function closely corresponds to C data structures,
which makes it easy to prove the refinement. (ZMap is a finite map from Z to bool*Z.) The
second ingredient is a relation R which shows the relationship between the concrete
memory in underlay L0 and the abstract state in overlay L1. As a part of R, we define
match MCSLOCK as follows:

Definition 1 (match MCSLOCK). Suppose that ‘loc’ is among the proper field accessors
for the MCS Lock (i.e. ‘last’, ‘ndpool[i].next’, or ‘ndpool[i].busy’ when ‘0 ď i ă
TOTAL_CPU’). And, assuming that l is a shared log. Then define

match_MCSLOCK (l: Log) (b: block) loc
iff (D val, Mem.load Mint32 m b loc = Some(val) ^ Mem.valid_access m b loc

^ (CalMCSLock(l) = Some(mcsval) -> loca@mcsval = val))

when ‘loca@mcsval’ represents the corresponding value to the ‘loca’ in the ‘mcsval’ and
‘loca’ corresponds to the value of ‘loc’.

Intuitively, the definition says that the value that CalMCSLock calculates from the log
always corresponds to the value in the memory with the same identifiers. The memory
access functions Mem.load and Mem.valid_access are from CompCert’s operational seman-
tics for C. Using the definition, we prove one theorem for each primitive, which shows
that the memory refines the shared log. E.g., for mcs_SET_NEXT we prove:
Theorem 2 (Simulation for mcs_SET_NEXT). LetR be the relation defined as match_MCSLOCK
over LK@mem and LOG@A1, identity relation for other parts of mem, A0 and A1. Then

@pm1 m
1
1 m0 : memq pd0 : A0q pd1 d

1
1 : A1q,

if mcs SET NEXTL1
pv, m1, d1q “ Somepm11, d

1
1q and R pm1, d1q pm0, d0q,

then there exists pm10 : memq pd10 : A0q, such that
mcs SET NEXTL0pv, m0, d0q “ Somepm10, d

1
0q and R pm11, d

1
1q pm

1
0, d

1
0q.

One interesting variation is the semantics for fetch-and-store and compare-and-
swap. These instructions are not formalized in the x86 assembly semantics we use, so
we cannot prove that replay function is correctly defined. Instead we modify the last
(“pretty-printing”) phase of the compiler so that these primitive calls map to assembly
instructions, and one has to trust that they match the specification.

4.2 Event interleaving layer
After abstracting memory accesses into the operation on the log, we then need to model
possible interleaving among multiple CPUs. In our approach, this is done through a new
layer which adds context queries.

The concurrent context ε (sometimes called the “oracle”) is a function of the CPU-id
and the log which has the type ε : Z -> list event -> list event. It is one component
of the abstract state, and it represents all the other CPUs, from the perspective of code

10

running on the current CPU. Any time a program does an operation which reads or
writes shared memory, it should first query ε by giving it the current log. The oracle will
reply with a list of events that other CPUs have generated since then, and we update the
log by appending those new events to it.

Primitive specifications are provided read-only access to a context ε by the verifica-
tion framework, and the framework also guarantees that two properties are true of ε: 1)
the returned partial log from the oracle query does not contain any events generated by
the given CPU-id; and 2) if we query the oracle with the well-formed shared log, the
updated log after the oracle query will be well-formed.

Similar to Sec. 4.1, we provide primitives in L0 which query ε and extend the
log. Then in this second layer, we can model abstract operations with interleaving. For
example, mcs SET NEXT can be re-written as

1 void mcs_set_next(uint lk_id, uint cpuid, uint pv_id){
2 mcs_log(lk_id, cpuid);
3 mcs_SET_NEXT(lk_id, cpuid, pv_id); }

by using the logical primitive which corresponds to the oracle query (The function
mcs log refines the semantics of atomic mcs log in the lowest layer by the match MCSLOCK
relation). To model the interleaving, all the setter and getter functions defined in Sec. 4.1
should be combined with the oracle query.

Trust in the machine model Some of the design decisions in the memory access layers
have to be trusted, so the division between machine model and implementation is
unfortunately slightly blurred. Ideally, we would have a generic machine model as
proposed by Gu et al [8], where memory is partitioned into thread-local memory (no
events), lock-protected memory (accesses generate PUSH/PULL events), and atomic
memory (each access generates one READ/WRITE/SWAP/etc event). However, our
starting point is the CompCert x86 semantics, which was designed for single-threaded
programs, and does not come with a log, so we add a log and memory access primitives
ourselves. But because the spinlock module is only code in the OS that uses atomic
memory, we do not add a generic operation called read word etc. Instead we take a short-
cut and specify the particular 6 memory accesses that the lock code uses: mcs_get_next etc.
For these procedures to correctly express the intended semantics, there are two trusted
parts we must take care to get right. First, each access to non-thread-local memory must
generate an event, so we must not forget the call to mcs SET NEXT log. Second, to account
for interleavings between CPUs (and not accidentally assume that consecutive operations
execute atomically) we must not forget the call to mcs log after each access.

4.3 Low-level functional specification
Using the primitives that we have defined in lower layers, we prove the correctness
of lock acquire, mcs_acquire, and release, mcs_release. The target code in this layer is
identical to the code in Fig. 1 except two aspects. First, we replaced all operations on
memory with the getters and setters described in Sec. 4.2. Second, mcs_acquire has one
more argument, which is the bound number for the client code of the lock.

Since the functions defined in Sec. 4.2 already abstract interleaving of multiple
CPUs, the proofs in this layers work just like sequential code verification. We find out

11

the machine state after the function call by applying the C operational semantics to our
function implementation, and check that it is equal to the desired state defined in our
specification.

However, writing the specifications for these functions is slightly subtle, because they
contain while-loops without any obviously decreasing numbers. Since our specifications
are Coq functions we need to model this by structural recursion, in some way that later
will let us show the loop is terminating. So to define the semantics of mcs wait lock, we
define an auxiliary function CalMCS_AcqWait which describes the behavior of the first n
iterations of the loop: each iteration queries the the environment context ε, replays the log
to see if if busy is now false, and appends a GET BUSY event. If we do not succeed within
n iterations the function is undefined (Coq None). Then, in the part of the specification for
the acquire lock function (CalMCS AcqWait) where we need to talk about the while loop,
we say that it loops for some “sufficiently large” number of iterations CalWaitLockTime tq.

1 Fixpoint CalMCS_AcqWait (n: nat) (i : Z) l o : option MultiLog :=
2 match n with
3 | O => None
4 | S n’ =>
5 let l’ := (to i l) ++ l in
6 match CalMCSLock l’ with
7 | Some (MCSLOCK tail la _) =>
8 match ZMap.get i la with
9 | (false, _) => Some ((TEVENT i (TTICKET (GET_BUSY false))) :: l’)

10 | _ =>
11 CalMCS_AcqWait n’ i ((TEVENT i (TTICKET (GET_BUSY true))) ::l’) to
12 end
13 | _ => None
14 end
15 end.

The function CalWaitLockTime computes a suitable number of loop iterations based on tq,
the time-bounds which each of the queuing CPUs promised to respect. We will show how
it is defined in Sec. 4.5. However, in this part of the proof, the definition doesn’t matter.
Computations where n reaches 0 are considered crashing, and our ultimate theorem is
about safe programs, so when proving that the C code matches the specification we only
need to consider cases when CalMCS AcqWait returned (Some l). It is easy to show in a
downward simulation that the C loop can match any such finite run, since the C loop can
run any number of times.

4.4 Data representation and ghost state

From here on, we never have to think about C programs again. All the subsequent
reasoning is done on Coq functions manipulating ordinary Coq data types, such as
lists, finite maps, and unbounded integers. Verifying functional programs written in
Coq’s Gallina is exactly the situation Coq was designed to deal with. However, the
data computed by the replay function in in the previous layer still corresponds exactly
to the array-of-structs that represents the state of the lock in memory. In particular,
the intuitive reason that the algorithm is fair is that each CPU has to wait in a queue,

12

but this conceptual queue is not identical with the linked-list in memory, because the
next-pointers may not be set.

In order to keep the data-representation and liveness concerns separate, we introduce
an intermediate layer, which keeps the same sequence of operations and same log of
events, but manipulates an abstracted data representation. We provide a different replay
function with the type QS_CalLock: Multi_Log -> option (nat * nat * head_status *
list Z * ZSet.t * list nat). The tuple returned by this replay function provides the
information we need to prove liveness, similar to the concepts used in the informal proof
in Sec. 2. The meaning of a tuple (c1, c2, b, q, slow, t) is as follows: c1 and c2 are
upper bounds on how many more operations the CPU which currently holds the lock
will generate as part of the critical section and of releasing the lock, respectively. They
are purely logical ghost state but can be deduced from the complete history of events in
the system. b is either LHOLD or LFREE, the lock status of the head of the queue. q is the
list of the CPUs currently waiting for the lock, and t is the list of bound numbers that
corresponds to each element in q. slow is a finite set which represents the subset of CPUs
in q that have not yet executed their set next operation. Our liveness proof is based on
the fact that each CPU only needs to wait for CPUs that are ahead of it in q.

The tuple returned by this replay function provides the information we need to prove
liveness, similar to the concepts used in the informal proof in Sec. 2. The meaning of a
tuple (c1, c2, b, q, slow, t) is as follows:

c1 An upper bound on how many more operations the CPU which currently holds the
lock will do as part of the critical section. It is as known as a bound number.

c2 An upper bound on how many more operations the CPU which currently holds the
lock will do as part of releasing the lock. We need this number because release lock
also contains a waiting loop.

b Either LHOLD, meaning that a CPU currently holds the lock, or LFREE meaning that it
has been released and the next CPU in the queue has not yet taken it.

q The list of the CPUs currently waiting for the lock (CPUs are identified by a numerical
id). It is a waiting queue and the starvation freedom proof is mainly related to the
property of the decrease of this queue. jieung

slow A finite set (using the finite set type MSet from the Coq standard library) which
represents the subset of CPUs in q which have not yet executed their set next
operation.

t This list specifies, for each CPU in q, a maximum number of operations which that
CPU promises it will not exceed once it holds the lock.

Some of this information is implicit in the state of the memory, while some of it (for
example c1 and c2) is purely ghost state. But in any case, it can be deduced from the
complete history of events in the system, which is what the replay function QS_calLock
does. A few representative cases of the function are shown in Fig. 6. For example, the
event SET_BUSY indicates that a thread releases the lock. If the CPU i is already the front
of the queue q, it currently holds the lock (LHOLD), and the bound c2 has not yet reached
zero, and i is not slow, then generating this event will reset the lock status to LEMPTY and
remove the head element (i) from q and t. In any of those side conditions are not satisfied,
on the other hand, the replay function is undefined (None). Similar considerations hold

13

executing memory operations (you must be in the critical section, and it decrements c1)
and querying the busy flag (you must have executed SET_NEXT first).

1 Fixpoint QS_CalLock (l: MultiLog) :=
2 match l with | (TEVENT i e) :: l’ =>
3 match QS_CalLock l’ with
4 | Some (c1, c2, b, q, slow, t) =>
5 | i0 :: q’, p0 :: tq’ =>
6 if zeq i i0
7 then match b, e with
8 | LHOLD, TTICKET SET_BUSY =>
9 match c2 with

10 | O => None
11 | S c2’ => if (negb (ZSet.mem i slow))
12 then Some (O, O, LEMPTY, q’, slow, t’) else None
13 end
14 | LHOLD, TSHARED _ =>
15 match c1 with
16 | O => None
17 | S c1’ => Some (c1’, c2,LHOLD,q,slow,t)
18 end
19 ...
20 else match b, e with
21 | _, TTICKET (GET_BUSY true) =>
22 if ZSet.mem i slow
23 then None else Some (self_c, rel_c, b, q, slow, t)
24 ...

Fig. 6: The replay function QS_CalLock

Invariant The replay function plays two different roles. When it returns Some v, for
some tuple v, it describes what the current state of the system is, which lets us write
the specifications for the primitives. At the same time, the cases where the function is
defined to return None are also important, because this can be read as a description of
events that are not possible. For example, from inspecting the program, we know that
each CPU will create exactly one SET_NEXT event before it starts generating GET_BUSY
events, and this fact will be needed when doing the proofs in the later layers (Sec. 4.5).
By taking advantage of the side conditions in the replay function, we can express all the
invariants about the log in a single statement, “the replay function is defined”:

D c1 c2 b q s t. QS_CalLock(l) = Some(c1, c2, b, q, s, t)

This type for the replay function is optimized to only expose exactly the information
needed by the subsequent liveness proof. We need to expose the queue and the set of slow
CPUs in order to define the termination measure M (Sec 4.5). On the other hand, this
is not enough information to bridge the gap from the low-level functional specification.

14

In order to show that the memory cells for a valid linked-list and therefore respects
the queue ordering, we need to track exactly what the valid state transitions are. So
inside the ghost state layer, we also introduce a different relation Q_CalMCSLock which is
mostly the same as QS_CalLock but written as an (functional) inductive relation in Coq
instead of a recursive function, and which has even more preconditions for when it is
defined. We then add one more condition in the layer invariant saying that Q_CalMCSLock
and QS_CalLock output the same result. Most of the proofs inside the ghost layer are done
using the relation instead of the function. For simplicity, we will ignore the distinction in
the rest of the paper, and write the lemma statements about QS_CalLock even if they used
Q_CalMCSLock in the actual Coq code.

To show that the ghost layer refines the previous layer, we show a one-step forward-
downward refinement: if the method from the higher layer returns, then method in the
lower layer returns a related value. For this particular layer the log doesn’t change, so
the relation in the refinement is just equality, and the programmer just have to show that
the lower-level methods are at least as defined and that they return equal results for equal
arguments.

As we prove this, we need lemmas to show that we can satisfy the preconditions for
the operations in the lower layer, by relating the data in la to the abstract queue. For
example, when trying to take the lock, the high level specification checks if the current
CPU is at the head of q, which the low specification tests if the busy field is true, so we
need Lemma 5 to show that they will follow the same path of code.

Lemma 3 (tail soundness). If CalMCSLock l = Some (tl, la, tq) and QS CalLock “
Somepc1, c2, q, s, tq, then tl is NULL if q “ nil, and tl the last element of q if q ‰ nil.

Lemma 4 (next-correctness). Let’s assume that CalMCSLock l = Some (tl, la, tq) and
QS_CalLock = Some (c1,c2,q_1++i::j::q_2,s,t), then lock_array[i] = (_, TOTAL_CPU) if
j P s, and lock_array[i] = (_, j) if j R s.

Lemma 5 (tail is busy). If CalMCSLock l = Some (tl, la, tq) and QS_CalLock = Some (
c1,c2,i:: q, s, tq and j P q, then lock_array[j] = (true, _).

Theorem 6 (simulation for the ghost layer). Suppose d satisfies the invariant and
wait_qslock_spec(d)= Some(d’). Then mcs_acquire_spec(d)= Some(d’).

4.5 Liveness and atomicity
The specification in the previous section is still too low-level and complex to be us-
able by client code in the rest of the system. First, the specification of the mcs_acquire
and mcs_release primitives contain loops, with complicated bounds on the number of
iterations, which clients certainly will not want to reason directly about. More impor-
tantly, since the specifications generate multiple events, clients would have to show all
interleavings generate equivalent results.

To solve this we propose a basic design pattern: build a new layer with atomic
specifications, i.e. each primitive is specified to generate a single event. For an atomic
layer there is a therefore a one-to-one mapping between events and primitives, and the
global log can be seen as a record of which primitives were invoked in which order. Thus,
the refinement proof which ascribes an atomic specification proves once and for all that

15

overlapping and interleaved primitive invocations give correct results. In this layer, the
specifications only use three kinds of events: taking the lock (WAIT_LOCK n), releasing it
(PASS_LOCK), and modifications of the shared memory that the lock protects (TSHARED _).

Fig. 7 shows the final specification for the wait primitive. We show this one in
full detail, with no elisions, because this is the interface that clients use. First, the
specification for the lock aquire function itself (mcs_wai_hlock_spcec) takes the function
arguments bound, index, ofs, and maps an abstract state (RData) to another. When writing
this specification we chose to use two components in the abstract state, the log (multi_log
) and also a field (lock) which records for each numbered lock if it is free (LockFalse)
or owned by a CPU (LockOwn). The lock field is not very important, because the same
information can also be computed from the log, but exposing it directly to clients is
sometimes more convenient.

The specification returns None in some cases, and it is the responsibility of the client
to ensure that does not happen. So clients must ensure that: the CPU is in kernel/host
mode (for the memory accesses to work); the index/offset (used to compute the lock
id) are in range; the CPU did not already hold the lock (LockFalse); and the log is well-
formed (H_CalLock l’ is defined, which will always be the case if H_CalLock l is defined).
When all these preconditions are satisfied, the specification queries the context once, and
appends a single new WAIT_LOCK event to the log. Fig. 7 also shows the replay function
H_CalLock. It has a much simpler type than QS_CalLock in the previous layer, because
we have abstracted the internal state of the lock to just whether it is free (LEMPTY), held
(LHOLD), and if taken, the CPU id (Some i) of the holder of the lock. Unlike the three
bound numbers in the previous layer, here we omit the numbers for the internal lock
operations and only keep the bound self_c for the number of events generated during the
critical section. Again, it’s the client’s responsibility to avoid the cases when H_CalLock
returns None. In particular, it is only allowed to release the lock or to generate memory
events if it already holds the lock (zeq i i0), and each memory event decrements the
counter, which must not reach zero. The client calling wait_lock specifies the initial
value n of the counter, promising to take at most n actions within the critical section.

In the rest of the section, we show how to prove that the function does in fact satisfy
this high-level atomic specification. Unlike the previous layers we considered, in this
case the log in the upper layer differs from the one in the lower layer. For example, when
a CPU takes the lock, the log in the upper layer just has the one atomic event (WAIT_LOCK
n), while the log in the underlay has a flurry of activity (swap the tail pointer, set the

next-pointer, repeatedly query the busy-flag). Because the log represents shared data, our
framework requires a slightly strengthened refinement theorem for the log-component of
the state. Usually a refinement simulation works by specifying some relation R between
machine state and abstract state, and then proving that the state transitions preserve the
relation. Indeed, for thread-local data this is exactly what CertiKOS does also.

However, an arbitrary relation R is not enough for local reasoning about concurrent
programs. For example, suppose one particular execution of the system generates the
log lL. A normal simulation theorem for CPU 1 would tell us that there exists a log lH
that meets CPU 1’s local specification and satisfies the relation (R lH ,lL). Similarly,
the local proof for CPU 2 would say there exists some log l’H . But in order to derive a
simulation for the entire system, we need the constraint that that lH is equal to l’H . Our

16

1 Fixpoint H_CalLock (l: MultiLog) : option (nat * head_status * option Z) :=
2 match l with
3 | nil => Some (O, LEMPTY, None)
4 | (TEVENT i e) :: l’ =>
5 match H_CalLock l’ with
6 | Some (S self_c’, LHOLD, Some i0) =>
7 match zeq i i0, e with
8 | left _, TTICKET REL_LOCK => Some (O, LEMPTY, None)
9 | left _, TSHARED _ => Some (self_c’, LHOLD, Some i0)

10 | _, _ => None end
11 | Some (_, LEMPTY, None) =>
12 match e with
13 | TTICKET (WAIT_LOCK n) => Some (n, LHOLD, Some i)
14 | _ => None end
15 | _ => None end end.

1 Definition mcs_wait_hlock_spec (bound index ofs :Z) (adt: RData) : option RData :=
2 let cpu := CPU_ID adt in
3 match (ikern adt, ihost adt, index2Z index ofs) with
4 | (true, true, Some abid) =>
5 match ZMap.get abid (multi_log adt), ZMap.get abid (lock adt) with
6 | MultiDef l, LockFalse =>
7 let to := ZMap.get abid (multi_oracle adt) in
8 let l1 := (to cpu l) ++ l in
9 let l’ := (TEVENT cpu (TTICKET (WAIT_LOCK (Z.to_nat bound)))) :: l1 in

10 match H_CalLock l’ with
11 | Some _ =>
12 Some adt {multi_log: ZMap.set abid (MultiDef l’) (multi_log adt)}
13 {lock: ZMap.set abid LockOwn (lock adt)}
14 | _ => None end
15 | _, _ => None end
16 | _ => None end.

Fig. 7: The final, atomic, specification of the aquire lock function.

17

solution is to require the relation R to be a function f . In other words, when proving the
simulation, we find a function f for the logs, such that fplLq “lH .

As for the MCS Lock, we define a function relate_mcs_log from the implementation
log to the atomic log. Fig. 8 shows by example what it does. It keeps the shared memory
events as they are, discards the events that are generated while a CPU wait for the lock,
and maps just the event that finally takes or releases the lock into WAIT_LOCK and REL_LCOK.

Fig. 8: Log Sequence and Log Refinement Example

We then prove a one-step refinement theorem from the atomic specification to the
implementation, in other words, that if a call to the atomic primitive returns a value, then
a call to its implementation also returns with a related log:

Theorem 7 (MCS Wait Lock Exist). Suppose dMHMCSLockOp and dMQMCSLockOp satisfy the
layer invariants and are related by relate mcs logpdMQMCSLockOpq “ dMHMCSLockOp. If
wait hlock specpdMHMCSLockOpq “ Somepd1MHMCSLockOpq, then there exists some d1MQMCSLockOp
which is wait qslock specpdMQMCSLockOpq “ d1MQMCSLockOp and is related with d1MHMCSLockOp
by relate mcs logpd1MQMCSLockOpq “ d1MHMCSLockOp.

The proof requires a fairness assumption. A CPU cannot take the lock until the
previous CPU releases it, and the previous CPU cannot release it if it never gets to run.
At its most fundamental, the CertiKOS machine model is a nondeterministic transition
system (which is subsequently viewed as a log of events), and there is nothing in the
basic model that ensures fairness, so we have to add an extra assumption somewhere.
In principle it would be possible to modify the machine model itself, and then pass the
fairness assumptions along in the specification of each layer until we reach the layers
related to mutex locks, but in our development we choose a more expedient solution,
and express the fairness assumption as an extra axiom talking about the logs in the
data representation layer (Sec. 4.4). By doing that, our framework can use the previous
machine model as it is, and can reuse most previous proofs.

Specifically, we assume that there exists some constant F (for “fairness”) such that
no CPU that enters the queue has to wait for more than F events until it runs again. In
Coq we provide a function CalBound which “counts down” until CPU i gets a chance to
execute (CalBound : Z -> MultiLog -> nat).

The fairness assumption, then is that for all logs l, when the low level log replay
function returns a value (QS_CalLock(l) = Some(c1,c2,h,q,s,t)) and j is in the waiting
queue (j P q), then CalBound j l > 0.

18

We then define a natural-number valued termination measure Mi(c1,c2,h,q,s,l).
This is a bound on how many events the CPU i will have to wait for in a state represented
by the log l, and where QS_CalLock(l) = Some(c1,c2,h,q++i::q0,s,t++n::t0). Note that
we partition the waiting queue into two parts q and i::q0, where q represents the waiting
CPUs that were ahead of i in the queue. The function M has two cases that depend on
the head status.

Mi(c1,c2,LEMPTY,q,s,l) = CalBoundhdpqqplq ` pK1pΣtq ` |qYs|q ˆK2q

Mi(c1,c2,LHOLD,q,s,l) = CalBoundhdpqqplq ` BoundValAuxˆK2

where BoundValAux “ pc1`c2`pΣptlptqq ˆK1 ` |tlpqqYs|q

In short, if the lock is not taken, the bound M is the sum of the maximum time until
the first thread in the queue gets scheduled again (CalBoundhdpqqplq), plus a constant times
the sum of the number of operations to be done by the CPUs ahead of i in the queue
(Σt) and the number of CPUs ahead of i which has yet to execute SET NEXT operation
(|qYs|). If the lock is currently held, then c1 + c2 is a bound of the number of operations
it will do(and we can ignore the first element of q and t, since they are accounted for).
The constants and fairness assumption is general enough to handle the cases which
takes a slightly longer execution than it is expected to. The constants (K1 “ F ` 5 and
K2 “ F ` 4) are chosen somewhat arbitrary, and certainly M is not the tightest possible
bound. It doesn’t need to be, since it does not occur in our final theorem statement.

. The definition of M is justified by the following two lemmas. First, we prove that
M decreases if CPU i is waiting and some other CPU j executes an event ej .

Lemma 8 (Decreasing measure for other CPUs). Assuming that QS_CalLock(l) =
Some(c1,c2,h,q1++i::q2,s,t1++c::t2), where |q1| “ |t1| as well as QS_CalLock(ej::l) =
Some(c1’,c2’,h’,q’,s’,t’) for some j ‰ i and CalBound(ej::l) > 0 . Then we can split
q’ = q1’++i::q2’, and Mi(c1’,c2’,h’,q1’,s’,t1’,ej::l) ăMi(c1,c2,h,q1,s,t1,l).

Proof. The proof follows the informal outline in Sec. 2. We consider all possible events
ej which could make QS_CalLock return Some. If j is not the CPU at the head of the queue
gets scheduled, it will not be able to make any progress, so the abstract state of the
queue remains the same, but the counter CalBound decreases. Otherwise, the counter
CalBound will reset to the upper bound we assumed on fairness, F . However, in this case
the algorithm will make some progress that changes c1, c2, q, or s. For example, CPU j
may execute a SET NEXT (which decreases the size of s), it may enter the critical section
(which moves some measure from the head of q to the counters c1+c2) or it may exit the
section (and that event will decrement c2).

The second lemma ensures that the waiting loop will eventually terminate. (The
preconditions that i is somewhere in the waiting queue, and that it has already left the
set s, correspond the the set-up which wait_lock does before it starts looping).

Lemma 9 (Loop termination). Let’s assume that QS_CalLock(l) = Some(c1,c2,h,q1++
i::q2,s,t1++c::t2), where |q1| “ |t1|, with i R q1 and i R s. If kąMi(c1,c2,h,q1,s,t1),
then there exists l’ such that CalWaitGet(k,i,l) = Some(l’).

Proof. The proof is by induction on k, the number of loop iterations. The most in-
teresting part of the proof is to show that each event generated by the function will
decrease the measure. As it pulls more event to the log form the context, we appeal to

19

Lemma 8, which says that the metric decreases. Then, there are two cases in the proof
depending on whether i has arrived at the head of the queue (so q = nil) or not. If it
has, wait_qslock_spec will generate a GET_BUSY false even and return, so we are good.
Otherwise, it will generate a GET_BUSY true event, and start another loop iteration. That
event does not change the state of the lock, but it does decrement the CalBound on when
the head CPU will get scheduled next, so the measure decreases as required.

To prove the termination of the loop in wait_qslock_spec, we also need to show that
the busy-loop in pass_qslock_spec terminates, but that proof is easier. A CPU holding
the lock will set the next pointer before it does anything else, so we are only waiting for
the CPU at the head of the queue to get scheduled at all. Now, to prove that the loop in
mcs_acquire specification is defined, we just have to pick the function CalWaitLockTime so
that CalWaitLockTime(t) is greater than M at that point. The rest of the simulation proof
for Theorem 7 is straightforward. Except the waiting loop, other operations in the wait
lock function are deterministic and finite.

4.6 From downwards- to upwards-simulation
When moving from sequential to concurrent programs we must re-visit some fundamental
facts about refinement proofs. Ultimately, the correctness theorem we want to prove is
“all behaviors of the machine satisfy the specification”. If we model the machine and
the specification as two transition systems M and S, then this corresponds to upwards
simulation: if S „ M and M ùñ˚ M 1, then DS1.S1 „ M 1 and S ùñ˚ S1, and if M
is stuck then S is stuck also. But directly proving an upwards simulation is difficult.
You are given a long sequence of low-level steps, and have to somehow reconstruct the
high-level steps and high-level ghost state corresponding to it. One of the insights that
made the CompCert project possible [17] is that as long as M is deterministic and S is
not stuck, it suffices to prove a downward simulation: if S „ M and S ùñ S1, then
DM 1.S1 „ M 1 and M ùñ˚ M 1. (The assumption that S is not stuck is standard, it
corresponds to only proving refinement for “safe” clients regarding to the specifications.)

Unfortunately, concurrent programs are not deterministic: we want to prove that
every interleaving of operations from different CPUs in the low-level machine results in
correct behavior. So if we had directly modeled the implementation as a nondeterministic
transition system, then we would have to work directly with upwards simulations, which
would be intractable when reasoning about the low-level details of C programs.

In our approach, all the nondeterminism is isolated to the concurrent context ε. Any
possible interleaving of the threads can be modelled by initializing the abstract state with
a particular εL, and the execution proceeds deterministically from there. Therefore we
can still use the Compcert/CertiKOS method of first proving a downward simulation and
then concluding the existence of a upward simulation as a corollary.

The context-formalism is also helpful because εL contains the entire execution of
the other threads, both past and future, so we have enough information to directly prove
a forward simulation. Otherwise it may not be clear if a given low-level operation can
really “commit” (and generate a high-level event) until we see what the other cores do,
so proofs about fine-grained concurrency can require a difficult backwards-simulation
from the end-state of the program. [6]There is still an obligation to show that for every εL, there in fact exists an εH with
the right properties. (Specifically, it should the always output logs which respect the

20

program invariants, i.e. the replay function is defined, and also it should respect the
refinement relation f .) But this can be managed by the framework in a generic way [9].
When verifying a particular layer, the programmer only needs to define f .

5 Evaluation

1 uint palloc (uint cid){
2 ...
3 acquire_lock_AT();
4 ...
5 release_lock_AT();
6 return palloc_free_index; }

1 Inductive SharedMemEvent :=
2 | OMEME (l: list Integers.Byte.int)
3 | OATE (a: ATable)
4 | OPALLOCE (b: Z)
5 ...

Fig. 9: palloc Example

Clients The verified MCS lock code is used by multiple clients in the CertiKOS system.
To be practical the design should require as little extra work as possible compared to
verifying non-concurrent programs, both to better match the programmer’s mental model,
and to allow code-resuse from the earlier, single-processor version of CertiKOS.

For this reason, we don’t want our machine model to generate an event for every
single memory access to shared memory. Instead we use what we call a push/pull
memory model [8, 9]. A CPU that wants to access shared memory first generates a “pull”
event, which declares that that CPU now owns a particular block of memory. After it is
done it generates a “push” event, which publishes the CPU’s local view of memory to
the rest of the system. In this way, individual memory reads and writes are treated by
the same standard operational semantics as in sequential programs, but the state of the
shared memory can still be replayed from the log. The push/pull operations are logical
(generate no machine code) but because the replay function is undefined if two different
CPUs try to pull at the same time, they force the programmer to prove that programs are
well-synchronized and race-free. Like we did for atomic memory operations, we extend
the machine model at the lowest layer by adding logical primitives, e.g. release_shared
which takes a memory block identifier as argument and adds a OMEME (l:list Integers
.Byte.int) event to the log, where the byte list is a copy of the contents of the shared
memory block when the primitive was called.

When we use acquire/release_shared we need a lock to make sure that only one CPU
pulls, so we begin by defining combined functions acquire_lock which takes the lock
(with a bound of 10) and then pulls, and release_lock which pushes and then releases
the lock. The specification is similar to pass_hlock_spec, except it appends two events.

Similar to Sec. 4.5, logs for different layers can use different types of pull/push events.
Fig. 9 (right) shows the events for the palloc function (which uses a lock to protect the
page allocation table). The lowest layer in the palloc-verification adds OMEME events, while
higher layers instead add (OATE (a: ATable)) events, where the relation between logs
uses the same relation as between raw memory and abstract ATable data. Therefore, we
write wrapper functions acquire/release_lock_AT_spec, where the implementation just
calls acquire/release_lock with the particular memory block that contains the allocation
table, but the specification adds an OATE event.

We can then ascribe a low-level functional specification palloc’_spec to the palloc
function. As shown in Fig 10, this is decomposed into three parts, the acquire/release

21

1 Definition release_lock_AT_spec adt := ...
2 let l’ := TEVENT cpu (TTICKET REL_LOCK)::TEVENT cpu (TSHARED(OATE(AT adt)))::l
3 in match H_CalLock l’ with Some _ => Some (adt { ... l’ ...}) | None => None ...

1 Function palloc’_spec (n: Z) (adt: RData): option (RData * Z) :=
2 match acquire_lock_AT_spec adt with
3 | Some adt1 => match palloc_aux_spec n adt1 with
4 | Some (adt2, i) =>
5 match release_lock_AT_spec adt2 with
6 | Some adt3 => Some (adt3, i)
7 | _ => None end
8 | _ => None end
9 | _ => None end.

Fig. 10: Specification for palloc

lock, and the specification for the critical section. The critical section spec is exactly the
same in a sequential program: it does not modify the log, but instead only affects the AT
field in the abstract data.

Then in a final, pure refinement step, we ascribe a high-level atomic specification
lpalloc_spec to the palloc function. In this layer we no longer have any lock-related
events at all, a call to palloc appends a single OPALLOCE event to the log. This is when we
see the proof obligations related to liveness of the locks. Specifically, in order to prove
the downwards refinement, we need to show that the call to palloc’_spec doesn’t return
None, so we need to show that H_CalLock l’ is defined, so in particular the bound counter
must not hit zero. By expanding out the definitions, we see that palloc’_spec takes a log l
to REL_LOCK :: (OATE (AT adt)) :: (TSHARED OPULL) :: (WAIT_LOCK 10) :: l. The initial
bound is 10, and there are two shared memory events, so the count never goes lower
than 8. If a function modified more than one memory block there would be additional
push- and pull-events, which could be handled by a larger initial bound.

Like all kernel-mode primitives in CertiKOS, the palloc function is total: if its
preconditions are satisfied it always returns. So when verifying it, we show that all loops
inside the critical section terminate. Through the machinery of bound numbers, this
guarantee is propagated to the the while-loops inside the lock implementation: because
all functions terminate, they can know that other CPUs will make progress and add more
events to the log, and because of the bound number, they cannot add push/pull events
forever. On the other hand, the framework completely abstract away how long time (in
microseconds) elapses between any two event in the log.

Code reuse The same acquire/release_lock specifications can be used for all clients of
the lock. The only proofs that need to be done for a given client is the refinement into
abstracted primitives like release_lock_AT_spec (easy if we already have a sequential
proof for the critical section), and the refinement proof for the atomic primitive like
lpalloc_spec (which is very short). We never need to duplicate the thousands of lines of
proof related to the lock algorithm itself.

Using more than one lock The layers approach is particularly nice when verifying code
that uses more than one lock. To avoid deadlock, all functions must acquire the locks
in the same order, and to prove the correctness the ordering must be included in the
program invariant. We could do such a verification in a single layer, by having a single

22

log with different events for the two locks, with the replay function being undefined if
the events are out of order. But the layers approach provides a better way. Once we have
ascribed an atomic specification to palloc, as above, all higher layers can use it freely
without even knowing that the palloc implementation involves a lock. For example,
some function in a higher layer could acquire a lock, allocate a page, and release the lock;
in such an example the the order of the layers provides an order on the locks implicitly.

Proof Effort Among the whole proofs, the most challenging parts are the proofs for
starvation freedom theorems like Thm. 7, and the functional correctness proofs for
mcs_acquire and mcs_release functions in Sec. 4.3. The total lines of codes for starvation
freedom is 2.5K lines, 0.6K lines for specifications, and 1.9k lines for proofs. This is
because of the subtlety of those proofs. To prove the starvation freedom theorems and
show the evidence of loop termination, lots of lemmas are required to express state
changes by replaying the log. For instance, when QS_CalLock(l) = Some(c1, c2, b, q,
s, t) and q = nil, s “ H and t = nil. It looks trivial in the hand-written proofs, but
requires multiple lines of codes in the mechanized proof.

The total lines of codes for the low-level functional correctness of mcs_acquire and
mcs_release are 3.2K lines, 0.7K lines for specifications, and 2.5K lines for proofs. It is
much bigger than other code correctness proofs for while-loops in CertiKOS, because
these loops do not have any explicit decreasing value. One another big part in our MCS
Lock proofs is the proofs for Thm. 2 and the lines of code for this part is approximately
5K lines. The log replay function (CalMCSLock) always return the whole MCS Lock values
(MCSLock) related to the mcs_lock structure defined in Fig. 1. In this sense, we always have
to give the exact values for all memory chunks and prove the correspondence between
the memory and the abstract data even the event associated with reading values (e.g.
GET_NEXT). Hence, those proofs contain a lot of duplicate proofs for the memory access.
However, they are quite straightforward and easy to produce. On top of that, we strongly
believe that they can be easily reduced by introducing mechanized user-defined tactics
later.

As an evaluation, we do not count the total lines of code in Coq for our entire MCS
Lock module due to the two following reasons. First, our MCS Lock implementation is a
part of CertiKOS. Therefore, our MCS Lock module also contains several definitions and
proofs that are totally irrelevant to MCS Lock verification. This implies that counting the
total lines of code for MCS Lock module has a high possibility of misinterpretation due to
the lines of code for those definitions and proofs. Second, we intensively use contextual
refinement approach to build the whole system rather than focusing on verifying the
correctness and liveness of MCS Lock. Therefore, our proof efforts are mainly focus on
proving MCS Lock that is able to be easily combined with multiple client codes rather
than the efficient lock verification itself.

As can be seen from these line counts, proofs about concurrent programs have a huge
ratio of lines of proof to lines of C code. If we tried to directly verify shared objects that
use locks to perform more complex operations, like thread scheduling and inter-process
communication, a monolithic proof would become much bigger than the current one,
and would be quite unmanageable. The modular lock specification is essential here.

23

6 Related work and conclusions
Verified system software CertiKOS is an end-to-end verified concurrent system showing
that its assembly code indeed “implements” (contextually simulates) the high-level
specification. Other verified systems [10, 15, 26], are single-threaded, or use a per-core
big kernel lock. The Verisoft team used VCC [2] to verify spinlocks in a hypervisor
by directly postulating a Hoare logic rather than building on top of an operational
semantics for C, and only proved properties about the low-level primitives rather than
the full functionality of the hypervisor. By contrast, CertiKOS deals with the problem
of formulating a specification in a way that can be used as one layer inside a large
stack of proofs. As for CertiKOS itself, while we discussed the “local” verification of a
single module, other papers explain how to relate the log and context to a more realistic
nondeterministic machine model [8], how to “concurrently link” the per-CPU proofs into
a proof about the full system [9], and how this extends to multiple threads per CPU [9].

Fine-grained concurrency The MCS algorithm uses low-level operations like CAS
instead of locks. There is much research about how to reason about such programs, more
than we have space to discuss here. One key choice is how much to prove. At least all
operations should be linearizable [13] (a safety property). Some authors have considered
mechanized verification of linearizability (e.g. [4, 6]), but on abstract transition system
models, not directly on executable code. The original definition of linearizability instru-
mented programs to record a global history of method-invocation and method-return
events. However, that’s not a convenient theorem statement when verifying client code.
Our formulation is closer to Derrick et al [4], who prove a simulation to a history of single
atomic actions modifying abstract state. Going beyond safety, one also wants to prove a
progress property such as wait-freedom [11] or (in our case) starvation-freedom [12].

Liang et al [19] showed that the linearizability and progress properties [12] for
concurrent objects is exactly equivalent to various termination-sensitive versions of the
contextual simulation property. Most modern separation-style concurrent logics [5,14,22–
25] do not prove the same strong termination-sensitive contextual simulation properties
as our work does, so it is unclear how they can be used to prove both the linearizability
and starvation-freedom properties of our MCS Lock module. Total-TaDA [23] can be
used to prove the total correctness of concurrent programs but it has not been mechanized
in any proof assistant and there is no formal proof that its notion of liveness is precisely
equivalent to Helihy’s notion of linearizability and progress properties for concurrent
objects [12]. FCSL [24] attempts to build proofs of concurrent programs in a “layered”
way, but it does not address the liveness properties. Many of these program logics [14,25],
however, support higher-order functions which our work does not address.

Other work on the MCS algorithm We are aware of two other efforts to apply formal
verification methods to the MCS algorithm. Ogata and Futatsugi developed a mechanized
proof using the UNITY program logic. [21] They work with an abstract transition system,
not executable code. Like us, their correctness proof works by refinement (between a
fine-grained and a more atomic spec) but they directly prove backward simulation.

One difference is that Ogata and Futatsugi’s proof is done using a weaker fairness
assumption. They assume “every CPU gets scheduled infinitely often”, while we require
a maximum scheduling period (F in Section 4.5). This is because we write our specifica-
tion of wait_lock as a Coq function defined by recursion on a natural number, and all Coq

24

functions must be total. So although our ultimate theorem only states that the method
terminates “eventually”, as an intermediate lemma we need to prove an explicit natural
number bound on when a given call to wait_lock will finish. We could avoid this by e.g.
using Coq’s facilities to define functions by well-founded recursion, and making the
termination measure Mi take ordinal instead of number values, but in practice assuming
a fixed F seems like a reasonable model of multi-core concurrency.

The other MCS Lock verification we know of is by Liang and Feng [18], who define
a program logic LiLi to prove liveness and linearizability properties and verify the MCS
algorithm as one of their examples. The LiLi proofs are done on paper, so they can omit
many “obvious” steps, and they work with a simple while-loop language instead of C.
Many of the concepts in our proof are also recognizable in theirs. In their invariant and
precondition they use specificational variables ta and tb (like la in Sec. 4.3), tl and S
(like q and s in Sec. 4.4), and their termination measure fpGq includes the length of tl
and the size of S (like M in Sec. 4.5). On the other hand, the fairness constant makes no
appearance in fpGq, because fairness assumptions are implicit in their inference rules.

A big difference between our work and LiLi is our emphasis on modularity. Between
every two lines of code of a program in LiLi, you need to prove all the different invariants,
down to low-level data representation in memory. In our development, these concerns
are in different modules which can be completed by different programmers. Similarly, we
aim to produce a stand-alone specification of the lock operations. In the LiLi example, the
program being verified is an entire “increment” operation, which takes a lock, increments
a variable and releases the lock. The pre/post-conditions of the code in the critical section
includes the low-level implementation invariants of the lock, and the fact the lock will
eventually be released is proved for the “increment” operation as a whole. Our locks are
specified using bound numbers, so they can be used by many different methods.

Apart from modularity, one can see a more philosophical difference between the
CertiKOS approach and program logics such as LiLi. Liang and Feng are constructing a
program logic which is tailor-made precisely to reason about liveness properties under
fair scheduling. To get a complete mechanized proof for a program in that setting would
require mechanizing not only the proof of the program itself, but also the soundness
proof for the logic, which is a big undertaking. Other parts of the program will favor
other kinds of reasoning, for example many researchers have studied program logics
with inference rules for reasoning about code using locks. One of the achievements of the
CertiKOS style of specification is its flexibility, because the same model—a transition
system with data abstraction and a log of events—works throughout the OS kernel. When
we encountered a feature that required thinking about liveness and fairness, we were
able to do that reasoning without changing the underlying logical framework.

Conclusion and Future Work Using the “layers” framework by Gu et al. [7] made our
MCS lock proofs modular and reusable. It also lets us verify the code from end to end
and extract certified executable code. Those proofs are also combined with client code
using MCS Locks, which shows they can be used in a large scale system verification
without increasing the complexity dramatically. In the future, we are planning to devise
generic methods for building oracles, log replay functions, liveness proofs, and so on.
We intend to generalize the machine model to handle weak memory models instead

25

of assuming sequential consistency. And we also plan to apply this approach to other
concurrent algorithms.

Acknowledgments

We would like to thank our anonymous referees for helpful feedbacks that improved
this paper significantly. This research is based on work supported in part by NSF grants
1521523 and 1319671 and DARPA grants FA8750-12-2-0293, FA8750-16-2-0274, and
FA8750-15-C-0082. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

References

1. S. Boyd-wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable locks are
dangerous. In Proceedings of the Ottawa Linux Symposium (OLS 2012), 2012.

2. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and
S. Tobies. VCC: A practical system for verifying concurrent C. In Proc. 22nd International
Conference on Theorem Proving in Higher Order Logics, pages 23–42, 2009.

3. J. Corbet. Ticket spinlocks. https://lwn.net/Articles/267968/, February 2008.
4. J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified proof obligations for

linearizability. ACM Trans. Program. Lang. Syst., 33(1):4:1–4:43, Jan. 2011.
5. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis. Concurrent

abstract predicates. In ECOOP’10, pages 504–528, 2010.
6. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verification of a practical lock-free

queue algorithm. In Formal Techniques for Networked and Distributed Systems – FORTE
2004, pages 97–114. Springer, 2004.

7. R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. Wu, S.-C. Weng, H. Zhang, and Y. Guo. Deep
specifications and certified abstraction layers. In Proc. 42nd ACM Symposium on Principles
of Programming Languages, pages 595–608, 2015.

8. R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjoberg, , and D. Costanzo. Certikos: An extensible
architecture for building certified concurrent os kernels. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX Association, 2016.

9. R. Gu, Z. Shao, X. Wu, J. Kim, J. Koenig, T. Ramananandro, V. Sjoberg, H. Chen, and
D. Costanzo. Language and compiler support for building certified concurrent abstraction
layers. Technical Report YALEU/DCS/TR-1530, Dept. of Computer Science, Yale University,
New Haven, CT, October 2016.

10. C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and B. Zill. Ironclad
apps: End-to-end security via automated full-system verification. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation, OSDI’14, 2014.

11. M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
Jan. 1991.

12. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann,
2008.

13. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

26

https://lwn.net/Articles/267968/

14. R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. In Proc. 42nd ACM
Symposium on Principles of Programming Languages, pages 637–650, 2015.

15. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engel-
hardt, R. Kolanski, M. Norrish, et al. seL4: Formal verification of an OS kernel. In SOSP’09:
the 22nd ACM SIGOPS Symposium on Operating systems principles, pages 207–220, 2009.

16. X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–
115, 2009.

17. X. Leroy. A formally verified compiler back-end. J. of Automated Reasoning, 43(4):363–446,
2009.

18. H. Liang and X. Feng. A program logic for concurrent objects under fair scheduling. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’16, pages 385–399, New York, NY, USA, 2016. ACM.

19. H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Characterizing progress properties of concurrent
objects via contextual refinements. In CONCUR, pages 227–241, 2013.

20. J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst., 9(1), Feb. 1991.

21. K. Ogata and K. Futatsugi. Formal verification of the MCS list-based queuing lock. In
Proceedings of the 5th Asian Computing Science Conference on Advances in Computing
Science, ASIAN ’99, pages 281–293, London, UK, UK, 1999. Springer-Verlag.

22. P. D. R. Pinto, T. Dinsdale-Young, and P. Gardner. Tada: A logic for time and data abstraction.
In ECOOP’14, pages 207–231, 2014.

23. P. D. R. Pinto, T. Dinsdale-Young, P. Gardner, and J. Sutherland. Modular termination
verification for non-blocking concurrency. In ESOP’16, pages 176–201, 2016.

24. I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of fine-grained concurrent
programs. In PLDI’15, pages 77–87, 2015.

25. A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for
fine-grained concurrency. In POPL, pages 343–356, 2013.

26. J. Yang and C. Hawblitzel. Safe to the last instruction: automated verification of a type-safe
operating system. In Proc. 2010 ACM Conference on Programming Language Design and
Implementation, pages 99–110, 2010.

27

	Safety and Liveness of MCS Lock—Layer by Layer
	Introduction
	The MCS algorithm
	Abstraction Layers
	Events, logs, and concurrent contexts

	Verification—Layer by layer
	Memory operations layers
	Event interleaving layer
	Low-level functional specification
	Data representation and ghost state
	Liveness and atomicity
	From downwards- to upwards-simulation

	Evaluation
	Related work and conclusions

