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Abstract
Today’s software systems often use many different computation
features and span different abstraction levels (e.g., user code and
runtime-system code). To build foundational certified systems, it is
hard to have a single verification system supporting all computa-
tion features. In this paper we present an open framework for foun-
dational proof-carrying code (FPCC). It allows program modules
to be specified and certified separately using different type sys-
tems or program logics. Certified modules (i.e., code and proof)
can be linked together to build fully certified systems. The frame-
work supports modular verification and proof reuse. It is also ex-
pressive enough so that invariants established in specific verifica-
tion systems are preserved even when they are embedded into our
framework. Our work presents the first FPCC framework that sys-
tematically supports interoperation between different verification
systems. It is fully mechanized in the Coq proof assistant with
machine-checkable soundness proof.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifica-
tion — correctness proofs, formal methods

General Terms Reliability, Languages, Verification

Keywords Foundational Proof-Carrying Code, Program Verifica-
tion, Open Framework, Modularity, Interoperability

1. Introduction
Foundational certified systems are packages containing machine
code and mechanized proofs about safety properties [2, 13]. Build-
ing foundational certified systems is hard because software systems
often use many different computation features (stacks and heaps,
strong and weak memory update, first- and higher-order function
pointers, sequential and concurrent control flows, etc.), and span
different abstraction levels (e.g., user level code and run-time sys-
tem code such as thread schedulers and garbage collectors).

Many type systems and program logics have been proposed
to certify properties of low-level code in the last decades. They
work at different abstraction levels, use different specification lan-
guages and axioms, and emphasize different computation features
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Figure 1. Building FPCC Package by Linking Certified Modules

and properties. For instance, typed assembly language (TAL) [15]
uses types to specify assembly code and proves type safety. TAL
code is at a higher abstraction level than machine code because it
uses the abstract malloc instruction for memory allocation, while
the actual implementation of malloc cannot be certified using TAL
itself. In addition, TAL also assumes a trusted garbage collector in
the run-time system. Recent work on certifying concurrent assem-
bly code [22, 10] applies the rely-guarantee method [14] to prove
concurrency properties. They also use abstract machines with prim-
itive instructions such as fork and yield.

It is extremely difficult to design a verification system that can
support all the computation features. It may not be necessary to do
so either because, fortunately, programmers seldom use all these
features at the same time. Instead, in each program module, only
certain limited combination of features are used at certain abstrac-
tion level. If each module can be certified using existing systems
(which is usually the case), it will be desirable to link all certified
modules (code + proof) constructed in different verification sys-
tems to compose a completely certified system.

Suppose we want to build an FPCC package [2] that contains
the machine code C and a proof showing that C satisfies the safety
policy SP, as shown in Fig. 1. The system C consists of code mod-
ules C1, C2 . . .Ck. Some of them are system libraries or code of the
run-time system, others are compiled from user modules. Each Ci is
certified using certain verification system, with specifications about
its imported and exported interfaces. We want to reuse proofs for
the modules and compose them together to build the proof for the
safety of the whole system. This is a challenging task because mod-
ules are certified separately using different specification languages
and verification systems. When certain modules (e.g., system li-
braries) are specified and verified, the programmer may have no
idea about the context where the code gets used and the verification
system with which they will interoperate.

To compose certified modules, we need an open FPCC frame-
work that satisfies the following requirements.



• Modularity: modules should be specified and certified sepa-
rately; when they are linked together, the proof for each module
should be reused.

• Extensibility: the framework should not be just designed for
specific combination of verification systems; instead, it should
support any specification languages and verification systems
(foreign systems hereafter); furthermore, new systems should
be easily created and integrated into this framework.

• Expressiveness: the framework should preserve the invariants
established in foreign systems so that we can infer interesting
properties about the composed program other than the simple
type-safety property.

Existing PCC systems [3, 13, 8] only support constructing founda-
tional proofs for a specific verification system. They do not support
interoperation. The only exception is the work done by Hamid and
Shao [12] which shows the interoperation between two specific sys-
tems (TAL and CAP). Making existing FPCC frameworks open is
by no means trivial. The syntactic approach to FPCC [13, 8] simply
formalizes the global syntactic soundness proof of verification sys-
tems in a mechanized meta-logic framework. It is unclear how dif-
ferent foreign verification systems can interoperate. The Princeton
FPCC system [3, 4, 19] uses a semantic approach. They construct
FPCC for TAL by building semantic models for types. The seman-
tic approach may potentially have good support to interoperability,
but it is unclear how it will be extended to support reasoning about
concurrent programs.

Most importantly, the step-indexed model [4] is defined specifi-
cally for type safety (i.e., program never gets stuck). It is hard to use
the indexed model for embedded code pointers to support Hoare-
style program logics, which can certify the partial correctness of
programs with respect to program specifications. More discussion
about related work will be given in Section 7.

In this paper, we propose an open framework, OCAP, for devel-
oping foundational proof-carrying code. OCAP is the first FPCC
framework which systematically supports interoperation of dif-
ferent verification systems. It lays a set of Hoare-style inference
rules above the raw machine semantics, so that proofs can be con-
structed following these rules instead of directly using the mecha-
nized meta-logic. Soundness of these rules are proved in the meta-
logic framework with machine-checkable proof, therefore these
rules are not trusted. OCAP is modular, extensible and expressive,
therefore it satisfies all the requirements mentioned above for an
open framework. Our work on OCAP builds upon previous work
on program verification but makes the following new contributions:

• OCAP is built to reason about real machine code, but it still
allows user level code to be specified and certified with higher-
level abstractions. Instead of introducing higher-level primitive
operations in the machine, we let user code call runtime which
implements the required functionality. Runtime code can be
fully certified in a different verification system.

• OCAP supports modular verification. When user code and run-
time code are specified and certified, no knowledge about the
other side is required. Modules certified in one verification sys-
tem can be easily adapted to interoperate with other modules in
a different system without redoing the proof.

• OCAP uses an extensible and heterogeneous program specifi-
cation. Taking advantage of Coq’s support of dependent types,
specifications in foreign systems for modules can be easily in-
corporated as part of OCAP specifications. The heterogeneous
program specification also allows OCAP to specify embedded
code pointers, which enables OCAP’s support for modularity.

• The assertions used in OCAP inference rules are expressive
enough to specify invariants enforced in most type systems
and program logics, such as memory safety, well-formedness
of stacks, non-interference between concurrent threads, etc..
The soundness of OCAP ensures that these invariants are main-
tained when foreign systems are embedded in the framework.

• Our applications of OCAP to support interoperation of verifica-
tion systems are interesting in their own right. In the first appli-
cation, we show how to link user code in TAL with a simple cer-
tified memory management library. TAL only supports weak-
memory update and the free memory is invisible to TAL code.
The memory management library is specified in SCAP [11],
which supports reasoning about operations over free memory
and still ensures that the invariants of TAL code is maintained.
In our second application, we show how to construct FPCC for
concurrent code without trusting the scheduler. The user thread
code is certified using the rely-guarantee method [14], which
supports thread modular verification; the thread scheduler is
certified as sequential code in SCAP. They are linked in OCAP
to construct FPCC packages.
In the rest of this paper, we first present in section 2 the basic set-

tings of the meta-logic and the machine we use to construct FPCC.
We propose our OCAP framework in section 3. In section 4 we
illustrate the embedding of a specific verification system, SCAP,
in the OCAP framework. Then we show our two applications in-
volving interoperation between different systems in section 5 and
6. Finally we discuss related work and conclude in section 7.

2. Basic Settings for FPCC
In the FPCC framework, the operational semantics of machine
instructions is formalized in a mechanized meta-logic. Program
logics or type systems are formally defined in the meta-logic with
machine checkable soundness proof, resulting in smaller TCB for
the safety proof. In this section, we introduce the meta-logic we use
for OCAP and present the formulation of our target machine.

2.1 The Mechanized Meta-Logic
We use the calculus of inductive constructions (CiC) [18] as our
meta-logic, which is an extension of the calculus of construc-
tions (CC) with inductive definitions. CC corresponds to Church’s
higher-order predicate logic via the Curry-Howard isomorphism.
CiC is supported by the Coq proof assistant [6], which we use to
implement the results presented in this paper.

(Term) A,B ::= Set | Prop | Type | X | λX :A.B | A B | A →B
| ∀X :A. B | inductive def. | . . .

The syntax of commonly used CiC terms are shown above,
where Prop is the universe of all propositions, and Type is the (strat-
ified) universe of all terms. A → B represents function spaces. It
also means logical implication if A and B have kind Prop. Mean-
ings of other terms will be explained at the time they are used.

2.2 The Target Machine
The syntax of machine programs is defined in Fig. 2. A machine
program P contains a code heap C, an updatable program state
S and a program counter pc pointing to the next instruction to
execute. C is a partial mapping from code labels (f) to instructions.
The program state consists of a data heap H and a register file R. H

is a partial mapping from memory locations (l) to word values. R

is a total function from registers to word values.
To simplify the presentation, we do not model the von Neumann

architecture since reasoning about self-modifying code is beyond
the scope of this paper. We model the code and data heaps sep-
arately and make the code heap read-only. Also, we only show a
small set of commonly used instructions. Adding more instructions
to the framework is straightforward.
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Figure 4. OCAP: an open framework for FPCC

(Program) P ::= (C,S,pc)
(CodeHeap) C ::= {f � ι}∗

(State) S ::= (H,R)
(Memory) H ::= {l � w}∗
(RegFile) R ::= {r � w}∗
(Register) r ::= {rk}k∈{0...31}

(Labels) f,l,pc ::= n (nat nums)
(Word) w ::= i (integers)
(Instr) ι ::= addu rd ,rs,rt | addiu rd ,rs,w | bgtz rs,f

| lw rt ,w(rs) | subu rd ,rs,rt | sw rt ,w(rs)
| j f | jal f | jr rs

(InstrSeq) I ::= ι | ι;I

Figure 2. The Target Machine TM

(C,(H,R),pc) �−→ P

if C(pc) = then P = if

j f (C,(H,R),f)
jr rs (C,(H,R),R(rs))
jal f (C,(H,R{r31 �pc+1}),f)
bgtz rs,f (C,(H,R),pc+1) R(rs)≤0

(C,(H,R),f) R(rs)>0
other ι (C,Nextι (H,R),pc+1)

where

if ι = then Nextι (H,R) =
addu rd ,rs,rt (H,R{rd �R(rs)+R(rt)})
addiu rd ,rs,w (H,R{rd �R(rs)+w})
lw rt ,w(rs) (H,R{rt �H(R(rs)+w)})

when R(rs)+w ∈ dom(H)
subu rd ,rs,rt (H,R{rd �R(rs)−R(rt)})
sw rt ,w(rs) (H{R(rs)+w�R(rt)},R)

when R(rs)+w ∈ dom(H)

Figure 3. Operational Semantics of TM

To lay some structure over the flat code heap C, we use the
instruction sequence I to represent a basic code block. C[f] extracts
from C a basic block ending with a jump instruction.

C[f] =

⎧⎨
⎩

C(f) if C(f) = j f′ or C(f) = jr rs

C(f); I if f ∈ dom(C) and I = C[f+1]
undefined otherwise

We define the operational semantics of machine programs in
Fig. 3. One-step execution of a program is modeled as a transition
relation P �−→ P

′. P �−→k
P
′ means P reaches P

′ in k steps, and
�−→∗ is the reflexive and transitive closure of the step-relation.
The auxiliary (partial) function Nextι ( ) defines the effects of
sequential instructions over program states.

2.3 Program Safety
The FPCC framework is used to construct the mechanized proof
about program safety. Safety of the program means the execution

of the program P satisfies certain safety policy SP, which can be
formalized as follows:

∀P
′. (P �−→∗

P
′) → SP(P′).

Usually we use the invariant-based proof to prove the program
safety. We first define a program invariant INV which is stronger
than the safety policy. Then we prove that
1. the initial program P0 satisfies INV, i.e., INV(P0);

2. ∀P. INV(P) →∃P′. (P �−→ P′)∧ INV(P′).
Using CiC as the meta-logic, we can support very general spec-

ifications of the safety policy, which may range from simple type
safety (i.e., programs never get stuck) to correctness of programs
with respect to their specifications (a.k.a. partial correctness). For
instance, we can ensure the type safety by defining SP(P) as:

OneStep(P) � ∃P
′. P �−→ P

′.
Such an SP can be trivially implied by the invariant-based proof
method. On the other hand, suppose we have a program specifi-
cation Ψ which defines the loop-invariants at certain points of the
program. We can define SP as:

SP(P) � OneStep(P)∧ (P.pc ∈ dom(Ψ) → Ψ(P.pc) P.S),

which says that the program can make one step, and that if it
reaches the point where a loop invariant is specified in Ψ, the loop
invariant will hold over the program state. In this way, we capture
the partial correctness of programs.

An FPCC package represented in the meta-logical framework
is then a pair F containing the program and a proof showing that
the program satisfies the safety policy [13]. Through Curry-Howard
isomorphism, we know that

F ∈ Σ P : Program. ∀P
′. (P �−→∗

P
′) → SP(P′),

where Σx :A.P(x) represents the type of a dependent pair.

3. The OCAP Framework
The OCAP framework, as shown in Fig. 4, lays a set of Hoare-style
inference rules over the raw machine semantics. Soundness of these
rules is proved in the meta-logic with machine checkable proof,
so they are not in the TCB. OCAP rules are expressive enough to
embed most existing verification systems for low-level code. To
embed a verification system L, we define an interpretation [[ ]]L
which maps specifications in L to assertions used in OCAP, then
we prove system specific rules/axioms as lemmas based on the the
interpretation and OCAP rules. Proofs constructed in each system
can be incorporated as OCAP proofs and be linked to compose the
complete safety proof.

3.1 Overview of Certified Assembly Programming
We first give an overview of our previous work on certified assem-
bly programming, upon which we develop our OCAP framework.

3.1.1 The CAP system
Yu et al. proposed a simple Hoare-style program logic CAP [21]
to certify assembly code. CAP expects a program specification



Ψ � P (Well-formed program)
Ψ � C :Ψ (p S) Ψ �{p}pc : C[pc]

Ψ � (C,S,pc)
(PROG)

Ψ � C :Ψ′ (Well-formed code heap)

for all f ∈ dom(Ψ′): Ψ �{Ψ′(f)}f : C[f]

Ψ � C :Ψ′ (CDHP)

Ψ �{p}f : I (Well-formed instruction sequence)

ι∈{addu,addiu, lw,subu,sw}
Ψ �{p′}f+1 : I p⇒ p′ ◦Nextι

Ψ �{p}f : ι; I
(SEQ)

∀S. p S →∃p′. codeptr(S.R(rs),p′) Ψ∧p′ S

Ψ �{p}f : jr rs
(JR)

Figure 5. Selected CAP Rules

Ψ which collects the loop invariants asserted for each basic code
block. Instead of defining its own assertion language in the meta-
logic, CAP uses the meta-logic as the assertion language (a.k.a.
shallow embedding) and each assertion p is a predicate over the
program state, as shown below.

(CHSpec) Ψ ∈ Labels ⇀ StatePred
(StatePred) p ∈ State → Prop

CAP inference rules. Fig. 5 shows inference rules in CAP. Using
the invariant-based proof, CAP enforces the program invariant Ψ �
P. As shown in the PROG rule, the invariant requires that:
• Ψ characterize the code heap C and guarantee the safe execu-

tion of C, i.e., Ψ � C :Ψ;

• there exist a precondition p for the current instruction se-
quence C[pc] (recall our definition of C[f] in section 2.2);
given the knowledge Ψ about the complete code heap, the pre-
condition p will guarantee the safe execution of C[pc], i.e.,
Ψ �{p}pc : C[pc];

• the current program state S satisfy p.

To certify a program, we only need to prove that the initial pro-
gram (C,S0,pc0) satisfies the invariant. Soundness of CAP guar-
antees that the invariant holds at each step of execution.

The CDHP rule defines well formed code heap Ψ � C : Ψ′. The
rule says that it is safe to execute code in C if the loop invariant
asserted at each label f in Ψ′ guarantees the safe execution of the
corresponding basic block C[f], i.e., Ψ �{Ψ′(f)}f : C[f]. The Ψ
on the left hand side specifies the preconditions of code which
may be reached from C[f]. In other words, Ψ specifies imported
interfaces for each basic block in C.

Rules for well-formed instruction sequences ensure that it is
safe to execute the instruction sequence under certain precondition.
For sequential instructions, the SEQ rule requires that the user find
an assertion p′ and prove that the remaining instruction sequence I

is well-formed with respect to p′. Also the user needs to prove that
p′ holds over the resulting state of ι. Usually p′ can be the strongest
postcondition λS. ∃S0.p S0 ∧ (S = Nextι (S0)) . The JR rule essentially
requires that the precondition for the target address hold at the time
of jump. The proposition codeptr(f,p) Ψ is defined as follows:

codeptr(f,p) Ψ � f ∈ dom(Ψ)∧Ψ(f) = p .

Soundness. The soundness of CAP ensures that well-formed pro-
grams never get stuck, as shown in Theorem 3.1. Proof for the theo-
rem follows the syntactic approach to proving type soundness [20].

Theorem 3.1 (CAP-Soundness)
If Ψ � P, then for all n there exists a P′ such that P �−→n P′.

3.1.2 Specifications of embedded code pointers
CAP is a general framework for assembly code verification, but
its specification language (predicates over state) is not expressive
enough to specify first class code pointers (e.g., codeptr(f,p) Ψ),
which requires the reference to Ψ. A quick attack to this problem
may be extending the specification language as follows:

(CHSpec) Ψ ∈ Labels ⇀ Assert
(Assert) a ∈ CHSpec → State → Prop

and a code pointer f with specification a is defined as:

codeptr(f,a) � λΨ,S. f ∈ dom(Ψ)∧Ψ(f) = a .

Unfortunately, this simple solution does not work because the
definitions of CHSpec and Assert mutually refer to each other and
are not well-founded. To break the circularity, Ni and Shao [16]
defined a syntactic specification language. In their XCAP, the pro-
gram specification is in the following form.

(CHSpec) Ψ ∈ Labels ⇀ Assert
(PropX) P ::= . . .

(Assert) a ∈ State → PropX
(Interp) [[ ]] ∈ PropX → (CHSpec → Prop)

The meaning of the extended proposition P is given by the inter-
pretation [[P ]]Ψ. A code pointer specification codeptr(f,a) is just a
built-in syntactic construct in PropX, whose interpretation is:

[[codeptr(f,a) ]]Ψ � f ∈ dom(Ψ)∧Ψ(f) = a .

“State → PropX” does not have to be the only form of specifi-
cation language used for certified assembly programming. For in-
stance, the register file type used in TAL can be treated as a specifi-
cation language. We can generalize the XCAP approach to support
different specification languages [11]. Then we get the following
generic framework:

(CHSpec) Ψ ∈ Labels ⇀ CdSpec
(CdSpec) θ ∈ . . .

(Interp) [[ ]] ∈ CdSpec → (CHSpec → State → Prop)

where the code specification θ can be of different forms, as long
as appropriate interpretations are defined. A code pointer f with
specification θ is now formulated as:

codeptr(f,θ) � λΨ,S. f ∈ dom(Ψ)∧Ψ(f) = θ .

Although generic, this framework is not “open” because it only al-
lows homogeneous program specification Ψ with a specific type of
θ. If program modules are specified in different specification lan-
guages, the code pointer f1 specified in the specification language
L1 is formulated as codeptr(f1,θL1

), while code pointer f2 in L2
is specified as codeptr(f2,θL2

). To make both codeptr definable,
we need a heterogeneous program specification Ψ in OCAP.

3.2 OCAP Specifications
The first attempt to define the program specifications for OCAP is
to take advantage of the support of dependent types in CiC and pack
each code specification θ with its corresponding interpretation.

(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L

(Assert) a ∈ CHSpec → State → Prop
(Interp) [[ ]]L ∈ L→ Assert

(OCdSpec) π ::= 〈L, [[ ]]L ,θ〉 ∈ ΣX .(X → Assert)∗X
(CHSpec) Ψ ∈ Labels ⇀ OCdSpec

As shown above, specifications in each specification language will
be encoded in CiC as θ, whose type L is also defined in CiC. The
interpretation [[ ]]L for the language L maps θ to the OCAP asser-
tion a. The language-specific specification θ is lifted to an “open”
specification π, which is a dependent package containing the lan-
guage type L, its interpretation function [[ ]]L and the specification



(LangID) ρ ::= n (nat nums)
(LangTy) L ::= (CiC terms) ∈ Type

(CdSpec) θ ::= (CiC terms) ∈ L

(OCdSpec) π ::= 〈ρ,L,θ〉 ∈ LangID∗ (ΣX .X)
(CHSpec) Ψ ∈ Labels ∗ OCdSpec

(Assert) a ∈ CHSpec → State → Prop

(Interp) [[ ]]L ∈ L→ Assert

(LangDict) D ∈ LangID ⇀ ΣX .(X → Assert)

Figure 6. Specification Constructs of OCAP

θ. The heterogeneous program specification Ψ is simply defined as
a partial mapping from code labels to the lifted specification π.

Unfortunately, this obvious solution introduces circularity again,
because definitions of CHSpec and OCdSpec refer to each other.
To break the circularity, we remove the interpretation from π and
collect all the interpretations into an extra “language dictionary”.
The OCAP solution. The definition of OCAP program specifica-
tion constructs is shown in Fig. 6. To embed a system into OCAP,
we first assign a unique ID ρ to its specification language. Specifi-
cations in that language and their type are still represented as θ and
L. Both are CiC terms. The lifted specification π now contains the
language ID ρ, the corresponding language type L and the specifi-
cation θ. The program specification Ψ is a binary relation of code
labels and lifted code specifications. We do not define Ψ as a par-
tial mapping because the interface of modules may be specified in
more than one specification language.

As explained above, the interpretation for language L maps
specifications in L to assertions a. To avoid circularity, we do not
put the interpretation [[ ]]L in π. Instead, we collect the interpre-
tations and put them in a language dictionary D, which maps lan-
guage IDs to dependent pairs containing the language type and the
corresponding interpretation.

Given a lifted specification π, the following operation maps it to
an assertion a:

[[[〈ρ,L,θ〉 ]]]D � λΨ,S. ∃[[ ]]L . (D(ρ)=〈L, [[ ]]L〉) ∧ ([[θ ]]L Ψ S). (1)

It takes the language ID ρ and looks up the interpretation from D.
Then the interpretation is applied to the specification θ. If there is
no interpretation found, the result is simply false.

We allow a specification language L to have more than one
interpretation, each assigned a different language ID. That is why
we use ρ instead of L to look up the interpretation from D.

3.3 OCAP Inference Rules
Figure 7 shows OCAP inference rules. The PROG rule is similar to
the one for CAP, but with several differences:
• In addition to the program specification Ψ, OCAP requires a

language dictionary D to interpret code specifications.

• The well-formedness of C is checked with respect to D and Ψ.

• The assertion a is now a predicate over code heap specifications
and states. It holds over Ψ and the current state S.

• We check the well-formedness of the current instruction se-
quences C[pc] with respect to D and a.
As in CAP, to certify programs using OCAP, we only need to

prove that the invariant holds at the initial program (C,S0,pc0).
The precondition a specifies the initial state S0. It takes Ψ to be able
to specify embedded code pointers in S0, as explained before. The
soundness of OCAP will guarantee that the invariant holds at each
step of execution and that the invariant ensures program progress.
Well-formed code heaps. The CDHP rule checks that the specifi-
cation asserted at each f in Ψ′ ensures safe execution of the corre-
sponding instruction sequence C[f]. As in CAP, the Ψ on the left

D;Ψ � P (Well-formed program)

D;Ψ � C :Ψ (a Ψ S) D�{a}pc : C[pc]

D;Ψ � (C,S,pc)
(PROG)

D;Ψ � C :Ψ′ (Well-formed code heap)

for all (f,π) ∈ Ψ′: a = 〈[[[π ]]]D〉Ψ D�{a}f : C[f]

D;Ψ � C :Ψ′ (CDHP)

D1;Ψ1 � C1 :Ψ′
1 D2;Ψ2 � C2 :Ψ′

2 D1#D2 C1#C2

D1 ∪D2;Ψ1 ∪Ψ2 � C1 ∪C2 :Ψ′
1 ∪Ψ′

2

(LINK*)

D�{a}f : I (Well-formed instruction sequence)

a⇒ λΨ′,S. ∃π′.(codeptr(f′,π′)∧ [[[π′ ]]]D) Ψ′ S

D�{a}f : j f′
(J)

a⇒ λΨ′,S. ∃π′.(codeptr(S.R(rs),π′)∧ [[[π′ ]]]D) Ψ′ S

D�{a}f : jr rs
(JR)

a⇒ λΨ′,S. ∃π′. (codeptr(f′,π′)∧ [[[π′ ]]]D) Ψ′
Ŝ

where Ŝ = (S.H,S.R{r31 �f+1})
D�{a}f : jal f′;I

(JAL)

ι∈{addu,addiu, lw,subu,sw}
D�{a′}f+1 : I a⇒ λΨ′. (a′ Ψ′)◦Nextι

D�{a}f : ι; I
(SEQ)

D�{a′′}I

a⇒ λΨ′,S. (S.R(rs)≤0 → a′′ Ψ′ S)
∧ (S.R(rs)>0 →

∃π′. (codeptr(f′,π′)∧ [[[π′ ]]]D) Ψ′ S)

D�{a}f : bgtz rs,f
′; I

(BGTZ)

a⇒ a′ D�{a′}f : I

D�{a}f : I
(WEAKEN*)

Figure 7. OCAP Inference Rules

hand side specifies the code to which each C[f] may jump. For all
(f,π) ∈ Ψ′, we first map π to an assertion ([[[π ]]]D) by applying
the corresponding interpretation defined in D (see (1) in Sec. 3.2).
Then we do another lifting 〈 〉Ψ, which is defined as:

〈a〉Ψ �
⎛
⎝ ∧

(f,π)∈Ψ

codeptr(f,π)

⎞
⎠∧a .

Here codeptr(f,π) is defined as the following assertion:

codeptr(f,π) � λΨ,S. (f,π) ∈ Ψ .

We also overload the conjunction connector “∧” for assertions:

a∧a′ � λΨ,S. a Ψ S∧a′ Ψ S .

Therefore, the lifted assertion (〈[[[π ]]]D〉Ψ) carries the knowledge
of the code pointers which may be reached from C[f]. When we
check C[f], we do not need to carry Ψ, but we need to carry D to
interpret specifications for these code pointers.

Linking of modules. The C checked in the CDHP rule does not
have to be the global code heap used in the PROG rule. Subsets Ci
of the complete code heap can be certified with local interfaces Di,
Ψi and Ψ′

i. Then they are linked using the admissible LINK rule. We
use a “*” in the name to distinguish admissible rules from normal
rules. The compatibility of partial mappings f and g is defined as

f #g � ∀x. x ∈ dom( f )∧x ∈ dom(g) → f (x) = g(x) .
The LINK rule shows the openness of OCAP: C1 and C2 may be

specified and certified in different verification systems with inter-
pretations defined in D1 and D2 respectively. Proofs constructed
in foreign systems are converted to proofs of OCAP judgments



Di;Ψi � Ci : Ψ′
i at the time of linkage. We will demonstrate this

in the following sections.

Well-formed instruction sequences. Rules for jump instructions
(J, JR and JAL) are simple. They require that the target address be
a valid code pointer with specification π′, and that there be an
interpretation for π′ in D. The interpretation of π′ should hold at
the resulting state of the jump. Here we use a⇒ a′ as a shorthand
for ∀Ψ,S. a Ψ S → a′ Ψ S .

The SEQ rule for sequential instructions is similar to the CAP
SEQ rule. It requires no further explanation. The BGTZ rule is like
a simple combination of the J rule and the SEQ rule, which is
straightforward to understand.

The WEAKEN rule. The WEAKEN rule is also admissible in OCAP.
It is a normal rule in Hoare-style program logics, but plays an im-
portant role in OCAP to interface foreign verification systems. The
instruction sequence I may have specifications θ and θ′ in different
foreign systems. Their interpretations are a and a′, respectively. If
the proof of D �{a′}f : I is converted from proof constructed in
the system where I is certified with specification θ′, it can be called
from the other system as long as a is stronger than a′. The use of
this rule will be shown in section 5.2.

3.4 Soundness of OCAP
The soundness of OCAP inference rules is proved following the
syntactic approach to proving type soundness [20]. We need to first
prove the standard progress and preservation lemmas (see [9]). We
then prove two soundness theorems for OCAP. The first one shows
that we can use OCAP to certify type safety (the non-stuckness
property); while the second one shows that we can additionally
certify the partial correctness of programs.

Theorem 3.2 (Soundness—Type Safety)
If D;Ψ � P, then for all n there exists P′ such that P �−→n P′.
Theorem 3.3 (Soundness—Correctness)
If D;Ψ � (C,S,pc), then for all n there exist S′ and pc′ such that
(C,S,pc) �−→n (C,S′,pc′), and
1. if C(pc′) = j f, then [[[Ψ(f) ]]]D S

′;

2. if C(pc′) = jal f, then [[[Ψ(f) ]]]D (S′.H,S′.R{r31 �pc′+1});
3. if C(pc′) = jr rs, then [[[Ψ(S′.R(rs)) ]]]D S

′;

4. if C(pc′) = bgtz rs,f and S′.R(rs) > 0, then [[[Ψ(f) ]]]D S′,
where [[[Ψ(f) ]]]D � λS. ∃π. (f,π) ∈ Ψ ∧ [[[π ]]]D Ψ S.

Therefore, if the interpretation for a specification language cap-
tures the invariant enforced in the corresponding verification sys-
tem, the soundness of OCAP ensures that the invariant holds when
the modules certified in that system get executed.

A similar soundness theorem was also proved for CAP [21]. Yu
et al. [21] exploited CAP’s support of partial correctness to certify
an implementation of malloc and free libraries. CAP and OCAP’s
ability to support partial correctness of programs benefits from the
way we specify codeptr. We show in [9] that it is unclear how this
soundness theorem can be proved using the step-indexed semantic
model of codeptr.

3.5 Applicability of OCAP
In the rest of the paper, we will explore the applicability of the
OCAP framework by showing how to embed existing type systems
and program logics into the framework, and how to support inter-
operations between different systems at different abstraction levels.
As shown in Fig. 8, we embed SCAP into OCAP to certify runtime
library code. We also show how to embed TAL as a type system and
CCAP as a program logic for concurrency verification. In section 5
we link TAL code with a simple memory management library cer-
tified in SCAP. In section 6, user-level threads certified in CCAP

OCAP

TAL

...

...

CCAP

...

...

getm threads

SCAP

...

...

scheduler
...
...

newpair
...
...

threads
...
...

threads

sec. 5.1 sec. 4 sec. 6.3

sec. 5 sec. 6

Figure 8. Case Studies for OCAP

are linked with a simple implementation of a scheduler certified in
SCAP. Since we mainly focus on interfacing systems, no familiar-
ity of specific systems is required to understand these examples.

4. Case Study: Embedding SCAP in OCAP
In general, it takes three steps to embed a foreign system into
OCAP: first identify the invariant enforced in the system; then de-
fine an interpretation for code specifications and embed the invari-
ant in the interpretation; finally prove the soundness of the embed-
ding by showing that inference rules in the original system can be
proved as lemmas in OCAP based on the interpretation. In this sec-
tion, we show how to embed SCAP into OCAP.

SCAP is a compositional Hoare-style program logic proposed
in [11] for assembly code verification. It supports reasoning about
function call/return without requiring specifications of return code
pointers (which is a special form of embedded code pointers).

SCAP uses a pair of predicates (p,g) as code specifications (θ).
As shown in Fig. 9, p is a predicate over the current state; the
guarantee g is a predicate over a pair of states. LSCAP is the type
of θ. The code heap specification ψ maps code labels to θ’s.

Program invariant. The idea behind SCAP is very intuitive. The
predicate p is the precondition, which plays the same role as the p
in CAP. We use g to specify the behavior of code from the specified
point to the return point of a function. A function call is made in
SCAP by executing the jal instruction. Function returns by jumping
to the register r31. The program invariant enforced in SCAP is
formalized [11] as

INV(S) � p S∧∃n. wfst(n,g S,ψ) ,

where (p,g) is the SCAP specification for the current program
point and ψ is the code heap specification. The invariant requires
that, at any program point, the state satisfy the current precondition
p, and there be a well-formed control stack with certain depth n.
The predicate wfst is defined as:

wfst(0,q,ψ) � ¬∃S. q S

wfst(n+1,q,ψ) � ∀S′. q S′ → ∃p′,g′. ψ(S′.R(r31)) = (p′,g′)∧
p′ S

′ ∧wfst(n,g′ S
′,ψ) .

At the return point of the current function (where g has been
fulfilled), if the stack depth is greater than 0, r31 contains a code
pointer with certain specification (p′,g′). After the current function
returns, p′ holds so that it is safe to run the return continuation; and
the stack is still well-formed with depths decreased by 1. When
stack depth is 0, we are executing the topmost function and cannot
return (i.e., the guarantee cannot be fulfilled).

SCAP rules ensure that the invariant specified above is main-
tained during program execution. Selected SCAP rules are shown
in Appendix A.1. Interested readers can refer to [11] for details.

Embedding and soundness. To embed SCAP into OCAP, we first
use the lifting function �ψ�ρ to convert the ψ in SCAP to OCAP’s
specification Ψ, where ρ is the language ID assigned to SCAP.

�ψ�ρ � {(f, 〈ρ,LSCAP ,(p,g)〉) | ψ(f) = (p,g)}



(StatePred) p,q ∈ State → Prop
(Guarantee) g ∈ State → State → Prop

(CdSpec) θ ::= (p,g) ∈ LSCAP

(LocalSpec) ψ ::= {f � θ}∗ ∈ Labels ⇀ LSCAP

Figure 9. Specification Constructs for SCAP

For any ρ, the following interpretation function takes the SCAP
specification (p,g) and transforms it into the assertion in OCAP.

[[(p,g) ]](ρ,D)
LSCAP

� λΨ,S. p S ∧ ∃n.WFST(n,g S,D,Ψ)

Here D is an open parameter which describes the verification
systems used to verify the external world around SCAP code. The
interpretation simply specifies the SCAP program invariants we
have just shown, except that we reformulate the previous definition
of wfst to adapt to OCAP code heap specification Ψ.

WFST(0,q,D,Ψ) �
∀S′. q S′ → ∃π. (codeptr(S′.R(r31),π)∧ [[[π ]]]D) Ψ S′

WFST(n+1,q,D,Ψ) �
∀S′. q S′ → ∃p′,g′.(S′.R(r31), 〈ρ,LSCAP ,(p′,g′)〉)∈Ψ

∧ p′ S′ ∧ WFST(n,g′ S′,D,Ψ).
WFST is similar to wfst, but we look up code specifications from
OCAP’s Ψ. Since we are now in an open world, we allow SCAP
code to return to the external world even if the depth of the SCAP
stack is 0, as long as r31 is a valid code pointer and the interpreta-
tion of its specification π is satisfied at the return point. The open
parameter D is used here to interpret the specification π.

Note that our formulation of the interpretation prevents the open
parameter D from referring to the SCAP interpretation itself, other-
wise circularity will be introduced. This limitation is due to the fact
that SCAP does not do CPS-style reasoning [11]. Readers should
not take it as an inherent limitation of the OCAP framework to
support mutually recursive functions certified in different systems.
Pragmatically, this limitation of SCAP does not affect its applica-
bility because we usually use SCAP to certify runtime system li-
braries, as shown in the following sections. Also SCAP itself sup-
ports recursive functions.

It is also important to note that we do not need ρ and D to
use SCAP, although they are open parameters in the interpre-
tation. When we certify code using SCAP, we only use SCAP
rules to derive the well-formedness of instruction sequences (i.e.,
ψ �{(p,g)}f : I) and code heaps (i.e., ψ � C : ψ′) with respect to
SCAP specification ψ. The interpretation is not used until we want
to link the certified SCAP code with code certified in other systems.
We instantiate ρ and D in each specific application scenario. The-
orem 4.1 shows the soundness of SCAP rules and their embedding
in OCAP, which is independent with these open parameters.

Theorem 4.1 (Soundness of the Embedding of SCAP)
Suppose ρ is the language ID assigned to SCAP. For all D for
foreign code, let D′ = D{ρ�〈LSCAP , [[ ]](ρ,D)

LSCAP
〉}.

1. If ψ �{(p,g)}f : I in SCAP, we have D′ �{〈a〉Ψ}f : I in OCAP,
where Ψ = �ψ�ρ and a = [[(p,g) ]](ρ,D)

LSCAP
.

2. If ψ � C :ψ′ in SCAP, we have D′;�ψ�ρ � C :�ψ′�ρ in OCAP.

5. Case II: TAL with Certified Runtime
In this section, we show how to link TAL code with certified mem-
ory allocation libraries. Unlike traditional TALs [15, 7] which are
based on abstract machines with primitive operations for memory
allocation, we present a variation of TAL for our TM (see Sec. 2.2).

We use a simple function newpair to do memory allocation.
The code for newpair is specified and verified in SCAP without
knowing about the future interoperation with TAL. User code is

newpair

H'

H

newpair:
.
.

jr r31

gn

FList

FList

TAL SCAP

Figure 10. Interoperation with TAL and SCAP

(InitFlag) ϕ ::= 0 | 1

(WordTy) τ ::= α | int | ∀[Δ].Γ | 〈τϕ1
1 , . . . ,τϕn

n 〉 | ∃α.τ | µα.τ
(TyVarEnv) Δ ::= · | α,Δ

(RfileTy) Γ ::= {r�τ}∗
(CHType) ψ ::= {(f, [Δ].Γ)}∗
(DHType) Φ ::= {l � τϕ}∗

Figure 11. Type Definitions of TAL

certified in TAL. There is also a TAL interface for newpair so that
the call to newpair can be type-checked. To allow the interoper-
ation, we first embed both systems in OCAP. Then we show that,
given the interpretations for TAL and SCAP, the TAL interface for
newpair is compatible with the SCAP interface.

The tricky part is that TAL and SCAP have different views about
machine states. As shown in Fig. 10, TAL (the left side) only knows
the heap reachable from the user code. It believes that newpair will
magically generate a memory block of two-word size. The free list
of memory blocks (FList) and other parts of the system resource is
invisible to TAL code and type. SCAP (on the right side) only cares
about operations over the free list. It does not know what the heap
for TAL is. But when it returns, it has to ensure that the invariant
in TAL is not violated. As we will show in this section, the way we
use specification interpretations and our SCAP have nice support
of memory polymorphism. They help us achieve similar effect of
the frame rule in separation logic [17].

5.1 Embedding TAL into OCAP
We first embed into OCAP a TAL over TM. The embedding follows
similar steps we did for SCAP.

TAL types and typing rules. Figure 11 shows the definition of
TAL types, including polymorphic code types, mutable references,
existential types, and recursive types. Definitions for types are
similar to the original TAL. Γ is the type for the register file. ∀[Δ].Γ
is the polymorphic type for code pointers, which means the code
pointer expects a register file of type Γ with type variables declared
in Δ. The flag ϕ is used to mark whether a memory cell has been
initialized or not. 〈τϕ1

1 , . . . ,τϕn
n 〉 is the type for a mutable reference

pointing to a tuple in the heap. The fresh memory cells returned by
memory allocation libraries will have types with flag 0. The reader
should keep in mind that this TAL is designed for TM, so there is no
“heap values” as in the original TAL. Also, since we separate code
heap and data heap in our TM, specifications for them are separated
too. We use ψ for code heap type and Φ for data heap type.

Major TAL judgments are shown in Fig. 12. The typing rules are
similar1 to the original TAL [15] and are shown in Appendix A.2.

1 But we do not need a PROG rule to type check whole programs P because
this TAL will be embedded in OCAP and only be used to type check code
heaps which may be a subset of the whole program code.



ψ � C :ψ′ Well-Typed Code Heaps
ψ �{[Δ].Γ}f : I Well-Typed Instr. Sequences
ψ � S : [Δ].Γ Well-Typed States
� [Δ].Γ ≤ [Δ′].Γ′ TAL RegFile Sub-Typing

Figure 12. Major TAL Judgments

Readers who are not familiar with TAL can view [Δ].Γ as assertions
about states and the subtyping relation as logical implication. Then
TAL instruction rules look very similar to CAP rules shown in
Fig. 5. Actually this is exactly how we embed TAL in OCAP below.

The invariant enforced in TAL is that, at any step of execution,
the program state is well-typed with respect to the code heap type
ψ and certain register file type [Δ].Γ (i.e., ψ � S : [Δ].Γ).

Embedding of TAL. The code specification θ in TAL is the reg-
ister file type [Δ].Γ. The type of its CiC encoding is LTAL. Then we
define the mappings between the TAL code heap specification ψ
and the OCAP code heap specification Ψ.

�ψ�ρ � {(f, 〈ρ,LTAL , [Δ].Γ〉) | (f, [Δ].Γ) ∈ ψ}
�Ψ�ρ,L = {(f,θ) | (f, 〈ρ,L,θ〉) ∈ Ψ}

To link TAL programs with run-time systems, the interpretation
function for TAL specification is defined with an open parameter r,
which is the invariant about memory invisible from TAL (the grey
blocks in Fig. 10):

[[ [Δ].Γ ]](ρ,r)
LTAL

� λΨ,S. ∃H1,H2. (S.H = H1�H2)∧
(�Ψ�ρ,LTAL � (H1,S.R) : [Δ].Γ) ∧ r Ψ H2.

Here ρ is the language ID assigned to TAL; f � g means union
of partial mappings with disjoint domains. Instead of building
semantic models for TAL types, we reuse the TAL state typing
(ψ � S : [Δ].Γ) as the interpretation. Also note that the invariant r
specifies only H (instead of S). Although expressiveness is limited,
this should be sufficient for runtime resources because usually run-
time does not reserve registers. Also this limitation can be lifted if
we model the register file R as a partial mapping (like H).

Soundness. Theorem 5.1 states the soundness of TAL rules and
the interpretation for TAL specifications. It shows that, given the
interpretation, TAL rules are derivable as lemmas in OCAP. The
soundness is independent with the open parameter r.

Theorem 5.1 (TAL Soundness)
For all ρ and r, let D= {ρ � 〈LTAL , [[ ]](ρ,r)

LTAL
〉} .

1. if ψ �{[Δ].Γ}I then D�{〈a〉Ψ}I, where a= [[[Δ].Γ ]](ρ,r)
LTAL

and Ψ =
�ψ�ρ;

2. if ψ � C :ψ′ then D;�ψ�ρ � C :�ψ′�ρ.

5.2 Linking TAL with newpair

Certifying the caller in TAL. The following code schema (CTAL )
shows part of the code for the caller getm. Code following the jal
instruction is labeled by cont, which will be passed to newpair as
the return address.

getm:
jal newpair

cont: ... ; r30 points to a pair

We use the following TAL code heap specification to type check
the above code CTAL . In addition to specifications for getm and
cont, newpair is also specified here, so that the function call to it
can be type checked in TAL.

ψt � {newpair� [α1, . . . ,α9,α,α′].{r1 �α1, . . . ,r9 �α9,
r31 �∀[].{r1 �α1, . . . ,r9 �α9,

r30 �〈α0,α′0〉}},
getm � [Δ].{r1 �τ1, . . . ,r9 �τ9, . . .},
cont � [Δ].{r1 �τ1, . . . ,r9 �τ9,r30 �〈τ0,τ′0〉}.

From TAL’s point of view, newpair takes no argument and returns
a reference in r30 pointing to two fresh memory cells with types τ
and τ′ (tagged by 0). Also values of callee-save registers (r1 - r9)
have to be maintained, which is enforced by the polymorphic type.

The user will certify the caller CTAL by constructing the follow-
ing derivations in TAL.

ψt �{ψt(getm)}getm : Igetm (2)

ψt �{ψt(cont)}cont : Icont (3)

where Igetm = CTAL [getm] and Icont = CTAL [cont].

Certifying newpair in SCAP. The following code schema shows
the implementation CSCAP of newpair, which largely follows the
malloc function in [21]. We omit the actual code here.

newpair:
...
jr r31

Before we specify the newpair function in SCAP, we first
define separation logic connectors in our meta-logic:

l �→ i � λS. dom(S.H) = {l} ∧ S.H(l) = i

p1 ∗p2 � λ(H,R).∃H′,H′′. H = H′ �H′′ ∧
p1 (H′,R) ∧ p2 (H′′,R)(

p
q

)
∗ ID � λ(H1,R1),(H2,R2).

∀H,H′
1. H1 =H

′
1 �H ∧ p (H′

1,R1) →
∃H′

2. H2 =H′
2 �H ∧ q (H′

2,R2)

Following [21], we use an assertion FList to specify the list
of free memory blocks maintained by newpair. The SCAP code
specification for newpair is (pn,gn) where

pn � FList

gn � (∀r∈{r1, . . . ,r9,r31}. [r] = [r]′) ∧
(

FList
FList ∗ [r30]′ �→( , )

)
∗ ID .

Recall that g in SCAP specifies the guarantee of functions. We use
[r] to represent the value of r in the first state (the current state),
while the primed value [r]′ means the value of r in the second
state (the return state). Here gn says the function will reinstate
the value of callee-save registers and the return address before it
returns. Also, as shown in Fig. 10, the original FList is split into a
smaller FList and a memory block of two-word size. The rest of the
memory is not changed.

The specification for the newpair code CSCAP is as follows:

ψs � {newpair � (pn,gn)} .

We certify newpair by constructing the SCAP derivation of

ψs �{(pn,gn)}newpair : Inewpair (4)

where Inewpair = CSCAP [newpair].

Linking the caller and callee. So far, we have specified and
certified the caller and callee independently in TAL and SCAP. Our
next step is to link the caller and the callee in OCAP.

Suppose the language ID for TAL and SCAP are ρ and ρ′
respectively. We use FList to instantiate the resource invariant r
used in the interpretation for TAL. Therefore TAL’s interpretation
is [[ ]](ρ,FList)

LTAL
. The language dictionary DTAL is defined as:

DTAL � {ρ � 〈LTAL , [[ ]](ρ,FList)
LTAL

〉}.
We feed DTAL to the interpretation for SCAP, which is now

[[ ]](ρ′,DTAL)
LSCAP

(see section 4 for the SCAP interpretation). The lan-
guage dictionary for both languages is:

DFULL � DTAL ∪{ρ′ � 〈LSCAP , [[ ]](ρ
′ ,DTAL)

LSCAP
〉} .

Merging the code of the caller and the callee, we get

CFULL � {getm�Igetm ,cont�Icont ,newpair�Inp} .
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Figure 13. Concurrent Code at Different Abstraction Levels

TAL and SCAP specifications are lifted to OCAP spec ΨFULL :
{ ( getm , 〈ρ , LTAL , ψt(getm) 〉 ),

( cont , 〈ρ , LTAL , ψt(cont) 〉 ),
( newpair, 〈ρ′, LSCAP , ψs(newpair) 〉 ),
( newpair, 〈ρ , LTAL , ψt(newpair) 〉 ) } .

To certify CFULL , we need to construct a proof for (5).

DFULL ;ΨFULL � CFULL :ΨFULL (5)

By applying the OCAP CDHP rule, we need derivations for the well-
formedness of each instruction sequence. By theorems 5.1 and 4.1,
we can get most of the derivations for free from derivations (2),
(3) and (4). The only tricky part is to show the newpair code is
well-formed with respect to the TAL specification, i.e.,

DFULL �{〈a〉ΨFULL
}newpair : Inewpair

where a = [[[〈ρ,LTAL ,ψt(newpair) 〉 ]]]DFULL
.

(6)

To prove (6), we prove the implication

a⇒ [[[〈ρ′,LSCAP ,ψs(newpair)〉 ]]]DFULL
,

which says the TAL specification for newpair is compatible with
the SCAP one under their interpretations. Then we apply the OCAP
WEAKEN rule and get (6).

6. Case III: Certified Threads and Scheduler
As an important application of OCAP, we show how to construct
FPCC for concurrent code without putting the thread scheduler
code in the TCB, yet still support thread-modular verification.
Our example is based on the non-preemptive thread model, but
preemptive scheduling can also be certified in a similar way.2

6.1 The Problem
Almost all work on concurrency verification assumes built-in lan-
guage constructs for concurrency, including recent work on verifi-
cation of concurrent assembly code [22, 10].

The top part of Fig. 13 shows a (fairly low-level) abstract ma-
chine with built-in support of threads. Each thread Ti has its own

2 We need to model interrupts in our machine TM to implement preemptive
scheduling.

code heap and program counter. The index i points to the current
running thread. This index and the pc of the corresponding thread
decide the next instruction to be executed by the machine. The ma-
chine provides a primitive yield instruction. Executing yield will
change the index i in a nondeterministic way, therefore the control
is transferred to another thread. All threads share the data heap H

and the register file R.
The classic rely-guarantee method [14] allows concurrent code

in such a machine to be certified in a thread-modular way, as shown
in CCAP [22]. The method assigns specification A and G to each
thread. A and G are predicates over a pair of states. They are used
to specify state transitions. The guarantee G specifies state transi-
tions made by the specified thread between two yield points. The
assumption A specifies the expected state transition made by other
threads while the specified thread is waiting for the processor. If all
threads satisfy their specifications, the following non-interference
property ensures proper collaboration between threads:

NI([(A1,G1), . . . ,(An,Gn)]) � Gi ⇒ A j ∀i �= j .

To certify concurrent code, we prove that each thread fulfills its
guarantee as long as its assumption is satisfied. When we certify
one thread, we do not need knowledge about other threads. There-
fore we do not have to worry about the exponential state space.

However, this beautiful abstraction also relies on the built-in
thread abstraction. In a single processor machine such as our TM,
there is no built-in abstractions for threads. As shown in the bot-
tom part of Fig. 13, we have multiple execution contexts saved in
heap as the thread queue. Code Ci calls the thread scheduler (im-
plemented by CS), which switches the current context (pc) with
one in the thread queue and jumps to the pc saved in the selected
context. All we have at this level is sequential code.

It is hard to use the rely-guarantee method to certify the whole
system (Ci and CS). We cannot treat CS as a special thread because
the context-switching behavior cannot be specified unless first-
class code pointers are supported. We do not know any existing
work supporting first-class code pointers in a rely-guarantee-based
framework. On the other hand, certifying all the code as sequential
code loses thread modularity, thus impractical.

In our approach, we use CCAP to certify user thread code Ci.
Although the machine is low-level, the code can be specified and
certified as if it is working at the higher-level machine shown in
Fig. 13. The scheduler code CS is certified as sequential code in
SCAP. From SCAP point of view, the context switching is no more
special than memory load and store, as we will show below. Then
the certified code can be linked in OCAP. In the rest of this section,
we give a brief overview of our development of the complete FPCC
package. More technical details can be found in [9].

6.2 Certifying The Scheduler Code in SCAP
Non-preemptive user threads yield control of CPU by calling the
scheduler with the return continuation saved in register r31. The
scheduler will save r31 in the current context, put the context in
the thread queue, pick another execution context, restore r31, and
finally return by jumping to r31. Then the control is transferred to
the selected thread.

We have made several simplifications in the above procedure:
we do not save the register file in the thread context because it is
shared by threads in CCAP. There is no stack either because CCAP
threads do not make function calls. Data structures for the scheduler
is thus very simple, as shown in Fig. 14. Each thread context only
contains the saved pc. The global constant cth points to the context
of the current thread, and tq points to the other threads’ contexts
which are organized in a linked list. We use TQ(tq,Q) to represent
the linked list pointed by tq containing Q. Q is a (nonempty) list of
code labels [pc1, . . . ,pcn]. Definition of TQ is omitted here.



cth

pci

pc1 pc2 pcn
...

tq

Figure 14. Current thread and the thread queue

(StPred) p,q ∈ State → Prop
(Assumption) A ∈ State → State → Prop

(Th-Guarant.) ǧ,G ∈ State → State → Prop
(CdSpec) θ ::= (p, ǧ,A,G)
(CHSpec) ψ ::= {f � θ}∗

Figure 15. Specification Constructs for CCAP

The scheduler is then given the following specification (ps,gs),
where |Q| represents the set of elements in the list Q.

ps � ∃Q. cth �→( , ) ∗ TQ(tq,Q) ∗ True

gs � (∀r ∈ r0, . . .r30.[r] = [r]′)∧
∀Q.∃pcx ∈ |Q|∪{[r31]}.∃Q′.(|Q′| = |Q|∪{[r31]}\{pcx})∧

([r31]′ = pcx)∧
(
cth �→( , ) ∗ TQ(tq,Q)
cth �→(pcx, ) ∗ TQ(tq,Q′)

)
∗ ID

The guarantee gs requires that, at the return point of the scheduler,
the register file (except r31) be restored; a label pcx be picked from
Q (or it can still be old [r31]) and be saved in r31; the thread queue
be well-formed; and the rest part of data heap not be changed. Note
gs leaves the scheduling strategy unspecified.

The scheduler code CS can be certified using (ps,gs) in SCAP
without knowing about CCAP.

6.3 CCAP for User Thread Code
The code specifications in CCAP is a tuple (p, ǧ,A,G), as shown in
Fig. 15. A and G are the assumption and guarantee. p is a predicate
over the current state. For program points between two yield points,
we use ǧ to specify the “local” guarantee from the specified point
to the next yield point. If the specified point immediately follows a
yield, ǧ will be same as G.

The user thread code Ci is specified and certified in CCAP. We
apply CCAP rules to construct the derivation ψ � Ci :ψ′. The rules
we use here are almost the same as their original form [22], except
that we revise the original YIELD rule, as shown in Appendix A.3,
to adapt to our TM, where yield is done by calling the runtime (i.e.,
jal yield) instead of executing a built-in yield instruction.

We use LCCAP to represent the type of θ (in CiC). The following
lift function converts ψ for CCAP to OCAP code heap spec.

�ψ�ρ � {(f,〈ρ,LCCAP ,(p, ǧ,A,G)〉) | ψ(f) = (p, ǧ,A,G)}
The interpretation for CCAP specification (p, ǧ,A,G) is defined as
[[(p, ǧ,A,G) ]]ρLCCAP

, given the language ID ρ. As usual, it specifies
the invariants enforced in CCAP for safety and non-interference.

Linking the scheduler with threads. To link the certified sched-
uler with user code, we assign language IDs ρ and ρ′ to SCAP and
CCAP respectively. The following dictionary Dc contains the in-
terpretation for CCAP.

Dc � {ρ′ � 〈LCCAP, [[ ]]ρ
′

LCCAP
〉} .

Using Dc to instantiate the open parameter, SCAP interpretation is

now [[ ]](ρ,Dc)
LSCAP

(see section 4 for the definition). Since the scheduler
has been certified, applying Theorem 4.1 will automatically convert
the SCAP proofs into OCAP proofs.

The following theorem helps us construct sound OCAP proofs
from CCAP derivations after we know the specification of yield
at the time of linkage.

Theorem 6.1 (CCAP Soundness)
Let D= Dc ∪{ρ � 〈LSCAP , [[ ]](ρ,Dc)

LSCAP
〉} and

Ψs = {(yield, 〈ρ,LSCAP ,(ps,gs) 〉 )}
.1. If we have ψ �{(p, ǧ,A,G)}f : I, then D�{〈a〉Ψ}f : I, where

Ψ = �ψ�ρ′ ∪Ψs and a = [[(p, ǧ,A,G) ]]ρ
′

LCCAP
.

2. If we have ψ � C : ψ′ in CCAP, then D;Ψ � C : �ψ′�ρ′ , where
Ψ = �ψ�ρ′ ∪Ψs.

7. Related Work and Conclusion
Semantic Approaches to FPCC. The semantic approach to
FPCC [3, 4, 19] builds semantic models for types and proves typ-
ing rules in TAL as lemmas in meta-logic. Our work is similar
to this approach in that a uniform assertion is used in the OCAP
framework; interpretations are used to map foreign specifications
to OCAP assertions, and inference rules of foreign systems are
proved as OCAP lemmas. However, our interpretation does not
have to be a semantic model of foreign specifications. For instance,
when we embed TAL into OCAP, we simply use TAL’s syntactic
state typing as the interpretation for register file types. This makes
our interpretation easier to define than semantic models [1].

OCAP also uses a different specification for embedded code
pointers than the step-indexed semantic model [4, 19] specifically
defined for type safety. In a companion technical report [9], we
show that it is hard to use the step-indexed model to verify partial
correctness of programs (Theorem 3.3).

Syntactic Approaches to FPCC. In the syntactic approach to
FPCC [13, 8], TALs are designed for higher-level abstract machines
with mechanized syntactic soundness proofs. FPCC is constructed
by proving bisimulation between type safe TAL programs and real
machine code. In our framework, we allow users to certify machine
code directly, but still at a higher abstraction level in TAL. The
soundness of TAL is shown by proving TAL instruction rules as
lemmas in OCAP. Runtime code for TAL is certified in a different
system and is linked with TAL code in OCAP.

Hamid and Shao [12] proposed a technique for interfacing
XTAL with CAP. XTAL is a variant of TAL with stubs that en-
capsulate interfaces of runtime library. Under their design, CAP is
used both as a linking framework (like our use of OCAP) and as a
system for certifying all the runtime library functions (like our use
of SCAP). Our OCAP and SCAP have better modularity than CAP.
Furthermore, by splitting the linking framework and the system for
certifying runtime, we get a more general and conceptually clearer
system.

Previous work on CAP systems. CAP is first used in [21] to
certify malloc/free libraries. The system used there does not
have modular support of embedded code pointers. Ni and Shao [16]
solved this problem in XCAP by defining a specification language
with a built-in construct for code pointers. XCAP specifications
are interpreted into a predicate taking Ψ as an argument. This
approach is extended in [11], where a generic system CAP0 is
proposed to incorporate various program logics for reasoning about
stack-based control abstractions. As discussed in section 3.1, CAP0
only supports the embedding of single or fixed combinations of
program logics, which is not open or extensible. Interoperability is
not studied in [11] either. OCAP is built upon our previous work
on CAP systems, but it is the first framework we use to support
interoperability of different systems in an extensible and systematic
way. All our previous CAP systems can be trivially embedded in
OCAP (see section 3.1).



The open verifier framework. Chang et al. proposed an open ver-
ifier for verifying untrusted code [5]. Their framework can be cus-
tomized by embedding extension modules, which are executable
verifiers implementing verification strategies in pre-existing sys-
tems. However, since their support of indirect jumps needs to know
all the possible target addresses, it is unclear how they support sep-
arate verification of program modules using different extensions.
Open Verifier emphasizes on implementation issues for practical
proof construction, while our work explores the generality of FPCC
frameworks. OCAP provides a formal basis with clear meta prop-
erties for interoperation between verification systems.

Conclusion. We propose OCAP as an open framework for con-
structing FPCC. OCAP lays a thin layer of Hoare-style inference
rules over a bare mechanized meta-logic. It has been implemented
in the Coq proof assistant with machine-checkable soundness
proofs [9]. The assertion language for OCAP is expressive enough
to specify the invariants enforced in foreign verification systems.
We have embedded in OCAP a program logic (SCAP) for certi-
fying run-time code, a type system (TAL), and a program logic
for concurrency verification (CCAP). OCAP also supports sepa-
rate verification of program modules in different foreign systems.
We presented two applications to demonstrate OCAP’s support for
interoperation. The first one shows how to use OCAP to link TAL
code with certified libraries; the second one shows how to construct
FPCC for concurrent code without trusting the scheduler: sched-
uler code and user thread code are certified in different systems and
linked in OCAP. In the future, we plan to apply OCAP to certify
a large set of other applications, especially those involving impor-
tant language features such as embedded code pointers, mutable
references, and recursive data structures.

This paper focuses on the support of “horizontal” modularity in
the sense that all program modules are homogeneous TM code. We
may also support “vertical” modularity in the same framework. To
incorporate modules programmed in different assembly languages
or even high-level languages, we need to first formalize the trans-
lation/compilation from these languages to TM. The formalized
compilation procedure is embedded in the definition of the corre-
sponding interpretation function. Then the soundness theorem for
embedding a foreign system will be similar to the main theorem
of type-preserving compilation [15]. We will leave this as future
work.
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A. Inference Rules of Foreign Systems
A.1 SCAP Inference Rules
SCAP inference rules are presented in Fig. 16.

A.2 TAL Typing Rules
See Fig. 17 and 18.

A.3 CCAP Inference Rules
Selected CCAP rules are shown in Fig. 19.



� [Δ].Γ ≤ [Δ′].Γ′ (Subtyping)

Γ(r)=Γ′(r) ∀ r∈dom(Γ′)
� [].Γ ≤ [].Γ′ (SUBT)

Γ(r)=∀[α,Δ′].Γ′ Δ � τ′

� [Δ].Γ ≤ [Δ].Γ{r :∀[Δ′].Γ′[τ′/α]} (TAPP)
Γ(r)=τ[τ′/α] Δ � τ′

� [Δ].Γ ≤ [Δ].Γ{r :∃α.τ} (PACK)

Γ(r)=∃α.τ
� [Δ].Γ ≤ [α,Δ].Γ{r :τ} (UNPACK)

Γ(r)=τ[µα.τ/α]

� [Δ].Γ ≤ [Δ].Γ{r :µα.τ} (FOLD)
Γ(r)=µα.τ

� [Δ].Γ ≤ [Δ].Γ{r :τ[µα.τ/α]} (UNFOLD)

Δ � τ ψ � S : [Δ].Γ ψ � H :Φ ψ;Φ � R :Γ ψ;Φ � w :τ ψ;Φ � w :τϕ � τϕ ≤ τϕ′

f tv(τ) ⊆ Δ
Δ � τ

(TYPE)
· � τi ψ � H :Φ ψ;Φ � R :Γ[τ1 , . . . ,τn/α1, . . . ,αn]

ψ � S : [α1 , . . . ,αn].Γ
(STATE)

ψ;Φ � H(l) :Φ(l) ∀ l∈dom(Φ)
ψ � H :Φ

(HEAP)
ψ;Φ � R(r) :Γ(r) ∀ r∈dom(Γ)

ψ;Φ � R :Γ
(RFILE)

ψ;Φ � w : int
(INT)

(f, [Δ].Γ)∈ψ
ψ;Φ � f :∀[Δ].Γ

(CODE)
· � τ′ ψ;Φ � f :∀[α,Δ].Γ

ψ;Φ � f :∀[Δ].Γ[τ′/α]
(POLY)

� Φ(l+i−1) ≤ τϕi
i

ψ;Φ � l :〈τϕ1
1 , . . . ,τϕn

n 〉
(TUP)

· � τ′ ψ;Φ � w :τ[τ′/α]
ψ;Φ � w :∃α.τ

(EXT)
ψ;Φ � w :τ[µα.τ/α]

ψ;Φ � w :µα.τ
(REC)

ψ;Φ � w :τ
ψ;Φ � w :τϕ (INIT) ψ;Φ � w :τ0

(UNINIT)

� τϕ ≤ τϕ (REFL) � τ1 ≤ τ0
(0-1)

Figure 18. Other TAL Typing Rules

ψ � C :ψ′ (Well-formed code heap)

for all f ∈ dom(ψ′): ψ �{ψ′(f)}f : C[f]

ψ � C :ψ′ (CDHP)

ψ �{(p,g)}f : I (Well-formed instruction sequence)

(p′,g′) = ψ(f′) (p′′,g′′) = ψ(f+1)
∀S. p S → p′ (S.H,S.R{r31 �f+1})
∀S,S′. p S → g′ (S.H,S.R{r31 �f+1}) S′

→ p′′ S′ ∧ (∀S′′. g′′ S′ S′′ → g S S′′)
∀S,S′. g′ S S′ → S.R(r31) = S′.R(r31)

ψ �{(p,g)}f : jal f′; I
(CALL)

ψ �{(p′,g′)}f+1 : I ι∈{addu,addiu, lw,subu,sw}
p⇒ p′ ◦Nextι ∀S,S′. p S → g′ (Nextι (S)) S′ → g S S′

ψ �{(p,g)}f : ι; I
(SEQ)

∀S. p S → g S S

Ψ �{(p,g)}f : jr r31
(RET)

(p′,g′) = ψ(f′) p⇒ p′ ∀S,S′. p S → g′ S S′ → g S S′

ψ �{(p,g)}f : j f′
(J)

Figure 16. Selected SCAP Rules

ψ � C :ψ′ (Well-formed Code Heap)

ψ �{[Δ].Γ}f : C[f] for all (f, [Δ].Γ) ∈ ψ′

ψ � C :ψ′ (CDHP)

ψ �{[Δ].Γ}f : I (Well-formed Instr. Sequence)

(f′, [Δ′].Γ′) ∈ ψ � [Δ].Γ ≤ [Δ′].Γ′

ψ �{[Δ].Γ}f : j f′
(J)

(f′, [Δ′].Γ′) ∈ ψ (f+1, [Δ′′].Γ′′) ∈ ψ
� [Δ].Γ{r31 � ∀[Δ′′].Γ′′} ≤ [Δ′].Γ′

ψ �{[Δ].Γ}f : jal f′; I
(JAL)

Γ(rs)=∀[Δ′].Γ′ � [Δ].Γ ≤ [Δ′].Γ′

ψ �{[Δ].Γ}f : jr rs
(JR)

Γ(rs)= int ψ �{[Δ].Γ{rd � int}}f+1 : I

ψ �{[Δ].Γ}f : addiu rd ,rs,w; I
(ADDI)

Figure 17. Selected TAL Instruction Rules

ψ � C :ψ′ (Well-formed code heap)

for all f ∈ dom(ψ′): ψ �{ψ′(f)}f : C[f]

ψ � C :ψ′ (CDHP)

ψ �{(p, ǧ,A,G)}f : I (Well-formed instruction sequence)

ψ �{(p′, ǧ′,A,G)}f+1 : I ι∈{addu,addiu, lw,subu,sw}
p⇒ p′ ◦Nextι ∀S,S′. p S → ǧ′ (Nextι (S)) S′ → ǧ S S′

ψ �{(p, ǧ,A,G)}f : ι; I
(SEQ)

∀S. p S → ǧ S (S.H,S.R{r31 �f+1})
∀S,S′ .p S∧A S S

′ → p S
′ (p,G,A,G) = ψ(f+1)

ψ �{(p, ǧ,A,G)}f : jal yield; I
(YIELD)

Figure 19. Selected CCAP Rules
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