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Abstract

Popular mobile code architectures (Java and .NET) include
verifiers to check for memory safety and other security prop-
erties. Since their formats are relatively high level, supporting
a wide range of source language features is awkward. Further
compilation and optimization, necessary for e?ciency, must
be trusted. We describe the design and implementation of a
fully type-preserving compiler for Java and SML. Its strongly-
typed intermediate language, provides a low-level abstract ma-
chine model and a type system general enough to prove the
safety of a variety of implementation techniques. We show
that precise type preservation is within reach for real-world
Java systems.

1 Introduction

There is increasing interest in program distribution formats
that can be checked for memory safety and other security
properties. The Java Virtual Machine (JVM) [30] performs
conservative analyses to determine whether the byte codes of
each method are safe to execute. Its class file format con-
tains type signatures and other symbolic information that
makes verification possible. Likewise, the Common Interme-
diary Language (CIL) of the Microso= .NET platform [31] in-
cludes type information and defines verification conditions
for many of its instructions.
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As a general distribution format, JVM class files are very
high-level and quite partial to the Java language. The byte-
code language (JVML) includes no facilities for specifying
data layouts or expressing many common optimizers. Com-
piling other languages for the JVM means making foreign
constructs look and act like Java classes or objects. That so
many translations exist [48] is a testament to the utility of
the mobile code concept, and to the ubiquity of the JVM
itself. To some extent, CIL alleviates these problems. It sup-
ports user-defined value types, stack allocation, tail calls, and
pointer arithmetic (which is outside the verifiable subset).
Even so, a recent proposal to extend CIL for functional lan-
guage interoperability [46] added no fewer than 6 new types
and 12 new instructions (bringing the total number of call
instructions to 5) and it still does not support ML’s higher-
order modules [24] or Haskell’s constructor classes [25].

Another problem with both of these formats is that they
require further compilation and optimization to run e?-
ciently on real hardware. Since these phases occur a=er verifi-
cation, they are not guaranteed to preserve the verified safety
and security properties. Bugs in the compiler may have secu-
rity implications, so the entire compiler must be trusted.

The idea of type-preserving compilation, then, is to re-
move the compiler from the trusted code base (TCB) by prop-
agating type information through all the compilation and
optimization passes. Every representation from the source
down to the object code supports verification. Object for-
mats developed in this context include Typed Assembly Lan-
guage (TAL) [34] and Proof-Carrying Code (PCC) [36, 38].

Type-preserving compilers have other widely recognized
benefits. Many compiler bugs are revealed early by verifying
the intermediate code a=er each pass. Furthermore, type in-
formation can be useful for low-level optimizations [18, 47]
and accurate garbage collection [19, 49].

Many compilers preserve some kind of type information
in their intermediate code (Marmot [20], Intel VM [45], Bul-
letTrain [35]) but none are rigorous enough to support ver-
ification. Lower-level code requires more sophisticated type
systems. As we demonstrate in the next section, annotations
that merely distinguish between integers, floats, and objects
of distinct classes are insu?cient. Types must enforce subtle
invariants, for which logical constructs (such as quantifica-
tion) are useful.

Representing and manipulating these types can be over-



whelming; early results in this area reported compilation
times increasing by an order of magnitude [47]. In a practical
compiler, careful design and implementation of the interme-
diate languages is essential.

Our previous work [27, 29] developed type-theoretic en-
codings of many Java features. We proved useful properties,
such as type preservation and decidability, but always our
goal was to implement the encodings in a practical compiler.
In fact, we rejected the classic object encodings [9] because
their runtime penalties—superfluous indirections and func-
tion calls—were too high.

This paper describes the design and implementation of a
compiler based on our encodings. To our knowledge, it is
the first practical system to use a higher-order polymorphic
intermediate language to compile both functional and object-
oriented source languages. Additionally, it has the following
features:

• Front ends for both Standard ML [32] and JVML that
share optimizations and code generators. Programs
from either language run together in the same inter-
active runtime system.

• λJVM, our high-level intermediate language (IL) in the
Java front end, uses the same primitive instructions and
types as JVML, but is easier to verify and more amenable
to optimization (see §3).

• JFlint, our low-level generic IL, includes function dec-
larations, arrays and structures, and the usual branches
and numeric primitives. Its type system includes logical
quantifiers (universal, existential, fixpoint) and rows [41]
for abstracting over structure su?xes. The instruction
stream includes explicit type operations that guide the
verifier.

• Unlike the CIL extension [46], our design supports a
pleasing synergy between the encodings of Java and ML.
JFlint does not, for example, treat Java classes or ML
modules as primitives. Rather, it provides a low-level
abstract machine model and sophisticated types that are
general enough to prove the safety of a variety of imple-
mentation techniques. We expand on this in §4.

• Nothing about our instruction set should surprise a
typical compiler hacker. Type operations must appear
periodically, but most occur in canned sequences that
can easily be treated as macros. Although the de-
tailed type information can be quite large, our graph
representation maintains optimal sharing. Type anno-
tations within the code are merely pointers into this
graph. For debugging purposes, it is easy to print
the type annotations using short, intuitive names such
as InstOf[java/lang/Object]. With clever imple-
mentation of the type operations, compile times do not
explode (see §5).

• All types are discarded a=er verification, leaving concise
and e?cient code, exactly as an untyped compiler would
produce.

Our thesis, in short, is that precise type preservation is within
the reach of practical Java systems.

The next section introduces a detailed example to eluci-
date some of the issues in certifying compilation of object-
oriented languages, and to distinguish our approach from
that of Cedilla Systems [13]. We postpone discussion of other
related projects to §6.

2 Background: self-application and Special J

We begin by attempting to compile the most fundamental
operation in object-oriented programming: virtual method
invocation.

public static void deviant (Object x, Object y)
{ x.toString(); }

The standard implementation adds an explicit self argument
(this) to each method and collects the methods into a per-
class structure called a vtable. Each object contains a pointer
to the vtable of the class that created it. To invoke a virtual
method, we load the vtable pointer from the object, load the
method pointer from the vtable, and then call the method,
providing the object itself as this.

public static void deviant (Object x, Object y)
{ if (x is null) throw NullPointerException;

r1 = x.vtbl;
r2 = r1.toString;
call r2 (x); }

A certifying compiler must justify that the indirect call to r2
is safe; this is not at all obvious. Since x might be an instance
of a subclass, the method in r2 might require additional
fields and methods that are unknown to the caller. Self-
application works thanks to a rather subtle invariant. One
way to upset that invariant is to select a method from one
object and pass it another object as the self argument. For
example, replace just the last instruction above with call
r2 (y).

This might seem harmless; a=er all, both x and y are in-
stances of Object. It is unsound, however, and any unsound-
ness can be exploited. Suppose class Int extends Object by
adding an integer field; class Ref adds a byte vector and over-
rides toString:

class Ref extends Object
{ public byte[] vec;

public String toString()
{ vec[13] = 0xFF; return "Ha ha!"; }

}

Then, calling the deviant method as follows:

deviant (new Ref(...), new Int(...));

will jump to Ref.toString() with this bound to the Int
object. Thus, we use an arbitrary integer as an array pointer.

How does one express and enforce the self-application
invariant, once the operation is expanded to lower-level code?
The answer is not widely understood outside the object type
theory community (see [9] for a survey). This is one reason
why virtual method calls are atomic operations in both JVML
and CIL.
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Two years ago at PLDI, Colby, Lee, Necula, and others
from Cedilla Systems presented initial results about Special J,
a proof-carrying code compiler for Java [13]. They described
the design, defined some of the predicates used in verification
conditions, explained their approach to exceptional control
flow, and gave some experimental results. Their running ex-
ample was hand-optimized code including a loop, an array
field, and an exception handler.

Unfortunately, their paper did not adequately describe
the safety conditions for virtual method calls. In commu-
nication with the authors, we dug deeper and discovered
that their current system indeed does not enforce the self-
application invariant properly [37]. It gives the type “vtable
of Object” to r1 and the type “implementation of String
Object.toString()” to r2. The verification condition for
the call requires only that the static class of the self argument
matches the static class of the object from which the method
was fetched. As a result, the client’s proof checker will, for
example, accept the malicious code given above.

Necula claims that this hole can be patched [37]. With-
out a detailed proposal, we remain skeptical. Its existence,
undetected for two years, raises suspicion about the integrity
of the proof rules used by Special J. The issue is that the
rules for the source language are part of the trusted code base.
If they are unsound, all bets are o:. Moreover, the rules and
the code work at di:erent levels. PCC is machine code, but
its logical predicates refer specifically to Java constructs such
as objects, interfaces, and methods. To support another lan-
guage, an entirely new set of language-specific predicates and
rules must be added to the TCB.

low-level
code

high-level
code

detailed
types

coarse
types JVML

TAL

JFlint

Special J PCC

F PCC

Figure 1: The landscape of verifiable languages. Off the diag-
onal, the “granularity gap” provides more opportunities for
soundness errors.

To illustrate this discord, we chart languages by the granu-
larity of their instructions and types (see figure 1). Code gran-
ularity is straightforward: higher-level languages have com-
plex primitives like invokevirtual and checkcast; the lowest
level has explicit registers and calling conventions. Compil-
ers transform the former to the latter. Type granularity is
less clear; intuitively, detailed types encode representations
and invariants while coarse types hide or ignore them. These
notions are not particularly quantifiable (and not the only
dimensions that matter), but the graph is telling nonetheless.

We place the output of Special J near the upper le= be-
cause its verifier and many axioms operate at the level of

Java, even though the code is machine-level. JFlint, in con-
trast, is on the diagonal because its types encode the requisite
invariants with precisely the granularity at which the code
operates—that of functions and structures. JFlint is still a few
steps from machine code, but both TAL [34] and foundational
proof-carrying code (in which the typing rules are proved as
lemmas in higher-order logic [4, 3]) are closely aligned with
our approach.

In the absence of formal proofs of the trusted rules, we
have more confidence in systems on the diagonal. While it
is possible to build a correct system elsewhere, we fear the
“granularity gap” provides ample opportunities for sound-
ness errors.

In the next section, we briefly survey the architecture of
our compiler. Its key strongly-typed intermediate language is
the topic of section 4.

3 Architecture of our compiler

Standard ML of New Jersey is an interactive runtime sys-
tem and compiler based on a strongly-typed intermediate
language called FLINT [43, 44]. We extended the FLINT
language of version 110.30 and implemented a new front end
for Java class files. We updated the optimization phases to
recognize the new features. The code generator and runtime
system remain unchanged.

The Java front end parses class files and converts them
to a high-level IL called λJVM. This language uses the same
primitive instructions and types as JVML; on our chart in
figure 1, it would be in the upper-right corner with JVML.
The di:erence is that λJVM replaces the implicit operand
stack and untyped local variables with explicit data flow and
fully-typed single-assignment bindings. λJVM includes types
for marking uninitialized objects, and set types {c}. Normally
we can treat {a,b,c} as equivalent to the name of the class
or interface which is the least common ancestor of a, b, and
c in the class hierarchy. (For interfaces, however, a usable
ancestor does not always exist [26].)

This alternate representation has several advantages. First,
it is simpler to verify than JVML, because all the hard analyses
(object initialization, subroutines, etc.) are performed during
translation and their results preserved in type annotations.
The type checker for λJVM is just 260 lines of SML code.
Second, as a functional IL, it is (like static single assignment
form) amenable to further analysis and optimization [2, 14].
Although we have not implemented them, this phase would
be suitable for class hierarchy analysis and various object-
aware optimizations [17, 16] because the class hierarchy and
method invocations are still explicit.

We illustrate briefly how to translate JVM bytecode to
λJVM. Figure 2(a) contains a simple Java method which cre-
ates objects, invokes a method, and updates a loop counter.
Suppose that IntPt and ColorPt are both subclasses of
Pt. Figure 2(b) shows the bytecode produced by the Sun
Java compiler. The first step in transforming the bytecode to
λJVM is to find the basic blocks. Next, data flow analysis
must infer types for the stack and local variables at each pro-
gram point. (This analysis is also needed during bytecode ver-
ification.) Next we use symbolic execution to translate each
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(a) Java source

public static void m (int i) {
Pt p = new IntPt(i);
for (int j = 1; j < i; j *= 2) {

p = new ColorPt(j);
}
p.draw();
return;

}

(c) λJVM code

public static m(I)V = λ ( i:I )
letrec fun C (p:{IntPt,ColorPt}, j:I)

if lt[I] j i then B(p,j)
else invokevirtual Pt.draw()V p ();

return;
fun B (p:{IntPt,ColorPt}, j:I)

let q new ColorPt;
invokespecial ColorPt.<init>(I)V q (j);
let k mul[I] j 2;
C (q,k);

let r = new IntPt;
invokespecial IntPt.<init>(I)V r (i);
C (r, 1);

(b) Java VM bytecode

public static m(I)V
new IntPt
dup
iload_0
invokespecial IntPt.<init>(I)V
astore_1 ; p = new IntPt(i)
iconst_1
istore_2 ; j = 1
goto C

B: new ColorPt
dup
iload_2
invokespecial ColorPt.<init>(I)V
astore_1 ; p = new ColorPt(j)
iload_2
iconst_2
imul
istore_2 ; j *= 2

C: iload_2
iload_0
if_icmplt B ; goto B if j < i
aload_1 ; p.draw()
invokevirtual Pt.draw()V
return

Figure 2: A sample method expressed as Java source (a), in the stack-based JVM bytecode (b), and in λJVM (c).

block to a function. The type annotations within each formal
parameter list come directly from the type inference. Figure
2(c) shows the resulting code. The method is a function with
an argument i. B and C are functions implementing the ba-
sic blocks of the same name, and the code of the first block
follows. The loop counter variable is updated by passing a
new value to function C each time around the loop.

We designed λJVM so that its control and data flow
mimic that of JFlint. This means that the next phase of
our compiler is simply an expansion of the JVML types and
operations into more detailed types and lower-level code. For
further details about λJVM, please see [28].

On JFlint, we run several contraction optimizations (in-
lining, common subexpression elimination, etc.), and type-
check the code a=er each pass. We discard the type informa-
tion before converting to MLRISC [22] for final instruction
selection and register allocation. To generate typed machine
code, we would need to preserve types throughout the back
end. The techniques of Morrisett et al. [34] should apply
directly, since JFlint is based on System F.

Figure 3 demonstrates the SML/JFlint system in action.
The top-level loop accepts Standard ML code, as usual. The
JFlint subsystem is controlled via the Java structure; its
members include:

• Java.classPath : string list ref
Initialized from the CLASSPATH environment variable,
this is a list of directories where the loader will look for
class files.

• Java.load : string -> unit
looks up the named class using classPath, resolves

Standard ML of New Jersey v110.30 [JFLINT 1.2]
- Java.classPath := ["/home/league/r/java/tests"];
val it = () : unit
- val main = Java.run "Hello";
[parsing Hello]
[parsing java/lang/Object]
[compiling java/lang/Object]
[compiling Hello]
[initializing java/lang/Object]
[initializing Hello]
val main = fn : string list -> unit
- main ["Duke"];
Hello, Duke
val it = () : unit
- main [];
uncaught exception ArrayIndexOutOfBounds

raised at: Hello.main([Ljava/lang/String;)V
- ^D

Figure 3: Compiling and running a Java program using JFlint in
the SML/NJ interactive runtime system.

and loads any dependencies, then compiles the byte
codes and executes the class initializer.

• Java.run : string -> string list -> unit
ensures that the named class is loaded, then attempts to
call its main method with the given arguments.

• Java.flush : unit -> unit
forces the Java subsystem to forget all previously loaded
classes. Normally, loaded classes persist across calls to
load and run; a=er flush, they must be loaded and
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initialized again.

The session in figure 3 sets the classPath, loads the Hello
class, and binds its main method, using partial application
of Java.run. The method is then invoked twice with dif-
ferent arguments. The second invocation erroneously ac-
cesses argv[0]; this error surfaces as the ML exception
Java.ArrayIndexOutOfBounds.

This demonstration shows SML code interacting with a
complete Java program. Since both run in the same runtime
system, very fine-grained interactions are possible, but have
not been our primary focus. Benton and Kennedy [6] de-
signed extensions to SML to allow seamless interaction with
Java code when both are compiled for the Java virtual ma-
chine. Their design should work quite well in our setting
also.

Ours is essentially a static Java compiler, as it does not
handle dynamic class loading or the java.lang.reflect
API. These features are more di?cult to verify using a static
type system, but they are topics of active research. Also,
our runtime system does not, for now, dynamically load na-
tive code. This is a dubious practice anyway; such code has
free reign over the runtime system, thus nullifying any safety
guarantees won by verifying pure code. Nevertheless, this re-
striction is unfortunate because it limits the set of existing
Java libraries that we can use.

4 Overview of the JFlint IL

To introduce the JFlint language, we begin with a second look
at virtual method invocation in Java: below is the expansion
into JFlint of a Java method that takes Objects x and y and
calls x.toString().

obedient (x, y : InstOf[java/lang/Object]?) =
switch (x)
case null: throw NullPointerException;
case non-null x1:

. <f1,m1; x2 : Self[java/lang/Object] f1 m1>

. = OPEN x1;

. x3 = UNFOLD x2;
r1 = x3.vtbl;
r2 = r1.toString;
call r2 (x2);

The annotations InstOf and Self abbreviate more detailed
types. The postfix ? indicates that the arguments could
be null. The code contains the same operations as before:
null check, two loads, and a call. The null check is ex-
pressed as a switch that, in the non-null case, binds the
new identifier x1 to the value of x, but now with type
InstOf[java/lang/Object] (losing the ?). It is custom-
ary to use new names whenever values change type, as this
dramatically simplifies type checking.

4.1 Type operations

The new instructions following the null check (OPEN and
UNFOLD) are type operations. InstOf abbreviates a particular
existential type (we clarify the meanings of the various types
in section 4.4):

InstOf[java/lang/Object] =
exists f0, m0: Self[java/lang/Object] f0 m0

OPEN eliminates the existential by binding fresh type vari-
ables (f1 and m1 in the example) to the hidden witness types.
Likewise, Self abbreviates a fixpoint type:
Self[java/lang/Object] fi mi =

fixpt s0:
{ vtbl : Meths[java/lang/Object] s0 mi;

hash : int;
fi }

Meths[java/lang/Object] sj mj =
{ toString : sj -> void;

hashCode : sj -> int;
mj(sj) }

UNFOLD eliminates the fixpoint by replacing occurrences of
the bound variable s0 with the fixpoint type itself. These
operations leave us with a structural view of the object bound
to x3; it is a pointer to a record of fields prefixed by
the vtable (a pointer to a sequence of functions). Im-
portantly, the fresh type variables introduced by the OPEN
(f1 and m1) find their way into the types of the vtable
functions. Specifically, r2 points to a function of type
Self[java/lang/Object] f1 m1 -> void. Thus the
only valid self argument for r2 is x2. The malicious code
of section 2 is rejected because opening y would introduce
brand new type variables (f2 and m2, say); these never match
the variables in the type of r2.

We observe the following about the type operations. Af-
ter the final verification, they are completely discarded and
the aliased identifiers are renamed. This erasure leaves us with
precisely the same operational behavior that we used in an
untyped setting. Also, like other instructions, type manipu-
lations yield to simple optimizations. We can, for example,
eliminate redundant opens and hoist loop-invariant unfolds.
In fact, using online common subexpression elimination, we
avoid emitting redundant operations in the first place. For
a series of method calls and field accesses on the same ob-
ject, we would OPEN and UNFOLD it just once. Although the
type operations have no runtime penalty, optimizing them
is advantageous. First, fewer type operations means smaller
programs and faster compilation and verification. Second,
excess type operations o=en hide further optimization op-
portunities in runtime code.

4.2 Code representation

Our examples use a pretty-printed surface syntax for JFlint.
Figure 4 contains a portion of the SML signature for rep-
resenting such code in our compiler. Identifiers and con-
stants comprise values. Instructions operate on values and
bind their results to new names. Loads and stores on struc-
tures refer to the integer o:set of the field. Function declara-
tions have type annotations on the formal parameters. Non-
escaping functions whose call sites are all in tail position are
akin to basic blocks.

This language is closer to machine code than to JVML,
but not quite as low-level as typed assembly language. Al-
locating and initializing a structure, for example, is one in-
struction: STRUCT. Similarly, the CALL instruction passes n
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signature JFLINT = sig
datatype value (* identifiers and constants *)
= VAR of id | INT of Int32.int | STRING ...

datatype exp
= LETREC of fundec list * exp
| LET of id * exp * exp
| SWITCH of value * (case * exp) list
| CALL of id * value list
| RETURN of value
| PRIMOP of primop * value list * id * exp
| STRUCT of value list * id * exp
| LOAD of value * int * id * exp
| STORE of value * int * value * exp
... (* type manipulation instructions *)
| INST of id * ty list * id * exp
| FOLD of value * ty * id * exp
| UNFOLD of value * id * exp
| PACK of ty list * (value*ty) list * id * exp
| OPEN of value * id list * (id*ty) list * exp
...

withtype fundec = id * (id * ty) list * exp
end

Figure 4: Representation of JFlint code. Expressions ending
with id * exp bind their result to identifier id in successor
exp.

arguments and transfers control all at once; the calling con-
vention is not explicit. It is possible to break these down and
still preserve verifiability [34], but this midpoint is simpler
and still quite useful for optimization.

There are two hurdles for the usual compiler hacker in
using a strongly-typed IL like JFlint. The first is simply the
functional notation, but it can be understood by analogy to
SSA. Moreover, it has additional benefits such as enforcing
the dominator property and providing homes for type anno-
tations [2]. The second hurdle is the type operations them-
selves: knowing where to insert and how to optimize them.
The latter is simple; most standard optimizations are trivially
type-preserving. Type operations have uses and defs just like
other instructions, and type variables behave (in most cases)
like any other identifier.

As for knowing what types to define and where in the
code to insert the type operations: we developed recipes for
Java primitives [27, 29]; some of these appear in figure 5.
A thorough understanding of the type system is helpful for
developing successful new recipes, but experimentation can
be fruitful as long as the type checker is used as a safety net.
Extending the type system without forfeiting soundness is, of
course, a more delicate enterprise; a competent background
in type theory and semantics is essential.

4.3 Interfaces and casts

The open-unfold sequence used in method invocation ap-
pears whenever we need to access an object’s structure. Get-
ting or setting a field starts the same way: null check, open,
unfold (see the first expanded primop in figure 5).

Previously, we showed the expansion of InstOf[C] as an
existential type. Suppose D extends C; then, InstOf[D] is

putfield C.f (x : InstOf[C]?; y : T) =⇒
switch (x) case null: throw NullPointerException;
case non-null x1:
. <f3,m3; x2 : Self[C] f3 m3> = OPEN x1;
. x3 = UNFOLD x2;

x3.f := y;

upcast D,C (x : InstOf[D]?) =⇒
switch (x) case null: return null : InstOf[C]?;
case non-null x1:
. <f4,m4; x2 : Self[D] f4 m4> = OPEN x1;
. x2 = PACK f5=NewFlds[D] f4, m5=NewMeths[D] m4
. WITH x1 : Self[C] f5 m5;

return x2 : InstOf[C]?;

upcastinterface C,I (x : InstOf[C]?) =⇒
switch (x) case null: return null : IfcObj[I]?;
case non-null x1:
. <f6,m6; x2 : Self[C] f6 m6> = OPEN x1;
. x3 = UNFOLD x2;

r1 = x3.vtbl;
r2 = r1.I;
y1 = { itbl = r2; obj = x2 };

. y2 = PACK t = Self[C] f6 m6

. WITH y1 : IfcPair[I] t;
return y2 : IfcObj[I]?;

invokeinterface I.m (x : IfcObj[I]?; v1...vn) =⇒
switch (x) case null: throw NullPointerException;
case non-null x1:
. <t; x1 : IfcPair[I] t> = OPEN x1;

r1 = x1.itbl;
r2 = x1.obj;
r3 = r1.m;
call r3 (r2, v1, ..., vn);

Figure 5: Recipes for some λJVM primitives. Lines preceded
by dots contain type operations.

a di:erent existential. In Java, any object of type D also has
type C. To realize this property in JFlint, we use explicit type
coercions. (This helps keep the type system simple; otherwise
we would need F-bounded quantifiers [10] with ‘top’ subtyp-
ing [11].) λJVM marks such coercions as upcasts. They are
expanded into JFlint code just like other operators.

An upcast should not require any runtime operations.
Indeed, apart from the null test, the upcast recipe in fig-
ure 5 is nothing but type operations: open the object
and repackage it to hide more of the fields and meth-
ods. Therefore, only the null test remains a=er type erasure:
(x == null? null : x). This can easily be recognized and
eliminated during code generation. An alternate formulation
of the type system might permit fancier coercions to oper-
ate underneath the option type (?); we did not find them
worthwhile in this case.

In Java, casts from a class to an interface type are also
implicit (assuming the class implements the interface). On
method calls to objects of interface type, a compiler cannot
statically know where to find the interface method. Most
implementations use a dynamic search through the vtable to
locate either the method itself, or an embedded itable con-
taining all the methods of a given interface. This search
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signature JTYPE = sig
type ty
val var : int * int -> ty (* type variable *)
val prim : primtyc -> ty
val arrow : ty list * ty -> ty (* function type *)
val struct : ty -> ty (* structure types *)
val row : ty * ty -> ty
val empty : int -> ty
... (* quantified types *)
val forall : kind list * ty list -> ty
val exists : kind list * ty list -> ty
val fixpt : kind list * ty list -> ty
val lam : kind list * ty -> ty (* higher-order *)
val app : ty * ty list -> ty
end

Figure 6: Abstract interface for JFlint type representation.
Type variables use de Bruijn notation (depth × offset) [15].

is expensive, so it pays to cache the results. A type system
for verifying the dynamic search and caching code would be
quite complex. Moving this particular functionality to the
runtime system—as trusted code—is one way to avoid the com-
plexity. We instead use a unique representation of interfaces
for which dynamic search is unnecessary [27].

In our system, interface calls are about as cheap as virtual
calls (null check, a few loads and an indirect call). We repre-
sent interface objects as a pair of the interface method table
and the underlying object. To invoke a method, we fetch it
from the itable and pass it the object as the self argument.
This implies a non-trivial coercion when an object is upcast
from a class to an interface type, or from one interface to
another: fetch the itable and create the pair. But at this
point, layout of the vtable is known, so a dynamic search is
unnecessary.

The last two recipes in figure 5 illustrate this technique.
The new type abbreviations for representing interface objects
are, for example:

IfcObj[java/lang/Runnable] =
exists t . IfcPair[java/lang/Runnable] t

IfcPair[java/lang/Runnable] t =
{ itbl : { run : t -> void },

obj : t
}

The existential hides the actual class of the object. Just as
with virtual invocation, the interface invocation relies on a
sophisticated invariant. A method from the itable must be
given a compatible object as the self argument. The existen-
tial ensures that only the packaged object will be used with
methods in the itable.

4.4 Type representation

To support e?cient compilation, types are represented dif-
ferently from code. Figure 6 contains part of the abstract
interface to our type system; section 5 describes what lies be-
hind the interface. Most of our types are standard: based on
the higher-order polymorphic lambda calculus (see [5] for an
overview).

A structure is a pointer to a sequence of fields, but we
represent the sequence as a linked list of rows. Any tail of the
list can be replaced with a type variable, providing a handle
on su?xes of the structure. The InstOf definition used
an existential quantifier [33] to hide the types of additional
fields and methods; these are rows.

The universal quantifier—precisely the inverse—allows out-
siders to provide types; in our encoding, it models inheri-
tance. Subclasses provide new types for the additional fields
and methods. Kinds classify types and provide bounds for
quantified variables. They ensure that rows are composed
properly by tracking the structure o:set where each row be-
gins [41].

Our object encodings rely only on standard constructs, so
our type system is rooted in well-developed type theory and
logic. The soundness proof for a similar system is a perennial
assignment in our semantics course. The essence was even
formalized in machine-checkable form using Twelf [42].

4.5 Synergy

Judging from the popular formats, it appears that there are
just two ways to support di:erent kinds of source languages
in a single type-safe intermediate language. Either favor one
language and make everyone else conform (JVM) or incorpo-
rate the union of all the requested features (CIL, ILX [31, 46]).
CIL instructions distinguish, for example, between loading
functions vs. values from objects vs. classes. ILX adds instruc-
tions to load from closure environments and from algebraic
data types.

The (overlooked) third approach is to provide a low-level
abstract machine model and general types capable of proving
safety of various uses of the machine primitives. Structures
in JFlint model Java objects, vtables, classes, and interfaces,
plus ML records and the value parts of modules. Neither
Java nor ML has a universal quantifier, but it is useful for
encoding both Java inheritance and ML polymorphism. The
existential type is essential for object encoding but also for
ML closures and abstract data types.

We believe this synergy speaks well of our approach in
general. Still, it does not mean that we can support all type-
safe source languages equally well. Java and ML still have
much in common; they work well with precise generational
garbage collection and their exceptions are similar enough.
Weakly typed formats, such as C–– [39, 40], are more am-
bitious in supporting a wider variety of language features,
including di:erent exception and memory models. Practical
type systems to support that level of flexibility are challeng-
ing; further research is needed.

5 Implementation concerns and experimental results

If a type-preserving compiler is to scale well, extreme care
must be taken in implementing the type representations and
operations. Näıvet́e here can lead to exponential increases
in compile time. Several years ago, we presented a series
of techniques which, taken together, made the FLINT typed
IL practical enough to use in a production compiler [44].
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array
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struct
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exists InstOf[C]

InstOf[D]

Figure 7: A fragment of the compiler’s graph representation
of types. Here, D extends C with two new fields. Common
subterms are maximally shared.

Di:erent type structures arise in our Java encodings, but the
techniques are as successful as ever.

We represent types as directed acyclic graphs. Part of what
the type representation interface (figure 6) hides is automatic
hashing to ensure maximal sharing in the graph representa-
tion. Figure 7 shows a fragment of the graph representation
of the InstOf types for class C and D (which extends C). Type
variables are represented as pairs of integers which represent
the lexical binding depth and o:set. This means that types
which di:er only in their variable names share the same repre-
sentation. Therefore, the equivalence of two types in normal
form is simply pointer equivalence.

A common operation on types is the substitution of types
for variables. Replacing variables using assignment is not an
option because so much of the graph is shared. We create
the instantiated type lazily, memoizing each result so that
the next time we need the same substitution it is available
immediately.

With all these tricks, compile and verification times re-
main reasonable. A full type-preserving compile of the 12
classes in the Ca:eineMark™ 3.0 embedded series takes 2.4
seconds on a 927 MHz Intel Pentium III Linux worksta-
tion. This is about 60% more than gcj, the GNU Java
compiler [8]. Since gcj is written in C and our compiler
in SML, the gap is easily attributed to linguistic di:erences.
Verifying both the λJVM and the JFlint code adds another
half second.

Run times are promising, and can be improved. (Our
goal, of course, is to preserve type safety; speed is secondary.)
Ca:eineMark runs at about a third the speed in SML/NJ
compared to gcj -O2. There are several reasons for this
di:erence. First, many standard optimizations, especially on
loops, have not been implemented in JFlint yet. Second, the
code generator is still heavily tuned for SML; structure repre-
sentations, for example, are more boxed than they should be.
Finally, the runtime system is also tuned for SML; to support
callcc, every activation record is heap-allocated and subject

to garbage collection.
Benchmarking is always fraught with peril. In our case,

meaningful results are especially elusive because we can only
compare with compilers that di:er in many ways besides type
preservation. To obtain more meaningful statistics and prove
wider applicability, we are considering a project to integrate
our technology into an existing just-in-time compiler, per-
haps using the Open Runtime Platform from Intel [12]. We
believe it is possible, using the techniques we have presented,
to move most of an optimizing JIT out of the trusted code
base without appreciable impact on performance.

6 Related work

Throughout the paper, we made comparisons to the Com-
mon Intermediary Language (CIL) of the Microso= .NET
platform [31] and ILX, a proposed extension for functional
language interoperability [46]. We discussed the proof-
carrying code system Special J [13] at length in section 2.
We mentioned C–– [39], the portable assembly language, in
section 4.5. Several other systems warrant mention.

Benton et al. built MLj, an SML compiler targeting the
Java Virtual Machine [7]; we mentioned their extensions for
interoperability earlier [6]. Since JVML is less expressive than
JFlint, they monomorphize SML polymorphic functions and
functors. On some applications, this increases code size dra-
matically. JVML is less appropriate as an intermediate format
for functional languages because it does not model their type
systems well. Polymorphic code must either be duplicated or
casts must be inserted. JFlint, on the other hand, completely
models the type system of SML.

Morrisett et al. developed compilers for various type-safe
source languages which emit typed assembly language. Neal
Glew describes an encoding for a toy object calculus [23], but
has not shown it to scale to a robust implementation of a
real class-based object-oriented language.

Many researchers use techniques reminiscent of those in
our λJVM translation format. Marmot converts bytecode to
a conventional high-level IL using abstract interpretation and
type elaboration [20, 26].

Gagnon et al. [21] give an algorithm to infer static types
for local variables in JVML. Since they do not use a single-
assignment form, they must occasionally split variables into
their separate uses. Since they do not support set types, they
insert explicit type casts to solve the multiple interface prob-
lem.

Amme et al. [1] translate Java to SafeTSA, an alternative
mobile code representation based on SSA form. Since they
start with Java, they avoid the complications of subroutines
and set types. Basic blocks must be split wherever exceptions
can occur, and control-flow edges are added to the catch
and finally blocks. Otherwise, SafeTSA is similar in spirit
to λJVM.

7 Conclusion

We have described the design and implementation of our
type-preserving compiler for both Java and SML. Its strongly-
typed intermediate language provides a low-level abstract ma-
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chine model and a type system general enough to prove the
safety of a variety of implementation techniques. This ap-
proach produces a pleasing synergy between the encodings of
both languages.

We have shown that type operations can be implemented
e?ciently and do not get in the way of optimizations or e?-
cient execution. We therefore believe that precise type preser-
vation is within reach for real-world Java systems, including
those with just-in-time compilers.
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