Parameterized Memory Models and Concurrent
Separation Logic (extended version)

Rodrigo Ferreira Xinyu Feng Zhong Shao

Yale University Toyota Technological Institute at Chicago Yale University

rodrigo@cs.yale.edu feng@tti-c.org shao@cs.yale.edu
Abstract low reordering of the first two statements in each thread epov

thus breaking the invariant. Other synchronization athams are
susceptible to failure in a similar fashion, which has beeved-
known problem [Boehm 2005, Adve and Gharachorloo 1996].

The semantics of concurrent programming languages rely on
a formal memory model to rigorously define how threads in-
teract through a shared memory system. Many relaxed memory
models have been proposed in the computer architecture atemm
nity [Dubois et al. 1986, Adve and Hill 1990, Goodman 1989,
Gharachorloo et al. 1990]. A tutorial about the subject ieqi
by Adve and Gharachorloo [1996], and a detailed survey isrgiv
by Mosberger [1993]. Formalization of memory models for-lan
guages such as Java [Manson et al. 2005, Cenciarelli et@ir],20
and C++ [Boehm and Adve 2008] and x86 multiprocessor ma-
chine code [Owens et al. 2009] were also developed recently.
d These models typically allow some relaxation of the progam
der and provide mechanisms for enforcing ordering when nec-
essary. These mechanisms are commonly referred to asrbarrie
fences, or strong/ordered operations at the machine lewsl,
locks, synchronization blocks and volatile operationshat lhigh
level. The majority of the models provide the so-called DRF-
guarantee [Adve and Hill 1993], in which data-race-freegpams
(i.e. well-synchronized programs) behave in a sequenti@h-
sistent manner. DRF-guarantee is also known as the fundamen
property [Saraswat et al. 2007] of a memory model. It is cdxbér
because it frees the programmer from reasoning about idliosy
. crasies of memory models when the program is well-syncheahi
1. Introduction However, as Boudol and Petri [2009] pointed out in their last

For many years, optimizations of sequential code — by both-co ~ Years POPL paper, most memory models are defined axiomati-
pilers and architectures — have been the major source obrperf cally by giving partial orders of events in the executiorcés of

Formal reasoning about concurrent programs is usually datie
the assumption that the underlying memory model is secuignti
consistent, i.e. the execution outcome is equivalent toearleav-
ing of instructions according to the program order. Howgesrream-
ory models in reality are weaker in order to accommodate com-
piler and hardware optimizations. To simplify the reasgnimany
memory models provide a guarantee that data-race-freegmsy
behave in a sequentially consistent manner, the so-calRB-D
guarantee. The DRF-guarantee removes the burden of regsoni
about relaxations when the program is well-synchronized.

In this paper, we formalize relaxed memory models by giving
a parameterized operational semantics to a concurrentgmg
ming language. Behaviors of a program under a relaxed memory
model are defined as behaviors of a setetdited programs under
the sequentially consistent moddlhis semantics is parameterize
in the sense that different memory models can be obtainedsby u
ing different relations between programs. We present ortepkar
relation that we believe accounts for the majority of memuod-
els and sequential optimizations. We then show that thevetri
semantics has the DRF-guarantee, using a notion of raedene
captured by an operational grainless semantics. Our gssrge-
mantics also bridges concurrent separation logic (CSLYyealacted
memory models naturally, which allows us to finally provefibl&-
lore theorem that CSL is sound with relaxed memory models.

mance improvement for computing systems. Compiler transde programs, which are more abstract than operational secsaoiti
tions, superscalar pipelines, and memory caches are saine af- languages that are normally used to model the executionaf pr
tifacts used to achieve that. However, these optimizaticeie de- grams and also to reason about them. Also, treyly establish a
signed to preserve only the sequential semantics of the ¥gden very abstract version of the DRF-guarantee, from which tigom
placed in a concurrent context, many of them violate theadled of a program, in the sense of programming languages, is dgtua
sequential consistency [Lamport 1979], which requires tiein- absent [Boudol and Petri 2009]. This gap, we believe, partly ex-
structions in each thread be executed following the progyeter. plains why most program logics for concurrency verificatane
A classical example to demonstrate this problem is Dekker's Proved sound only in sequentially consistent memory moaeid
mutual exclusion algorithm [Dijkstra 1968] as shown below: their soundness in relaxed memory models is rarely disdusse
N For instance, the soundness of concurrent separation logic
Initially [z]=[y]=0 andz #y (CSL) [O’'Hearn 2007] in sequentially consistent models laen
[z]:=1; lyl:=1; proved in various ways [Brookes 2007, Calcagno et al. 208mgF
v1:= [yl; | v2:=[x]; et al. 2007, Hobor et al. 2008], which all show directly oriind
if v1 =0 then critical section if v2 =0 then critical section rectly that CSL-verified programs are race-free. So it seguite

obvious that CSL is sound with any memory model that gives the
DRF-guarantee, as Hobor et al. [2008] argued thatétrits only
well-synchronized programs to execute, so we can [...] @eec
in an interleaving semantics or even a weakly consistentanem
model. However, to our best knowledge, this folklore theorem
has never been formally proved. Actually proving it is nowidl,

where [e] refers to the memory cell at the locatienlts correct-
ness in the sequentially consistent memory model is ensyréue
invariant that we would never hawg = v, = 0 when the condi-
tional statements are reached. However, memory modelsiityre
often relax the ordering of memory accesses and their litgilbd
other threads to create room for optimizations. Many of them

CSL

Sound
& DRF

DRF\ Grainless DRF
SC <#> {—> RMM
Sem.
(b)

(Expr) e x=mn|z|e+es| €| ...
(BExpr) b ::= false | by=> b2 | e1=e2 | e1<e2
(Comn) ¢ = z:=e | z:=[e] | [e]:=¢

| skip | z:=congeq,...,e,) | disposde)
| ci;e2 | if bthene, elsece | whilebdoc
| c1||ez | atomice

Figure 2. Syntax

is trivial to see that instantiating with the identity relation gives
us a sequentially consistent memory model.

Second,we give a particular instantiation ¢ — called pro-
gram subsumption €) — which can relate a sequential segment
of athread between barriers with any other sequential setptteat
have the same or fewer observational behaviors. This gikes p
grammers a simple and extensional view of relaxed memory- mod
els. The derived semantics is weaker than many existing memo
models. It allows behaviors such as reordering of any twa that
dependent memory operations, write buffers with read ksipgs
and those obtained by the absense of cache coherence aad stor

Figure 1. (a) the gap between the language-side (above the dashedatomicity.

line) and the memory-model-side (below the line); we use sub
scripts X and Y to represent the different formulations ie tvo
sides; (b) our solution: a new RMM and a grainless semarttiese
single arrows represent (informally) logical implicatsorDouble
arrows represent logical equivalence, with premises atedton
top. The single arrow and the double arrows on the left aritt ifg

(b) correspond to Lemmas 6.8, 5.5 and 5.6 respectively.

and is especially difficult in an operational setting, bessathe
two sides (CSL and memory models) use different semantics of
languages and different notions of data-race-freedomh@srsin
Fig. 1 (a)).

In this paper, we propose a new approach to formalizing eelax
memory models by giving a parameterized operational sensatot
a concurrent programming language. Behaviors of a progrataru
arelaxed memory model are defined as behaviors of a sefadéd
programs under theequentially consistent modé&lhis semantics
is parameterized in that different relations between @ogryield
different memory models. We present one particular retatiat is
weaker than many memory models and accounts for the majority
of sequential optimizations. We then give an operationaindess
semantics to the language, which gives us an operationamot
of data-race-freedom. We show that our derived relaxed stcsa
has the DRF-guarantee. Our grainless semantics also brici§e
and relaxed memory models naturally and allows us to proge th

soundness of CSL in relaxed memory models. Our paper makes

the following new contributions.

First, we propose a simple, operational and parameterized ap-
proach to formalizing memory models. We model the behawibrs
a program as the behaviors of a set of related programs intée i
leaving semantics. The idea is shown by the prototype rule.

(c,dYeN (", o)—{c, o)
[A] (¢, o) —(c/, 0”)

Our relaxed semantics is parameterized over the relatiést each
step, the original program is substituted with a related program
¢, and thert’” executes one step following the normal interleaving
semantics. Definition of the semantics is simple: the orffgdince
between it and the standard interleaving semantics is tiésand

a corresponding rule that handles the case that a prograrts atho

Third, our semantics gives us a simple way to prove the sound-
ness of sequential program transformations in a relaxedanem
model: now we only need to prove the transformations preserv
the subsumption relation used to instantiate Then the DRF-
guarantee of our relaxed semantics gives us their soundness-
current settings for data-race-free programs. Furthezpexisting
works on verification of sequential program transformaifBen-
ton 2004, Leroy 2006, Yang 2007] have developed techniques t
prove observational equivalence or simulation relatiortsch are
stronger than this instantiation af. Therefore our work makes it
possible to incorporate these techniques into this framewod
reuse the existing verification results.

Fourth, we give a grainless semantics to concurrent programs.
The semantics is inspired by previous work on grainlessetrac
semantics [Reynolds 2004, Brookes 2006], but it is opematio
instead of denotational. Since it permits only race-frempms to
execute, the semantics gives us an operational formulefidata-
race-freedom. As shown in Fig. 1 (b), it also bridges the satjal
consistency semantics and our relaxed semantics, whidtlgre
simplifies the proofs of the DRF-guarantee.

Last but not least, we finally give a formal proof of the folklore
theorem that CSL is sound in relaxed memory models. As Fig) 1 (
shows, we first prove that CSL guarantees the data-racdefinee
and partial correctness of programs in our grainless seosant
This, combined with the DRF-guarantee of our relaxed seicgnt
gives us the soundness of CSL in the relaxed model.

2. The Language and Interleaving Semantics

The syntax of the language is presented in Fig. 2. Arithmetic
pressions) and boolean expressions) (are pure: they do not
access memory. To simplify the presentation, we assumeisn th
paper that parallel threads only share read-only varialhese-
fore evaluation of expressions would not be interfered byeot
threads. The command := [e] reads the value at the memory
locatione and saves it inc. [e] := €’ storese’ at the locatiore.
x:=condey,...,e,) allocates a fresh memory block containing
n consecutive memory cells initialized with values .. .,e,. The
starting location is non-deterministic and is saved.idisposée)
frees the memory cell at the locatien The parallel composition
c1 || c2 executese; andc; in parallel.atomic ¢ ensures that the
execution ofc is not interrupted by other threads.

o

(Location) ¢ == n (natural numbey The transition(- - _) models the execution afons and

(LocSe} rs,ws € 7P(Location) dispose We use the labab instead ofu to distinguish them from
other commands. They are at higher abstraction levels ttger o

(Heap h € Loc.atlonéf.n Integer primitive commands that may have direct hardware implement
(Storg s € Variable— Integer tions, but we decide to support them in our language becéese t
(State o = (h,s) are important high-level language constructs. Their imgeta-
(Footprint) § = (rs,ws) tions usually require synchronizations to be thread-ssfewe
’ model them as built-in synchronized operations and theyaian
(ThrdTreg T = c [(T, T)e be reordered in our relaxed semantics. In this paper we tuaht
- - - (along with atomic blocks and fork/join of threadspered opera-
Figure 3. Runtime objects tions Remaining operations are calledordered
We may omit the footprind and the labelaa and o when
they are not relevant. We also u$& to represent the reflexive
emp ¥ (0,0) transitive closure of the relatioR. For instance, we usg - J)

a

el

to represent the union of ordered and unordered transjtiorsuse

(
! ! !
§US = (d.rsUd’rs, s.wsU &".ws) (- —) to ignore the footprint, whose reflexive transitive closure
§C 8 = (brsC (6 .rsUS W) A (SwsC 6. ws) is represented by —* _).
def Figure 7 defines the interleaving semantics of concurremt pr
§Cd =SNG+ grams. Following Vafeiadis and Parkinson [2007], the ekeawf
- - — ¢ in atomic ¢ does not interleave with the environmentclfioes
Figure 4. Auxiliary definitions not terminate, the thread gets stuck. Again, we assume ihee
atomic blocks and parallel compositionsdn
Below we give a very simple example to help readers under-
(SeqgContext E == [] | E;c stand our use of contexts and thread trees.
(ThrdContext T ::= [] | (T, T)c | (T, T)c Example 2.1. Supposer = (c1 || c2);¢. Then we knowe =
T[E[c1 || c2]], whereT = [] andE = []; ¢’. After one step, we
Figure 5. Contexts reach the thread tregc:, c2) (skip; ¢’). Then theT for the next
step can be eithef]], c2)) (skip; ¢) or {c1, []) (skip; ¢). O
The commandatomic ¢ can be viewed as a synchronization Comparing with standard semantics (e.g. Vafeiadis andifark
block in high-level languages. It is also similar to the ‘aile” key- son [2007]), our execution afabove has extra steps caused by the

word in Java. On the other hand, we can take a very low-lege¥vi ~ construction of the thread tree and the insertioslap in the front
. ' p . : .

and treatatomic as an annotation for hardware supported atomic ©f ¢ - They can be viewed simply as stuttering steps.

operations with memory barriers. For instance, we can sitawd

low-level compare-and-swap (CAS) operation: 3. Parameterized Relaxed Semantics
atomic { v:= [41; if v=x then [£] :=y else skip y:=v } In this section, we present our parameterized operati@maaatics.
. o I Then we instantiate it with a relation between sequentiadams
Higher-level synchronization primitives such as semapsiaind to capture relaxed memory models and compiler optimization

mutexes can be implemented using this primitive constriso
in this paper we only consider non-nested atomic blocks amdav 3.1 Parameterized semantics
not have parallel compositions in the block.
Before presenting the operational semantics of the largyweg
first define the runtime constructs in Fig. 3. Program statesist
of heaps and stores. The heap is a partial mapping from memory
locations to integer values. The store maps variables agans. A € P(ThrdTreex ThrdTreg
Memory locations are just natural numbers. They are firdscla
values, so the language supports pointer arithmetic. Tieadtree
is either a command, which can be viewed as a single thread; or
two sub-trees running in parallel, with the parent nedeing the
command to be executed after the two sub-trees both terminat
We give a contextual operational semantics for the language
Sequential contexts and thread contexts are defined in Fithety
show the places where the execution of primitive commandsroc
Sequential execution of threads is shown in Fig. 6, whichastig
standard. We usée], to represent the evaluation efwith the
stores. The definition is omitted here. The execution of a normal
primitive command is modeled by the labeled transmon;‘—>).

Figure 8 shows the two new rules of our parameterized seosanti
The stepping relation takes as a parameter, which is a binary
relation between thread trees:

The semantics follows the interleaved semantics presdnted
Fig. 7, except that at any given step, the current threadcaaeoe
replaced by another thread tree related through\thelation. A is
supposed to provide a set of thread trees that are somehatedel
to the current thread tree using some notion of equivalenhs.
A-based semantics chooses nondeterministically which comdm
will execute. Therefore, in order to reason about this sé¢itmmone
needs to consider all possible commands related throughea gi
instantiation ofA.

Naturally, different instantiations ok yield different seman-
tics. As one can see, this semantics is trivially equivatenthe
interleaving semantics shown in Fig. 7 ontés instantiated with

Here the footprint is defined in Fig. 3 as a pairs, ws), which an identity relation. A more interesting relation to be usedan
records the memory locations that are read and written snstieip. instantiation ofA is presented in the following sections.
Recording the footprint allows us to discuss races betwleerats

in the following sections. Since we assume threads onlyestesad- 3.2 Command subsumption

only variables, accesses of variables do not cause racesvand
do not record variables in footprints. A step aborts if it egses
memory locations that are not in the domain of the heap. 1. preserves synchronized operations of the code;

We define a command subsumption relation that

(E[z:=e], (h,s)) —— (E[skip], (h,s")) if [e]s =nands’ = s[z~n)]

emp
(E[z:=e], (h,s)) e%p) abort otherwise
(E[z:=T[e]], (h,s)) m (E[skip], (h,s")) if [e]s = ¢, h(£) =n, ands’ = s[x~n)]
(E[z:=T[el], (h,s)) ;:; abort otherwise
(E[[e]l:=¢€'], (h,s)) W (E[skip], (W, s)) if Te]s =4, [e']s =n,£ € dom(h) andh’ = h[f~n]
(E[[e]l:=€"], (h,s)) o abort otherwise
(Blskipic], o)~ (Blc], o)
(Bla:=congen,....ex) . (h,s)) - (B[skip], (.+)) if ws={¢,...,0+k—1},wsndom(h) = 0, [e:]s = n;
’ s = s[z L] andh’ = h[f~ni, ... 0+k—1~ny)
(E[z:=conde,...,ex)], (h,s)) ;:; abort otherwise
(E[disposée)], (h,s)) ﬁ (E[skip], (W, s)) if [e]s =4, £ € dom(h), andh’ = h\{¢}
(E[disposée)], (h,s)) ;:; abort otherwise
o) — (o) it (e 0) (e, o) or e, o) -2 (¢!, o)
(c, o) - abort if (c, o) % abort or (c, o) T°> abort

Figure 6. Sequential footprint semantics

(T[c], o) — (T[], o) if (c, o) — (c,)
(T[c], o) — abort if (¢, o) — abort
(T[E[atomicc]], o) — (T[E[skip]], o’) if {c, o) —* (skip, ¢’)
(T[E[atomicc]], o) — abort if (¢, o) —" abort
(T[E[c1 | e2]], o) — (T[{c1, c2) E[skip]], o)
(T[{skip, skip)c], o) — (T[c], o)

Figure 7. Interleaving semantics of concurrent programs

VI 1" 1" 1" ;s is reached. On the other hand, the behavior of the non-sgnized
AT, o) = (T%, o) I 3T AT T €A AT, o= (T, o) code will not be affected by other threads since the dataeis us
would not be updated by others. So we do not need to consier it
interleaving with other threads.
The subsumption of; by ¢z (c1 < ¢2) is defined below. Here

('%*') represents zero or multiple steps of unordered transition

whered is the union of the footprints of individual stepg, o) |

(', o') is a big-step transition of unordered operations. From the
definition shown in Fig. 9, we know’ must be eitheskip, or a
command starting with an ordered operation.

[A] (T, o) — abort if 377 (T,T")eAN(T’, o) —> abort

Figure 8. Semantics parameterized over

2. but permits the rewriting of non-synchronized sequérmtia-
tions while preserving theBequentiakemantics.

The intuition is that programs in relaxed memory models &hou o .
be well-synchronized to avoid unexpected behaviors. T$add- Definition 3.1. ¢1 <o ¢z always holdsg: <y ¢ holds if and
cesses to shared memory should be performed through synchro @nly if, for all j < k, the following are true:

nized operationscpns disposeand atomic ¢ in our language),

and non-synchronized (unordered) operations should crtgss 1. If {c1, o) —" abort, then(cz, o) —" abort;

thread-local or read-only memory (but note that the ternatetl” 2.1f {c1,0) | (c}, o), then either(cy, 0) —— *abort, or
and “local” are dynamic notions and their boundary does ageh there exists; such that(cz, o) | (c5, ¢’) and the following
to be fixed). Therefore, the effect of a thread’s non-synuizexl constraints hold:

code is not visible to other threads until the next synchredipoint (a) if ¢; = skip, thenc; = skip;

always

<C//7 0_//>6%>k <C/7

if there existc”, o, §’, ands” such thatc, o) % (", "y,

o'yands = &' U d”

(o) s (0 if {c, U>Tu>*(c', 'y, =((¢, o’y = abort),
and-3c”,¢".((¢, o’y -2 (", 0"))
(c,o)y I (0" if there existsS such thatc, o) |s (¢, o)
¢, 0) —" (¢, o) always
emp

<C//7 U”>6T>k <Cl7

if there existc”, o, §’, ands” such thatlc, o) = (", oy,
o'y ands = § U §”

Figure 9. Multi-step sequential transitions

(b) if ¢§ = Eq[cf || "], there exisEs, ¢; andch’
i. ch = Eafch |5];
ii. ¢f =, c5andcl” =; cy;
ii. Eq[skip] =%; Ez[skip];
(c) if ¢; = E1[atomic ¢f |, there existE> andcs such that
i. ¢b = Eo[atomicc} J;
ii. cf =y ez,
ii. Eq[skip] =<; Ez[skip];
(d) if ¢ = Eq[c!], wherec{ is aconsor disposecommand,
there existE; andch such that
i. forall o,if (cf, o) — abort, then(cy, o) — abort;
i. for all o and o', if (c{, o) - (skip, ¢’), then
(¢, o) == (skip, o’);
ii. Eq[skip] <; E2[skip].
3. If {c1, 0)%"(0’1, o), then either(cs, o) — *abort, or
1

such that

u

there existy2, ¢, ando” such that{cs, U>6—>*<c/2, ") and
2
01 C 02,
We definec; < cx asVk. ¢ <i c2;andec; = ca asce <c;. O

Informally, we sayc; is subsumed by if for all input states
— afters performing a sequential big step er aborts only if
ce aborts; or, ifc; completes, then either, aborts or there is a
sequential big step taken lay that ends in the same state. Also, if
c1 completes the big step and the execution terminatep €ase)
or reaches a synchronization point (cases for thread faidlj@in,
atomic blocks,consanddisposg, there must be a corresponding
synchronization point at the end of the big step takenzsgnd the
remaining parts of; andc; still satisfy the relation. We use indices
in the definition sincéE, [skip] in cases 2(b), 2(c) and 2(d) might
be “larger” thanc;. The last condition requires that the footprint
of ¢; is not larger than that of; if ¢ does not abort. The subset
relation between footprints is defined in Fig. 3.

Propertiesof subsumption. Observe that the big step is determin-
istic, therefore, ifc; andc, are sequential programs and < co,
then for any input state we have one of the following posisids:

1. ¢ aborts and:; may have any behaviors;
2. ¢1 andce complete a big step and reach the same state;
3. c¢1 diverges and2 may have any behaviors.

Here we intend to use: to represent the original program and
c1 the one after optimizations (by compilers or hardware). I8y t

three cases above we knaw preserves the partial correctness of
c2 [Calcagno et al. 2007] (to handle total correctness, armaextr
condition must be added to Definition 3.1 to ensure that nbrma
termination is preserved by subsumption). The last comdith
Definition 3.1 is also necessary to ensure the transforméditamn
c2 to ¢1 does not introduce new races. We give examples in Sec. 4
to show the expressiveness of the subsumption relation @ndth
models behaviors of programs in relaxed memory models.

Lemma 3.2 below states that the subsumption relation is pre-
served wher; completes a big step ang does not abort.

Lemma 3.2. If ¢1 < c2 and{ci, o) | {(c, o), then either

(2, o) —=* abort or there existg} such thaticz, o) || (ch, o)
andc] < 5.

The following two lemmas are useful if we view = c2 as
a static compiler transformation from to c, (see examples in
Sec. 4.6).

Lemma 3.3. The relation < is reflexive and transitive.

Lemma 3.3 shows that both the identity transformation aed th
composition of multiple transformations — given that théyep
subsumption — do not violate subsumption. It is useful when
composing smaller transformations into large complex saqges
of transformations.

Lemma 3.4. If ¢; =< ¢, then, for all context§, C[c1] <X C[cz2].

Lemma 3.4 ensures that local transformations that obey sub-
sumption also hold in any larger context. This helps prowimeat
a given transformation obeys subsumption in a modular dashi
Note thatC does not have to be an execution contExtit can be
any context, i.e. a program with a hole in it.

3.3 Relaxed semantics
The subsumption relation can be lifted for thread trees.
Definition 3.5. We define the binary relatior; for thread trees.
if T1 = c1andTh = c»
aa X ANT] =Ty Ty = (T, T Y

ATY = Ty andTy = (15,75) c2
We us€l =+ T» to represents < T1. O

We obtain a relaxed operational semantics by instantiating
of our parameterized semantics with this relation. The Itiesu

c1 2 e

Ty < T &

stepping relation becomes
[=e] (T, o) —— (T", o).

This semantics performs a program transformation, fothguour
subsumption relation, at each step. This resembles a dgreomi-
piler that modifies the program as it executes.

On the other hand, as we show in Lemma 3.6, the execution ac-

cording to this semantics is equivalent to performing onglsiini-
tial program transformation and then executing the targaegnam
using the interleaving semantics. This resembles a statipier
that modifies the program prior to execution. Similarly, lreen3.7
shows the abort case.

Lemma 3.6. [=¢] (T, o) —* (skip, o’} iff there exists & such
thatT = T" and(T’, o) —* {(skip, o’).

Lemma 3.7. [=¢] (T, o) —* abort iff there exists & such that
T =y T' and(T’, o) —"* abort.

We will formulate and prove the DRF-guarantee of this retaxe
semantics in Sec. 5, after we formally define data-racedtnee

4. Examples

There are different aspects that characterize a particoéanory
model, including memory ordering constraints, supporgemeral
compiler transformations, write atomicity constrainteegence of
write buffers, cache coherence protocols, availabilitym&mory
barriers, etc. In this section, we show how some of thesec&spe
are reflected in our semantics. Our goal is to familiarizerdezler
with the > relation. The examples are written using the following
naming conventionv1, v2, v3, etc, are variables that hold values;
x, vy, z, etc, are variables that hold memory addresses.

4.1 Data dependencies

Before we discuss the memory ordering of our model, we need
to make it clear that we can support precise discovery of data
dependencies. We do it by showing the following example:

[2]:=1;vl:= [y]

In this small program, the data dependency between the &ate-st
ments exists only for those initial states wherandy are aliased.

Atfirst glance, our- definition is too restrictive since its definition
quantifies oveall input states. So it does not allow the following:

([z]:=1;0v1:=[y]) = (v1:=[y]; [z]:=1)

However, through the> relation, we can obtain the following
transformation:
[2]:=1;vl:= [y]
=
if z=y then ([z]:=1;v1:=[z]) else(vl:=[y]; [x]:=1)

where we insert a dynamic test to seerifis an alias ofy. We
also replacey by = in one branch where there is dependency, and
reorder the statements in the other branch. Based on thisptea
one can convince himself that the relaxed semantics wihathe
reordering memory accesses that do not have data depeesl@nci
runtime. But, the reader should also be aware thattherelation
does not violate data dependencies:

—([e]:=1; [2]:=2 = [2]:=2; [z]:=1)
4.2 Memory ordering

From the example just shown, it is not hard to see that the
relation supports all 4 types of memory reordering (R;W

e Reads with reads:
if x=y then skip else

—

vl:=[z];v2:= [y])

1Y

if =y then skip else(v2:= [y];vl:= [z])

e Reads with writes:

if z=y then skip else(vl:= [z]; [y]:=2)
o

if z=y then skip else([y] :=2;v1:= [z])

o Writes with reads:

if z=y then skip else([z] :=1;v2:= [y])
—

if z=y then skip else(v2:= [y]; [z] :=1)

o \Writes after writes:

if x=y then skip else([z] :=1; [y]:=2)
=
if x=y then skip else([y] :=2; [z]:=1)

4.3 Write buffer with read bypassing

A write buffer is a hardware feature that delays writes to rogm
in an attempt to overlap the latency of writes with subsetjoede.
The actual behavior obtained is that a processor might teaxsivin
writes earlier, i.e. before they are actually committed tenmory.
This can be supported by a simple program transformatioeers s
in the example below:

[2]:=1;v2:=[z] = v2:=1; [x]:=1

4.4 Redundancy introduction and elimination

Redundant memory reads and writes can be introduced and elim
nated, as shown by the following examples:

vl:=[x];v2:=1 = vl:=[x];v2:=[x];0v2:=1
vl:=[x];v2:=[z] = vl:=[x];v2:=vl
[x]:=v1l;02:=[z] > [z]:=vl;v2:=vl
[2]:=v1 = [x]:=1; [z] :=vl
[x]:=1; [x] :=v]1 = [z]:=wl

Furthermore, we can eliminate dead memory operations wWian t
yields a smaller memory footprint:

vl:=[x];vl:=1>vl:=1

Note that the reverse is not true. A program cannot increiase i
footprint given the > relation. Recall that; > ¢ requiresc;

to abort whenevet, aborts; therefore if the footprint ef, is larger
than the footprint of:; there will be a case whekg aborts but;
does not, which is in conflict with the definition of .

—(vl:=1»vl:=[z];vl:=1)

4.5 Write atomicity

Given the > relation, write atomicity is not preserved. This might
not be clear at first, but can be shown in the example belove(her
vl is a temporary, we assume it is reused later on, by the drtifac
assigning an arbitrary value to it):

[x]:=1;v1:=42
=
vl:=[x]; [x]:=1; [2] :=v]1; [z] :=1;0v1:=42

R,W). Examples of this can be seen below (we use the context Here the write is replaced by 3 writes, oscillating betweka t

if =y then skip else[] but these are supported in any context
wherezx # y can be inferred):

original write and the write of the initial value into the mery
location. In fact, it might oscillate with any value (not grihe

initial value) as shown below:
[x]:=1
=
[x]:=1; [x]:=42; [x] :=1; [x] :=69; [z] :=1
therefore, a write can store arbitrary values to memory reefo

completing; which in practice means that the memory value is
undefined until the write completes.

4.6 Compiler optimizations
The = relation is general enough to support many sequential

compiler optimizations. For instance, it is not hard to des tve
can support instruction scheduling

v3:=v1+v2; V6 :=v4+v5; V7 :=v3+v6
=
v6 :=v4+v5; v3 :=v1+v2; V7 :=v3+v6
algebraic transformations (here again we assurie a temporary)
vd:=vl+v2; v5:=v4+v3;v4: =42
=
vd:=v2+v3; v5:=v1+vd;vd =42
register allocation (we have to test for aliasingz:aindw)
vl:= [x];v2:= [y]; v3:=v1+v2; [w] :=v3;
vl:=[2];v2:= [w]; v3:=v1+v2; [w] :=v3
=
vl:= [x];v2:= [y]; v3:=v1+v2;
(if z=w thenvl:=v3 elsevl:= [z]1);
v2:=0v3;v3:=v1+v2; [w] :=v3
and many others, including control transformations andmedncy
elimination such as the ones already presented in Section 4.

4.7 Concurrent behaviors

As one can seen, the semantics derived fremleads to possibly
unwanted behaviors of raceful programs. First, a read fretraged
location can return any value. For instance, there is a sdimedof
the program below:

vl:=1[z] || [z]:=1
wherevl = 33 is allowed. That happens if we consider the
following replacement of the right hand side thread:
[x]:=1 > [x]:=33; [x]:=1

This is commonly referred to as “out-of-thin-air” behaviérsimi-
lar behavior happens when we have simultaneous write tcatine s
location:

(v1:=1; [zl :=01) || [z]:=2

in this case, the final value dfz] can also be arbitrary. For in-
stance, it could b8 if we replace the left hand side thread as below

vl:=1; [z] :=vl > [2]:=0;vl:= [z];v]l:=v1+]; [z] :=0l

Another unwanted behavior happens when the implemengatibn
mutual exclusions rely on memory ordering (such as the cbre o
Dekker's algorithm presented earlier):

([q}] =1;vl:= [y]) || ([y] =1;v2:= [l’])

In this case, we would not want the behavior = v2 = 0 to
happen. However, it may happen if we consider the reordering
the two commands of the right hand side thread:

[yl :=1;v2:=[z]
=
if z=y then ([z]:=1;v2:=[2]) else(v2:=[z]; [y]:=1)

Note that we assumed initial valugs] = [y] = 0 andx # y.
Many other examples of raceful code can be shown to have
unwanted behaviors in such a relaxed execution. They aaéneot

Here we present some concurrent behaviors of the semanticsby either reordering of memory operations or relying on tba-n

yielded by > . In all examples we assume a sequential inter-
leaving of commands according to the standard semanties aft
considering a program transformation through the relation.
We also assume initial memory values aretalWe start with the
following example (not supported by Boudol and Petri [2009]

(v1:=1[z]; [yl:=1) || (v2:=1[yl; [x]:=1)

in which we can perceivel =v2=1 if x #y. It can be supported
in our semantics by reordering the commands in the secoaddhr

v2:=[yl; [x]:=1
=
if z=y then (v2:= [z]; [x]:=1) else([z]:=1;v2:= [y])

yielding a new program that produces the desired resulugiro
an interleaved scheduling. Similarly, we can support tlesst
crossover example:

([z]:=1;01:=[z]) || ([z]:=2;v2:=[z])

in which we can perceivel = 2 andv2 = 1. That is achieved by
inserting a redundant write in the right hand side thread:

[x]:=2;v2:=[z] = [z] :=2;0v2:= [x]; [x]:=2
Yet another similar example is the prescient write test:
(v1:=1[z]; [z]:=1) || (v2:=[2z]; [z]:=v2)

where we could perceivel = v2 = 1. That is also supported by
inserting redundant writes and reads in the left hand sidsth
vl:=[z]; [x]:=1
=
vl:=[x]; [x]:=1; [z] :=vl;vl:= [x]; [x]:=1

atomic undefined nature of raceful reads and writes. On ther ot
hand, race-free programs do not have unwanted behavi@shse
DRF-guarantee in Section 5). In the example below:

vl:=[x]; v2:= [yl;
if vi=1 then [y1:=1) | {if v2=1then [21:=1

the only behavior allowed is1 = v2 = 0. Its data-race-freedom
might not be obvious, but there are no sequentially corsisbee-
cutions of this program that may reach the code within thadiras
(assuminglz] = [y] = 0 andx # y initially). So, the program
never issues a memory write, therefore it is race-free. Aryu
consider the code of each one of the threads in isolation -eugir
the > relation — it is impossible to insert a race when the initial
state hadz] = [y] = 0. That is guaranteed from the fact that the
footprints of both threads are disjoint, and they can onlgrelase
through the > relation.

4.8 Strong barrier

In our relaxed semantics, we can enforce both atomicity and o

dering by using thetomic ¢ command. In the following exam-

ples we use the macidF (memory fence) as a syntactic sugar for

atomic skip, a command that does nothing but enforces ordering.
The first example we analyze is about cache coherence. Cache

coherence ensures that everybody agrees on the order efwgit

the same location. Since the- relation does not preserve the

atomicity of writes, coherence is not preserved by the sticgas

can be seen in the following example:

vl:=[x]; v3:= [x];
[x]1:=1 || [z1:=2 | | MF; [| | MF;
v2:= [x] v4:= [x]

in which the outcomeyl = v4 = 1 andv2 = v3 = 2 can be
noticed once we rewrite the leftmost thread as

[2]:=1 % [x]:=1; [x]:=1

Another related example is the independent-reads-indigmen
writes (IRIW) example shown below

vl:=[z]; v3:= [y]l;
(z]:=1 | [yl:=1 | |MF; Il | MF;
v2:= [y] v4d = [x]

where the behaviosyl = v3 = 1 andv2 = v4 = 0 is permissible
(again assumindgz] = [y] = 0 initially). That can be perceived
in our semantics once we replace the leftmost thread through

[2]:=1 % [x]:=1; [2]:=0; [z] :=1

Other similar examples shown by Boehm and Adve [2008] canm als
be supported. It might be intuitive that they happen becattse
does not enforce write atomicity.

4.9 Preventing “out-of-thin-air” reads

In the context of typed languages, such as Java, the DR Rofiear
is not sufficient to ensure type safety, as the type systera doe
enforce race-freedom. Therefore, behaviors such as theofeu
thin-air” example must not be allowed as they can break tpe ty
system. That would compromise not only the language saigty b
also its security. Much of the complexity of the JIMM comesiro
the fact that it should forbid such behaviors while stilbaling all
other type safe optimizations.

In our setting, from the examples shown, it is clear that the
relation is not suited for type safe languages. Howevercifipe
memory models can be obtained by simply constraining the
relation. In this case, we could enforce the preservatiotypés
while still allowing for sequential optimizations by usitige fol-
lowing type compatibility relation (assuming a typing judgnt of
the formI" - ¢ : unit is available):

c19C2 T, (T F ¢y : unit) iff (T'F ¢z : unit)

It ensures that both; andc. are well-typed in the same typing en-
vironments. If we use the relatidi- N ¢) in our parameterized
semantics, we could achieve type safety without having toywo
about specific issues such as the legality of “out-of-thihexecu-
tions. That seems natural, as the preservation of typesrigpe gy
of program transformations performed at the high-levelsdyrce-
to-source compilers, and also by compilers that use typtednre-
diate languages. Therefore, in our perception we shoulgnesent
“out-of-thin-air” reads from happening; instead we justkeaure
that, if they happen, they will not break type safety.

5. Grainless Semantics and DRF Guarantee

Reynolds [2004] proposed trace-based grainless semamaesid
specifying the default level of atomicity in concurrent daiages.
The semantics is based on three principles:

1. Operations have duration and can overlap with one another
during execution.

2. If two overlapping operations touch the same locatiore th
meaning of the program execution is “wrong”.

3. If, from a given starting state, execution of a program gare
“wrong”, then no other possibilities need to be considered.

A different grainless semantics was proposed by Brooke8gR0
based on “footstep traces”. Following similar ideas, heeegive
a grainless semantics to our language, which is operatiosigad
of being trace-based denotational semantics. The seragetimits

(@8 | (T.Tye
1 (T Dye | (T T)e

(ThrdTre§ T ::
(ThrdCtx) T ::

Figure 10. Instrumented thread trees and contexts

§— & Z swsn (6'.rsud . ws) =0 AdrsN ws= 0
wft(f,é) oot Vcﬂ,}’ﬁ’,’i". _ o
(T[(c,0)]=T'[(¢,0")]) AN(T#T') — 50

(c,emp

(IT1), [T2])e

c

T
T <T17T2>>C

= |

Figure 11. Auxiliary definitions

only data-race-free programs to execute, therefore isgigea sim-
ple and operational formulation of data-race-freedom &lod/a us
to prove DRF-guarantee of our relaxed semantics.

5.1 Grainless semantics

We first instrument thread trees with footprints of threadsshown
in Fig. 10. The setss andws in the footprinté record the mem-
ory locations that are being read and written by the cornediog
thread. Recall that we assume threads only share read-arily v
ables, therefore accesses of variables would not causg andave
do not record variables in footprints. Execution contéktin the
instrumented trees are defined similarlya# Sec. 2.

The footprint§ associated with each leaf node @hrecords
the memory locations that are being accessed by this thiiead.
ensure the gata-race-freedom, the footpfiof the active thread at
the contextT’ must be disjoint with the footprints of other threads.
This requirement is defined in Fig. 11 as thie (well-formed tee)
condition. We also defingT’| to convert7 to an instrumented
thread tree with an initial footprirgmpfor each thread.

The grainless semantics is shown in Fig. 12, which referkeo t
sequential transitions defined in Figs. 6 and 9. In this s¢icsawe
execute unordered commands in a big step, as shown in the first
rule (see Fig. 9 for the definition qt, o) s (¢, o’)). It cannot
be interrupted by other threads, therefore the environroanhot
observe transitions dhe smallest granularityThe footprinty of
this big step is recorded on the thread tree at the end, whianm
the transition hadurationand the memory locations #are still in
use (even though the state is changed)oSo when other threads
execute, they cannot assume this step has finished and dssumt
conflicting memory operations.

consanddispose(the third rule), atomic blocks (the sixth rule)
and thread fork/join (the last two rules) are atbmicinstead of
being grainless. Comparing with the first rule, we can sedéabie
print at the end of the step @mp showing that this step finishes
and the memory locations ihare no longer in use. Note tteenp
footprint also clears the footprint of the preceding unoedetran-
sition of this thread, therefore these atomic operatiors akrve
as memory barriers that mark the end of the preceding urexder
commands. The footprint on the left hand side is not usedéaeh
rules, so we useto omit it.

In all these rules, we check thet condition to ensure that each
step does not issue memory operations that are in conflitt wit
those ongoing ones made by other threads. If the check fedls,
reach the speciaiace configuration and the execution stops (the
fourth and seventh rules).

The second rule shows that the intermediate footpfintay be
recorded on the thread tree, even if the big step transiti@nniot

@[(c,)], o) = @[(c’ﬁ)], o') if (c, o) U5 (¢, o) andwft(T,) N
(T[(c,8)], o) = (T[(c,8")], o) it (e, 0)=="(c, o), 6 C &', andwit(T, &)
(T[(c,)], o) = (T[(c,emp], o’) if (c, 0) == (¢, o) andwfi(T,s)
(T[(c,.)], o) => race it (e, 0)—=="(c, o) or (e, o) == (¢ o'y, and—- wft(T, §)
(T[(c,.)], o) = abort if (¢, o) —* abort or (¢, o) —> abort
(T[(E[atomic c],.)], o) = (T[(E[skip],emp], o’) if (¢, o)—"(skip, o') andwft(T, §)
(T[(E[atomic c],)], o) = race if (¢, o)—"(o'y and—-wft(T, &)
(T[(E[atomic ¢],)], o) = abort if (¢, o) —* abort
N (T[(E[e1][e2],-)], 0) = <?[<<(017em97 (c2,emp)E[skip]], o)
(T[{(skip,-), (skip,-))c], o) = (T[(c,emp], o)

Figure 12. Grainless semantics

finished. This is necessary to characterize the followimgmam as
one with data-races:

(while true do [z] :=4) || (while truedo [z] := 3)

This program would violate the side conditiovft of this rule,
although both threads diverges. Note that the rule doeshzotige
the command and the state. If we ignore the footprint, it simply
adds some stuttering steps in the semantics. The side ondit
§ C ¢’ ensures that the stuttering steps are not inserted ailyitrar
Hered is either an intermediate footprint accessed earlier durin
this big-step transition, or the footprint accessed by tieegding
big-step transition of this thread. In the second case,abestep
must be an atomic operation afidhust beemp(see the explanation
of atomic operations below).

The next rule shows thatonsanddisposeare atomic instead
of being grainless. Comparing with the first rule, we can $ee t
footprint after the step ismp showing that this step finishes and
memory locations iy’ are no longer used. However, in thgt
condition, we still use’ instead ofempto ensure the data-race-
freedom. The fourth rule says the program has a data-rate if t
wft condition is violated.

The first rule for atomic blocks is similar to the rule foons
anddispose Since the new footprint recorded in the thread tree is
emp it shows that atomic blocks are indeed atomic. The rules for
thread fork and join are similar to their counterparts in.FigThe
two thread operations are also atomic.

Following Reynolds’ Principles 2 and 3, botibort and race
are viewed as bad program configurations. Execution of aranog
stops when it reaches one of them. Here we distingtsist from
abort to define data-race-freedom. A thread tfiéés race-free if
and only if its execution in the grainless semantics nevadde
to race. By this definition, programs that abort may still be race-
free. This allows us to discuss about race-free but unsafgrgms,
as shown in Theorem 5.3. In the formal definition below, we use
|T| to convertT to an instrumented thread tree in the grainless
semantics, which is defined in Fig. 11.

Definition 5.1. (T, o) racefree iff —((|T], o) ="
T racefree iff, for all o, (T, o) racefree.

race);

We know the example we show above is not race-free. Below
we show some more examples.

Example 5.2. Given the following programs,
1) [z1:=3 || [z1:=4

(2) [z1:=3 || atomic {[z]:=4}
(3) [z1:=3 || atomic {while true do [z] :=4}
(4) atomic { [z]:=3} || atomic {[z]:=4}

we know (4) is race-free, but (1), (2) and (3) are not.

5.2 DRF-guarantee of the relaxed semantics

We can now formulate and prove the DRF-guarantee of thegdlax
semantics presented in Sec. 3.3 . Theorem 5.3 says a race-fre
program configurationc, o) has the same observable behavior
in both the relaxed semantics and the interleaving sengaritiit
aborts in one semantics, it aborts in the other; if it neverih it
reaches the same set of final states in both settings.

Theorem 5.3(DRF-guarantee)If (T, o) racefree, then

1. [=¢] (T, o) —" abort iff (T, o) —™ abort.
2. If =({(T, o) —" abort), then
[=¢] (T, o) —" (skip, o'} iff (T, o) —* (skip, o).
Proof. The proof is trivial by applying Lemmas 5.5 and 5.6. [
Below we also show an interesting corollary. It says that, if
c1 = c2 and we put them in any contegt then the behavior of
C[c1]in the interleaving semantics is subsumed by the behavior of
C[c2], as long as there are no data-races.

Corollary 5.4. If ¢1 = ¢2, and(C[cz], o) racefree, then

1. If({C[c1], o) —™ abortthen(C[cz2], o) —™ abort.

2. If=({C[cz2], o) —* abort), and{C[c1], o) —"* (skip, o'},
then{C[cz2], o) —* (skip, o).

Proof. The proof is trivial given Theorem 5.3 and Lemma 3.4

The proof of the DRF-guarantee depends on two important
lemmas. Lemma 5.5 shows the equivalence between the enterle
ing semantics and the grainless semantics for race-fregrrs.
Lemma 5.6 shows the equivalence between the grainless seman
tics and the relaxed semantics. Therefore, we can derivBie
guarantee using the grainless semantics as a bridge.

Lemma 5.5. If (T, o) racefree, then

1. (T, o) —™ abortiff (|T|, o) =" abort.
2.(T, o) —* (skip, o’} iff (|T], o) =" ((skip,.), o)

Lemma 5.6. If (T, o) racefree, then
1. [=¢] (T, o) —" abort iff (|T|, o) =" abort.

2. if =((T, o) —™ abort), then
(=] (T, o) —* (skip, ') iff (|T"], o) =" ((skip, -), o).

To prove Lemma 5.5, we use the following two lemmas.

Lemma 5.7 shows that an unordered operation can be reordered

with other operations as long as they do not have data depende
cies. Lemma 5.8 says the data-race-freedom is preserveleby t
interleaving semantics.

Lemma 5.7. If §; — d2, andc; andcs only share read-only vari-

ables, then(3o”’. {c1, o) ?u—> (chy o'y A {c2, o) - (ch, a"))
1 2
iff (30’. (c2, o) - (ch, 0"y N{c1, o) Tu_> (ch, a"y).
2 1

Lemma 5.8. If (T, o) racefree and (T, o) — (1", o'}, then

(T’, o') racefree.

Before proving Lemma 5.6, we first lift our relation for the
grainless semantics.

Definition 5.9. We lift < for instrumented thread trees.

1. (01,51) =<t (02,52) iff c1 X c2 and61 g 52;
2. <<T1I,T1”>>Cl =<t <<T2/,T2N>>Cz iff c1 =< c2, Tll =<t TQ/ and
j:v// <4 T//

Note that here we only require the fOOtprInﬁﬁﬂ is a subset of the
corresponding footprint iff>. This is becaus&} only accesses a
subset of memory used Hyé as shown by the following lemma.

Lemma 5.10. If ¢; =< c2 and{c1, o) {s, {cl,
(c2, o) —=+* abort or there exist}, andds such that(cz,
(¢4, '), 81 C b2, andc) < ch.

The proof of Lemma 5.6 uses Lemma 3.6 and Lemma 3.7. It
is also based on the following lemma and corollary. Lemmd 5.1

essentially says that, ifi <¢ T» and T does not race or abort,
then they lead to the same state after each step in the gsinle
semantics. It can be derived from Lemma 5.10.

Lemma 5.11. If Tl <t Tg, then

1. if (T}, o) = abort or race, then(Ts, ') = abort of race;
2. if (Ty, o) = (T, o), then(T», o) = abort Or race, or
there existdy, such thatT», o) = (T3, o') andTy < T5.

a'), then either
‘7> Vs,

Corollary 5.12. If Ty < T, then

1. if (Tn,
race;
2.if (Ty, o) =* ((skip,§), o’), then (T,
race, of (Tb, o) =" ((skip, .), o).

Here we only show the key lemmas used to prove the DRF-
guarantee.

*

o) =" abort or race, then (T5, o) ="* abort or

o) =" abort or

6. Soundness of CSL

We prove the soundness of CSL in our relaxed semantics by first 5,

proving itis sound in the grainless semantics. The CSL wéase

is mostly standard [O’Hearn 2007, Brookes 2007]. To make the
paper self-contained, we show the assertions and theinrgasian

Fig. 13, and some selected logic rules in Fig 14. Below we give
brief overview of the logic.

The logic consists of sequential and concurrent rules. The fi
four rules in Fig. 14 are sequential (more rules are omiteeh
They are just standard sequential separation logic rusésifiq and
O’Hearn 2001, Reynolds 2002]. The semantics is standardsand
defined below. Soundness of the rules is shown by Lemma 6.2.

10

(Assertion p,q,r,I =:=1b | emp | e1r— ez | p*xq

| p=q|Vzp]|...
(h,s) Eb iff ~ [b]s = true
(h,s) =emp iff dom(h) =10
(h,s) Ee1r—ex iff dom(h) = {[ei1]s} andh([e1]s) = [e2]s
(hs)prq i

there existh1 andho such thath = h1 W ho, (h1,s)Ep
and(hz, s) =g
wherew means the union of two heaps with disjoint domains

Figure 13. CSL assertions and their semantics

Definition 6.1. = {p}c{q} iff, for all o such thato = p,
=({c, o) —* abort), and, if(c, a) *(skip, o'}, theno’ [=q.

Lemma 6.2. If - {p} c{q} thenE {p}c{q}.

The judgment! + {p}c{q} for concurrent rules informally
says that the state can be split implicitly into a shared aad a
local part; the local part can be accessed onlyhy and ¢ are
pre- and post-conditions for the local state; the sharetiqaar be
accessed by bothand its environment, but only in atomic blocks;
accesses of the shared state must preserve its invariant

We do not explain details of the rules. ThecALR rule is
similar to the local resource rule by Brookes [2007]. Thile rand
theFRAME-Irule are due to Parkinson et al. [2007]. They also show
that the standard frame rule (over local resources) can tieede
from the two rules. Here we implicitly require thAbe precise, i.e.
for any state there is at most one sub-state satisfijing

To prove the soundness of CSL, we first formulate in Defini-
tion 6.5 the program invariant enforced by the logic rulesms
auxiliary constructs used in the formulation are defined @fii-
tions 6.3 and 6.4. Here |1, x) o’ means the difference between
ando’ must be within the variable séf and the shared sub-states
specified byl. o = § W I says that the footprint is a subset of the
heap inc and it has no overlap with the shared part specified by
(therefores belongs to the local state).

Definition 6.3. (h, s) ||(1,x) (R, s") iff there existhy, ki andhy
such thath = hq1 W ha, h = h/l W ha, (h1,8) ':[, (/1 8/) ':[,
andvz ¢ X. s(z) = s’ ().

Definition 6.4. (h, s) = W1 iff, for all hy andhy, if hiWhe = h
and(hi,s) =1, then(d.rsU d.ws) C dom(hz).

Definition 6.5.

I'= (T, o) >0 q always holds[|= (T, o) x4 ¢ holds iff the

following are true:

1. o =1 * true;

2. =((T, o) = abort) and—((T,

3. if T = (skip, 8), theno (=T + g;

4. forall T, cands, if T = T|[(c,4)], theno = 6 W I;

it (T, o) = (T', o'}, thenVj < k. I= (T', o') 1>, q;

6. if X does not contain free variablesf?andq, ando || (r,x) o,
thenVj < k. I = (T, ') >, q.

I'= (T, o) 1> gifand only if Vk. I = (T, o) >y q.

Informally, I |= (T, o) > g requires thaf holds over a sub-heap
of o; the next step would not race or abafti ¢ holds if we are

at the end of execution; the footprint of each thread is pawt o
but has no overlap witlf; and all these invariants are preserved

up to k steps made by eitheF itself or by its environment. The

o) = race);

(sm

F{p}c{q}

F{ei— _} [e1l:=e2{e1— e2}

F {e— _} disposée) {emp}

(pIspPosp (FRM-S)

F{p*xr}c{g*r}

F{x =2’ ANemp}z:=conger,.

F{p}c{q}
I'+{p}c{q}

F{pxI}c{g=1I}

(ENV) I+ {p}atomic c{q}

(ATOM)

IF{p}er{r} I+{r}ca{q}

—ren) {(@e [2'/alen) w - ox (ki — 1 [2f /2]e)}

I+ I'+{p}ciq}

(coNs)

I'-{pi}er{q1} I+ {p2}ca{qz}

I'={p1*p2}cil|lca{q1 * g2}
wherec, does not update free var. in, c; andqi, and conversely.

I'+{p}ciq}

(PAR)

I+ {p}eci;ca{q} (s£Q

ITE{p*xI'}c{gxI}

(LoCALR) (FRAME-I)

I« 1"t {p}c{q}

Figure 14. Selected CSL Rules

following lemma shows thaf + {p}c{q} indeed ensures the
invariant! = ((c, d), o) > ¢q, as long ag satisfies the precondition
and/ is part of the initial local state.

Lemma 6.6. If I - {p}c{q}, c EI*p,ando | § W I, then
I'E={(¢,9), o) > q.

The proof of this lemma follows standard techniques, i.e. we

need to first prove the locality [Yang and O’Hearn 2002, Cgihca
et al. 2007] of each primitive commands. Details of the pscanke
shown in Appendix D.

We define semantics of the judgmeht= {p}c{q} below,

based on the grainless semantics. The soundness of CSLisules

shown by Lemma 6.8. The proof trivially follows from Lemm#&6.

Definition 6.7. I = {p}c{q} Iiff, for all ¢ and ¢ such that
cEIxpandoc E §dW I, we have— ({(c,§), o) =" abort),
= ({(c,6), o) =" race), and, if{(c, §), o) =" {(skip,), '),
theno’ =1« q.

Lemma 6.8. If I+ {p} c{q}, thenI = {p}c{q}.

Finally we give semantics tb- {p} ¢ {¢} based on our relaxed
semantics, and show the soundness in Theorem 6.10.

Definition 6.9. I =) {p}c{q} iff, for all o such thar =1 * p,
= ([A] {¢, o) —* abort), and, if [A] {c, o) —* (skip, ¢’),
theno’ =1 * q.

Theorem 6.10. If I + {p} c{q}, then! |=[-,; {p}c{q}.
Proof. Trivial by applying Lemma 5.6. O

Extensionsof CSL. The original CSL [O’Hearn 2007] only sup-
ports a coarse classification of resource ownership. It doesup-
port simultaneous read by different threads. Bornat eRaD%] ex-
tended CSL with fractional permissions [Boyland 2003] tstidi-
guish exclusive total accesses (read, write and disposdl$laared
read-only accesses.

(Perm) T e (0,1]

(Assertion p,q, 7,1 == ... | e1&ea | ...

The permissionr in the new assertion; +~ ez is a rational
number.m = 1 means total access; < © < 1 means shared
access. The original assertion— e can be viewed as a shorthand

notation fore; - es.

We can prove that CSL with fractional permissions is alsadou
with respect to the grainless semantics, but the model gbshea
needs to be changed to a partial mapping from locations to afpa
values and permissions. We also need to refine our Definitibn 6
and require that.ws belong to a subset di, that contain only
permissions for total accesses. The proof should be sittailtre
proof for standard CSL.

11

Since our grainless semantics is a mix of big-step and sstetl-
semantics, and there is no interleaving between threada wihe
ordered commands are executed, intuitively proving thedoess
of CSL-family logics could only be simpler in this semanttban
in the interleaving semantics. Therefore we are confidexttdther
extensions of CSL, such as the support of storable lockssi@an
et al. 2007, Hobor et al. 2008] and the combinations of CSlhwit
Rely-Guarantee reasoning [Vafeiadis and Parkinson 206ng F
2009], can also be proved sound with respect to the graiskess
mantics. Then their soundness in our relaxed semanticsecaad
ily derived from Lemma 5.6. We would like to prove our hypatise
in our future work.

7. Discussions and Related Work

Relaxed memory models. The literature on memory models is
vast. We cannot give a detailed overview due to space camstra
Below we just discuss some closely related work.

The RAO model by Saraswat et al. [2007] consists of a fam-
ily of transformations IV, CO, AU, LI, PR and DX). Unlike our
subsumption relation which gives only an abstract and sitoeal
formulation of semantics preservation between sequethtiahds,
each of them defines a very specific class of transformatives.
suspect that our model is weaker (not necessarily strictigtker)
than theRAO model.IM, CO andDX are obvious specializations
of our subsumption relation with extra constraints. Altgbuve
only support intra-thread local transformations, we cafindea
more relaxed version dPR: ¢ = if gthenc elsec, assuming
¢ has the same behaviors withf ¢ holds over the initial state.
AU enforces a specific scheduling. We allow all possible sdhedu
ing in our relaxed semantickl is an inter-thread transformation. It
is unclear how it relates to our subsumption relation, betekam-
ples [Saraswat et al. 2007] involvird (e.g., the cross-over exam-
ple) can be supported following the pattern with which weroep
duce the prescient-write example in Sec. 4.

In this paper, we do not investigate the precise connection t
the Java Memory Model (JMM). For the moment, we assume
that the work by Saraswat et al. [2007] is consistent with IMM
Our semantics is operational and not based upon the happens-
before model. We believe it provides a weaker memory model
with the DRF-guarantee, and supports compiler optiminatibat
JMM does not, such as the one described by Cenciarelli et al.
[2007]. However, there are two key issues if we want to apply o
model to Java, i.e. preventing the “out-of-thin-air” beivas and
supporting partial barriers. The first one can be addresgadding
constraints similar to SaraswafsX-family transformations in our
subsumption relation. The second one can be solved by alpwi
transformations to go beyond partial barriers. We will shibve
solution in an upcoming paper.

Boudol and Petri [2009] presented an operational appraach t
relaxed memory models. Their weak semantics made expBeit u
of write buffers to simulate the effects of memory cachingimty
execution, which was more concrete and constructive thast mo
memory model descriptions. However, only a restricted §eé-0
orderings was observable in their semantics, while our séosa
is much weaker and supports all four types of memory reorder-
ing. Also, since our formalization of memory models is based
program transformations, our semantics has better suppoom-
piler optimizations. The connection between their sencangind
program logics such as CSL is unclear either.

Sevcik [2008] analyzed the impact of common optimizations i
two relaxed memory models, establishing their validity ahdw-

ing counter examples; some of our examples were inspired by

his work. Gao and Sarkar [2000] introduced Location Corsisy
(LC), probably the weakest memory model described in tleedit
ture; we stand by their view that memory models should be more
relaxed and not based necessarily on cache consistence.

Grainless semantics. Besides being operational instead of trace-
based semantics, there are some other differences betwgen o
grainless semantics and semantics by Reynolds [2004] ayakBs
[2006]. Each operation in Reynolds’ semantics is modelexlsr

of actions labeled withstart” and “fin” respectively, but actions
are not coalesced. We model duration of operations by rewprd
their footprints on the thread trees. We also coalesce tmmia
operations into a “big-step” transition, which is similarBrookes’
semantics. On the other hand, we do not coalesce operatimns f
different threads, as Brookes did in his semantics.

Reynolds did not discuss about memory allocation and dépos
operations. Brookes treated them as non-atomic operatides
treat them as atomic, otherwise the following program may-ge
erate a race in our semantics:

x:=cong3) || dispos€y)

The two operations may have the same footprintisposeis exe-
cuted first and then the memory location is recycled and asdig
to = by cons Although it is possible to relax this atomicity re-
quirement by making the footprint @onsto beemp(sincecons
always generates fresh memory locations), doing this wmake
our proof of the DRF-guarantee much harder because Lemnig 5.7
broken in the above scenario. As discussed in Sec. 2, werbélie
decision is reasonable becaesmsanddisposedo share resources
and need to be synchronized in their real-world impleménat
Even viewed abstractly, they share the set of fresh locsitiAiso
note that treating them as built-in atomic operations datsffiect
the soundness of CSL. Like other non-atomic operationy, ¢ha
be executed either inside or outside of atomic blocks.

Oraclesemanticsfor CSL. In their oracle semantics, Hobor et al.
[2008] gave a coroutine interleaving model for concurrerd-p
grams, in which context switching only occur at concurrgrera-
tions. This is similar to our grainless semantics. Bothrteeman-
tics and our grainless semantics permit only race-freerprog to
execute, but this is enforced in different ways. We requieg the
footstep of each thread is compatible with other thread€amh
step of execution; while the oracle semantics maintairjsidiso-
cal worlds for each thread and ensures that thread-locahtipes
can only occur in a local world. The goal of their work was teegi
an operational semantics that bridges sequential optiioiza(and
relaxed memory models) with CSL-verified concurrent progga
that is guaranteed to be race-free, which is similar to thed gb
our paper. However, there was no formalization of memoryetsd
and optimizations, so the claim was not formally proved.

12

8. Conclusions

We present a simple operational semantics to formalize mem-
ory models. The semantics is parameterized on a binarjicelat
over programs. By instantiating the parameter with a speoéfi
lation =, we have obtained a memory model that is weaker than
many existing ones. Since the relation is weaker than ohserv
tional equivalence of sequential programs, this memoryehaido
captures many sequential optimizations that usually pvesge-
mantic equivalence. We then propose an operational gszirde-
mantics, which allows us to define data-race-freedom aneepiee
DRF-guarantee of our relaxed memory model. We also proved th
soundness of CSL in relaxed memory models, using the gesinle
semantics as a bridge between CSL and the relaxed semantics.
In our future work, we would like to extend our framework to
support partial barriers. This can be achieved by extendthe
relation with transformations that go beyond partial keasi It is
also interesting to formally verify the correctness of satial opti-
mization algorithms in a concurrent setting. Given thisrfeavork,
it is sufficient to prove that the algorithms implement a s
the> relation. As mentioned before, we also want to apply this ap-
proach to languages with other important language featstesh
as function calls, dynamic locks, and dynamic thread aveati

References

S. Adve and K. Gharachorloo. Shared memory consistency Isiode
tutorial. IEEE Computer29(12):66—76, Dec. 1996.

Adve and M. Hill. A unified formalization of four shared-mery
models. IEEE Transactions on Parallel and Distributed Systed(®):
613-624, Jun. 1993.

Adve and M. Hill. Weak ordering — a new definition. 17th ISCA
pages 2-14, Seattle, Washington, May 1990.

S.

S.

N. Benton. Simple relational correctness proofs for statialyses and

program transformations. Bilst POPL pages 14-25, Jan. 2004.

H. Boehm and S. Adve. The foundations of the C++ concurrenesnary

model. InPLDI, pages 68-78, Tucson, Arizona, Jun. 2008.

H.-J. Boehm. Threads cannot be implemented as a librafgLDI, pages
261-268, Chicago, Jun. 2005.

Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Peiotisaccount-
ing in separation logic. 182nd POPL_pages 259-270, Jan. 2005.

Boudol and G. Petri. Relaxed memory models: an operatapmoach.
In 36th POPL, pages 392-403, Savannah, Georgia, USA, Jan. 2009.

J. Boyland. Checking interference with fractional perraigs. In 10th
International Symposium on Static Analygiages 55-72, 2003.

R.

G.

. Brookes. A semantics for concurrent separation logieoretical Comp.
Sci, 375(1-3):227-270, May 2007.

. Brookes. A grainless semantics for parallel programi sliared muta-
ble data. Electronic Notes in Theoretical Computer Scignt85:277—
307, May 2006.

. Calcagno, P. W. O’'Hearn, and H. Yang. Local action andrabist
separation logic. 1”22nd LICS pages 366—-378, July 2007.

. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory eio@per-
ationally, denotationally, axiomatically. IBSOR pages 331-346, Mar.
2007.

. Dijkstra. Cooperating sequential processes. In F. Ggregitor, Pro-
gramming Languagepages 43-112. Academic Press, London, 1968.

. Dubois, C. Scheurich, and F. Briggs. Memory access huffemn
multiprocessors. 143th ISCA pages 434-442, Tokyo, Jun. 1986.

. Feng. Local rely-guarantee reasoning.36th POPL, pages 315-327,
Jan. 2009.

. Feng, R. Ferreira, and Z. Shao. On the relationship betweacurrent
separation logic and assume-guarantee reasonirgSOR, pages 173—
188, 2007.

G. Gao and V. Sarkar. Location consistency — a new memory hawike
cache consistency protocolEEE Transactions on Computerd9(8):

798-813, Aug. 2000.

. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gugta J. Hen-
nessy. Memory consistency and event ordering in scalatdeedh
memory multiprocessorsSIGARCH Newsl8(3), Jun. 1990.

. Goodman. Cache consistency and sequential consistefehnical
Report 61, IEEE Scalable Coherence Interface Committee, 1989.

Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. cdlo
reasoning for storable locks and threads.5th APLAS pages 19-37,
Dec. 2007.

. Hobor, A. Appel, and F. Nardelli. Oracle semantics for cament

separation logic. IEESOP pages 353—-367, Mar. 2008.

S. Ishtiag and P. W. O’'Hearn. BI as an assertion languagmtitable

data structures. 188th POPL pages 14-26, Jan. 2001.

. Lamport. How to make a multiprocessor computer that @biyexecutes
multiprocess programslEEE Transactions on Computer&8(9), Sep.
1979.

Leroy. Formal certification of a compiler back-end, oroframming a
compiler with a proof assistant. B8rd POPL, pages 42-54, Jan. 2006.

J. Manson, W. Pugh, and S. Adve. The Java memory modaRknd POPL.
pages 378-391, Long Beach, California, Jan. 2005.

Mosberger. Memory consistency modelperating Systems Review
(1):18-26, Jan. 1993.

O’Hearn. Resources, concurrency, and local reasonifigeoretical
Comp. Scj.375(1-3):271-307, May 2007.

Owens, S. Sarkar, and P. Sewell. A better x86 memory me8@TSO.
In 22nd TPHOLSpages 391-407, Munich, Germany, Aug. 2009.

Parkinson, R. Bornat, and P. O’'Hearn. Modular verificataf a non-
blocking stack. Ir84th POPL, pages 297-302, Nice, France, Jan. 2007.

J. Reynolds. Towards a grainless semantics for sharedbl@aoncurrency.
In FSTTCSpages 37-48, Chennai, India, Dec. 2004.

Reynolds. Separation logic: A logic for shared mutabka dé&ructures.
In LICS pages 55-74, Copenhagen, Jul. 2002.

Saraswat, R. Jagadeesan, M. Michael, and C. von Praun.e@xtof

memory models. 112th PPoPR San Jose, Mar. 2007.

. Sevcik.Program Transformations in Weak Memory Modé®hD thesis,

School of Informatics, University of Edinburgh, 2008.

The SPARC Architecture Manual, Version 8. Revision SAVO808
SPARC International Inc, 1992.

V. Vafeiadis and M. Parkinson. A marriage of rely/guarargad separation
logic. In CONCUR pages 256-271, Lisbon, Sep. 2007.

H. Yang. Relational separation logidheoretical Computer Sciencg75

(1-3):308-334, 2007.

H. Yang and P. O'Hearn. A semantic basis for local reasonihy5th
FOSSACSpages 402-416, Grenoble, France, Apr. 2002.

A.

S.

-

X.

D.
P.
S.

M.

J.

V.

A. Total/Partial Store Order

We give another non-trivial instantiation &fin our parameterized
semantics, which yields the Total Store Ordering (TSO) rhivde
plemented by the SPARCV8 architecture [SPA 1992]. TSO allow
write-to-read reordering. It enforces cache-coherengealows a
thread to read its own writes earlier.

We define>+so, an instantiation of\, in Fig. 15. The first rule
shows the reordering of a write with a subsequent read.€l$e
branch shows the reordering when there is no data dependency
Thethen branch allows a thread to read its own write earlier. Here
fu(e) is the set of free variables in The other rules (except the
last one) show how to propagate the reordering to the subséqu
code. Remember that the transformation may occur at any step
during the execution in our parameterized semantics, sonke o
need to consider the statements starting with a write operand

13

the write might be postponed indefinitely until an orderedration
is reached.

In real architectures, the reordering is caused by writéehiufy
instead of swapping the two instructions. We do not modehttiie
buffer here since our goal is not to faithfully model what paps
in hardware. Instead, we just want to give an extensionaleinfod
programmers. To see the adequacy of our rules, we can view the
right hand side of the first rule as a simplification of the daling
code, which simulates the write buffering [Owens et al. 3008re
directly:

local tmp, buf in
tmp:=ey; buf:=¢’;
if tmp= ez then z:=buf elsex :=eo;
[tmpl :=buf

end

Here the local variabléuf can be viewed as a write buffer. Also
note that the side condition of this rule can be eliminatedkifalso
simulate the hardware support of register renaming (likeuse of
tmpabove).

Remark A.1. The>+so relation is a subset of the- relation

Figure 16 presents thepso relation. It builds upon the-rso
relation, but with extra rules to allow write-to-write retarings.

Remark A.2. The>psorelation is a subset of the- relation

B. Proving Properties of Subsumption

Lemma B.1. If ¢1 =X ¢2 and{c1, o) | (¢}, o’), then either
(c2, o) —2=* abort or there exists} such that(cz, o) | (ch, o’)
andc] < .

Proof. Frome; < ¢z, we can assume, <1 cz. From condition 2
of Definition ?? we know that eithetcz, o) ——* abort (left hand
side of the goal) or there exist$ such that(cs, o) | (ch, o’)
and constraints (a) to (d) hold fof and index0. If we instantiate
the existential in the right hand side of the goal usiigremains
to showc; =< ¢, i.e. forallk, ¢ =<x . If & = 0, that
is trivial. Whenk > 0, again, frome; =< ¢z, we can assume
c1 =k c2. From condition 2 of Definitior?? we know that either
(2, o) =" abort of there existg’ such thatcs, o) |} (c5, o)
and constraints (a) to (d) hold fef and all indexj, j < k—1.
Given that|} is deterministic, we have, = c5. Sincek > 0 We
unfold the definition of:; < ¢ in the goal; we need to show that
for all 5 < k—1 both conditions of Definitior?? hold. Condition
1, holds trivially given thatcy, o’) is the final state of a big step
and cannot abort. Condition 2, holds directly from the faat bnly
the current configuratiofry, o’) can be the final configuration of a
big step; therefore we instantiate ttfgin the goal with the current
c5 (and we know that if can perform a big step to itself since it is
the target of a big step) and we can use constraints (a) toKd} f
and index;j to conclude. O

Lemma B.2. The relation < is reflexive.

Proof. Reflexitivity means for alle, ¢ < ¢. Frome < ¢, by
definition, we need to show that for &, ¢ <, c¢. We perform
strong induction ovek. Base case holds trivially. In the inductive
case, condition 1 of Definitio? holds trivially. From condition
2, we assuméc, o) |} (¢, ¢’), and we show the right hand side
case by instantiating’ with currentc’, and using the induction
hypothesis to establish thet<; ¢’ forall j < k—1. O

Corollary B.3. The relation < is reflexive.

Lemma B.4. The relation < is transitive.

If (61=€2)

E[[e1] :=¢';x:=[e2]] =150 E[| then (z:=¢'; [e1] :=12)

else (z:= [e2]; [e1] :=¢')

E[[e]l:=¢€);z:=¢h]| >0 B[z:=¢h; [e] :=¢] |
E[[e]l :=¢'; skip] =rso E[skip; [e] :==¢']

E[[e1] 126/1; [e2] 326/2] > T1s0 c

J

if ¢ fo(el)Ufo(e)

it 2 & fo(e)Ufu(eh)
always
if 3¢”. B[[e2] :=€5] =1s0 ¢’ A ([e1]:=el; ") =150 ¢

el :=¢'; if bthen ([el:=€'; c1)
E[< if bthen c; elsecy >]b$° E[< else ([el:=¢; c2)] always
if b
E[[e]l :=¢’;while bdoc] =rso E[| then ([e]l:=¢';c;whilebdoc) |] always
else [e]l:=¢’
Cc>1s0C always
Figure 15. TSO
C Zpso c if ¢>1so0 c
E[[e1] :=¢]; [e2] :=¢€5] =pso if 3¢”. E[[e2]:=€5] =psoc” A ([e1] :=€l;c”) =pso
If (€1=62)

E[[e1]l:=¢l; [e2] :=¢h] =pso E[| then ([e1]:=e; [e1]:=¢€5)

else ([e2] :=e5; [e1] :=e)

J

always

Figure 16. PSO

Proof. Transitivity means for alki, ¢z, andcs, if ¢1 < ¢o, and
c2 <X c3,thenc; < c3. Frome; < 3, by definition, we need to
show that for allk, c1 < c3. We assume; <y c2, andecs < cs3.
We perform induction ovek. Base case holds trivially. In the in-

ductive case, we unfold the definitionaf < ¢z inthe goal. Then,

forall 5 < k—1, we need to show conditions 1 and 2 of Defini-

tion ??. For condition 1, assuminge:, o) —— * abort we need
to show(cs, o) —= *abort. Frome; =i cz2, and{ci, o) ——
* abort, we know that(cz, o) —=* abort. Fromcs = cs3, and
(c2, 0) —==* abort, we know that{cs, o) —* abort. For con-
dition 2, assumindci, o) | (c}, ') we need to show that either
(3, o) ——" abort or there existe} such thatlcs, o) || (c}, o)
and conditions (a) to (d) hold for index Fromc¢; =i c2, and
{c1, o) I {c}, o’), we know that eithefcz, o) —— * abort or
there existscy such that(cz, o) | (c5, ¢’) and conditions (a)
to (d) hold for indexj. In the first case, fronts =<j cs, and
(c2, o) —2* abort, we can conclude thaics, o) —— * abort.
In the second case, from = cs, and(cz, o) | (5, o’), we
know that either{cs, o) —— * abort or there exists; such that
(cs, o) | {c5, o’) and conditions (a) to (d) hold for indgx which
was our goal. O

Corollary B.5. The relation < is transitive.
Lemma B.6. If ¢c1 < c2, then, for all context§, C{c1] < Clez].

Proof. By structural induction over context, then we have to
consider the following cases:

o If ¢1 < ¢2, thencs; ¢ < e2; ¢ Fromes; ¢ < c2; ¢, by definition,
we need to show that for all, c1;¢ <k co2;c. If K = 0 thatis
trivial. If £ > 0, then we unfold Definitior??in the goal and we
need to show that both conditions 1 and 2 hold fojjafl k—1.
For condition 1, we assumgs;c, o) — * abort, from that

14

we can derive(ci, o) —= * abort, therefore using:; < c2
we know that(cs, o) —* abort, and we can establish that
(€23 ¢, o) —=* abort. For condition 2, we assumes; ¢, o) ||
(¢}, o) and we need to show that eithgs; ¢, o) ——* abort

or there exists5 such thatca; ¢, o) | {c5, ') and conditions
(a) to (d) hold forc and indexj. From{ci; ¢, o) | {c}, o’) we
know that eitherci, o) | (skip, ¢”) and{c, ") | (c}, o’)

or there existg/ such that{ci, o) |} (c{, ¢’) andc] = cf;ec.

In both cases, from condition 2 eff < c2, we know that
either(cz, o) ——"* abort or there existg} such thatcz, o) |
(ch, o’} and conditions (a) to (d) hold fef, and index;. In the
case that. aborts, we can establish thab; ¢, o) ——* abort
and conclude. Otherwise, considerifig, o) | (skip, o) we
know then thatch skip and ¢’/ = ¢”, composing that
with {c, ") | (c}, ') we have(cs;c, o) || {(c1, '), we
instantiate thez, in the goal withc; and conditions (a) to (d)
hold trivially using Lemma B.2. Considering the case where
(c1, 0) | (c], o') andcy = c;c, we know thatc] =<; cb
ando”’ = o'. We can then apply the induction hypothesis to
establish!; ¢ <; c3; c according to constraints (b) to (d) using
Lemma B.2 when necessary.

If ¢c1 < ¢2, thenc; c1 < ¢; c2 Similar to the previous case.

If c1 < c2, thenif bthenc; elsec < if bthencs elsec Fol-
lows the closely the definition af, < ¢, for states where con-
dition b hold. Trivial otherwise.

If c1 < c2, thenif bthencelsec; < if bthen c elsecs. Simi-
lar to the previous case.

If ¢1 < ¢2, thenwhile b do ¢; < while b do c2. We extract the
index k from the goal. We do induction ovér. The base case
holds trivially. In the inductive case we unfold the Defiaiti??.

For condition 1, we do strong induction over the number of Proof. We look at the step taken bi¢, o) into (c/, o'}, it can
steps taken byvhile b do ¢; to reachabort. The base case is either be the execution of a command that modifies the state
not possible as we can always unfold the loop. In the indactiv (e.g.c; = [e] :=¢€’) or a control command that does not modify
case, we know that we can unfold the loop and from there we the state. In the first case, we instantiatewith c;; ¢’ and we

reach an abort state. We know conditipholds for currents know that configuratio{¢’, o’) can be reached in 2 steps having
because otherwise we leave the loop and never abort. therefo (skip; ¢/, o’) as intermediate configuration. In the second case,
we know that(c;; while b do ¢, o) ——"~2 abort. Similarly, we instantiate”” with ¢/, which is already the final configuration,
we know that(c2; while b do ¢z, o) can be reached in 2 steps, therefore no additional stepping is necessary.

so it remains to show thdt2; while b do ¢z, o) —* abort. Corollary B.8. If (T, o) — (T", &'}, andT"" <, T", then there

Since, sequential smal! steps are deterministic we have tWo qyictsT” such thafl”’ =¢ Tand(T", o) —* (T"", &').
cases: eithefc;, o) ——7~2 abort or it completesci, o) {};, B . o] ,
(skip, o) and (skip; while b do ¢, ') —= 72 abort where Lemma B.9. [=] (T, o) +—" (skip, o) iff there exists &l
j— 2= j1+7ja (c1 cannot reach a barrier as that would pre- Suchthat’ =¢ 7" and(T”, o) —" (skip, o’).

vent the aborted execution). In the first case, from= c2, Proof. We only show left to right direction, the other is trivial. We
we know that(cz, o) ——* abort and we can derive the goal prove by induction over the number of steps Toto reachskip. It
trivially. In the second case, from =< c2 we know that either is trivial for O steps sincd&” = skip ando = ¢’; we letT’ = skip
(c2, o) —2=* abort of {(cz2, o) |} (skip, o’). If, co aborts, we and showskip >t skip using Corollary B.3. Fork + 1 steps,
conclude since we can derive trivially the goal. Otherwige, there existsI™’, T"" and o’ such thatl”” < T, (T", o) +—
show that(while b do ¢z, ¢’) —=* abort using the induction ~ (T”, ¢") and [=+] (T, ¢") " (skip, ¢’). By induction
hypothesis, which composed with the big step give us the goal hypothesis, we know there exist”’ such thatl”””’ <; T" and

For condition 2, given thatwhile b do ¢y, o) |} (c}, o’) we (T, 0"y —* (skip, ¢’). By Lemma B.8 we know there exists
need to show that eithéwhile b do ¢z, o) —=* abort or ex- T™" such thatr™” =<, T and (I, o) —" (T"", o").
ists ¢4 such that/while b do co, o) || (ch, o’) and conditions ~ Therefore we havgT™"”, o) —" (skip, ¢’). SinceT™ =<¢ T,

(a) to (d) hold forc, and all indexj < k—1. Wedo stronginduc- 7" =¢ T"", using Corollary B.5, we also ha#®""” <, T. [0

tion over the number of steps takenwlile b do ¢; to complete

a big step. The base case is not possible as we can always un ;

fold the loop. In the inductive case, we know that we can uhfol C. Prooving the DRF Guarantee

the loop and from there perform a big step. We have two cases The key lemmas to establish the DRF-guaranntee (Theorejm 5.3
to consider. If the conditioh is false, the loop completes with ~ are Lemmas C.5 and C.6. Another important lemma is the commu-
skip, the same can be show fathile b do c2, and we conclude tativity property show in Lemma C.1.

trivially. If the conditionbd is true we know the big step contin-
ues frome; ; while b do ¢q, similar happens tavhile b do cs.

Now we have two cases to considerci{fcompletes a big step,
ending in configuratiofskip, o’) from ¢; < c2 we know that
eithercy aborts, in which case we knowg; while b do c2 also
aborts, or it completes a big step in which we can continue the
proof again fomwhile b do ¢; andwhile b do ¢2 using the induc-

tion hypothesis given that the number of steps has decreased
If c; completes a big step, endind in a barrier configuration iff (35'. (co, 0)—*(ch, ') A (c1, &) —= (¢}, o).

(c}, o’y from ¢ =< c2 we know that either, aborts, in which 32 51

case we know; while b do c; also aborts, orit completes abig corollary C.3. If §; — &5, andc; and > only share read-
step arriving in a similar barrier. The proof continues bgko : ’ u o /

ing at conditions (b) to (d) and using the subsumption reteti only variables, ther(30". {c1, o) o (er, ') A ez, o) s,

Lemma C.1. If 4; — d2, andc; andcs only share read-only vari-
ables, then(3o”. {c1, o) % (e, a"y A {co, o) — (cy, "))
1 2

iff (30’. (c2, o) - (ch, o' N {c1, o) % (ch, a'")).
2 1

Corollary C.2. If §1 — 02, andc; andc, only share read-only

variables, thefi3o’. (c1, o) . (ch, oY\ {ca, a’)6—>*<c’2,)
1 2

obtaines in addition to applying the first induction hypaiiseo (ch, o)) iff (3o”. (ca, o) Us, (ch, 0') A {c1, 0) LN ¢y, o).
establishwhile b do ¢; <; while b do c;. 91

elf c1 = cg, thenci|c <X czflc. Fromerl|e = czl¢, by Lemma C.4. If (T, o) racefree and (T, o) — (T", ¢’), then
definition, we need to show that for @l ¢1 || ¢ <k cz2] c. If (T', o') racefree.

k = 0 that is trivial. If ¥ > 0, then we unfold Definitior??
in the goal and we need to show that both conditions 1 and
2 hold for all j < k—1. Condition 1 holds trivially since

w0 N ' we have—((|7"], ")
(c1]| ¢, o) —™ abort is never satisfied. For condition 2, we ¢,qmy (T, o) — (T", o'}, and(|T"], o'} =" race, we need to

know that{ci || ¢, &) —"(c1 || ¢, o) and we need to deal show(|T'|,) =" race. By inversion of(T, o) — (T", &),

Proof. From the definition of ', o) racefree we have
=({|T], o) =" race); and from the definition of 7", o’} racefree
"y =* race). If we remove the negations,

with constraint (b) where we need to shew <; c2, ¢ <; ¢, we have the following cases:
skip <; skip (E = []). c1 <; c2 we obtain frome; =< cs. N
¢ =, candskip =<; skip we obtain using Lemma B.2. 1.T =T[c], T = T[], and{c, o) — {(c’, o’). We know
e If ¢; < ca, thenc|| e1 < ¢|| c2. Similar to the previous case. then that from(|T[c']], o') =" race, and (¢, o) —
o If 1 < c2, thenatomicc; < atomicce. Similar to the (¢, o), we need to establish
previous case. (|T[c]], o) =" race
0 We know there existd such that

11

Lemma B.7. If (¢, o) —= (¢, '), and¢”’ =< ¢, then there * [T[c]] = T;[(C’ emp ;
existse” such that” < cand(c”, o) ——* (¢, o). o | T[] =T[(d,emp];

15

We do induction over the number of stepdeforec’ reaches
the race. In the base case, we have two options for race:

e T[(c,emp] = T'[(",§")] where(c”, o)== o)

or{c", o) % (", o', andﬁwft('f‘/,é”)
* T[(c',emp | = T'[(E[atomic ¢], 5")] where
(", 0'>6T>*<cm, "y, and—wft(T’,§")

For both cases, iiT = T, thend = ¢’ (first case) or
¢ = E[atomic ¢’] (second case). In the first case, we can es-

u

tablish the goal by knowing that (&}, 0'>61—>*<c'”7 o) and

—wft(T',8") whered” = § U &"; or (b) (c, o) Is (¢, o)
andwft(T, §) to be composed with
(T[(,8)], 0’y =" race; or (c) (c, a)%*(c’, o'y and

- wft(’f‘, d). In the second case, atomic command, it is simmi-
lar to allocation just shown. For both casesi‘if;é T/, we can
just updateT’ to use(c,emp instead of(c’,emp and apply
the stuttering rule (second rule) to increase the footgro
empto § if that results inwft('T, ¢), otherwise there is a race
is defined. In the inductive case, we look into the first step of
the grainless multistep that leads to a race. If it comes fitzan

same thread we just merge the steps similar to what was shown

in the base case. If they come from different threads eitieyr t
are non conflicting operations that can be flipped using Corol
lary C.2 or Corollary C.3 and we apply the induction hypotkes
before composing the steps back together, or they are danflic
ing where a race is defined.

. Memory allocation/disposal case is similar to atomicectst
follows.

. T = T[E[atomic ¢]], T" = T[E[skip]], and(c, o) —~*
(skip, o). We know then that frond| T[E[skip]]|, ¢') ="
race, and{c, o) —™ (skip, o’), we need to establish

(|'T[E[atomicc]]|, o) =" race
We know there existd such that
e |T[E[atomicc]]| = T[(E[atomicc],emp |;
* | T[E[skip]]] = T[(E[skip],emp;
From{c, o) —* (skip, o) we know there exist§’ such that
(c, a>7*<skip, o'). Then we consider two cases:

(a) if wft(’f‘, §"), from the grainless semantics we obtain
(T[(E[atomic ¢],4)], o) = (T[(E[skip],emp], o)
where we assumé& = emp which combined with

(T[(E[skip],emp], o) =" race
give us the goal.

(b) if ~wft(T, ¢"), considering

(e,)=, o)
wherec’ = skip, we obtain
(T[(E[atomic ¢],emp |, o) =" race
direct from its definition.

. Thread spawning case is similar to thread join case tHatfs.

. T = T[{skip,skip)c], T" = T[c], ando’ = o. We know
then that from(|T[c]|, o) =" race we need to establish

16

(|'T[{skip, skipyc]], o) =* race. We know there exist®
such that

o | T[{skip,skip)c]| = 'f‘[(((skip, emp, (skip,emp)c];
o [T[c]) = T[(c,emp];

Then from(T[(c,emp |, o) =" race, and from the grainless
semantics

(T[{(skip, d1), (skip, 82))], o) = (T[(c.emp], o)
(whered, = empandd, = emp we can establish

<T[«(Sk|p7 em@: (Sk|p7 em@))c], 0'> :>* race

Lemma C.5. If (T, o) racefree, then

1. (T, o) —* (skip, o) iff (|T], o) =* ((skip,-), o’);
2.(T, o) —™ abortiff (|T], o) =" abort.

*

Proof. We show the proof for the right direction of 1, i{, o) —
(skip, o’) implies(|T'|, o) =" ((skip, -), ¢’). We do induction
over the number of execution steps. The base case is tiNday.
suppose(T’, o) — " (skip, ¢’). We know there existd’ and
o1 such that{T, o) — (T1, o1) and(T1, o1) —" (skip, o').

By Lemma C.4 we know(T1, o1) racefree. Then by the induc-
tion hypothesis we know|T} |, o1) =" {((skip,-), o). By

(T, o) — (T, o1) we know there are the following cases:

e 7' = T[E[atomic c¢]], T1 = T[E[skip]], and{c,) —*
(skip, o1). Then we know(|T'|, o) = (|T1], o1).

By ([T], o1) =" {(skip,-), o') we have(|T], o) =—*
((skip,-), o).

(T, o) — (I, o1) is one of the rest of ordered executions,
i.e. cons dispose fork or join operations. The proof is similar
to the first case.

o T = Tc)], (¢, 0) — (¢, 01), andTy = T[c']. We do
induction over the number of steps taken ¥ |, o1) ="
((skip, -), o’) The base case is trivial and we can just derive
a big step from(c, ¢) —— (c/, o1). In the inductive step we
have two prossibilities. If the big step is performed by tame

thread we merge the operations into a single grainless step (
two if the step is performed by a ordered operation). If thge bi
step is performed by a different thread we have two options.

If the footprints of both steps are not conflicting we useegith
Corollary C.2 or Corollary C.3 to flip the operations, and we
apply the inductive hypothesis prior to composing the steos
a single step. If the footprints of both steps are confligtthgn
arace is defined which contradics our premisse of race freedo

O
Lemma C.6. If (T, o) racefree, then

1. [=¢] (T, o) —" abortiff (|T], o) =" abort.
2. if =({T, o) —™ abort), then
(=] (T, o) =" (skip, o’) iff {|T'], o) =" ((skip,), o).

Proof. The left directions (i.e. the right-hand side of “iff” imei
the left-hand side) of both sub-goals are trivial: the migézp se-
mantics can be viewed as a special scheduling of the lefi-biaie.
We show the right direction of 2, i.¢=¢] (T, o) —* (skip, ¢’)
implies (|T'], o) =" {(skip,-), o’). By Lemma B.9 we know
there existsI” such thatl” <¢ T and(T’, o) —"* {(skip, o').
Since(T, o) racefree andT’ =<4 T, by Corollary C.14 we know
(T, o) racefree. Then by Lemma C.5 we knoW{T"], o) ="
((skip,), o). SinceT’” = T, we have|T’| =< |T]. By Corol-
lary C.14 we havé |T'|, o) =" ((skip,-), o’). O

Lemma C.7. If (¢, (h, s))%*(c’, a’), then (d.rs U d.ws) C
dom(h).
Lemma C.8. If (c, (h,s))%*(c’, (W,s")), h = h1 W hs and

dom(hi1) = (&.rs U d.ws), then there existd] such thath’ =
hi & he and{c, (h1,5)>%>*(c', (hl, s").

Lemma C.9. For all, if {c, (h,s)>~:—>k<c’, o), kit b’ and(d.rsu

s.ws) — dom(h/) # 0, then(c, (W', s)) ——"* abort.
Hereh § h' £ve. £ € (dom(h) Ndom(R')) — h(€) = ' (£).
Lemma C.10. If ¢; < ¢2 and{ci1, o) s, {(ci, o'}, then either

(c2, o) —2+* abort or there exist}, andéss such that(cz, o) I}s,
(ch, o'}, 61 C 82, andc] =< c.

Proof sketch. By Lemma B.1 we know that eithees, o) ——
* abort or there exist}; andds such that{cs, o) |s, (3, o) and
¢ = c5. Now we proved; C b, if {c2, o) {s, (c, o’). Let
o = (h,s). SUPPOSE:.rs U §;.ws) — (d2.rs U d2.ws) # 0. By
Lemma C.7, we knowd;.rs U §;.wsU d2.rs U d2.ws) C dom(h).
So there existd’ such that,’ C h anddom(h’) = (d2.rsUdz.ws).
By Lemma C.9 we knowc:, (h, s)) ——* abort. By Lemma C.8
we know there exists” such that(ca, (B, 5)) s, {(ch, o). This
is in conflict withc; < c2, which requires thagcz, (B',s)) ——
* abort. O

Lemma C.11. If ¢; does not contaimtomic blocks and parallel

compositionse; =< ¢z, then

1. if {¢1, c) —" abort, then(cz, o) —™ abort;

2. if {1, a>6—>*<skip, o'y, then either(cz, o) —* abort or
1

there existd, such thatcz, a>6—>*<skip, o’y andd; C do.
2

Proof. If ¢; starts with unordered commands, the proof follows
from Lemma C.10. For other cases 6tarts withconsor disposg,
the proof is trivial. d

Lemma C.12. If (c1,01) =¢ (c2,d2), then

1. if ((¢1,01), o) = abort, then((cz, J2), o) = abort;

2.if ((c1,61), o) = (T3, o), then either((cs, 02), o) =
abort or there existsl, such that{(cz, 82), o) = (Tb, o)
andfl =<t TQ.

Proof. If ¢; starts with unordered commands, the proof follows

from Lemma C.10. Ife; starts with anatomic block, we apply

Lemma C.11. For other cases; (starts withcons disposeor
parallel composition), the proof is trivial. O

Corollary C.13. If Tl <t Tg, then

1. if (Th, o) = abort or race, then(T%, o) = abort of race;
2.if (Th, o) == (T4, o), then(T», o) = abort or race, or
there existds, such that'Ts, o) = (T3, o) andT{ =< T5.

Corollary C.14. If Ty = T, then

*

1. if (T1,) =" abort or race, then (Ts, o) =* abort or
race;
2. if (Th, o) =" ((skip,9), '), then(T», o) =" abort or

race, or (T», o) =" {((skip,), o’}.

D. Proving the Soundness of CSL

to establish the soundness of separation logic and CSLpettta
we need extra efforts to close the syntactic gap betweendime c
mandsc (used in logic rules) and the thread thrdegused in the
operational semantics). In this section, we always assuatd is
precise.

We first show the locality of each primitive operations and
concurrent transitions below.

Lemma D.1(Locality). If =({c, (h, s)) — abort), then—({c, (h¥
B',s)) — abort); and for all {c, (h W K, s)) - (c1, o1),
there existsh; such thato1.h = hi W A’ and (c, (h,s)) -
<Cl, (h1,0’1.8)>.

Lemma D.2(Seqg-Locality)

If =({c, (h,s)) —* abort), then—({c, (hWh', s)) —* abort);
and for all{(c, (h W 1’, s)>7*<c1, o1), there existsi; such that
o1.h=h1 W 1% and(c, (h,s))Tf‘(cl, (h1701.8)>.

Lemma D.3(Par-Locality) If - (T, (h,s)) = abort or race),
then— ((T, (h W h',s)) = abort or race), and if (T, (h &

W, s)) = (T", o1), then there exists; such thatri.h = hi W’
and(T, (h,s)) = (T", (h1,01.5)).

This lemma below shows that the thread tfée-= (skip, emp
preserves the invariant.

Lemma D.4. If (h,s) = Ix*gq, then for allk we know I =
((skip,emp, (h, s)) > g holds for allk.

Proof. Trivial, by induction overk and Definition 6.5. O
The proof of Lemma 6.6 is done by induction over the derivatio
of I+ {p}c{q}.

The ENV rule. If the ENV rule is the last rule applied to derive
I + {p}c{q}, we knowt {p}c{q}. By Lemma 6.2 we know
= {p}c{q}. We first prove the following lemma. Then our goal is
proved as Lemma D.6.

Lemma D.5. For all &, if {c, a)TJ“(skip7 o'y, and{c, o) s
(c’, 0", then there exist8” such that/c’, a”)67>*<skip, a'y.

Proof. By induction overk. The base case is trivial. ¥ = j + 1,

we know there existe:, o1, 41 and d2 such that(c, o) =
1

(c1, o1) and {(c1, 01)6—>j (skip, o). If ¢ starts with cons or
2
dispose we knowc = c ando” = o. The proof is trivial. Oth-
erwise, we know(c, o) % (c1, 1) and(e1, o1) Ysr (¢,)
1

for someé;. Then the goal follows trivially from the induction
hypothesis. O

Lemma D.6. For all &, if

o (h,s) T,

* (h2,s)Eq

® —({c, (h2,s)) —" abort);

e for all hy and o/, if (c, (ha,s)) 6—,>*<skip7 (hh, s")) then
(ha, s") = q;

s o ESWI;

thenI|: <(C7 5), (hl } hg,S)) >k q.

Proof. We prove by induction by:. The base case is trivial. Now
we consider the case that= j + 1. By Definition 6.5, we need to
show all the 6 conditions hold. The first four conditions aveious.

Here we prove Lemma 6.6, which is the major lemma that we use Condition 6 is also trivial. Condition 5 is proved by applgithe

to drive the soundness of CSL with respect to the grainlassse
tics (i.e. Lemma 6.8). The proof follows the standard teghes

17

locality property (Lemma D.2), Lemma D.5, and the induction
hypothesis. O

The PAR rule. If the PAR rule is the last rule applied to derive
I + {p}c{q}, we knowp is in the form ofp; * ps, ¢ is in the
form of g1 * g2, cis in the form ofcy || c2, I F {p1} c1 {¢:} and
I+ {p2}c2 {q2}. Then by induction hypothesis we know that, for
all o andé,

eif o=I+piando = oW1, thenl = ((c1,9), o) > q1;
eif o=I+psando =W I, thenl = ((c2,9), o) > qo.

We first prove the following lemma. Our goal is proved as
Lemma D.8.

Lemma D.7. For all k, if b = ho W h1 W ha, (ho,s) F I,
I'= (Tv, (ho Whi,s)) Bk qu, I = (T2, (ho W ha,s)) Bk g2, Th

does not uPdate free variableszin and 75, and conversely, then
I|: <<<T17T2>>5kip7 (h73)> B>k g1 *q2.

Proof. We prove by induction ovek. It is trivial whenk = 0.
Suppose the lemma holds wher= j. We prove it holds whek =
j+1. By Definition 6.5 we need to prove the 6 conditions. Proofs fo
Condition 1 and 3 are trivial. The 4th condition can be defifrem
[': <T17 (ho L‘Hhh 8)> > q1 and[|: <T27 (ho H’th, 8)> D> i Q2.

To prove Condition 2, it is obvious to see

=(({T1, Tx)skip, (h,s)) = abort) .

We only need to prove(((T1, Tg))skipi (h,s)) = race). By
I'=A(Th, (hoWha, s)) > qrand] = (T2, (hoWha, s)) >j41 g2,

we know that all the footprints ifi; are subsets afom(h1), and all
those inT% are subsets afom (h2). Supposd’; executes next step.
The footprint for this new step must be withdiom (ho W h1). We
know it does not interfere with threads Ts. By I = (Ti, (ho W

h1, s)) > 11 1 we also know it does not interfere with other threads
in 7). Therefore~(((T:, T>)skip, (h, s)) = race).

We now prove the 5th condition, i.e., ({71, T2) skip, o) =
(T, o), thenVi < j. I' = (T, 6') >; q1 * ga. By inspecting the
stepping relation, we know there are three possible cases.

First, (Ty, o) = (17, o). ThenT’ = (T}, T>)skip. Sup-
poses’ = (K,s'). By I = (T, (ho W h1,s)) > @ and
Lemma D.3 we know that there exisk§ and k' such thath’ =
ho WhiWhs, (hy,s) EI,Vi < j ITE(T{, (hWhi,s)) >;q,
and there existX such thatX” does not contain the free variables in
T and(p, and(h{)wh% S) H(I,X) (h6@h27 8/). ByI|: <T2, (hoH’J
h2,8)> >t g2 We knowV+: <] I ': <T2, (h6] hg,sl» >i q2.
Then we prove our goal by the induction hypothesis.

Second(Tg, o) = (I3, o’). The proof is similar to above.

Third, 71 and 7% are both(skip, -). ThenT’ = (skip,emp
ando’ = 0. By I = (T1, (ho W hi1,s)) b g and I =
(Ts, (ho W ha, s)) 1 ga We know (h,s) = I % q1 * ga. Then
the proof simply follows from Lemma D.4.

Next we prove the 6th condition. Suppage s) ||(1,x) (h',s"),
where X does not contain free variables ﬁ Tg, q1 and ga.
Therefore we know there exists, such thath’ = ho W hy W ha,
and (h678/) ': I.ByI ': <T17 (ho] h178)> > q1 We know
Vi < j. I E (Th, (hth & h1,s")) >; qi. Similarly we have
Vi < j. I (Ts, (hy W ha,s')) i go. The our goal follows
trivially from the induction hypothesis. d

LemmaD.8. If h = hoWhi1Wha, (ho, 8) 'ZI, [': <(C17 E.“f'l'\[:)7 (hoH’J
hi,s)) > q1, andl = ((cz,emp, (ho W he, s)) I> g2, then for all
kI ((cllez,-), (h;s)) Bk qu * g

Proof. We do induction overk. The base case is trivial. Sup-
posek = j + 1. By Definition 6.5 we need to prove the 6 con-
ditions. The proofs for the first 4 conditions are trivial. r€io-

18

tion 6 trivially follows from I = ((c1,emp, (ho W h1,s)) > q1,
I'E= ((c2,emp, (ho W h2,s)) > gz, and the induction hypothesis.
By the operational semantics we haye: || cz, -), (h,s)) =
({(c1,emp, (cz2,emp)skip, (h,s)). Then by Lemma D.7 we
know Condition 5 holds. O

The seQrule. If the seQrule is the last rule applied to derive
I+ {p}c{q}, we knowc is in the form ofc;; c2, and there exists
rsuchthat - {p}ci {r} andI - {r} c2 {¢}. Then by induction
hypothesis we know that, for all andJd,

sifo=I*pando =0 WI,thenl = ((c1,9), o) > r;
s ifo=I*rando =0WI,thenl = ((c2,6), o) > gq.

We first prove the following auxiliary lemma. Then our goa, a
shown in Lemma D.10, is simply the first sub-goal of the lemma
below. Here we prove an extra sub-goal (the second one) becau
to prove each of them, we need the induction hypothesis of the
other.

LemmaD.9. If [=((c,§), o’) > g holds for allo’ andé’ such
thato' =1 xp ando’ |= 6’ W I, then, for allk, the following are
true:

1. foralle, if I= ((c,d), o) >k p, thenl = {(¢; ', 6), o) >k q.
2. foralle, if I = (((Tth))c7 o) >k D,
thenI|: <<<T1,T2)>() >Dk q.

Proof. By induction overk. The base case is always trivial. Sup-
posek = j + 1.

To prove the first sub-goal, we need to prove all the 6 conaitio
in Definition 6.5. The first four conditions are trivial. Theh6
condition can be derived frondi &= ((c,d), o) > p and the
induction hypothesis.

Then we prove the 5th condition. By; ¢, o)
know there are the following possible cases:
First, ((c,d), o) = ((c",8"), ¢") and ¢’ # skip. Then
we knowT = (c’;c’,8"”). The proof simply follows froml |=

(¢, 6), o) > p and the induction hypothesis.

Second{(c, §), o) = {(skip,§"), o). By I = {(c, d), o)>k
p we knows” = I'xp ando” | §” W I. Therefore we have
I'={(d,8"), o") 1> q. Then we know there exist, o1, 61 andd;
such that((c’, "), o”) Us; ((c1,01), 01). Since((c,d), o) =
((skip, 8”), o), we know ((c,§), o) = {(c1,61), o1). That
is, T = (c1,61) ando’ = o1. Then our goal follows from
I|: <(C/75N)7 UN) >q and((cl76II)7 UH) U(s; <(Cl751) Ul)

Third, {(c,6), o) = {{(c1,01), (c2,d2))c”, ¢"). Then we
knowT = {(c1,d1), (c2,82))(¢";¢) ando’ = ¢”. Also, by I =
<(C7 5)7 U)kaWe know! ': <<<(Cl7 51)7 (627 62))}(6//; C/)7 U”>I>j
p. Our goal trivially follows from the induction hypothesi$ the
secondsub-goal.

Now we have finished the proof of the first sub-goal. We can
now prove the second one. Again, here we only show the proof fo
the 5th condition. BY{T1,72)(c; '), o) = (T, &'}, we know
there are three possible cases. o

First, (T1, o) = (T{, o). ThereforeT' = (T{,T2)(c;c’).
Our goal follows trivially from7 = ((T1,T>)¢, o) >x p and the
induction hypothesis.

Second{T», o) = (1, ¢’). The proof is similar to above.

Third, ({T1,T2)c, 0) = {((c,emp, o’). ThereforeT =
(c;yemp. By I = ({T1,T2)c, o) >, p we can provel |

— (T, '), we

((c,emp, ¢’y >, p. Therefore our goal trivially follows from the
induction hypothesis of thiérst sub-goal. d
Lemma D.10. If

o I= ((e1,0), o) > 7

e forall all ¢’ and¥’, if ¢’ = Ixr ando’ = & W I, then
I|: <(Cl75/)7 U/> > q;
then for allk we havel = ((c1; ¢2,9), o) >k g
Proof. This is simply the first sub-goal of Lemma D.9. d

Other rules. As we have shown above, the proofs for HaRrule

and theseqQrule are a bit tricky because we need to close the gap
between the syntax af andT when we reach the fork and join
of threads, and the gap between small-step transitionsigretdp
ones when we handle sequential compositions. The way wdéhand
other rules are standard, given the locality properties o the
proofs here.

19

