
Parameterized Memory Models and Concurrent
Separation Logic (extended version)

Rodrigo Ferreira
Yale University

rodrigo@cs.yale.edu

Xinyu Feng
Toyota Technological Institute at Chicago

feng@tti-c.org

Zhong Shao
Yale University

shao@cs.yale.edu

Abstract
Formal reasoning about concurrent programs is usually donewith
the assumption that the underlying memory model is sequentially
consistent, i.e. the execution outcome is equivalent to an interleav-
ing of instructions according to the program order. However, mem-
ory models in reality are weaker in order to accommodate com-
piler and hardware optimizations. To simplify the reasoning, many
memory models provide a guarantee that data-race-free programs
behave in a sequentially consistent manner, the so-called DRF-
guarantee. The DRF-guarantee removes the burden of reasoning
about relaxations when the program is well-synchronized.

In this paper, we formalize relaxed memory models by giving
a parameterized operational semantics to a concurrent program-
ming language. Behaviors of a program under a relaxed memory
model are defined as behaviors of a set ofrelatedprograms under
thesequentially consistent model. This semantics is parameterized
in the sense that different memory models can be obtained by us-
ing different relations between programs. We present one particular
relation that we believe accounts for the majority of memorymod-
els and sequential optimizations. We then show that the derived
semantics has the DRF-guarantee, using a notion of race-freedom
captured by an operational grainless semantics. Our grainless se-
mantics also bridges concurrent separation logic (CSL) andrelaxed
memory models naturally, which allows us to finally prove thefolk-
lore theorem that CSL is sound with relaxed memory models.

1. Introduction
For many years, optimizations of sequential code — by both com-
pilers and architectures — have been the major source of perfor-
mance improvement for computing systems. Compiler transforma-
tions, superscalar pipelines, and memory caches are some ofthe ar-
tifacts used to achieve that. However, these optimizationswere de-
signed to preserve only the sequential semantics of the code. When
placed in a concurrent context, many of them violate the so-called
sequential consistency [Lamport 1979], which requires that the in-
structions in each thread be executed following the programorder.

A classical example to demonstrate this problem is Dekker’s
mutual exclusion algorithm [Dijkstra 1968] as shown below:

Initially [x]=[y]=0 andx 6= y
[x] :=1;
v1 :=[y];
if v1 =0 then critical section

‖
[y] :=1;
v2 :=[x];
if v2 =0 then critical section

where[e] refers to the memory cell at the locatione. Its correct-
ness in the sequentially consistent memory model is ensuredby the
invariant that we would never havev1 = v2 = 0 when the condi-
tional statements are reached. However, memory models in reality
often relax the ordering of memory accesses and their visibility to
other threads to create room for optimizations. Many of themal-

low reordering of the first two statements in each thread above,
thus breaking the invariant. Other synchronization algorithms are
susceptible to failure in a similar fashion, which has been awell-
known problem [Boehm 2005, Adve and Gharachorloo 1996].

The semantics of concurrent programming languages rely on
a formal memory model to rigorously define how threads in-
teract through a shared memory system. Many relaxed memory
models have been proposed in the computer architecture commu-
nity [Dubois et al. 1986, Adve and Hill 1990, Goodman 1989,
Gharachorloo et al. 1990]. A tutorial about the subject is given
by Adve and Gharachorloo [1996], and a detailed survey is given
by Mosberger [1993]. Formalization of memory models for lan-
guages such as Java [Manson et al. 2005, Cenciarelli et al. 2007],
and C++ [Boehm and Adve 2008] and x86 multiprocessor ma-
chine code [Owens et al. 2009] were also developed recently.
These models typically allow some relaxation of the programor-
der and provide mechanisms for enforcing ordering when nec-
essary. These mechanisms are commonly referred to as barriers,
fences, or strong/ordered operations at the machine level,and
locks, synchronization blocks and volatile operations at the high
level. The majority of the models provide the so-called DRF-
guarantee [Adve and Hill 1993], in which data-race-free programs
(i.e. well-synchronized programs) behave in a sequentially con-
sistent manner. DRF-guarantee is also known as the fundamental
property [Saraswat et al. 2007] of a memory model. It is desirable
because it frees the programmer from reasoning about idiosyn-
crasies of memory models when the program is well-synchronized.

However, as Boudol and Petri [2009] pointed out in their last
year’s POPL paper, most memory models are defined axiomati-
cally by giving partial orders of events in the execution traces of
programs, which are more abstract than operational semantics of
languages that are normally used to model the execution of pro-
grams and also to reason about them. Also, they “only establish a
very abstract version of the DRF-guarantee, from which the notion
of a program, in the sense of programming languages, is actually
absent” [Boudol and Petri 2009]. This gap, we believe, partly ex-
plains why most program logics for concurrency verificationare
proved sound only in sequentially consistent memory models, and
their soundness in relaxed memory models is rarely discussed.

For instance, the soundness of concurrent separation logic
(CSL) [O’Hearn 2007] in sequentially consistent models hasbeen
proved in various ways [Brookes 2007, Calcagno et al. 2007, Feng
et al. 2007, Hobor et al. 2008], which all show directly or indi-
rectly that CSL-verified programs are race-free. So it seemsquite
obvious that CSL is sound with any memory model that gives the
DRF-guarantee, as Hobor et al. [2008] argued that it “permits only
well-synchronized programs to execute, so we can [. . .] execute
in an interleaving semantics or even a weakly consistent memory
model”. However, to our best knowledge, this folklore theorem
has never been formally proved. Actually proving it is non-trivial,

1

CSL

SCX

RMM
DRFY

DRFX

Sound

?
SCY

?

(a)

CSL

SC RMMGrainless
Sem.

Sound
& DRF

DRFDRF

(b)

Figure 1. (a) the gap between the language-side (above the dashed
line) and the memory-model-side (below the line); we use sub-
scripts X and Y to represent the different formulations in the two
sides; (b) our solution: a new RMM and a grainless semantics.Here
single arrows represent (informally) logical implications. Double
arrows represent logical equivalence, with premises annotated on
top. The single arrow and the double arrows on the left and right in
(b) correspond to Lemmas 6.8, 5.5 and 5.6 respectively.

and is especially difficult in an operational setting, because the
two sides (CSL and memory models) use different semantics of
languages and different notions of data-race-freedom (as shown in
Fig. 1 (a)).

In this paper, we propose a new approach to formalizing relaxed
memory models by giving a parameterized operational semantics to
a concurrent programming language. Behaviors of a program under
a relaxed memory model are defined as behaviors of a set ofrelated
programs under thesequentially consistent model. This semantics
is parameterized in that different relations between programs yield
different memory models. We present one particular relation that is
weaker than many memory models and accounts for the majority
of sequential optimizations. We then give an operational grainless
semantics to the language, which gives us an operational notion
of data-race-freedom. We show that our derived relaxed semantics
has the DRF-guarantee. Our grainless semantics also bridges CSL
and relaxed memory models naturally and allows us to prove the
soundness of CSL in relaxed memory models. Our paper makes
the following new contributions.

First, we propose a simple, operational and parameterized ap-
proach to formalizing memory models. We model the behaviorsof
a program as the behaviors of a set of related programs in the inter-
leaving semantics. The idea is shown by the prototype rule.

(c, c′′)∈Λ 〈c′′, σ〉 7−→〈c′, σ′〉

[Λ] 〈c, σ〉 7−→〈c′, σ′〉

Our relaxed semantics is parameterized over the relationΛ. At each
step, the original programc is substituted with a related program
c′′, and thenc′′ executes one step following the normal interleaving
semantics. Definition of the semantics is simple: the only difference
between it and the standard interleaving semantics is this rule and
a corresponding rule that handles the case that a program aborts. It

(Expr) e ::= n | x | e1+e2 | -e | . . .

(BExpr) b ::= false | b1⇒ b2 | e1=e2 | e1<e2

(Comm) c ::= x :=e | x :=[e] | [e] :=e′

| skip | x :=cons(e1, . . . , en) | dispose(e)
| c1; c2 | if b then c1 elsec2 | while b do c
| c1 ‖c2 | atomic c

Figure 2. Syntax

is trivial to see that instantiatingΛ with the identity relation gives
us a sequentially consistent memory model.

Second,we give a particular instantiation ofΛ — called pro-
gram subsumption (�) — which can relate a sequential segment
of a thread between barriers with any other sequential segments that
have the same or fewer observational behaviors. This gives pro-
grammers a simple and extensional view of relaxed memory mod-
els. The derived semantics is weaker than many existing memory
models. It allows behaviors such as reordering of any two data in-
dependent memory operations, write buffers with read bypassing,
and those obtained by the absense of cache coherence and store
atomicity.

Third, our semantics gives us a simple way to prove the sound-
ness of sequential program transformations in a relaxed memory
model: now we only need to prove the transformations preserve
the subsumption relation used to instantiateΛ. Then the DRF-
guarantee of our relaxed semantics gives us their soundnessin con-
current settings for data-race-free programs. Furthermore, existing
works on verification of sequential program transformations [Ben-
ton 2004, Leroy 2006, Yang 2007] have developed techniques to
prove observational equivalence or simulation relations,which are
stronger than this instantiation ofΛ. Therefore our work makes it
possible to incorporate these techniques into this framework and
reuse the existing verification results.

Fourth, we give a grainless semantics to concurrent programs.
The semantics is inspired by previous work on grainless trace
semantics [Reynolds 2004, Brookes 2006], but it is operational
instead of denotational. Since it permits only race-free programs to
execute, the semantics gives us an operational formulationof data-
race-freedom. As shown in Fig. 1 (b), it also bridges the sequential
consistency semantics and our relaxed semantics, which greatly
simplifies the proofs of the DRF-guarantee.

Last but not least,we finally give a formal proof of the folklore
theorem that CSL is sound in relaxed memory models. As Fig. 1 (b)
shows, we first prove that CSL guarantees the data-race-freedom
and partial correctness of programs in our grainless semantics.
This, combined with the DRF-guarantee of our relaxed semantics,
gives us the soundness of CSL in the relaxed model.

2. The Language and Interleaving Semantics
The syntax of the language is presented in Fig. 2. Arithmeticex-
pressions (e) and boolean expressions (b) are pure: they do not
access memory. To simplify the presentation, we assume in this
paper that parallel threads only share read-only variables, there-
fore evaluation of expressions would not be interfered by other
threads. The commandx := [e] reads the value at the memory
locatione and saves it inx. [e] := e′ storese′ at the locatione.
x := cons(e1, . . . , en) allocates a fresh memory block containing
n consecutive memory cells initialized with valuese1, . . . ,en. The
starting location is non-deterministic and is saved inx. dispose(e)
frees the memory cell at the locatione. The parallel composition
c1 ‖ c2 executesc1 andc2 in parallel.atomic c ensures that the
execution ofc is not interrupted by other threads.

2

(Location) ℓ ::= n (natural number)

(LocSet) rs, ws ∈ P(Location)

(Heap) h ∈ Location⇀fin Integer

(Store) s ∈ Variable→ Integer

(State) σ ::= (h, s)

(Footprint) δ ::= (rs, ws)

(ThrdTree) T ::= c | 〈〈T, T 〉〉c

Figure 3. Runtime objects

emp
def
= (∅, ∅)

δ ∪ δ′
def
= (δ.rs∪ δ′.rs, δ.ws∪ δ′.ws)

δ ⊆ δ′
def
= (δ.rs ⊆ (δ′.rs∪ δ′.ws)) ∧ (δ.ws⊆ δ′.ws)

δ ⊂ δ′
def
= (δ ⊆ δ′) ∧ (δ 6= δ′)

Figure 4. Auxiliary definitions

(SeqContext) E ::= [] | E; c

(ThrdContext) T ::= [] | 〈〈T, T 〉〉c | 〈〈T,T〉〉c

Figure 5. Contexts

The commandatomic c can be viewed as a synchronization
block in high-level languages. It is also similar to the “volatile” key-
word in Java. On the other hand, we can take a very low-level view
and treatatomic as an annotation for hardware supported atomic
operations with memory barriers. For instance, we can simulate a
low-level compare-and-swap (CAS) operation:

atomic { v :=[ℓ]; if v=x then [ℓ] :=y else skip; y :=v }

Higher-level synchronization primitives such as semaphores and
mutexes can be implemented using this primitive construct.Also
in this paper we only consider non-nested atomic blocks and we do
not have parallel compositions in the block.

Before presenting the operational semantics of the language, we
first define the runtime constructs in Fig. 3. Program states consist
of heaps and stores. The heap is a partial mapping from memory
locations to integer values. The store maps variables to integers.
Memory locations are just natural numbers. They are first class
values, so the language supports pointer arithmetic. The thread tree
is either a commandc, which can be viewed as a single thread; or
two sub-trees running in parallel, with the parent nodec being the
command to be executed after the two sub-trees both terminate.

We give a contextual operational semantics for the language.
Sequential contexts and thread contexts are defined in Fig. 5. They
show the places where the execution of primitive commands occur.
Sequential execution of threads is shown in Fig. 6, which is mostly
standard. We useJeKs to represent the evaluation ofe with the
stores. The definition is omitted here. The execution of a normal
primitive command is modeled by the labeled transition(

u

−−→
δ

).

Here the footprintδ is defined in Fig. 3 as a pair(rs, ws), which
records the memory locations that are read and written in this step.
Recording the footprint allows us to discuss races between threads
in the following sections. Since we assume threads only share read-
only variables, accesses of variables do not cause races andwe
do not record variables in footprints. A step aborts if it accesses
memory locations that are not in the domain of the heap.

The transition(
o

−−→
δ

) models the execution ofcons and

dispose. We use the labelo instead ofu to distinguish them from
other commands. They are at higher abstraction levels than other
primitive commands that may have direct hardware implementa-
tions, but we decide to support them in our language because they
are important high-level language constructs. Their implementa-
tions usually require synchronizations to be thread-safe,so we
model them as built-in synchronized operations and they cannot
be reordered in our relaxed semantics. In this paper we call them
(along with atomic blocks and fork/join of threads)ordered opera-
tions. Remaining operations are calledunordered.

We may omit the footprintδ and the labelsu and o when
they are not relevant. We also useR∗ to represent the reflexive
transitive closure of the relationR. For instance, we use(−→

δ
)

to represent the union of ordered and unordered transitions, and use
(−→) to ignore the footprint, whose reflexive transitive closure
is represented by(−→∗).

Figure 7 defines the interleaving semantics of concurrent pro-
grams. Following Vafeiadis and Parkinson [2007], the execution of
c in atomic c does not interleave with the environment. Ifc does
not terminate, the thread gets stuck. Again, we assume thereis no
atomic blocks and parallel compositions inc.

Below we give a very simple example to help readers under-
stand our use of contexts and thread trees.

Example 2.1. Supposec = (c1 ‖ c2); c
′. Then we knowc =

T[E[c1 ‖ c2]], whereT = [] andE = []; c′. After one step, we
reach the thread tree〈〈c1, c2〉〉(skip; c′). Then theT′ for the next
step can be either〈〈[], c2〉〉(skip; c′) or 〈〈c1, []〉〉(skip; c′). �

Comparing with standard semantics (e.g. Vafeiadis and Parkin-
son [2007]), our execution ofc above has extra steps caused by the
construction of the thread tree and the insertion ofskip in the front
of c′. They can be viewed simply as stuttering steps.

3. Parameterized Relaxed Semantics
In this section, we present our parameterized operational semantics.
Then we instantiate it with a relation between sequential programs
to capture relaxed memory models and compiler optimizations.

3.1 Parameterized semantics

Figure 8 shows the two new rules of our parameterized semantics.
The stepping relation takesΛ as a parameter, which is a binary
relation between thread trees:

Λ ∈ P(ThrdTree∗ ThrdTree)

The semantics follows the interleaved semantics presentedin
Fig. 7, except that at any given step, the current thread treecan be
replaced by another thread tree related through theΛ relation.Λ is
supposed to provide a set of thread trees that are somehow related
to the current thread tree using some notion of equivalence.This
Λ-based semantics chooses nondeterministically which command
will execute. Therefore, in order to reason about this semantics, one
needs to consider all possible commands related through a given
instantiation ofΛ.

Naturally, different instantiations ofΛ yield different seman-
tics. As one can see, this semantics is trivially equivalentto the
interleaving semantics shown in Fig. 7 onceΛ is instantiated with
an identity relation. A more interesting relation to be usedas an
instantiation ofΛ is presented in the following sections.

3.2 Command subsumption

We define a command subsumption relation that

1. preserves synchronized operations of the code;

3

〈E[x :=e], (h, s)〉
u

−−→
emp

〈E[skip], (h, s′)〉 if JeKs = n ands′ = s[x n]

〈E[x :=e], (h, s)〉
u

−−→
emp

abort otherwise

〈E[x :=[e]], (h, s)〉
u

−−−−→
({ℓ},∅)

〈E[skip], (h, s′)〉 if JeKs = ℓ, h(ℓ) = n, ands′ = s[x n]

〈E[x :=[e]], (h, s)〉
u

−−→
emp

abort otherwise

〈E[[e] :=e′], (h, s)〉
u

−−−−→
(∅,{ℓ})

〈E[skip], (h′, s)〉 if JeKs = ℓ, Je′Ks = n, ℓ ∈ dom(h) andh′ = h[ℓ n]

〈E[[e] :=e′], (h, s)〉
u

−−→
emp

abort otherwise

〈E[skip; c], σ〉
u

−−→
emp

〈E[c], σ〉

.

〈E[x :=cons(e1, . . . , ek)], (h, s)〉
o

−−−→
(∅,ws)

〈E[skip], (h′, s′)〉 if ws= {ℓ, . . . , ℓ+k−1}, ws∩dom(h) = ∅, JeiKs = ni

s′ = s[x ℓ] andh′ = h[ℓ n1, . . . , ℓ+k−1 nk]

〈E[x :=cons(e1, . . . , ek)], (h, s)〉
o

−−→
emp

abort otherwise

〈E[dispose(e)], (h, s)〉
o

−−−−→
(∅,{ℓ})

〈E[skip], (h′, s)〉 if JeKs = ℓ, ℓ ∈ dom(h), andh′ = h\{ℓ}

〈E[dispose(e)], (h, s)〉
o

−−→
emp

abort otherwise

〈c, σ〉 −→
δ

〈c′, σ′〉 if 〈c, σ〉
u

−−→
δ

〈c′, σ′〉 or 〈c, σ〉
o

−−→
δ

〈c′, σ′〉

〈c, σ〉 −→
δ

abort if 〈c, σ〉
u

−−→
δ

abort or 〈c, σ〉
o

−−→
δ

abort

Figure 6. Sequential footprint semantics

〈T[c], σ〉 7−→ 〈T[c′], σ′〉 if 〈c, σ〉 −→ 〈c′, σ′〉

〈T[c], σ〉 7−→ abort if 〈c, σ〉 −→ abort

〈T[E[atomic c]], σ〉 7−→ 〈T[E[skip]], σ′〉 if 〈c, σ〉 −→∗ 〈skip, σ′〉

〈T[E[atomic c]], σ〉 7−→ abort if 〈c, σ〉 −→∗ abort

〈T[E[c1 ‖ c2]], σ〉 7−→ 〈T[〈〈c1, c2〉〉E[skip]], σ〉

〈T[〈〈skip, skip〉〉c], σ〉 7−→ 〈T[c], σ〉

Figure 7. Interleaving semantics of concurrent programs

[Λ] 〈T, σ〉 7−→ 〈T ′, σ′〉 if ∃T ′′. (T, T ′′)∈Λ ∧ 〈T ′′, σ〉 7−→〈T ′, σ′〉

[Λ] 〈T, σ〉 7−→ abort if ∃T ′. (T, T ′)∈Λ ∧ 〈T ′, σ〉 7−→ abort

Figure 8. Semantics parameterized overΛ

2. but permits the rewriting of non-synchronized sequential por-
tions while preserving theirsequentialsemantics.

The intuition is that programs in relaxed memory models should
be well-synchronized to avoid unexpected behaviors. That is, ac-
cesses to shared memory should be performed through synchro-
nized operations (cons, disposeand atomic c in our language),
and non-synchronized (unordered) operations should only access
thread-local or read-only memory (but note that the term “shared”
and “local” are dynamic notions and their boundary does not have
to be fixed). Therefore, the effect of a thread’s non-synchronized
code is not visible to other threads until the next synchronized point

is reached. On the other hand, the behavior of the non-synchronized
code will not be affected by other threads since the data it uses
would not be updated by others. So we do not need to consider its
interleaving with other threads.

The subsumption ofc1 by c2 (c1 � c2) is defined below. Here
(

u

−−→
δ

∗) represents zero or multiple steps of unordered transitions,

whereδ is the union of the footprints of individual steps.〈c, σ〉 ⇓
〈c′, σ′〉 is a big-step transition of unordered operations. From the
definition shown in Fig. 9, we knowc′ must be eitherskip, or a
command starting with an ordered operation.

Definition 3.1. c1 �0 c2 always holds;c1 �k+1 c2 holds if and
only if, for all j ≤ k, the following are true:

1. If 〈c1, σ〉
u

−−→∗ abort, then〈c2, σ〉
u

−−→∗ abort;
2. If 〈c1, σ〉 ⇓ 〈c′1, σ′〉, then either〈c2, σ〉

u

−−→ ∗ abort, or
there existsc′2 such that〈c2, σ〉 ⇓ 〈c′2, σ′〉 and the following
constraints hold:
(a) if c′1 = skip, thenc′2 = skip;

4

〈c, σ〉
u

−−→
emp

0 〈c, σ〉 always

〈c, σ〉
u

−−→
δ

k+1 〈c′, σ′〉 if there existc′′, σ′′, δ′, andδ′′ such that〈c, σ〉
u

−−→
δ′

〈c′′, σ′′〉,

〈c′′, σ′′〉
u

−−→
δ′′

k〈c′, σ′〉 andδ = δ′ ∪ δ′′

〈c, σ〉 ⇓δ 〈c′, σ′〉 if 〈c, σ〉
u

−−→
δ

∗〈c′, σ′〉, ¬(〈c′, σ′〉
u

−−→ abort),

and¬∃c′′, σ′′.(〈c′, σ′〉
u

−−→ 〈c′′, σ′′〉)

〈c, σ〉 ⇓ 〈c′, σ′〉 if there existsδ such that〈c, σ〉 ⇓δ 〈c′, σ′〉

〈c, σ〉 −−→
emp

0 〈c, σ〉 always

〈c, σ〉 −→
δ

k+1 〈c′, σ′〉 if there existc′′, σ′′, δ′, andδ′′ such that〈c, σ〉 −→
δ′

〈c′′, σ′′〉,

〈c′′, σ′′〉−−→
δ′′

k〈c′, σ′〉 andδ = δ′ ∪ δ′′

Figure 9. Multi-step sequential transitions

(b) if c′1 = E1[c
′′
1 ‖c′′′1], there existE2, c′′2 andc′′′2 such that

i. c′2 = E2[c
′′
2 ‖ c′′′2];

ii. c′′1 �j c′′2 andc′′′1 �j c′′′2 ;
iii. E1[skip] �j E2[skip];

(c) if c′1 = E1[atomic c′′1], there existE2 andc′′2 such that
i. c′2 = E2[atomic c′′2];
ii. c′′1 �j c′′2 ;

iii. E1[skip] �j E2[skip];
(d) if c′1 = E1[c

′′
1], wherec′′1 is aconsor disposecommand,

there existE2 andc′′2 such that
i. for all σ, if 〈c′′1 , σ〉

o

−−→ abort, then〈c′′2 , σ〉
o

−−→ abort;
ii. for all σ and σ′, if 〈c′′1 , σ〉

o

−−→ 〈skip, σ′〉, then
〈c′′2 , σ〉

o

−−→ 〈skip, σ′〉;
iii. E1[skip] �j E2[skip].

3. If 〈c1, σ〉
u

−−→
δ1

∗〈c′1, σ′〉, then either〈c2, σ〉
u

−−→ ∗ abort, or

there existδ2, c′2 andσ′′ such that〈c2, σ〉
u

−−→
δ2

∗〈c′2, σ′′〉 and

δ1 ⊆ δ2;

We definec1 � c2 as∀k. c1 �k c2; andc1 � c2 asc2 � c1. �

Informally, we sayc1 is subsumed byc2 if for all input states
— afters performing a sequential big step —c1 aborts only if
c2 aborts; or, ifc1 completes, then eitherc2 aborts or there is a
sequential big step taken byc2 that ends in the same state. Also, if
c1 completes the big step and the execution terminates (skip case)
or reaches a synchronization point (cases for thread fork and join,
atomic blocks,consanddispose), there must be a corresponding
synchronization point at the end of the big step taken byc2 and the
remaining parts ofc1 andc2 still satisfy the relation. We use indices
in the definition sinceE1[skip] in cases 2(b), 2(c) and 2(d) might
be “larger” thanc1. The last condition requires that the footprint
of c1 is not larger than that ofc2 if c2 does not abort. The subset
relation between footprints is defined in Fig. 3.

Properties of subsumption. Observe that the big step is determin-
istic, therefore, ifc1 andc2 are sequential programs andc1 � c2,
then for any input state we have one of the following possibilities:

1. c2 aborts andc1 may have any behaviors;

2. c1 andc2 complete a big step and reach the same state;

3. c1 diverges andc2 may have any behaviors.

Here we intend to usec2 to represent the original program and
c1 the one after optimizations (by compilers or hardware). By the

three cases above we knowc1 preserves the partial correctness of
c2 [Calcagno et al. 2007] (to handle total correctness, an extra
condition must be added to Definition 3.1 to ensure that normal
termination is preserved by subsumption). The last condition in
Definition 3.1 is also necessary to ensure the transformation from
c2 to c1 does not introduce new races. We give examples in Sec. 4
to show the expressiveness of the subsumption relation and how it
models behaviors of programs in relaxed memory models.

Lemma 3.2 below states that the subsumption relation is pre-
served whenc1 completes a big step andc2 does not abort.

Lemma 3.2. If c1 � c2 and 〈c1, σ〉 ⇓ 〈c′1, σ′〉, then either
〈c2, σ〉

u

−−→∗ abort or there existsc′2 such that〈c2, σ〉 ⇓ 〈c′2, σ′〉
andc′1 � c′2.

The following two lemmas are useful if we viewc1 � c2 as
a static compiler transformation fromc1 to c2 (see examples in
Sec. 4.6).

Lemma 3.3. The relation� is reflexive and transitive.

Lemma 3.3 shows that both the identity transformation and the
composition of multiple transformations — given that they obey
subsumption — do not violate subsumption. It is useful when
composing smaller transformations into large complex sequences
of transformations.

Lemma 3.4. If c1 � c2, then, for all contextsC, C[c1] � C[c2].

Lemma 3.4 ensures that local transformations that obey sub-
sumption also hold in any larger context. This helps provingthat
a given transformation obeys subsumption in a modular fashion.
Note thatC does not have to be an execution contextE. It can be
any context, i.e. a program with a hole in it.

3.3 Relaxed semantics

The subsumption relation can be lifted for thread trees.

Definition 3.5. We define the binary relation�t for thread trees.

T1 �t T2
def
=

8
<
:

c1 � c2 if T1 = c1 andT2 = c2

c1 � c2 ∧ T ′
1 �t T ′

2 if T1 = 〈〈T ′
1, T

′′
1 〉〉c1

∧T ′′
1 �t T ′′

2 andT2 = 〈〈T ′
2, T

′′
2 〉〉c2

We useT1 �t T2 to representT2 �t T1. �

We obtain a relaxed operational semantics by instantiatingΛ
of our parameterized semantics with this relation. The resulting

5

stepping relation becomes

[�t] 〈T, σ〉 7−→ 〈T ′
, σ

′〉 .

This semantics performs a program transformation, following our
subsumption relation, at each step. This resembles a dynamic com-
piler that modifies the program as it executes.

On the other hand, as we show in Lemma 3.6, the execution ac-
cording to this semantics is equivalent to performing one single ini-
tial program transformation and then executing the target program
using the interleaving semantics. This resembles a static compiler
that modifies the program prior to execution. Similarly, Lemma 3.7
shows the abort case.

Lemma 3.6. [�t] 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff there exists aT ′ such
thatT �t T ′ and〈T ′, σ〉 7−→∗ 〈skip, σ′〉.

Lemma 3.7. [�t] 〈T, σ〉 7−→∗ abort iff there exists aT ′ such that
T �t T ′ and〈T ′, σ〉 7−→∗ abort.

We will formulate and prove the DRF-guarantee of this relaxed
semantics in Sec. 5, after we formally define data-race-freedom.

4. Examples
There are different aspects that characterize a particularmemory
model, including memory ordering constraints, support forgeneral
compiler transformations, write atomicity constraints, presence of
write buffers, cache coherence protocols, availability ofmemory
barriers, etc. In this section, we show how some of these aspects
are reflected in our semantics. Our goal is to familiarize thereader
with the � relation. The examples are written using the following
naming convention:v1, v2, v3, etc, are variables that hold values;
x, y, z, etc, are variables that hold memory addresses.

4.1 Data dependencies

Before we discuss the memory ordering of our model, we need
to make it clear that we can support precise discovery of data
dependencies. We do it by showing the following example:

[x] :=1; v1:=[y]

In this small program, the data dependency between the two state-
ments exists only for those initial states wherex andy are aliased.
At first glance, our� definition is too restrictive since its definition
quantifies overall input states. So it does not allow the following:

([x] :=1; v1:=[y]) � (v1:=[y]; [x] :=1)

However, through the� relation, we can obtain the following
transformation:

[x] :=1; v1:=[y]
�

if x=y then ([x] :=1; v1:=[x]) else(v1:=[y]; [x] :=1)

where we insert a dynamic test to see ifx is an alias ofy. We
also replacey by x in one branch where there is dependency, and
reorder the statements in the other branch. Based on this example,
one can convince himself that the relaxed semantics will allow the
reordering memory accesses that do not have data dependencies at
runtime. But, the reader should also be aware that the� relation
does not violate data dependencies:

¬([x] :=1; [x] :=2 � [x] :=2; [x] :=1)

4.2 Memory ordering

From the example just shown, it is not hard to see that the�
relation supports all 4 types of memory reordering (R,W→
R,W). Examples of this can be seen below (we use the context
if x=y then skip else[] but these are supported in any context
wherex 6= y can be inferred):

• Reads with reads:

if x=y then skip else(v1:=[x]; v2:=[y])
�

if x=y then skip else(v2:=[y]; v1:=[x])

• Reads with writes:

if x=y then skip else(v1:=[x]; [y] :=2)
�

if x=y then skip else([y] :=2; v1:=[x])

• Writes with reads:

if x=y then skip else([x] :=1; v2:=[y])
�

if x=y then skip else(v2:=[y]; [x] :=1)

• Writes after writes:

if x=y then skip else([x] :=1; [y] :=2)
�

if x=y then skip else([y] :=2; [x] :=1)

4.3 Write buffer with read bypassing

A write buffer is a hardware feature that delays writes to memory
in an attempt to overlap the latency of writes with subsequent code.
The actual behavior obtained is that a processor might read its own
writes earlier, i.e. before they are actually committed to memory.
This can be supported by a simple program transformation as seen
in the example below:

[x] :=1; v2:=[x] � v2:=1; [x] :=1

4.4 Redundancy introduction and elimination

Redundant memory reads and writes can be introduced and elimi-
nated, as shown by the following examples:

v1:=[x]; v2:=1 � v1:=[x]; v2:=[x]; v2:=1
v1:=[x]; v2:=[x] � v1:=[x]; v2:=v1
[x] :=v1; v2:=[x] � [x] :=v1; v2:=v1

[x] :=v1 � [x] :=1; [x] :=v1
[x] :=1; [x] :=v1 � [x] :=v1

Furthermore, we can eliminate dead memory operations when that
yields a smaller memory footprint:

v1:=[x]; v1:=1 � v1:=1

Note that the reverse is not true. A program cannot increase its
footprint given the � relation. Recall thatc1 � c2 requiresc1

to abort wheneverc2 aborts; therefore if the footprint ofc2 is larger
than the footprint ofc1 there will be a case wherec2 aborts butc1

does not, which is in conflict with the definition of� .

¬(v1:=1 � v1:=[x]; v1:=1)

4.5 Write atomicity

Given the� relation, write atomicity is not preserved. This might
not be clear at first, but can be shown in the example below (here
v1 is a temporary, we assume it is reused later on, by the artifact of
assigning an arbitrary value to it):

[x] :=1; v1:=42
�

v1:=[x]; [x] :=1; [x] :=v1; [x] :=1; v1:=42

Here the write is replaced by 3 writes, oscillating between the
original write and the write of the initial value into the memory
location. In fact, it might oscillate with any value (not only the

6

initial value) as shown below:

[x] :=1
�

[x] :=1; [x] :=42; [x] :=1; [x] :=69; [x] :=1

therefore, a write can store arbitrary values to memory before
completing; which in practice means that the memory value is
undefined until the write completes.

4.6 Compiler optimizations

The � relation is general enough to support many sequential
compiler optimizations. For instance, it is not hard to see that we
can support instruction scheduling

v3:=v1+v2; v6:=v4+v5; v7:=v3+v6
�

v6:=v4+v5; v3:=v1+v2; v7:=v3+v6

algebraic transformations (here again we assumev4 is a temporary)

v4:=v1+v2; v5:=v4+v3; v4:=42
�

v4:=v2+v3; v5:=v1+v4; v4:=42

register allocation (we have to test for aliasing ofz andw)

v1:=[x]; v2:=[y]; v3:=v1+v2; [w] :=v3;
v1:=[z]; v2:=[w]; v3:=v1+v2; [w] :=v3

�
v1:=[x]; v2:=[y]; v3:=v1+v2;
(if z=w then v1:=v3 elsev1:=[z]);
v2:=v3; v3:=v1+v2; [w] :=v3

and many others, including control transformations and redundancy
elimination such as the ones already presented in Section 4.4.

4.7 Concurrent behaviors

Here we present some concurrent behaviors of the semantics
yielded by � . In all examples we assume a sequential inter-
leaving of commands according to the standard semantics after
considering a program transformation through the� relation.
We also assume initial memory values are all0. We start with the
following example (not supported by Boudol and Petri [2009])

(v1:=[x]; [y] :=1) ‖ (v2:=[y]; [x] :=1)

in which we can perceivev1=v2=1 if x 6=y. It can be supported
in our semantics by reordering the commands in the second thread,

v2:=[y]; [x] :=1
�

if x=y then (v2:=[x]; [x] :=1) else([x] :=1; v2:=[y])

yielding a new program that produces the desired result through
an interleaved scheduling. Similarly, we can support the classic
crossover example:

([x] :=1; v1:=[x]) ‖ ([x] :=2; v2:=[x])

in which we can perceivev1 = 2 andv2 = 1. That is achieved by
inserting a redundant write in the right hand side thread:

[x] :=2; v2:=[x] � [x] :=2; v2:=[x]; [x] :=2

Yet another similar example is the prescient write test:

(v1:=[x]; [x] :=1) ‖ (v2:=[x]; [x] :=v2)

where we could perceivev1 = v2 = 1. That is also supported by
inserting redundant writes and reads in the left hand side thread:

v1:=[x]; [x] :=1
�

v1:=[x]; [x] :=1; [x] :=v1; v1:=[x]; [x] :=1

As one can seen, the semantics derived from� leads to possibly
unwanted behaviors of raceful programs. First, a read from ashared
location can return any value. For instance, there is a scheduling of
the program below:

v1:=[x] ‖ [x] :=1

where v1 = 33 is allowed. That happens if we consider the
following replacement of the right hand side thread:

[x] :=1 � [x] :=33; [x] :=1

This is commonly referred to as “out-of-thin-air” behavior. A simi-
lar behavior happens when we have simultaneous write to the same
location:

(v1:=1; [x] :=v1) ‖ [x] :=2

in this case, the final value of[x] can also be arbitrary. For in-
stance, it could be3 if we replace the left hand side thread as below

v1:=1; [x] :=v1 � [x] :=0; v1:=[x]; v1:=v1+1; [x] :=v1

Another unwanted behavior happens when the implementations of
mutual exclusions rely on memory ordering (such as the core of
Dekker’s algorithm presented earlier):

([x] :=1; v1:=[y]) ‖ ([y] :=1; v2:=[x])

In this case, we would not want the behaviorv1 = v2 = 0 to
happen. However, it may happen if we consider the reorderingof
the two commands of the right hand side thread:

[y] :=1; v2:=[x]
�

if x=y then ([x] :=1; v2:=[x]) else(v2:=[x]; [y] :=1)

Note that we assumed initial values[x] = [y] = 0 andx 6= y.
Many other examples of raceful code can be shown to have

unwanted behaviors in such a relaxed execution. They are obtained
by either reordering of memory operations or relying on the non-
atomic undefined nature of raceful reads and writes. On the other
hand, race-free programs do not have unwanted behaviors (see the
DRF-guarantee in Section 5). In the example below:

„
v1:=[x];
if v1=1 then [y] :=1

«
‖

„
v2:=[y];
if v2=1 then [x] :=1

«

the only behavior allowed isv1 = v2 = 0. Its data-race-freedom
might not be obvious, but there are no sequentially consistent exe-
cutions of this program that may reach the code within the branches
(assuming[x] = [y] = 0 andx 6= y initially). So, the program
never issues a memory write, therefore it is race-free. And if you
consider the code of each one of the threads in isolation — through
the � relation — it is impossible to insert a race when the initial
state has[x] = [y] = 0. That is guaranteed from the fact that the
footprints of both threads are disjoint, and they can only decrease
through the� relation.

4.8 Strong barrier

In our relaxed semantics, we can enforce both atomicity and or-
dering by using theatomic c command. In the following exam-
ples we use the macroMF (memory fence) as a syntactic sugar for
atomic skip, a command that does nothing but enforces ordering.

The first example we analyze is about cache coherence. Cache
coherence ensures that everybody agrees on the order of writes to
the same location. Since the� relation does not preserve the
atomicity of writes, coherence is not preserved by the semantics, as
can be seen in the following example:

[x] :=1 ‖ [x] :=2 ‖

0
@

v1:=[x];
MF;
v2:=[x]

1
A ‖

0
@

v3:=[x];
MF;
v4:=[x]

1
A

7

in which the outcomev1 = v4 = 1 andv2 = v3 = 2 can be
noticed once we rewrite the leftmost thread as

[x] :=1 � [x] :=1; [x] :=1

Another related example is the independent-reads-independent-
writes (IRIW) example shown below

[x] :=1 ‖ [y] :=1 ‖

0
@

v1:=[x];
MF;
v2:=[y]

1
A ‖

0
@

v3:=[y];
MF;
v4:=[x]

1
A

where the behaviorv1 = v3 = 1 andv2 = v4 = 0 is permissible
(again assuming[x] = [y] = 0 initially). That can be perceived
in our semantics once we replace the leftmost thread through

[x] :=1 � [x] :=1; [x] :=0; [x] :=1

Other similar examples shown by Boehm and Adve [2008] can also
be supported. It might be intuitive that they happen because�
does not enforce write atomicity.

4.9 Preventing “out-of-thin-air” reads

In the context of typed languages, such as Java, the DRF-guarantee
is not sufficient to ensure type safety, as the type system does not
enforce race-freedom. Therefore, behaviors such as the “out-of-
thin-air” example must not be allowed as they can break the type
system. That would compromise not only the language safety but
also its security. Much of the complexity of the JMM comes from
the fact that it should forbid such behaviors while still allowing all
other type safe optimizations.

In our setting, from the examples shown, it is clear that the�
relation is not suited for type safe languages. However, specific
memory models can be obtained by simply constraining the�
relation. In this case, we could enforce the preservation oftypes
while still allowing for sequential optimizations by usingthe fol-
lowing type compatibility relation (assuming a typing judgment of
the formΓ ⊢ c : unit is available):

c1 ⋄ c2
def
= ∀Γ. (Γ ⊢ c1 : unit) iff (Γ ⊢ c2 : unit)

It ensures that bothc1 andc2 are well-typed in the same typing en-
vironments. If we use the relation(� ∩ ⋄) in our parameterized
semantics, we could achieve type safety without having to worry
about specific issues such as the legality of “out-of-thin-air” execu-
tions. That seems natural, as the preservation of types is a property
of program transformations performed at the high-level, bysource-
to-source compilers, and also by compilers that use typed interme-
diate languages. Therefore, in our perception we should notprevent
“out-of-thin-air” reads from happening; instead we just make sure
that, if they happen, they will not break type safety.

5. Grainless Semantics and DRF Guarantee
Reynolds [2004] proposed trace-based grainless semanticsto avoid
specifying the default level of atomicity in concurrent languages.
The semantics is based on three principles:

1. Operations have duration and can overlap with one another
during execution.

2. If two overlapping operations touch the same location, the
meaning of the program execution is “wrong”.

3. If, from a given starting state, execution of a program cangive
“wrong”, then no other possibilities need to be considered.

A different grainless semantics was proposed by Brookes [2006],
based on “footstep traces”. Following similar ideas, here we give
a grainless semantics to our language, which is operationalinstead
of being trace-based denotational semantics. The semantics permits

(ThrdTree) eT ::= (c, δ) | 〈〈 eT , eT 〉〉c

(ThrdCtxt) eT ::= [] | 〈〈eT, eT 〉〉c | 〈〈 eT , eT〉〉c

Figure 10. Instrumented thread trees and contexts

δ ⌣ δ′
def
= δ.ws∩ (δ′.rs∪ δ′.ws) = ∅ ∧ δ.rs∩ δ′.ws= ∅

wft(eT , δ)
def
= ∀c, c′, δ′, eT′.

(eT[(c, δ)]= eT′[(c′, δ′)]) ∧ (eT 6= eT′) → δ⌣δ′

⌊T ⌋
def
=

(c, emp) T = c
〈〈⌊T1⌋, ⌊T2⌋〉〉c T = 〈〈T1, T2〉〉c

Figure 11. Auxiliary definitions

only data-race-free programs to execute, therefore it gives us a sim-
ple and operational formulation of data-race-freedom and allows us
to prove DRF-guarantee of our relaxed semantics.

5.1 Grainless semantics

We first instrument thread trees with footprints of threads,as shown
in Fig. 10. The setsrs andws in the footprintδ record the mem-
ory locations that are being read and written by the corresponding
thread. Recall that we assume threads only share read-only vari-
ables, therefore accesses of variables would not cause races and we
do not record variables in footprints. Execution contextseT in the
instrumented trees are defined similarly asT in Sec. 2.

The footprintδ associated with each leaf node oneT records
the memory locations that are being accessed by this thread.To
ensure the data-race-freedom, the footprintδ of the active thread at
the contexteT must be disjoint with the footprints of other threads.
This requirement is defined in Fig. 11 as thewft (well-formed tree)
condition. We also define⌊T ⌋ to convertT to an instrumented
thread tree with an initial footprintempfor each thread.

The grainless semantics is shown in Fig. 12, which refers to the
sequential transitions defined in Figs. 6 and 9. In this semantics we
execute unordered commands in a big step, as shown in the first
rule (see Fig. 9 for the definition of〈c, σ〉 ⇓δ 〈c′, σ′〉). It cannot
be interrupted by other threads, therefore the environmentcannot
observe transitions ofthe smallest granularity. The footprintδ of
this big step is recorded on the thread tree at the end, which means
the transition hasdurationand the memory locations inδ are still in
use (even though the state is changed toσ′). So when other threads
execute, they cannot assume this step has finished and cannotissue
conflicting memory operations.

consanddispose(the third rule), atomic blocks (the sixth rule)
and thread fork/join (the last two rules) are allatomic instead of
being grainless. Comparing with the first rule, we can see thefoot-
print at the end of the step isemp, showing that this step finishes
and the memory locations inδ are no longer in use. Note theemp
footprint also clears the footprint of the preceding unordered tran-
sition of this thread, therefore these atomic operations also serve
as memory barriers that mark the end of the preceding unordered
commands. The footprint on the left hand side is not used in these
rules, so we useto omit it.

In all these rules, we check thewft condition to ensure that each
step does not issue memory operations that are in conflict with
those ongoing ones made by other threads. If the check fails,we
reach the specialrace configuration and the execution stops (the
fourth and seventh rules).

The second rule shows that the intermediate footprintδ′ may be
recorded on the thread tree, even if the big step transition has not

8

〈eT[(c,)], σ〉 =⇒ 〈eT[(c′, δ)], σ′〉 if 〈c, σ〉 ⇓δ 〈c′, σ′〉 andwft(eT, δ)

〈eT[(c, δ)], σ〉 =⇒ 〈eT[(c, δ′)], σ〉 if 〈c, σ〉
u

−−→
δ′

∗〈c′, σ′〉, δ ⊂ δ′, andwft(eT, δ′)

〈eT[(c,)], σ〉 =⇒ 〈eT[(c′, emp)], σ′〉 if 〈c, σ〉
o

−−→
δ

〈c′, σ′〉 andwft(eT, δ)

〈eT[(c,)], σ〉 =⇒ race if 〈c, σ〉
u

−−→
δ

∗〈c′, σ′〉 or 〈c, σ〉
o

−−→
δ

〈c′, σ′〉, and¬wft(eT, δ)

〈eT[(c,)], σ〉 =⇒ abort if 〈c, σ〉
u

−−→∗ abort or 〈c, σ〉
o

−−→ abort

〈eT[(E[atomic c],)], σ〉 =⇒ 〈eT[(E[skip], emp)], σ′〉 if 〈c, σ〉−→
δ

∗〈skip, σ′〉 andwft(eT, δ)

〈eT[(E[atomic c],)], σ〉 =⇒ race if 〈c, σ〉−→
δ

∗〈c′, σ′〉 and¬wft(eT, δ)

〈eT[(E[atomic c],)], σ〉 =⇒ abort if 〈c, σ〉 −→∗ abort

〈eT[(E[c1 ‖ c2],)], σ〉 =⇒ 〈eT[〈〈(c1, emp), (c2, emp)〉〉E[skip]], σ〉

〈eT[〈〈(skip,), (skip,)〉〉c], σ〉 =⇒ 〈eT[(c, emp)], σ〉

Figure 12. Grainless semantics

finished. This is necessary to characterize the following program as
one with data-races:

(while true do [x] := 4) ‖ (while true do [x] := 3)

This program would violate the side conditionwft of this rule,
although both threads diverges. Note that the rule does not change
the commandc and the stateσ. If we ignore the footprint, it simply
adds some stuttering steps in the semantics. The side condition
δ ⊂ δ′ ensures that the stuttering steps are not inserted arbitrarily.
Hereδ is either an intermediate footprint accessed earlier during
this big-step transition, or the footprint accessed by the preceding
big-step transition of this thread. In the second case, the last step
must be an atomic operation andδ must beemp(see the explanation
of atomic operations below).

The next rule shows thatconsanddisposeare atomic instead
of being grainless. Comparing with the first rule, we can see the
footprint after the step isemp, showing that this step finishes and
memory locations inδ′ are no longer used. However, in thewft
condition, we still useδ′ instead ofempto ensure the data-race-
freedom. The fourth rule says the program has a data-race if the
wft condition is violated.

The first rule for atomic blocks is similar to the rule forcons
anddispose. Since the new footprint recorded in the thread tree is
emp, it shows that atomic blocks are indeed atomic. The rules for
thread fork and join are similar to their counterparts in Fig. 7. The
two thread operations are also atomic.

Following Reynolds’ Principles 2 and 3, bothabort and race
are viewed as bad program configurations. Execution of a program
stops when it reaches one of them. Here we distinguishrace from
abort to define data-race-freedom. A thread treeT is race-free if
and only if its execution in the grainless semantics never leads
to race. By this definition, programs that abort may still be race-
free. This allows us to discuss about race-free but unsafe programs,
as shown in Theorem 5.3. In the formal definition below, we use
⌊T ⌋ to convertT to an instrumented thread tree in the grainless
semantics, which is defined in Fig. 11.

Definition 5.1. 〈T, σ〉 racefree iff ¬(〈⌊T ⌋, σ〉 =⇒∗ race);
T racefree iff, for all σ, 〈T, σ〉 racefree.

We know the example we show above is not race-free. Below
we show some more examples.

Example 5.2. Given the following programs,

(1) [x] :=3 ‖ [x] :=4

(2) [x] :=3 ‖ atomic {[x] :=4}
(3) [x] :=3 ‖ atomic {while true do [x] :=4}
(4) atomic {[x] :=3} ‖ atomic {[x] :=4}

we know (4) is race-free, but (1), (2) and (3) are not. �

5.2 DRF-guarantee of the relaxed semantics

We can now formulate and prove the DRF-guarantee of the relaxed
semantics presented in Sec. 3.3 . Theorem 5.3 says a race-free
program configuration〈c, σ〉 has the same observable behavior
in both the relaxed semantics and the interleaving semantics: if it
aborts in one semantics, it aborts in the other; if it never aborts, it
reaches the same set of final states in both settings.

Theorem 5.3(DRF-guarantee). If 〈T, σ〉 racefree, then

1. [�t] 〈T, σ〉 7−→∗ abort iff 〈T, σ〉 7−→∗ abort.
2. If ¬(〈T, σ〉 7−→∗ abort), then

[�t] 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff 〈T, σ〉 7−→∗ 〈skip, σ′〉.

Proof. The proof is trivial by applying Lemmas 5.5 and 5.6. �
Below we also show an interesting corollary. It says that, if

c1 � c2 and we put them in any contextC, then the behavior of
C[c1] in the interleaving semantics is subsumed by the behavior of
C[c2], as long as there are no data-races.

Corollary 5.4. If c1 � c2, and〈C[c2], σ〉 racefree, then

1. If 〈C[c1], σ〉 7−→∗ abort then〈C[c2], σ〉 7−→∗ abort.
2. If ¬(〈C[c2], σ〉 7−→∗ abort), and〈C[c1], σ〉 7−→∗ 〈skip, σ′〉,

then〈C[c2], σ〉 7−→∗ 〈skip, σ′〉.

Proof. The proof is trivial given Theorem 5.3 and Lemma 3.4.�
The proof of the DRF-guarantee depends on two important

lemmas. Lemma 5.5 shows the equivalence between the interleav-
ing semantics and the grainless semantics for race-free programs.
Lemma 5.6 shows the equivalence between the grainless seman-
tics and the relaxed semantics. Therefore, we can derive theDRF-
guarantee using the grainless semantics as a bridge.

Lemma 5.5. If 〈T, σ〉 racefree, then

1. 〈T, σ〉 7−→∗ abort iff 〈⌊T ⌋, σ〉 =⇒∗ abort.
2. 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff 〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉;

Lemma 5.6. If 〈T, σ〉 racefree, then

1. [�t] 〈T, σ〉 7−→∗ abort iff 〈⌊T ⌋, σ〉 =⇒∗ abort.

9

2. if ¬(〈T, σ〉 7−→∗ abort), then
[�t] 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff 〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉.

To prove Lemma 5.5, we use the following two lemmas.
Lemma 5.7 shows that an unordered operation can be reordered
with other operations as long as they do not have data dependen-
cies. Lemma 5.8 says the data-race-freedom is preserved by the
interleaving semantics.

Lemma 5.7. If δ1 ⌣ δ2, andc1 andc2 only share read-only vari-
ables, then(∃σ′. 〈c1, σ〉

u

−−→
δ1

〈c′1, σ′〉 ∧ 〈c2, σ′〉 −→
δ2

〈c′2, σ′′〉)

iff (∃σ′. 〈c2, σ〉 −→
δ2

〈c′2, σ′〉 ∧ 〈c1, σ〉
u

−−→
δ1

〈c′1, σ′′〉).

Lemma 5.8. If 〈T, σ〉 racefree and 〈T, σ〉 7−→ 〈T ′, σ′〉, then
〈T ′, σ′〉 racefree.

Before proving Lemma 5.6, we first lift our�t relation for the
grainless semantics.

Definition 5.9. We lift �t for instrumented thread trees.

1. (c1, δ1) �t (c2, δ2) iff c1 � c2 andδ1 ⊆ δ2;
2. 〈〈 eT ′

1, eT ′′
1 〉〉c1 �t 〈〈 eT ′

2, eT ′′
2 〉〉c2 iff c1 � c2, eT ′

1 �t
eT ′
2 and

eT ′′
1 �t

eT ′′
2 .

Note that here we only require the footprint ineT1 is a subset of the
corresponding footprint ineT2. This is becauseeT1 only accesses a
subset of memory used byeT2, as shown by the following lemma.

Lemma 5.10. If c1 � c2 and 〈c1, σ〉 ⇓δ1 〈c′1, σ′〉, then either
〈c2, σ〉

u

−−→∗ abort or there existc′2 andδ2 such that〈c2, σ〉 ⇓δ2

〈c′2, σ′〉, δ1 ⊆ δ2, andc′1 � c′2.

The proof of Lemma 5.6 uses Lemma 3.6 and Lemma 3.7. It
is also based on the following lemma and corollary. Lemma 5.11
essentially says that, ifeT1 �t

eT2 and eT2 does not race or abort,
then they lead to the same state after each step in the grainless
semantics. It can be derived from Lemma 5.10.

Lemma 5.11. If eT1 �t
eT2, then

1. if 〈 eT1, σ〉 =⇒ abort or race, then〈 eT2, σ〉 =⇒ abort or race;
2. if 〈 eT1, σ〉 =⇒ 〈eT ′

1, σ′〉, then〈 eT2, σ〉 =⇒ abort or race, or
there existseT ′

2, such that〈 eT2, σ〉 =⇒ 〈 eT ′
2, σ′〉 and eT ′

1 �t
eT ′
2.

Corollary 5.12. If eT1 �t
eT2, then

1. if 〈eT1, σ〉 =⇒∗ abort or race, then〈eT2, σ〉 =⇒∗ abort or
race;

2. if 〈 eT1, σ〉 =⇒∗ 〈(skip, δ), σ′〉, then〈 eT2, σ〉 =⇒∗ abort or
race, or 〈eT2, σ〉 =⇒∗ 〈(skip,), σ′〉.

Here we only show the key lemmas used to prove the DRF-
guarantee.

6. Soundness of CSL
We prove the soundness of CSL in our relaxed semantics by first
proving it is sound in the grainless semantics. The CSL we usehere
is mostly standard [O’Hearn 2007, Brookes 2007]. To make the
paper self-contained, we show the assertions and their semantics in
Fig. 13, and some selected logic rules in Fig 14. Below we givea
brief overview of the logic.

The logic consists of sequential and concurrent rules. The first
four rules in Fig. 14 are sequential (more rules are omitted here).
They are just standard sequential separation logic rules [Ishtiaq and
O’Hearn 2001, Reynolds 2002]. The semantics is standard andis
defined below. Soundness of the rules is shown by Lemma 6.2.

(Assertion) p, q, r, I ::= b | emp | e1 7→ e2 | p ∗ q
| p ⇒ q | ∀x.p | . . .

(h, s) |= b iff JbKs = true

(h, s) |= emp iff dom(h) = ∅

(h, s) |= e1 7→ e2 iff dom(h) = {Je1Ks} andh(Je1Ks) = Je2Ks

(h, s) |= p ∗ q iff
there existh1 andh2 such thath = h1 ⊎ h2, (h1, s) |=p

and(h2, s) |=q
where⊎ means the union of two heaps with disjoint domains

. . .

Figure 13. CSL assertions and their semantics

Definition 6.1. |= {p}c{q} iff, for all σ such thatσ |= p,
¬(〈c, σ〉 −→∗ abort), and, if〈c, σ〉−→

δ

∗〈skip, σ′〉, thenσ′ |=q.

Lemma 6.2. If ⊢ {p} c {q} then|= {p}c{q}.

The judgmentI ⊢ {p} c {q} for concurrent rules informally
says that the state can be split implicitly into a shared partand a
local part; the local part can be accessed only byc; p and q are
pre- and post-conditions for the local state; the shared part can be
accessed by bothc and its environment, but only in atomic blocks;
accesses of the shared state must preserve its invariantI .

We do not explain details of the rules. TheLOCALR rule is
similar to the local resource rule by Brookes [2007]. This rule and
theFRAME-I rule are due to Parkinson et al. [2007]. They also show
that the standard frame rule (over local resources) can be derived
from the two rules. Here we implicitly require thatI be precise, i.e.
for any state there is at most one sub-state satisfyingI .

To prove the soundness of CSL, we first formulate in Defini-
tion 6.5 the program invariant enforced by the logic rules. Some
auxiliary constructs used in the formulation are defined in Defini-
tions 6.3 and 6.4. Hereσ ‖(I,X) σ′ means the difference betweenσ

andσ′ must be within the variable setX and the shared sub-states
specified byI . σ |= δ ⊎ I says that the footprintδ is a subset of the
heap inσ and it has no overlap with the shared part specified byI
(thereforeδ belongs to the local state).

Definition 6.3. (h, s) ‖(I,X) (h′, s′) iff there existh1, h′
1 andh2

such thath = h1 ⊎ h2, h′ = h′
1 ⊎ h2, (h1, s) |= I , (h′

1, s
′) |= I ,

and∀x 6∈ X. s(x) = s′(x).

Definition 6.4. (h, s) |= δ⊎I iff, for all h1 andh2, if h1⊎h2 = h
and(h1, s) |=I , then(δ.rs∪ δ.ws) ⊆ dom(h2).

Definition 6.5.
I |= 〈eT , σ〉 ⊲0 q always holds.I |= 〈eT , σ〉 ⊲k+1 q holds iff the
following are true:

1. σ |=I ∗ true;
2. ¬(〈eT , σ〉 =⇒ abort) and¬(〈 eT , σ〉 =⇒ race);
3. if eT = (skip, δ), thenσ |=I ∗ q;

4. for all eT, c andδ, if eT = eT[(c, δ)], thenσ |= δ ⊎ I ;
5. if 〈 eT , σ〉 =⇒ 〈 eT ′, σ′〉, then∀j ≤ k. I |= 〈 eT ′, σ′〉⊲j q;
6. if X does not contain free variables ineT andq, andσ ‖(I,X) σ′,

then∀j ≤ k. I |= 〈 eT , σ′〉⊲j q.

I |= 〈 eT , σ〉⊲ q if and only if ∀k. I |= 〈 eT , σ〉⊲k q.

Informally, I |= 〈 eT , σ〉⊲k q requires thatI holds over a sub-heap
of σ; the next step would not race or abort;I ∗ q holds if we are
at the end of execution; the footprint of each thread is part of σ
but has no overlap withI ; and all these invariants are preserved
up to k steps made by eithereT itself or by its environment. The

10

⊢ {e1 7→ } [e1] :=e2 {e1 7→ e2}
(ST)

⊢ {e 7→ } dispose(e) {emp}
(DISPOSE) ⊢ {p} c {q}

⊢ {p ∗ r} c {q ∗ r}
(FRM-S)

⊢ {x = x′ ∧ emp}x :=cons(e1, . . . , en) {(x 7→ [x′/x]e1) ∗ · · · ∗ (x+k−1 7→ [x′/x]ek)}
(CONS)

⊢ {p} c {q}

I ⊢ {p} c {q}
(ENV)

⊢ {p ∗ I} c {q ∗ I}

I ⊢ {p} atomic c {q}
(ATOM)

I ⊢ {p1} c1 {q1} I ⊢ {p2} c2 {q2}

I ⊢ {p1 ∗ p2} c1 ‖c2 {q1 ∗ q2}
(PAR)

wherec2 does not update free var. inp1, c1 andq1, and conversely.

I ⊢ {p} c1 {r} I ⊢ {r} c2 {q}

I ⊢ {p} c1; c2 {q}
(SEQ)

I ∗ I′ ⊢ {p} c {q}

I ⊢ {p ∗ I′} c {q ∗ I′}
(LOCALR)

I ⊢ {p} c {q}

I ∗ I′ ⊢ {p} c {q}
(FRAME-I)

Figure 14. Selected CSL Rules

following lemma shows thatI ⊢ {p} c {q} indeed ensures the
invariantI |= 〈(c, δ), σ〉⊲ q, as long asσ satisfies the precondition
andδ is part of the initial local state.

Lemma 6.6. If I ⊢ {p} c {q}, σ |= I ∗ p, andσ |= δ ⊎ I , then
I |= 〈(c, δ), σ〉⊲ q.

The proof of this lemma follows standard techniques, i.e. we
need to first prove the locality [Yang and O’Hearn 2002, Calcagno
et al. 2007] of each primitive commands. Details of the proofs are
shown in Appendix D.

We define semantics of the judgmentI |= {p}c{q} below,
based on the grainless semantics. The soundness of CSL rulesis
shown by Lemma 6.8. The proof trivially follows from Lemma 6.6.

Definition 6.7. I |= {p}c{q} iff, for all σ and δ such that
σ |= I ∗ p andσ |= δ ⊎ I , we have¬ (〈(c, δ), σ〉 =⇒∗ abort),
¬ (〈(c, δ), σ〉 =⇒∗ race), and, if〈(c, δ), σ〉 =⇒∗ 〈(skip,), σ′〉,
thenσ′ |=I ∗ q.

Lemma 6.8. If I ⊢ {p} c {q}, thenI |= {p}c{q}.

Finally we give semantics toI ⊢ {p} c {q} based on our relaxed
semantics, and show the soundness in Theorem 6.10.

Definition 6.9. I |=[Λ] {p}c{q} iff, for all σ such thatσ |= I ∗ p,
¬ ([Λ] 〈c, σ〉 7−→∗ abort), and, if [Λ] 〈c, σ〉 7−→∗ 〈skip, σ′〉,
thenσ′ |=I ∗ q.

Theorem 6.10. If I ⊢ {p} c {q}, thenI |=[�t] {p}c{q}.

Proof. Trivial by applying Lemma 5.6. �

Extensions of CSL. The original CSL [O’Hearn 2007] only sup-
ports a coarse classification of resource ownership. It doesnot sup-
port simultaneous read by different threads. Bornat et al. [2005] ex-
tended CSL with fractional permissions [Boyland 2003] to distin-
guish exclusive total accesses (read, write and disposal) and shared
read-only accesses.

(Perm) π ∈ (0, 1]

(Assertion) p, q, r, I ::= . . . | e1
π
7→ e2 | . . .

The permissionπ in the new assertione1
π
7→ e2 is a rational

number.π = 1 means total access;0 < π < 1 means shared
access. The original assertione1 7→ e2 can be viewed as a shorthand
notation fore1

1
7→ e2.

We can prove that CSL with fractional permissions is also sound
with respect to the grainless semantics, but the model of heaps
needs to be changed to a partial mapping from locations to a pair of
values and permissions. We also need to refine our Definition 6.4
and require thatδ.ws belong to a subset ofh2 that contain only
permissions for total accesses. The proof should be similarto the
proof for standard CSL.

Since our grainless semantics is a mix of big-step and small-step
semantics, and there is no interleaving between threads when un-
ordered commands are executed, intuitively proving the soundness
of CSL-family logics could only be simpler in this semanticsthan
in the interleaving semantics. Therefore we are confident that other
extensions of CSL, such as the support of storable locks [Gotsman
et al. 2007, Hobor et al. 2008] and the combinations of CSL with
Rely-Guarantee reasoning [Vafeiadis and Parkinson 2007, Feng
2009], can also be proved sound with respect to the grainlessse-
mantics. Then their soundness in our relaxed semantics can be eas-
ily derived from Lemma 5.6. We would like to prove our hypothesis
in our future work.

7. Discussions and Related Work
Relaxed memory models. The literature on memory models is
vast. We cannot give a detailed overview due to space constraints.
Below we just discuss some closely related work.

The RAO model by Saraswat et al. [2007] consists of a fam-
ily of transformations (IM, CO, AU, LI, PR andDX). Unlike our
subsumption relation which gives only an abstract and extensional
formulation of semantics preservation between sequentialthreads,
each of them defines a very specific class of transformations.We
suspect that our model is weaker (not necessarily strictly weaker)
than theRAO model.IM, CO andDX are obvious specializations
of our subsumption relation with extra constraints. Although we
only support intra-thread local transformations, we can define a
more relaxed version ofPR: c � if q then c′ elsec , assuming
c′ has the same behaviors withc if q holds over the initial state.
AU enforces a specific scheduling. We allow all possible schedul-
ing in our relaxed semantics.LI is an inter-thread transformation. It
is unclear how it relates to our subsumption relation, but the exam-
ples [Saraswat et al. 2007] involvingLI (e.g., the cross-over exam-
ple) can be supported following the pattern with which we repro-
duce the prescient-write example in Sec. 4.

In this paper, we do not investigate the precise connection to
the Java Memory Model (JMM). For the moment, we assume
that the work by Saraswat et al. [2007] is consistent with JMM.
Our semantics is operational and not based upon the happens-
before model. We believe it provides a weaker memory model
with the DRF-guarantee, and supports compiler optimizations that
JMM does not, such as the one described by Cenciarelli et al.
[2007]. However, there are two key issues if we want to apply our
model to Java, i.e. preventing the “out-of-thin-air” behaviors and
supporting partial barriers. The first one can be addressed by adding
constraints similar to Saraswat’sDX-family transformations in our
subsumption relation. The second one can be solved by allowing
transformations to go beyond partial barriers. We will showthe
solution in an upcoming paper.

11

Boudol and Petri [2009] presented an operational approach to
relaxed memory models. Their weak semantics made explicit use
of write buffers to simulate the effects of memory caching during
execution, which was more concrete and constructive than most
memory model descriptions. However, only a restricted set of re-
orderings was observable in their semantics, while our semantics
is much weaker and supports all four types of memory reorder-
ing. Also, since our formalization of memory models is basedon
program transformations, our semantics has better supportof com-
piler optimizations. The connection between their semantics and
program logics such as CSL is unclear either.

Sevcik [2008] analyzed the impact of common optimizations in
two relaxed memory models, establishing their validity andshow-
ing counter examples; some of our examples were inspired by
his work. Gao and Sarkar [2000] introduced Location Consistency
(LC), probably the weakest memory model described in the litera-
ture; we stand by their view that memory models should be more
relaxed and not based necessarily on cache consistence.

Grainless semantics. Besides being operational instead of trace-
based semantics, there are some other differences between our
grainless semantics and semantics by Reynolds [2004] and Brookes
[2006]. Each operation in Reynolds’ semantics is modeled asa pair
of actions labeled with “start” and “fin” respectively, but actions
are not coalesced. We model duration of operations by recording
their footprints on the thread trees. We also coalesce non-atomic
operations into a “big-step” transition, which is similar to Brookes’
semantics. On the other hand, we do not coalesce operations from
different threads, as Brookes did in his semantics.

Reynolds did not discuss about memory allocation and disposal
operations. Brookes treated them as non-atomic operations. We
treat them as atomic, otherwise the following program may gen-
erate a race in our semantics:

x :=cons(3)‖dispose(y)

The two operations may have the same footprint ifdisposeis exe-
cuted first and then the memory location is recycled and assigned
to x by cons. Although it is possible to relax this atomicity re-
quirement by making the footprint ofcons to beemp(sincecons
always generates fresh memory locations), doing this wouldmake
our proof of the DRF-guarantee much harder because Lemma 5.7is
broken in the above scenario. As discussed in Sec. 2, we believe the
decision is reasonable becauseconsanddisposedo share resources
and need to be synchronized in their real-world implementations.
Even viewed abstractly, they share the set of fresh locations. Also
note that treating them as built-in atomic operations does not affect
the soundness of CSL. Like other non-atomic operations, they can
be executed either inside or outside of atomic blocks.

Oracle semantics for CSL. In their oracle semantics, Hobor et al.
[2008] gave a coroutine interleaving model for concurrent pro-
grams, in which context switching only occur at concurrent opera-
tions. This is similar to our grainless semantics. Both their seman-
tics and our grainless semantics permit only race-free programs to
execute, but this is enforced in different ways. We require that the
footstep of each thread is compatible with other threads’ ateach
step of execution; while the oracle semantics maintains disjoint lo-
cal worlds for each thread and ensures that thread-local operations
can only occur in a local world. The goal of their work was to give
an operational semantics that bridges sequential optimizations (and
relaxed memory models) with CSL-verified concurrent programs
that is guaranteed to be race-free, which is similar to the goal of
our paper. However, there was no formalization of memory models
and optimizations, so the claim was not formally proved.

8. Conclusions
We present a simple operational semantics to formalize mem-
ory models. The semantics is parameterized on a binary relation
over programs. By instantiating the parameter with a specific re-
lation �t , we have obtained a memory model that is weaker than
many existing ones. Since the relation is weaker than observa-
tional equivalence of sequential programs, this memory model also
captures many sequential optimizations that usually preserve se-
mantic equivalence. We then propose an operational grainless se-
mantics, which allows us to define data-race-freedom and prove the
DRF-guarantee of our relaxed memory model. We also proved the
soundness of CSL in relaxed memory models, using the grainless
semantics as a bridge between CSL and the relaxed semantics.

In our future work, we would like to extend our framework to
support partial barriers. This can be achieved by extend the�
relation with transformations that go beyond partial barriers. It is
also interesting to formally verify the correctness of sequential opti-
mization algorithms in a concurrent setting. Given this framework,
it is sufficient to prove that the algorithms implement a subset of
the� relation. As mentioned before, we also want to apply this ap-
proach to languages with other important language features, such
as function calls, dynamic locks, and dynamic thread creations.

References
S. Adve and K. Gharachorloo. Shared memory consistency models: A

tutorial. IEEE Computer, 29(12):66–76, Dec. 1996.

S. Adve and M. Hill. A unified formalization of four shared-memory
models. IEEE Transactions on Parallel and Distributed Systems, 4(6):
613–624, Jun. 1993.

S. Adve and M. Hill. Weak ordering — a new definition. In17th ISCA,
pages 2–14, Seattle, Washington, May 1990.

N. Benton. Simple relational correctness proofs for staticanalyses and
program transformations. In31st POPL, pages 14–25, Jan. 2004.

H. Boehm and S. Adve. The foundations of the C++ concurrency memory
model. InPLDI, pages 68–78, Tucson, Arizona, Jun. 2008.

H.-J. Boehm. Threads cannot be implemented as a library. InPLDI, pages
261–268, Chicago, Jun. 2005.

R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission account-
ing in separation logic. In32nd POPL, pages 259–270, Jan. 2005.

G. Boudol and G. Petri. Relaxed memory models: an operational approach.
In 36th POPL, pages 392–403, Savannah, Georgia, USA, Jan. 2009.

J. Boyland. Checking interference with fractional permissions. In 10th
International Symposium on Static Analysis, pages 55–72, 2003.

S. Brookes. A semantics for concurrent separation logic.Theoretical Comp.
Sci., 375(1–3):227–270, May 2007.

S. Brookes. A grainless semantics for parallel programs with shared muta-
ble data. Electronic Notes in Theoretical Computer Science, 155:277–
307, May 2006.

C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. In22nd LICS, pages 366–378, July 2007.

P. Cenciarelli, A. Knapp, and E. Sibilio. The Java memory model: Oper-
ationally, denotationally, axiomatically. InESOP, pages 331–346, Mar.
2007.

E. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,Pro-
gramming Languages, pages 43–112. Academic Press, London, 1968.

M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in
multiprocessors. In13th ISCA, pages 434–442, Tokyo, Jun. 1986.

X. Feng. Local rely-guarantee reasoning. In36th POPL, pages 315–327,
Jan. 2009.

X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent
separation logic and assume-guarantee reasoning. InESOP, pages 173–
188, 2007.

12

G. Gao and V. Sarkar. Location consistency – a new memory model and
cache consistency protocol.IEEE Transactions on Computers, 49(8):
798–813, Aug. 2000.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-
nessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors.SIGARCH News, 18(3), Jun. 1990.

J. Goodman. Cache consistency and sequential consistency.Technical
Report 61, IEEE Scalable Coherence Interface Committee, Mar. 1989.

A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In5th APLAS, pages 19–37,
Dec. 2007.

A. Hobor, A. Appel, and F. Nardelli. Oracle semantics for concurrent
separation logic. InESOP, pages 353–367, Mar. 2008.

S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable
data structures. In28th POPL, pages 14–26, Jan. 2001.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs.IEEE Transactions on Computers, 28(9), Sep.
1979.

X. Leroy. Formal certification of a compiler back-end, or: Programming a
compiler with a proof assistant. In33rd POPL, pages 42–54, Jan. 2006.

J. Manson, W. Pugh, and S. Adve. The Java memory model. In32nd POPL,
pages 378–391, Long Beach, California, Jan. 2005.

D. Mosberger. Memory consistency models.Operating Systems Review, 27
(1):18–26, Jan. 1993.

P. O’Hearn. Resources, concurrency, and local reasoning.Theoretical
Comp. Sci., 375(1–3):271–307, May 2007.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:x86-TSO.
In 22nd TPHOLS, pages 391–407, Munich, Germany, Aug. 2009.

M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-
blocking stack. In34th POPL, pages 297–302, Nice, France, Jan. 2007.

J. Reynolds. Towards a grainless semantics for shared-variable concurrency.
In FSTTCS, pages 37–48, Chennai, India, Dec. 2004.

J. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74, Copenhagen, Jul. 2002.

V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory of
memory models. In12th PPoPP, San Jose, Mar. 2007.

J. Sevcik.Program Transformations in Weak Memory Models. PhD thesis,
School of Informatics, University of Edinburgh, 2008.

The SPARC Architecture Manual, Version 8. Revision SAV080SI9308.
SPARC International Inc, 1992.

V. Vafeiadis and M. Parkinson. A marriage of rely/guaranteeand separation
logic. In CONCUR, pages 256–271, Lisbon, Sep. 2007.

H. Yang. Relational separation logic.Theoretical Computer Science, 375
(1-3):308–334, 2007.

H. Yang and P. O’Hearn. A semantic basis for local reasoning.In 5th
FOSSACS, pages 402–416, Grenoble, France, Apr. 2002.

A. Total/Partial Store Order
We give another non-trivial instantiation ofΛ in our parameterized
semantics, which yields the Total Store Ordering (TSO) model im-
plemented by the SPARCv8 architecture [SPA 1992]. TSO allows
write-to-read reordering. It enforces cache-coherence, but allows a
thread to read its own writes earlier.

We define�TSO, an instantiation ofΛ, in Fig. 15. The first rule
shows the reordering of a write with a subsequent read. Theelse
branch shows the reordering when there is no data dependency.
The then branch allows a thread to read its own write earlier. Here
fv(e) is the set of free variables ine. The other rules (except the
last one) show how to propagate the reordering to the subsequent
code. Remember that the transformation may occur at any step
during the execution in our parameterized semantics, so we only
need to consider the statements starting with a write operation, and

the write might be postponed indefinitely until an ordered operation
is reached.

In real architectures, the reordering is caused by write buffering
instead of swapping the two instructions. We do not model thewrite
buffer here since our goal is not to faithfully model what happens
in hardware. Instead, we just want to give an extensional model for
programmers. To see the adequacy of our rules, we can view the
right hand side of the first rule as a simplification of the following
code, which simulates the write buffering [Owens et al. 2009] more
directly:

local tmp, buf in
tmp:=e1; buf:=e′;
if tmp= e2 then x :=buf elsex :=e2;
[tmp] :=buf

end

Here the local variablebuf can be viewed as a write buffer. Also
note that the side condition of this rule can be eliminated ifwe also
simulate the hardware support of register renaming (like our use of
tmpabove).

Remark A.1. The�TSO relation is a subset of the� relation

Figure 16 presents the�PSO relation. It builds upon the�TSO

relation, but with extra rules to allow write-to-write reorderings.

Remark A.2. The�PSO relation is a subset of the� relation

B. Proving Properties of Subsumption
Lemma B.1. If c1 � c2 and 〈c1, σ〉 ⇓ 〈c′1, σ′〉, then either
〈c2, σ〉

u

−−→∗ abort or there existsc′2 such that〈c2, σ〉 ⇓ 〈c′2, σ′〉
andc′1 � c′2.

Proof. Fromc1 � c2, we can assumec1 �1 c2. From condition 2
of Definition??we know that either〈c2, σ〉

u

−−→∗ abort (left hand
side of the goal) or there existsc′2 such that〈c2, σ〉 ⇓ 〈c′2, σ′〉
and constraints (a) to (d) hold forc′2 and index0. If we instantiate
the existential in the right hand side of the goal usingc′2, remains
to show c′1 � c′2, i.e. for all k, c′1 �k c′2. If k = 0, that
is trivial. When k > 0, again, fromc1 � c2, we can assume
c1 �k c2. From condition 2 of Definition?? we know that either
〈c2, σ〉

u

−−→∗ abort or there existsc′′2 such that〈c2, σ〉 ⇓ 〈c′′2 , σ′〉
and constraints (a) to (d) hold forc′′2 and all indexj, j ≤ k−1.
Given that⇓ is deterministic, we havec′2 = c′′2 . Sincek > 0 We
unfold the definition ofc′1 �k c′2 in the goal; we need to show that
for all j ≤ k−1 both conditions of Definition?? hold. Condition
1, holds trivially given that〈c′1, σ′〉 is the final state of a big step
and cannot abort. Condition 2, holds directly from the fact that only
the current configuration〈c′1, σ′〉 can be the final configuration of a
big step; therefore we instantiate thec′2 in the goal with the current
c′2 (and we know that if can perform a big step to itself since it is
the target of a big step) and we can use constraints (a) to (d) for c′2
and indexj to conclude. �

Lemma B.2. The relation� is reflexive.

Proof. Reflexitivity means for allc, c � c. From c � c, by
definition, we need to show that for allk, c �k c. We perform
strong induction overk. Base case holds trivially. In the inductive
case, condition 1 of Definition?? holds trivially. From condition
2, we assume〈c, σ〉 ⇓ 〈c′, σ′〉, and we show the right hand side
case by instantiatingc′ with current c′, and using the induction
hypothesis to establish thatc′ �j c′ for all j ≤ k−1. �

Corollary B.3. The relation�t is reflexive.

Lemma B.4. The relation� is transitive.

13

E[[e1] :=e′; x :=[e2]] �TSO E[

0
@

if (e1=e2)
then (x :=e′; [e1] :=x)
else (x :=[e2]; [e1] :=e′)

1
A] if x 6∈ fv(e1)∪fv(e′)

E[[e] :=e′1; x :=e′2] �TSO E[x :=e′2; [e] :=e′1] if x 6∈ fv(e)∪fv(e′1)

E[[e] :=e′; skip] �TSO E[skip; [e] :=e′] always

E[[e1] :=e′1; [e2] :=e′2] �TSO c′ if ∃c′′. E[[e2] :=e′2] �TSO c′′ ∧ ([e1] :=e′1; c
′′) �TSO c′

E[

„
[e] :=e′;
if b then c1 elsec2

«
] �TSO E[

„
if b then ([e] :=e′; c1)

else ([e] :=e′; c2)

«
] always

E[[e] :=e′; while b do c] �TSO E[

0
@

if b
then ([e] :=e′; c; while b do c)
else [e] :=e′

1
A] always

c �TSO c always

Figure 15. TSO

c �PSO c′ if c �TSO c′

E[[e1] :=e′1; [e2] :=e′2] �PSO c′ if ∃c′′. E[[e2] :=e′2] �PSO c′′ ∧ ([e1] :=e′1; c
′′) �PSO c′

E[[e1] :=e′1; [e2] :=e′2] �PSO E[

0
@

if (e1=e2)
then ([e1] :=e′1; [e1] :=e′2)
else ([e2] :=e′2; [e1] :=e′1)

1
A] always

Figure 16. PSO

Proof. Transitivity means for allc1, c2, andc3, if c1 � c2, and
c2 � c3, thenc1 � c3. Fromc1 � c3, by definition, we need to
show that for allk, c1 �k c3. We assumec1 �k c2, andc2 �k c3.
We perform induction overk. Base case holds trivially. In the in-
ductive case, we unfold the definition ofc1 �k c2 in the goal. Then,
for all j ≤ k−1, we need to show conditions 1 and 2 of Defini-
tion ??. For condition 1, assuming〈c1, σ〉

u

−−→ ∗ abort we need
to show〈c3, σ〉

u

−−→ ∗ abort. From c1 �k c2, and〈c1, σ〉
u

−−→
∗ abort, we know that〈c2, σ〉

u

−−→∗ abort. Fromc2 �k c3, and
〈c2, σ〉

u

−−→∗ abort, we know that〈c3, σ〉
u

−−→∗ abort. For con-
dition 2, assuming〈c1, σ〉 ⇓ 〈c′1, σ′〉 we need to show that either
〈c3, σ〉

u

−−→∗ abort or there existsc′3 such that〈c3, σ〉 ⇓ 〈c′3, σ′〉
and conditions (a) to (d) hold for indexj. From c1 �k c2, and
〈c1, σ〉 ⇓ 〈c′1, σ′〉, we know that either〈c2, σ〉

u

−−→ ∗ abort or
there existsc′2 such that〈c2, σ〉 ⇓ 〈c′2, σ′〉 and conditions (a)
to (d) hold for indexj. In the first case, fromc2 �k c3, and
〈c2, σ〉

u

−−→ ∗ abort, we can conclude that〈c3, σ〉
u

−−→ ∗ abort.
In the second case, fromc2 �k c3, and〈c2, σ〉 ⇓ 〈c′2, σ′〉, we
know that either〈c3, σ〉

u

−−→∗ abort or there existsc′3 such that
〈c3, σ〉 ⇓ 〈c′3, σ′〉 and conditions (a) to (d) hold for indexj; which
was our goal. �

Corollary B.5. The relation�t is transitive.

Lemma B.6. If c1 � c2, then, for all contextsC, C[c1] � C[c2].

Proof. By structural induction over contextC, then we have to
consider the following cases:

• If c1 � c2, thenc1; c � c2; c Fromc1; c � c2; c, by definition,
we need to show that for allk, c1; c �k c2; c. If k = 0 that is
trivial. If k > 0, then we unfold Definition?? in the goal and we
need to show that both conditions 1 and 2 hold for allj ≤ k−1.
For condition 1, we assume〈c1; c, σ〉

u

−−→∗ abort, from that

we can derive〈c1, σ〉
u

−−→ ∗ abort, therefore usingc1 � c2

we know that〈c2, σ〉
u

−−→∗ abort, and we can establish that
〈c2; c, σ〉

u

−−→∗ abort. For condition 2, we assume〈c1; c, σ〉 ⇓

〈c′1, σ′〉 and we need to show that either〈c2; c, σ〉
u

−−→∗ abort
or there existsc′2 such that〈c2; c, σ〉 ⇓ 〈c′2, σ′〉 and conditions
(a) to (d) hold forc′2 and indexj. From〈c1; c, σ〉 ⇓ 〈c′1, σ′〉 we
know that either〈c1, σ〉 ⇓ 〈skip, σ′′〉 and〈c, σ′′〉 ⇓ 〈c′1, σ′〉
or there existsc′′1 such that〈c1, σ〉 ⇓ 〈c′′1 , σ′〉 andc′1 = c′′1 ; c.
In both cases, from condition 2 ofc1 � c2, we know that
either〈c2, σ〉

u

−−→∗ abort or there existsc′2 such that〈c2, σ〉 ⇓
〈c′2, σ′′′〉 and conditions (a) to (d) hold forc′2 and indexj. In the
case thatc2 aborts, we can establish that〈c2; c, σ〉

u

−−→∗ abort
and conclude. Otherwise, considering〈c1, σ〉 ⇓ 〈skip, σ′′〉 we
know then thatc′2 = skip and σ′′′ = σ′′, composing that
with 〈c, σ′′〉 ⇓ 〈c′1, σ′〉 we have〈c2; c, σ〉 ⇓ 〈c′1, σ′〉, we
instantiate thec′2 in the goal withc′1 and conditions (a) to (d)
hold trivially using Lemma B.2. Considering the case where
〈c1, σ〉 ⇓ 〈c′′1 , σ′〉 andc′1 = c′′1 ; c, we know thatc′′1 �j c′2
andσ′′′ = σ′. We can then apply the induction hypothesis to
establishc′′1 ; c �j c′2; c according to constraints (b) to (d) using
Lemma B.2 when necessary.

• If c1 � c2, thenc; c1 � c; c2 Similar to the previous case.

• If c1 � c2, then if b then c1 elsec � if b then c2 elsec Fol-
lows the closely the definition ofc1 � c2 for states where con-
dition b hold. Trivial otherwise.

• If c1 � c2, thenif b then c elsec1 � if b then c elsec2. Simi-
lar to the previous case.

• If c1 � c2, thenwhile b do c1 � while b do c2. We extract the
indexk from the goal. We do induction overk. The base case
holds trivially. In the inductive case we unfold the Definition??.

14

For condition 1, we do strong induction over the number of
steps taken bywhile b do c1 to reachabort. The base case is
not possible as we can always unfold the loop. In the inductive
case, we know that we can unfold the loop and from there we
reach an abort state. We know conditionb holds for currentσ
because otherwise we leave the loop and never abort. therefore
we know that〈c1; while b do c1, σ〉

u

−−→n−2 abort. Similarly,
we know that〈c2; while b do c2, σ〉 can be reached in 2 steps,
so it remains to show that〈c2; while b do c2, σ〉

u

−−→∗ abort.
Since, sequential small steps are deterministic we have two
cases: either〈c1, σ〉

u

−−→j−2 abort or it completes〈c1, σ〉 ⇓j1

〈skip, σ′〉 and 〈skip; while b do c1, σ′〉
u

−−→ j2 abort where
j− 2 = j1 +j2 (c1 cannot reach a barrier as that would pre-
vent the aborted execution). In the first case, fromc1 � c2,
we know that〈c2, σ〉

u

−−→∗ abort and we can derive the goal
trivially. In the second case, fromc1 � c2 we know that either
〈c2, σ〉

u

−−→∗ abort or 〈c2, σ〉 ⇓ 〈skip, σ′〉. If, c2 aborts, we
conclude since we can derive trivially the goal. Otherwise,we
show that〈while b do c2, σ′〉

u

−−→∗ abort using the induction
hypothesis, which composed with the big step give us the goal.
For condition 2, given that〈while b do c1, σ〉 ⇓ 〈c′1, σ′〉 we
need to show that either〈while b do c2, σ〉

u

−−→∗ abort or ex-
istsc′2 such that〈while b do c2, σ〉 ⇓ 〈c′2, σ′〉 and conditions
(a) to (d) hold forc′2 and all indexj ≤ k−1. We do strong induc-
tion over the number of steps taken bywhile b do c1 to complete
a big step. The base case is not possible as we can always un-
fold the loop. In the inductive case, we know that we can unfold
the loop and from there perform a big step. We have two cases
to consider. If the conditionb is false, the loop completes with
skip, the same can be show forwhile b do c2, and we conclude
trivially. If the conditionb is true we know the big step contin-
ues fromc1; while b do c1, similar happens towhile b do c2.
Now we have two cases to consider. Ifc1 completes a big step,
ending in configuration〈skip, σ′〉 from c1 � c2 we know that
eitherc2 aborts, in which case we knowc2; while b do c2 also
aborts, or it completes a big step in which we can continue the
proof again forwhile b do c1 andwhile b do c2 using the induc-
tion hypothesis given that the number of steps has decreased.
If c1 completes a big step, endind in a barrier configuration
〈c′1, σ′〉 from c1 � c2 we know that eitherc2 aborts, in which
case we knowc2; while b do c2 also aborts, or it completes a big
step arriving in a similar barrier. The proof continues by look-
ing at conditions (b) to (d) and using the subsumption relations
obtaines in addition to applying the first induction hypothesis to
establishwhile b do c1 �j while b do c2.

• If c1 � c2, then c1 ‖ c � c2 ‖c. From c1 ‖ c � c2 ‖ c, by
definition, we need to show that for allk, c1 ‖ c �k c2 ‖ c. If
k = 0 that is trivial. If k > 0, then we unfold Definition??
in the goal and we need to show that both conditions 1 and
2 hold for all j ≤ k − 1. Condition 1 holds trivially since
〈c1 ‖ c, σ〉

u

−−→∗ abort is never satisfied. For condition 2, we
know that〈c1 ‖ c, σ〉

u

−−→∗ 〈c1 ‖ c, σ〉 and we need to deal
with constraint (b) where we need to showc1 �j c2, c �j c,
skip �j skip (E = []). c1 �j c2 we obtain fromc1 � c2.
c �j c andskip �j skip we obtain using Lemma B.2.

• If c1 � c2, thenc‖ c1 � c‖c2. Similar to the previous case.

• If c1 � c2, then atomic c1 � atomic c2. Similar to the
previous case.

�

Lemma B.7. If 〈c, σ〉
u

−−→ 〈c′, σ′〉, andc′′′ �t c′, then there
existsc′′ such thatc′′ � c and〈c′′, σ〉

u

−−→∗ 〈c′′′, σ′〉.

Proof. We look at the step taken by〈c, σ〉 into 〈c′, σ′〉, it can
either be the execution of a commandc1 that modifies the state
(e.g.c1 = [e] := e′) or a control command that does not modify
the state. In the first case, we instantiatec′′ with c1; c

′ and we
know that configuration〈c′, σ′〉 can be reached in 2 steps having
〈skip; c′, σ′〉 as intermediate configuration. In the second case,
we instantiatec′′ with c′, which is already the final configuration,
therefore no additional stepping is necessary. �

Corollary B.8. If 〈T, σ〉 7−→ 〈T ′, σ′〉, andT ′′′ �t T ′, then there
existsT ′′ such thatT ′′ �t T and〈T ′′, σ〉 7−→∗ 〈T ′′′, σ′〉.

Lemma B.9. [�t] 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff there exists aT ′

such thatT �t T ′ and〈T ′, σ〉 7−→∗ 〈skip, σ′〉.

Proof. We only show left to right direction, the other is trivial. We
prove by induction over the number of steps forT to reachskip. It
is trivial for 0 steps sinceT = skip andσ = σ′; we letT ′ = skip
and showskip �t skip using Corollary B.3. Fork + 1 steps,
there existsT ′′, T ′′′ andσ′′ such thatT ′′′ �t T , 〈T ′′′, σ〉 7−→
〈T ′′, σ′′〉 and [�t] 〈T ′′, σ′′〉 7−→k 〈skip, σ′〉. By induction
hypothesis, we know there existsT ′′′′ such thatT ′′′′ �t T ′′ and
〈T ′′′′, σ′′〉 7−→∗ 〈skip, σ′〉. By Lemma B.8 we know there exists
T ′′′′′ such thatT ′′′′′ �t T ′′′ and 〈T ′′′′′, σ〉 7−→∗ 〈T ′′′′, σ′′〉.
Therefore we have〈T ′′′′′, σ〉 7−→∗ 〈skip, σ′〉. SinceT ′′′ �t T ,
T ′′′′′ �t T ′′′, using Corollary B.5, we also haveT ′′′′′ �t T . �

C. Prooving the DRF Guarantee
The key lemmas to establish the DRF-guaranntee (Theorem 5.3)
are Lemmas C.5 and C.6. Another important lemma is the commu-
tativity property show in Lemma C.1.

Lemma C.1. If δ1 ⌣ δ2, andc1 andc2 only share read-only vari-
ables, then(∃σ′. 〈c1, σ〉

u

−−→
δ1

〈c′1, σ′〉 ∧ 〈c2, σ′〉 −→
δ2

〈c′2, σ′′〉)

iff (∃σ′. 〈c2, σ〉 −→
δ2

〈c′2, σ′〉 ∧ 〈c1, σ〉
u

−−→
δ1

〈c′1, σ′′〉).

Corollary C.2. If δ1 ⌣ δ2, andc1 andc2 only share read-only
variables, then(∃σ′. 〈c1, σ〉

u

−−→
δ1

〈c′1, σ′〉∧〈c2, σ′〉−→
δ2

∗〈c′2, σ′′〉)

iff (∃σ′. 〈c2, σ〉−→
δ2

∗〈c′2, σ′〉 ∧ 〈c1, σ〉
u

−−→
δ1

〈c′1, σ′′〉).

Corollary C.3. If δ1 ⌣ δ2, and c1 and c2 only share read-
only variables, then(∃σ′. 〈c1, σ〉

u

−−→
δ1

〈c′1, σ′〉 ∧ 〈c2, σ′〉 ⇓δ2

〈c′2, σ′′〉) iff (∃σ′. 〈c2, σ〉 ⇓δ2 〈c′2, σ′〉 ∧ 〈c1, σ〉
u

−−→
δ1

〈c′1, σ′′〉).

Lemma C.4. If 〈T, σ〉 racefree and 〈T, σ〉 7−→ 〈T ′, σ′〉, then
〈T ′, σ′〉 racefree.

Proof. From the definition of〈T, σ〉 racefree we have
¬(〈⌊T ⌋, σ〉 =⇒∗ race); and from the definition of〈T ′, σ′〉 racefree
we have¬(〈⌊T ′⌋, σ′〉 =⇒∗ race). If we remove the negations,
from 〈T, σ〉 7−→ 〈T ′, σ′〉, and〈⌊T ′⌋, σ′〉 =⇒∗ race, we need to
show〈⌊T ⌋, σ〉 =⇒∗ race. By inversion of〈T, σ〉 7−→ 〈T ′, σ′〉,
we have the following cases:

1. T = T[c], T ′ = T[c′], and〈c, σ〉
u

−−→ 〈c′, σ′〉. We know
then that from〈⌊T[c′]⌋, σ′〉 =⇒∗ race, and 〈c, σ〉

u

−−→
δ

〈c′, σ′〉, we need to establish

〈⌊T[c]⌋, σ〉 =⇒∗
race

We know there existseT such that

• ⌊T[c]⌋ = eT[(c, emp)];

• ⌊T[c′]⌋ = eT[(c′, emp)];

15

We do induction over the number of stepsk beforec′ reaches
the race. In the base case, we have two options for race:

• eT[(c′, emp)] = eT′[(c′′, δ′)] where〈c′′, σ′〉
u

−−→
δ′′

∗〈c′′′, σ′′〉

or 〈c′′, σ′〉
o

−−→
δ′′

〈c′′′, σ′′〉, and¬wft(eT′, δ′′)

• eT[(c′, emp)] = eT′[(E[atomic c′′], δ′)] where
〈c′′, σ′〉−−→

δ′′

∗〈c′′′, σ′′〉, and¬wft(eT′, δ′′)

For both cases, ifeT = eT′, then c′ = c′′ (first case) or
c′ = E[atomic c′′] (second case). In the first case, we can es-
tablish the goal by knowing that (a)〈c, σ〉

u

−−→
δ′′′

∗〈c′′′, σ′′〉 and

¬wft(eT′, δ′′′) whereδ′′′ = δ ∪ δ′′; or (b) 〈c, σ〉 ⇓δ 〈c′, σ′〉

andwft(eT, δ) to be composed with
〈eT[(c′, δ)], σ′〉 =⇒∗ race; or (c) 〈c, σ〉

u

−−→
δ

∗〈c′, σ′〉 and

¬wft(eT, δ). In the second case, atomic command, it is simmi-
lar to allocation just shown. For both cases, ifeT 6= eT′, we can
just updateeT′ to use(c, emp) instead of(c′, emp) and apply
the stuttering rule (second rule) to increase the footprintfrom
empto δ if that results inwft(eT, δ), otherwise there is a race
is defined. In the inductive case, we look into the first step of
the grainless multistep that leads to a race. If it comes fromthe
same thread we just merge the steps similar to what was shown
in the base case. If they come from different threads either they
are non conflicting operations that can be flipped using Corol-
lary C.2 or Corollary C.3 and we apply the induction hypothesis
before composing the steps back together, or they are conflict-
ing where a race is defined.

2. Memory allocation/disposal case is similar to atomic case that
follows.

3. T = T[E[atomic c]], T ′ = T[E[skip]], and〈c, σ〉 −→∗

〈skip, σ′〉. We know then that from〈⌊T[E[skip]]⌋, σ′〉 =⇒∗

race, and〈c, σ〉 −→∗ 〈skip, σ′〉, we need to establish

〈⌊T[E[atomic c]]⌋, σ〉 =⇒∗
race

We know there existseT such that

• ⌊T[E[atomic c]]⌋ = eT[(E[atomic c], emp)];

• ⌊T[E[skip]]⌋ = eT[(E[skip], emp)];

From〈c, σ〉 −→∗ 〈skip, σ′〉 we know there existsδ′ such that
〈c, σ〉−→

δ′

∗〈skip, σ′〉. Then we consider two cases:

(a) if wft(eT, δ′), from the grainless semantics we obtain

〈eT[(E[atomic c], δ)], σ〉 =⇒ 〈eT[(E[skip], emp)], σ
′〉

where we assumeδ = emp, which combined with

〈eT[(E[skip], emp)], σ
′〉 =⇒∗

race

give us the goal.

(b) if ¬wft(eT, δ′), considering

〈c, σ〉−→
δ′

∗〈c′, σ
′〉

wherec′ = skip, we obtain

〈eT[(E[atomic c], emp)], σ〉 =⇒∗
race

direct from its definition.

4. Thread spawning case is similar to thread join case that follows.

5. T = T[〈〈skip, skip〉〉c], T ′ = T[c], andσ′ = σ. We know
then that from〈⌊T[c]⌋, σ〉 =⇒∗ race we need to establish

〈⌊T[〈〈skip, skip〉〉c]⌋, σ〉 =⇒∗ race. We know there existseT
such that

• ⌊T[〈〈skip, skip〉〉c]⌋ = eT[〈〈(skip, emp), (skip, emp)〉〉c];

• ⌊T[c]⌋ = eT[(c, emp)];

Then from〈eT[(c, emp)], σ〉 =⇒∗ race, and from the grainless
semantics

〈eT[〈〈(skip, δ1), (skip, δ2)〉〉c], σ〉 =⇒ 〈eT[(c, emp)], σ〉

(whereδ1 = empandδ2 = emp) we can establish

〈eT[〈〈(skip, emp), (skip, emp)〉〉c], σ〉 =⇒∗
race

�

Lemma C.5. If 〈T, σ〉 racefree, then

1. 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff 〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉;
2. 〈T, σ〉 7−→∗ abort iff 〈⌊T ⌋, σ〉 =⇒∗ abort.

Proof. We show the proof for the right direction of 1, i.e.〈T, σ〉 7−→∗

〈skip, σ′〉 implies〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉. We do induction
over the number of execution steps. The base case is trivial.Now
suppose〈T, σ〉 7−→k+1 〈skip, σ′〉. We know there existsT1 and
σ1 such that〈T, σ〉 7−→ 〈T1, σ1〉 and〈T1, σ1〉 7−→

k 〈skip, σ′〉.
By Lemma C.4 we know〈T1, σ1〉 racefree. Then by the induc-
tion hypothesis we know〈⌊T1⌋, σ1〉 =⇒∗ 〈(skip,), σ′〉. By
〈T, σ〉 7−→ 〈T1, σ1〉 we know there are the following cases:

• T = T[E[atomic c]], T1 = T[E[skip]], and〈c, σ〉 −→∗

〈skip, σ1〉. Then we know〈⌊T ⌋, σ〉 =⇒ 〈⌊T1⌋, σ1〉.
By 〈⌊T1⌋, σ1〉 =⇒∗ 〈(skip,), σ′〉 we have〈⌊T ⌋, σ〉 =⇒∗

〈(skip,), σ′〉.

• 〈T, σ〉 7−→ 〈T1, σ1〉 is one of the rest of ordered executions,
i.e. cons, dispose, fork or join operations. The proof is similar
to the first case.

• T = T[c], 〈c, σ〉
u

−−→ 〈c′, σ1〉, andT1 = T[c′]. We do
induction over the number of steps taken by〈⌊T1⌋, σ1〉 =⇒∗

〈(skip,), σ′〉 The base case is trivial and we can just derive
a big step from〈c, σ〉

u

−−→ 〈c′, σ1〉. In the inductive step we
have two prossibilities. If the big step is performed by the same
thread we merge the operations into a single grainless step (or
two if the step is performed by a ordered operation). If the big
step is performed by a different thread we have two options.
If the footprints of both steps are not conflicting we use either
Corollary C.2 or Corollary C.3 to flip the operations, and we
apply the inductive hypothesis prior to composing the stepsinto
a single step. If the footprints of both steps are conflicting, then
a race is defined which contradics our premisse of race freedom.

�

Lemma C.6. If 〈T, σ〉 racefree, then

1. [�t] 〈T, σ〉 7−→∗ abort iff 〈⌊T ⌋, σ〉 =⇒∗ abort.
2. if ¬(〈T, σ〉 7−→∗ abort), then

[�t] 〈T, σ〉 7−→∗ 〈skip, σ′〉 iff 〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉.

Proof. The left directions (i.e. the right-hand side of “iff” implies
the left-hand side) of both sub-goals are trivial: the mixedstep se-
mantics can be viewed as a special scheduling of the left-hand side.
We show the right direction of 2, i.e.[�t] 〈T, σ〉 7−→∗ 〈skip, σ′〉
implies 〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉. By Lemma B.9 we know
there existsT ′ such thatT ′ �t T and〈T ′, σ〉 7−→∗ 〈skip, σ′〉.
Since〈T, σ〉 racefree andT ′ �t T , by Corollary C.14 we know
〈T ′, σ〉 racefree. Then by Lemma C.5 we know〈⌊T ′⌋, σ〉 =⇒∗

〈(skip,), σ′〉. SinceT ′ �t T , we have⌊T ′⌋ �t ⌊T ⌋. By Corol-
lary C.14 we have〈⌊T ⌋, σ〉 =⇒∗ 〈(skip,), σ′〉. �

16

Lemma C.7. If 〈c, (h, s)〉
u

−−→
δ

∗〈c′, σ′〉, then (δ.rs ∪ δ.ws) ⊆

dom(h).

Lemma C.8. If 〈c, (h, s)〉
u

−−→
δ

∗〈c′, (h′, s′)〉, h = h1 ⊎ h2 and

dom(h1) = (δ.rs ∪ δ.ws), then there existsh′
1 such thath′ =

h′
1 ⊎ h2 and〈c, (h1, s)〉

u

−−→
δ

∗〈c′, (h′
1, s

′)〉.

Lemma C.9. For allk, if 〈c, (h, s)〉
u

−−→
δ

k〈c′, σ〉, h ♯h′ and(δ.rs∪

δ.ws) − dom(h′) 6= ∅, then〈c, (h′, s)〉
u

−−→∗ abort.
Hereh ♯ h′ def

= ∀ℓ. ℓ ∈ (dom(h) ∩ dom(h′)) → h(ℓ) = h′(ℓ).

Lemma C.10. If c1 � c2 and〈c1, σ〉 ⇓δ1 〈c′1, σ′〉, then either
〈c2, σ〉

u

−−→∗ abort or there existc′2 andδ2 such that〈c2, σ〉 ⇓δ2

〈c′2, σ′〉, δ1 ⊆ δ2, andc′1 � c′2.

Proof sketch. By Lemma B.1 we know that either〈c2, σ〉
u

−−→
∗ abort or there existc′2 andδ2 such that〈c2, σ〉 ⇓δ2 〈c′2, σ′〉 and
c′1 � c′2. Now we proveδ1 ⊆ δ2, if 〈c2, σ〉 ⇓δ2 〈c′2, σ′〉. Let
σ = (h, s). Suppose(δ1.rs ∪ δ1.ws) − (δ2.rs ∪ δ2.ws) 6= ∅. By
Lemma C.7, we know(δ1.rs∪ δ1.ws∪ δ2.rs∪ δ2.ws) ⊆ dom(h).
So there existsh′ such thath′ ⊂ h anddom(h′) = (δ2.rs∪δ2.ws).
By Lemma C.9 we know〈c1, (h′, s)〉

u

−−→∗ abort. By Lemma C.8
we know there existsσ′′ such that〈c2, (h′, s)〉 ⇓δ2 〈c′2, σ′′〉. This
is in conflict with c1 � c2, which requires that〈c2, (h′, s)〉

u

−−→
∗ abort. �

Lemma C.11. If c1 does not containatomic blocks and parallel
compositions,c1 � c2, then

1. if 〈c1, σ〉 −→∗ abort, then〈c2, σ〉 −→∗ abort;
2. if 〈c1, σ〉−→

δ1

∗〈skip, σ′〉, then either〈c2, σ〉 −→∗ abort or

there existsδ2 such that〈c2, σ〉−→
δ2

∗〈skip, σ′〉 andδ1 ⊆ δ2.

Proof. If c1 starts with unordered commands, the proof follows
from Lemma C.10. For other cases (c1 starts withconsor dispose),
the proof is trivial. �

Lemma C.12. If (c1, δ1) �t (c2, δ2), then

1. if 〈(c1, δ1), σ〉 =⇒ abort, then〈(c2, δ2), σ〉 =⇒ abort;
2. if 〈(c1, δ1), σ〉 =⇒ 〈 eT1, σ′〉, then either〈(c2, δ2), σ〉 =⇒

abort or there existseT2 such that〈(c2, δ2), σ〉 =⇒ 〈eT2, σ′〉
and eT1 �t

eT2.

Proof. If c1 starts with unordered commands, the proof follows
from Lemma C.10. Ifc1 starts with anatomic block, we apply
Lemma C.11. For other cases (c1 starts withcons, disposeor
parallel composition), the proof is trivial. �

Corollary C.13. If eT1 �t
eT2, then

1. if 〈 eT1, σ〉 =⇒ abort or race, then〈 eT2, σ〉 =⇒ abort or race;
2. if 〈 eT1, σ〉 =⇒ 〈eT ′

1, σ′〉, then〈 eT2, σ〉 =⇒ abort or race, or
there existseT ′

2, such that〈 eT2, σ〉 =⇒ 〈 eT ′
2, σ′〉 and eT ′

1 �t
eT ′
2.

Corollary C.14. If eT1 �t
eT2, then

1. if 〈eT1, σ〉 =⇒∗ abort or race, then〈eT2, σ〉 =⇒∗ abort or
race;

2. if 〈 eT1, σ〉 =⇒∗ 〈(skip, δ), σ′〉, then〈 eT2, σ〉 =⇒∗ abort or
race, or 〈eT2, σ〉 =⇒∗ 〈(skip,), σ′〉.

D. Proving the Soundness of CSL
Here we prove Lemma 6.6, which is the major lemma that we use
to drive the soundness of CSL with respect to the grainless seman-
tics (i.e. Lemma 6.8). The proof follows the standard techniques

to establish the soundness of separation logic and CSL, except that
we need extra efforts to close the syntactic gap between the com-
mandsc (used in logic rules) and the thread threeseT (used in the
operational semantics). In this section, we always assume thatI is
precise.

We first show the locality of each primitive operations and
concurrent transitions below.

Lemma D.1(Locality). If ¬(〈c, (h, s)〉 −→ abort), then¬(〈c, (h⊎
h′, s)〉 −→ abort); and for all 〈c, (h ⊎ h′, s)〉 −→

δ
〈c1, σ1〉,

there existsh1 such thatσ1.h = h1 ⊎ h′ and 〈c, (h, s)〉 −→
δ

〈c1, (h1, σ1.s)〉.

Lemma D.2(Seq-Locality).
If ¬(〈c, (h, s)〉 −→∗ abort), then¬(〈c, (h⊎ h′, s)〉 −→∗ abort);
and for all〈c, (h ⊎ h′, s)〉−→

δ

∗〈c1, σ1〉, there existsh1 such that

σ1.h = h1 ⊎ h′ and〈c, (h, s)〉−→
δ

∗〈c1, (h1, σ1.s)〉.

Lemma D.3(Par-Locality). If ¬ (〈eT , (h, s)〉 =⇒ abort or race),
then¬ (〈eT , (h ⊎ h′, s)〉 =⇒ abort or race), and if 〈 eT , (h ⊎
h′, s)〉 =⇒ 〈 eT ′, σ1〉, then there existsh1 such thatσ1.h = h1⊎h′

and〈 eT , (h, s)〉 =⇒ 〈eT ′, (h1, σ1.s)〉.

This lemma below shows that the thread treeeT = (skip, emp)
preserves the invariant.

Lemma D.4. If (h, s) |= I ∗ q, then for all k we know I |=
〈(skip, emp), (h, s)〉⊲k q holds for allk.

Proof. Trivial, by induction overk and Definition 6.5. �

The proof of Lemma 6.6 is done by induction over the derivation
of I ⊢ {p} c {q}.

The ENV rule. If the ENV rule is the last rule applied to derive
I ⊢ {p} c {q}, we know⊢ {p} c {q}. By Lemma 6.2 we know
|= {p}c{q}. We first prove the following lemma. Then our goal is
proved as Lemma D.6.

Lemma D.5. For all k, if 〈c, σ〉−→
δ

k〈skip, σ′〉, and〈c, σ〉 ⇓δ′

〈c′, σ′′〉, then there existsδ′′ such that〈c′, σ′′〉−−→
δ′′

∗〈skip, σ′〉.

Proof. By induction overk. The base case is trivial. Ifk = j + 1,
we know there existsc1, σ1, δ1 and δ2 such that〈c, σ〉 −→

δ1

〈c1, σ1〉 and 〈c1, σ1〉−→
δ2

j〈skip, σ′〉. If c starts with cons or

dispose, we knowc′ = c andσ′′ = σ. The proof is trivial. Oth-
erwise, we know〈c, σ〉

u

−−→
δ1

〈c1, σ1〉 and〈c1, σ1〉 ⇓δ′
1
〈c′, σ′′〉

for someδ′1. Then the goal follows trivially from the induction
hypothesis. �

Lemma D.6. For allk, if

• (h1, s) |=I ;
• (h2, s) |=q;
• ¬(〈c, (h2, s)〉 −→∗ abort);
• for all h′

2 and σ′, if 〈c, (h2, s)〉 −→
δ′

∗〈skip, (h′
2, s

′)〉 then

(h′
2, s

′) |=q;
• σ |= δ ⊎ I ;

thenI |= 〈(c, δ), (h1 ⊎ h2, s)〉⊲k q.

Proof. We prove by induction byk. The base case is trivial. Now
we consider the case thatk = j + 1. By Definition 6.5, we need to
show all the 6 conditions hold. The first four conditions are obvious.
Condition 6 is also trivial. Condition 5 is proved by applying the
locality property (Lemma D.2), Lemma D.5, and the induction
hypothesis. �

17

The PAR rule. If the PAR rule is the last rule applied to derive
I ⊢ {p} c {q}, we knowp is in the form ofp1 ∗ p2, q is in the
form of q1 ∗ q2, c is in the form ofc1 ‖ c2, I ⊢ {p1} c1 {q1} and
I ⊢ {p2} c2 {q2}. Then by induction hypothesis we know that, for
all σ andδ,

• if σ |=I ∗ p1 andσ |= δ ⊎ I , thenI |= 〈(c1, δ), σ〉⊲ q1;

• if σ |=I ∗ p2 andσ |= δ ⊎ I , thenI |= 〈(c2, δ), σ〉⊲ q2.

We first prove the following lemma. Our goal is proved as
Lemma D.8.

Lemma D.7. For all k, if h = h0 ⊎ h1 ⊎ h2, (h0, s) |= I ,
I |= 〈 eT1, (h0 ⊎ h1, s)〉 ⊲k q1, I |= 〈eT2, (h0 ⊎ h2, s)〉 ⊲k q2, eT1

does not update free variables inp2 and eT2, and conversely, then
I |= 〈〈〈 eT1, eT2〉〉skip, (h, s)〉⊲k q1 ∗ q2.

Proof. We prove by induction overk. It is trivial when k = 0.
Suppose the lemma holds whenk = j. We prove it holds whenk =
j+1. By Definition 6.5 we need to prove the 6 conditions. Proofs for
Condition 1 and 3 are trivial. The 4th condition can be derived from
I |= 〈eT1, (h0⊎h1, s)〉⊲j+1 q1 andI |= 〈 eT2, (h0⊎h2, s)〉⊲j+1 q2.

To prove Condition 2, it is obvious to see

¬(〈〈〈 eT1, eT2〉〉skip, (h, s)〉 =⇒ abort) .

We only need to prove¬(〈〈〈 eT1, eT2〉〉skip, (h, s)〉 =⇒ race). By
I |= 〈eT1, (h0⊎h1, s)〉⊲j+1 q1 andI |= 〈 eT2, (h0⊎h2, s)〉⊲j+1 q2,
we know that all the footprints ineT1 are subsets ofdom(h1), and all
those ineT2 are subsets ofdom(h2). SupposeeT1 executes next step.
The footprint for this new step must be withindom(h0 ⊎ h1). We
know it does not interfere with threads ineT2. By I |= 〈eT1, (h0 ⊎
h1, s)〉⊲j+1q1 we also know it does not interfere with other threads
in eT1. Therefore¬(〈〈〈 eT1, eT2〉〉skip, (h, s)〉 =⇒ race).

We now prove the 5th condition, i.e., if〈〈〈 eT1, eT2〉〉skip, σ〉 =⇒

〈 eT ′, σ′〉, then∀i ≤ j. I |= 〈eT ′, σ′〉 ⊲j q1 ∗ q2. By inspecting the
stepping relation, we know there are three possible cases.

First, 〈 eT1, σ〉 =⇒ 〈 eT ′
1, σ′〉. Then eT ′ = 〈〈 eT ′

1, eT2〉〉skip. Sup-
poseσ′ = (h′, s′). By I |= 〈eT1, (h0 ⊎ h1, s)〉 ⊲j+1 q1 and
Lemma D.3 we know that there existsh′

0 andh′
1 such thath′ =

h′
0 ⊎ h′

1 ⊎ h2, (h′
0, s

′) |=I , ∀i ≤ j. I |= 〈eT ′
1, (h′

0 ⊎ h′
1, s

′)〉⊲i q1,
and there existsX such thatX does not contain the free variables in
eT2 andq2, and(h′

0⊎h2, s) ‖(I,X) (h′
0⊎h2, s

′). By I |= 〈 eT2, (h0⊎

h2, s)〉 ⊲j+1 q2 we know∀i ≤ j. I |= 〈 eT2, (h′
0 ⊎ h2, s

′)〉 ⊲i q2.
Then we prove our goal by the induction hypothesis.

Second,〈 eT2, σ〉 =⇒ 〈 eT ′
2, σ′〉. The proof is similar to above.

Third, eT1 and eT2 are both(skip,). Then eT ′ = (skip, emp)
and σ′ = σ. By I |= 〈 eT1, (h0 ⊎ h1, s)〉 ⊲j+1 q1 and I |=

〈 eT2, (h0 ⊎ h2, s)〉 ⊲j+1 q2 we know (h, s) |= I ∗ q1 ∗ q2. Then
the proof simply follows from Lemma D.4.

Next we prove the 6th condition. Suppose(h, s) ‖(I,X) (h′, s′),
where X does not contain free variables ineT1, eT2, q1 and q2.
Therefore we know there existsh′

0 such thath′ = h′
0 ⊎ h1 ⊎ h2,

and (h′
0, s

′) |= I . By I |= 〈 eT1, (h0 ⊎ h1, s)〉 ⊲j+1 q1 we know
∀i ≤ j. I |= 〈eT1, (h′

0 ⊎ h1, s
′)〉 ⊲i q1. Similarly we have

∀i ≤ j. I |= 〈 eT2, (h′
0 ⊎ h2, s

′)〉 ⊲i q2. The our goal follows
trivially from the induction hypothesis. �

Lemma D.8. If h = h0⊎h1⊎h2, (h0, s) |=I , I |= 〈(c1, emp), (h0⊎
h1, s)〉 ⊲ q1, andI |= 〈(c2, emp), (h0 ⊎ h2, s)〉 ⊲ q2, then for all
k I |= 〈(c1 ‖ c2,), (h, s)〉⊲k q1 ∗ q2.

Proof. We do induction overk. The base case is trivial. Sup-
posek = j + 1. By Definition 6.5 we need to prove the 6 con-
ditions. The proofs for the first 4 conditions are trivial. Condi-

tion 6 trivially follows from I |= 〈(c1, emp), (h0 ⊎ h1, s)〉 ⊲ q1,
I |= 〈(c2, emp), (h0 ⊎ h2, s)〉⊲ q2, and the induction hypothesis.

By the operational semantics we have〈(c1 ‖ c2,), (h, s)〉 =⇒
〈〈〈(c1, emp), (c2, emp)〉〉skip, (h, s)〉. Then by Lemma D.7 we
know Condition 5 holds. �

The SEQ rule. If the SEQ rule is the last rule applied to derive
I ⊢ {p} c {q}, we knowc is in the form ofc1; c2, and there exists
r such thatI ⊢ {p} c1 {r} andI ⊢ {r} c2 {q}. Then by induction
hypothesis we know that, for allσ andδ,

• if σ |=I ∗ p andσ |= δ ⊎ I , thenI |= 〈(c1, δ), σ〉⊲ r;

• if σ |=I ∗ r andσ |= δ ⊎ I , thenI |= 〈(c2, δ), σ〉⊲ q.

We first prove the following auxiliary lemma. Then our goal, as
shown in Lemma D.10, is simply the first sub-goal of the lemma
below. Here we prove an extra sub-goal (the second one) because,
to prove each of them, we need the induction hypothesis of the
other.

Lemma D.9. If I |= 〈(c′, δ′), σ′〉 ⊲ q holds for allσ′ andδ′ such
thatσ′ |= I ∗ p andσ′ |= δ′ ⊎ I , then, for allk, the following are
true:

1. for all c, if I |= 〈(c, δ), σ〉⊲k p, thenI |= 〈(c; c′, δ), σ〉⊲k q.
2. for all c, if I |= 〈〈〈 eT1, eT2〉〉c, σ〉⊲k p,

thenI |= 〈〈〈 eT1, eT2〉〉(c; c
′), σ〉⊲k q.

Proof. By induction overk. The base case is always trivial. Sup-
posek = j + 1.

To prove the first sub-goal, we need to prove all the 6 conditions
in Definition 6.5. The first four conditions are trivial. The 6th
condition can be derived fromI |= 〈(c, δ), σ〉 ⊲k p and the
induction hypothesis.

Then we prove the 5th condition. By〈c; c′, σ〉 =⇒ 〈 eT , σ′〉, we
know there are the following possible cases:

First, 〈(c, δ), σ〉 =⇒ 〈(c′′, δ′′), σ′′〉 and c′′ 6= skip. Then
we know eT = (c′′; c′, δ′′). The proof simply follows fromI |=
〈(c, δ), σ〉⊲k p and the induction hypothesis.

Second,〈(c, δ), σ〉 =⇒ 〈(skip, δ′′), σ′′〉. By I |= 〈(c, δ), σ〉⊲k

p we know σ′′ |= I ∗ p and σ′′ |= δ′′ ⊎ I . Therefore we have
I |= 〈(c′, δ′′), σ′′〉⊲ q. Then we know there existc1, σ1, δ1 andδ′1
such that〈(c′, δ′′), σ′′〉 ⇓δ′

1
〈(c1, δ1), σ1〉. Since〈(c, δ), σ〉 =⇒

〈(skip, δ′′), σ′′〉, we know 〈(c, δ), σ〉 =⇒ 〈(c1, δ1), σ1〉. That
is, eT = (c1, δ1) and σ′ = σ1. Then our goal follows from
I |= 〈(c′, δ′′), σ′′〉⊲ q and〈(c′, δ′′), σ′′〉 ⇓δ′

1
〈(c1, δ1), σ1〉.

Third, 〈(c, δ), σ〉 =⇒ 〈〈〈(c1, δ1), (c2, δ2)〉〉c
′′, σ′′〉. Then we

know eT = 〈〈(c1, δ1), (c2, δ2)〉〉(c
′′; c′) andσ′ = σ′′. Also, byI |=

〈(c, δ), σ〉⊲kp we knowI |= 〈〈〈(c1, δ1), (c2, δ2)〉〉(c
′′; c′), σ′′〉⊲j

p. Our goal trivially follows from the induction hypothesis of the
secondsub-goal.

Now we have finished the proof of the first sub-goal. We can
now prove the second one. Again, here we only show the proof for
the 5th condition. By〈〈〈 eT1, eT2〉〉(c; c

′), σ〉 =⇒ 〈 eT , σ′〉, we know
there are three possible cases.

First, 〈eT1, σ〉 =⇒ 〈 eT ′
1, σ′〉. ThereforeeT = 〈〈 eT ′

1, eT2〉〉(c; c
′).

Our goal follows trivially fromI |= 〈〈〈 eT1, eT2〉〉c, σ〉 ⊲k p and the
induction hypothesis.

Second,〈eT2, σ〉 =⇒ 〈eT ′
2, σ′〉. The proof is similar to above.

Third, 〈〈〈 eT1, eT2〉〉c, σ〉 =⇒ 〈(c, emp), σ′〉. Therefore eT =

(c; c′, emp). By I |= 〈〈〈 eT1, eT2〉〉c, σ〉 ⊲k p we can proveI |=
〈(c, emp), σ′〉 ⊲j p. Therefore our goal trivially follows from the
induction hypothesis of thefirst sub-goal. �

Lemma D.10. If

• I |= 〈(c1, δ), σ〉⊲ r;

18

• for all all σ′ and δ′, if σ′ |= I ∗ r and σ′ |= δ′ ⊎ I , then
I |= 〈(c1, δ

′), σ′〉⊲ q;

then for allk we haveI |= 〈(c1; c2, δ), σ〉⊲k q

Proof. This is simply the first sub-goal of Lemma D.9. �

Other rules. As we have shown above, the proofs for thePAR rule
and theSEQ rule are a bit tricky because we need to close the gap
between the syntax ofc and eT when we reach the fork and join
of threads, and the gap between small-step transitions and big-step
ones when we handle sequential compositions. The way we handle
other rules are standard, given the locality properties. Weomit the
proofs here.

19

