
David Costanzo, Zhong Shao, Ronghui Gu
Yale University

PLDI 2016
June 17, 2016

a.com b.com

Web Browser

Proc 1 Proc 2

OS Kernel

VM 1 VM 2

Hypervisor

Mach 1 Mach 2

Distributed System

Goal: formally prove an end-to-end information-flow policy
that applies to the low-level code of these systems

 How to specify the information flow policy?
• ideally, specify at high level of abstraction

• allow for some well-specified flows (e.g., declassification)

Proc 1 Proc 2

OS Kernel

policy?

 Most systems are written in both C and assembly

• must deal with low-level assembly code

• must deal with compilation

• even verified compilation may not preserve security

 How to prove security on low-level code?
• Security type systems (e.g., JIF) don’t work well for weakly-

typed languages like C and assembly

• How do we deal with declassification?

• Systems may have “internal leaks” hidden from clients

 How to prove security for all components in a
unified way that allows us to link everything
together into a system-wide guarantee?

New methodology to specify, prove, and propagate
IFC policies with a single unifying mechanism: the
observation function

 specify – expressive generalization of classical
noninterference

 prove – general proof method that subsumes both
security label proofs and information hiding proofs

 propagate – security-preserving simulations

Application to a real OS kernel (CertiKOS [POPL15])

 First fully-verified secure kernel involving C and
assembly, including compilation

 Verification done entirely within Coq

 Fixed multiple bugs (security leaks)

 Policy: user processes running over CertiKOS cannot
influence each other in any way (IPC disabled)

Security Policy

Proof: spec secure wrt policy

End-to-End Guarantee

Observation
Function

x86 Machine Model

Security-
Preserving
Simulation V

e
ri

fi
e
d

1. Specifying security

2. Proving security (example)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

Bob1

Alice

Bob1'

Alice'

Bob2

Alice

Bob2'

Alice'

=

=

“Alice’s behavior is influenced only by her own data.”

σ1

ΘA(σ1)

σ1'

ΘA(σ1')

σ2

ΘA(σ2)

σ2'

ΘA(σ2')

=

=
“Alice’s behavior is influenced only by her own observation.”

Θ : principal program state observation
(can be any type)

S : program state program state prop

“spec S is secure for principal p”

∀ σ1 , σ2, σ’1, σ’2 .

Θp(σ1) = Θp(σ2) ∧ S(σ1, σ’1) ∧ S(σ2, σ’2)

⟹

Θp(σ’1) = Θp(σ’2)

w (5, {A})

x (17, {A,B})

y (42, {B})

z (13, {})

w (5, {A})

x (?, {A,B})

y (?, {B})

z (13, {})

ΘA

{}

{A} {B}

{A,B}

ΘA

employee
salaries

avg
salary

ΘA

M T W F M T W F

Bob’s detailed
event calendar

Bob’s available /
unavailable time slots

ΘA

1. Specifying security

2. Proving security (example)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

va_load

page
tables

va pa
global
heap data

Definition va_load va σ rs rd :=

 match ZMap.get (PDX va) (ptpool σ) with

 PDEValid _ pte =>

 match ZMap.get (PTX va) pte with

 | PTEValid pg _ =>

 Next (rs # rd <-

 FlatMem.load (HP σ) (pg*PGSIZE + va%PGSIZE))

 | PTEUnPresent => exec_pagefault σ va rs

 end

 end.

Process p

:= fun va => va_load va σ Θp(σ)

High Security Declassify?

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

 OS and compiler refinement proofs use simulations

 Simulations may not preserve security!

x 17

y 42

x 17

y 42

z 0

x 42

y 17

z 17

x 42

y 17

swap(x,y)

z = x; x = y;
y = z

R R

𝑅 𝜎𝑀, 𝜎𝑁 ≔ (𝜎𝑀 𝑥 = 𝜎𝑁 𝑥 ∧ 𝜎𝑀 𝑦 = 𝜎𝑁(𝑦))

Machine M

Machine N

• Define an observation function for each machine, ΘM and ΘN
• Require that the simulation is security-preserving

• No significant changes to CompCert were needed

Security-Preserving Simulation (for principal p)

∀ σ1 , σ2, s1, s2 .

ΘM
p (σ1) = ΘM

p (σ2) ∧ R(σ1, s1) ∧ R(σ2, s2)

⟹

ΘN
p (s1) = ΘN

p (s2)

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

 Certified functionally correct OS kernel with 32 layers

 354 lines of assembly code, ~3000 lines of C code
◦ CompCert compiles C to assembly

 Each layer has primitives that can be called atomically

 Bottom layer MBoot is the x86 machine model

 Top layer TSysCall contains 9 system calls as primitives
◦ init, vmem load/store, page fault, memory quota, spawn child, yield, print

 For a process p, the observation function is:
◦ registers, if p is currently executing

◦ the output buffer of p

◦ the function from p’s virtual addresses to values

◦ p’s available memory remaining (quota)

◦ the number of children p has spawned

◦ the saved register context of p

◦ the spawned status and currently-executing status of p

TSysCall

MBoot

ΘS
p = (as described)

ΘI
p = p’s current output buffer

R

p’s “final” output buffer
(whole-execution behavior)

BI
p =

∀𝜎1, 𝜎2, 𝜎1
′, 𝜎2

′ .

Θ𝑝
𝑆

𝜎1 = Θ𝑝
𝑆

𝜎2 ∧ 𝜎1, 𝜎1
′ ∈ 𝑆 ∧ 𝜎2, 𝜎2

′ ∈ 𝑆

⇒ Θ𝑝
𝑆

𝜎1
′ = Θ𝑝

𝑆
(𝜎2

′)

Generalized Noninterference:

∀𝜎1, 𝜎2, 𝑠1, 𝑠2 .

Θ𝑝
𝑆

𝜎1 = Θ𝑝
𝑆

𝜎2 ∧ 𝜎1, 𝑠1 ∈ 𝑅 ∧ 𝜎2, 𝑠2 ∈ 𝑅
⇒ 𝐵𝑝

𝐼 𝑠1 = 𝐵𝑝
𝐼 (𝑠2)

End-to-End Security:

function alice {

 int pid1 = proc_spawn();

 yield();

 int pid2 = proc_spawn();

 print(pid2 – pid1 + 1);

}

function bob {

 int secret = 42;

 for i = 0 to secret {

 proc_spawn();

 }

 yield();

}

||

pid1 pid2

secret

IDs

0
max children = 3

1 2 3

4 5 6 7 8 9 10 11 12

 New methodology using observation function to
specify, prove, and propagate IFC policies
◦ applicable to all kinds of real-world systems!

 Verification of secure kernel done fully within Coq
◦ machine-checked proofs!

 Future Work: virtualized time (already done), more
realistic x86 model, preemption, concurrency

CertiKOS info - http://flint.cs.yale.edu/certikos/
PLDI certified artifact - ask me for link

http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/

