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Information-Flow Security

Goal: formally prove an end -to-end information - flow policy
that applies to the low- level code of these systems
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Challenges

1 How to specify the information flow policy?

A ideally, specify at high level of abstraction
A allow for some well - specified flows (e.g., declassification)
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Challenges

1 Most systems are written in both C and assembly
A must deal with low - level assembly code
A must deal with compilation
A even verified compilation may not preserve security
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Challenges

1 How to prove security on low - level code?

A Security type systems (e.g., -JIF
typed languages like C and assembly

A How do we deal with declassification?
A Systems may have oO0internal | e a ks

1 How to prove security for all components in a
unifled way that allows usto link everything
together into a system - wide guarantee?




Contribution 1

New methodology to specify , prove , and propagate

IFC policies with a single unifying mechanism: the
observation function

1 specify 0 expressive generalization of classical
noninterference

1 prove 0 general proof method that subsumes both
security label proofs and information hiding proofs

{ propagate 0 security - preserving simulations




Contribution 2
Applicationto a real OS kernel (CertiKOS [POPL15])

1 First fully - verified secure kernel involving C and
assembly, including compilation

1 Verification done entirely within Coq
1 Fixed multiple bugs (security leaks)

f Policy: user processes running over CertikOS cannot
Influence each other inany  way (IPC disabled)




Our Solution
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Rest of Talk

2. Proving security (example)
3. Propagating security across simulations

4. Experience with CertiKOS security proof




Pure Noninterference
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Generalized Noninterference
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Observation Function

. . principal A program state A observation
(can be any type)
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Example Observation Functions
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Example Observation Functions
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Rest of Talk

1. Specifying security

3. Propagating security across simulations

4. Experience with CertiKOS security proof




Virtual Address Translation
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Definition va load va 0 rsrd :=
match ZMap.get (PDX va) ( ptpool ) with
PDEVald _ pte =>
match ZMap.get
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Rest of Talk

1. Specifying security

2. Proving security (examples)

4. Experience with CertiKOS security proof




Insecure Simulation

1 OS and compiler refinement proofs use simulations
1 Simulations may not preserve security!
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Propagating Security

A Define an observation function for each machine, .
A Require that the simulationis  security - preserving
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A No significant changes to CompCert were needed




Rest of Talk

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations




CertiKOS Overview

1+ Certified functionally correct OS kernel with 32 layers

1 354 lines of assembly code, ~3000 lines of C code
B CompCert compiles C to assembly

1 Each layer has primitives that can be called atomically
} Bottom layer MBoot is the x86 machine model

1 Top layer TSysCall contains 9 system calls as primitives
B init, vmem load/store, page fault, memory quota, spawn child, yield, print




CertiKOS Observation Function

1 For a process p, the observation function is:

Bregisters, if p is currently executing

B the output buffer of p

Bthe function f rom podés virtual addresse:
Bpos avail able memory remaining (
B the number of children p has spawned

B the saved register context of p

Bthe spawned status and currently - executing status of p







