End-to-End Verification of
Information-Flow Security for
C and Assembly Programs

David Costanzo , Zhong Shao, Ronghui Gu
Yale University

PLDI 2016
June 17, 2016

Information-Flow Security

Goal: formally prove an end -to-end information - flow policy
that applies to the low- level code of these systems

Distributed Sys%m

Challenges

1 How to specify the information flow policy?

A ideally, specify at high level of abstraction
A allow for some well - specified flows (e.g., declassification)

OS Kernel |

Challenges

1 Most systems are written in both C and assembly
A must deal with low - level assembly code
A must deal with compilation
A even verified compilation may not preserve security

—>

primitive &
function calls

High-level information-flow security policy specification

0S Syscall Spec

—e
> T — “implements”
User CModules ' User
Process Q AsmSpec Process e

P1 P2 g
CompCert T \I;ftmg
* Asm.s
_)l CMods.s r— Low-level
end-to-end
l security
4 4 L guarantee

x86 Assembly Machine Model

Challenges

1 How to prove security on low - level code?

A Security type systems (e.g., -JIF
typed languages like C and assembly

A How do we deal with declassification?
A Systems may have oO0internal | e a ks

1 How to prove security for all components in a
unifled way that allows usto link everything
together into a system - wide guarantee?

Contribution 1

New methodology to specify , prove , and propagate

IFC policies with a single unifying mechanism: the
observation function

1 specify 0 expressive generalization of classical
noninterference

1 prove 0 general proof method that subsumes both
security label proofs and information hiding proofs

{ propagate 0 security - preserving simulations

Contribution 2
Applicationto a real OS kernel (CertiKOS [POPL15])

1 First fully - verified secure kernel involving C and
assembly, including compilation

1 Verification done entirely within Coq
1 Fixed multiple bugs (security leaks)

f Policy: user processes running over CertikOS cannot
Influence each other inany way (IPC disabled)

Our Solution

Observation
Function

Security Policy

0S Syscall Spec Proof: spec secure wrt policy
* b

CModules A 5
@ e T Security -
= CompCert T Preserving
o Simulation
> * Asm.s

CMods.s r

x86 Machine Model End- to - End Guarantee

Rest of Talk

2. Proving security (example)
3. Propagating security across simulations

4. Experience with CertiKOS security proof

Pure Noninterference

OAl i ceds behavior I's 1 nfluenced

Generalized Noninterference

OAl 1T ceds behavior I' s 1 nfluenced onl

Observation Function

. . principal A program state A observation
(can be any type)

S:. program state A program state A prop

ospec S is secure for princiog

~

'lc 1,c 2,¢ q”cg'

cpl)= cpl2) Uiw . §) Utw . &)

Example Observation Functions

w | G A A W[G
X (17, {A,B}) :>> X (?, {A,B})
y | @2 E) y | .8
2 | @30 2 | a0
{AB}
R %
{B}

Example Observation Functions

v
e« A
employee avg
salaries salary

Bobds detail ed Bobds avail abl e [/
event calendar unavailable time slots

M|T [W[F M|T |WF

Rest of Talk

1. Specifying security

3. Propagating security across simulations

4. Experience with CertiKOS security proof

Virtual Address Translation

- l
| i I page pa heap data

Definition va load va 0 rsrd :=
match ZMap.get (PDX va) (ptpool) with
PDEVald _ pte =>
match ZMap.get
| PTEValid

PTX va) pte with

Declassn‘y’?

ngh Security

Rest of Talk

1. Specifying security

2. Proving security (examples)

4. Experience with CertiKOS security proof

Insecure Simulation

1 OS and compiler refinement proofs use simulations
1 Simulations may not preserve security!

swap(x
Machine M P(y)

II><
NII

(@, (W

o -

Propagating Security

A Define an observation function for each machine, .
A Require that the simulationis security - preserving

Mand _ N

Security - Preserving Simulation (for principal p)

!

c1.¢ 2951 Sy,

M C D= MC 2 ORJ(‘UJL S1) URIQ'UZ, S,)

€ Np (Sl) = Np (SZ)

A No significant changes to CompCert were needed

Rest of Talk

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

CertiKOS Overview

1+ Certified functionally correct OS kernel with 32 layers

1 354 lines of assembly code, ~3000 lines of C code
B CompCert compiles C to assembly

1 Each layer has primitives that can be called atomically
} Bottom layer MBoot is the x86 machine model

1 Top layer TSysCall contains 9 system calls as primitives
B init, vmem load/store, page fault, memory quota, spawn child, yield, print

CertiKOS Observation Function

1 For a process p, the observation function is:

Bregisters, if p is currently executing

B the output buffer of p

Bthe function f rom podés virtual addresse:
Bpos avail able memory remaining (
B the number of children p has spawned

B the saved register context of p

Bthe spawned status and currently - executing status of p

