
David Costanzo , Zhong Shao, Ronghui Gu
Yale University

PLDI 2016
June 17, 2016

a.com b.com

Web Browser

Proc 1 Proc 2

OS Kernel

VM 1 VM 2

Hypervisor

Mach 1 Mach 2

Distributed System

Goal: formally prove an end - to - end information - flow policy
that applies to the low - level code of these systems

ü How to specify the information flow policy?
Å ideally, specify at high level of abstraction

Å allow for some well - specified flows (e.g., declassification)

Proc 1 Proc 2

OS Kernel

policy?

ü Most systems are written in both C and assembly

Åmust deal with low - level assembly code

Åmust deal with compilation

Åeven verified compilation may not preserve security

ü How to prove security on low - level code?
Å Security type systems (e.g., JIF) donõt work well for weakly-

typed languages like C and assembly

Å How do we deal with declassification?

Å Systems may have òinternal leaksó hidden from clients

ü How to prove security for all components in a
unified way that allows us to link everything
together into a system - wide guarantee?

New methodology to specify , prove , and propagate
IFC policies with a single unifying mechanism: the
observation function

¶ specify ð expressive generalization of classical
noninterference

¶ prove ð general proof method that subsumes both
security label proofs and information hiding proofs

¶ propagate ð security - preserving simulations

Application to a real OS kernel (CertiKOS [POPL15])

¶First fully - verified secure kernel involving C and
assembly, including compilation

¶Verification done entirely within Coq

¶Fixed multiple bugs (security leaks)

¶Policy : user processes running over CertiKOS cannot
influence each other in any way (IPC disabled)

Security Policy

Proof: spec secure wrt policy

End- to - End Guarantee

Observation
Function

x86 Machine Model

Security -
Preserving
Simulation V

e
ri
fi
e

d

1. Specifying security

2. Proving security (example)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

Bob1

Alice

Bob1'

Alice '

Bob2

Alice

Bob2'

Alice '

=

=

òAliceõs behavior is influenced only by her own data.ó

1̨

A˿(1̨)

1̨'

A˿(1̨')

2̨

A˿(2̨)

2̨'

A˿(2̨')

=

=
òAliceõs behavior is influenced only by her own observation.ó

 ˿: principal Ą program state Ą observation
(can be any type)

S : program state Ą program state Ą prop

òspec S is secure for principal pó

 ᶅ 1̨ , 2̨, ǫ̃1, ǫ̃2 .

p˿(1̨) = p˿(2̨) ȖɯɯS(̨ 1, ǫ̃1) ȖɯɯS(̨ 2, ǫ̃2)

p˿(ǫ̃1) = p˿(ǫ̃2)

w (5, {A})

x (17, {A,B})

y (42, {B})

z (13, {})

w (5, {A})

x (?, {A,B})

y (?, {B})

z (13, {})

A˿

{}

{A} {B}

{A,B}

A˿

employee
salaries

avg
salary

A˿

M T W F M T W F

Bobõs detailed
event calendar

Bobõs available /
unavailable time slots

A˿

1. Specifying security

2. Proving security (example)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

va_load

page
tables

va pa
global
heap data

Definition va_load va ů rs rd :=

 match ZMap.get (PDX va) (ptpool ů) with

 PDEValid _ pte =>

 match ZMap.get (PTX va) pte with

 | PTEValid pg _ =>

 Next (rs # rd <-

 FlatMem.load (HP ů) (pg*PGSIZE + va%PGSIZE))

 | PTEUnPresent => exec_pagefault ů va rs

 end

 end .

Process p

:= fun va => va_load va ů p˿()̨

High Security Declassify?

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

} OS and compiler refinement proofs use simulations

} Simulations may not preserve security!

x 17

y 42

x 17

y 42

z 0

x 42

y 17

z 17

x 42

y 17

swap(x,y)

z = x; x = y;
y = z

R R

Ὑ„ȟ„ ḧ „ ὼ „ ὼ ᷈„ ώ „ ώ)

Machine M

Machine N

ÅDefine an observation function for each machine, M˿ and N˿
ÅRequire that the simulation is security - preserving

ÅNo significant changes to CompCert were needed

Security - Preserving Simulation (for principal p)

 ᶅ 1̨ , 2̨, s1, s2 .

M˿
p (1̨) = M˿

p (2̨) ȖɯɯR(1̨, s1) ȖɯɯR(2̨, s2)

N˿
p (s1) = N˿

p (s2)

1. Specifying security

2. Proving security (examples)

3. Propagating security across simulations

4. Experience with CertiKOS security proof

} Certified functionally correct OS kernel with 32 layers

} 354 lines of assembly code, ~3000 lines of C code
ƁCompCert compiles C to assembly

} Each layer has primitives that can be called atomically

} Bottom layer MBoot is the x86 machine model

} Top layer TSysCall contains 9 system calls as primitives
Ɓ init, vmem load/store, page fault, memory quota, spawn child, yield, print

}For a process p, the observation function is:
Ɓregisters, if p is currently executing

Ɓthe output buffer of p

Ɓthe function from põs virtual addresses to values

Ɓpõs available memory remaining (quota)

Ɓthe number of children p has spawned

Ɓthe saved register context of p

Ɓthe spawned status and currently - executing status of p

