
End-to-End Verification of Information-Flow

Security for C and Assembly Programs

David Costanzo Zhong Shao Ronghui Gu

Yale University, USA

{david.costanzo,zhong.shao,ronghui.gu}@yale.edu

Abstract

Protecting the confidentiality of information manipulated by

a computing system is one of the most important challenges

facing today’s cybersecurity community. A promising step

toward conquering this challenge is to formally verify that the

end-to-end behavior of the computing system really satisfies

various information-flow policies. Unfortunately, because

today’s system software still consists of both C and assembly

programs, the end-to-end verification necessarily requires

that we not only prove the security properties of individual

components, but also carefully preserve these properties

through compilation and cross-language linking.

In this paper, we present a novel methodology for for-

mally verifying end-to-end security of a software system that

consists of both C and assembly programs. We introduce a

general definition of observation function that unifies the con-

cepts of policy specification, state indistinguishability, and

whole-execution behaviors. We show how to use different ob-

servation functions for different levels of abstraction, and how

to link different security proofs across abstraction levels us-

ing a special kind of simulation that is guaranteed to preserve

state indistinguishability. To demonstrate the effectiveness of

our new methodology, we have successfully constructed an

end-to-end security proof, fully formalized in the Coq proof

assistant, of a nontrivial operating system kernel (running on

an extended CompCert x86 assembly machine model). Some

parts of the kernel are written in C and some are written in

assembly; we verify all of the code, regardless of language.

Categories and Subject Descriptors D.2.4 [Software En-

gineering]: Software/Program Verification—Correctness

proofs, formal methods; D.3.1 [Programming Languages]:

Formal Definitions and Theory—Semantics; D.4.5 [Oper-

ating Systems]: Reliability—Verification; D.4.6 [Operating

x86	Assembly	Machine	Model	

	

	

	

User	

Process	

P1	

	
	

	

	

OS	Syscall	Spec	

CMods.c	

	

Asm.s	
	

	
	

CompCert	
	
	
	

CMods.s	

	

AsmSpec	
	

primi3ve	&	

func3on	calls	

“implements”	

“li>ing”	

	

	

	

User	

Process	

P2	

	
	

	

	

High-level	informa0on-flow	security	policy	specifica0on	

Low-level		

end-to-end	

security		

guarantee	

Figure 1. An end-to-end software system that consists of both OS

modules (in C and assembly) and user processes.

Systems]: Security and Protection—Information flow con-

trols; F.3.1 [Logics and Meanings of Programs]: Specifying

and Verifying and Reasoning about Programs

General Terms Verification, Security, Reliability, Lan-

guages, Design

Keywords Information Flow Control; Security Policy Spec-

ification; Security-Preserving Simulation; Program Verifica-

tion; Certified OS Kernels.

1. Introduction

Information flow control (IFC) [21, 24] is a form of analysis

that tracks how information propagates through a system.

It can be used to state and verify important security-related

properties about the system. In this work, we will focus on the

read-protection property known as confidentiality or privacy,

using these terms interchangeably with security.

Security is desirable in today’s real-world software. Hack-

ers often exploit software bugs to obtain information about

protected secrets, such as user passwords or private keys. A

formally-verified end-to-end security proof can guarantee

such exploits will never be successful. There are many sig-

nificant roadblocks involved in such a verification, however,

and the state-of-the-art is not entirely satisfactory.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4261-2/16/06...$15.00
http://dx.doi.org/10.1145/2908080.2908100

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

648

Consider the setup of Figure 1, where a large system (e.g.,

an OS) consists of many separate functions (e.g., system call

primitives) written in either C or assembly. Each primitive

has a verified atomic specification, and there is a verified

compiler, such as CompCert [14], that can correctly compile

C programs into assembly. We wish to prove an end-to-end

security statement about some context program (e.g., P1 or

P2) that can call the primitives of the system, which ultimately

guarantees that our model of the concrete execution (i.e., the

whole-program assembly execution) behaves securely. This

goal raises a number of challenges:

• Policy Specification — How do we specify a clear and

precise security policy, describing how information is

allowed to flow between various domains? If we express

the policy in terms of the high-level syscall specifications,

then what will this imply for the whole-program assembly

execution? We need some way of specifying policies

at different levels of abstraction, as well as translating

between or linking separate policies.

• Propagating Security — It is well known [11, 17] that

simulations and refinements may not propagate security

guarantees. How, then, can we soundly obtain a low-level

guarantee from a high-level security verification?

• Proving Security — A standard way to prove confiden-

tiality is to formulate the property as noninterference, and

prove that some state indistinguishability relation is pre-

served by each step of execution (this is known as an

unwinding condition [7, 8], and will be discussed in Sec-

tion 2). However, this proof does not propagate down to

the implementation: a syscall specification may atomi-

cally preserve indistinguishability, but its non-atomic im-

plementation may temporarily break the relation during

intermediate states. Thus we must be careful to formulate

the security of a primitive’s implementation as a global

behavior-based property over the whole execution of the

implementation, rather than a local state-based property

over individual steps.

• Cross-Language Linking — Even if we verify security

for all atomic primitive specifications and propagate the

proofs to implementations, there still may be incompati-

bilities between the proofs for C primitives and those for

assembly primitives. For example, a security proof for an

assembly primitive might express that some data stored in

a particular machine register is not leaked; this property

cannot be directly chained with one for a C primitive since

the C memory model does not contain machine registers.

We therefore must support linking the specifications of

primitives implemented in different languages.

In this paper, we present a novel methodology for formally

verifying end-to-end security of a system like the one shown

in Figure 1. First, security is proved for the high-level specifi-

cation of each syscall in a standard way, establishing noninter-

ference by showing that a state indistinguishability relation is

preserved across the specification. Then we apply simulation

techniques to automatically obtain a sound security guaran-

tee for the low-level assembly machine execution, which is

expressed in terms of whole-execution observations. Simu-

lations are used both for relating specifications with their C

or assembly implementations, as well as for relating C imple-

mentations with their compiled assembly implementations.

The central idea of our methodology is to introduce a

flexible definition of observation that unifies the concepts

of policy specification, state indistinguishability, and whole-

execution behaviors. For every level of abstraction, we define

an observation function that describes which portions of a

program state are observable to which principals. For exam-

ple, an observation function might say that “x is observable

to Alice” and “y is observable to Bob”.

Different abstraction levels can use different observation

functions. We might use one observation function mentioning

machine registers to verify an assembly primitive, and a

second observation function mentioning program variables

to verify a C primitive. These observation functions are

then linked across abstraction levels via a special kind of

simulation that preserves state indistinguishability.

We demonstrate the efficacy of our approach by apply-

ing it to the mCertiKOS operating system [9]. We modify

mCertiKOS to disable all explicit inter-process communica-

tion, and then we prove noninterference between user pro-

cesses with distinct IDs. mCertiKOS guarantees full func-

tional correctness of system calls (with respect to an x86

machine model derived from CompCert’s model) by chaining

simulations across many abstraction layers. We implement

our general notion of observation function over the existing

simulation framework, and then verify security of the high-

level system call specifications. The result of this effort is

a formally-verified security guarantee for the operating sys-

tem — we specify exactly which portions of high-level state

are observable to which processes, and we prove that the

low-level model of assembly execution of the whole system

is secure with respect to this policy. The security guarantee

can be seen as end-to-end in the following two ways: (1)

it applies across simulations, propagating from a top-level

specification to a concrete implementation; and (2) it applies

to whole-execution behaviors, guaranteeing that an entire

execution is secure from start to finish.

To summarize, the primary contributions of this work are:

• A novel methodology for end-to-end security verification

of software systems written in both C and assembly, and

extending across various levels of abstraction.

• An end-to-end security proof, completely formalized in

the Coq proof assistant [27], of a simple but nontrivial

operating system kernel that executes over an extension

of the CompCert x86 machine model. The kernel is

non-preemptive, and explicit communication between

processes is disabled.

649

The rest of this paper is organized as follows. Sec. 2 intro-

duces the observation function and shows how to use it for

policy specification, security proof, and linking. Sec. 3 for-

malizes our simulation framework and shows how we prove

the end-to-end security theorem. Sec. 4 and 5 describe the se-

curity property that we prove over mCertiKOS, highlighting

the most interesting aspects of our proofs. Sec. 6 discusses

limitations, assumptions, and applicability of our methodol-

ogy. Finally, Sec. 7 discusses related work and concludes.

2. The Observation Function

This section will explore our notion of observation, describing

how it cleanly unifies various aspects of security verification.

Assume we have some set L of principals or security domains

that we wish to fully isolate from one another, and a state

transition machine M describing the single-step operational

semantics of execution at a particular level of abstraction. For

any type of observations, we define the observation function

of M to be a function mapping a principal and program state

to an observation. For a principal l and state σ, we express

the state observation notationally as OM ;l(σ), or just Ol(σ)
when the machine is obvious from context.

2.1 High-Level Security Policies

We use observation functions to express high-level policies.

Consider the following C function (assume variables are

global for the purpose of presentation):

void add() {

a = x + y;

b = b + 2; }

Clearly, there are flows of information from x and y to a, but

no such flows to b. We express these flows in a policy induced

by the observation function. Assume that program state is

represented as a partial variable store, mapping variable

names to either None if the variable is undefined, or Some v

if the variable is defined and contains integer value v. We

will use the notation [x →֒ 7; y →֒ 5] to indicate the variable

store where x maps to Some 7, y maps to Some 5, and all

other variables map to None.

We consider the value of a to be observable to Alice

(principal A), and the value of b to be observable to Bob

(principal B). Since there is information flow from x and y to

a in this example, we will also consider the values of x and y

to be observable to Alice. Hence we define the observation

type to be partial variable stores (same as program state), and

the observation function is:

OA(σ)
△

= [a →֒ σ(a); x →֒ σ(x); y →֒ σ(y)]

OB(σ)
△

= [b →֒ σ(b)]

This observation function induces a policy over an execution,

stating that for each principal, the final observation is depen-

dent only upon the contents of the initial observation. This

means that Alice can potentially learn anything about the ini-

tial values of a, x, and y, but she can learn nothing about the

initial value of b. Similarly, Bob cannot learn anything about

the initial values of a, x, or y. It should be fairly obvious that

the add function is secure with respect to this policy; we will

discuss how to prove this fact shortly.

Alternative Policies Since the observation function can

be anything, we can express various intricate policies. For

example, we might say that Alice can only observe parities:

OA(σ)
△

= [a →֒ σ(a)%2; x →֒ σ(x)%2; y →֒ σ(y)%2]

We also do not require observations to be a portion of program

state, so we might express that the average of x and y is

observable to Alice:

OA(σ)
△

= (σ(x) + σ(y))/2

Notice how this kind of observation expresses a form of

declassification, saying that the average of the secret values

in x and y can be declassified to Alice. This security policy

has some real-world applications: for example, a company

may wish to make the average of its employees’ salaries

public, without directly releasing any individual’s salary.

One important example of observation is a representation

of the standard label lattices and tainting used in many

security frameworks. Security domains are arranged in a

lattice structure, and information is only allowed to flow up

the lattice. Suppose we attach a security label to each piece

of data in a program state. We can then define the observation

function for a label l to be the portion of state that has a

label at or below l in the lattice. As is standard, we define the

semantics of a program such as a = x+ y to set the resulting

label of a to be the least upper bound of the labels of x and

y. Hence any label that is privileged enough to observe a

will also be able to observe both x and y. We can then prove

that this semantics is secure with respect to our lattice-aware

observation function. In this way, our observation function

can directly model label tainting.

The generality of our observation function allows for

the expression of many different kinds of security policies.

While we have not exhaustively studied the extent of policy

expressibility, we have anecdotally found it to be similar

to other frameworks that express observational equivalence

in a purely semantic fashion, e.g., Sabelfeld et al.’s PER

model [25] and Nanevski et al.’s Relational Hoare Type

Theory [22]. To provide better intuition for how observation

functions are used to express security policies, we discuss

some more examples in semi-formal detail in Appendix A.

The observation function used for the mCertiKOS security

proof, to be presented in Section 4, also helps in this regard.

2.2 Security Formulation

High-Level Security As mentioned in Section 1, we prove

security at a high abstraction level by using an unwinding

650

condition. Specifically, for a given principal l, this unwinding

condition says that state indistinguishability is preserved by

each step of a transition semantics, where two states are said

to be indistinguishable just when their observations are equal.

Intuitively, if a semantics always preserves indistinguisha-

bility, then the final observation can never be influenced by

changing unobservable data in the initial state (i.e., high-

security inputs cannot influence low-security outputs).

More formally, for any principal l and state transition

machine M with single-step transition semantics TM , we say

that M is secure for l if the following property holds for all

states σ1, σ2, σ′

1, and σ′

2:

Ol(σ1) = Ol(σ2) ∧ (σ1, σ
′

1) ∈ TM ∧ (σ2, σ
′

2) ∈ TM

=⇒ Ol(σ
′

1) = Ol(σ
′

2)

Consider how this property applies to an atomic specification

of the add function above, using the observation function

where only the parities of a, x, and y are observable to

Alice. Two states are indistinguishable to Alice just when

the parities of these three variables are the same in the states.

Taking the entire function as an atomic step, we see that

indistinguishability is indeed preserved since a gets updated

to be the sum of x and y, and addition is homomorphic with

respect to parity. Hence the policy induced by this observation

function is provably secure.

Low-Level Security While the above unwinding condition

is used to prove security across atomic specifications of

functions like add, we ultimately require a security guarantee

that applies to the non-atomic implementations of these

functions. Notice that the implementation of add satisfies

the unwinding condition: if we consider a machine where

a single step corresponds to a single line of C code, then

both of the two steps involved in executing add preserve

indistinguishability. However, this is not true in general.

Consider an alternative implementation of add with the same

atomic specification:

void add() {

a = b;

a = x + y;

b = b + 2; }

The first line of this implementation may not preserve indis-

tinguishability since the unobservable value of b is directly

written into a. Nevertheless, the second line immediately

overwrites a, reestablishing indistinguishability. This illus-

trates that we cannot simply prove the unwinding condition

for high-level atomic specifications, and expect it to auto-

matically propagate to a non-atomic implementation. We

therefore must use a different security definition for low-level

implementations, one which considers observations of entire

executions rather than just single steps.

Intuitively, we will express low-level security as equality

between the “whole-execution observations” produced by

two executions starting from indistinguishable states. To

formalize this intuition, we must address: (a) the meaning of

state indistinguishability at the implementation level; and (b)

the meaning of whole-execution observations.

Low-Level Indistinguishability For high-level security, we

defined state indistinguishability to be equality of the state-

parameterized observation functions. This definition may not

work well at a lower level of abstraction, however, since

security-relevant logical state may be hidden by simulation.

For example, suppose we attach security labels to data in a

high-level state, for the purpose of specifying the policy based

on label tainting described above. Further suppose that we

treat the labels as logical state, erasing them when simulating

the high-level specification with its implementation (i.e.,

the low-level machine model does not contain any physical

representation of the security labels). This means that, at the

implementation level, we can no longer define the portion of

program state belonging to a particular principal. Hence it

becomes unclear what state indistinguishability should mean

at this level.

We resolve this difficulty by defining low-level state

indistinguishability in terms of high-level indistinguishability

and simulation. We say that, given a simulation relation R

connecting specification to implementation, two low-level

states are indistinguishable if there exist two indistinguishable

high-level states that are related to the low-level states by R.

This definition will be fully formalized in Section 3.

Whole-Execution Observations We define the observa-

tions made by an entire execution in terms of external events,

which are in turn defined by a machine’s observation function.

Many traditional automaton formulations define an external

event as a label on the step relation. Each individual step of an

execution may or may not produce an event, and the whole-

execution observation, or behavior, is the concatenation of

all events produced across the execution.

We use the observation function to model external events.

The basic idea is to equate an event being produced by a

transition with the state observation changing across the tran-

sition. This idea by itself does not work, however. When

events are expressed externally on transitions, they definition-

ally enjoy an important monotonicity property: whenever an

event is produced, that event cannot be “undone” or “forgot-

ten” at any future point in the execution. When events are

expressed as changes in state observation, this property is no

longer guaranteed.

We therefore explicitly enforce a monotonicity condition

on the observation function of an implementation. We require

a partial order to be defined over the observation type of the

low-level semantics, as well as a proof that every step of the

semantics respects this order. For example, our mCertiKOS

proof represents the low-level observation as an output buffer

(a Coq list). The partial order is defined based on list pre-

fix, and we prove that execution steps will always respect

the order by either leaving the output buffer unchanged or

appending to the end of the buffer.

651

Note that we only enforce observation monotonicity on

the implementation. It is crucial that we do not enforce it on

the high-level specification; doing so would greatly restrict

the high-level policies we could specify, and would poten-

tially make the unwinding condition of the high-level security

proof unprovable. Intuitively, a non-monotonic observation

function expresses which portions of state could potentially

influence the observations produced by an execution, while

a monotonic observation function expresses which observa-

tions the execution has actually produced. We are interested

in the former at the specification level, and the latter at the

implementation level.

2.3 Security-Preserving Simulation

The previous discussion described how to use the observation

function to express both high-level and low-level security

properties. With some care, we can automatically derive the

low-level security property from a simulation and a proof of

the high-level security property.

It is known that, in general, security is not automatically

preserved across simulation. One potential issue, known as

the refinement paradox [11, 17, 18], is that a nondeterministic

secure program can be refined into a more deterministic but

insecure program. For example, suppose we have a secret

boolean value stored in x, and a program P that randomly

prints either true or false. P is obviously secure since its

output has no dependency on the secret value, but P can be

refined by an insecure program Q that directly prints the value

of x. We avoid this issue by ruling out P as a valid secure

program: despite being obviously secure, it does not actually

satisfy the unwinding condition defined above and hence is

not provably secure in our framework. Note that the seL4

security verification [19] avoids this issue in the same way.

In that work, the authors frame their solution as a restriction

that disallows specifications from exhibiting any domain-

visible nondeterminism. Indeed, this can be seen clearly by

specializing the unwinding condition above such that states

σ1 and σ2 are identical:

(σ, σ′

1) ∈ TM ∧ (σ, σ′

2) ∈ TM =⇒ Ol(σ
′

1) = Ol(σ
′

2)

The successful security verifications of both seL4 and

mCertiKOS provide reasonable evidence that this restriction

on specifications is not a major hindrance for usability.

Unlike the seL4 verification, however, our framework

runs into a second issue with regard to preserving security

across simulation. The issue arises from the fact that both

simulation relations and observation functions are defined in

terms of program state, and they are both arbitrarily general.

This means that certain simulation relations may, in some

sense, behave poorly with respect to the observation function.

Figure 2 illustrates an example. Assume program state at both

levels consists of three variables x, y, and z. The observation

function is the same at both levels: x and y are unobservable

while z is observable. Suppose we have a deterministic

42 27 0
swap(x,y)

 x y z

z = x; x = y; y = z

R R

42 27 0

27 42 0

27 42 42

 x y z

 x y z

 x y z

Figure 2. Security-Violating Simulation. The shaded part of state

is unobservable, while the unshaded part is observable.

specification of the swap primitive saying that the values

of x and y are swapped, and the value of z is unchanged.

Also suppose we have a simulation relation R that relates any

two states where x and y have the same values, but z may

have different values. Using this simulation relation, it is easy

to show that the low-level swap implementation simulates the

high-level swap specification.

Since the swap specification is deterministic, this example

is unrelated to the issue described above, where domain-

visible nondeterminism in the high-level program causes

trouble. Nevertheless, this example fails to preserve security

across simulation: the high-level program clearly preserves

indistinguishability, while the low-level one leaks the secret

value of x into the observable variable z.

As mentioned above, the root cause of this issue is that

there is some sort of incompatibility between the simulation

relation and the observation function. In particular, security

is formulated in terms of a state indistinguishability relation,

but the simulation relation may fail to preserve indistinguisha-

bility. Indeed, for the example of Figure 2, it is easy to demon-

strate two indistinguishable program states that are related by

R to two distinguishable ones. Thus our solution to this issue

is to restrict simulations to require that state indistinguishabil-

ity is preserved. More formally, given a principal l, in order to

show that machine m simulates M under simulation relation

R, the following property must be proved for all states σ1, σ2

of M , and states s1, s2 of m:

OM ;l(σ1) = OM ;l(σ2) ∧ (σ1, s1) ∈ R ∧ (σ2, s2) ∈ R

=⇒ Om;l(s1) = Om;l(s2)

3. End-to-End Security Formalization

In this section, we describe the formal proof that security is

preserved across simulation. Most of the technical details are

omitted here for clarity of presentation, but can be found in

the companion technical report [4].

Machines with Observations In the following, assume we

have a set L of distinct principals or security domains.

Definition 1 (Machine). A state transition machine M con-

sists of the following components (assume all sets may be

finite or infinite):

• a type ΣM of program state

652

• a set of initial states IM and final states FM

• a transition (step) relation TM of type P(ΣM × ΣM)
• a type ΩM of observations
• an observation function OM ;l(σ) of type L×ΣM → ΩM

When the machine M is clear from context, we use the

notation σ 7→ σ′ to mean (σ, σ′) ∈ TM . For multiple steps,

we define σ 7→n σ′ in the obvious way, meaning that there

exists a chain of states σ0, ..., σn with σ = σ0, σ′ = σn,

and σi 7→ σi+1 for all i ∈ [0, n). We then define σ 7→∗ σ′

to mean that there exists some n such that σ 7→n σ′, and

σ 7→+ σ′ to mean the same but with a nonzero n.

Notice that our definition is a bit different from most

traditional definitions of automata, in that we do not define

any explicit notion of actions on transitions. In traditional

definitions, actions are used to represent some combination

of input events, output events, and instructions/commands

to be executed. In our approach, we advocate moving all of

these concepts into the program state — this simplifies the

theory, proofs, and policy specifications.

Initial States vs Initialized States Throughout our formal-

ization, we do not require anything regarding initial states of

a machine. The reason is related to how we will actually carry

out security and simulation proofs in practice (described with

respect to the mCertiKOS security proof in Sections 4 and 5).

We never attempt to reason about the true initial state of a

machine; instead, we assume that some appropriate setup/con-

figuration process brings us from the true initial state to some

properly initialized state, and then we perform all reasoning

under the assumption of proper initialization.

High-Level Security As described in Section 2, we use

different notions of security for the high level and the low

level. High-level security says that each individual step

preserves indistinguishability. It also requires a safety proof

as a precondition, guaranteeing that the machine preserves

some initialization invariant I .

Definition 2 (Safety). We say that a machine M is safe under
state predicate I , written safe(M, I), when the following
progress and preservation properties hold:

1.) ∀σ ∈ I − FM . ∃σ′ . σ 7→ σ′

2.) ∀σ, σ′ . σ ∈ I ∧ σ 7→ σ′ =⇒ σ′
∈ I

Definition 3 (High-Level Security). Machine M is secure
for principal l under invariant I , written ∆M I

l , just when:

1.) safe(M, I)

2.) ∀σ1, σ2 ∈ I, σ′

1, σ
′

2 .

Ol(σ1) = Ol(σ2) ∧ σ1 7→ σ′

1 ∧ σ2 7→ σ′

2

=⇒ Ol(σ
′

1) = Ol(σ
′

2)

3.) ∀σ1, σ2 ∈ I .

Ol(σ1) = Ol(σ2) =⇒ (σ1 ∈ FM ⇐⇒ σ2 ∈ FM)

Low-Level Security For low-level security, as discussed in

Section 2, we first must define whole-execution behaviors

with respect to a monotonic observation function.

Definition 4 (Behavioral Machine). We say that a machine

M is behavioral for principal l when we have a partial

order defined over ΩM , and a proof that every step of M

is monotonic with respect to this order.

For any machine M that is behavioral for principal l, we

can define the set of whole-execution behaviors possibly

starting from a given state σ; we denote this set as BM ;l(σ).
The three kinds of behaviors are faulting (getting stuck),

safe termination, and safe divergence. The definitions can be

found in the TR [4]; the main point here is that behaviors

use the machine’s observation function as a building block.

For example, a behavior might say “an execution from σ

terminates with final observation o”, or “an execution from σ

diverges, producing an infinite stream of observations os”.

We can now define whole-execution security of a behav-

ioral machine as behavioral equality. Note that, in our fi-

nal end-to-end security theorem, the low-level executions

in question will be obtained from relating indistinguishable

high-level states across simulation. We hide this detail for

now inside of an abstract indistinguishability relation ρ, and

will revisit the relation later in this section.

Definition 5 (Low-Level Security). Given a machine m that

is behavioral for principal l, we say that m is behaviorally

secure for l under some indistinguishability relation ρ, written

∇m
ρ
l , just when:

∀σ1, σ2 . ρ(σ1, σ2) =⇒ Bm;l(σ1) = Bm;l(σ2)

Simulation We next formalize our definition of simulation.

It is a standard definition, except for the following aspects:

1. As explained above, we do not require any relationships

to hold between initial states.

2. As described informally in Section 2, we require simula-

tion relations to preserve state indistinguishability.

Definition 6 (Simulation). Given two machines M and m, a
principal l, and a relation R of type P(ΣM × Σm), we say
that M simulates m using R, written M ⊑R;l m, when:

1.) ∀σ, σ′
∈ ΣM , s ∈ Σm .

σ 7→ σ′
∧R(σ, s)

=⇒ ∃s′ ∈ Σm . s 7→
∗ s′ ∧R(σ′, s′)

2.) ∀σ ∈ ΣM , s ∈ Σm .

σ ∈ FM ∧R(σ, s) =⇒ s ∈ Fm

3.) ∀σ1, σ2 ∈ ΣM , s1, s2 ∈ Σm .

OM ;l(σ1) = OM ;l(σ2) ∧R(σ1, s1) ∧R(σ2, s2)

=⇒ Om;l(s1) = Om;l(s2)

The first property is the main simulation, the second relates fi-

nal states, and the third preserves indistinguishability. For pre-

sentation purposes, we omit details regarding the well-known

“infinite stuttering” problem for simulations (described, for

example, in [15]). Our Coq definition of simulation includes

a well-founded order that prevents infinite stuttering.

653

Also notice that, contrary to our discussion earlier, we do

not define simulations to be relative to an invariant. It would

be completely reasonable to require safety of the higher-level

machine under some invariant, but this actually ends up being

redundant. Since R is an arbitrary relation, we can simply

embed an invariant requirement within R. In other words,

one should think of R(σ, s) as saying not only that σ and s

are related, but also that σ satisfies an appropriate invariant.

End-to-End Security Our end-to-end security theorem is

proved with the help of a few lemmas about behaviors

and simulations, described in the companion TR [4]. As

an example, one lemma says that if we have a simulation

between behavioral machines M and m, then the possible

behaviors of M from some state σ are a subset of the

behaviors of m from a related state s. There is one significant

technical detail we should mention here regarding these

lemmas: behaviors are defined in terms of observations, and

the types of observations of two different machines may be

different. Hence we technically cannot compare behavior sets

directly using standard subset or set equality.

For the purpose of presentation, we will actually assume

here that all behavioral machines under consideration use the

same type for observations. In fact, the mCertiKOS proof is a

special case of our framework that obeys this assumption (all

machines use the output buffer observation). Our framework

is nevertheless capable of handling changes in observation

type by adding a new relation to simulations that relates

observations; the companion TR [4] contains the details.

We are now ready to describe how simulations preserve

security. As mentioned previously, low-level security uses an

indistinguishability relation derived from high-level indistin-

guishability and a simulation relation:

Definition 7 (Low-Level Indistinguishability).

φ(M, l, I, R)
△

=

λs1, s2 . ∃σ1, σ2 ∈ I .

OM ;l(σ1) = OM ;l(σ2) ∧R(σ1, s1) ∧R(σ2, s2)

Theorem 1 (End-to-End Security). Suppose we have two

machines M and m, a principal l, a high-level initialization

invariant I , and a simulation M ⊑R;l m. Further suppose

that m is deterministic and behavioral for l. Let low-level

indistinguishability relation ρ be φ(M, l, I, R) from Defini-

tion 7. Then high-level security implies low-level security:

∆M I
l =⇒ ∇m

ρ
l

Proof Sketch. We prove this theorem by defining a new ma-

chine N between M and m, and proving simulations from

M to N and from N to m. N will mimic M in terms of pro-

gram states and transitions, while it will mimic m in terms

of observations. We prove that N is behavioral, and apply

some lemmas to equate the whole-execution behaviors of m

with those of N . We then formulate the high-level security

proof as a bisimulation over M , and use this to derive a bisim-

ulation over N . Finally, we apply a lemma to connect the

bisimulation over N with the whole-execution behaviors of

N , completing the proof. The details of this proof and the

relevant lemmas can be found in the companion TR [4].

4. Security Definition of mCertiKOS

We will now discuss how we applied our methodology to

prove an end-to-end security guarantee between separate

processes running on top of the mCertiKOS kernel [9].

During the proof effort, we had to make some changes to the

operating system to close potential security holes. We refer

to our secure variant of the kernel as mCertiKOS-secure.

4.1 mCertiKOS Overview

The starting point for our proof effort was the basic version of

the mCertiKOS kernel, described in detail in Section 7 of [9].

We will give an overview of the kernel here. It is composed

of 32 abstraction layers, which incrementally build up the

concepts of physical memory management, virtual memory

management, kernel-level processes, and user-level processes.

Each layer L consists of the following components:

• a type ΣL of program state, separated into machine

registers, concrete memory, and abstract data of type DL

• a set of initial states IL and final states FL

• a set of primitives PL implemented by the layer

• for each p ∈ PL, a specification of type P(ΣL × ΣL)

• (if L is not the bottom layer) for each p ∈ PL, an im-

plementation written in either LAsm(L′) or ClightX(L′)
(defined below), where L′ is the layer below L

• two special primitives called load and store that model

access to global memory; these primitives have no im-

plementation as they are a direct model of how the x86

machine translates virtual addresses using page tables

The top layer is called TSysCall, and the bottom is called

MBoot. MBoot describes execution over the model of the ac-

tual hardware; the specifications of its primitives are taken as

axioms. Implementations of primitives in all layers are writ-

ten in either a layer-parameterized variant of x86 assembly

or a layer-parameterized variant of C.

The assembly language, called LAsm(L), is a direct

extension of CompCert’s [14] model of x86 assembly that

allows primitives of layer L to be called atomically. When

an atomic primitive call occurs, the semantics consults that

primitive’s specification to take a step. Note that the load

and store primitives are never called explicitly (as they

have no implementation), but instead are used to specify

the semantics of x86 instructions that read or write memory

(e.g., movl %eax, 0(%ecx)).

The C variant, called ClightX(L), is a direct extension

of CompCert’s Clight language [1] (which is a slightly-

simplified version of C). Like LAsm(L), the semantics is

654

ML

ML’

spawn() yield()

ClightX(L’)

CompCertX

LAsm(L’) LAsm(L’)

Figure 3. Simulation between adjacent layers. Layer L contains

primitives spawn and yield, with the former implemented in

ClightX(L′) and the latter implemented in LAsm(L′).

extended with the ability to call the primitives of L atomically.

ClightX(L) programs can be compiled to LAsm(L) in a

verified-correct fashion using the CompCertX compiler [9],

which is an extension of CompCert.

Each layer L induces a machine ML of the kind described

in Section 3, with transition relation defined by the opera-

tional semantics of LAsm(L).

Layer Simulation Figure 3 illustrates how machines in-

duced by two consecutive layers are connected via simula-

tion. Each step of machine ML is either a standard assembly

command or an atomic primitive call. Steps of the former

category are simulated in ML′ by exactly the same assembly

command. Steps of the latter are simulated using the primi-

tive’s implementation, supplied by layer L. If the primitive

is implemented in LAsm(L′), then the simulation directly

uses the semantics of this implementation. If the primitive is

implemented in ClightX(L′), then CompCertX is used first

to compile the implementation into LAsm(L′). CompCertX

is verified to provide a simulation from the ClightX(L′) ex-

ecution to the corresponding LAsm(L′) execution, so this

simulation is chained appropriately.

Once every pair of consecutive machines is connected

with a simulation, they are combined to obtain a simulation

from TSysCall to MBoot. Since the TSysCall layer provides

mCertiKOS’s system calls as primitives, user process execu-

tion is specified at the TSysCall level. To get a better sense

of user process execution, we will now give an overview of

the TSysCall program state and primitives.

TSysCall State The TSysCall abstract data is a Coq record

consisting of 32 separate fields. We will list here those fields

that will be relevant to our discussion. In the following,

whenever a field name has a subscript of i, the field is a

finite map from process ID to some data type.

• outi — The output buffer for process i. Note that output

buffers exist in all layers’ abstract data, including MBoot.

They are never actually implemented in memory; instead,

they are assumed to be a representation of some external

method of output (e.g., a monitor or a network channel).

• HP — A global, flat view of the user-space memory heap.

A page is defined as the 4096-byte sequence starting from

a physical address that is divisible by 4096.

• AT — A global allocation table, represented as a bitmap

indicating which pages in the global heap have been

allocated. Element n corresponds to page n.

• pgmapi — A representation of the two-level page map

for process i. The page map translates a virtual address

between 0 and 232 − 1 into a physical address.

• containeri — A representation of process i that main-

tains information regarding spawned status, children, par-

ents, and resource quota. A container is itself a Coq record

containing the following fields:

used — A boolean indicating whether process i has

been spawned.

parent — The ID of the parent of process i.

nchildren — The number of children of process i.

quota — The maximum number of pages that process

i is allowed to dynamically allocate.

usage — The current number of pages that process i

has dynamically allocated.

• ctxti — The saved register context of process i, contain-

ing the register values that will need to be restored the

next time process i is scheduled.

• cid — The currently-running process ID.

TSysCall Primitives There are 9 primitives in the TSysCall

layer, including the load/store primitives. The primitive spec-

ifications operate over both the TSysCall abstract data and

the machine registers. Note that they do not interact with

concrete memory since all relevant portions of memory have

already been abstracted into the TSysCall abstract data.

• Initialization — proc_init sets up the various kernel

objects to get everything into a working state. We never

attempt to reason about anything that happens prior to

initialization; it is assumed that the bootloader will always

call proc_init appropriately.

• Load/Store — Since paging is enabled at the TSysCall

level, the load and store primitives walk the page tables

of the currently-running process to translate virtual ad-

dresses into physical. If no physical address is found due

to no page being mapped, then the faulting virtual address

is written into the CR2 control register, the current reg-

ister context is saved, and the instruction pointer register

is updated to point to the entry of the page fault handler

primitive.

• Page Fault — pgf_handler is called immediately after

one of the load/store primitives fails to resolve a virtual

address. It reads the faulting virtual address from the CR2

register, allocates one or two new pages as appropriate,

increases the current process’s page usage, and plugs

the page(s) into the two-level page table. It then restores

the register context that was saved when the load/store

primitive faulted. If the current process does not have

655

enough available quota to allocate the required pages,

then the instruction pointer register is updated to point to

the entry of the yield primitive (see below).

• Get Quota — get_quota returns the amount of remaining

quota for the currently-executing process. This is useful to

provide as a system call since it allows processes to divide

their quota among children in any way they wish.

• Spawn Process — proc_create attempts to spawn a new

child process. It takes a quota as a parameter, specifying

the maximum number of pages the child process will be

allowed to allocate. This quota allowance is taken from

the current process’s available quota.

• Yield — sys_yield performs the first step for yielding.

It enters kernel mode, disables paging, saves the current

registers, and changes the currently-running process ID

to the head of the ready queue. It then context switches

by restoring the newly-running process’s registers. The

newly-restored instruction pointer register is guaranteed

(proved as an invariant) to point to the function entry of

the start_user primitive.

• Start User — start_user performs the simple second

step of yielding. It enables paging for the currently-

running process and exits kernel mode. The entire func-

tionality of yielding must be split into two primitives

(sys_yield and start_user) because context switching

requires writing to the instruction pointer register, and

therefore only makes sense when it is the final operation

performed by a primitive. Hence yielding is split into one

primitive that ends with a context switch, and a second

primitive that returns to user mode.

• Output — print appends its parameter to the currently-

running process’s output buffer.

4.2 Security Overview

We consider each process ID to be a distinct principal. The

security property that we aim to prove is exactly the high-level

security defined in Section 3 (Definition 3), applied over the

TSysCall machine using a carefully-constructed observation

function that we define below. Theorem 1 then guarantees

security of the corresponding whole-execution behaviors over

the MBoot machine (which represents our lowest-level model

of the assembly machine).

High-Level Semantics High-level security is proved by

showing that every step of execution preserves an indistin-

guishability relation saying that the observable portions of

two states are equal. In the mCertiKOS context, however, this

property will not quite hold over the TSysCall machine.

To see this, consider any process ID (i.e., principal) l,

which we call the “observer process”. For any TSysCall state

σ, we say that σ is “active” if cid(σ) = l, and “inactive”

otherwise. Now consider whether the values in machine

registers should be observable to l. Clearly, if l is executing,

then it can read and write registers however it wishes, so the

active state inactive state

Figure 4. The TSysCall-local semantics, defined by taking big

steps over the inactive parts of the TSysCall semantics.

registers must be considered observable. On the other hand, if

some other process l′ is executing, then the registers must be

unobservable to l if we hope to prove that l and l′ are isolated.

We conclude that registers should be observable to l only in

active states.

What happens, then, if we attempt to prove that indistin-

guishability is preserved when starting from inactive indistin-

guishable states? Since the states are inactive, the registers

are unobservable, and so the instruction pointer register in

particular may have a completely different value in the two

states. This means that the indistinguishable states may ex-

ecute different instructions. If one state executes the yield

primitive while the other does not, we may end up in a situ-

ation where one resulting state is active but the other is not;

clearly, such states cannot be indistinguishable since the reg-

isters are observable in one state but not in the other. Thus

indistinguishability will not be preserved in this situation.

The fundamental issue here is that, in order to prove that

l cannot be influenced by l′, we must show that l has no

knowledge that l′ is even executing. We accomplish this by

defining a higher-level machine above the TSysCall machine,

where every state is active. We call this the TSysCall-local

machine — it is parameterized by principal l, and it represents

l’s local view of the TSysCall machine.

Figure 4 shows how the semantics of TSysCall-local is

defined. The solid arrows are transitions of the TSysCall

machine, white circles are active TSysCall states, and shaded

circles are inactive states. The TSysCall-local semantics is

then obtained by combining all of the solid arrows connecting

active states with all of the dotted arrows. Note that in the

TSysCall layer, the yield primitive is the only way that a state

can change from active to inactive, or vice-versa. Thus one

can think of the TSysCall-local machine as a version of the

TSysCall machine where the yield semantics takes a big step,

immediately returning to the process that invoked the yield.

Our high-level security property is proved over the TSys-

Call-local machine, for any choice of observer principal l.

We easily prove simulation from TSysCall-local to TSysCall,

so this strategy fits cleanly into our simulation framework.

Observation Function We now define the high-level obser-

vation function used in our verification. For a given process

ID l, the state observation of σ is defined as follows:

• Registers — All registers are observable if σ is active.

• Output — The output buffer of l is observable.

656

• Virtual Address Space — We can dereference any virtual

address by walking through l’s page tables. This will result

in a value if the address is actually mapped, or no value

otherwise. This function from virtual addresses to option

values is observable. Importantly, the physical address at

which a value resides is never observable.

• Spawned — The spawned status of l is observable.

• Quota — The remaining quota of l is observable.

• Children — The number of children of l is observable.

• Active — It is observable whether cid(σ) is equal to l.

• Reg Ctxt — The saved register context of l is observable.

Notice how the virtual address space component exploits

the generality of observation functions. It is not simply a

portion of program state, as it refers to both the pgmap and

HP components of state in a nontrivial way.

5. Security Verification of mCertiKOS

To prove end-to-end security of mCertiKOS, we must apply

Theorem 1 of Section 3, using the simulation from TSysCall-

local to MBoot, the high-level observation function described

in Section 4, and a low-level observation function that simply

projects the output buffer. To apply the theorem, the following

facts must be established:

1. MBoot is deterministic.

2. MBoot is behavioral for any principal.

3. The simulation relation from TSysCall-local to MBoot

preserves indistinguishability.

4. TSysCall-local satisfies the high-level security property

(Definition 3 of Section 3).

Determinism of the MBoot machine is already proved in

mCertiKOS. Behaviorality of MBoot is easily established by

defining a partial order over output buffers based on list prefix,

and showing that every step of MBoot either leaves the buffer

untouched or appends to the end of the buffer. To prove that

the simulation preserves indistinguishability, we first prove

that simulation between consecutive layers in mCertiKOS

always preserves the output buffer. Indistinguishability preser-

vation then follows, since the high-level observation function

includes the output buffer as a component.

The primary task of the proof effort is, unsurprisingly,

establishing the high-level unwinding condition over the

TSysCall-local semantics. The proof is done by showing that

each primitive of the TSysCall layer preserves indistinguisha-

bility. The yield primitive requires some special treatment

since the TSysCall-local semantics treats it differently; this

will be discussed later in this section.

Figure 5 gives the number of lines of Coq definitions

and proof scripts required for the proof effort. The entire

effort is broken down into security proofs for primitives,

glue code to interface the primitive proofs with the LAsm(L)
semantics, definitions and proofs of the framework described

Load 147

Store 258

Page Fault 188

Get Quota 10

Spawn 30

Yield 960

Start User 11

Print 17

Total 1621

Primitives 1621

Glue 853

Framework 2192

Invariants 1619

Total 6285

Security Proof (LOC)

Security of Primitives (LOC)

Figure 5. Approximate Coq LOC of proof effort.

in Section 3, and proofs of new state invariants that were

established. We will now discuss the most interesting aspects

and difficulties of the TSysCall-local security proof.

State Invariants While mCertiKOS already verifies a num-

ber of useful state invariants, some new ones are needed

for our security proofs. The new invariants established over

TSysCall-local execution are:

1. In all saved register contexts, the instruction pointer

register points to the entry of the start_user primitive.

2. No page is mapped more than once in the page tables.

3. We are always either in user mode, or we are in kernel

mode and the instruction pointer register points to the

entry of the start_user primitive (meaning that we just

yielded and are going to enter user mode in one step).

4. The sum of the available quotas (max quota minus usage)

of all spawned processes is less than or equal to the

number of unallocated pages in the heap.

Security of Load/Store Primitives The main task for prov-

ing security of the 100+ assembly commands of LAsm(TSys-

Call) is to show that the TSysCall layer’s load/store primi-

tives preserve indistinguishability. This requires showing that

equality of virtual address spaces is preserved. Reasoning

about virtual address spaces can get quite hairy since we al-

ways have to consider walking through the page tables, with

the possibility of faulting at either of the two levels.

To better understand the intricacies of this proof, consider

the following situation. Suppose we have two states σ1 and

σ2 with equal mappings of virtual addresses to option values

(where no value indicates a page fault). Suppose we are

writing to some virtual address v in two executions on these

states. Consider what happens if there exists some other

virtual address v′ such that v and v′ map to the same physical

page in the first execution, but map to different physical

pages in the second. It is still possible for σ1 and σ2 to

have identical views of their virtual address space, as long

as the two different physical pages in the second execution

contain the same values everywhere. However, writing to v

will change the observable view of v′ in the first execution,

657

but not in the second. Hence, in this situation, it is possible

for the store primitive to break indistinguishability.

We encountered this exact counterexample while attempt-

ing to prove security, and we resolved the problem by es-

tablishing the second state invariant mentioned above. The

invariant guarantees that the virtual addresses v and v′ will

never be able to map to the same physical page.

Security of Process Spawning The proc_create primi-

tive was the only one whose security depended on making a

major change to the existing mCertiKOS. When the insecure

version of mCertiKOS creates a new child process, it chooses

the lowest process ID not currently in use. The system call

returns this ID to the user. Hence the ID can potentially leak

information between different users. For example, suppose

Alice spawns a child process and stores its ID into variable x.

She then calls yield. When execution returns back to her, she

again spawns a child and stores the ID into variable y. Since

mCertiKOS always chooses the lowest available process ID,

the value of y − x − 1 is exactly the number of times that

other processes spawned children while Alice was yielded.

In some contexts, this information leak could allow for direct

communication between two different processes.

To close this information channel, we had to revamp the

way process IDs are chosen in mCertiKOS-secure. The new

ID system works as follows. We define a global parameter

mc limiting the number of children any process is allowed to

spawn. Suppose a process with ID i and c children (c < mc)

spawns a new child. Then the child’s ID will always be

i∗mc+c+1. This formula guarantees that different processes

can never interfere with each other via child ID: if i 6= j,

then the set of possible child IDs for process i is completely

disjoint from the set of possible child IDs for process j.

Security of Page Fault There are two different interesting

aspects of page fault security. The first is that it is a perfect

example of a primitive whose implementation does not

preserve indistinguishability with each individual step. When

a page fault occurs, either one or two new pages must be

allocated from the global heap. Because all user processes

use the same global heap for allocation, and mCertiKOS

always allocates the first available page, the physical address

of an allocated page can potentially leak information between

processes (this is similar to the information leak via process

ID discussed above). The page fault handler, however, must

make use of the physical address of a newly-allocated page

when inserting a new virtual address mapping into the page

table. Therefore, at some point during the actual (non-atomic)

execution of the page fault handler, an observable register

contains the insecure physical page address. Since we prove

that the primitive’s atomic specification is secure, however,

we know that the insecure value must be overwritten by the

time the primitive finishes executing.

The second interesting aspect of the page fault handler

involves some trickiness with running out of heap space. In

particular, the global allocation table AT must be unobservable

C: confidentiality I: integrity CR: confidentiality restore

σ
1

σ
2

σ
1
’

σ
2
’

 I I I

 I I I I I I I

 C

CR

Figure 6. Applying the three lemmas to prove the security prop-

erty of TSysCall-local yielding.

since all processes can affect it; this means that the page fault

handler may successfully allocate a page in one execution, but

fail to allocate a page in an execution from an indistinguish-

able state due to there being no pages available. Clearly, the

observable result of the primitive will be different for these

two executions. To resolve this issue, we relate available heap

pages to available quota by applying the fourth state invariant

mentioned above. Recall that the invariant guarantees that

the sum of the available quotas of all spawned processes is

always less than or equal to the number of available heap

pages. Therefore, if an execution ever fails to allocate a page

because no available page exists, the available quota of all

spawned processes must be zero. Since the available quota

is observable, we see that allocation requests will be denied

in both executions from indistinguishable states. Therefore,

we actually can end up in a situation where one execution

has pages available for allocation while the other does not;

in both executions, however, the available quota will be zero,

and so the page allocator will deny the request for allocation.

Security of Yield Yielding is by far the most complex

primitive to prove secure, as the proof requires reasoning

about the relationship between the TSysCall semantics and

TSysCall-local semantics. Consider Figure 6, where active

states σ1 and σ2 are indistinguishable, and they both call

yield. The TSysCall-local semantics takes a big step over

the executions of all non-observer processes; these big steps

are unfolded in Figure 6, so the solid arrows are all of the

individual steps of the TSysCall semantics. We must establish

that a big-step yield of the TSysCall-local machine preserves

indistinguishability, meaning that states σ′

1 and σ′

2 in Figure 6

must be proved indistinguishable.

We divide this proof into three separate lemmas, proved

over the TSysCall semantics:

• Confidentiality — If two indistinguishable active states

take a step to two inactive states, then those inactive states

are indistinguishable.

• Integrity — If an inactive state takes a step to another

inactive state, then those states are indistinguishable.

• Confidentiality Restore — If two indistinguishable inac-

tive states take a step to two active states, then those active

states are indistinguishable.

658

These lemmas are chained together as pictured in Figure 6.

The dashed lines indicate indistinguishability. Thus the confi-

dentiality lemma establishes indistinguishability of the initial

inactive states after yielding, the integrity lemma establishes

indistinguishability of the inactive states immediately preced-

ing a yield back to the observer process, and the confiden-

tiality restore lemma establishes indistinguishability of the

active states after yielding back to the observer process.

Note that while the confidentiality and confidentiality

restore lemmas apply specifically to the yield primitive (since

it is the only primitive that can change active status), the

integrity lemma applies to all primitives. Thus, like the

security unwinding condition, integrity is proved for each

of the TSysCall primitives. The integrity proofs are simpler

since the integrity property only requires reasoning about a

single execution, whereas security requires comparing two.

The confidentiality restore lemma only applies to the

situation where two executions are both yielding back to

the observer process. The primary obligation of the proof is

to show that if the saved register contexts of two states σ1

and σ2 are equal, then the actual registers of the resulting

states σ′

1 and σ′

2 are equal. There is one interesting detail

related to this proof: a context switch in mCertiKOS does

not save every machine register, but instead only saves those

registers that are relevant to the local execution of a process

(e.g., EAX, ESP, etc.). In particular, the CR2 register, which

the page fault handler primitive depends on, is not saved. This

means that, immediately after a context switch from some

process i to some other process j, the CR2 register could

contain a virtual address that is private to i. How can we then

guarantee that j is not influenced by this value? Indeed, if

process j immediately calls the page fault handler without

first triggering a page fault, then it may very well learn some

information about process i. We resolve this insecurity by

making a very minor change to mCertiKOS: we add a line of

assembly code to the implementation of context switch that

clears the CR2 register to zero.

6. Limitations and Future Work

Fidelity of the Assembly Machine Model Our methodol-

ogy only yields a security proof for assembly programs that

fit within our model of x86 assembly execution. The model

is an extended version of CompCert’s, primarily designed

for supporting all of the features needed by the mCertiKOS

kernel implementation (e.g., distinction between kernel and

user mode executions). We make no claims about the rela-

tionship between our model and the physical hardware that

executes x86 assembly code. If one wished to apply our proof

to the actual machine execution, the following significant

gaps would need to be closed:

• Completeness Gap — Our model is certainly not complete

for all user-level assembly programs, so it may be possible

to violate security on actual hardware by exploiting un-

modeled assembly instructions. One example of such an

instruction is RDTSC, which reads the time-stamp counter

from x86 hardware and stores it into local registers. This

time-stamp counter is increased with each clock cycle,

so it can be used as a communication channel between

processes, leaking information about how much time cer-

tain processes have spent executing. We do not model the

RDTSC instruction — an assembly program that uses the

instruction would not even be considered valid syntax in

our model, so there is no way that any verified properties

could apply to such a program.

• Soundness Gap — In addition to this completeness gap,

there is also a potential soundness gap between our ma-

chine model and the physical hardware; we must trust that

the semantics of all of our modeled assembly instructions

are faithful to the actual hardware execution. This is a

standard area of trust that arises in any formal verification

effort: at some point, we always reach a low-enough level

where trust is required, whether this means trusting the

operating system that a program is running on, trusting the

hardware to meet its published specifications, or trusting

the laws of physics that the hardware is presumably obey-

ing. Note that the level of trustworthiness of our machine

model is similar to CompCert’s, since we use a modest

extension over CompCert’s model.

• Safety Gap — The soundness gap just described requires

us to trust that whenever the modeled semantics of an

assembly instruction is well-defined, the execution of

that instruction on physical hardware will do what the

model says. What happens, however, if the modeled

semantics gets stuck? The model makes no promises about

the actual execution of a stuck semantics; the execution

could continue running without issues, but it would no

longer be bound by any of our verification. Therefore,

even if we closed the completeness and soundness gaps

described above to a point of satisfaction, we would still

be required to assume that user programs never have

undefined semantics in order to apply our verification

to the physical execution. This is quite a heavyweight

assumption, as user-level code is meant to represent

arbitrary and unverified assembly.

Future Plans for Model Fidelity In light of these various

unrealistic assumptions required to apply our verification to

the physical machine, we are planning to implement a clearer

and more streamlined representation of user-mode assembly

execution. The mCertiKOS assembly model was designed

for verification of the kernel; there is actually no need to

use that model for unverified user process execution. Instead,

we can design a simple model consisting of registers and a

flat memory representing a virtual address space, where an

instruction can be one of the following:

• interrupt — A trap into the kernel to handle, for example,

a privileged instruction or a system call.

659

• load/store — Instructions that use the kernel’s load/store

primitives to access the virtual address space. These may

trigger a page fault, which will be handled by the kernel.

• other — Any other user-land instruction, which is as-

sumed to only be able to read/write the values in registers.

This simple model has the benefit of making very clear

exactly what assumption needs to hold in order to relate the

model to actual execution: the arbitrary user-land instructions

must only depend upon and write values in the modeled

registers. Notice that the RDTSC instruction described above

is an example of an instruction that does not satisfy this

assumption; hence it would need to be explicitly modeled if

we wanted to support it.

We hope that future work can gradually model more and

more hardware features and instructions like RDTSC that do

not satisfy this assumption. Each new feature could poten-

tially violate security, and thus will require some additional

verification effort. For the RDTSC example, we would close

the time-stamp counter information channel by setting the

time-stamp disable flag (TSD), which causes the hardware

to treat RDTSC as a privileged instruction. Then, if a user

process attempts to execute the instruction, the hardware will

generate an exception and trap into the kernel. The kernel

will then handle the exception in a way that is verified to

be secure (e.g., it could kill the process, yield to a different

process, or return a specialized “local” time-stamp that only

represents that specific process’s view of time).

High-Level Policy Specification As with any formal verifi-

cation effort, we must trust that the top-level specification of

our system actually expresses our intentions for the system,

including the security policy specified as an observation func-

tion. Because observation functions can have any type, our

notion of security is far more expressive than classical pure

noninterference. This does mean, however, that it can poten-

tially be difficult to comprehend the security ramifications of

a complex or poorly-constructed observation function. We

place the onus on the system verifier to make the observation

function as clear and concise as possible. This view is shared

by a number of previous security frameworks with highly-

expressive policy specification, such as the PER model [25]

and Relational Hoare Type Theory [22]. In our mCertiKOS

security specification, the virtual address space observation

provides a good example of a nontrivial but clear policy spec-

ification — hiding physical addresses is, after all, the primary

reason to use virtual address spaces.

Applicability of the Methodology In order to utilize our

security methodology, the following steps must be taken:

• The high-level security policy must be expressed as isola-

tion between the observation functions of different prin-

cipals. As mentioned previously, the complete lack of

restrictions on the observation function yields a very high

level of policy expressiveness. While a systematic explo-

ration of expressiveness remains to be done, we have not

encountered any kinds of information flows that are not

expressible in terms of an observation function.

• The high-level security property (Definition 3) must be

provable over the top-level semantics. In particular, this

means that indistinguishability must be preserved on a

step-by-step basis. If it is not preserved by each individual

step, then the top-level semantics must be abstracted fur-

ther. For example, in our mCertiKOS security verification,

we found that the TSysCall semantics did not preserve

indistinguishability on a step-by-step basis; we therefore

abstracted it further into the TSysCall-local semantics that

hides the executions of non-observer processes. We are

unsure if this requirement for single-step indistinguisha-

bility preservation could be problematic for other systems.

In our experience, however, repeated abstraction to the

point of atomicity is highly desirable, as it yields a clear

view of what is really going on in the system.

• Indistinguishability-preserving simulations must be estab-

lished to connect the various levels of abstraction. While

the main simulation property can require significant effort,

we have not found the indistinguishability preservation

property to be difficult to establish in practice. The prop-

erty generally feels closer to a sanity check than a signif-

icant restriction. Consider, for instance, the example of

the swap primitive from Section 2.3. That example failed

to preserve security across simulation because the local

variable z was being considered observable. A caller of

the swap primitive should have no knowledge of z, how-

ever. Thus this is just a poorly-constructed observation

function; a reasonable notion of observation would hide

the local variable, and indistinguishability preservation

would follow naturally.

Inter-Process Communication The mCertiKOS verifica-

tion presented in this work only applies to a version of the

kernel that disables IPC. In the future, we would like to allow

some well-specified and disciplined forms of IPC that can still

be verified secure. We have actually already started adding

IPC — our most recent version of the secure kernel includes

an IPC primitive that allows communication between all pro-

cesses with ID at most k (a parameter that can be modified).

The security theorem then holds for any observer process

with ID greater than k. Ideally, we would like to extend this

theorem so that it guarantees some nontrivial properties about

those privileged processes with low ID.

7. Related Work and Conclusions

Observations and Indistinguishability Our flexible notion

of observation is similarly powerful to purely semantic and

relational views of indistinguishability, such as the ones used

in Sabelfeld et al.’s PER model [25] and Nanevski et al.’s

Relational Hoare Type Theory [22]. In those systems, for

example, a variable x is considered observable if its value is

equal in two related states. In our system, we directly say that

660

x is an observation, and then indistinguishability is defined

as equality of observations. Our approach may at first glance

seem less expressive since it uses a specific definition for

indistinguishability. However, we do not put any restrictions

on the type of observation: for any given indistinguishability

relation R, we can represent R by defining the observation

function on σ to be the set of states related to σ by R.

We have not systematically explored the precise extent of

policy expressiveness in our methodology; this could be an

interesting direction for future work.

Our observation function is a generalization of the “con-

ditional labels” presented in Costanzo and Shao [3]. There,

everything in the state has an associated security label, but

there is allowed to be arbitrary dependency between values

and labels. For example, a conditional label may say that x

has a low label if its value is even, and a high label otherwise.

In the methodology presented here, we do not need the labels

at all: the state-dependent observation function observes the

value of x if it is even, but observes no value if x is odd.

Our approach is also a generalization of Delimited Re-

lease [23] and Relaxed Noninterference [16]. Delimited Re-

lease allows declassifications only according to certain syn-

tactic expressions (called “escape hatches”). Relaxed Non-

interference uses a similar idea, but in a semantic setting: a

security label is a function representing a declassification pol-

icy, and whenever an unobservable variable x is labeled with

function f , the value f(x) is considered to be observable.

Our observation function can easily express both of these

concepts of declassification.

Security across Simulation/Refinement As explained in

Sections 1 and 2, refinements and simulations may fail to

preserve security. There have been a number of solutions

proposed for dealing with this so-called refinement para-

dox [11, 17, 18]. The one that is most closely related to our

setup is Murray et al.’s seL4 security proof [19], where the

main security properties are shown to be preserved across re-

finement. As we mentioned in Section 2, we employ a similar

strategy for security preservation in our framework, disallow-

ing high-level specifications from exhibiting domain-visible

nondeterminism. Because we use an extremely flexible no-

tion of observation, however, we encounter another difficulty

involved in preserving security across simulation; this is re-

solved with the natural solution of requiring simulation rela-

tions to preserve state indistinguishability.

Comparison with mCertiKOS-base Our verified secure

kernel builds directly over the "base" version of mCertiKOS

presented in Gu et al. [9]. In that version, the many layers of

mCertiKOS are connected using CompCert-style simulations,

and CompCertX is used to integrate C primitives with assem-

bly primitives. However, that version does not have general

notions of observations, events, or behaviors. Technically,

CompCert expresses external events using traces that appear

on the transition functions of operational semantics, and

then defines whole-execution behaviors in terms of events;

however, mCertiKOS does not make use of these events (the

LAsm semantics completely ignores CompCert traces).

Separately from the security verification effort, a large por-

tion of our work was devoted to developing the framework of

generalized observations and indistinguishability-preserving

simulations described in Sections 2 and 3 (over 2000 lines

of Coq code, as shown in Figure 5), and integrating these

ideas into mCertiKOS. The previous mCertiKOS soundness

theorem in Gu et al. [9] only claimed a standard simulation

between TSysCall and MBoot. We integrated observation

functions into the mCertiKOS layers, modified this sound-

ness theorem to establish an indistinguishability-preserving

simulation between TSysCall and MBoot, and then defined

whole-execution behaviors and proved an extended sound-

ness theorem guaranteeing that the behaviors of executions

at the TSysCall level are identical to those of corresponding

executions at the MBoot level.

Security of seL4 An important work in the area of formal

operating system security is the seL4 verified kernel [12, 19,

20, 26]. There are some similarities between the security

proof of seL4 and that of mCertiKOS, as both proofs are

conducted over a high-level specification and then propagated

down to a concrete implementation. Our work, however, has

three important novelties over the seL4 work.

First, the seL4’s lack of assembly verification is quite

significant. Our mCertiKOS kernel consists of 354 lines of

assembly code and approximately 3000 lines of C code. Thus

the assembly code represents a nontrivial chunk of the code-

base that could easily contain security holes. Furthermore,

the assembly code has to deal with low-level hardware details

like registers, which are not exposed to high level specifi-

cations and might have security holes. Indeed, as discussed

in Section 5, we needed to patch up a security hole in the

context switch primitive related to the CR2 register.

Second, our assembly-level machine is a much more

realistic model than the abstract C-level machine used by

seL4. For example, virtual memory address translation, page

fault handlers, and context switches are not verified in seL4.

Section 5 describes the intricacies of security of load/store

primitives (with address translation), page fault handler, and

yield. None of them would appear in the seL4 proofs because

their machine model is too high level. Addressing this issue

is not easy because it requires not just assembly verification

but also verified linking of C and assembly components.

Third, our generalization of the notion of observation al-

lows for highly expressive security policies. The seL4 veri-

fication uses a particular policy model based on intransitive

noninterference (the intransitive part helps with specifying

what IPC is allowed). Our mCertiKOS verification is a case

study using the particular policy expressed by the observa-

tion function of Section 4.2, but our methodology allows

for all kinds of policy models depending on context. Thus,

while the particular security property that we proved over

mCertiKOS is not an advance over the seL4 security property,

661

our new methodology involved in stating and proving the

property, and for propagating security proofs through verified

compilation and abstraction layers, is a significant advance.

Security of Other OS Kernels Dam et al. [5] aims to prove

isolation of separate components that are allowed to com-

municate across authorized channels. They do not formulate

security as standard noninterference, since some communi-

cation is allowed. Instead, they prove a property saying that

the machine execution is trace-equivalent to execution over

an idealized model where the communicating components

are running on physically-separated machines. Their setup

is fairly different from ours, as we disallow communication

between processes and hence prove noninterference. Fur-

thermore, they conduct all verification at the assembly level,

whereas our methodology supports verification and linking

at both the C and assembly levels.

The Ironclad [10] system aims for full correctness and

security verification of a system stack, which shares a similar

goal to ours: provide guarantees that apply to the low-level

assembly execution of the machine. The overall approaches

are quite different, however. Ironclad uses Dafny [13] and

Z3 [6] for verification, whereas our approach uses Coq; this

means that Ironclad relies on SMT solving, which allows for

more automation, but does not produce machine-checkable

proofs as Coq does. Another difference is in the treatment of

high-level specifications. While Ironclad allows some verifi-

cation to be done in Dafny using high-level specifications, a

trusted translator converts them into low-level specifications

expressed in terms of assembly execution. The final secu-

rity guarantee applies only to the assembly level; one must

trust that the guarantee corresponds to the high-level intended

specifications. Contrast this to our approach, where we verify

that low-level execution conforms to the high-level policy.

Conclusions In this paper, we presented a framework for

verifying end-to-end security of C and assembly programs.

A flexible observation function is used to specify the secu-

rity policy, to prove noninterference via unwinding, and to

soundly propagate the security guarantee across simulation.

We demonstrated the efficacy of our approach by verifying

the security of a nontrivial operating system kernel, with IPC

disabled. We successfully developed a fully-formalized Coq

proof that guarantees security of the low-level model of the

kernel’s assembly execution.

Acknowledgments

We thank Benjamin Pierce, members of the CertiKOS team at

Yale, our shepherd Stephen McCamant, and anonymous refer-

ees for helpful comments and suggestions that improved this

paper and the implemented tools. This research is based on

work supported in part by NSF grants 1065451, 1319671, and

1521523, and DARPA grants FA8750-10-2-0254, FA8750-

12-2-0293, and FA8750-15-C-0082. Any opinions, findings,

and conclusions contained in this document are those of the

authors and do not reflect the views of these agencies.

References

[1] S. Blazy and X. Leroy. Mechanized semantics for the Clight

subset of the C language. J. Automated Reasoning, 43(3):

263–288, 2009.

[2] S. Chiricescu, A. DeHon, D. Demange, S. Iyer, A. Kliger,

G. Morrisett, B. C. Pierce, H. Reubenstein, J. M. Smith, G. T.

Sullivan, A. Thomas, J. Tov, C. M. White, and D. Wittenberg.

Safe: A clean-slate architecture for secure systems. In Proceed-

ings of the IEEE International Conference on Technologies for

Homeland Security, Nov. 2013.

[3] D. Costanzo and Z. Shao. A separation logic for enforcing

declarative information flow control policies. In Proc. 3rd

International Conference on Principles of Security and Trust

(POST), pages 179–198, 2014.

[4] D. Costanzo, Z. Shao, and R. Gu. End-to-end verification

of information-flow security for C and assembly programs

(extended version). Technical Report YALEU/DCS/TR-1522,

Dept. of Computer Science, Yale University, April 2016.

[5] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and

O. Schwarz. Formal verification of information flow secu-

rity for a simple ARM-based separation kernel. In 2013 ACM

SIGSAC Conference on Computer and Communications Secu-

rity (CCS), pages 223–234, 2013.

[6] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver.

In Tools and Algorithms for the Construction and Analysis of

Systems, 14th International Conference (TACAS), Budapest,

Hungary. Proceedings, pages 337–340, 2008.

[7] J. A. Goguen and J. Meseguer. Security policies and security

models. In IEEE Symposium on Security and Privacy, pages

11–20, 1982.

[8] J. A. Goguen and J. Meseguer. Unwinding and inference

control. In Proceedings of the 1984 IEEE Symposium on

Security and Privacy, Oakland, California, USA, April 29 -

May 2, 1984, pages 75–87, 1984.

[9] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu,

S. Weng, H. Zhang, and Y. Guo. Deep specifications and

certified abstraction layers. In Proc. 42nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages

(POPL), Mumbai, India, pages 595–608, 2015.

[10] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno,

D. Zhang, and B. Zill. Ironclad apps: End-to-end security

via automated full-system verification. In 11th USENIX

Symposium on Operating Systems Design and Implementation

(OSDI), Broomfield, CO, USA, pages 165–181, 2014.

[11] J. Jürjens. Secrecy-preserving refinement. In FME 2001:

Formal Methods for Increasing Software Productivity, Interna-

tional Symposium of Formal Methods Europe, Berlin, Germany,

March 12-16, 2001, Proceedings, pages 135–152, 2001.

[12] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,

R. Kolanski, and G. Heiser. Comprehensive formal verification

of an OS microkernel. ACM Transactions on Computer

Systems, 32(1), Feb. 2014.

[13] K. R. M. Leino. Dafny: An automatic program verifier for

functional correctness. In Logic for Programming, Artificial

662

Intelligence, and Reasoning (LPAR) - 16th International Con-

ference, Dakar, Senegal, pages 348–370, 2010.

[14] X. Leroy. The CompCert verified compiler. http://

compcert.inria.fr/, 2005–2014.

[15] X. Leroy. A formally verified compiler back-end. Journal of

Automated Reasoning, 43(4):363–446, 2009.

[16] P. Li and S. Zdancewic. Downgrading policies and relaxed

noninterference. In Proc. 32nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL),

Long Beach, California, USA, pages 158–170, 2005.

[17] C. Morgan. The shadow knows: Refinement and security in

sequential programs. Sci. Comput. Program., 74(8):629–653,

2009.

[18] C. Morgan. Compositional noninterference from first princi-

ples. Formal Asp. Comput., 24(1):3–26, 2012.

[19] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, and

G. Klein. Noninterference for operating system kernels. In

Certified Programs and Proofs (CPP) - Second International

Conference, Kyoto, Japan, Proceedings, pages 126–142, 2012.

[20] T. C. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,

S. Seefried, C. Lewis, X. Gao, and G. Klein. sel4: From general

purpose to a proof of information flow enforcement. In IEEE

Symposium on Security and Privacy, pages 415–429, 2013.

[21] A. C. Myers and B. Liskov. A decentralized model for

information flow control. In Proc. 1997 ACM Symposium

on Operating System Principles (SOSP), pages 129–142, 1997.

[22] A. Nanevski, A. Banerjee, and D. Garg. Verification of

information flow and access control policies with dependent

types. In IEEE Symposium on Security and Privacy, pages

165–179, 2011.

[23] A. Sabelfeld and A. C. Myers. A model for delimited informa-

tion release. In Software Security - Theories and Systems, Sec-

ond Mext-NSF-JSPS International Symposium (ISSS), Tokyo,

Japan, pages 174–191, 2003.

[24] A. Sabelfeld and A. C. Myers. Language-based information-

flow security. IEEE Journal on Selected Areas in Communica-

tions, 21(1):5–19, 2003.

[25] A. Sabelfeld and D. Sands. A Per model of secure information

flow in sequential programs. In Programming Languages and

Systems, 8th European Symposium on Programming (ESOP),

Amsterdam, The Netherlands, Proceedings, pages 40–58, 1999.

[26] T. Sewell, S. Winwood, P. Gammie, T. C. Murray, J. Andronick,

and G. Klein. seL4 enforces integrity. In Interactive Theorem

Proving (ITP) - Second International Conference, Berg en Dal,

The Netherlands, Proceedings, pages 325–340, 2011.

[27] The Coq development team. The Coq proof assistant. http:

//coq.inria.fr, 1999 – 2015.

A. Appendix: Example Security Policies

To provide some more intuition on the expressiveness of

observation functions, we will briefly present some examples

of high-level security policies here.

A.1 Example 1: Declassify Parity

As a simple starting example, we will go into some more de-
tail on the parity observation function mentioned in Section 2.
Suppose we have the following add function:

void add() {

a = x + y;

b = b + 2; }

We write the atomic specification of add as a relation between
input state and output state:

(σ, σ′) ∈ Sadd ⇐⇒ σ′ = σ[a →֒ σ(x)+σ(y); b →֒ σ(b)+2]

We specify Alice’s security policy as an observation function:

OA(σ)
△

= [a →֒ σ(a)%2; x →֒ σ(x)%2; y →֒ σ(y)%2]

As explained in Sections 2 and 3, we prove security by
showing that state indistinguishability is preserved by the
high-level semantics. In this example, we assume that the
specification of add constitutes the entirety of the machine
semantics. Hence we must prove:

OA(σ1) = OA(σ2) ∧ (σ1, σ
′

1) ∈ Sadd ∧ (σ2, σ
′

2) ∈ Sadd

=⇒ OA(σ
′

1) = OA(σ
′

2)

This reduces to:

[a →֒ σ1(a)%2; x →֒ σ1(x)%2; y →֒ σ1(y)%2] =

[a →֒ σ2(a)%2; x →֒ σ2(x)%2; y →֒ σ2(y)%2]

=⇒

[a →֒ (σ1(x) + σ1(y))%2; x →֒ σ1(x)%2; y →֒ σ1(y)%2] =

[a →֒ (σ2(x) + σ2(y))%2; x →֒ σ2(x)%2; y →֒ σ2(y)%2]

Since (a + b)%2 = (a%2 + b%2)%2, we see that the atomic

specification of add is indeed secure with respect to Alice’s

observation function. Therefore, we are guaranteed that add

cannot leak any information about program state to Alice

beyond the parities of the values in variables a, x, and y.

A.2 Example 2: Event Calendar Objects

The next example demonstrates modularity of the observation
function. Suppose we have a notion of calendar object where
various events are scheduled at time slots numbered from 1
to N . At each time slot, the calendar contains either None
representing no event, or Some v representing an event whose
details are encoded by integer v. A program state consists of
a calendar object for each principal:

calendar C
△

= N → option Z

state Σ
△

= L → C

We define an observation function, parameterized by an

observer principal, describing the following policy:

1. Each principal can observe the entire contents of his or

her own calendar.

2. Each principal can observe only whether or not time slots

are free in other principals’ calendars, and hence cannot

be influenced by the details of others’ scheduled events.

663

http://compcert.inria.fr/
http://compcert.inria.fr/
http://coq.inria.fr
http://coq.inria.fr

For simplicity, we define the type of observations to be the
same as the type for program state (Σ). For readability, we
write σ(l, n) to indicate the option event located at slot n of
l’s calendar in state σ.

Ol(σ)
△

= λl′ . λn .

σ(l′, n), if l′ = l

None, if l′ 6= l ∧ σ(l′, n) = None

Some 0, if l′ 6= l ∧ σ(l′, n) 6= None

This observation function only reveals details of scheduled

events in a calendar to the calendar’s owner, and therefore

allows a principal to freely modify his or her own calendar

securely. If different principals wish to collaborate in some

way, we must verify that such collaboration is secure with

respect to this observation function. For example, consider

a function sched that attempts to schedule some common

event among a set of principals. Given a list of principals

L and an event e, the function will search for the earliest

time slot n that is free for all principals in L. If such a time

slot is found, then all of the involved principals’ calendars

are updated with event e scheduled at slot n. Otherwise, all

calendars are unchanged. The following is pseudocode, and

operates over a program state that contains an implementation

of the per-principal calendars (Σ) in the array cals:

void sched(list[int] L, int e) {

freeSlot = 0;

for i = 1 to N {

allFree = true;

for j = 1 to |L| {

if (cals[L[j]][i] != None) {

allFree = false;

break;

}

}

if (allFree) {

freeSlot = i;

break;

}

}

if (freeSlot != 0) {

for i = 1 to |L|

cals[L[i]][freeSlot] = Some e;

}

}

With some effort, one can verify that this implementation

of sched satisfies the high-level specification described above

(i.e., the function schedules the new event in the principals’

calendars if they all share an available time slot, or does

nothing otherwise). Once we have the atomic specification,

we can verify that it is secure for all principals, with respect

to the observation function defined above. We will not go

through details of the security proof here, but the general

intuition should be clear: the behavior of sched is only

dependent on the availability of time slots (i.e., the None/Some

status); the specific details of scheduled events are never used.

A.3 Example 3: Security Labels and Dynamic Tainting

Our third example concerns dynamic labels and tainting,
discussed briefly in Section 2. Even though the observation
function is statically defined for an entire execution, we can
use dynamic labels to change the observability of data during
an execution. Assume we have a lattice of security labels L,
with the set of possible labels being a superset of principals
L. Let program state be a function mapping variables to a
pair (v, l) of integer value v and security label l. For a given
principal p, the observation function will only reveal values
that have a security label less than or equal to p in the lattice:

Op(σ)
△

= λx .

{

(v, l), if σ(x) = (v, l) ∧ l ⊑ p

(0, l), if σ(x) = (v, l) ∧ l 6⊑ p

We can now consider primitives that dynamically change
the observability of data by propagating labels. For example,
consider a function add that takes two parameters a and b,
and updates variable x to have a value equal to the sum of
their values, and a label equal to the least upper bound of their
labels. Assuming a direct implementation of labeled integers
as objects, the pseudocode will look like:

void add(lbl_int a, lbl_int b) {

x.val = a.val + b.val;

x.lbl = a.lbl ⊔ b.lbl }

The atomic specification of add is:

(σ, σ′) ∈ Sadd ⇐⇒

σ′ = σ[x →֒ (σ(a).1 + σ(b).1, σ(a).2 ⊔ σ(b).2)]

The security proof for add is straightforward. If two initial

states σ1 and σ2 have equal observations for principal p,

then there are two possibilities. First, if both of the labels

of a and b (in states σ1 and σ2) are less than or equal to

p, then indistinguishability tells us that σ1(a) = σ2(a) and

σ1(b) = σ2(b). Hence the sum of their values in the two

executions will be the same, and so the resulting final states

are indeed indistinguishable. Second, if at least one of the

labels is not less than or equal to p, then the least upper bound

of the labels is also not less than or equal to p. Hence the

observation of x on the final states will be a value of 0, and

so the final states are indistinguishable.

We could go further here and build an entire label-aware

execution environment. Proving security of the high-level

specifications is a similar process to proving soundness in

other label-aware systems. We could then either treat the

labels as purely logical state (like many statically-typed

security systems), erasing them with a simulation relation,

or we could verify a refinement to a machine like the one

used in the SAFE system [2], where labels are actually

implemented in the hardware and the physical machine

performs dynamic label checks and tainting. Regardless

of this choice of label representation, as long as we make

sure our simulation relation preserves indistinguishability

(as discussed in Section 2), the security of the high-level

specifications will automatically give us the whole-execution

noninterference property for the low-level machine.

664

	Introduction
	The Observation Function
	High-Level Security Policies
	Security Formulation
	Security-Preserving Simulation

	End-to-End Security Formalization
	Security Definition of mCertiKOS
	mCertiKOS Overview
	Security Overview

	Security Verification of mCertiKOS
	Limitations and Future Work
	Related Work and Conclusions
	Appendix: Example Security Policies
	Example 1: Declassify Parity
	Example 2: Event Calendar Objects
	Example 3: Security Labels and Dynamic Tainting

