
Certified Self-Modifying Code

Hongxu Cai
Department of Computer Science and

Technology, Tsinghua University
Beijing, 100084, China

hxcai00@mails.tsinghua.edu.cn

Zhong Shao
Department of Computer Science

Yale University
New Haven, CT 06520, USA

shao@cs.yale.edu

Alexander Vaynberg
Department of Computer Science

Yale University
New Haven, CT 06520, USA

alv@cs.yale.edu

Abstract
Self-modifying code (SMC), in this paper, broadly refers to any
program that loads, generates, or mutates code at runtime. It is
widely used in many of the world’s critical software systems to sup-
port runtime code generation and optimization, dynamic loading
and linking, OS boot loader, just-in-time compilation, binary trans-
lation, or dynamic code encryption and obfuscation. Unfortunately,
SMC is also extremely difficult to reason about: existing formal
verification techniques—including Hoare logic and type system—
consistently assume that program code stored in memory is fixed
and immutable; this severely limits their applicability and power.

This paper presents a simple but novel Hoare-logic-like frame-
work that supports modular verification of general von-Neumann
machine code with runtime code manipulation. By dropping the as-
sumption that code memory is fixed and immutable, we are forced
to apply local reasoning and separation logic at the very begin-
ning, and treat program code uniformly as regular data structure.
We address the interaction between separation and code memory
and show how to establish the frame rules for local reasoning even
in the presence of SMC. Our framework is realistic, but designed
to be highly generic, so that it can support assembly code under all
modern CPUs (including both x86 and MIPS). Our system is ex-
pressive and fully mechanized. We prove its soundness in the Coq
proof assistant and demonstrate its power by certifying a series of
realistic examples and applications—all of which can directly run
on the SPIM simulator or any stock x86 hardware.

1. Introduction
Self-modifying code (SMC), in this paper, broadly refers to any
program that purposely loads, generates, or mutates code at run-
time. It is widely used in many of the world’s critical software sys-
tems. For example, runtime code generation and compilation can
improve the performance of operating systems [21] and other ap-
plication programs [20, 13, 31]. Dynamic code optimization can
improve the performance [4, 11] or minimize the code size [7]. Dy-
namic code encryption [29] or obfuscation [15] can support code
protection and tamper-resistant software [3]; they also make it hard
for crackers to debug or decompile the protected binaries. Evolu-
tionary computing systems can use dynamic techniques to support
genetic programming [26]. SMC also arises in applications such
as just-in-time compiler, dynamic loading and linking, OS boot-
loaders, binary translation, and virtual machine monitor.

Unfortunately, SMC is also extremely difficult to reason about:
existing formal verification techniques—including Hoare logic [8,
12] and type system [27, 23]—consistently assume that program
code stored in memory is immutable; this significantly limits their
power and applicability.

In this paper we present a simple but powerful Hoare-logic-
style framework—namely GCAP (i.e., CAP [33] on General von

Examples System where

opcode modification GCAP2 Sec 5.2
control flow modification GCAP2 Sec 6.2

Common unbounded code rewriting GCAP2 Sec 6.5
Basic runtime code checking GCAP1 Sec 6.4

Constructs runtime code generation GCAP1 Sec 6.3
multilevel RCG GCAP1 Sec 4.1
self-mutating code block GCAP2 Sec 6.9
mutual modification GCAP2 Sec 6.7

self-growing code GCAP2 Sec 6.6
polymorphic code GCAP2 Sec 6.8
code optimization GCAP2/1 Sec 6.3

Typical code compression GCAP1 Sec 6.10
Applications code obfuscation GCAP2 Sec 6.9

code encryption GCAP1 Sec 6.10
OS boot loaders GCAP1 Sec 6.1
shellcode GCAP1 Sec 6.11

Table 1. A summary of GCAP-supported applications

Neumann machines)—that supports modular verification of gen-
eral machine code with runtime code manipulation. By dropping
the assumption that code memory is fixed and immutable, we are
forced to apply local reasoning and separation logic [14, 30] at the
very beginning, and treat program code uniformly as regular data
structure. Our framework is realistic, but designed to be highly
generic, so that it can support assembly code under all modern
CPUs (including both x86 and MIPS). Our paper makes the fol-
lowing new contributions:

• Our GCAP system is the first formal framework that can suc-
cessfully certify any form of runtime code manipulation—
including all the common basic constructs and important appli-
cations given in Table 1. We are the first to successfully certify
a realistic OS boot loader that can directly boot on stock x86
hardware. All of our MIPS examples can be directly executed
in the SPIM 7.3 simulator[18].

• GCAP is the first successful extension of Hoare-style program
logic that treats machine instructions as regular mutable data
structures. A general GCAP assertion can not only specify
the usual precondition for data memory but also can ensure
that code segments are correctly loaded into memory before
execution. We develop the idea ofparametric code blocksto
specify and reason about all possible outputs of each self-
modifying program. These results are general and can be easily
applied to other Hoare-style verification systems.

• GCAP supports both modular verification [9] and frame rules
for local reasoning [30]. Program modules can be verified
separately and with minimized import interfaces. GCAP pin-
points the precise boundary between non-self-modifying code
groups and those that do manipulate code at runtime. Non-self-

modifying code groups can be certified without any knowledge
about each other’s implementation, yet they can still be safely
linked together with other self-modifying code groups.

• GCAP is highly generic in the sense that it is the first attempt
to support different machine architectures and instruction sets
in the same framework without modifying any of its inference
rules. This is done by making use of several auxiliary func-
tions that abstract away the machine-specific semantics and by
constructing generic (platform-independent) inference rules for
certifying well-formed code sequences.

In the rest of this paper, we first present our von-Neumann ma-
chine GTM in Section 2. We stage the presentation of GCAP: Sec-
tion 3 presents a Hoare-style program logic for GTM; Section 4
presents a simple extended GCAP1 system for certifying runtime
code loading and generation; Section 5 presents GCAP2 which
extends GCAP1 with general support of SMC. In Section 6, we
present a large set of certified SMC applications to demonstrate
the power and practicality of our framework. Our system is fully
mechanized—the Coq implementation (including the full sound-
ness proof) is available on the web [5].

2. General Target Machine GTM
In this section, we present the abstract machine model and its op-
erational semantics, both of which are formalized inside a mech-
anized meta logic (Coq [32]). After that, we use an example to
demonstrate the key features of a typical self-modifying program.

2.1 SMC on Stock Hardware

Before proceeding further, a few practical issues for implementing
SMC on today’s stock hardware need to be clarified. First, most
CPU nowadays prefetches a certain number of instructions before
executing them from the cache. Therefore, instruction modification
has to occur long before it becomes visible. Meantime, for back-
ward compatibility, some processors would detect and handle this
itself (at the cost of performance). Another issue is that some RISC
machines require the use of branch delay slots. In our system, we
assume that all these are hidden from programmers at the assembly
level (which is true for the SPIM simulator).

There exist more obstacles against SMC at the OS level. Oper-
ating systems usually assign a flag to each memory page to protect
data from being executed or, code from being modified. But this
can often be get around through special techniques. For example,
only stacks are allowed to support both the writing access and the
execution at the same time under Microsoft Windows, which pro-
vides a way to do SMC.

To simplify the presentation, we will no longer consider these
effects because they do not affect our core ideas in the rest of
this paper. It is important to first sort out the key techniques for
reasoning about SMC, while applying our system to deal with
specific hardware and OS restrictions will be left as future work.

2.2 Abstract Machine

Our general machine model, namely GTM, is an abstract frame-
work for von Neumann machines. GTM is general because it can be
used to model modern computing architecture such as x86, MIPS,
or PowerPC. Fig 1 shows the essential elements of GTM. An in-
stanceM of a GTM machine is modeled as a 5-tuple that deter-
mines the machine’s operational semantics.

A machine stateS should consist of at least a memory com-
ponentM, which is a partial map from the memory address to its
storedBytevalue.Bytespecifies the machine byte which is the min-
imum unit of memory addressing. Note that because the memory
component is a partial map, its domain can be any subset of nat-
ural numbers.E represents other additional components of a state,

(Machine) M ::= (Extension, Instr, Ec : Instr→ ByteList,
Next : Address→ Instr→ State⇀ State,
Npc : Address→ Instr→ State→ Address)

(State) S ::= (M,E)

(Mem) M ::= {f{ b}∗

(Extension) E ::= . . .

(Address) f,pc ::= . . . (nat nums)

(Byte) b ::= . . . (0..255)

(ByteList) bs ::= b,bs | b

(Instr) ι ::= . . .

(World) W ::= (S,pc)

Figure 1. Definition of target machine GTM

If Decode(S,pc, ι) is true, then

(S,pc) 7−→
(

Nextpc,ι(S), Npcpc,ι(S)
)

Figure 2. GTM program execution

which may include register files and disks, etc. No explicit code
heap is involved: all the code is encoded and stored in the memory
and can be accessed just as regular data.Instr specifies the instruc-
tion set, with an encoding functionEc describing how instructions
can be stored in memory as byte sequences. We also introduce an
auxiliary Decode predicate which is defined as follows:

Decode((M,E),f, ι) , Ec(ι) = (M[f], . . . ,M[f+|Ec(ι)|−1])

In other words,Decode(S,f, ι) states that under the stateS, certain
consecutive bytes stored starting from memory addressf are pre-
cisely the encoding of instructionι.

Program execution is modeled as a small-step transition relation
between twoWorlds (i.e.,W 7−→W′), where a worldW is just a
state plus a program counterpc that indicates the next instruction to
be executed. The definition of this transition relation is formalized
in Fig 2.Next andNpc are two functions that define the behavior of
all available instructions. When instructionι located at addresspc is
executed at stateS, Nextpc,ι(S) is the resulting state andNpcpc,ι(S)
is the resulting program counter. Note thatNext could be a partial
function (since memory is partial) whileNpc is always total.

To make a step, a certain number of bytes starting frompc are
fetched out and decoded into an instruction, which is then executed
following theNext andNpc functions. There will be no transition if
Next is undefined on a given state. As expected, if there is no valid
transition from a world, the execution gets stuck.

To make program execution deterministic, the following condi-
tion should be satisfied:

∀S,f, ι1, ι2.Decode(S,f, ι1)∧Decode(S,f, ι2) −→ ι1 = ι2

In other words,Ec should be prefix-free: under no circumstances
should the encoding of one instruction be a prefix of the encoding of
another one. Instruction encodings on real machines follow regular
patterns (e.g., the actual value for each operand is extracted from
certain bits). These properties are critical when involving operand-
modifying instructions. Appelet al [2, 22] gave a more specific
decoding relation and an in-depth analysis.

The definitions of theNext andNpc functions should also guar-
antee the following property: if ((M,E),pc) 7−→ ((M′,E′),pc′) and
M
′′ is a memory whose domain does not overlap with those ofM

andM′, then ((M∪M′′,E),pc) 7−→ ((M′∪M′′,E′),pc′). In other
words, adding extra memory does not affect the execution process
of the original world. This property can be further refined into the
following two fundamental requirements of theNext andNpc func-

2 2007/3/31

(State) S ::= (M,R)

(RegFile) R ∈ Register→ Value

(Register) r ::= $1 | . . . | $31

(Value) i, 〈w〉1 ::= . . . (int nums)

(Word) w, 〈i〉4 ::= b,b,b,b

(Instr) ι ::= nop | li rd, i | add rd,rs,rt | addi rt ,rs, i
| move rd,rs| lw rt , i(rs) | sw rt , i(rs)
| la rd,f | j f | jr rs | beq rs,rt , i | jal f
| mul rd,rs,rt | bne rs,rt , i

Figure 3. MMIPS data types

Ec(ι) , . . . ,
if ι = thenNextpc,ι(M,R) =

jal f (M,R{$31{pc+4})
nop (M,R)
li rd, i

/

la rd, i (M,R{rd{ i})
add rd,rs,rt (M,R{rd{R(rs)+R(rt)})
addi rt ,rs, i (M,R{rt{R(rs)+i})
move rd,rs (M,R{rd{R(rs)})
lw rt , i(rs) (M,R{rt{ 〈M(f), . . . ,M(f+3)〉1})

if f = R(rs)+i ∈ dom(M)
sw rt , i(rs) (M{f, . . . ,f+3{ 〈R(rt)〉4},R)

if f = R(rs)+i ∈ dom(M)
mul rd,rs,rt (M,R{rd{R(rs)×R(rt)})
Otherwise (M,R)

and

if ι = thenNpcpc,ι(M,R) =

j f f

jr rs R(rs)

beq rs,rt , i











pc+ i whenR(rs) = R(rt),
pc+4 whenR(rs) , R(rt)

jal f f

bne rs,rt , i











pc+ i whenR(rs) , R(rt),
pc+4 whenR(rs) = R(rt)

Otherwise pc+|Ec(ι)|

Figure 4. MMIPS operational semantics

tions:

∀M,M′,M0,E,E
′
,pc, ι.M⊥M0∧Nextpc,ι(M,E) = (M′,E′)→

M
′⊥M0∧Nextpc,ι(M⊎M0,E) = (M′⊎M0,E

′) (1)

∀pc, ι,M,M′,E.Npcpc,ι(M,E) = Npcpc,ι(M⊎M
′
,E) (2)

where

M⊥M′ , dom(M)∩dom(M′)=∅,

M⊎M′ ,M∪M′ if M⊥M′.

2.3 Specialization

By specializing every component of the machineM according to
different architectures, we obtain different machines instances.

MIPS specialization. The MIPS machineMMIPS is built as an
instance of the GTM framework (Fig 3). InMMIPS, the machine
state consists of a (M,R) pair, whereR is a register file, defined
as a map from each of the 31 registers to a stored value. $0 is not
included in the register set since it always stores constant zero and
is immutable according to MIPS convention. A machineWordis the
composition of fourBytes. To achieve interaction between registers
and memory, two operators —〈·〉1 and〈·〉4 — are defined (details
omitted here) to do type conversion betweenWordandValue.

(Word) w ::= b,b
(State) S ::= (M,R,D)

(RegFile) R ::= {r16{ w}∗ ∪{rs{ w}
∗

(Disk) D ::= {l{ b}∗

(Word Regs) r16 ::= rAX | rBX | rCX | rDX | rS I | rDI | rBP | rS P

(Byte Regs) r8 ::= rAH | rAL | rBH | rBL | rCH | rCL | rDH | rDL

(S egment Regs) rs ::= rDS | rES | rS S

(Instr) ι ::= movw w,r16 | movw r16,rS | movb b,r8

| jmp b | jmpl w,w | int b | . . .

Figure 5. Mx86 data types

R(rAH) := R(rAX)&(255≪ 8) R(rAL) := R(rAX)&255
R(rBH) := R(rBX)&(255≪ 8) R(rBL) := R(rBX)&255
R(rCH) := R(rCX)&(255≪ 8) R(rCL) := R(rCX)&255
R(rDH) := R(rDX)&(255≪ 8) R(rDL) := R(rDX)&255

R{rAH{b} := R{rAX{ (R(rAX)&255|b≪ 8)}
R{rAL{b} := R{rAX{ (R(rAX)&(255≪ 8)|b)}
R{rBH{b} := R{rBX{ (R(rBX)&255|b≪ 8)}
R{rBL{b} := R{rBX{ (R(rBX)&(255≪ 8)|b)}
R{rCH{b} := R{rCX{ (R(rCX)&255|b≪ 8)}
R{rCL{b} := R{rCX{ (R(rCX)&(255≪ 8)|b)}
R{rDH{b} := R{rDX{ (R(rDX)&255|b≪ 8)}
R{rDL{b} := R{rDX{ (R(rDX)&(255≪ 8)|b)}

Figure 6. Mx86 8-bit register use

Ec(ι) , . . . ,

if ι = thenNextpc,ι(M,R,D) =

movw w,r16 (M,R{r16{w},D)
movw r16

1,r
16

2 (M,R{r16
2{R(r16

1)},D)
movw r16,rS (M,R{rS{R(r16)},D)
movw rS,r16 (M,R{r16{R(rS)},D)
movb b,r8 (M,R{r8{b},D)
movb r8

1,r
8

2 (M,R{r8
2{R(r8

1)},D)
jmp b (M,R,D)
jmpl w1,w2 (M,R,D)
int b BIOS Callb (M,R,D)
.

and
if ι = thenNpcpc,ι(M,R) =

jmp b pc+2+b
jmpl w1,w2 w1 ∗16+w2
Non-jmp instructions pc+|Ec(ι)|
.

Figure 7. Mx86 operational semantics

The set of instructionsInstr is minimal and it contains only
the basic MIPS instructions, but extensions can be easily made.
MMIPS supports direct jump, indirect jump, and jump-and-link
(jal) instructions. It also provides relative addressing for branch
instructions (e.g.beq rs,rt, i), but for clarity we will continue using
code labels to represent the branching targets in our examples.

TheEc function follows the official MIPS documentation and is
omitted. Interested readers can read our Coq implementation. Fig 4
gives the definitions ofNext andNpc. It is easy to see that these
functions indeed satisfy the requirements we mentioned earilier.

x86 (16-bit) specialization. In Fig 5, we show our x86 machine,
Mx86, as an instance of GTM. The specification ofMx86 is a
restriction of the real x86 architecture. It is limited to 16-bit real
mode, and has only a small subset of instructions, including indirect
and conditional jumps. We must note, however, that this is not due

3 2007/3/31

Call 0x13 (disk operations) (id = 0x13)
Command 0x02 (disk read) (R(rAH) = 0x02)

Parameters
Count = R(rAL) Cylinder= R(rCH)
Sector = R(rCL) Head = R(rDH)
Disk Id= R(rDL) Bytes = Count∗512
Src = (Sector−1)∗512
Dest = R(rES)∗16+R(rBX)

Conditions
Cylinder= 0 Head= 0
Disk Id= 0x80 Sector< 63

Effect
M
′ =M{Dest+ i{D(S rc+ i)} (0≤ i ≤ Bytes)
R
′ = R{rAH{0} D

′ = D

Figure 8. Subset ofMx86 BIOS operations

.data # Data declaration section

100 new: addi $2, $2, 1 # the new instr

.text # Code section

200 main: beq $2, $4, modify # do modification
204 target: move $2, $4 # original instr
208 j halt # exit

212 halt: j halt

216 modify: lw $9, new # load new instr
224 sw $9, target # store to target
232 j target # return

Figure 9. opcode.s: Opcode modification

to inability to add such instructions, but simply due to the lack of
time that would be needed to be both extensive and correct in our
definitions. But the subset is not so trivial as to be useless; in fact
it is adequate for certification of interesting examples such as OS
boot loaders.

In order to certify a boot loader, we augment theMx86 state to
include a disk. Everything else that is machine specific has no effect
on the GTM specification. Some of the features ofMx86 include the
8-bit registers, which are dependent on 16-bit registers. This fact
that is responsible for Fig 6, which shows how the 8-bit registers
are extracted out of the 16-bit ones. The memory ofMx86 is
segmented, a fact which is mostly invisible, except in the long jump
instruction (Fig 7). as a black box with proper formal specifications
(Fig 8). We define the BIOS call as a primitive operation in the
semantics. In this paper, we only define a BIOS command for disk
read, as it is needed for our boot loader.

Since the rules of the BIOS semantics are large, it is unwieldy to
present them in the usual mathematical notation, and instead a more
descriptive form is used. The precise definition can be extracted if
one takes the parameters to be let statements, the condition and
the command number to be a conjunctive predicate over the initial
state, and the effect to be the ending state in the form (M′,R′,D′).

Since we did not want to present a complex definition of the
disk, we assume our disk has only one cylinder, one side, and 63
sectors. The BIOS disk read command uses that assumption.

2.4 A Taste of SMC

We give a sample piece of self-modifying code (i.e.,opcode.s)
in Fig 9. The example is written inMMIPS syntax. We use line
numbers to indicate the location of each instruction in memory.
It seems that this program will copy the value of register $4 to

register $2 and then callhalt. But it could jump to themodify
subroutine first which will overwrite thetarget code with the new
instructionaddi $2,$2,1. So the actual result of this program can
vary: if R($2), R($4), the program copies the value of $4 to $2;
otherwise, the program simply adds $2 by 1.

Even such a simple program cannot be handled by any existing
verification frameworks since none of them allow code to be mu-
tated at anytime. General SMCs are even more challenging: they
are difficult to understand and reason about because the actual pro-
gram itself is changing during the execution—it is difficult to figure
out the program’s control and data flow.

3. Hoare-Style Reasoning under GTM
Hoare-style reasoning has always been done over programs with
separate code memory. In this section we want to eliminate such re-
striction. To reason about GTM programs, we formalize the syntax
and the operational semantics of GTM inside a mechanized meta
logic. For this paper we will use the calculus of inductive construc-
tions (CiC) [32] as our meta logic. Our implementation is done us-
ing Coq [32] but all our results also apply to other proof assistants.

We will use the following syntax to denote terms and predicates
in the meta logic:

(Term) A,B ::= Set | Prop | Type | x | λx:A.B | A B
| A→B | ind. def.| . . .

(Prop) p,q ::= True | False | ¬p | p∧q | p∨q | p→ q
| ∀x:A. p | ∃x:A. p | . . .

3.1 From Invariants to Hoare Logic

The program safety predicate can be defined as follows:

Safenn(W) ,

{

True if n= 0
∃W′.W 7−→W′∧Safenn−1(W′) if n> 0

Safe(W) , ∀n:Nat.Safenn(W)

Safenn states that the machine is safe to executen steps from a
world, whileSafe describes that the world is safe to run forever.

Invariant-based method [17] is a common technique for proving
safety properties of programs.

Definition 3.1 An invariant is a predicate, namelyInv, defined
over machine worlds, such that the following holds:

• ∀W. Inv(W) −→ ∃W′. (W 7−→W′) (Progress)
• ∀W. Inv(W)∧ (W 7−→W′) −→ Inv(W′) (Preservation)

The existence of an invariant immediately implies program safety,
as shown by the following theorem.

Theorem 3.2 If Inv is an invariant then∀W. Inv(W)→ Safe(W).

Invariant-based method can be directly used to prove the exam-
ple we just presented in Fig 9: one can construct a global invariant
for the code, as much like the tedious one in Fig 10, which satisfies
our Definition 3.1.

Invariant-based verification is powerful especially when carried
out with a rich meta logic. But a global invariant for a program,
usually troublesome and complicated, is often unrealistic to di-
rectly find and write down. A global invariant needs to specify the
condition on every memory address in the code. Even worse, this
prevents separate verification (of different components) and local
reasoning, as we see: every program module has to be annotated
with the same global invariant which requires the knowledge of the
entire code base.

4 2007/3/31

Inv(M,R,pc) , Decode(M,100, ι100)∧Decode(M,200, ι200)∧

Decode(M,208, ι208)∧Decode(M,212, ι212)∧Decode(M,216, ι216)∧

Decode(M,224, ι224)∧Decode(M,232, ι232)∧ (

(pc=200∧Decode(M,204, ι204))∨ (pc=204∧Decode(M,204, ι204))∨

(pc=204∧Decode(M,204, ι100)∧R($2)= R($4))∨

(pc=208∧R($4)≤ R($2)≤ R($4)+1)∨

(pc=212∧R($4)≤ R($2)≤ R($4)+1)∨ (pc=216∧R($2), R($4))∨

(pc=224∧R($2)= R($4)∧〈R($9)〉4 = Ec(ι100))∨

(pc=232∧R($2)= R($4)∧Decode(M,204, ι100)))

Figure 10. A global invariant for the opcode example

{p1}

{p2}

{p3}

f1:

f2:

f3:

Code Heap Code Blocks Control Flow

f1:

f2:

f3:

Figure 11. Hoare-style reasoning of assembly code

Traditional Hoare-style reasoning over assembly programs
(e.g., CAP [33]) is illustrated in Fig 11. Program code is assumed
to be stored in a static code heap separated from the main mem-
ory. A code heap can be divided into different code blocks (i.e.
consecutive instruction sequences) which serve as basic certify-
ing units. A precondition is assigned to every code block, whereas
no postcondition shows up since we often use CPS (continuation
passing style) to reason about low-level programs. Different blocks
can be independently verified then linked together to form a global
invariant and complete the verification.

Here we present a Hoare-logic-based system GCAP0 for GTM.
Comparing to the limited usage of existing systems TAL or CAP, a
system working on GTM do have several advantages:

First, instruction set and operational semantics come as an in-
tegrated part for a TAL or CAP system, thus are usually fixed and
limited. Although extensions can be made, it costs fair amount of
efforts. On the other hand, GTM abstracts both components out,
and a system that directly works on it will be robust and suitable
for different architecture.

Also, GTM is more realistic since it has the benefit that pro-
grams are encoded and stored in memory as real computing plat-
form does. Besides regular assembly code, A GTM-based verifica-
tion system would be able to manage real binary code.

Our generalization is not trivial. Firstly, unifying different types
of instructions (especially between regular command and control
transfer instruction) without loss of usability requires an intrinsic
understanding of the relation between instructions and program
specifications. Secondly, code is easily guaranteed to be immutable
in an abstract machine that separates code heap as an individual
component, which GTM is different from. Surprisingly, the same

(CodeBlock) B ::= f : I

(InstrSeq) I ::= ι; I | ι

(CodeHeap) C ::= {f{ I}∗

(Assertion) a ∈ State→ Prop

(ProgSpec) Ψ ∈ Address⇀ Assertion

Figure 12. Auxiliary constructs and specifications

a⇒ a′ , ∀S. (a S→ a′S) a⇔ a′ , ∀S. (a S↔ a′S)

¬a , λS.¬a S a∧a′ , λS.a S∧a′S

a∨a′ , λS.a S∨a′S a→ a′ , λS.a S→ a′S

∀x.a , λS.∀x. (a S) ∃x.a , λS.∃x. (a S)

a∗a′ , λ(M0,R).∃M,M′.M0=M⊎M
′∧a(M,R)∧a′(M′,R)

whereM⊎M′ ,M∪M′ whenM⊥M′, M⊥M′ , dom(M)∩dom(M′)=∅

Figure 13. Assertion operators

immutability can be enforced in the inference rules using a simple
separation conjunction borrowed from separation logic [14, 30].

3.2 Specification Language

Our specification language is defined in Fig 12. A code blockB is a
syntactic unit that represents a sequenceI of instructions, beginning
at specific memory addressf. Note that in CAP, we usually insist
that jump instructions can only appear at the end of a code block.
This is no longer required in our new system so the division of code
blocks is much more flexible.

The code heapC is a collection of code blocks that do not over-
lap, represented by a finite mapping from addresses to instruction
sequences. Thus a code block can also be understood as a singleton
code heap. To support Hoare-style reasoning, assertions are defined
as predicates over GTM machine states (i.e., via “shallow embed-
ding”). A program specificationΨ is a partial function which maps
a memory address to its corresponding assertion, with the intention
to represent the precondition of each code block. Thus,Ψ only has
entries at each location that indicates the beginning of a code block.

Fig 13 defines an implication relation and a equivalence relation
between two assertions (⇒) and also lifts all the standard logical
operators to the assertion level. Note the difference betweena→ a′

anda⇒ a′: the former is an assertion, while the latter is a propo-
sition! We also define standard separation logic primitives [14, 30]
as assertion operators. The separating conjunction (∗) of two asser-
tions holds if they can be satisfied on two separating memory ar-
eas (the register file can be shared). Separating implication, empty
heap, or singleton heap can also be defined directly in our meta
logic. Solid work has been established on separation logic, which
we use heavily in our proofs.

Lemma 3.3 (Properties for separation logic)Let a, a′ anda′′ be
assertions, then we have

1. For any assertionsa anda′, we havea∗a′⇔ a′ ∗a.
2. For any assertionsa, a′ anda′′, we have (a∗a′)∗a′′⇔ a∗ (a′ ∗
a′′).

3. Given typeT, for any assertion functionP∈ T→ Assertionand
assertiona, we have (∃x ∈ T.P x)∗a⇔∃x ∈ T. (P x∗a).

4. Given typeT, for any assertion functionP∈ T→ Assertionand
assertiona, we have (∀x ∈ T.P x)∗a⇔∀x ∈ T. (P x∗a).

We omit the proof of these properties since they are standard laws
of separation logic [14, 30].

5 2007/3/31

blk(f : I) ,











λS.Decode(S,f, ι) if I = ι
λS.Decode(S,f, ι)∧ (blk(f+|Ec(ι)| : I′) S) if I = ι; I′

blk(C) , ∀f ∈ dom(C).blk(f : C(f))

Ψ⇒ Ψ′ , ∀f ∈ dom(Ψ). (Ψ(f)⇒ Ψ′(f))

(Ψ1∪Ψ2)(f) ,























Ψ1(f) if f ∈ dom(Ψ1) \dom(Ψ2)
Ψ2(f) if f ∈ dom(Ψ2) \dom(Ψ1)
Ψ1(f)∨Ψ2(f) if f ∈ dom(Ψ1)∩dom(Ψ2)

Figure 14. Predefined functions

Ψ ⊢W (Well-formed World)

Ψ ⊢ C : Ψ (a∗ (blk(C)∧blk(pc : I)) S Ψ ⊢{a}pc : I

Ψ ⊢ (S,pc)
()

Ψ ⊢ C : Ψ′ (Well-formed Code Heap)

Ψ1 ⊢ C1 : Ψ′1 Ψ2 ⊢ C2 : Ψ′2 dom(C1)∩dom(C2) = ∅

Ψ1∪Ψ2 ⊢ C1∪C2 : Ψ′1∪Ψ
′
2

(-)

Ψ ⊢{a}f : I

Ψ ⊢ {f{ I} : {f{ a}
()

Ψ ⊢{a}B (Well-formed Code Block)

Ψ ⊢{a′}(f+|Ec(ι)|) : I Ψ∪{f+|Ec(ι)|{ a′} ⊢ {a}f : ι

Ψ ⊢{a}f : ι; I
()

∀S.a S→ Ψ(Npcf,ι(S)) (Nextf,ι(S))

Ψ ⊢{a}f : ι
()

Figure 15. Inference rules for GCAP0

Fig 14 defines a few important macros:blk(B) holds if B is
stored properly in the memory of the current state;blk(C) holds
if all code blocks in the code heapC are properly stored. We also
define two operators between program specifications. We say that
one program specification is stricter than another, namelyΨ⇒ Ψ′,
if every assertion inΨ implies the corresponding assertion at the
same address inΨ′. The union of two program specifications is just
the disjunction of the two corresponding assertions at each address.
Clearly, any two program specifications are stricter than their union
specification.

3.3 Inference Rules

Fig 15 presents the inference rules of GCAP0. We give three sets
of judgments (from local to global): well-formed code block, well-
formed code heap, and well-formed world.

Intuitively, a code block is well-formed (Ψ ⊢ {a}B) iff, starting
from a state satisfying its preconditiona, the code block is safe to
execute until it jumps to a location in a state satisfying the spec-
ification Ψ. The well-formedness of a single instruction (rule-
) directly follows this understanding. Inductively, to validate
the well-formedness of a code block beginning withι under pre-
conditiona (rule ), we should find an intermediate assertion
a′ serving simultaneously as the precondition of the tail code se-
quence, and the postcondition ofι. In the second premise of,
since our syntax does not have a postcondition,a′ is directly fed
into the accompanied specification.

Note that for a well-formed code block, even though we have
added an extra entry to the program specificationΨ when we
validate each individual instruction, theΨ used for validating each
code block and the tail code sequence remains the same.

We can instantiate the and rules on each instruction
if necessary. For example, specializing over the direct jump
(j f′) results in the following rule:

a⇒Ψ(f′)

Ψ ⊢{a}f : j f′
()

Specializing over theadd instruction makes

Ψ ⊢{a′}f+4: I Ψ∪{f+4{ a′} ⊢ {a}f : add rd,rs,rt

Ψ ⊢{a}f : add rd,rs,rt; I

which via can be further reduced into

Ψ ⊢{a′}f+4: I
∀(M,R).a (M,R)→ a′ (M,R{rd{R(rs)+R(rt)})

Ψ ⊢{a}f : add rd,rs,rt; I
()

Another interesting case is the conditional jump instructions,
such asbeq, which can be instantiated from rule as

Ψ ⊢{a′}(f+4) : I ∀(M,R).a (M,R)→ ((R(rs) = R(rt)→
Ψ(f+i) (M,R))∧ (R(rs) , R(rt)→ a′ (M,R)))

Ψ ⊢{a}f : beq rs,rt, i; I
()

The instantiated rules are straightforward to understand and
convenient to use. Most importantly, they can be automatically
generated directly from the operational semantics for GTM.

The well-formedness of a code heap (Ψ ⊢ C : Ψ′) states that
givenΨ′ specifying the preconditions of each code block ofC, all
the code inC can be safely executed with respect to specificationΨ.
Here the domain ofC andΨ′ should always be the same. The
rule casts a code block into a corresponding well-formed singleton
code heap, and the- rule merges two disjoint well-formed
code heaps into a larger one.

A world is well-formed with respect to a global specificationΨ
(the rule), if

• the entire code heap is well-formed with respect toΨ;

• the code heap and the current code block is properly stored;

• A preconditiona is satisfied, separately from the code section;

• the instruction sequence is well-formed undera.

The  rule also shows how we use separation conjunction to
ensure that the whole code heap is indeed in the memory and
always immutable; because assertiona cannot refer to the memory
region occupied byC, and the memory domain never grow during
the execution of a program, the whole reasoning process below the
top level never involves the code heap region. This guarantees that
no code-modification can happen during the program execution.

To verify the safety and correctness of a program, one needs to
first establish the well-formedness of each code block. All the code
blocks are linked together progressively, resulting in a well-formed
global code heap where the two accompanied specifications must
match. Finally, the rule is used to prove the safety of the
initial world for the program.

Soundness and frame rules.The soundness of GCAP0 guaran-
tees that any well-formed world is safe to execute. Establishing a
well-formed world is equivalent to an invariant-based proof of pro-
gram correctness: the accompanied specificationΨ corresponds to
a global invariant that the current world satisfies. This is established
through a series of weakening lemmas, then progress and preserva-
tion lemmas; frame rules are also easy to prove.

Lemma 3.4Ψ ⊢ C : Ψ′ if and only if for everyf ∈ dom(Ψ′) we
havef ∈ dom(C) andΨ ⊢{Ψ′(f)}f : C(f).

Proof Sketch:For the necessity, prove from inversion of the-

6 2007/3/31

 rule, the rule, and the- rule. For the suffi-
ciency, just repetitively apply the- rule. �

Lemma 3.5 contains the standard weakening rules and can be
proved by induction over the well-formed-code-block rules and by
using Lemma 3.4.

Lemma 3.5 (Weakening Properties)

Ψ ⊢{a}B Ψ⇒Ψ′ a′⇒ a

Ψ′ ⊢{a′}B
(-)

Ψ1 ⊢ C : Ψ2 Ψ1⇒Ψ
′
1 Ψ′2⇒ Ψ2

Ψ′1 ⊢ C : Ψ′2
(-)

Proof:
1. By doing induction over the rule and the rule, we

have the result.
2. Easy to see from 1 and Lemma 3.4. �

Lemma 3.6 (Progress)If Ψ ⊢W, then there exists a programW′,
such thatW 7−→W′.

Proof: By inversion of the rule we know that there is a
code sequenceI indeed in the memory starting from the current
pc. Suppose the first instruction ofI is ι, then from the rules for
well-formed code blocks, we learn that there existsΨ′, such that
Ψ′ ⊢{a}ι.

Sincea is satisfied for the current state, by inversion of the
 rule, this guarantees that our worldW is safe to be executed
further for at least one step. �

Lemma 3.7 (Preservation)If Ψ ⊢W andW 7−→W′, thenΨ ⊢W′.

Proof Sketch:Suppose the premises of the rule hold. Again,
a code blockpc : I is present in the current memory. We only
need to find ana′ andI′ satisfying (a′ ∗ (blk(C)∧ blk(pc : I′)) S
andΨ ⊢ {a′}pc : I′, when there is aW′ = (M′,E′,pc′) such that
W 7−→W′.

There are two cases:

1. I = ι is a single-instruction sequence. It would be easy to show
thatpc′ ∈ dom(Ψ) andpc′ ∈ dom(C). We choose

a′ = Ψ(pc′), andI′ = C(pc′)

to satisfy the two conditions.
2. I = ι; I′ is a multi-instruction sequence. Then by inversion of

the  rule, either we reduce to the previous case, orpc′ =
pc+|Ec(ι)| and there is ana′ such thatΨ ⊢ {a′}pc′ : I′. Thusa′

andI′ are what we choose to satisfy the two conditions. �

Theorem 3.8 (Soundness of GCAP0)If Ψ ⊢W, thenSafe(W).

Proof: Define predicateInv , λW. (Ψ ⊢W). Then by Lemma 3.6
and Lemma 3.7,Inv is an invariant of GTM. Together with Theo-
rem 3.2, the conclusion holds. �

The following lemma (a.k.a., the frame rule) captures the
essence of local reasoning for separation logic:

Lemma 3.9
Ψ ⊢{a}B

(λf.Ψ(f)∗a′) ⊢{a∗a′}B
(-)

wherea′ is independent of every register modified byB.

Ψ ⊢ C : Ψ′

(λf.Ψ(f)∗a) ⊢ C : λf.Ψ′(f)∗a
(-)

wherea is independent of every register modified byC.

Ψ ⊢W (Well-formed World)

Ψ ⊢ (C,Ψ) C
′ ⊆ C

(a∗ (blk(C′)∧blk(pc : I))) S Ψ′ ⊢{a}pc : I
∀f ∈ dom(Ψ′). (Ψ′(f)∗ (blk(C′)∧blk(pc : I))⇒ Ψ(f))

Ψ ⊢ (S,pc)
(-)

Ψ ⊢ (C,Ψ′) (Well-formed Code Specification)

Ψ1 ⊢ (C1,Ψ
′
1) Ψ2 ⊢ (C2,Ψ

′
2) dom(C1)∩dom(C2) = ∅

Ψ1∪Ψ2 ⊢ (C1∪C2,Ψ
′
1∪Ψ

′
2)

(-)

Ψ ⊢ C : Ψ′

Ψ∗blk(C) ⊢ (C,Ψ′ ∗blk(C))
()

Figure 16. Inference rules for GCAP1

Proof: For the first rule, we need the following important fact of
our GTM specializations:

If M0⊥M1 and

Nextpc,ι(M0,E) = (M′0,E
′),

then we haveM′0⊥M1, and

Nextpc,ι(M0⊎M1,E) = (M′0⊎M1,E
′)

Then it is easy to prove by induction over the two well-formed code
block rules. The second rule is thus straightforward. �

Note that the correctness of this rule relies on the condition we gave
in Sec 2 (incorporating extra memory does not affect the program
execution), as also pointed out by Reynolds [30].

With the- rule, one can extend a locally certified
code block with an extra assertion, given the requirement that this
assertion holds separately in conjunction with the original assertion
as well as the specification. Frame rules at different levels will be
used as the main tool to divide code and data to solve the SMC issue
later. All the derived rules and the soundness proof have been fully
mechanized in Coq [5] and will be used freely in our examples.

4. Certifying Runtime Code Generation
GCAP1 is a simple extension of GCAP0 to support runtime code
generation. In the top rule for GCAP0, the preconditiona for
the current code block must not specify memory regions occupied
by the code heap, and all the code must be stored in the memory and
remain immutable during the whole execution process. In the case
of runtime code generation, this requirement has to be relaxed since
the entire code may not be in the memory at the very beginning—
some can be generated dynamically!

Inference rules. GCAP1 borrows the same definition of well-
formed code heaps and well-formed code blocks as in GCAP0: they
use the same set of inference rules (see Fig 15). To support runtime
code generation, we change the top rule and insert an extra layer
of judgments called well-formed code specification (see Fig 16)
between well-formed world and well-formed code heap.

If “well-formed code heap” is a static reasoning layer, “well-
formed code specification” is more like a dynamic one. Inside
an assertion for a well-formed code heap, no information about
program code is included, since it is implicitly guaranteed by the
code immutability property. For a well-formed code specification,
on the other hand, all information about the required program code
should be provided in the precondition for all code blocks.

We use the rule to transform a well-formed code heap
into a well-formed code specification by attaching the whole code
information to the specifications on both sides.- rule has the
same form as-, except that it works on the dynamic layer.

7 2007/3/31

The new top rule (-) replaces a well-formed code heap
with a well-formed code specification. The initial condition is now
weakened! Only the current (locally immutable) code heap with the
current code block, rather than the whole code heap, is required to
be in the memory. Also, when proving the well-formedness of the
current code block, the current code heap information is stripped
from the global program specification.

Local reasoning. On the dynamic reasoning layer, since code in-
formation is carried with assertions and passed between code mod-
ules all the time, verification of one module usually involves the
knowledge of code of another (as precondition). Sometimes, such
knowledge is redundant and breaks local reasoning. Fortunately,
a frame rule can be established on the code specification level as
well. We can first locally verify the module, then extend it with the
frame rule so that it can be linked with other modules later.

Lemma 4.1
Ψ ⊢ (C,Ψ′)

(λf.Ψ(f)∗a) ⊢ (C,λf.Ψ′(f)∗a)
(-)

wherea is independent of any register that is modified byC.

Proof: By induction over the derivation forΨ ⊢ (C,Ψ′). There are
only two cases: if the final step is done via the- rule, the
conclusion follows immediately from the induction hypothesis; if
the final step is via the rule, it must be derived from a well-
formed-code-heap derivation:

Ψ0 ⊢ C : Ψ′0 (3)

with Ψ = λf.Ψ0(f)∗blk(C) andΨ′ = λf.Ψ′0(f)∗blk(C); we first
apply the- rule to (3) obtain:

(λf.Ψ0(f)∗a) ⊢ C : λf.Ψ′0(f)∗a

and then apply the rule to get the conclusion. �

In particular, by setting the above assertiona to be the knowl-
edge about code not touched by the current module, the code can
be excluded from the local verification.

As a more concrete example, suppose that we have two locally
certified code modulesC1 andC2, whereC2 is generated byC1 at
runtime. We first apply- to extendC2 with assertion
blk(C1), which reveals the fact thatC1 does not change during
the whole executing process ofC2. After this, the- rule is
applied to link them together into a well-formed code specification.
We give more examples about GCAP1 in Section 6.

Soundness. The soundness of GCAP1 can be established in the
same way as Theorem 3.8 (see TR [5] for more detail).

Theorem 4.2 (Soundness of GCAP1)If Ψ ⊢W, thenSafe(W).

This theorem can be established following a similar technique
as in GCAP0 (more cases need to be analyzed because of the
additional layer). However, we decide to delay the proof to the next
section to give better understanding of the relationship between
GCAP1 and our more general framework GCAP2. By converting a
well-formed GCAP1 program to a well-formed GCAP2 program,
we will finally see that GCAP1 is sound given the fact that GCAP2
is sound (see Theorem 5.5 and Theorem 5.8 in the next section).

To verify a program that involves run-time code generation, we
first establish the well-formedness of each code module (which
never modifies its own code) using the rules for well-formed code
heap as in GCAP0. We then use the dynamic layer to combine these
code modules together into a global code specification. Finally we
use the new- rule to establish the initial state and prove the
correctness of the entire program.

The original code:

B1







































































main: la $9, gen # get the target addr
li $8, 0xac880000 # load Ec(sw $8,0($4))
sw $8, 0($9) # store to gen
li $8, 0x00800008 # load Ec(jr $4)
sw $8, 4($9) # store to gen+4
la $4, ggen # $4 = ggen
la $9, main # $9 = main
li $8, 0x01200008 # load Ec(jr $9) to $8
j gen # jump to target

gen: nop # to be generated
nop # to be generated

ggen: nop # to be generated

The generated code:

B2

{

gen: sw $8,0($4)
jr $4

B3 { ggen: jr $9

Figure 17. mrcg.s: Multilevel runtime code generation

4.1 Example: Multilevel Runtime Code Generation

We use a small examplemrcg.s in Fig 17 to demonstrate the
usability of GCAP1 on runtime code generation. Ourmrcg.s is
already fairly subtle—it does multilevel RCG, which means that
code generated at runtime may itself generate new code. Multilevel
RCG has its practical usage [13]. In this example, the code block
B1 can generateB2 (containing two instructions), which will again
generateB3 (containing only a single instruction).

The first step is to verifyB1,B2 andB3 respectively and locally,
as the following three judgments show:

{gen{ a2 ∗blk(B2)} ⊢ {a1}B1

{ggen{ a3 ∗blk(B3)} ⊢ {a2}B2

{main{ a1} ⊢ {a3}B3

where
a1 = λS.True,

a2 = λ(M,R).R($9)= main∧R($8)= Ec(jr $9)∧R($4)= ggen,

a3 = λ(M,R).R($9)= main

As we see,B1 has no requirement for its precondition,B2 simply
requires that proper values are stored in the registers $4, $8, and $9,
whileB3 demands that $9 points to the labelmain.

All the three judgments are straightforward to establish, by
means of GCAP1 inference rules (the rule and the rule).
For example, the pre- and selected intermediate conditions forB1
are as follows:

{λS.True}
main: la $9, gen

{λ(M,R).R($9)= gen}
li $8, 0xac880000
sw $8, 0($9)
{(λ(M,R).R($9)= gen)∗blk(gen : sw $8,0($4))}
li $8, 0x00800008
sw $8, 4($9)
{blk(B2)}
la $4, ggen
la $9, main
li $8, 0x01200008
{a2 ∗blk(B2)}
j gen

The first five instructions generate the body ofB2. Then, regis-
ters are stored with proper values to matchB2’s requirement. No-
tice the threeli instructions: the encoding for each generated in-
struction are directly specified as immediate value here.

Notice thatblk(B1) has to be satisfied as a precondition of
B3 sinceB3 points toB1. However, to achieve modularity we do
not require it inB3’s local precondition. Instead, we leave this
condition to be added later via our frame rule.

8 2007/3/31

main

gen

ggen

 a2 * blk(�2) * blk(�1)

a1 * blk(�1)

a3 * blk(�3) * blk(�1)

LINK-G

LIFT

LINK-G

LIFT

LIFT

ΨG=

FRAME-SPEC

Figure 18. mrcg.s: GCAP1 specification

After the three code blocks are locally certified, the rule
and then the rule are respectively applied to each of them,
as illustrated in Fig 18, resulting in three well-formed singleton
code heaps. Afterwards,B2 and B3 are linked together and we
apply - rule to the resulting code heap, so that it can
successfully be linked together with the other code heap, forming
the coherent global well-formed specification (as Fig 18 indicates):

ΨG = {main{ a1 ∗blk(B1), gen{ a2 ∗blk(B2)∗blk(B1),

ggen{ a3 ∗blk(B3)∗blk(B1)}

which should satisfyΨG ⊢ (C,ΨG) (whereC stands for the entire
code heap).

Now we can finish the last step—applying the- rule to
the initial world, so that the safety of the whole program is assured.

5. Supporting General SMC
Although GCAP1 is a nice extension to GCAP0, it can hardly be
used to certify general SMC. For example, it cannot verify the
opcode modification example given in Fig 9 at the end of Sec 2.
In fact, GCAP1 will not even allow the same memory region to
contain different runtime instructions.

General SMC does not distinguish between code heap and data
heap, therefore poses new challenges: first, at runtime, the instruc-
tions stored at the same memory location may vary from time to
time; second, the control flow is much harder to understand and rep-
resent; third, it is unclear how to divide a self-modifying program
into code blocks so that they can be reasoned about separately.

To tackle these obstacles, we have developed a new verification
system GCAP2 supporting general SMCs. Our system is still built
upon our machine model GTM.

5.1 Main Development

The main idea of GCAP2 is illustrated in Fig 19. Again, the po-
tential runtime code is decomposed into code blocks, representing
the instruction sequences that may possibly be executed. Each code
block is assigned with a precondition, so that it can be certified in-
dividually. Unlike GCAP1, since instructions can be modified, dif-
ferent runtime code blocks may overlap in memory, even share the
same entry location. Hence if a code block contains a jump instruc-
tion to certain memory address (such as tof1 in Fig 19) at which
several blocks start, it is usually not possible to tell statically which
block it will exactly jump to at runtime. What our system requires
instead is that whenever the program counter reaches this address
(e.g.f1 in Fig 19), there shouldexistat least one code block there,
whose precondition is matched. After all the code blocks are cer-
tified, they can be linked together in a certain way to establish the
correctness of the program.

To support self-modifying features, we relax the requirements
of well-formed code blocks. Specifically, a well-formed code block

{p1}

{p2}

f1:

f2:

f3:

Code Heap Code Blocks Control Flow

f1:

f2:

f4:

{p3}

{p4}

f3:

{p1'}

f4:

Figure 19. Typical Control Flow in GCAP2

(ProgSpec) Ψ ∈ Address⇀ Assertion

(CodeSpec) Φ ∈ CodeBlock⇀ Assertion

Figure 20. Assertion language for GCAP2

now describes anexecution sequenceof instructions starting at cer-
tain memory address, rather than merely a static instruction se-
quence currently stored in memory. There is no difference between
these two understandings under the non-self-modifying circum-
stance since the static code always executes as it is, while a funda-
mental difference could appear under the more general SMC cases.
The new understandingexecution code blockcharacterizes better
the real control flow of the program. Sec 6.9 discusses more about
the importance of this generalization.

Specification language. The specification language is almost
same as GCAP1, but GCAP2 introduces one new concept called
code specification(denoted asΦ in Fig 20), which generalizes
the previous code and specification pair to resolve the problem of
having multiple code blocks starting at a single address. A code
specification is a partial function that maps code blocks to their
assertions. When certifying a program, the domain of the global
Φ indicates all the code blocks that can show up at runtime, and
the corresponding assertion of a code block describes its global
precondition. The reader should note that thoughΦ is a partial
function, it can have an infinite domain (indicating that there might
be an infinite number of possible runtime code blocks).

Inference rules. GCAP2 has three sets of judgements (see Fig 21):
well-formed world, well-formed code spec, and well-formed code
block. The key idea of GCAP2 is to eliminate the well-formed-
code-heap layer in GCAP1 and push the “dynamic reasoning layer”
down inside each code block, even into a single instruction. Inter-
estingly, this makes the rule set of GCAP2 look much like GCAP0
rather than GCAP1.

The inference rules for well-formed code blocks has one tiny but
essential difference from GCAP0/GCAP1. A well-formed instruc-
tion () has one more requirement that the instruction must ac-
tually be in the proper location of memory. Previously in GCAP1,
this is guaranteed by the rule which adds the whole static code
heap into the preconditions; for GCAP2, it is only required that the
current executing instruction be present in memory.

Intuitively, the well-formedness of a code blockΨ ⊢{a}f : I now
states that if a machine state satisfies assertiona, thenI is the only
possible code sequence to be executed starting fromf, until we get
to a program point where the specificationΨ can be matched.

9 2007/3/31

Ψ ⊢W (Well-formed World)

~Φ� ⊢ Φ a S ~Φ� ⊢{a}pc : I

~Φ� ⊢ (S,pc)
()

where~Φ� , λf.∃I.Φ(f : I).

Ψ ⊢ Φ (Well-formed Code Specification)

Ψ1 ⊢ Φ1 Ψ2 ⊢ Φ2 dom(Φ1)∩dom(Φ2) = ∅

Ψ1∪Ψ2 ⊢ Φ1∪Φ2
()

∀B ∈ dom(Φ).Ψ ⊢{Φ B}B

Ψ ⊢ Φ
()

Ψ ⊢{a}B (Well-formed Code Block)

Ψ ⊢{a′}f+|Ec(ι)| : I Ψ∪{f+|Ec(ι)|{ a′} ⊢ {a}f : ι

Ψ ⊢{a}f : ι; I
()

∀S.a S→ (Decode(S,f, ι) ∧Ψ(Npcf,ι(S)) Nextf,ι(S))

Ψ ⊢{a}f : ι
()

Figure 21. Inference rules for GCAP2

The precondition for a non-self-modifying code blockB must
now includeB itself, i.e.blk(B). This extra requirement does not
compromise modularity, since the code is already present and can
be easily moved into the precondition. For dynamic code, the initial
stored code may differ from the code actually being executed. An
example is as follows:

{blk(100: movi r0,Ec(j 100); sw r0,102)}
100: movi r0, Ec(j 100)

sw r0, 102
j 100

The third instruction is actually generated by the first two, thus does
not appear in the precondition. This kind of judgment can never be
shown in GCAP1, nor in any previous Hoare-logic models.

Note that our generalization does not make the verification more
difficult: as long as the specification and precondition are given,
the well-formedness of a code block can be established in the same
mechanized way as before.

The judgmentΨ ⊢ Φ (well-formed code specification) is fairly
comparable with the corresponding judgment in GCAP1 if we
notice that the pair (C,Ψ) is just a way to represent a more limited
Φ. The rules here basically follow the same idea except that the
 rule allows universal quantification over code blocks: if every
block in a code specification’s domain is well-formed with respect
to a program specification, then the code specification is well-
formed with respect to the same program specification.

The interpretation operator~−� establishes the semantic re-
lation between program specifications and code specifications: it
transforms a code specification to a program specification by unit-
ing the assertions (i.e. doing assertion disjunction) of all blocks
starting at the same address together. In the judgment for well-
formed world (rule), we use~Φ� as the specification to estab-
lish the well-formed code specification and the current well-formed
code block. We do not need to require the current code block to be
stored in memory (as GCAP1 did) since such requirement will be
specified in the assertiona already.

Soundness. The soundness proof follows almost the same tech-
niques as in GCAP0.

Firstly, due to the similarity between the rules for well-formed
code blocks, the same weakening lemmas still hold:

Lemma 5.1
Ψ ⊢{a}B Ψ⇒ Ψ′ a′⇒ a

Ψ′ ⊢{a′}B
(-)

Ψ ⊢ Φ Ψ⇒ Ψ′ ∀B ∈ dom(Φ′). (Φ′ B⇒ Φ B)

Ψ′ ⊢ Φ′
(-)

And also we have the relation between well-formed code spec-
ification and well-formed code blocks.

Lemma 5.2Ψ ⊢ Φ if and only if for everyB ∈ dom(Φ) we have
Ψ ⊢{Φ B}B.

Proof Sketch:For the necessity, prove from inversion of and
 rule, and weaken properties (Lemma 5.1). The sufficiency is
trivial by  rule. �

Lemma 5.3 (Progress)If Ψ ⊢W, then there exists a programW′,
such thatW 7−→W′.

Proof Sketch: Easy to see by inversion of the rule, the
rule and the rule successively. �

Lemma 5.4 (Preservation)If Ψ ⊢W andW 7−→W′, thenΨ ⊢W′.

Proof Sketch: The first premise is already guaranteed. The other
two premises can be verified by checking the two cases of well-
formed code block rules. �

Theorem 5.5 (Soundness of GCAP2)If Ψ ⊢W, thenSafe(W).

Local reasoning. Frame rules are still the key idea for supporting
local reasoning.

Theorem 5.6 (Frame Rules)
Ψ ⊢{a}B

(λf.Ψ(f)∗a′) ⊢{a∗a′}B
(-)

wherea′ is independent of every register modified byB.

Ψ ⊢ Φ

(λf.Ψ(f)∗a) ⊢ (λB.Φ B∗a)
(-)

where a is independent of every register modified by any code
block in the domain ofΦ.

In fact, since we no longer have the static code layer in GCAP2, the
frame rules play a more important role in achieving modularity. For
example, to link two code modules that do not modify each other,
we first use the frame rule to feed the code information of the other
module into each module’s specification and then apply rule.

5.2 Example and Discussion

We can now use GCAP2 to certify the opcode-modification exam-
ple given in Fig 9. There are four runtime code blocks that need
to be handled. Fig 22 shows the formal specification for each code
block, including both the local version and the global version. Note
thatB1 andB2 are overlapping in memory, so we cannot just use
GCAP1 to certify this example.

Locally, we need to make sure that each code block is indeed
stored in memory before it can be executed. To executeB1 andB4,
we also require that the memory location at the addressnew stores
a proper instruction (which will be loaded later). On the other hand,
sinceB4 andB2 can be executed if and only if the branch occurs at
main, they both have the preconditionR($2)= R($4).

After verifying all the code blocks based on their local specifica-
tions, we can apply the frame rule to establish the extended specifi-
cations. As Fig 22 shows, the frame rule is applied to the local judg-
ments ofB2 andB4, addingblk(B3) on their both sides to form the

10 2007/3/31

B1















main: beq $2, $4, modify
move $2, $4 # B2 starts here
j halt

B2

{

target: addi $2, $2, 1
j halt

B3 { halt: j halt

B4















modify: lw $9, new
sw $9, target
j target

Let

a1 , blk(new : addi $2,$2,1)∗blk(B1)

a′1 , blk(B3)∗blk(B4)

a2 , (λ(M,R).R($2)=R($4))∗blk(B2)

a3 , (λ(M,R).R($4)≤ R($2)≤ R($4)+1)

a4 , (λ(M,R).R($2)=R($4))∗blk(new : addi $2,$2,1)∗blk(B1)

Then local judgments are as follows

{modify{ a4,halt{ a3} ⊢ {a1}B1

{halt{ a3} ⊢ {a2}B2

{halt{ a3 ∗blk(B3)} ⊢ {a3 ∗blk(B3)}B3

{target{ a2} ⊢ {a4 ∗blk(B4)}B4

After applying frame rules and linking, the global specification becomes

{modify{ a4 ∗a
′
1,halt{ a3 ∗a

′
1} ⊢ {a1 ∗a

′
1}B1

{halt{ a3 ∗blk(B3)} ⊢ {a2 ∗blk(B3)}B2

{halt{ a3 ∗blk(B3)} ⊢ {a3 ∗blk(B3)}B3

{target{ a2 ∗blk(B3)} ⊢ {a4 ∗a
′
1}B4

Figure 22. opcode.s: Code and specification

corresponding global judgments. And forB1, blk(B3) ∗ blk(B4)
is added; here the additionalblk(B4) in the specification entry for
halt will be weakened out by the rule (the union of two pro-
gram specifications used in the rule is defined in Fig 14).

Finally, all these judgments are joined together via the rule
to establish the well-formedness of the global code. This is similar
to how we certify code using GCAP1 in the previous section, except
that the process is no longer required here. The global code
specification is exactly:

ΦG = {B1{ a1 ∗a
′
1,B2{ a2 ∗blk(B3),B3{ a3 ∗blk(B3),B4{ a4 ∗a

′
1}

which satisfies~ΦG� ⊢ΦG and ultimately the rule can be suc-
cessfully applied to validate the correctness ofopcode.s. Actually
we have proved not only the type safety of the program but also its
partial correctness, for instance, whenever the program executes to
the linehalt, the assertiona3 will always hold.

Parametric code. In SMC, as mentioned earlier, the number of
code blocks we need to certify might be infinite. Thus, it is im-
possible to enumerate and verify them one by one. To resolve this
issue, we introduce auxiliary variable(s) (i.e. parameters) into the
code body, developing parametric code blocks and, correspond-
ingly, parametric code specifications.

Traditional Hoare logic only allows auxiliary variables to appear
in the pre- or post-condition of code sequences. In our new frame-
work, by allowing parameters appearing in the code body and its
assertion at the same time, assertions, code body and specifications
can interact with each other. This make our program logic even
more expressive.

One simplest case of parametric code block is as follows:

f: li $2, k
j halt

with the numberk as a parameter. It simply represents a family of
code blocks wherek ranges over all possible natural numbers.

The code parameters can potentially be anything, e.g., instruc-
tions, code locations, or the operands of some instructions. Taking
a whole code block or a code heap as parameter may allow us to
express and prove more interesting applications.

Certifying parametric code makes use of the universal quantifier
in the rule . In the example above we need to prove the
judgment

∀k. (Ψk ⊢{λS.True}f : li $2,k; j halt)

whereΨk(halt) = (λ(M,R).R($2)= k), to guarantee that the para-
metric code block is well-formed with respect to the parametric
specificationΨ.

Parametric code blocks are not just used in verifying SMC; they
can be used in other circumstances. For example, to prove position
independent code, i.e. code whose function does not depend on the
absolute memory address where it is stored, we can parameterize
the base address of that code to do the certification. Parametric
code can also improve modularity, for example, by abstracting out
certain code modules as parameters.

We will give more examples of parametric code blocks in Sec 6.

Expressiveness. The following important theorem shows the ex-
pressiveness of our GCAP2 system: as long as there exists an in-
variant for the safety of a program, GCAP2 can be used to certify
it with a program specification which is equivalent to the invariant.

Theorem 5.7 (Expressiveness of GCAP2)If Inv is an invariant of
GTM, then there is aΨ, such that for any world (S,pc) we have

Inv(S,pc)←→ ((Ψ ⊢ (S,pc))∧ (Ψ(pc) S)).

Proof: We give a way to constructΨ from Inv:

Φ(f : ι) = λS. Inv(S,f)∧Decode(S,f, ι), ∀f, ι

Ψ = ~Φ� = λf.λS. Inv(S,f)

We first prove the forward direction. Given a program (S,pc)
satisfyingInv(S,pc), we want to show that there existsa such that
Ψ ⊢ (S,pc).

Observe the fact that for allf andS,

Ψ(f) S←→∃I.Φ(f : I) S

←→∃ι. Inv(S,f)∧Decode(S,f, ι)

←→ Inv(S,f)∧∃ι.Decode(S,f, ι)

←→ Inv(S,f)

where the last equivalence is due to the Progress property ofInv
together with the transition relation of GTM.

Now we prove the first premise of, i.e.~Φ� ⊢Φ, which by
rule, is equivalent to

∀B ∈ dom(Φ). (~Φ� ⊢{Φ B}B)

which is

∀f, ι. (Ψ ⊢{Φ(f : ι)}f : ι) (4)

which can be rewritten as

∀f, ι. (λf.λS′. Inv(S′,f) ⊢{λS′. Inv(S′,f)∧Decode(S′,f, ι)}f : ι)
(5)

On the other hand, sinceInv is an invariant, it should satisfy the
progress and preservation properties. Applying rule, (5) can
be easily proved. Therefore,~Φ� ⊢ Φ.

Now, by the progress property ofInv, there should exist a valid
instructionι such thatDecode(S,f, ι) holds. Choose

a , λS′. Inv(S′,pc)∧Decode(S′,f, ι)

11 2007/3/31

{rDL = 0x80∧D(512)= Ec(jmp −2)∗blk(B1)}

B1



















































































bootld: movw $0, %bx # can not use ES
movw %bx,%es # kernel segment
movw $0x1000,%bx # kernel offset
movb $1, %al # num sectors
movb $2, %ah # disk read command
movb $0, %ch # starting cylinder
movb $2, %cl # starting sector
movb $0, %dh # starting head
int $0x13 # call BIOS
ljmp $0,$0x1000 # jump to kernel

{blk(B2)}
B2 { kernel: jmp $-2 # loop

Figure 23. bootloader.s: Code and specification

Then it’s obvious thata S is true. And since the correctness of
~Φ� ⊢{a}pc : ι is included in (4), all the premises in rule has
been satisfied.

So we getΨ ⊢ (S,pc), and it’s trivial to see thatΨ(pc) S.
On the other hand, for ourΨ, if Ψ(pc) S, obviousInv holds on

the world (S,pc). This completes our proof. �

Together with the soundness theorem (Theorem 5.5), we have
showed that there is a correspondence relation between a global
program specification and a global invariant for any program.

It should also come as no surprise that any program certified un-
der GCAP1 can always be translated into GCAP2. In fact, the judg-
ments of GCAP1 and GCAP2 have very close connections. The
translation relation is described by the following theorems. Here
we use⊢GCAP1 and⊢GCAP2 to represent the two kinds of judgements
respectively. Let

~({fi { Ii}
∗
, {fi { ai }

∗)� , {(fi : Ii){ a1}
∗

then we have

Theorem 5.8 (GCAP1 to GCAP2)

1. If Ψ ⊢GCAP0{a}B, then (λf.Ψ(f)∗blk(B)) ⊢GCAP2{a∗blk(B)}B.
2. If Ψ ⊢GCAP1(C,Ψ′), thenΨ ⊢GCAP2~(C,Ψ

′)�.
3. If Ψ ⊢GCAP1W, thenΨ ⊢GCAP2W.

Proof:
1. If a ∗ blk(B), By frame rule of CAP, we knowblk(B) is

always satisfied and not modified during the execution ofB. Thus
the additional premise of is always satisfied. Then its’ easy
to get the conclusion by doing induction over the length of the code
block.

2. With the help of 1, we see that ifΨ ⊢GCAP1(C,Ψ′), then for ev-
eryf ∈ dom(Ψ′), we havef ∈ dom(C) andΨ ⊢GCAP2{Ψ

′(f)}f : C(f).
Then the result is obvious.

3. Directly derived from 2. �

Finally, as promised, from Theorem 5.8 and the soundness of
GCAP2 we directly see the soundness of GCAP1 (Theorem 4.2).

6. More Examples and Applications
We show the certification of a number of representative examples
and applications using GCAP (see Table 1 in Sec 1).

6.1 A Certified OS Boot Loader

An OS boot loader is a simple, yet prevalent application of runtime
code loading. It is an artifact of a limited bootstrapping protocol,
but one that continues to exist to this day. The limitation on an
x86 architecture is that the BIOS of the machine will only load the
first 512 bytes of code into main memory for execution. The boot

0x1000

0x7c00

Memory Disk

Sector 2

Sector 1

bootloader

kernel

Copied by BIOS
before start-up

 copied by
bootloader

jmp 0x1000
load kernel

 kernel
(in mem)

start executing
 here

Figure 24. A typical boot loader

loader is the code contained in those bytes that will load the rest
of the OS from the disk into main memory, and begin executing
the OS (Fig 24). Therefore certifying a boot loader is an important
piece of a complete OS certification.

To show that we support a real boot loader, we have created one
that runs on the Bochs simulator[19] and on a real x86 machine.
The code (Fig 23) is very simple, it sets up the registers needed to
make a BIOS call to read the hard disk into the correct memory
location, then makes the call to actually read the disk, then jumps
to loaded memory.

The specifications of the boot loader are also simple.rDL =

0x80 makes sure that the number of the disk is given to the boot
loader by the hardware. The value is passed unaltered to theint in-
struction, and is needed for that BIOS call to read from the correct
disk.D(512)= Ec(jmp −2) makes sure that the disk actually con-
tains a kernel with specific code. The code itself is not important,
but the entry point into this code needs to be verifiable under a triv-
ial precondition, namely that the kernel is loaded. The code itself
can be changed. The boot loader proof will not change if the code
changes, as it simply relies on the proof that the kernel code is certi-
fied. The assertionblk(B1) just says that boot loader is in memory
when executed.

6.2 Control Flow Modification

The fundamental operation unit of self-modification mechanism
is the modification of single instructions. There are several possi-
bilities of modifying an instruction. Opcode modification, which
mutates an operation instruction (i.e. instruction that does not
jump) into another operation instruction, has already been shown in
Sec 5.2 as a typical example. This kind of code is relatively easier
to deal with since it does not change the control flow of a program.

Another case which looks trickier is control flow modification.
In this scenario, an operation instruction into a control transfer
instruction, or the opposite way, and we can also modify a control
transfer instruction into another.

Control flow modification is useful in patching of subroutine
call address. And we give an example here that demonstrates con-
trol flow modification, and show how to verify it.

halt: j halt
main: la $9, end

lw $8, 0($9)
addi $8, $8, -1
addi $8, $8, -2
sw $8, 0($9)

end: j dead
dead:

The entry point of the program is themain line. At the first look,
the code seems “deadly” because there is a jump to thedead line,
which does not contain a valid instruction. But fortunately, before
the program executes to that line, the instruction at it will be fetched

12 2007/3/31

{blk(main : la $9,end; I1; j dead)}
main: la $9, end

lw $8, 0($9)
addi $8, $8, -1
addi $8, $8, -2
sw $8, 0($9)
j mid2

{(λ(M,R). 〈R($8)〉4=Ec(j mid2)∧R($9)=end)∗blk(mid2 : I2; j mid2)}
mid2: addi $8, $8, -2

sw $8, 0($9)
j mid1

{(λ(M,R). 〈R($8)〉4=Ec(j mid1)∧R($9)=end)∗blk(mid1 : I1; j mid1)}
mid1: lw $8, 0($9)

addi $8, $8, -1
addi $8, $8, -2
sw $8, 0($9)
j halt

{blk(halt : j halt)}
halt: j halt

where

I1 = lw $8,0($9);addi $8,$8,−1;I2,

I2 = addi $8,$8,−2;sw $8,0($9)

Figure 25. Control flow modification

out, subtracted by 3 and stored back, so that the jump instruction on
end now points to the secondaddi instruction. Then the program
will continue executing from that line, until finally hit thehalt line
and loops forever.

Our specification for the program is described in Fig 25. There
are four code blocks that needs to be certified. Then execution
process is now very clear.

6.3 Runtime Code Generation and Code Optimization

Runtime code generation (also known as dynamic code genera-
tion), which dynamically creates executable code for later use dur-
ing execution of a program[16], is probably the broadest usage of
SMC. The code generated at runtime usually have better perfor-
mance than static code in several aspects, because more informa-
tion would be available at runtime. For example, if the value of a
variable doesn’t change during runtime, program can then generate
specialized code with the variable as an immediate constant at run-
time, which enables code optimizations such as pre-calculation and
dead code elimination.

[28] gave plenty of utilization of run-time code generation. The
certification of all those applications can be fit into our system.
Here we show the certification of one in them. We demonstrate the
runtime code generation version of a fundamental operation of ma-
trix multiplication – vector dot product, which was also mentioned
in [31].

Efficient matrix multiplication is important to digital signal pro-
cessing and scientific computation problems. Sometimes the ma-
trices might have certain characteristics such as sparseness(large
number of zeros) or small integers. The use of runtime code gener-
ation allows these characteristics to be specialized on locally opti-
mized code for each row of the matrix, based on the actual values.
Since code for each row is specified once but usedn times by the
other matrix(one for each column), the performance improved eas-
ily surpasses the cost caused by the generation of code at runtime.

The code shown in Fig 26 (which includes the specification)
will read the vectorv1 stored atvec1, generate specialized code at
gen with elimination of multiplication by 0, and then run the code
atgen to compute the dot product ofv1 andv2, and store it into the

.data # Data declaration section
vec1: .word 22, 0, 25
vec2: .word 7, 429, 6
result: .word 0
tpl: li $2, 0 # template code

lw $13, 0($4)
li $12, 0
mul $12, $12, $13
add $2, $2, $12
jr $31

.text # Code section
{True}

main: li $4, 3 # vector size
li $8, 0 # counter
la $9, gen # target address
la $11, tpl # template address
lw $12, 0($11)
sw $12, 0($9) # copy the 1st instr
addi $9, $9, 4

{p(R($8))}
loop: beq $8, $4, post

li $13, 4
mul $13, $13, $8
lw $10, vec1($13)
beqz $10, next # skip if zero
lw $12, 4($11)
add $12, $12, $13
sw $12, 0($9)
lw $12, 8($11)
add $12, $12, $10
sw $12, 4($9)
lw $12, 12($11)
sw $12, 8($9)
lw $12, 16($11)
sw $12, 12($9)
addi $9, $9, 16

{p(R($8)+1)}
next: addi $8, $8, 1

j loop
{p(3)}

post: lw $12, 20($11)
sw $12, 0($9)
la $4, vec2
jal gen

{λ(M,R).R($2)=v1 ·v2}
sw $2, result
j main

gen:

Figure 26. Vector Dot Product

Ik,u ,

{

lw $13,k($4);li $12,u;

mul $12,$12,$13;add $2,$2,$12, if u> 0,

∅, if u= 0.

p(k) , λ(M,R).R($4)=3∧k≤R($4)∧R($9)=gen+4+16k∧

blk(gen : li $2,0;I0,M(vec1+0); . . . ; Ik−1,M(vec1+k−1)) (M,R)

Figure 27. Dot Product Assertion Macro

memory addressresult. For vector (22,0,25), the generated code
would be as follows:

Since this program does not involve code-modification, we use
GCAP1 to certify it. Each code block can be verified separately
with the assertions we gave in Fig 26, Fig 27. The main part of the
program can be directly linked and certified to form a well-formed
code heap. On the other hand, the generated code, as in Fig 28, can

13 2007/3/31

{R($31)= back∧R($4)=vec2}
gen: li $2, 0 # int gen(int *v)

lw $13, 0($4) # {
li $12, 22 # int res = 0;
mul $12, $12, $13 # res += 22 * v[0];
add $2, $2, $12 # res += 25 * v[2];
lw $13, 8($4) # return res;
li $12, 25 # }
mul $12, $12, $13
add $2, $2, $12
jr $31

Figure 28. Generated Code of Vector Dot Product

{True}
main: jal f

{λ(M,R).R($8)= 42}
move $2, $8
j halt

{(λ(M,R).R($31)=main+4)∗blk(addr : jal f)
∗blk(main : jal f)}

f: li $8, 42
lw $9, -4($31)
lw $10, addr
bne $9, $10, halt
jr $31

{R($2)= R($8)= 42}
halt: j halt

addr: jal f

Figure 29. Runtime code-checking

be verified on its own. After these are all done, we use the-
 rule and the rule to merge the two parts together, which
completes the whole verification. The modularity of our system
guarantees that, the verification of the generated code (Fig 28 does
not need any information about its “mother code”.

6.4 Runtime Code Checking

As we mentioned, the limitation of previous verification framework
is not only about self-modifying code. They can also not deal with
“self-reading code” that does not do any code modification.

The example below is a program where reading the code of
itself helps the decision of the program executing. We verify it with
GCAP1.

Here is an interesting application of code-reading programs. As
we know, there is a subroutine call instruction in most architectures
(jal in MIPS orcall in x86). The call instruction in essentially a
composition of two operations: to first store the address of the next
instruction to the return address register ($31 in MIPS), and then
jump to the target address. When the subroutine finishes executing,
hopefully, the return address register should point to the next in-
struction in the parent program, so that the program can continue
execution normally. However, this is not guaranteed, because a vi-
cious parent program can store a bad address into the return address
register and jump to the subroutine. The code in Fig 29 shows how
to avoid this kind of cheating by runtime code-checking mecha-
nism.

Themain program callsf as a subroutine. After the subroutine
have done its job (storing 42 into register $8), and before return, it
first checks whether the instruction previous to the return address
register ($31) is indeed a jal (or call) instruction. If not so, it simply
halts the program; otherwise, return.

.data # Data declaration section

num: .byte 8

.text # Code section

main: lw $4, num # set argument
lw $9, key # $9 = Ec(add $2,$2,0)
li $8, 1 # counter
li $2, 1 # accumulator

loop: beq $8, $4, halt # check if done
addi $8, $8, 1 # inc counter
add $10, $9, $2 # new instr to put

key: addi $2, $2, 0 # accumulate
sw $10, key # store new instr
j loop # next round

halt: j halt

Figure 30. fib.s: Fibonacci number

{blk(B1)}

B1























main: lw $4, num
lw $9, key
li $8, 1
li $2, 1

{(λ(M,R).R($4)=M(num)∧R($9)=Ec(addi $2,$2,0)∧
R($8)=k+1∧R($2)=fib(k+1))∗blk(B2,k)}

B2,k











































loop: beq $8, $4, halt
addi $8, $8, 1
add $10, $9, $2

key: addi $2, $2, fib(k)
sw $10, key
j loop

{(λ(M,R).R($2)=fib(M(num)))∗blk(B3)}
B3 { halt: j halt

Figure 32. fib.s: Code and specification

The precondition off asserts the return address, and both addr
and main store thejal f instruction, so that the code block can
check the equality of these two memory location. Note that the
precondition ofmain does not specify the content ofaddr since
this can be added later via the frame rule.

6.5 Fibonacci Number and Parametric Code

To demonstrate the usage of parametric code, we construct an ex-
amplefib.s to calculate the Fibonacci functionfib(0)= 0, fib(1)=
1, fib(i+2) = fib(i)+ fib(i+1), shown in Fig 30. More specifically,
fib.s will calculatefib(M(num)) which is fib(8) = 21 and store it
into register $2.

It looks strange that this is possible since throughout the whole
program, the only instructions that write $2 is the fourth instruction
which assigns 1 to it and the linekey which does nothing.

The main trick, of course, comes from the code-modification
instruction on the line next tokey. In fact, the third operand of
the addi instruction on the linekey alters to the next Fibonacci
number (temporarily calculated and stored in register $10 before
the instruction modification) during every loop. Fig 31 illustrates
the complete execution process.

Since the opcode of the linekey would have an unbounded
number of runtime values, we need to seek help from paramet-
ric code blocks. The formal specifications for each code block is
shown in Fig 32. We specify the program using three code blocks,
where the second block—the kernel loop of our programB2,k—is a

14 2007/3/31

{$8=1,$2=1,$4=8}
beq $8, $4, halt
addi $8, $8, 1
add $10, $9, $2
addi $2, $2, 0
sw $10, key
j loop

...

loop:
{$8=2,$2=1,$4=8}
beq $8, $4, halt
addi $8, $8, 1
add $10, $9, $2
addi $2, $2, 1
sw $10, key
j loop

{$8=7,$2=13,$4=8}
beq $8, $4, halt
addi $8, $8, 1
add $10, $9, $2
addi $2, $2, 8
sw $10, key
j loop

{$8=8,$2=21,$4=8}
beq $8, $4, halt
addi $8, $8, 1
add $10, $9, $2
addi $2, $2, 13
sw $10, key
j loop

lw $4, num
lw $9, key
li $8, 1
li $2, 1

main:

{$2=fib(r8)=21}
j halthalt:

B1

B2,0 B2,1 B2,6 B2,7

B3

where fib(0)=0,

 fib(1)=1,

 fib(i+2)=fib(i)+fib(i+1).

Figure 31. fib.s: Control flow

main: la $8, loop
la $9, new
move $10, $9

loop: lw $11, 0($8)
sw $11, 0($9)
addi $8, $8, 4
addi $9, $9, 4
bne $8, $10, loop
move $10, $9

new:

Figure 33. selfgrow.s: Self-growing Code

parametric one. The parameterk appears in the operand of thekey
instruction as an argument of the Fibonacci function.

Consider the execution of code blockB2,k. Before it is exe-
cuted, $9 storesEc(addi $2,$2,0), and $2 storesfib(k+1). There-
fore, the execution of the third instructionaddi $10,$9,$2 changes
$10 into Ec(addi $2,$2,fib(k+1))1, so at the end of the loop,
$2 is nowfib(k+1)+fib(k)=fib(k+2), andkey has the instruction
addi $2,$2,fib(k+1) instead ofaddi $2,$2,fib(k), then the program
continues to the next loopB2,k+1.

The global code specification we finally get is as follows :

Φ , {B1{ a1, B2k{ a2k | k∈Nat, B3{ a3} (6)

But note that this formulation is just for readability; it is not di-
rectly expressible in our meta logic. To express parameterized code
blocks, we need to use existential quantifiers. The example is in fact
represented asΦ , λB.λS. (B=B1∧ a1 S)∨ (∃k.B=B2k∧ a2k S)∨
(B=B3 ∧ a3 S). One can easily see the equivalence between this
definition and (6).

6.6 Self Replication

Combining self-reading code with runtime code generation, we
can produce self-growing program, which keeps replicating itself
forever. This kind of code appears commonly in Core War—a game
where different people write assembly programs that attack the
other programs. Our demo codeselfgrow.s is shown in Fig 33.
After initializing the registers, the code repeatedly duplicates itself
and continue to execute the new copy , as Fig 34 shows .

The block starting atloop is the code body that keeps being
duplicated. During the execution, this part is copied to thenew lo-
cation. Then the program continues executing fromnew, until an-
other code block is duplicated. Note that here we rely on the prop-
erty that instruction encodings for branches use relative addressing,
thus every time our code is duplicated, the target address of thebne

instruction would change accordingly.

1 To simplify the case, we assume the encoding ofaddi instruction has a
linear relationship with respect to its numerical operand inthis example.

lw ...
......
move..

lw ...
......
move..

lw ...
......
move..

lw ...
......
move..

lw ...
......
move..

lw ...
......
move..

lw ...
......
move..
......
......

lw ...
......
move..

lw ...
......
move..

lw ...
......
move..

...

...

...

...

Figure 34. selfgrow.s: Self-growing process

{blk(B0)}

B0















main: la $8, loop
la $9, new
move $10, $9

{(λ(M,R).∃0≤i<6.R($8)=k+4i∧R($9)=k+24+4i∧
R($10)=k+24∧∀0≤ j<4i.M(k+ j)=M(k+24+ j))∗blk(Bk)}

Bk











































k: lw $11, 0($8)
sw $11, 0($9)
addi $8, $8, 4
addi $9, $9, 4
bne $8, $10, k
move $10, $9

Figure 35. selfgrow.s: Code and specification

The copying process goes on and on, till the whole available
memory is consumed and, presumably, the program would crash.
However, under our assumption that the memory domain is infinite,
this code never kill itself and thus can be certified.

The specification is shown in Fig 35. The code blockB0 is
certified separately; its precondition merely requires thatB0 itself
matches the memory. All the other code including the originalloop

body and every generated one are parameterized as a code block
family and certified altogether. In their preconditions, besides the
requirement that the code block matches the memory, there should
exist an integeri ranged between 0 and 5 (both inclusive), such
that the firsti instructions have been copied properly, and the three
registers $8, $9, and $10 are stored with proper values respectively.

6.7 Mutual-modifying Modules

In the circumstances of runtime code generation, the interaction
between two modules is one-way: the “mother code” manipulates

15 2007/3/31

{blk(B1)}
B1 { main: j alter

{(blk(B1)∗blk(B2)}

B2



























alter: lw $8, main
li $9, 0
sw $9, main
j main

{(λ(M,R). 〈R($8)〉4=Ec(j alter))∗blk(B3)}

B3

{

main: nop
sw $8, alter

{blk(B4)}
B4 { alter: j alter

Figure 36. Specification - Mutual Modification

the “child code” but not the opposite. If both two modules operate
on each other, the situation becomes trickier. But with GCAP2, this
can be solved without too much difference.

Here is a mini example showing what can happen under this
circumstance.

main: j alter
sw $8, alter

alter: lw $8, main
li $9, 0
sw $9, main
j main

The main program will firstly jump to thealter block, and
after it modified the instruction atmain and transfer the control
back, themain block will modify the alter instruction back,
which makes the program loops forever.

The specification for this tangly is fairly simple, as shown in
Fig 36. The actual number of code blocks that needs to be certi-
fied is 4, although there are only two starting addresses. Both the
preconditions and the code body for different code blocks at the
same starting address differs completely. For example, the first time
the program entersmain, it only requiresB1 itself, while when the
second time it enters, the code body changes toB3 and the precon-
dition requires that register $8 stores the correct value. In fact, by
certifying this example, the control flow becomes much clearer to
the readers.

6.8 Polymorphic Code

polymorphic code is code that mutates itself while keeps the algo-
rithm equivalent. It is commonly used in the writing of computer
virus and trojans who want to hide their presence for certain pur-
pose. Since anti-virus software usually identify virus by recogniz-
ing particular byte patterns in the memory, the technique of poly-
morphic code has been a way to combat against this.

The following oscillating code is a simple demo example. Every
time it executes through, content of the code would switch (between
B1 andB2), but its function is always to add 42 to register $2.

B0 =

main: la $10, body

B1 = # B2 =

body: lw $8, 12($10) lw $8, 12($10)
lw $9, 16($10) lw $9, 16($10)
sw $9, 12($10) sw $8, 16($10)
j dead addi $2, 21
addi $2, 21 j dead
sw $8, 16($10) sw $9, 12($10)
lw $9, 8($10) lw $9, 8($10)
lw $8, 20($10) lw $8, 20($10)
sw $9, 20($10) sw $9, 20($10)
sw $8, 8($10) sw $8, 8($10)
j body j body

{blk(B0)}
main: la $10, body

{blk(B1)} {blk(B2)}
body: lw $8, 12($10) lw $8, 12($10)

lw $9, 16($10) lw $9, 16($10)
sw $9, 12($10) sw $8, 16($10)
addi $2, 21 addi $2, 21
addi $2, 21 addi $2, 21
sw $8, 16($10) sw $9, 12($10)
lw $9, 8($10) lw $9, 8($10)
lw $8, 20($10) lw $8, 20($10)
sw $9, 20($10) sw $9, 20($10)
sw $8, 8($10) sw $8, 8($10)
j body j body

Figure 37. Specification - Mutual Modification

The safety is not obvious as there is an illegal instructionj dead
in our program. Since the code blocks that need to be certified
overlap, we use GCAP2 to prove it. The specification is showed
in Fig 37. Note the tiny difference between the code above and
the code in Fig 37. This difference demonstrates the different un-
derstanding between “stored” code blocks and “executing” code
blocks, and makes our verification work.

6.9 Code Obfuscation

The purpose of code obfuscation is to confuse debuggers. Although
there are many other approaches that do code obfuscation without
involving SMC such as control-flow based obfuscation, SMC is a
much more effective way due to its hardness for understanding.
By instrumenting a big amount of redundant, garbage SMC into
normal code, plenty of memory reading and writing instructions
will considerably confuse the disassembler. The method mentioned
in [15] is a typical attempt. In PLDI’06’s tutorial, Bjorn De Sutter
also demonstrated their Diablo as a binary rewriting program to
instrument self-modifying code for code-obfuscation.

To certify a SMC-obfuscated program, traditional verification
techniques becomes extremely tough. At the same, the reasoning
of this kind of code appears fairly simple under our framework.
Take the following code as example:

B1































































main: la $8, g
lw $9, 0($8)
addi $10, $9, 4
sw $10, g
lw $11, h

g: sw $9, 0($8)
h: j dead

sw $11, h
j main

The program does several weird memory loading and storing,
and seems that there is a dead instruction, while actually it does
nothing. The lineg andh would change during the execution, and
be changed back afterwards. Thus the code looks intact after one
round of execution. If we remove the last line, the piece of code
can be instrumented into regular program to fool the debugger.

In our GCAP2 system, such code can be verified with a single
judgment, as simple as Fig 38 shows.

One observation is that this program can also be certified with
the more traditional-like system GCAP1. But in contrast, since
GCAP1, like traditional reasoning, doesn’t allow a code block to
mutate any of its own code, this program has to be divided into
several smaller intact parts to certify. However, this approach has
several disadvantages. Firstly, the code blocks are divided too small
and too difficult to manipulate. Secondly, this approach would fail

16 2007/3/31

{blk(B1)}
main: la $8, g

lw $9, 0($8)
addi $10, $9, 4
sw $10, g
lw $11, h
sw $9, 4($8)
sw $9, 0($8)
sw $11, h
j main

Figure 38. Specification - Obfuscation

{True}
main: la $8, pg

la $9, pgend
li $10, 0xffffffff

{(λ(M,R). (pg≤R($8)<pgend)∧R($9)=pgend∧
R($10)=0xffffffff)∗blk(Bpg)}

xor1: lw $11, 0($8)
xor $11, $11, $10
sw $11, 0($8)
addi $8, $8, 4
blt $8, $9, xor1

{True}
decr: la $8, pg

la $9, pgend
la $10, 0xffffffff

{(λ(M,R). (pg≤R($8)<pgend)∧R($9)=pgend∧R($10)=
0xffffffff∧ (M(pg), . . . ,M(pgend−1))=Ec(Bpg))}

xor2: lw $11, 0($8)
xor $11, $11, $10
sw $11, 0($8)
addi $8, $8, 4
blt $8, $9, xor2
j pg

{R($2)= 3}
halt: j halt

{True} Bpg =
pg: li $2, 1

li $3, 2
add $2, $2, $3
j halt

pgend:

Figure 39. encrypt.s: Code and specification

if there is an instruction that modifies itself: even if we separate as
a single code block, it is not self-intact.

The development of our general code blocks solves both issues
smoothly. Since a code block is no longer required to be self-
immutable, one code block can be as long as there’s no control
transferring .

The motivation of generalizing the definition of a code block is
based the observation that the sequence of executing code might
differ from the code block that actually stores in memory. We can
see this difference in the specification in Fig 38.

The benefit of our generalized code block also lies in the fact
that as long as the specification as in Fig 38 is given, the construc-
tion of proof is fully mechanical following our inference rules. This
greatly lessens the programmer’s work.

6.10 Code Encryption and Code Compression

Code encryption—or more accurately, runtime code decryption —
works similarly as runtime code generation, except that the code
generator uses encrypted data located in the same memory region.

body:

decrypter

encrypted

main code

...

0x12c5fa93
0x229ab1d8
0x98d93bc3
0xcc693de8
0x127f983b
0x907e6d64

...

start:

decrypter

decrypted

main code

 ...

beq $8, $9, 8
nop
li $2, 1
li $3, 2
add $2, $2, $3
li $4, 5

 ...

start:

decrypting...

Code Heap Code Heap

Figure 40. The execution of runtime code decryption

A simple encryption and decryption exampleencrypt.s adapted
from [29] with its specification is shown in Fig 39. The code block
Bpg between the labelspg (inclusive) andpgend (exclusive) is the
program that is going to be encrypted. In this example,Bpg simply
calculates the sum of 1 and 2 and stores the result 3 into the register
$2, as the precondition ofhalt indicates.

Themain block together with thexor1 block are the encryption
routine, which flips all the bits stored betweenpg andpgend, thus
results in a encrypted form. Thedecr block andxor2 block, on
the other hand, will decrypt the encrypted data and obtaining the
original code. In addition to the requirement that proper values are
stored in the registers $8 to $10,xor1 needs the precondition that
Bpg is properly stored, whilexor2 on the contrary needs to make
sure that the flip ofBpg is properly stored (asa2 describes).

The encryption and the decryption routines are independent and
can be separately executed: one can do the encryption first and store
the encrypted code together with the dynamic decryption program,
so that at the next time the program is loaded, the code can be
decrypted and executed dynamically, as shown in Fig 40.

By making use of parametric code, It is possible to certify this
encrypt-decrypter even without knowledge of the content ofBpg.
That is, we abstractBpg out as a parameter, and prove the general
property of the main codeC, no matter whatBpg is actually used:

∀Bpg. ({halt{ a} ⊢{True}Bpg) −→ ∃Ψ. (Ψ(main)=blk(C)∗blk(Bpg))

∧ (Ψ(pg)⇒ blk(Bpg))∧ (Ψ(halt)⇒ a)∧ (Ψ ⊢ (C∪Bpg,Ψ))}

This statement is expressing the following fact : given any code
block Bpg, as long as it can be safely executed under certain pre-
condition, the whole combined code is safe to execute under the
same precondition; and ifBpg is properly stored before the encryp-
tion, it will still be properly stored after the encryption-decryption
cycle. More over, the combined code behaves just the same asBpg

(meaning that they are both well-formed with respect to the same
precondition and specification).

Runtime code decompression behaves similar to runtime code
decryption, except that the code is compressed before runtime
rather than encrypted. Given this fact, the verification of it would
be not too much different from runtime code decryption.

6.11 Shellcoding

Shellcode is usually a piece of machine code that does certain task,
especially opens a shell. It is often used by hackers to control re-
mote computer through buffer overflow exploits. Many shellcode
do self-modifying. Sometimes shellcode will do partial code en-
cryption. For example, since most shellcode is input as strings,
and might encounter some character filtering, one needs to let the
original code appear no filtered bytes but modifies it back dur-
ing executing. In this way, one can even construct alphanumeric
code that completely consists of alphanumeric characters. The self-

17 2007/3/31

modifying techniques in shellcoding have nothing new than previ-
ous examples and can be certified without surprise.

7. Implementation
We use the Coq proof assistant [32], which comes with an expres-
sive underlying logic, to implement our full system, including the
formal construction of GTM,MMIPS,Mx86, GCAP0, GCAP1, and
GCAP2, as well as the proof of soundness and related properties of
all the three systems. The assertion language as well as the basic
properties of separation logic are also implemented and proved.

We have certified several typical examples, including a com-
plete OS boot loader written in x86 for the demonstration of
GCAP1 and the Fibonacci example in MIPS for the use of GCAP2.

The system can be immediately used for more realistic and
theoretical applications.

8. Related Work and Conclusion
Previous assembly code certification systems (e.g., TAL [23],
FPCC [1, 10], and CAP [33, 25]) all treat code separately from
data memory, so that only immutable code is supported. Appelet
al [2, 22] described a model that treats machine instructions as
data in von Neumann style; they raised the verification of runtime
code generation as an open problem, but did not provide a solu-
tion. TALT [6] also implemented the von Neumann machine model
where code is stored in memory, but it still does not support SMC.

TAL /T [13, 31] is a typed assembly language that provides some
limited capabilities for manipulating code at runtime. TAL/T code
is compiled from Cyclone—a type safe C subset with extra support
for template-based runtime code generation. However, since the
code generation is implemented by specific macro instructions, it
does not support any code modification at runtime.

Otherwise there was actually very little work done on the certi-
fication of self-modifying code in the past. Previous program ver-
ification systems—including Hoare logic, type system, and proof-
carrying code [24]—consistently maintain the assumption that pro-
gram code stored in memory is immutable.

We have developed a simple Hoare-style framework for mod-
ularly verifying general von Neumann machine programs, with
strong support for self-modifying code. By statically specifying and
reasoning about the possible runtime code sequences, we can now
successfully verify arbitrary runtime code modification and/or gen-
eration. Taking a unified view of code and data has given us some
surprising benefits: we can now apply separation logic to support
local reasoning on both program code and regular data structures.

Acknowledgment
We thank Xinyu Feng, Zhaozhong Ni, Hai Fang, and anonymous
referees for their suggestions and comments on an earlier version
of this paper. Hongxu Cai’s research is supported in part by the
National Natural Science Foundation of China under Grant No.
60553001 and by the National Basic Research Program of China
under Grants No. 2007CB807900 and No. 2007CB807901. Zhong
Shao and Alexander Vaynberg’s research is based on work sup-
ported in part by gifts from Intel and Microsoft, and NSF grant
CCR-0524545. Any opinions, findings, and conclusions contained
in this document are those of the authors and do not reflect the
views of these agencies.

References
[1] A. W. Appel. Foundational proof-carrying code. InProc. 16th IEEE

Symp. on Logic in Computer Science, pages 247–258, June 2001.

[2] A. W. Appel and A. P. Felty. A semantic model of types and machine
instructions for proof-carrying code. InProc. 27th ACM Symposium
on Principles of Programming Languages, pages 243–253, Jan. 2000.

[3] D. Aucsmith. Tamper resistant software: An implementation.In
Proceedings of the First International Workshop on Information
Hiding, pages 317–333, London, UK, 1996. Springer-Verlag.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. InProc. 2000 ACM Conf. on Prog.
Lang. Design and Implementation, pages 1–12, 2000.

[5] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying
code (extended version & coq implementation). Technical Report
YALEU /DCS/TR-1379, Yale Univ., Dept. of Computer Science, Mar.
2007.http://flint.cs.yale.edu/publications/smc.html.

[6] K. Crary. Toward a foundational typed assembly language.In Proc.
30th ACM Symposium on Principles of Programming Languages,
pages 198–212, Jan. 2003.

[7] S. Debray and W. Evans. Profile-guided code compression. In
Proceedings of the 2002 ACM Conference on Programming Language
Design and Implementation, pages 95–105, New York, NY, 2002.
ACM Press.

[8] R. W. Floyd. Assigning meaning to programs.Communications of
the ACM, Oct. 1967.

[9] N. Glew and G. Morrisett. Type-safe linking and modular assembly
language. InProc. 26th ACM Symposium on Principles of Program-
ming Languages, pages 250–261, Jan. 1999.

[10] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic
approach to foundational proof-carrying code. InProc. 17th Annual
IEEE Symp. on Logic in Computer Science, pages 89–100, July 2002.

[11] G. M. Henry. Flexible high-performance matrix multiply via a self-
modifying runtime code. Technical Report TR-2001-46, Department
of Computer Sciences, The University of Texas at Austin, Dec.2001.

[12] C. A. R. Hoare. Proof of a program: FIND.Communications of the
ACM, Jan. 1971.

[13] L. Hornof and T. Jim. Certifying compilation and run-time code
generation.Higher Order Symbol. Comput., 12(4):337–375, 1999.

[14] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. InProc. 28th ACM Symposium on Principles
of Programming Languages, pages 14–26, 2001.

[15] Y. Kanzaki, A. Monden, M. Nakamura, and K. ichi Matsumoto.
Exploiting self-modification mechanism for program protection. In
COMPSAC ’03, page 170, 2003.

[16] D. Keppel, S. J. Eggers, and R. R. Henry. A case for runtime
code generation. Technical Report UWCSE 91-11-04, University of
Washington, November 1991.

[17] L. Lamport. The temporal logic of actions.ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[18] J. Larus. SPIM: a MIPS32 simulator. v7.3, 2006.

[19] K. Lawton. BOCHS: IA-32 emulator project. v2.3, 2006.

[20] P. Lee and M. Leone. Optimizing ML with run-time code generation.
In Proc. 1996 ACM Conf. on Prog. Lang. Design and Implementation,
pages 137–148. ACM Press, 1996.

[21] H. Massalin.Synthesis: An Efficient Implementation of Fundamental
Operating System Services. PhD thesis, Columbia University, 1992.

[22] N. G. Michael and A. W. Appel. Machine instruction syntax and
semantics in higher order logic. InInternational Conference on
Automated Deduction, pages 7–24, 2000.

[23] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F
to typed assembly language.ACM Transactions on Programming
Languages and Systems, 21(3):527–568, 1999.

[24] G. Necula. Proof-carrying code. InProc. 24th ACM Symposium on
Principles of Programming Languages, pages 106–119, New York,
Jan. 1997. ACM Press.

18 2007/3/31

[25] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InProc. 33rd ACM Symposium on Principles of
Programming Languages, Jan. 2006.

[26] P. Nordin and W. Banzhaf. Evolving turing-complete programs for
a register machine with self-modifying code. InProc. of the 6th
International Conf. on Genetic Algorithms, pages 318–327, 1995.

[27] B. C. Pierce.Advanced Topics in Types and Programming Languages.
The MIT Press, Cambridge, MA, 2005.

[28] M. Poletto, W. C. Hsieh, D. R. Engler, and M. F. Kaashoek.’C and
tcc: a language and compiler for dynamic code generation.ACM
Transactions on Programming Languages and Systems, 21(2):324–
369, 1999.

[29] Ralph. Basics of SMC. http://web.archive.org/web/
20010425070215/awc.rejects.net/files/text/smc.txt,
2000.

[30] J. Reynolds. Separation logic: a logic for shared mutable data
structures. InProc. 17th IEEE Symp. on Logic in Computer Science,
2002.

[31] F. M. Smith. Certified Run-Time Code Generation. PhD thesis,
Cornell University, Jan. 2002.

[32] The Coq Development Team, INRIA. The Coq proof assistant
reference manual. The Coq release v8.0, 2004-2006.

[33] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC:
Dynamic storage allocation.Science of Computer Programming,
50(1-3):101–127, Mar. 2004.

19 2007/3/31

