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Abstract

Despite recent successes, large-scale proof development within proof assistants remains an arcane art that is
extremely time-consuming. We argue that this can be attributed to two profound shortcomings in the architecture
of modern proof assistants. The first is that proofs need to include a large amount of minute detail; this is due to
the rigidity of the proof checking process, which cannot be extended with domain-specific knowledge. In order
to avoid these details, we rely on developing and using tactics, specialized procedures that produce proofs.
Unfortunately, tactics are both hard to write and hard to use, revealing the second shortcoming of modern proof
assistants. This is because there is no static knowledge about their expected use and behavior.

As has recently been demonstrated, languages that allow type-safe manipulation of proofs, like Beluga,
Delphin and VeriML, can be used to partly mitigate this second issue, by assigning rich types to tactics. Still,
the architectural issues remain. In this paper, we build on this existing work, and demonstrate two novel ideas:
an extensible conversion rule and support for static proof scripts. Together, these ideas enable us to support both
user-extensible proof checking, and sophisticated static checking of tactics, leading to a new point in the design
space of future proof assistants. Both ideas are based on the interplay between a light-weight staging construct
and the rich type information available.

Categories and Subject Descriptors D.3.1 [Programming Languages]: Formal Definitions and Theory

General Terms Languages, Verification

1. Introduction

There have been various recent successes in using proof assistants to construct foundational proofs of large
software, like a C compiler [Leroy 2009] and an OS microkernel [Klein et al. 2009], as well as complicated
mathematical proofs [Gonthier 2008]. Despite this success, the process of large-scale proof development using
the foundational approach remains a complicated endeavor that requires significant manual effort and is plagued
by various architectural issues.

The big benefit of using a foundational proof assistant is that the proofs involved can be checked for validity
using a very small proof checking procedure. The downside is that these proofs are very large, since proof
checking is fixed. There is no way to add domain-specific knowledge to the proof checker, which would enable
proofs that spell out less details. There is good reason for this, too: if we allowed arbitrary extensions of the
proof checker, we could very easily permit it to accept invalid proofs.

Because of this lack of extensibility in the proof checker, users rely on tactics: procedures that produce proofs.
Users are free to write their own tactics, that can create domain-specific proofs. In fact, developing domain-



specific tactics is considered to be good engineering when doing large developments, leading to significantly
decreased overall effort – as shown, e.g. in Chlipala [2011]. Still, using and developing tactics is error-prone.
Tactics are essentially untyped functions that manipulate logical terms, and thus tactic programming is untyped.
This means that common errors, like passing the wrong argument, or expecting the wrong result, are not caught
statically. Exacerbating this, proofs contained within tactics are not checked statically, when the tactic is defined.
Therefore, even if the tactic is used correctly, it could contain serious bugs that manifest only under some
conditions.

With the recent advent of programming languages that support strongly typed manipulation of logical
terms, such as Beluga [Pientka and Dunfield 2008], Delphin [Poswolsky and Schürmann 2008] and VeriML
[Stampoulis and Shao 2010], this situation can be somewhat mitigated. It has been shown in Stampoulis and
Shao [2010] that we can specify what kinds of arguments a tactic expects and what kind of proof it produces,
leading to a type-safe programming style. Still, this does not address the fundamental problem of proof checking
being fixed – users still have to rely on using tactics. Furthermore, the proofs contained within the type-safe
tactics are in fact proof-producing programs, which need to be evaluated upon invocation of the tactic. Therefore
proofs within tactics are not checked statically, and they can still cause the tactics to fail upon invocation.

In this paper, we build on the past work on these languages, aiming to solve both of these issues regarding
the architecture of modern proof assistants. We introduce two novel ideas: support for an extensible conversion
rule and static proof scripts inside tactics. The former technique enables proof checking to become user-
extensible, while maintaining the guarantee that only logically sound proofs are admitted. The latter technique
allows for statically checking the proofs contained within tactics, leading to increased guarantees about their
runtime behavior. Both techniques are based on the same mechanism, which consists of a light-weight staging
construct. There is also a deep synergy between them, allowing us to use the one to the benefit of the other.

Our main contributions are the following:
• First, we present what we believe is the first technique for having an extensible conversion rule, which

combines the following characteristics: it is safe, meaning that it preserves logical soundness; it is user-
extensible, using a familiar, generic programming model; and, it does not require metatheoretic additions to
the logic, but can be used to simplify the logic instead.
• Second, building on existing work for typed tactic development, we introduce static checking of the proof

scripts contained within tactics. This significantly reduces the development effort required, allowing us to
write tactics that benefit from existing tactics and from the rich type information available.
• Third, we show how typed proof scripts can be seen as an alternative form of proof witness, which falls

between a proof object and a proof script. Receivers of the certificate are able to decide on the tradeoff
between the level of trust they show and the amount of resources needed to check its validity.

In terms of technical contributions, we present a number of technical advances in the metatheory of
the aforementioned programming languages. These include a simple staging construct that is crucial to our
development and a new technique for variable representation. We also show a condition under which static
checking of proof scripts inside tactics is possible. Last, we have extended an existing prototype implementation
with a significant number of features, enabling it to support our claims, while also rendering its use as a proof
assistant more practical.

2. Informal presentation

Glossary of terms. We will start off by introducing some concepts that will be used throughout the paper. The
first fundamental concept we will consider is the notion of a proof object: given a derivation of a proposition
inside a formal logic, a proof object is a term representation of this derivation. A proof checker is a program
that can decide whether a given proof object is a valid derivation of a specific proposition or not. Proof objects
are extremely verbose and are thus hard to write by hand. For this reason, we use tactics: functions that produce
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Figure 1. Checking proof scripts in various proof assistants

proof objects. By combining tactics together, we create proof-producing programs, which we call proof scripts.
If a proof script is evaluated, and the evaluation completes successfully, the resulting proof object can be checked
using the original proof checker. In this way, the trusted base of the system is kept at the absolute minimum.
The language environment where proof scripts and tactics are written and evaluated is called a proof assistant;
evidently, it needs to include a proof checker.

Checking proof objects. In order to keep the size of proof objects manageable, many of the logics used for
mechanized proof checking include a conversion rule. This rule is used implicitly by the proof checker to
decide whether any two propositions are equivalent; if it determines that they are indeed so, the proof of their
equivalence can be omitted. We can thus think of it as a special tactic that is embedded within the proof checker,
and used implicitly.



The more sophisticated the relation supported by the conversion rule is, the simpler are proof objects to write,
since more details can be omitted. On the other hand, the proof checker becomes more complicated, as does
the metatheory proof showing the soundness of the associated logic. The choice in Coq [Barras et al. 2010],
one of the most widely used proof assistants, with respect to this trade-off, is to have a conversion rule that
identifies propositions up to evaluation. Nevertheless, extended notions of conversion are desirable, leading to
proposals like CoqMT [Strub 2010], where equivalence up to first-order theories is supported. In both cases, the
conversion rule is fixed, and extending it requires significant amounts of work. It is thus not possible for users
to extend it using their own, domain-specific tactics, and proof objects are thus bound to get large. This is why
we have to resort to writing proof scripts.

Checking proof scripts. As mentioned earlier, in order to validate a proof script we need to evaluate it (see Fig.
1a); this is the modus operandi in proof assistants of the HOL family [Harrison 1996; Slind and Norrish 2008].
Therefore, it is easy to extend the checking procedure for proof scripts by writing a new tactic, and calling
it as part of a script. The price that this comes to is that there is no way to have any sort of static guarantee
about the validity of the script, as proof scripts are completely untyped. This can be somewhat mitigated in Coq
by utilizing the static checking that it already supports: the proof checker, and especially, the conversion rule
it contains (see Fig. 1b). We can employ proof objects in our scripts; this is especially useful when the proof
objects are trivial to write but trigger complex conversion checks. This is the essential idea behind techniques
like proof-by-reflection [Boutin 1997], which lead to more robust proof scripts.

In previous work [Stampoulis and Shao 2010] we introduced VeriML, a language that enables programming
tactics and proof scripts in a typeful manner using a general-purpose, side-effectful programming model.
Combining typed tactics leads to typed proof scripts. These are still programs producing proof objects, but
the proposition they prove is carried within their type. Information about the current proof state (the set of
hypotheses and goals) is also available statically at every intermediate point of the proof script. In this way, the
static assurances about proof scripts are significantly increased and many potential sources of type errors are
removed. On the other hand, the proof objects contained within the scripts are still checked using a fixed proof
checker; this ultimately means that the set of possible static guarantees is still fixed.

Extensible conversion rule. In this paper, we build on our earlier work on VeriML. In order to further increase
the amount of static checking of proof scripts that is possible within this language, we propose the notion of an
extensible conversion rule (see Fig. 1c). It enables users to write their own domain-specific conversion checks
that get included in the conversion rule. This leads to simpler proof scripts, as more parts of the proof can be
inferred by the conversion rule and can therefore be omitted. Also, it leads to increased static guarantees for
proof scripts, since the conversion checks happen before the rest of the proof script is evaluated.

The way we achieve this is by programming the conversion checks as type-safe tactics within VeriML, and
then evaluating them statically using a simple staging mechanism (see Fig. 2). The type of the conversion tactics
requires that they produce a proof object which proves the claimed equivalence of the propositions. In this way,
type safety of VeriML guarantees that soundness is maintained. At the same time, users are free to extend the
conversion rule with their own conversion tactics written in a familiar programming model, without requiring
any metatheoretic additions or termination proofs. Such proofs are only necessary if decidability of the extra
conversion checks is desired. Furthermore, this approach allows for metatheoretic reductions as the original
conversion rule can be programmed within the language. Thus it can be removed from the logic, and replaced
by the simpler notion of explicit equalities, leading to both simpler metatheory and a smaller trusted base.

Checking tactics. The above approach addresses the issue of being able to extend the amount of static
checking possible for proof scripts. But what about tactics? Our existing work on VeriML shows how the
increased type information addresses some of the issues of tactic development using current proof assistants,
where tactics are programmed in a completely untyped manner.
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Figure 2. Staging in VeriML

Still, if we consider the case of tactics more closely, we will see that there is a limitation to the amount of
checking that is done statically, even using this language. When programming a new tactic, we would like to
reuse existing tactics to produce the required proofs. Therefore, rather than writing proof objects by hand inside
the code of a tactic, we would rather use proof scripts. The issue is that in order to check whether the contained
proof scripts are valid, they need to be evaluated – but this only happens when an invocation of the tactic reaches
the point where the proof script is used. Therefore, the static guarantees that this approach provides are severely
limited by the fact that the proof scripts inside the tactics cannot be checked statically, when the tactic is defined.

Static proof scripts. This is the second fundamental issue we address in this paper. We show that the same
staging construct utilized for introducing the extensible conversion rule, can be leveraged to perform static proof
checking for tactics. The crucial point of our approach is the proof of existence of a transformation between
proof objects, which suggests that under reasonable conditions, a proof script contained within a tactic can be
transformed into a static proof script. This static script can then be evaluated at tactic definition time, to be
checked for validity.

Last, we will show that this approach lends itself well to writing extensions of the conversion rule. We show
that we can create a layering of conversion rules: using a basic conversion rule as a starting point, we can utilize
it inside static proof scripts to implicitly prove the required obligations of a more advanced version, and so
on. This minimizes the required user effort for writing new conversion rules, and enables truly modular proof
checking.

3. Our toolbox

In this section, we will present the essential ingredients that are needed for the rest of our development. The
main requirement is a language that supports type-safe manipulation of terms of a particular logic, as well
as a general-purpose programming model that includes general recursion and other side-effectful operations.
Two recently proposed languages for manipulating LF terms, Beluga [Pientka and Dunfield 2008] and Delphin
[Poswolsky and Schürmann 2008], fit this requirement, as does VeriML [Stampoulis and Shao 2010], which is a
language used to write type-safe tactics. Our discussion is focused on the latter, as it supports a richer ML-style
calculus compared to the others, something useful for our purposes. Still, our results apply to all three.

We will now briefly describe the constructs that these languages support, as well as some new extensions that
we propose. The interested reader can read more about these constructs in Sec. 6 and in the appendix.

A formal logic. The computational language we are presenting is centered around manipulation of terms of a
specific formal logic. We will see more details about this logic in Sec. 4. For the time being, it will suffice
to present a set of assumptions about the syntactic classes and typing judgements of this logic, shown in
Fig. 3. Logical terms are represented by the syntactic class t, and include proof objects, propositions, terms
corresponding to the domain of discourse (e.g. natural numbers), and the needed sorts and type constructors to
classify such terms. Their variables are assigned types through an ordered context Φ. A package of a logical
term t together with the variables context it inhabits Φ is called a contextual term and denoted as T = [Φ] t. Our
computational language works over contextual terms for reasons that will be evident later. The logic incorporates



t ::= proof object constructors | propositions | natural numbers, lists, etc. | sorts and types | X/σ

Φ ::= • | Φ, x : t T ::= [Φ] t
Ψ ::= • | Ψ, X : T σ ::= • | σ, x 7→ t
main judgement: Ψ; Φ ` t : t ′ (type of a logical term)

Figure 3. Assumptions about the logic language

k ::= ∗ | k1→ k2

τ ::= unit | int | bool | τ1→ τ2 | τ1 + τ2 | τ1× τ2 | µα : k.τ | ∀α : k.τ | α | array τ | λα : k.τ | τ1 τ2 | · · ·
e ::= () | n | e1 + e2 | e1 ≤ e2 | true | false | if e then e1 elsee2 | λx : τ.e | e1 e2 | (e1, e2) | proji e | inji e
| case(e, x1.e1, x2.e2) | fold e | unfold e | Λα : k.e | e τ | fix x : τ.e | mkarray(e,e′) | e[e′] | e[e′] := e′′

| l | error | · · ·
Γ ::= • | Γ, x : τ | Γ, α : k Σ ::= • | Σ, l : array τ

Figure 4. Syntax for the computational language (ML fragment)

τ ::= · · · | (X : T )→ τ | (X : T )× τ | (φ : ctx)→ τ

e ::= · · · | λX : T.e | e T | λφ : ctx.e | e Φ | 〈T, e〉 | let 〈X , x〉= e in e′

| holcase T return τ of (T1 7→ e1) · · ·(Tn 7→ en) | ctxcase Φ return τ of (Φ1 7→ e1) · · ·(Φn 7→ en)

Figure 5. Syntax for the computational language (logical term constructs)

such terms by allowing them to get substituted for meta-variables X , using the constructor X/σ. When a term
T = [Φ′] t gets substituted for X , we go from the Φ′ context to the current context Φ using the substitution σ.

Logical terms are classified using other logical terms, based on the normal variables environment Φ, and also
an environment Ψ that types meta-variables, thus leading to the Ψ; Φ ` t : t ′ judgement. For example, a term t
representing a closed proposition will be typed as •; • ` t : Prop, while a proof object tpf proving that proposition
will satisfy the judgement •; • ` tpf : t.

ML-style functional programming. We move on to the computational language. As its main core, we assume
an ML-style functional language, supporting general recursion, algebraic data types and mutable references
(see Fig. 4). Terms of this fragment are typed under a computational variables environment Γ and a store typing
environment Σ, mapping mutable locations to types. Typing judgements are entirely standard, leading to a
Σ; Γ ` e : τ judgement for typing expressions.

Dependently-typed programming over logical terms. As shown in Fig. 5, the first important additions to
the ML computational core are constructs for dependent functions and products over contextual terms T .
Abstraction over contextual terms is denoted as λX : T.e. It has the dependent function type (X : T )→ τ. The type
is dependent since the introduced logical term might be used as the type of another term. An example would be a
function that receives a proposition plus a proof object for that proposition, with type: (P : Prop)→ (X : P)→ τ.
Dependent products that package a contextual logical term with an expression are introduced through the 〈T, e〉
construct and eliminated using let 〈X , x〉= e in e′; their type is denoted as (X : T )× τ. Especially for packages
of proof objects with the unit type, we introduce the syntax LT(T ).



Last, in order to be able to support functions that work over terms in any context, we introduce context
polymorphism, through a similarly dependent function type over contexts. With these in mind, we can define
a simple tactic that gets a packaged proof of a universally quantified formula, and an instantiation term, and
returns a proof of the instantiated formula as follows:

instantiate : (φ : ctx, T : [φ]Type, P : [φ, x : T ]Prop, a : [φ]T )→
LT([φ]∀x : T,P)→ LT([φ]P/[idφ, a])

instantiate φ T P a pf = let 〈H〉 = pf in 〈H a〉

From here on, we will omit details about contexts and substitutions in the interest of presentation.

Pattern matching over terms. The most important new construct that VeriML supports is a pattern matching
construct over logical terms denoted as holcase. This construct is used for dependent matching of a logical term
against a set of patterns. The return clause specifies its return type; we omit it when it is easy to infer. Patterns
are normal terms that include unification variables, which can be present under binders. This is the essential
reason why contextual terms are needed.

Pattern matching over environments. For the purposes of our development, it is very useful to support one
more pattern matching construct: matching over logical variable contexts. When trying to construct a certain
proof, the logical environment represents what the current proof context is: what the current logical hypotheses
at hand are, what types of terms have been quantified over, etc. By being able to pattern match over the
environment, we can “look up” things in our current set of hypotheses, in order to prove further propositions.
We can thus view the current environment as representing a simple form of the current proof state; the pattern
matching construct enables us to manipulate it in a type-safe manner.

One example is an “assumption” tactic, that tries to prove a proposition by searching for a matching
hypotheses in the context:

assumption : (φ : ctx,P : Prop)→ option LT(P)
assumption φ P =

ctxcase φ of
φ′, H : P 7→ return 〈H〉
| φ′, _ 7→ assumption φ′ P

Proof object erasure semantics (new feature). The only construct that can influence the evaluation of a
program based on the structure of a logical term is the pattern matching construct. For our purposes, pattern
matching on proof objects is not necessary – we never look into the structure of a completed proof. Thus we can
have the typing rules of the pattern matching construct specifically disallow matching on proof objects.

In that case, we can define an alternate operational semantics for our language where all proof objects are
erased before using the original small-step reduction rules. Because of type safety, these proof-erasure semantics
are guaranteed to yield equivalent results: even if no proof objects are generated, they are still bound to exist.

Implicit arguments. Let us consider again the instantiate function defined earlier. This function expects five
arguments. From its type alone, it is evident that only the last two arguments are strictly necessary. The last
argument, corresponding to a proof expression for the proposition ∀x : T,P, can be used to reconstruct exactly
the arguments φ, T and P. Furthermore, if we know what the resulting type of a call to the function needs to be,
we can choose even the instantiation argument a appropriately. We employ a simple inferrence mechanism so
that such arguments are omitted from our programs. This feature is also crucial in our development in order to
implicitly maintain and utilize the current proof state within our proof scripts.



(sorts) s ::= Type | Type′

(kinds) K ::= Prop | Nat | K1→K2

(props.) P ::= P1→ P2 | ∀x : K.P | x | True | False | P1∧P2 | · · ·
(dom.obj.) d ::= Zero | Succ d | P | · · ·

(proof objects) π ::= x | λx : P.π | π1 π2 | λx : K.π | π d | · · ·
(HOL terms) t ::= s | K | P | d | π

Selected rules:

→ INTRO
Ψ; Φ,x : P ` π : P′

Ψ; Φ ` λx : P.π : P→ P′

→ ELIM
Ψ; Φ ` π : P→ P′

Ψ; Φ ` π
′ : P

Ψ; Φ ` π π
′ : P′

Figure 6. Syntax and selected rules of the logic language λHOL

CONVERSION
Ψ; Φ `c π : P P =βN P′

Ψ; Φ `c π : P′

d→βN d′
(λx : K.d) d′→βN d[d′/x]
natElimK dz ds zero→βN dz

natElimK dz ds (succ d)→βN ds d (natElimK dz ds d)

d =βN d′
is the compatible, reflexive, symmetric and transitive
closure of d→βN d′

Figure 7. Extending λHOL with the conversion rule (λHOLc)

Minimal staging support (new feature). Using the language we have seen so far we are able to write powerful
tactics using a general-purpose programming model. But what if, inside our programs, we have calls to tactics
where all of their arguments are constant? Presumably, those tactic calls could be evaluated to proof objects prior
to tactic invocation. We could think of this as a form of generalized constant folding, which has one intriguing
benefit: we can tell statically whether the tactic calls succeed or not.

This paper is exactly about exploring this possibility. Towards this effect, we introduce a rudimentary staging
construct in our computational language. This takes the form of a letstatic construct, which binds a static
expression to a variable. The static expression is evaluated during stage one (see Fig. 2), and can only depend on
other static expressions. Details of this construct are presented in Fig. 11d and also in Sec. 6. After this addition,
expressions in our language have a three-phase lifetime, that are also shown in Fig. 2.

− type-checking, where the well-formedness of expressions according to the rules of the language is checked,
and inference of implicit arguments is performed

− static evaluation, where expressions inside letstatic are reduced to values, yielding a residual expression

− run-time, where the residual expression is evaluated



4. Extensible conversion rule

With these tools at hand, let us now return to the first issue that motivates us: the fact that proof checking is rigid
and cannot be extended with user-defined procedures. As we have said in our introduction, many modern proof
assistants are based on logics that include a conversion rule. This rule essentially identifies propositions up to
some equivalence relation: usually this is equivalence up to partial evaluation of the functions contained within
propositions.

The supported relation is decided when the logic is designed. Any extension to this relation requires a
significant amount of work, both in terms of implementation, and in terms of metatheoretic proof required.
This is evidenced by projects that extend the conversion rule in Coq, such as Blanqui et al. [1999] and Strub
[2010]. Even if user extensions are supported, those only take the form of first-order theories. Can we do better
than this, enabling arbitrarily complex user extensions, written with the full power of ML, yet maintaining
soundness?

It turns out that we can: this is the subject of this section. The key idea is to recognize that the conversion
rule is essentially a tactic, embedded within the type checker of the logic. Calls to this tactic are made implicitly
as part of checking a given proof object for validity. So how can we support a flexible, extensible alternative?
Instead of hardcoding a conversion tactic within the logic type checker, we can program a type-safe version of
the same tactic within VeriML, with the requirement that it provides proof of the claimed equivalence. Instead of
calling the conversion tactic as part of proof checking, we use staging to call the tactic statically – after (VeriML)
type checking, but before runtime execution. This can be viewed as a second, potentially non-terminating proof
checking stage. Users are now free to write their own conversion tactics, extending the static checking available
for proof objects and proof scripts. Still, soundness is maintained, since full proof objects in the original logic
can always be constructed. As an example, we have extended the conversion rule that we use by a congruence
closure procedure, which makes use of mutable data structures, and by an arithmetic simplification procedure.

4.1 Introducing: the conversion rule

First, let us present what the conversion rule really is in more detail. We will base our discussion on a simple
type-theoretic higher-order logic, based on the λHOL logic as described in Barendregt and Geuvers [1999], and
used in our original work on VeriML [Stampoulis and Shao 2010]. We can think of such a logic composed
by the following broad classes: the objects of the domain of discourse d, which are the objects that the logic
reasons about, such as natural numbers and lists; their classifiers, the kinds K (classified in turn by sorts s); the
propositions P; and the derivations, which prove that a certain proposition is true. We can represent derivations in
a linear form as terms π in a typed lambda-calculus; we call such terms proof objects, and their types represent
propositions in the logic. Checking whether a derivation is a valid proof of a certain proposition amounts to
type-checking its corresponding proof object. Some details of this logic are presented in Fig. 6; the interested
reader can find more information about it in the above references and in the appendix (Sec. A).

In Fig. 6, we show what the conversion rule looks like for this logic: it is a typing judgement that effectively
identifies propositions up to an equivalence relation, with respect to checking proof objects. We call this version
of the logic λHOLc and use `c to denote its entailment relation. The equivalence relation we consider in the
conversion rule is evaluation up to β-reductions and uses of primitive recursion of natural numbers, denoted
as natElim. In this way, trivial arguments based on this notion of computation alone need not be witnessed, as
for example is the fact that (Succ x)+ y = Succ (x+ y) – when the addition function is defined by primitive
recursion on the first argument. Of course, this is only a very basic use of the conversion rule. It is possible to
omit larger proofs through much more sophisticated uses. This leads to simpler proofs and smaller proof objects.

Still, when using this approach, the choice of what relation is supported by the conversion rule needs to be
made during the definition of the logic. This choice permeates all aspects of the metatheory of the logic. It is
easy to see why, even with the tiny fragment of logic we have introduced. Most typing rules for proof objects in



Ψ; Φ `e d1 : K Ψ; Φ `c d2 : K

Ψ; Φ `e d1 = d2 : Prop

Ψ; Φ `e d : K

Ψ; Φ `e refl d : d = d

Ψ; Φ, x : K `e P : Prop Ψ; Φ `e d1 : K Ψ; Φ `e π : P[d1/x] Ψ; Φ `e π
′ : d1 = d2

Ψ; Φ `e leibniz (λx : K.P) π π
′ : P[d2/x]

Ψ; Φ, x : K `e π : d1 = d2

Ψ; Φ `e lamEq (λx : K.π) : (λx : K.d1) = (λx : K.d2)

Ψ; Φ, x : K `e π : d1 = d2 Ψ; Φ `e d1 : Prop

Ψ; Φ `e forallEq (λx : K.π) : (∀x : K.d1) = (∀x : K.d2)

Ψ; Φ, x : K `e d : K′ Ψ; Φ `e d′ : K

Ψ; Φ `e betaEq (λx : K.d) d′ : (λx : K.d) d′ = d[d′/x]

Axioms assumed:

natElimBaseK : ∀ fz.∀ fs.natElimK fz fs zero = fz

natElimStepK : ∀ fz.∀ fs.∀n. natElimK fz fs (succ n) =
fs n (natElimK fz fs n)

Figure 8. Extending λHOL with explicit equality (λHOLe)

the logic are similar to the rules→INTRO and→ELIM: they are syntax-directed. This means that upon seeing
the associated proof object constructor, like λx : P.π in the case of→INTRO, we can directly tell that it applies.
If all rules were syntax directed, it would be entirely simple to prove that the logic is sound by an inductive
argument: essentially, since no proof constructor for False exists, there is no valid derivation for False.

In this logic, the only rule that is not syntax directed is exactly the conversion rule. Therefore, in order to
prove the soundness of the logic, we have to show that the conversion rule does not somehow introduce a proof
of False. This means that proving the soundness of the logic passes essentially through the specific relation we
have chosen for the conversion rule. Therefore, this approach is foundationally limited from supporting user
extensions, since any new extension would require a new metatheoretic result in order to make sure that it does
not violate logical soundness.

4.2 Throwing conversion away

Since having a fixed conversion rule is bound to fail if we want it to be extensible, what choice are we left with,
but to throw it away? This radical sounding approach is what we will do here. We can replace the conversion
rule by an explicit notion of equality, and provide explicit proof witnesses for rewriting based on that equality.
Essentially, all the points where the conversion rule was alluded to and proofs were omitted, need now be
replaced by proof objects witnessing the equivalence. Some details for the additions required to the base λHOL
logic are shown in Fig. 8, yielding the λHOLe logic. There are good reasons for choosing this version: first, the
proof checker is as simple as possible, and does not need to include the conversion checking routine. We could
view this routine as performing proof search over the replacement rules, so it necessarily is more complicated,
especially since it needs to be relatively efficient. Also, the metatheory of the logic itself can be simplified. Even
when the conversion rule is supported, the metatheory for the associated logic is proved through the explicit



βNequal : (φ : ctx,T : Type, t1 : T, t2 : T )→ option LT(t1 = t2)
βNequal φ T t1 t2 =

holcase whnf φ T t1, whnf φ T t2 of
((ta : T ′→ T ) tb),(tc td) 7→

do 〈pf1〉 ← βNequal φ (T ′→ T ) ta tc
〈pf1〉 ← βNequal φ T ′ tb td
return 〈· · · proof of ta tb = tc td · · · 〉

| (ta→ tb),(tc→ td) 7→
do 〈pf1〉 ← βNequal φ Prop ta tc
〈pf1〉 ← βNequal φ Prop tb td
return 〈· · · proof of ta→ tb = tc→ td · · · 〉

| (λx : T.t1),(λx : T.t2) 7→
do 〈pf〉 ← βNequal [φ, x : T ] Prop t1 t2

return 〈· · · proof of λx : T.t1 = λx : T.t2 · · · 〉
| t1, t1 7→ do return 〈· · · proof of t1 = t1 · · · 〉
| t1, t2 7→ None

requireEqual : (φ : ctx,T : Type, t1 : T, t2 : T ).LT(t1 = t2)
requireEqual φ T t1 t2 =

match βNequal φ T t1 t2 with Some x 7→ x | None 7→ error

Figure 9. VeriML tactic for checking equality up to β-conversion

equality approach; this is because model construction for a logic benefits from using explicit equality [Siles and
Herbelin 2010].

Still, this approach has a big disadvantage: the proof objects soon become extremely large, since they include
painstakingly detailed proofs for even the simplest of equivalences. This precludes their use as independently
checkable proof certificates that can be sent to a third party. It is possible that this is one of the reasons why
systems based on logics with explicit equalities, such as HOL4 [Slind and Norrish 2008] and Isabelle/HOL
[Nipkow et al. 2002], do not generate proof objects by default.

4.3 Getting conversion back

We will now see how it is possible to reconcile the explicit equality based approach with the conversion rule: we
will gain the conversion rule back, albeit it will remain completely outside the logic. Therefore we will be free
to extend it, all the while without risking introducing unsoundness in the logic, since the logic remains fixed
(λHOLe as presented above).

We do this by revisiting the view of the conversion rule as a special “trusted” tactic, through the tools
presented in the previous section. First, instead of hardcoding a conversion tactic in the type checker, we program
a type-safe conversion tactic, utilizing the features of VeriML. Based on typing alone we require that it returns
a valid proof of the claimed equivalences:

βNequal : (φ : ctx, T : Type, t : T, t ′ : T )→ option LT(t = t ′)

Second, we evaluate this tactic under proof erasure semantics. This means that no proof objects are produced,
leading to the same space gains as the original conversion rule. Third, we use the staging construct in order to
check conversion statically.



whnf : (φ : ctx,T : Type, t : T )→ (t ′ : T )×LT(t = t ′)
whnf φ T t = holcase t of
(t1 : T ′→ T )(t2 : T ′) 7→

let 〈t ′1, p f1〉= whnf φ (T ′→ T ) t1 in
holcase t ′1 of

λx : T ′.t f 7→ 〈[φ] t f /[idΦ, t2], · · · 〉
| t ′1 7→ 〈[φ] t ′1 t2, · · · 〉

| natElimK fz fs n 7→
let 〈n′, p f1〉= whnf φ Nat n in holcase n′ of

zero 7→ 〈[φ] fz, · · · 〉
| succ n′ 7→ 〈[φ] fs n′ (natElimK fz fs n′), · · · 〉
| n′ 7→ 〈[φ]natElimK fz fs n′, · · · 〉

| t 7→ 〈t, · · ·〉

Figure 10. VeriML tactic for rewriting to weak head-normal form

Details. We now present our approach in more detail. First, in Fig. 9, we show a sketch of the code behind the
type-safe conversion check tactic. It works by first rewriting its input terms into weak head-normal form, via the
whnf function in Fig. 10, and then recursively checking their subterms for equality. In the equivalence checking
function, more cases are needed to deal with quantification; while in the rewriting procedure, a recursive call
is missing, which would complicate our presentation here. We also define a version of the tactic that raises an
error instead of returning an option type if we fail to prove the terms equal, which we call requireEqual. The full
details can be found in our implementation.

The code of the βNequal tactic is in fact entirely similar to the code one would write for the conversion check
routine inside a logic type checker, save for the extra types and proof objects. It therefore follows trivially that
everything that holds for the standard implementation of the conversion check also holds for this code: e.g. it
corresponds exactly to the =βN relation as defined in the logic; it is bound to terminate because of the strong
normalization theorem for this relation; and its proof-erased version is at least as trustworthy as the standard
implementation.

Furthermore, given this code, we can produce a form of typed proof scripts inside VeriML that correspond
exactly to proof objects in the logic with the conversion rule, both in terms of their actual code, and in terms of
the steps required to validate them. This is done by constructing a proof script in VeriML by induction on the
derivation of the proof object in λHOLc, replacing each proof object constructor by an equivalent VeriML tactic
as follows:

constructor to tactic of type
λx : P.π Assume e LT([φ, H : P]P′)→ LT(P→ P′)
π1 π2 Apply e1 e2 LT(P→ P′)→ LT(P)→ LT(P′)
λx : K.π Intro e LT([φ, x : T ]P′)→ LT(∀x : T,P′)
π d Inst e a LT(∀x : T,P)→ (a : T )→

LT(P/[id, a])
c Lift c (H : P)→ LT(P)
(conversion) Conversion LT(P)→ LT(P = P′)→ LT(P′)

Here we have omitted the current logical environment φ; it is maintained through syntactic means as discussed
in Sec. 7 and through type inference. The only subtle case is conversion. Given the transformed proof e for the



proof object π contained within a use of the conversion rule, we call the conversion tactic as follows:

letstatic pf = requireEqual P P′ in Conversion e pf

The arguments to requireEqual can be easily inferred, making crucial use of the rich type information available.
Conversion could also be used implicitly in the other tactics. Thus the resulting expression looks entirely
identical to the original proof object.

Correspondence with original proof object. In order to elucidate the correspondence between the resulting
proof script expression and the original proof object, it is fruitful to view the proof script as a proof certificate,
sent to a third party. The steps required to check whether it constitutes a valid proof are the following. First,
the whole expression is checked using the type checker of the computational language. Then, the calls to the
requireEqual function are evaluated during stage one, using proof erasure semantics. We expect them to be
successful, just as we would expect the conversion rule to be applicable when it is used. Last, the rest of the
tactics are evaluated; by a simple argument, based on the fact that they do not use pattern matching or side-
effects, they are guaranteed to terminate and produce a proof object in λHOLe. This validity check is entirely
equivalent to the behavior of type-checking the λHOLc proof object, save for pushing all conversion checks
towards the end.

4.4 Extending conversion at will

In our treatment of the conversion rule we have so far focused on regaining the βN conversion in our framework.
Still, there is nothing confining us to supporting this conversion check only. As long as we can program a
conversion tactic in VeriML that has the right type, it can safely be made part of our conversion rule.

For example, we have written an eufEqual function, which checks terms for equivalence based on the equality
with uninterpreted functions decision procedure. It is adapted from our previous work on VeriML [Stampoulis
and Shao 2010]. This equivalence checking tactic isolates hypotheses of the form d1 = d2 from the current
context, using the newly-introduced context matching support. Then, it constructs a union-find data structure in
order to form equivalence classes of terms. Based on this structure, and using code similar to βNequal (recursive
calls on subterms), we can decide whether two terms are equal up to simple uses of the equality hypotheses at
hand. We have combined this tactic with the original βNequal tactic, making the implicit equivalence supported
similar to the one in the Calculus of Congruent Constructions [Blanqui et al. 2005]. This demonstrates the
flexibility of this approach: equivalence checking is extended with a sophisticated decision procedure, which is
programmed using its original, imperative formulation. We have programmed both the rewriting procedure and
the equality checking procedure in an extensible manner, so that we can globally register further extensions.

4.5 Typed proof scripts as certificates

Earlier we discussed how we can validate the proof scripts resulting from turning the conversion rule into
explicit tactic calls. This discussion shows an interesting aspect of typed proof scripts: they can be viewed as
a proof witness that is a flexible compromise between untyped proof scripts and proof objects. When a typed
proof script consists only of static calls to conversion tactics and uses of total tactics, it can be thought of as a
proof object in a logic with the corresponding conversion rule. When it also contains other tactics, that perform
potentially expensive proof search, it corresponds more closely to an untyped proof script, since it needs to be
fully evaluated. Still, we are allowed to validate parts of it statically. This is especially useful when developing
the proof script, because we can avoid the evaluation of expensive tactic calls while we focus on getting the
skeleton of the proof correct.

Using proof erasure for evaluating requireEqual is only one of the choices the receiver of such a proof
certificate can make. Another choice would be to have the function return an actual proof object, which we
can check using the λHOLe type checker. In that case, the VeriML interpreter does not need to become part of



the trusted base of the system. Last, the ‘safest possible’ choice would be to avoid doing any evaluation of the
function, and ask the proof certificate provider to do the evaluation of requireEqual themselves. In that case, no
evaluation of computational code would need to happen at the proof certificate receiver’s side. This mitigates
any concerns one might have for code execution as part of proof validity checking, and guarantees that the
small λHOLe type checker is the trusted base in its entirety. Also, the receiver can decide on the above choices
selectively for different conversion tactics – e.g. use proof erasure for βNequal but not for eufEqual, leading to a
trusted base identical to the λHOLc case. This means that the choice of the conversion rule rests with the proof
certificate receiver and not with the designer of the logic. Thus the proof certificate receiver can choose the level
of trust they require at will.

5. Static proof scripts

In the previous section, we have demonstrated how proof checking for typed proof scripts can be made user-
extensible, through a new treatment of the conversion rule. It makes use of user-defined, type-safe tactics, which
are evaluated statically. The question that remains is what happens with respect to proofs within tactics. If a
proof script is found within a tactic, must we wait until that evaluation point is reached to know whether the
proof script is correct or not? Or is there a way to check this statically, as soon as the tactic is defined?

In this section we show how this is possible to do in VeriML using the staging construct we have introduced.
Still, in this case matters are not as simple as evaluating certain expressions statically rather than dynamically.
The reason is that proof scripts contained within tactics mention uninstantiated meta-variables, and thus cannot
be evaluated through staging. We resolve this by showing the existence of a transformation, which “collapses”
logical terms from an arbitrary meta-variables context into the empty one.

We will focus on the case of developing conversion routines, similar to the ones we saw earlier. The ideas we
present are generally applicable when writing other types of tactics as well; we focus on conversion routines in
order to demonstrate that the two main ideas we present in this paper can work in tandem.

A rewriter for plus. We will consider the case of writing a rewriter –similar to whnf– for simplifying
expressions of the form x+y, depending on the second argument. The addition function is defined by induction
on the first argument, as follows:

(+) = λx.λy.natElimNat y (λp.λr.Succ r) x

In order for rewriters to be able to use existing as well as future rewriters to perform their recursive calls, we
write them in the open recursion style – they receive a function of the same type that corresponds to the “current”
rewriter. The code looks as follows:

rewriterType = (φ : ctx,T : Type, t : T )→ (t ′ : T )×LT(t = t ′)
plusRewriter1 : rewriterType→ rewriterType
plusRewriter1 recursive φ T t = holcase t with

x+ y 7→
let 〈y′, 〈pfy′〉〉= recursive φ y in
let 〈t ′, 〈pft′〉〉 =

holcase y′ return Σt ′ : [φ]Nat.LT([φ]x+ y′ = t ′) of
0 7→ 〈x, · · · proof of x+0 = x · · · 〉
| Succ y′ 7→

〈
Succ(x+ y′),

· · · proof of x+Succ y′ = Succ (x+ y′) · · ·
〉

| y′ 7→ 〈x+ y′, · · · proof of x+ y′ = x+ y′ · · · 〉
in〈t ′, 〈· · · proof of x+ y = t ′ · · · 〉〉

| t 7→ 〈t, · · · proof of t = t · · · 〉



While developing such a tactic, we can leverage the VeriML type checker to know the types of missing
proofs. But how do we fill them in? For the interesting cases of x+ 0 = x and x+Succ y′ = Succ (x+ y′),
we would certainly need to prove the corresponding lemmas. But for the rest of the cases, the corresponding
lemmas would be uninteresting and tedious to state, such as the following for the x+ y = t ′ case:

lemma1 : ∀x,y,y′, t ′,y = y′→ (x+ y′ = t ′)→ x+ y = t

Stating and proving such lemmas soon becomes a hindrance when writing tactics. An alternative is to use the
congruence closure conversion rule to solve this trivial obligation for us directly at the point where it is required.
Our first attempt would be:

proof of x+ y = t ′ ≡
let 〈pf〉= requireEqual [φ,H1 : y = y′,H2 : x+ y′ = t ′] (x+ y) t ′

in
〈
[φ]pf/[idφ, pfy′, pft’]

〉
The benefit of this approach is evident when utilizing implicit arguments, since most of the details can be
inferred and therefore omitted. Here we had to alter the environment passed to requireEqual, which includes
several extra hypotheses. Once the resulting proof has been computed, the hypotheses are substituted by the
actual proofs that we have.

The problem with this approach is two-fold: first, the call to the requireEqual tactic is recomputed every time
we reach that point of our function. For such a simple tactic call, this does not impact the runtime significantly;
still, if we could avoid it, we would be able use more sophisticated and expensive tactics. The second problem
is that if for some reason the requireEqual is not able to prove what it is supposed to, we will not know until we
actually reach that point in the function.

Moving to static proofs. This is where using the letstatic construct becomes essential. We can evaluate the
call to requireEqual statically, during stage one interpretation. Thus we will know at the time that plusRewriter1
is defined whether the call succeeded; also, it will be replaced by a concrete value, so it will not affect the
runtime behavior of each invocation of plusRewriter1 anymore. To do that, we need to avoid mentioning any
of the metavariables that are bound during runtime, like x, y, and t ′. This is done by specifying an appropriate
environment in the call to requireEqual, similarly to the way we incorporated the extra knowledge above and
substituted it later. Using this approach, we have:

proof of x+ y = t ′ ≡
letstatic 〈pf〉 =
let φ′ = [x,y,y′, t ′ : Nat,H1 : y = y′,H2 : x+ y′ = t ′] in
requireEqual φ′ (x+ y) t ′

in
〈
[φ]pf/[x/idφ,y/idφ,y′/idφ, t ′/idφ,pfy′/idφ,pft′/idφ]

〉
What we are essentially doing here is replacing the meta-variables by normal logical variables, which our

tactics can deal with. The meta-variable context is “collapsed” into a normal context; proofs are constructed
using tactics in this environment; last, the resulting proofs are transported back into the desired context by
substituting meta-variables for variables. We have explicitly stated the substitutions in order to distinguish
between normal logical variables and meta-variables.

The reason why this transformation needs to be done is that functions in our computational language can only
manipulate logical terms that are open with respect to a normal variables context; not logical terms that are open
with respect to the meta-variables context too. A much more complicated, but also more flexible alternative to
using this “collapsing” trick would be to support meta-n-variables within our computational language directly.

Overall, this approach is entirely similar to proving the auxiliary lemma mentioned above, prior to the tactic
definition. The benefit is that by leveraging the type information together with type inference, we can avoid



stating such lemmas explicitly, while retaining the same runtime behavior. We thus end up with very concise
proof expressions that are statically validated. We introduce syntactic sugar for binding a static proof script
to a variable, and then performing a substitution to bring it into the current context, since this is a common
operation.

〈e〉static ≡ letstatic 〈pf〉 = e in 〈[φ]pf/ · · ·〉

Based on these, the trivial proofs in the above tactic can be filled in using a simple 〈requireEqual〉static call; for
the other two we use 〈Instantiate (NatInduction requireEqual requireEqual) x〉static.

After we define plusRewriter1, we can register it with the global equivalence checking procedure. Thus, all
later calls to requireEqual will benefit from this simplification. It is then simple to prove commutativity for
addition:

plusComm : LT(∀x,y.x+ y = y+ x)
plusComm = NatInduction requireEqual requireEqual

Based on this proof, we can write a rewriter that takes commutativity into account and uses the hash values
of logical terms to avoid infinite loops. We have worked on an arithmetic simplification rewriter that is built by
layering such rewriters together, using previous ones to aid us in constructing the proofs required in later ones.
It works by converting expressions into a list of monomials, sorting the list based on the hash values of the
variables, and then factoring monomials on the same variable. Also, the eufEqual procedure mentioned earlier
has all of its associated proofs automated through static proof scripts, using a naive, potentially non-terminating,
equality rewriter.

Is collapsing always possible? A natural question to ask is whether collapsing the metavariables context into
a normal context is always possible. In order to cast this as a more formal question, we notice that the essential
step is replacing a proof object π of type [Φ] t, typed under the meta-variables environment Ψ, by a proof object
π′ of type [Φ′] t ′ typed under the empty meta-variables environment. There needs to be a substitution so that π′

gets transported back to the Φ, Ψ environment, and has the appropriate type.

We have proved that this is possible under certain restrictions: the types of the metavariables in the current
context need to depend on the same free variables context Φmax, or prefixes of that context. Also the substitutions
they are used with need to be prefixes of the identity substitution for Φmax. Such terms are characterized
as collapsible. We have proved that collapsible terms can be replaced using terms that do not make use of
metavariables; more details can be found in Sec. 6 and in Sec. F of the appendix.

This restriction corresponds very well to the treatment of variable contexts in the Delphin language. This
language assumes an ambient context of logical variables, instead of full, contextual modal terms. Constructs
to extend this context and substitute a specific variable exist. If this last feature is not used, the ambient context
grows monotonically and the mentioned restriction holds trivially. In our tests, this restriction has not turned out
to be limiting.

6. Metatheory

We have completed an extensive reworking of the metatheory of VeriML, in order to incorporate the features
that we have presented in this paper. Our new metatheory includes a number of technical advances compared
to our earlier work [Stampoulis and Shao 2010]. We will present a technical overview of our metatheory in this
section; full details can be found in the appendix.

Variable representation technique. Though our metatheory is done on paper, we have found that using a
concrete variable representation technique elucidates some aspects of how different kinds of substitutions work
in our language, compared to having normal named variables. For example, instantiating a context variable with



Syntax of the logic (terms) t ::= s | c | fi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | refl t | leibniz t1 t2 | lamEq t | forallEq t1 t2 | betaEq t1 t2
(sorts) s ::= Prop | Type | Type′ (var. context) Φ ::= • | Φ, t (substitutions) σ ::= • | σ, t

Example of representation: a : Nat ` λx : Nat.(λy : Nat.refl (plus a y))(plus a x) 7→ Nat ` λ(Nat).(λ(Nat).refl (plus f0 b0)) (plus f0 b0)

Freshen: dtenm

d fie = fi
dbnenm = fm
dbien = bi when i < n
d(λ(t1).t2)en = λ(dt1en).dt2en+1

dt1 t2e = dt1e dt2e

Bind: btcnm

b fm−1cnm = bn
b ficnm = fi when i < m−1
bbic = bi+1
b(λ(t1).t2)c = λ(bt1cn).bt2cn+1

bt1 t2c = bt1c bt2c

(a) Hybrid deBruijn levels-deBruijn indices representation technique

Syntax t ::= · · · | fI | Xi/σ Φ ::= • | Φ, t | Φ, φi σ ::= • | σ, t | σ, id(φi) (indices) I ::= n | I+ |φi| (ctx.terms) T ::= [Φ] t | [Φ]Φ′

(ctx.kinds) K ::= [Φ] t | [Φ]ctx (extension context) Ψ ::= • | Ψ, K (ext. subst.) σΨ ::= • | σΨ, T

Ψ; Φ ` t : t ′ (sample)
Φ.I = t

Ψ; Φ ` fI : t
Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
· (idΦ, t2)

Ψ.i = [Φ′] t ′ Ψ; Φ ` σ : Φ
′

Ψ; Φ ` Xi/σ : t ′ ·σ

Ψ ` T : K
Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
Ψ `Φ, Φ

′ wf
Ψ ` [Φ]Φ′ : [Φ]ctx

Ψ `Φ wf (sample)
Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, φi) wf

(b) Extension variables: meta-variables and context variables

Subst. application: t ·σ c ·σ = c fI ·σ = σ.I bi ·σ = bi (λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ) (t1 t2) ·σ = (t1 ·σ) (t2 ·σ)

Ext. subst. application (sample) (I, |φi|) ·σΨ = (I ·σΨ), |Φ′| when σΨ.i = [_]Φ′ (Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [_] t
(σ, id(φi)) ·σΨ = σ ·σΨ, idσΨ.i (Φ, φi) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [_]Φ′

Ψ; Φ ` σ : Φ′
Ψ; Φ ` • : •

Ψ; Φ ` σ : Φ
′

Ψ; Φ ` t : t ′ ·σ
Ψ; Φ ` (σ, t) : (Φ′, t ′)

Ψ; Φ ` σ : Φ
′

Ψ.i = [Φ′]ctx
Φ
′, φi ⊆Φ

Ψ; Φ ` (σ, id(φi)) : (Φ′, φi)
Ψ ` σΨ : Ψ′
(selected)

Ψ ` σΨ : Ψ
′

Ψ ` T : K ·σΨ

Ψ ` (σΨ, T ) : (Ψ′, K)

Subst. lemmas: Ψ; Φ ` t : t ′ Ψ; Φ
′ ` σ : Φ

Ψ; Φ
′ ` t ·σ : t ′ ·σ

Ψ; Φ
′ ` σ : Φ Ψ; Φ

′′ ` σ
′ : Φ

′

Ψ; Φ
′′ ` σ ·σ′ : Φ

Ψ ` T : K Ψ
′ ` σΨ : Ψ

Ψ
′ ` T ·σΨ : K ·σΨ

(c) Substitutions over logical variables and extension variables

Syntax: Γ ::= • | Γ, x : τ | Γ, x :s τ | Γ, α : k e ::= · · · | letstatic x = e in e′ Limit ctx:

•|static = •
(Γ, x :s t)|static = Γ|static, x : t
(Γ, x : t)|static = Γ|static
(Γ, α : k)|static = Γ|static

Ψ; Σ; Γ ` e : τ (part) •; Σ; Γ|static ` e : τ Ψ; Σ; Γ,x :s τ ` e′ : τ

Ψ; Σ; Γ ` letstatic x = e in e′ : τ

x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ

Evaluation:

v ::= Λ(K).ed | pack T return (.τ) with v | () | λx : τ.ed | (v, v′) | inji v | fold v | l | Λα : k.ed
S ::= letstatic x = • in e′ | letstatic x = S in e′ | Λ(K).S | λx : τ.S | unpack ed (.)x.(S) | case(ed , x.S, x.e2)

| case(ed , x.ed , x.S) | Λα : k.S | fix x : τ.S | unify T return (.τ) with (Ψ.T ′ 7→ S) | Es[S]
Es ::= Es T | pack T return (.τ) with Es | unpack Es (.)x.(e′) | Es e′ | ed Es | (Es, e) | (ed , Es) | proji Es | inji Es

| case(Es, x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e′ | ed := Es | !Es | Es τ

ed ::= all of e except letstatic x = e in e′ E ::= exactly as Es with Es→ E and e→ ed

Stage 1 op.sem.:
( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )
( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] )

( µ , letstatic x = v in e )−→s ( µ , e[v/x] )

(d) Computational language: staging support

Figure 11. Main definitions in metatheory



a concrete context triggers a set of potentially complicated α-renamings, which a concrete representation makes
explicit. We use a hybrid technique representing bound variables as deBruijn indices, and free variables as
deBruijn levels. Our technique is a small departure from the named approach, requiring fewer extra annotations
and lemmas than normal deBruijn indices. Also it identifies terms not only up to α-equivalence, but also up to
extension of the context with new variables; this is why it is also used within the VeriML implementation.The
two fundamental operations of this technique are freshening and binding, which are shown in Fig. 11a. Details
can be found in section A of the appendix.

Extension variables. We extend the logic with support for meta-variables and context variables – we refer to
both these sorts of variables as extension variables. A meta-variable Xi stands for a contextual term T = [Φ] t,
which packages a term together with the context it inhabits. Context variables φi stand for a context Φ, and
are used to “weaken” parametric contexts in specific positions. Both kinds of variables are needed to support
manipulation of open logical terms. Details of their definition and typing are shown in Fig. 11b. We use the
same hybrid approach as above for representing these variables. A somewhat subtle aspect of this extension is
that we generalize the deBruijn levels I used to index free variables, in order to deal effectively with parametric
contexts.

Substitutions. The hybrid representation technique we use for variables renders simultaneous substitutions for
all variables in scope as the most natural choice. In Fig. 11c, we show some example rules of how to apply a
full simultaneous substitution σ to a term t, denoted as t ·σ. Similarly, we define full simultaneous substitutions
σΨ for extension contexts; defining their application has a very natural description, because of our variable
representation technique. We prove a number of substitution lemmas which have simple statements, as shown
in Fig. 11c. The proofs of these lemmas comprise the main effort required in proving the type-safety of a
computational language such as the one we support, as they represent the point where computation specific to
logical term manipulation takes place. Details can be found in section B of the appendix.

Computational language. We define an ML-style computational language that supports dependent functions
and dependent pairs over contextual terms T , as well as pattern matching over them. Lack of space precludes us
from including details here; full details can be found in section C of the appendix. A fairly complete ML calculus
is supported, with mutable references and recursive types. Type safety is proved using standard techniques; its
central point is extending the logic substitution lemmas to expressions and using them to prove progress and
preservation of dependent functions and dependent pairs. This proof is modular with respect to the logic and
other logics can easily be supported.

Pattern matching. Our metatheory includes many extensions in the pattern matching that is supported, as well
as a new approach for dealing with typing patterns. We include support for pattern matching over contexts (e.g.
to pick out hypotheses from the context) and for non-linear patterns. The allowed patterns are checked through
a restriction of the usual typing rules Ψ `p T : K.

The essential idea behind our approach to pattern matching is to identify what the relevant variables in a
typing derivation are. Since contexts are ordered, “removing” non-relevant variables amounts to replacing their
definitions in the context with holes, which leads us to partial contexts Ψ̂. The corresponding notion of partial
substitutions is denoted as σ̂Ψ. Our main theorem about pattern matching can then be stated as:

Theorem 6.1 (Decidability of pattern matching) If Ψ `p T : K, • `p T ′ : K and relevant(Ψ; Φ ` T : K) = Ψ̂,
then either there exists a unique partial substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂ and T · σ̂Ψ = T ′, or no such
substitution exists.

Details are found in section D of the appendix.



Staging. Our development in this paper critically depends on the letstatic construct we presented earlier. It
can be seen as a dual of the traditional box construct of Davies and Pfenning [1996]. Details of its typing and
semantics are shown in Fig. 11d. We define a notion of “static evaluation contexts” S, which enclose a hole
of the form letstatic x = • in e. They include normal evaluation contexts, as well as evaluation contexts under
binding structures. We evaluate expressions e that include staging constructs using the −→s relation; internally,
this uses the normal evaluation rules, that are used in the second stage as well, for evaluating expressions
which do not include other staging constructs. If stage-one evaluation is successful, we are left with a residual
dynamic configuration (µ′, ed) which is then evaluated normally. We prove type-safety for stage-one evaluation;
its statement follows.

Theorem 6.2 (Stage-one Type Safety) If •; Σ; • ` e : τ then: either e is a dynamic expression ed; or, for every
store µ such that ` µ : Σ, we have: either µ,e −→s error, or, there exists an e′, a new store typing Σ′ ⊇ Σ and a
new store µ′ such that: (µ,e)−→ (µ′,e′); ` µ′ : Σ′; and •; Σ′; • ` e′ : τ.

Details are found in section E of the appendix.

Collapsing extension variables. Last, we have proved the fact that under the conditions described in Sec. 5,
it is possible to collapse a term t into a term t ′ which is typed under the empty extension variables context; a
substitution σ with which we can regain the original term t exists. This suggests that whenever a proof object t
for a specific proposition is required, an equivalent proof object that does not mention uninstantiated extension
variables exists. Therefore, we can write an equivalent proof script producing the collapsed proof object instead,
and evaluate that script statically. The statement of this theorem is the following:

Theorem 6.3 If Ψ ` [Φ] t : [Φ] tT and collapsible(Ψ ` [Φ] t : [Φ] tT ), then there exist Φ′, t ′, t ′T and σ such that
• `Φ′ wf, • ` [Φ′] t ′ : [Φ′] t ′T , Ψ; Φ ` σ : Φ′, t ′ ·σ = t and t ′T ·σ = tT .

The main idea behind the proof is to maintain a number of substitutions and their inverses: one to go from
a general Ψ extension context into an “equivalent” Ψ′ context, which includes only definitions of the form
[Φ] t, for a constant Φ context that uses no extension variables. Then, another substitution and its inverse are
maintained to go from that extension variables context into the empty one; this is simpler, since terms typed
under Ψ′ are already essentially free of metavariables. The computational content within the proof amounts to
a procedure for transforming proof scripts inside tactics into static proof scripts. Details are found in section F
of the appendix.

7. Implementation

We have completed a prototype implementation of the VeriML language, as described in this paper, that supports
all of our claims. We have built on our existing prototype [Stampoulis and Shao 2010] and have added an exten-
sive set of new features and improvements. The prototype is written in OCaml and is about 6k lines of code. Us-
ing the prototype we have implemented a number of examples, that are about 1.5k lines of code. Readers are en-
couraged to download and try the prototype from http://flint.cs.yale.edu/publications/supc.html.

New features. We have implemented the new features we have described so far: context matching, non-linear
patterns, proof-erasure semantics, staging, and inferencing for logical and computational terms. Proof-erasure
semantics are utilized only if requested by a per-function flag, enabling us to selectively “trust” tactics. The
staging construct we support is more akin to the 〈·〉static form described as syntactic sugar in Sec. 5, and it is able
to infer the collapsing substitutions that are needed, following the approach used in our metatheory.

Changes. We have also changed quite a number of things in the prototype and improved many of its aspects.
A central change, mediated by our new treatment of the conversion rule, was to modify the used logic in



order to use the explicit equality approach; the existing prototype used the λHOLc logic. We also switched the
variable representation to the hybrid deBruijn levels-deBruijn indices technique we described, which enabled
us to implement subtyping based on context subsumption. Also, we have adapted the typing rules of the pattern
matching construct in order to support refining the environment based on the current branch.

Examples implemented. We have implemented a number of examples to support our claims. First, we have
written the type-safe conversion check routine for βN, and extended it to support congruence closure based on
equalities in the context. Proofs of this latter tactic are constructed automatically through static proof scripts,
using a naive rewriter that is non-terminating in the general case. We have also completed proofs for theorems of
arithmetic for the properties of addition and multiplication, and used them to write an arithmetic simplification
tactic. All of the theorems are proved by making essential use of existing conversion rules, and are immediately
added into new conversion rules, leading to a compact and clean development style. The resulting code does not
need to make use of translation validation or proof by reflection, which are typically used to implement similar
tactics in existing proof assistants.

Towards a practical proof assistant. In order to facilitate practical proof and program construction in Ver-
iML, we introduced some features to support surface syntax, enabling users to omit most details about the
environments of contextual terms and the substitutions used with meta-variables. This syntax follows the style
of Delphin, assuming an ambient logical variable environment which is extended through a construct denoted
as νx : t.e. Still, the full power of contextual modal type theory is available, which is crucial in order to change
what the current ambient environment is, used, as we saw earlier, for static calls to tactics. In general the surface
syntax leads to much more concise and readable code.

Last, we introduced syntax support for calls to tactics, enabling users to write proof expressions that look very
similar to proof scripts in current proof assistants. We developed a rudimentary ProofGeneral mode for VeriML,
that enables us to call the VeriML type-checker and interpreter for parts of source files. By adding holes to
our sources, we can be informed by the type inference mechanism about their expected types. Those types
correspond to what the current “proof state” is at that point. Therefore, a possible workflow for developing
tactics or proofs, is writing the known parts, inserting holes in missing points to know what remains to be
proved, and calling the typechecker to get the proof state information. This workflow corresponds closely to the
interactive proof development support in proof assistants like Coq and Isabelle, but generalizes it to the case of
tactics as well.

8. Related work

There is a large body of work that is related to the ideas we have presented here.

Techniques for robust proof development. There have been multiple proposals for making proof development
inside existing proof assistants more robust. A well-known technique is proof-by-reflection [Boutin 1997]:
writing total and certified decision procedures within the functional language contained in a logic like CIC. A
recently introduced technique is automation through canonical structures [Gonthier et al. 2011]: the resolution
mechanism for finding instances of canonical structures (a generalization of type classes) is cleverly utilized
in order to program automation procedures for specific classes of propositions. We view both approaches as
somewhat similar, as both are based in cleverly exploiting static “interpreters” that are available in a modern
proof assistant: the partial evaluator within the conversion rule in the former case; the unification algorithm
within instance discovery in the latter case.

Our approach can thus be seen as similar, but also as a generalization of these approaches, since a general-
purpose programming model is supported. Therefore, users do not have to adapt to a specific programming
style for writing automation code, but can rather use a familiar functional language. Proof-by-reflection could
perhaps be used to support the same kind of extensions to the conversion rule; still, this would require reflecting



a large part of the logic in itself, through a prohibitively complicated encoding. Both techniques are applicable
to our setting as well and could be used to provide benefits to large developments within our language.

The style advocated in Chlipala [2011] (and elsewhere) suggests that proper proof engineering entails
developing sophisticated automation tactics in a modular style, and extending their power by adding proved
lemmas as hints. We are largely inspired by this approach, and believe that our introduction of the extensible
conversion rule and static checking of tactics can significantly benefit it. We demonstrate similar ideas in
layering conversion tactics.

Traditional proof assistants. There are many parallels of our work with the LCF family of proof assistants,
like HOL4 [Slind and Norrish 2008] and HOL-Light [Harrison 1996], which have served as inspiration. First,
the foundational logic that we use is similar. Also, our use of a dedicated ML-like programming language to
program tactics and proof scripts is similar to the approach taken by HOL4 and HOL-Light. Last, the fact
that no proof objects need to be generated is shared. Still, checking a proof script in HOL requires evaluating
it fully. Using our approach, we can selectively evaluate parts of proof scripts; we focus on conversion-like
tactics, but we are not limited inherrently to those. This is only possible because our proof scripts carry proof
state information within their types. Similarly, proof scripts contained within LCF tactics cannot be evaluated
statically, so it is impossible to establish their validity upon tactic definition. It is possible to do a transformation
similar to ours manually (lifting proof scripts into auxiliary lemmas that are proved prior to the tactic), but the
lack of type information means that many more details need to be provided.

The Coq proof assistant [Barras et al. 2010] is another obvious point of reference for our work. We will
focus on the conversion rule that CIC, its accompanying logic, supports – the same problems with respect to
proof scripts and tactics that we described in the LCF case also apply for Coq. The conversion rule, which
identifies computationally equivalent propositions, coupled with the rich type universe available, opens up
many possibilities for constructing small and efficiently checkable proof objects. The implementation of the
conversion rule needs to be part of the trusted base of the proof assistant. Also, the fact that the conversion
check is built-in to the proof assistant makes the supported equivalence rigid and non-extensible by frequently
used decision procedures.

There is a large body of work that aims to extend the conversion rule to arbitrary confluent rewrite systems
(e.g. Blanqui et al. [1999]) and to include decision procedures [Strub 2010]. These approaches assume some
small or larger addition to the trusted base, and extend the already complex metatheory of Coq. Furthermore, the
NuPRL proof assistant [Constable et al. 1986] is based on extensional type theory which includes an extensional
conversion rule. This enables complex decision procedures to be part of conversion; but it results in a very large
trusted base. We show how, for a subset of these type theories, the conversion check can be recovered outside the
trusted base. It can be extended with arbitrarily complex new tactics, written in a familiar programming style,
without any metatheoretic additions and without hurting the soundness of the logic. The question of whether
these type theories can be supported in full remains as future work, but as far as we know, there is no inherrent
limitation to our approach.

Dependently-typed programming. The large body of work on dependently-typed languages has close parallels
to our work. Out of the multitude of proposals, we consider the Russell framework [Sozeau 2006] as the
current state-of-the-art, because of its high expressivity and automation in discharging proof obligations. In
our setting, we can view dependently-typed programming as a specific case of tactics producing complex
data types that include proof objects. Static proof scripts can be leveraged to support expressivity similar to
the Russell framework. Furthermore, our approach opens up a new intriguing possibility: dependently-typed
programs whose obligations are discharged statically and automatically, through code written within the same
language.

Last, we have been largely inspired by the work on languages like Beluga [Pientka and Dunfield 2008] and
Delphin [Poswolsky and Schürmann 2008], and build on our previous work on VeriML [Stampoulis and Shao



2010]. We investigate how to leverage type-safe tactics, as well as a number of new constructs we introduce,
so as to offer an extensible notion of proof checking. Also, we address the issue of statically checking the
proof scripts contained within tactics written in VeriML. As far as we know, our development is the first time
languages such as these have been demonstrated to provide a workflow similar to interactive proof assistants.
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Appendices
A. The logic λHOLc

Definition A.1 (Syntax of the language) The syntax of the logic language is given below.

t ::= s | c | fi | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | conv t t | refl t | symm t | trans t1 t2 | congapp t1 t2
| congimpl t1 t2 | conglam t | congpi t | beta t1 t2

s ::= Prop | Type | Type′

Φ ::= • | Φ, t
σ ::= • | t
Σ ::= • | Σ, c : t

We use fi to denote the i-th free variable in the current environment and bi for the bound variable with
deBruijn index i. The benefit of this approach is that the representation of terms is unique both up to α-
equivalence and up to extensions of the current free variables context.

Definition A.2 (Context length and access) Getting the length of a context, and an element out of a context,
are defined as follows. In the case of element access, we assume that i < |Φ|.

|Φ|

| • | = 0
|Φ, t| = |Φ|+1

Φ.i

(Φ, t).|Φ| = t
(Φ, t).i = Φ.i

Definition A.3 (Substitution length) Getting the length of a substitution is defined as follows.

| • | = 0
|σ, t| = |σ|+1

Definition A.4 (Substitution access) The operation of accessing the i-th term out of a substitution is defined as
follows. We assume that i < |σ|.

(σ, t).|σ| = t
(σ, t).i = σ.i

Definition A.5 (Substitution application) The operation of applying a substitution is defined as follows.



t ·σ
s ·σ = s
c ·σ = c
fi ·σ = σ.i
bi ·σ = bi

(λ(t1).t2) ·σ = λ(t1 ·σ).(t2 ·σ)
(t1 t2) ·σ = (t1 ·σ) (t2 ·σ)
(Π(t1).t2) ·σ = Π(t1 ·σ).(t2 ·σ)
(t1 = t2) ·σ = (t1 ·σ) = (t2 ·σ)
(conv t1 t2) ·σ = conv (t1 ·σ) (t2 ·σ)
(refl t) ·σ = refl (t ·σ)
(symm t) ·σ = symm (t ·σ)
(trans t1 t2) ·σ = trans (t1 ·σ) (t2 ·σ)
(congapp t1 t2) ·σ = congapp (t1 ·σ) (t2 ·σ)
(congimpl t1 t2) ·σ = congimpl (t1 ·σ) (t2 ·σ)
(conglam t) ·σ = conglam (t ·σ)
(congpi t) ·σ = congpi (t ·σ)
(beta t1 t2) ·σ = beta (t1 ·σ) (t2 ·σ)

σ′ ·σ
• ·σ = •
(σ′, t) ·σ = (σ′ ·σ),(t ·σ)

Definition A.6 (Identity substitution) The identity substitution is defined as follows.

id• = •
idΦ, t = idΦ, f|Φ|

Definition A.7 Free and bound variable limits for terms are defined as follows.

t < f n

s < f n
c < f n
fi <

f n ⇐ n > i
bi <

f n
(λ(t1).t2)< f n ⇐ t1 < f n∧ t2 < f n
t1 t2 < f n ⇐ t1 < f n∧ t2 < f n

· · ·

t <b n

s <b n
c <b n
fi <

b n
bi <

b n ⇐ n > i
(λ(t1).t2)<b n ⇐ t1 <b n∧ t2 <b n+1
t1 t2 <b n ⇐ t1 <b n∧ t2 <b n

· · ·



Definition A.8 Free and bound variable limits for substitutions are defined as follows.

σ < f n

•< f n
(σ, t)< f n ⇐ σ < f n∧ t < f n

σ <b n

•<b n
(σ, t)<b n ⇐ σ <b n∧ t <b n

Definition A.9 (Freshening) Freshening a term is defined as follows. We assume that t < f m and t <b n+1.

dtenm

dse = s
dce = c
d fie = fi
dbnenm = fm
dbien = bi when i < n
d(λ(t1).t2)en = λ(dt1en).dt2en+1

dt1 t2e = dt1e dt2e
dΠ(t1).t2)en = Π(dt1en).(dt2en+1)
dt1 = t2e = dt1e= dt2e
dconv t1 t2e = conv dt1e dt2e
drefl te = refl dte
dsymm te = symm dte
dtrans t1 t2e = trans dt1e dt2e
dcongapp t1 t2e = congapp dt1e dt2e
dcongimpl t1 t2e = congimpl dt1e dt2e
dconglam te = conglam dte
dcongpi te = congpi dte
dbeta t1 t2e = beta dt1e dt2e

Definition A.10 (Binding) Binding a term is defined as follows. We assume that t < f m and t <b n.



btcnm

bsc = s
bcc = c
b fm−1cnm = bn
b ficnm = fi when i < m−1
bbic = bi

b(λ(t1).t2)c = λ(bt1cn).bt2cn+1

bt1 t2c = bt1cn bt2cn
bΠ(t1).t2)c = Π(bt1cn).bt2cn+1

bt1 = t2c = bt1c= bt2c
bconv t1 t2c = conv bt1c bt2c
brefl tc = refl btc
bsymm tc = symm btc
btrans t1 t2c = trans bt1c bt2c
bcongapp t1 t2c = congapp bt1c bt2c
bcongimpl t1 t2c = congimpl bt1c bt2c
bconglam tc = conglam btc
bcongpi tc = congpi btc
bbeta t1 t2c = beta bt1c bt2c

Definition A.11 (Typing) The typing rules are defined as follows.

` Σ wf

` • wf
` Σ wf • `Σ t : s (c : _) 6∈ Σ

` Σ, c : t wf

`Σ Φ wf

` • wf
`Φ wf Φ ` t : s

`Φ, t wf

Φ `Σ t : t ′

c : t ∈ Σ

Φ `Σ c : t

Φ.i = t

Φ ` fi : t

(s,s′) ∈A

Φ ` s : s′
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Φ `Π(t1).t2 : s′′

Φ ` t1 : s Φ, t1 ` dt2e|Φ| : t ′ Φ `Π(t1).
⌊
t ′
⌋
|Φ|+1 : s′

Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|+1

Φ ` t1 : Π(t).t ′ Φ ` t2 : t

Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

Φ ` t1 : t Φ ` t2 : t Φ ` t : Type

Φ ` t1 = t2 : Prop



Φ ` t : t1 Φ ` t1 : Prop Φ ` t ′ : t1 = t2
Φ ` conv t t ′ : t2

Φ ` t1 : t Φ ` t1 = t1 : Prop

Φ ` refl t1 : t1 = t1

Φ ` ta : t1 = t2
Φ ` symm ta : t2 = t1

Φ ` ta : t1 = t2 Φ ` tb : t2 = t3
Φ ` trans ta tb : t1 = t3

Φ ` ta : M1 = M2 Φ `M1 : A→ B Φ ` tb : N1 = N2 Φ ` N1 : A

Φ ` congapp ta tb : M1 N1 = M2 N2

Φ ` ta : A1 = A2 Φ,A1 ` dtbe : B1 = B2 Φ ` A1 : Prop Φ,A1 ` dB1e : Prop

Φ ` congimpl ta (λ(A1).tb) : Π(A1).bB1c= Π(A2).bB2c

Φ, A ` dtbe : B = B′ Φ `Π(A).bBc= Π(A).
⌊
B′
⌋

: Prop

Φ ` congpi (λ(A).tb) : Π(A).bBc= Π(A).
⌊
B′
⌋

Φ, A ` dtbe : B1 = B2 Φ ` λ(A).bB1c= λ(A).bB2c : Prop

Φ ` conglam (λ(A).tb) : λ(A).bB1c= λ(A).bB2c

Φ ` λ(A).M : A→ B Φ ` N : A Φ ` A→ B : Type

Φ ` beta (λ(A).M) N : (λ(A).M) N = dMe · (idΦ,N)

Φ ` σ : Φ′

`Φ wf

Φ ` • : •
Φ ` σ : Φ

′
Φ ` t : t ′ ·σ

Φ ` σ, t : (Φ′, t ′)

Lemma A.12 If t < f m and |Φ|= m then t · idΦ = t.

Trivial by induction on t < f m. The interesting case is fi · idΦ = fi. This is simple to prove by induction on Φ.

Lemma A.13 If σ < f m then σ · idm = σ.

By induction on σ and use of lemma A.12.

Lemma A.14 If Φ ` t : t ′ then t < f |Φ| and t <b 0.

Trivial by induction on the typing derivation Φ ` t : t ′ (and use of implicit assumptions for dte).

Lemma A.15 If ` Φ wf then for any Φ′ and t1···n such that Φ′ = Φ, t1, t2, · · · , tn and ` Φ′ wf, we have that
Φ′ ` idΦ : Φ.

By induction on Φ.
In case Φ = •, trivial.
In case Φ = Φ′′, t ′, then by induction hypothesis we have for all proper extensions of Φ′′ Φ′′, t1, · · · , tn ` idΦ′′ :
Φ′′.



We now need to prove that for all proper extensions of Φ′′, t ′ we have Φ′′, t ′, t1, · · · , tn ` idΦ′′, t ′ : (Φ′′, t ′).
From the inductive hypothesis we get that Φ′′, t ′, t1, · · · , tn ` idΦ′′ : Φ′′. We also have that Φ′′ ` t ′ : s
by inversion of the well-formedness of Φ.
Thus by A.14, we get that t ′ < f |Φ′′|.
Furthermore by A.12 we get that t ′ · idΦ′′ = t ′.
Thus we have Φ′′, t ′, t1, · · · , tn ` f|Φ′′| : t ′ · idΦ′′ .
Thus by applying the appropriate substitution typing rule, we get that Φ′′, t ′, t1, · · · , tn ` (idΦ′′ , f|Φ′′|) :
(Φ′′, t ′), which is exactly the desired result.

Lemma A.16 If Φ ` σ : Φ′ then σ < f |Φ|, σ <b 0 and |σ|= |Φ′|.

Trivial by induction on the typing derivation for σ, and use of lemma A.14.

Lemma A.17 If `Φ wf and |Φ|= n then for all i < n, Φ.i < f i.

Trivial by induction on the well-formedness derivation for Φ and use of lemma A.14.

Lemma A.18 If t < f m, |σ|= m and t ·σ = t ′ then t · (σ, t1, t2, · · · , tn) = t ′.

Trivial by induction on t < f m.

Lemma A.19 If σ < f m, |σ′|= m and σ ·σ′ = σr then σ · (σ′, t1, t2, · · · , tn) = σr.

Trivial by induction on σ, and use of the lemma A.18.

Lemma A.20 If `Φ wf, Φ.i = t and Φ′ ` σ : Φ, then Φ′ ` σ.i : t ·σ.

Induction on the derivation of typing for σ.
In the case where σ= •, the (implicit) assumption that i< |Φ| obviously does not hold, so the case is impossible.
In the case where σ = σ′, t ′, we split cases on whether i = |Φ|−1 or not.
If it is, then the typing rule gives us the desired directly.
If it is not, the inductive hypothesis gives us the result Φ′ ` σ′.i : t ·σ′. Now from lemma A.17 we have that
Φ.i < f i. We can now apply lemma A.18 to get t ·σ′ = t · (σ′, t ′) = t ·σ, proving the desired.

Lemma A.21 If t < f m, t <b n+1, σ < f m′ and |σ|= m then dt ·σenm′ = dtenm · (σ, fm′).

By structural induction on t.
Cases t = s and t = c are trivial.
When t = fi, we have i < m thus both sides will be equal to σ.i.
When t = bi, we split cases on whether i = n or i < n.

If i = n, then the left-hand side becomes dbn ·σenm′ = dbnenm′ = fm′ .
The right-hand side becomes dbnenm · (σ, fm′) = fm · (σ, fm′) = fm′ .
When i < n it is trivial to see that both sides are equal to bi.

In the case where t = λ(t1).(t2), we prove the result trivially using the induction hypothesis.
The subtlety for t2 is that the inductive hypothesis is applied for n = n+1, which is possible because from the
definition of ·<b · we have that t2 <b (n+1)+1.

Lemma A.22 If t < f m+1, t <b n, σ < f m′ and |σ|= m then bt · (σ, fm′)cnm′+1 = btcnm+1 ·σ.



By structural induction on t. Cases t = s and t = c are trivial. When t = fi, we split cases on whether i = m
or i < m. If i = m, then the left hand side becomes: b fm · (σ, fm′)cnm′+1 = b fm′cnm′+1 = bn. The right hand side
becomes: b fmcnm+1 ·σ = bn ·σ = bn. In case i < m, both sides are trivially equal to σ.i. When t = bi, both sides
are trivially equal to bi. When t = λ(t1).t2, the result follows directly from the inductive hypothesis for t1 and t2,
and the definitions of · and b·c.

Lemma A.23 If t < f m, |σ|= m, σ < f m′ and |σ′|= m′ then (t ·σ) ·σ′ = t · (σ ·σ′).

Trivial induction, with the only interesting case where t = fi. The left hand side becomes ( fi ·σ) ·σ′ = (σ.i) ·σ′.
The right hand side becomes fi · (σ ·σ′) = (σ ·σ′).i = (σ.i) ·σ′.

Lemma A.24 If |σ|= m and |Φ|= m then idΦ ·σ = σ.

Trivial by induction on Φ.

Lemma A.25 If dtenm = dt ′enm then t = t ′.

By induction on the structure of t. In each case we perform induction on t ′ as well. The only interesting case
is when t = fi and t ′ = bn. We have that dt ′e = fm; so it could be that i = m. This is avoided from the implicit
assumption that t < f m (that is required to apply freshening).

The main substitution theorem that we are proving is the following.

Theorem A.26 (Substitution)
If Φ ` t : t ′ and Φ′ ` σ : Φ then Φ′ ` t ·σ : t ′ ·σ′.

By structural induction on the typing derivation for t.

Case
c : t ∈ Σ

Φ `Σ c : t
�

By applying the same typing rule we get that Φ′ ` c : t. By inversion of the well-formedness of Σ, we get that
• ` t : t ′. Thus from lemma A.14 we get that t < f 0 and from lemma A.18 we get that t ·σ = t. Considering also
that c ·σ = c, the derivation Φ′ ` c : t proves the desired.

Case
Φ.i = t

Φ ` fi : t
�

We have that fi ·σ = σ.i. Directly using lemma A.20 we get that Φ′ ` σ.i : t ·σ.

Case
(s,s′) ∈A

Φ ` s : s′
�

Trivial by application of the same rule and the definition of ·.

Case
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Φ `Π(t1).t2 : s′′
�

By induction hypothesis for t1 we get: Φ′ ` t1 ·σ : s.
By induction hypothesis for Φ, t1 ` dt2e|Φ| : s′ and Φ′, t1 ·σ` (σ, f|Φ′|) : (Φ, t1) we get: Φ′, t1 ·σ` dt2e|Φ| ·(σ, f|Φ′|) :



s′ · (σ, f|Φ′|).
We have s′ = s′ · (σ, f|Φ′|) trivially.
Also by the lemma A.21, dt2e|Φ| · (σ, f|Φ′|) = dt2 ·σe|Φ′|.
Thus by application of the same typing rule we get Φ′ ` Π(t1 · σ).(t2 · σ) : s′′ which is the desired, since
(Π(t1).t2) ·σ = Π(t1 ·σ).(t2 ·σ).

Case
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : t ′ Φ `Π(t1).

⌊
t ′
⌋
|Φ|+1 : s′

Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|+1

�

Similarly to the above, from the inductive hypothesis for t1 and t2 we get:
Φ′ ` t1 ·σ : s
Φ′, t1 ·σ ` dt2 ·σe|Φ′| : t ′ · (σ, f|Φ′|)
From the inductive hypothesis for Π(t1).bt ′c we get: Φ′ ` (Π(t1).bt ′c|Φ|+1) ·σ : s′.
By the definition of · we get: Φ′ `Π(t1 ·σ).(bt ′c|Φ+1| ·σ) : s′.
By the lemma A.22, we have that (bt ′c|Φ+1| ·σ) =

⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1.

Thus we get Φ′ `Π(t1 ·σ).
⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1 : s′.

We can now apply the same typing rule to get: Φ′ ` λ(t1 ·σ).(t2 ·σ) : Π(t1 ·σ).
⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1.

We have Π(t1 ·σ).
⌊
t ′ · (σ, f|Φ′|)

⌋
|Φ′|+1 = Π(t1 ·σ).((bt ′c|Φ|+1) ·σ) = (Π(t1).bt ′c|Φ|+1) ·σ, thus this is the desired

result.

Case
Φ ` t1 : Π(t).t ′ Φ ` t2 : t

Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

�

By induction hypothesis for t1 we get Φ′ ` t1 ·σ : Π(t ·σ).(t ′ ·σ).
By induction hypothesis for t2 we get Φ′ ` t2 ·σ : t ·σ.
By application of the same typing rule we get Φ′ ` (t1 t2) ·σ : dt ′ ·σe|Φ′| · (idΦ′ , t2 ·σ).
We have that dt ′ ·σe|Φ′| · (idΦ′ , t2 ·σ) = (dt ′e|Φ| · (σ, f|Φ′|)) · (idΦ′ , t2 ·σ) due to lemma A.21
From lemma A.23 (t ·σ) ·σ′= t ·(σ ·σ′), we further have that the above is equal to dt ′e|Φ| ·((σ, f|Φ′|) ·(idΦ′ , t2 ·σ)).
We will now prove that ((σ, f|Φ′|) · (idΦ′ , t2 ·σ) = σ, (t2 ·σ).

By definition we have (σ, f|Φ′|) · (idΦ′ , t2 ·σ) = (σ · (idΦ′ , t2 ·σ)), ( f|Φ′| · (idΦ′ , t2 ·σ)) = (σ · (idΦ′ , t2 ·
σ)), t2 ·σ.
Due to lemma A.16, we have that σ < f |Φ′|. Thus from lemma A.19, we get that σ · (idΦ′ , t2) =
σ · idΦ′ .
Last from lemma A.13 we get that σ · idΦ′ = σ.

Thus we only need to show that dt ′e|Φ| · (σ, (t2 ·σ)) is equal to (dt ′e|Φ| · (idΦ, t2)) ·σ.
As above, per lemma A.23, this is equal to dt ′e|Φ| · ((idΦ, t2) ·σ).
From definition we have ((idΦ, t2) ·σ) = (idΦ ·σ),(t2 ·σ).
Furthermore, from lemma A.24 we get that (idΦ ·σ),(t2 ·σ) = σ,(t2 ·σ).
Thus we have the desired result.

Case (otherwise) �

Simple to prove based on the methods we have shown above.

Corollary A.27 If Φ′ ` σ : Φ and Φ′′ ` σ′ : Φ′ then Φ′′ ` σ ·σ′ : Φ.

Induction on the typing derivation for σ, with use of the substitution theorem A.26.

Lemma A.28 (Types are well-typed) If Φ ` t : t ′ then either t ′ = Type′ or Φ ` t ′ : s.

By structural induction on the typing derivation for t.



Case
c : t ∈ Σ

Φ `Σ c : t
� Trivial by inversion of the well-formedness of Σ.

Case
Φ.i = t

Φ ` fi : t
� Trivial by inversion of the well-formedness of Φ.

Case
(s,s′) ∈A

Φ ` s : s′
� By splitting cases for (s,s′) and application of the same typing rule.

Case
Φ ` t1 : s Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Φ `Π(t1).t2 : s′′
� By splitting cases for (s,s′,s′′) and use of sort

typing rule.

Case
Φ ` t1 : Π(t).t ′ Φ ` t2 : t

Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

�

By induction hypothesis we get that Φ `Π(t).t ′ : s. By inversion of this judgement, we get that Φ, t ` dt ′e : s′.
Furthermore we have by lemma A.15 that Φ ` id|Φ| : Φ, and using the typing for t2 and lemma A.12, we get that
Φ ` id|Φ|, t2 : (Φ, t).
Thus by application of the substitution lemma A.26 for dt ′e we get the desired result.

Case (otherwise) � Simple to prove based on the methods we have shown above.

Lemma A.29 (Weakening) If Φ ` t : t ′, then Φ, t1, t2, · · · , tn ` t : t ′.

Using lemma A.15 we have that Φ, t1, t2, · · · , tn ` idΦ : Φ.
Using the substitution lemma A.26 we get that Φ, t1, t2, · · · , tn ` t · idΦ : t ′ · idΦ.
From lemma A.18 and A.14, we get that t · idΦ = t.
From lemma A.28 we further get Φ ` t ′ : s and applying the same lemmas as for t we get t ′ · idΦ = t ′.

B. Extension with metavariables and polymorphic contexts

B.1 Extending with metavariables

First, we extend the previous definition of terms to account for metavariables.

Definition B.1 (Syntax of the language) The syntax of the logic language is extended below. We furthermore
add new syntactic classes for modal terms and environments of metavariables.

t ::= · · · | Xi/σ

T ::= [Φ] t
M ::= • |M, T

Now we gather all the places from the above section where something was defined through induction on
terms, and redefine/extend them here. Things that are identical are noted.

Definition B.2 (Context length and access) Identical to A.2. We furthermore define metavariables environment
length and access here.



|M|

| • | = 0
|M, T | = |M|+1

M.i

(M, T ).|M| = T
(M, T ).i = M.i

Definition B.3 (Substitution length) Identical to A.3.

Definition B.4 (Substitution access) Identical to A.4.

Definition B.5 (Substitution application) This is the extension of definition A.5. We lift it to modal terms.

t ·σ

(Xi/σ′) ·σ = Xi/(σ
′ ·σ)

T ·σ

([Φ] t) ·σ = t ·σ

Definition B.6 (Identity substitution) Identical to A.6.

Definition B.7 (Variable limits for terms and substitutions) This is the extension of definition A.7 and defini-
tion A.8 (who are now mutually dependent). The definition for substitutions is identical.

t < f n

Xi/σ < f n ⇐ σ < f n

t <b n

Xi/σ <b n ⇐ σ <b n

Definition B.8 (Freshening) This is the extension of definition A.9. Furthermore we need to lift the freshening
operation to substitutions.

dtenm

dXi/σenm = Xi/(dσn
me)

dσenm

d•enm = •
dσ, tenm = (dσenm), dtenm

Definition B.9 (Binding) This is the extension of definition A.10. As above, we need to lift binding to substitu-
tions.



btcnm
bXi/σcnm = Xi/(bσn

mc)

bσcnm
b•cnm = •
bσ, tcnm = (bσcnm), btcnm

Definition B.10 (Typing judgements) The typing judgements defined in A.11 are adjusted as follows.
First, the judgement Φ ` t : t ′ is replaced by the judgement M; Φ ` t : t ′ and the existing rules are adjusted as
needed. Also we include a new rule shown below.
Second, the judgement `Φ wf is replaced by the judgement M `Φ wf.
Third, the judgement M; Φ ` σ : Φ′ replaces the original judgement for substitutions.
The ` Σ wf judgement stays as is, with the adjustment shown below.
Last, we introduce a new judgement `M wf for meta-environments and a judgement M ` T : T ′ for modal
terms.

` Σ wf

` Σ wf

` Σ wf •;• `Σ t : s (c :) 6∈ Σ

` (Σ, c : t) wf

M; Φ ` t : t ′

M.i = T T = [Φ′] t ′ M; Φ ` σ : Φ
′

M; Φ ` Xi/σ : t ′ ·σ

`M wf

` • wf
`M wf M ` [Φ] t : [Φ]s

` (M, [Φ] t) wf

M ` T : T ′

M; Φ ` t : t ′

M ` [Φ] t : [Φ] t ′

We can now proceed to adjust the proofs from above in order to handle the additional cases of the extension.

Lemma B.11 (Extension of lemmas A.12 and A.13) 1. If t < f m and |Φ|= m then t · idΦ = t.

2. If σ < f m and |Φ|= m then σ · idΦ = σ.

The two lemmas become mutually dependent. For the first part, we proceed as previously by induction on t, and
the only additional case we need to take into account is for the extension1:
We have that (Xi/σ) · idm = Xi/(σ · idm). Using the second part, we have that Xi/(σ · idm) = Xi/σ. The second
part is proved as previously.
1 We will not note this any more below; all the proofs mimic the inductive structure of the base proofs



Lemma B.12 (Extension of lemmas A.14 and A.16) 1. If M; Φ ` t : t ′ then t < f |Φ| and t <b 0.

2. If M; Φ ` σ : Φ′ then σ < f |Φ|, σ <b 0 and |σ|= |Φ′|.

Again the two lemmas become mutually dependent when they weren’t before. For the first one, we have
that M; Φ ` Xi/σ : t ′; using the second part, we have that σ < f |Φ| and σ <b 0. By definition we thus have
Xi/σ < f |Φ| and Xi/σ <b 0. The second part is proved as previously.

Lemma B.13 (Extension of lemma A.15) If M `Φ wf then for any Φ′ and t1···n such that Φ′ = Φ, t1, t2, · · · , tn
and M `Φ′ wf, we have that M; Φ′ ` idΦ : Φ.

Identical as before.

Lemma B.14 (Extension of lemma A.17) If M `Φ wf and |Φ|= n then for all i < n, Φ.i < f i.

Identical as before.

Lemma B.15 (Extension of lemmas A.18 and A.19) 1. If t < f m, |σ|=m and t ·σ= t ′ then t ·(σ, t1, t2, · · · , tn)=
t ′.

2. If σ < f m, |σ′|= m and σ ·σ′ = σr then σ · (σ′, t1, t2, · · · , tn) = σr.

For the first part, taking t = Xi/σ′, we have that X/σ′ < f m and thus σ′ < f m.
Furthermore we have (Xi/σ′) ·σ = Xi/(σ

′ ·σ) = Xi/σr, assuming σr = σ′ ·σ.
Using the second lemma we have that σ′ · (σ, t1, t2, · · · , tn) = σr.
Thus we also have that (Xi/σ′) · (σ, t1, t2, · · · , tn) = Xi/(σ

′ · (σ, t1, t2, · · · , tn)) = Xi/σr.
For the second part, the proof proceeds as previously.

Lemma B.16 (Extension of lemma A.20) If M `Φ wf, Φ.i = t and M; Φ′ ` σ : Φ, then M; Φ′ ` σ.i : t ·σ.

Identical as before.

Lemma B.17 (Extension of lemma A.21 and new lemma for substitutions) 1. If t < f m, t <b n+1, σ < f m′

and |σ|= m then dt ·σenm′ = dtenm · (σ, fm′).

2. If σ′ < f m, σ′ <b n+1, σ < f m′ and |σ|= m then dσ′ ·σenm′ = dσ′enm · (σ, fm′).

The second part of this lemma is a new lemma; it corresponds to the lifting of the first part to substitutions.
For the first part, we have: d(Xi/σ′) ·σenm′ = dXi/(σ

′ ·σ)enm′ = Xi/dσ′ ·σenm′ .
Using the second part, we have that this is equal to Xi/(dσ′enm · (σ, fm′)).
Furthermore, this is equal to (Xi/dσ′enm) · (σ, fm′).
Last, this is equal to (dXi/σ′enm) · (σ, fm′), which is the desired.

For the second part, we proceed by induction on σ′.
If σ′ = •, the result is trivial.
If σ′ = σ′′, t then d(σ′′, t) ·σenm′ = d(σ′′ ·σ), t ·σenm′ = dσ′′ ·σenm′ , dt ·σenm′ .
Using the induction hypothesis and the first part, we have that this is equal to dσ′′enm · (σ, fm′), dtenm · (σ, fm′) =
dσ′′, tenm · (σ, fm′), which is the desired.

Lemma B.18 (Extension of lemma A.22 and new lemma for substitutions) 1. If t < f m+1, t <b n, σ < f m′

and |σ|= m then bt · (σ, fm′)cnm′+1 = btcnm+1 ·σ.

2. If σ′ < f m+1, σ′ <b n, σ < f m′ and |σ|= m then bσ′ · (σ, fm′)cnm′+1 = bσ′cnm+1 ·σ.



This proof is entirely similar to the above for both parts.

Lemma B.19 (Extension of lemma A.23 and new lemma for substitutions) 1. If t < f m, |σ| = m, σ < f m′

and |σ′|= m′ then (t ·σ) ·σ′ = t · (σ ·σ′).
2. If σ1 <

f m, |σ|= m, σ < f m′ and |σ′|= m′ then (σ1 ·σ) ·σ′ = σ1 · (σ ·σ′).

Entirely similar to the above.

Lemma B.20 (Extension of lemma A.24) If |σ|= m and |Φ|= m then idΦ ·σ = σ.

Identical as before.

Lemma B.21 (Extension of lemma A.25) 1. If dtenm = dt ′enm then t = t ′.

2. If dσenm = dσ′enm then σ = σ′.

Part 1 is identical as before, with the additional case t = Xi/σ and t ′ = Xi/σ′ handled using the second part. Part
2 is proved by induction on the structure of σ.

Theorem B.22 (Extension of main substitution theorem A.26 and corollary A.27) 1. If M; Φ ` t : t ′ and
M; Φ′ ` σ : Φ then M; Φ′ ` t ·σ : t ′ ·σ.

2. If M; Φ′ ` σ : Φ and M; Φ′′ ` σ′ : Φ′ then M; Φ′′ ` σ ·σ′ : Φ.

3. If M ` [Φ′] t : [Φ′] t ′ and M; Φ ` σ : Φ′ then M ` [Φ] t ·σ : [Φ] t ′ ·σ.

For the first part we have, when t = Xi/σ0:
From M; Φ ` Xi/σ0 : t ′ we get that M.i = [Φ0] t0, M; Φ ` σ0 : Φ0 and t ′ = t0 ·σ0.
Applying the second part of the lemma for σ = σ0 and σ′ = σ we get that M; Φ′ ` σ0 ·σ′ : Φ0.
Thus applying the same typing rule for t = Xi/(σ0 ·σ) we get that M; Φ′ ` Xi/(σ0 ·σ′) : t0 · (σ0 ·σ′).
Taking into account the definition of · and also lemma B.19, we have that this is the desired result.

For the second part, the proof is identical to the proof done earlier.
For the third part, by typing inversion for [Φ′] t we get that M; Φ′ ` t : t ′.
Using the first part we get that M; Φ ` t ·σ : t ′ ·σ.
Using the typing rule for modal terms we get M ` [Φ] t ·σ : [Φ] t ′ ·σ.

Lemma B.23 (Meta-variables context weakening) 1. If M;Φ ` t : t ′ then M,T1, · · · ,Tn; Φ ` t : t ′.

2. If M;Φ ` σ : Φ′ then M,T1, · · · ,Tn; Φ ` σ : Φ′.

3. If M `Φ wf then M,T1, · · · ,Tn `Φ wf.

4. If M ` T : T ′ then M,T1, · · · ,Tn ` T : T ′.

All are trivial by induction on the typing derivations.

Lemma B.24 (Extension of lemma A.28) If M; Φ ` t : t ′ then either t ′ = Type′ or M; Φ ` t ′ : s.

When t = Xi/σ, by inversion of typing we get M.i = [Φ′] t ′′, M; Φ ` σ : Φ′ and t ′ = t ′′ ·σ.
By inversion of well-formedness for M and lemma 4, we get that M `M.i : [Φ′]s.
Furthermore by inversion of that we get M; Φ′ ` t ′′ : s.
By application of the substitution lemma B.22 for t ′′ and σ we get M; Φ ` t ′′ ·σ : s, which is the desired result.



Lemma B.25 (Extension of the lemma A.29 and new lemma for substitutions) 1. If M; Φ ` t : t ′ then
M; Φ, t1, t2, · · · , tn ` t : t ′.

2. If M; Φ ` σ : Φ′ then M; Φ, t1, t2, · · · , tn ` σ : Φ′.

For the first part, proceed identically as before.
For the second part, the proof is entirely similar to the first part (construct and prove well-typedness of identity
substitution, and then allude to substitution theorem).

Now we know that everything that all the theorems we had proved for the non-extended version still hold.
We can now prove a new meta-substitution theorem. Before doing that we need some new definitions.

Definition B.26 (Substitutions of meta-variables) The syntax of substitutions of meta-variables is defined as
follows.

σM ::= • | σM, T

Definition B.27 (Meta-substitution length and access) We define the length of meta-substitutions and access-
ing the i-th element as follows.

|σM|

| • | = 0
|σM, T | = |σM|+1

σM.i

(σM, T ).|σM| = T
(σM, T ).i = σM.i

Definition B.28 (Meta-substitution application) The application of meta-substitutions is defined as follows.
We mark the interesting cases with a star.

t ·σM

s ·σM = s
c ·σM = c
fi ·σM = fi

bi ·σM = bi

(λ(t1).t2) ·σM = λ(t1 ·σM).(t2 ·σM)
(t1 t2) ·σM = (t1 ·σM) (t2 ·σM)
(Π(t1).t2) ·σM = Π(t1 ·σM).(t2 ·σM)



t ·σM (continued)

(t1 = t2) ·σM = (t1 ·σM) = (t2 ·σM)
(conv t1 t2) ·σM = conv (t1 ·σM) (t2 ·σM)
(refl t) ·σM = refl (t ·σM)
(symm t) ·σM = symm (t ·σM)
(trans t1 t2) ·σM = trans (t1 ·σM) (t2 ·σM)
(congapp t1 t2) ·σM = congapp (t1 ·σM) (t2 ·σM)
(congimpl t1 t2) ·σM = congimpl (t1 ·σM) (t2 ·σM)
(conglam t) ·σM = conglam (t ·σM)
(congpi t) ·σM = congpi (t ·σM)
(beta t1 t2) ·σM = beta (t1 ·σM) (t2 ·σM)

∗ (Xi/σ) ·σM = (σM.i) · (σ ·σM)

σ ·σM

• ·σM = •
(σ, t) ·σM = σ ·σM, t ·σM

Φ ·σM

• ·σM = •
(Φ, t) ·σM = Φ ·σM, t ·σM

T ·σM

∗ ([Φ] t) ·σM = [Φ ·σM] (t ·σM)

Definition B.29 (Meta-substitution typing) The typing judgement for meta-substitutions is as follows.

M ` σM : M′

M ` • : •
M ` σM : M′ M ` T : T ′ ·σM

M ` (σM, T ) : (M′, T ′)

We proceed to prove the meta-substitution theorem.

The lemmas that we need are the following:

Lemma B.30 (Limits for elements of metasubstitutions) If M ` σM : M′ and σM.i = [Φ] t then t < f |Φ| and
t <b 0.

By repeated inversion of typing for σM we get that M′ ` σM.i : T ′ for some M′ and T ′. By inversion we get that
M′; Φ ` t : t ′. By use of lemma 2 we get the desired.

Lemma B.31 (Freshen on closed term) If t <b n then dt ·σenm = t · dσenm.

Easy by induction on t.



Lemma B.32 (Interaction of freshen and metasubstitution application) 1. If M ` σM : M′ then dtenm ·σM =
dt ·σMenm

2. If M ` σM : M′ then dσenm ·σM = dσ ·σMenm

The first part is proved by induction on t. The interesting case is the metavariables case, where we have the
following.
dXi/σenm ·σM = (Xi/dσenm) ·σM = σM.i · (dσenm ·σM) = σM.i · dσ ·σMenm based on the second part.
Now σM.i = [Φ] t and the above is further equal to: t · dσ ·σMenm. The right-hand side is rewritten as follows:
dXi/σ ·σMenm = dσM.i · (σ ·σM)enm = dt · (σ ·σM)enm = t · dσ ·σMenm using lemma B.31 and also B.30.
The second part is proved trivially using induction.

Lemma B.33 (Bind on closed term) If t <b n then bt ·σcnm = t · bσcnm.

Easy by induction on t.

Lemma B.34 (Interaction of bind and metasubstitution application) 1. If M ` σM : M′ then btcnm · σM =
bt ·σMcnm

2. If M ` σM : M′ then bσcnm ·σM = bσ ·σMcnm

Similar to the equivalent lemma for freshen.

Lemma B.35 (Interaction of substitution application and metasubstitution application) 1. (t · σ) · σM =
(t ·σM) · (σ ·σM)

2. (σ ·σ′) ·σM = (σ ·σM) · (σ′ ·σM)

In the first part, we perform induction on t. The interesting case is the metavariables case. We have:
((Xi/σ′) ·σ) ·σM = (Xi/(σ

′ ·σ)) ·σM = σM.i · ((σ′ ·σ) ·σM).
From the second part, this is equal to: σM.i · ((σ′ ·σM) · (σ ·σM)).
There exists a t such that σM.i = [Φ] t and thus the above is further equal to:
t · ((σ′ ·σM) · (σ ·σM)) = (t · (σ′ ·σM)) · (σ ·σM) based on lemma B.19.
The right-hand side is written as: ((Xi/σ′) ·σM) · (σ ·σM) = (t · (σ′ ·σM)) · (σ ·σM). Thus the desired.
The second part is trivially proved by induction and use of the first part.

Lemma B.36 (Application of metasubstitution to identity substitution) idΦ ·σM = idΦ·σM

Trivial by induction on Φ.

Lemma B.37 (Redundant elements in metasubstitutions) 1. If M; Φ` t : t ′ and |σM|= |M| then t ·(σM,T1,T2, · · · ,Tn)=
t ·σM.

2. If M; Φ ` σ : Φ′ and |σM|= |M| then σ · (σM,T1,T2, · · · ,Tn) = σ ·σM.

3. If M `Φ wf and |σM|= |M| then Φ · (σM,T1,T2, · · · ,Tn) = Φ ·σM.

4. If M ` T : T ′ and |σM|= |M| then T · (σM,T1,T2, · · · ,Tn) = T ·σM.

By induction on the typing derivations.

Lemma B.38 (Type of i-th metasubstitution element) If `M wf and M ` σM : M′ then M ` σM.i : (M′.i) ·
σM.



By induction and use of lemma B.37; furthermore using inversion of the well-formedness relation for M. Similar
to lemma A.20.

Theorem B.39 (Substitution over metavariables) 1. If M; Φ` t : t ′ and M′ `σM :M then M′; Φ ·σM : t ·σM :
t ′ ·σM.

2. If M; Φ ` σ : Φ′ and M′ ` σM : M then M′; Φ ·σM ` σ ·σM : Φ′ ·σM.

3. If M `Φ wf and M′ ` σM : M then M′ `Φ ·σM wf.

4. If M ` T : T ′ and M′ ` σM : M then M′ ` T ·σM : T ′ ·σM.

Part 1 Proceed by structural induction on the typing of t.

Case
c : t ∈ Σ

M; Φ `Σ c : t
�

From inversion of the well-formedness of Σ we have that •;• ` t : s.
From lemma B.37 we have that t ·σM = t.
So the result follows from application of the same typing rule for Φ ·σM.

Case
Φ.i = t

M; Φ ` fi : t
�

We have t ·σM = (Φ ·σM).i, so using the same typing rule we get M′; Φ ·σM ` fi : t ·σM.

Case
(s,s′) ∈A

M; Φ ` s : s′
�

Trivial by application of the same rule and the definition of ·.

Case
M; Φ ` t1 : s M; Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

M; Φ `Π(t1).t2 : s′′
�

By induction hypothesis for t1 we get: M′; Φ ·σM ` t1 ·σM : s.
By induction hypothesis for Φ, t1 ` dt2e|Φ| : s′ we get:
M′; Φ ·σM, t1 ·σM ` dt2e|Φ| ·σM : s′ ·σM.
We have s′ = s′ ·σM trivially.
Also by the lemma B.32, dt2e|Φ| ·σM = dt2 ·σMe|Φ|.
Thus by application of the same typing rule we get M′; Φ ·σM `Π(t1 ·σM).(t2 ·σM) : s′′ which is the desired.

Case
M; Φ ` t1 : s M; Φ, t1 ` dt2e|Φ| : t ′ M; Φ `Π(t1).

⌊
t ′
⌋
|Φ|+1 : s′

M; Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|+1

�

Similarly to the above, from the inductive hypothesis for t1 and t2 (and use of lemma B.32) we get:
σM; Φ ` t1 ·σM : s
σM; Φ ·σM, t1 ·σM ` dt2 ·σMe|Φ| : t ′ ·σM

From the inductive hypothesis for Π(t1).bt ′c we get: M′; Φ ·σM ` (Π(t1).bt ′c|Φ|+1) ·σM : s′.
By the definition of · we get: M′; Φ ·σM `Π(t1 ·σM).(bt ′c|Φ+1| ·σM) : s′.
By the lemma B.34, we have that (bt ′c|Φ+1| ·σM) = bt ′ ·σMc|Φ|+1.
Thus we get M; Φ ·σM `Π(t1 ·σM).bt ′ ·σMc|Φ|+1 : s′.
We can now apply the same typing rule to get: M; Φ ·σM ` λ(t1 ·σM).(t2 ·σM) : Π(t1 ·σM).bt ′ ·σMc|Φ|+1.
We have Π(t1 ·σM).bt ′ ·σMc|Φ|+1 =Π(t1 ·σM).((bt ′c|Φ|+1) ·σM)= (Π(t1).bt ′c|Φ|+1) ·σM, thus this is the desired
result.



Case
M; Φ ` t1 : Π(t).t ′ M; Φ ` t2 : t

M; Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

�

By induction hypothesis for t1 we get M′; Φ ·σM ` t1 ·σM : Π(t ·σM).(t ′ ·σM).
By induction hypothesis for t2 we get M′; Φ ·σM ` t2 ·σM : t ·σM.
By application of the same typing rule we get M′; Φ ·σM ` (t1 t2) ·σM : dt ′ ·σMe|Φ| · (idΦ, t2 ·σM).
We need to prove that (dt ′e|Φ| · (idΦ, t2)) ·σM = dt ′ ·σMe|Φ| · (idΦ·σM

, t2 ·σM).
From lemma B.35 we have that (dt ′e|Φ| · (idΦ, t2)) ·σM = (dt ′e|Φ| ·σM) · ((idΦ, t2) ·σM).
From lemma B.32 we get that this is further equal to: (dt ′ ·σMe|Φ|) · ((idΦ, t2) ·σM).
From definition of · we get that this is equal to (dt ′ ·σMe|Φ|) · (idΦ ·σM, t2 ·σM).
Last from B.36 we get the desired result.

Case
M.i = T T = [Φ′] t ′ M; Φ ` σ : Φ

′

M; Φ ` Xi/σ : t ′ ·σ �

Assuming that σM.i = [Φ′′] t, we need to show that M′; Φ ·σM ` t · (σ ·σM) : (t ′ ·σ) ·σM.
From lemma B.35, we have that (t ′ ·σ) ·σM = (t ′ ·σM) · (σ ·σM).
So equivalently we need to show M′; Φ ·σM ` t · (σ ·σM) : (t ′ ·σM) · (σ ·σM).

Using the second part of the lemma for σ we get: M′; Φ ·σM ` σ ·σM : Φ′ ·σM.
From lemma B.38 we get that M′ ` σM.i : M.i ·σM.
From hypothesis we have that M.i = [Φ′] t ′.
Thus the above typing judgement is rewritten as M′ ` σM.i : [Φ′ ·σM] t ·σM.
By inversion we get that σM.i = [Φ′ ·σM] t and that M′; Φ′ ·σM ` t : t ′ ·σM.
** Now we use the main substitution theorem B.22 for t and σ ·σM and get:
M′; Φ ·σM ` t · (σ ·σM) : (t ′ ·σM) · (σ ·σM).

Case (otherwise) �

Simple to prove based on the methods we have shown above.

Part 2 By induction on the typing derivation of σ.

Case
M `Φ wf

M; Φ ` • : • � Use of the same typing rule, for Φ ·σM which is well formed based on part 3.

Case
M; Φ ` σ : Φ

′ M; Φ ` t : t ′ ·σ
M; Φ ` σ, t : (Φ′, t ′)

� By induction hypothesis and use of part 1 we get:

M′; Φ ·σM ` σ ·σM : Φ′ ·σM

M′; Φ ·σM ` t ·σM : (t ′ ·σ) ·σM

By use of lemma B.35 in the typing for t ·σM we get that:
M′; Φ ·σM ` t ·σM : (t ′ ·σM) · (σ ·σM)
By use of the same typing rule we get: M′; Φ ·σM ` (σ ·σM, t ·σM) : (Φ′ ·σM, t ′ ·σM)

Part 3 By induction on the well-formedness derivation of Φ.

Case M ` • wf �

Trivial use of the same typing rule.

Case
M `Φ wf M; Φ ` t : s

M `Φ, t wf
�

Use of induction hypothesis, part 2, and the same typing rule.



Part 4 By induction on the typing derivation for T .

Case
M; Φ ` t : t ′

M ` [Φ] t : [Φ] t ′
�

Using part 1 we get M′; Φ ·σM ` t ·σM : t ′ ·σM. Thus using the same typing rule we get M′ ` [Φ ·σM] t ·σM :
[Φ ·σM] t ′ ·σM, which is the desired result.

B.2 Extension with metavariables and polymorphic contexts

In order to incorporate polymorphic contexts, we change the representation of free variables from a deBruijn
level to an index into a parametric context. We thus need to redefine the notions of length of a context, variable
limits etc. in order to be compatible with the new definition of free variables.

Definition B.40 (Syntax of the language) The syntax of the logic language is extended below. We use the
syntactic class T for modal terms and modal contexts, and the syntactic class K for their classifiers (modal
terms and context prefixes). Furthermore, we use a single context Ψ for both extensions.

Φ ::= · · · | Φ,Xi

σ ::= · · · | σ, id(Xi)

Ψ ::= • | Ψ, K
t ::= s | c | fI | bi | λ(t1).t2 | t1 t2 | Π(t1).t2 | t1 = t2 | conv t t | refl t | symm t | trans t1 t2 | congapp t1 t2
| congimpl t1 t2 | conglam t | congpi t | beta t1 t2 | Xi/σ

T ::= [Φ] t | [Φ]Φ′

K ::= [Φ] t | [Φ]ctx
I ::= • | I, · | I, |Xi|

Definition B.41 (Substitution length) Redefinition of B.3.

|σ|= I

| • | = •
|σ, t| = |σ|, ·
|σ, id(Xi)| = |σ|, |Xi|

Definition B.42 (Ordering of indexes) We define what it means for an index to be less than another index.

I < I′

I < I′, · when I = I′ or I < I′
I < I′, |Xi| when I = I′ or I < I′

I≤ I′

I ≤ I′ when I = I′ or I < I′

Definition B.43 (Substitution access) Redefinition of B.4. We assume I < |σ|.



σ.I

(σ, t).I = t when |σ|= I
(σ, t).I = σ.I otherwise
(σ, id(Xi)).I = t when |σ|= I
(σ, id(Xi)).I = σ.I otherwise

Definition B.44 (Context length and access) Redefinition of context length and context access, from definition
B.2. Furthermore we define length and element access for environments of contexts. Element access assumes
I < |Φ|.

|Φ|= I

| • | = •
|Φ, t| = |Φ|, ·
|Φ, Xi| = |Φ|, |Xi|

Φ.I

(Φ, t).I = t when |Φ|= I
(Φ, t).I = Φ.I otherwise
(Φ, Xi).I = Xi when |Φ|= I
(Φ, Xi).I = Φ.I otherwise

Definition B.45 (Extensions context length and access) New definition.

|Ψ|

| • | = 0
|Ψ, K| = |Ψ|+1

Ψ.i

(Ψ, K).|Ψ| = K
(Ψ, K).i = Ψ.i when i < |Ψ|

Definition B.46 (Substitution application) Extension of substitution application from definition B.5. The ap-
plication of a substitution to a term is entirely identical as before, with a slight adjustment for the new definitions
of variable indexes.

t ·σ

fI ·σ = σ.I

σ′ ·σ

(σ′, id(Xi)) ·σ = σ′ ·σ, id(Xi)



Definition B.47 (Identity substitution) Redefinition of identity substitution from B.6.

id• = •
idΦ, t = idΦ, f|Φ|
idΦ, Xi = idΦ, id(Xi)

Definition B.48 (Variable limits for terms and substitutions) Redefinition of the definition B.7.

t < f I

s < f I
c < f I
fI <

f I′ ⇐ I < I′
bi <

f I
(λ(t1).t2)< f I ⇐ t1 < f I∧ t2 < f I
t1 t2 < f I ⇐ t1 < f I∧ t2 < f I

· · ·

σ < f I

•< f I
σ, t < f I ⇐ σ < f I∧ t < f I
σ, id(Xi)<

f I ⇐ σ < f I∧∃I′ : (I′, |Xi|)≤ I

σ <b n

σ, id(φi)<
b n ⇐ σ <b n

Definition B.49 (Extension of freshening) This is an extension of definition B.8 and adjustment for indexes.
We assume t < f I and σ < f I. Also t <b n+1 and σ <b n+1.

dtenI

dbnenI = fI
dbienI = bi

dσenI

d•enI = •
dσ, tenI = dσenI , dtenI
dσ, id(Xi)enI = dσenI , id(Xi)

Definition B.50 (Extension of binding) This is an extension of definition B.9 and adjustment for indexes. We
assume t < f I and σ < f I. Also t <b n and σ <b n.



btcnI

b fI′cnI = bn when I = I′, ·
b fI′cnI = fI′ otherwise

bσcnI

b•cnI = •
bσ, tcnI = bσcnI , btcnI
bσ, id(Xi)cnI = bσcnI , id(Xi)

Definition B.51 (Environment subsumption) We define what it means for an environment to be a subenviron-
ment (be a prefix of; or be subsumed by) another one.

Φ⊆Φ′

Φ⊆Φ

Φ⊆Φ′, t ⇐ Φ⊆Φ′

Φ⊆Φ′, Xi ⇐ Φ⊆Φ′

Ψ⊆Ψ′

Ψ⊆Ψ

Ψ⊆Ψ′, K ⇐ Ψ⊆Ψ′

Definition B.52 (Substitution subsumption) We define what it means for an substitution to be a prefix of
another one.

σ⊆ σ′

σ⊆ σ

σ⊆ σ′, t ⇐ σ⊆ σ′

σ⊆ σ′, id(Xi) ⇐ σ⊆ σ′

Definition B.53 The typing judgements defined in B.10 and are redefined as follows.

1. ` Σ wf is adjusted as shown below.

2. `Σ Φ wf is redefined as Ψ `Σ Φ wf, and the rules below are added.

3. Φ ` t : t ′ is redefined as Ψ; Φ ` t : t ′, and adjusted as shown below.

4. Φ ` σ : Φ′ is redefined as Ψ; Φ ` σ : Φ′ and the rules below are added.

5. `Ψ wf is defined below.

6. Ψ ` T : K is defined below.



` Σ wf

` Σ wf •; • ` t : s (c :) 6∈ Σ

` (Σ, c : t) wf

Ψ `Σ Φ wf

Ψ ` • wf

Ψ `Φ wf Ψ; Φ ` t : s

Ψ ` (Φ, t) wf

Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, Xi) wf

Ψ; Φ ` t : t ′

c : t ∈ Σ

Ψ; Φ `Σ c : t

Φ.I = t

Ψ; Φ ` fI : t

Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ; Φ `Π(t1).t2 : s′′

Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : t ′ Ψ; Φ `Π(t1).
⌊
t ′
⌋
|Φ|, · : s′

Ψ; Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ
′

Ψ; Φ ` Xi/σ : t ′ ·σ

Ψ; Φ ` σ : Φ′

Ψ; Φ ` • : •
Ψ; Φ ` σ : Φ

′
Ψ; Φ ` t : t ′ ·σ

Ψ; Φ ` (σ, t) : (Φ′, t ′)

Ψ; Φ ` σ : Φ
′

Ψ.i = [Φ′]ctx Φ
′, Xi ⊆Φ

Ψ; Φ ` (σ, id(Xi)) : (Φ′, Xi)

`Ψ wf

`Ψ wf

`Ψ wf Ψ `Φ wf

` (Ψ, [Φ]ctx) wf

`Ψ wf Ψ ` [Φ] t : [Φ]s

` (Ψ, [Φ] t) wf

Ψ ` T : K

Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
Ψ `Φ, Φ

′ wf

Ψ ` [Φ]Φ′ : [Φ]ctx

Lemma B.54 (Extension of lemma 2) 1. If t < f I and |Φ|= I then t · idΦ = t.

2. If σ < f I and |Φ|= I then σ · idΦ = σ.

Part 1 is proved by induction on t < f I. The interesting case is fI′ , with I′ < I. In this case we have to prove
idΦ.I′ = fI′ . This is done by induction on I′ < I.
When I = I′, · we have by inversion of |Φ| = I that Φ = Φ′, t and |Φ′| = I′. Thus idΦ = idΦ′, fI′ and thus the
desired result.
When I = I′, |Xi|, exactly as above.
When I = I∗, · and I′ < I∗, we have that Φ = Φ∗, t and |Φ∗| = I∗. By (inner) induction hypothesis we get that
idΦ∗ .I′ = fI′ . From this directly we get that idΦ.I′ = fI′ .
When I = I∗, |Xi| and I′ < I∗, entirely as the previous case.
Part 2 is trivial to prove by induction and use of part 1 in cases σ = • or σ = σ′, t. In the case σ = σ′, id(Xi) we
have: σ′ < f I thus by induction σ′ · idΦ = σ′, and furthermore (σ′, id(Xi)) · idΦ = σ.



Lemma B.55 (Length of subcontexts) If Φ⊆Φ′ then |Φ| ≤ |Φ′|.

Trivial by induction on Φ⊆Φ′.

Lemma B.56 (Variable limits can be increased) 1. If t < f I and I < I′ then t < f I′

2. If t <b n and n < n′ then t <b n′

3. If σ < f I and I < I′ then σ < f I′

4. If σ <b n and n < n′ then σ <b n′

Trivial by induction on t or σ.

Lemma B.57 (Extension of lemma 2) 1. If Ψ; Φ ` t : t ′ then t < f |Φ| and t <b 0.

2. If Ψ; Φ ` σ : Φ′ then σ < f |Φ|, σ <b 0 and |σ|= |Φ′|.

Part 1 is proved similarly as before.
Part 2 needs to account for the new case σ = σ∗, id(Xi).
By inversion of typing for σ we get that Φ′ = Φ∗, Xi with σ∗ : Φ∗. By induction we get that σ∗ < f |Φ∗|. Again
by inversion of typing for σ we get that Φ∗, Xi ⊆ Φ. Thus σ∗ < f |Φ| by use of lemma B.56. Furthermore from
Φ∗, Xi ⊆ Φ and lemma B.55 we get that |Φ∗|, |Xi| ≤ |Φ|. Thus for I′ = |Φ∗| we have I′, |Xi| < |Φ| thus we
overall get σ < f |Φ|.
Furthermore the other two parts of the theorem are trivial from induction hypothesis.

Lemma B.58 (Extension of lemma B.13) If Ψ ` Φ wf then for any Φ′ such that Φ ⊆ Φ′ and Ψ ` Φ′ wf, we
have that Ψ; Φ′ ` idΦ : Φ.

Similar to the original proof. The new case for Φ = Φ′, Xi works as follows. By induction hypothesis for Φ′ we
get that Ψ; Φ′, Xi ` idΦ′ : Φ′. Now for any environment Φ∗ such that Φ′, Xi ⊆ Φ∗, by using the typing rule for
id(Xi), we get the desired.

Lemma B.59 (Extension of lemma B.14) If Ψ ` Φ wf and |Φ| = I then for all I′ < I with Φ.I′ = t, we have
Φ.I′ < f I.

Identical as before.

Lemma B.60 (Extension of lemmas B.15 and B.15) 1. If t < f I, |σ|= I, t ·σ = t ′ and σ⊆ σ′ then t ·σ′ = t ′.

2. If σ < f I, |σ′|= I, σ ·σ′ = σr and σ⊆ σ′′ then σ ·σ′′ = σr.

Part 1 is identical as before. In part 2, in case σ = σ, id(Xi), proved trivially by definition of substitution
application.

Lemma B.61 (Extension of lemma B.16) If Ψ `Φ wf, Φ.I = t and Ψ; Φ′ ` σ : Φ, then Ψ; Φ′ ` σ.I : t ·σ.

The proof proceeds by structural induction on the typing derivation for σ as before. In case σ = σ∗, id(Xi), we
have that (Φ∗, Xi) ⊆ Φ′. We have that Φ∗.I = Φ.I = t (since I 6 =|Φ∗|, because (Φ∗, Xi).|Φ| 6 =t). Thus from
induction hypothesis for σ∗ we get that Ψ; Φ′ ` σ∗.I : t ·σ∗. Using lemma B.60 and also the fact that σ.I = σ∗.I,
we get that Ψ; Φ′ ` σ.I : t ·σ.

Lemma B.62 (Extension of lemma B.17) 1. If t < f I, t <b n+ 1, σ < f I′ and |σ| = I then dt ·σenI′ = dtenI ·
(σ, fI′).



2. If σ′ < f I, σ′ <b n+1, σ < f I′ and |σ|= I then dσ′ ·σenI′ = dσ′enI · (σ, fI′).

Part 1 is entirely similar as before, with slight adjustments to account for the new type of indices. Part 2 needs
to account for the new case of σ′ = σ′′, id(Xi), which is entirely trivial based on the definition.

Lemma B.63 (Extension of lemma B.18) 1. If t < f I, ·, t <b n, σ < f I′ and |σ| = I then bt · (σ, fI′)cnI′, · =
btcnI′, · ·σ.

2. If σ′ < f I, ·, σ′ <b n, σ < f I′ and |σ|= m then bσ′ · (σ, fI′)cnI′, · = bσ′cnI′, · ·σ.

Similarly to the above.

Lemma B.64 (Extension of lemma B.19) 1. If t < f I, |σ|= I, σ < f I′ and |σ′|= I′ then (t ·σ) ·σ′ = t · (σ ·σ′).
2. If σ1 <

f I, |σ|= I, σ < f I′ and |σ′|= I′ then (σ1 ·σ) ·σ′ = σ1 · (σ ·σ′).

Part 1 is identical as before. Part 2 needs to account for the case where σ1 = σ′1, id(Xi), which is entirely trivial.

Lemma B.65 (Extension of lemma B.20) If |σ|= I and |Φ|= I then idΦ ·σ = σ.

We need to account for the new case of Φ = Φ′, Xi. In that case, idΦ′, Xi = idΦ′ , id(Xi). By inversion of
|σ|= I = |Φ′|, |Xi| we get that σ = σ′, id(Xi). By induction hypothesis we get idΦ′ ·σ′ = σ′. By lemma B.60 we
get idΦ′ ·σ = σ′. Last it is trivial to see that (idΦ′ , id(Xi)) ·σ = σ′, id(Xi) = σ.

Lemma B.66 (Extension of lemma B.21) 1. If dtenI = dt ′enI then t = t ′.

2. If dσenI = dσ′enI then σ = σ′.

Part 1 is identical as before; part 2 holds trivially for the new case of σ.

Theorem B.67 (Extension of main substitution theorem B.22) 1. If Ψ; Φ ` t : t ′ and Ψ; Φ′ ` σ : Φ then
Ψ; Φ′ ` t ·σ : t ′ ·σ.

2. If Ψ; Φ′ ` σ : Φ and Ψ; Φ′′ ` σ′ : Φ′ then Ψ; Φ′′ ` σ ·σ′ : Φ.

3. If Ψ ` [Φ′] t : [Φ′] t ′ and Ψ; Φ ` σ : Φ′ then Ψ ` [Φ] t ·σ : [Φ] t ′ ·σ.

Part 1 is identical as before; all the needed theorems were adjusted above, so the new form of indexes does
not change the proof at all. The only case that needs adjustment is the metavariables case.

Case
Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ

′

Ψ; Φ ` Xi/σ0 : t ′
�

From Ψ; Φ ` Xi/σ0 : t ′ we get that Ψ.i = [Φ0] t0, Ψ; Φ ` σ0 : Φ0 and t ′ = t0 ·σ0.
Applying the second part of the lemma for σ = σ0 and σ′ = σ we get that Ψ; Φ′ ` σ0 ·σ′ : Φ0.
Thus applying the same typing rule for t = Xi/(σ0 ·σ) we get that Ψ; Φ′ ` Xi/(σ0 ·σ′) : t0 · (σ0 ·σ′).
Taking into account the definition of · and also lemma B.64, we have that this is the desired result.

For the second part, we need to account for the new case of substitutions.

Case
Ψ; Φ

′ ` σ : Φ0 Ψ.i = [Φ0]ctx Φ0, Xi ⊆Φ
′

Ψ; Φ
′ ` (σ, id(Xi)) : (Φ0, Xi)

�

By induction hypothesis for σ, we get: Ψ; Φ′′ ` σ ·σ′ : Φ0.
We need to prove that (Φ0, Xi)⊆Φ′′.



We have that Ψ; Φ′′ ` σ′ : Φ′.
By induction on (Φ0, Xi)⊆Φ′ and repeated inversions of σ′ we arrive at a σ′′ ⊆ σ′ such that:
Ψ; Φ′′ ` σ′′ : Φ0, Xi

By inversion of this we get that (Φ0, Xi)⊆Φ′′.
Thus, using the same typing rule, we get Ψ; Φ′′ ` (σ ·σ′, id(Xi)) : (Φ0, Xi), which is the desired.

For the third part, the proof is identical as before.

Lemma B.68 (Extension of lemma B.24) If Ψ; Φ ` t : t ′ then either t ′ = Type′ or Ψ; Φ ` t ′ : s.

Identical as before.

Lemma B.69 (Extension of the lemma B.25) 1. If Ψ; Φ ` t : t ′ and Φ⊆Φ′ then Ψ; Φ′ ` t : t ′.

2. If Ψ; Φ ` σ : Φ′′ and Φ⊆Φ′ then Ψ; Φ′ ` σ : Φ′′.

Identical as before.

Lemma B.70 (Adaptation of lemma 4) 1. If Ψ;Φ ` t : t ′ and Ψ⊆Ψ′ then Ψ′; Φ ` t : t ′.

2. If Ψ;Φ ` σ : Φ′ and Ψ⊆Ψ′ then Ψ′; Φ ` σ : Φ′.

3. If Ψ `Φ wf and Ψ⊆Ψ′ then Ψ′ `Φ wf.

4. If Ψ ` T : K and Ψ⊆Ψ′ then Ψ′ ` T : K.

Parts 2 and 3 are trivial for the new cases; otherwise identical as before.

Now we have proved the fundamentals. We proceed to define substitutions for the extension variables (meta-
and context-variables), typing for such substitutions, and prove an extensions substitution theorem.

Definition B.71 (Substitutions of extension variables) The syntax of substitutions for meta- and context-
variables is given below.

σΨ ::= • | σΨ, T

Definition B.72 (Context, substitution, index concatenation) We define what it means to concatenate one
context (substitution, index) to another.

Φ, Φ′

Φ, (•) = Φ

Φ, (Φ′, t) = (Φ, Φ′), t
Φ, (Φ′, Xi) = (Φ, Φ′), Xi

σ, σ′

σ, (•) = σ

σ, (σ′, t) = (σ, σ′), t
σ, (σ′, id(Xi)) = (σ, σ′), id(Xi)



I, I′

I, (•) = I
I, (I′, ·) = (I, I′), ·
I, (I′, |Xi|) = (I, I′), |Xi|

Definition B.73 (Partial identity substitution) We define what partial identity substitutions (for a suffix of a
context) are.

id[Φ]Φ′

id[Φ]• = •
id[Φ]Φ′, t = id[Φ]Φ′ , f|Φ|+|Φ′|
id[Φ]Φ′, Xi = id[Φ]Φ′ , id(Xi)

Definition B.74 (Extensions substitution length and access) Defined below.

|σΨ|

| • | = 0
|σΨ, T | = 1+ |σΨ|

Definition B.75 (Extension substitution and context concatenation) We define concatenation of extension
substitutions and extensions contexts below.

Ψ, Ψ′

Ψ, (•) = Ψ

Ψ, (Ψ′, K) = (Ψ, Ψ′), K

σΨ, σ′
Ψ

σΨ, (•) = σΨ

σΨ, (σ
′
Ψ
, T ) = (σΨ, σ′

Ψ
), T

Definition B.76 (Extensions substitution subsumption) Defined below.

σΨ ⊆ σ′
Ψ

σΨ ⊆ σΨ

σΨ ⊆ σ′
Ψ
, T ⇐ σΨ ⊆ σ′

Ψ

Definition B.77 (Application of extensions substitution) This is an adaptation of definition B.28.



I ·σΨ

• ·σΨ = •
(I, ·) ·σΨ = (I ·σΨ), ·

∗ (I, |Xi|) ·σΨ = (I ·σΨ), |Φ′| when σΨ.i = [Φ]Φ′

t ·σΨ

fI ·σΨ = fI·σΨ

(Xi/σ) ·σΨ = t · (σ ·σΨ) when σΨ.i = [Φ] t

σ ·σΨ

• ·σΨ = •
(σ, t) ·σΨ = σ ·σΨ, t ·σΨ

∗ (σ, id(Xi)) ·σΨ = σ ·σΨ, idσΨ.i when σΨ.i = [Φ]Φ′

Φ ·σΨ

• ·σΨ = •
(Φ, t) ·σΨ = Φ ·σΨ, t ·σΨ

(Φ, Xi) ·σΨ = Φ ·σΨ, Φ′ when σΨ.i = [Φ]Φ′

T ·σΨ

([Φ] t) ·σΨ = [Φ ·σΨ] (t ·σΨ)
([Φ]Φ′) ·σΨ = [Φ ·σΨ](Φ

′ ·σΨ)

K ·σΨ

([Φ] t) ·σΨ = [Φ ·σΨ] (t ·σΨ)
([Φ]ctx) ·σΨ = [Φ ·σΨ]ctx

σΨ ·σ′Ψ

• ·σ′
Ψ

= •
(σΨ, T ) ·σ′

Ψ
= σΨ ·σ′Ψ, T ·σ′

Ψ

Definition B.78 (Application of extended substitution to open extended context) Assuming that Ψ′ does not
include variables bigger than X|Ψ|, we have:

Ψ′ ·σΨ

• ·σΨ = •
(Ψ′, K) ·σΨ = Ψ′ ·σΨ, K · (σΨ, X|Ψ|, · · · ,X|Ψ|+|Ψ′|)

Definition B.79 (Identity extension substitution) The identity substitution for extension contexts is defined
below.



idΨ

id• = •
idΨ, K = idΨ, X|Ψ|

Definition B.80 (Extensions substitution typing) The typing judgement for extensions substitutions is rede-
fined as Ψ ` σΨ : Ψ′. The rules are given below. We also define typing for open extension contexts.

Ψ ` σΨ : Ψ′

Ψ ` • : •
Ψ ` σΨ : Ψ

′
Ψ ` T : K ·σΨ

Ψ ` (σΨ, T ) : (Ψ′, K)

Ψ `Ψ′ wf

`Ψ, Ψ
′ wf

Ψ `Ψ
′ wf

Lemma B.81 (Interaction of extensions substitution and length) 1. |σ| ·σΨ = |σ ·σΨ|
2. |Φ| ·σΨ = |Φ ·σΨ|

By induction on σ and Φ.

Lemma B.82 (Interaction of environment subsumption and length) If Φ⊆Φ′ then |Φ| ≤ |Φ′|.

By induction on Φ⊆Φ′.

Lemma B.83 (Interaction of environment subsumption and extensions substitution) If Φ ⊆ Φ′ then Φ ·
σΨ ⊆Φ′ ·σΨ.

By induction on Φ⊆Φ′.

Lemma B.84 (Interaction of extensions substitution and element access) 1. (σ.I) ·σΨ = (σ ·σΨ).I ·σΨ

2. (Φ.I) ·σΨ = (Φ ·σΨ).I ·σΨ

By induction on I and taking into account the implicit assumption that I < |σ| or I < |Φ|.

Lemma B.85 (Extension of lemma B.30) If Ψ ` σΨ : Ψ′ and σΨ.i = [Φ] t then t < f |Φ| and t <b 0.

Identical as before.

Lemma B.86 (Extension of lemma B.31) If t <b n then dt ·σenm = t · dσenm.

Identical as before.

Lemma B.87 (Extension of lemma B.32) 1. If Ψ ` σΨ : Ψ′ then dtenI ·σΨ = dt ·σΨenI·σΨ

2. If Ψ ` σΨ : Ψ′ then dσenI ·σΨ = dσ ·σΨenI·σΨ



Part 1 is proved by induction on t.
In the case t = bn, we have that the left-hand side is equal to fI ·σΨ = fI·σΨ

. The right-hand side is equal to
dbnenI·σΨ

= fI·σΨ
.

In the case t = Xi/σ, this is proved entirely as before, with trivial changes to account for the new indexes.
Part 2 is proved by induction on σ, as previously. For the new case σ = σ′, id(Xi), the result is trivial.

Lemma B.88 (Extension of lemma B.33) If t <b n then bt ·σcnI = t · bσcnI .

Identical as before.

Lemma B.89 (Extension of lemma B.34) 1. If Ψ ` σΨ : Ψ′ then btcnI ·σΨ = bt ·σΨcnI·σΨ

2. If Ψ ` σΨ : Ψ′ then bσcnI ·σΨ = bσ ·σΨcnI·σΨ

Proved similarly to lemma B.87.
When t = fI, we have that the left-hand side is equal to bn, while the right-hand side is equal to b fI·σΨ

cnI·σΨ
= bn.

Lemma B.90 (Extension of lemma B.35) 1. (t ·σ) ·σΨ = (t ·σΨ) · (σ ·σΨ)

2. (σ ·σ′) ·σΨ = (σ ·σΨ) · (σ′ ·σΨ)

Part 1 is entirely similar as before, with the exception of case t = fI. This is proved using the lemma B.84. Part
2 is trivially proved for the new case of σ.

Lemma B.91 (Extension of lemma B.36) idΦ ·σΨ = idΦ·σΨ

By induction on Φ.
When Φ = •, trivial.
When Φ = Φ′, t, by induction we have idΦ′ · σΨ = idΦ′·σΨ

. Thus (idΦ′ , f|Φ′|) · σΨ = idΦ′·σΨ
, f|Φ′|·σΨ

=
idΦ′·σΨ

, f|Φ′·σΨ| = idΦ·σΨ
.

When Φ = Φ′, Xi, we have that idΦ′·σΨ
, idσΨ.i = idΦ′·σΨ, σΨ.i (by simple induction on Φ′′ = σΨ.i).

Lemma B.92 (Extension of lemma B.37) 1. If Ψ; Φ ` t : t ′, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then t ·σ′
Ψ
= t ·σΨ.

2. If Ψ; Φ ` σ : Φ′, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then σ ·σ′
Ψ
= σ ·σΨ.

3. If Ψ `Φ wf, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then Φ ·σ′
Ψ
= Φ ·σΨ.

4. If Ψ ` T : K, |σΨ|= |Ψ| and σΨ ⊆ σ′
Ψ

then T ·σ′
Ψ
= T ·σΨ.

5. If K ·σΨ is well-defined, and σΨ ⊆ σ′
Ψ

, then K ·σΨ = K ·σ′
Ψ

.

6. If Ψ ·σΨ is well-defined, and σΨ ⊆ σ′
Ψ

, then Ψ ·σΨ = Ψ ·σ′
Ψ

.

Parts 2 and 3 are trivially extended for the new cases; others are identical or easily provable by induction.

Lemma B.93 (Extension of lemma B.38) If `Ψ wf and Ψ ` σΨ : Ψ′ then Ψ ` σΨ.i : Ψ′.i ·σΨ.

By induction on σΨ and then cases on i < |σΨ|.
If i = |σΨ|−1 then proceed by cases for σΨ.

If σΨ = •, then the case is impossible.
If σΨ = σ′

Ψ
, [Φ] t, we have by typing inversion for σΨ that Ψ ` [Φ] t : (Ψ′.i) ·σ′

Ψ
, which by lemma

B.92 is equal to the desired.
If σΨ = σ′

Ψ
, [Φ]Φ′, we get by typing inversion for σΨ that Ψ ` [Φ]Φ′ : [Ψ′.i ·σ′

Ψ
]ctx which again by

lemma B.92 is the desired.
If i < |σΨ|− 1 then by inversion of σΨ we have that either σΨ = σ′

Ψ
, [Φ] t or σΨ = σ′

Ψ
, [Φ]Φ′. In both cases

i < |σ′
Ψ
|−1 so by induction hypothesis get σ′

Ψ
.i : Ψ′.i ·σ′

Ψ
which, using B.92, is the desired.



Lemma B.94 (Interaction of two extension substitutions) 1. (I ·σΨ) ·σ′Ψ = I · (σΨ ·σ′Ψ)
2. (t ·σΨ) ·σ′Ψ = t · (σΨ ·σ′Ψ)
3. (Φ ·σΨ) ·σ′Ψ = Φ · (σΨ ·σ′Ψ)
4. (σ ·σΨ) ·σ′Ψ = σ · (σΨ ·σ′Ψ)
5. (T ·σΨ) ·σ′Ψ = T · (σΨ ·σ′Ψ)
6. (K ·σΨ) ·σ′Ψ = K · (σΨ ·σ′Ψ)
7. (Ψ ·σΨ) ·σ′Ψ = Ψ · (σΨ ·σ′Ψ)

Part 1 By induction on I. The interesting case is I = I′, Xi. In that case we have (I ·σΨ) ·σ′Ψ = (I′ ·σΨ) ·
σ′

Ψ
, σΨ.i ·σ′Ψ. Trivially σΨ.i ·σ′Ψ = (σΨ ·σ′Ψ).i, and also using induction hypothesis, we have that the above is

further equal to I′ · (σΨ ·σ′Ψ), (σΨ ·σ′Ψ).i, which is exactly the desired.

Part 2 By induction on t. The interesting case is t = Xi/σ. The left-hand-side is then equal to (σΨ.i · (σ ·σΨ)) ·
σ′

Ψ
, with σΨ.i = [Φ] t. This is further rewritten as (t · (σ ·σΨ)) ·σ′Ψ = (t ·σ′

Ψ
) · ((σ ·σΨ) ·σ′Ψ) through lemma

B.90. Furthermore through part 4 we get that this is equal to (t ·σ′
Ψ
) · (σ · (σΨ ·σ′Ψ)).

The right-hand-side is written as: (Xi/σ) · (σΨ ·σ′Ψ). We have that (σΨ ·σ′Ψ).i = (σΨ.i) ·σ′Ψ = [Φ ·σ′
Ψ
] (t ·σ′

Ψ
).

Thus (Xi/σ) · (σΨ ·σ′Ψ) = (t ·σ′
Ψ
) · (σ · (σΨ ·σ′Ψ)).

Part 3 By induction on Φ. When Φ = Φ, Xi, we have that the left-hand-side is equal to (Φ ·σΨ) ·σ′Ψ, Φ′ ·σ′
Ψ

with σΨ.i = [Φ]Φ′. By induction hypothesis this is further equal to Φ · (σΨ ·σ′Ψ), Φ′ ·σ′
Ψ

.
Also, we have that (σΨ ·σ′Ψ).i = [Φ ·σ′

Ψ
]Φ′ ·σ′

Ψ
. Thus the right-hand-side is equal to Φ · (σΨ ·σ′Ψ), Φ′ ·σ′

Ψ
,

which is exactly equal to the left-hand-side.

Rest Similarly as above.

Lemma B.95 (Interaction of identity substitution and extension substitution) If |σΨ|= |Ψ| then idΨ ·σΨ =
σΨ

By induction on Ψ. If Ψ = •, trivial. If Ψ = Ψ′, K then idΨ′, K ·σΨ = (idΨ′ , X|Ψ′|) ·σΨ. From |σΨ| = |Ψ| we
have that σΨ = σ′

Ψ
, T , and from induction hypothesis for σ′

Ψ
we get that the above is equal to σ′

Ψ
, X|Ψ′| ·σΨ =

σ′
Ψ
, T = σΨ.

Part 2

Lemma B.96 (Interaction of identity substitution and extension substitution) 1. t · idΨ = t

2. Φ · idΨ = Φ

3. σ · idΨ = σ

4. T · idΨ = T

5. K · idΨ = K

6. σΨ · idΨ = σΨ

All are trivially proved by induction. We will give only details for the σΨ case.
By induction on σΨ. If σΨ = •, trivial. If σΨ = σ′

Ψ
, T , then we have that (σ′

Ψ
,T ) · idΨ = σ′

Ψ
· idΨ, T · idΨ. The

first part is equal to σ′
Ψ

by induction hypothesis (and use of lemma B.92). For the second we split cases for T .
We have ([Φ] t) · idΨ = [Φ · idΨ] (t · idΨ) = [Φ] t, and similarly for ([Φ]Φ′) · idΨ = [Φ]Φ′, by use of the other parts.

Theorem B.97 (Extension of lemma B.39) 1. If Ψ; Φ ` t : t ′ and Ψ′ ` σΨ : Ψ then Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ.



2. If Ψ; Φ ` σ : Φ′ and Ψ′ ` σΨ : Ψ then Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.

3. If Ψ `Φ wf and Ψ′ ` σΨ : Ψ then Ψ′ `Φ ·σΨ wf.

4. If Ψ ` T : K and Ψ′ ` σΨ : Ψ then Ψ′ ` T ·σΨ : K ·σΨ.

5. If Ψ′ ` σΨ : Ψ and Ψ′′ ` σ′
Ψ

: Ψ′ then Ψ′′ ` σΨ ·σ′Ψ : Ψ.

Part 1. Case
Φ.I = t

Ψ; Φ ` fI : t
�

We have (Φ ·σΨ).I ·σΨ = (Φ.I) ·σΨ from lemma B.84.

Case
Ψ.i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ

′

Ψ; Φ ` Xi/σ : t ′ ·σ �

From lemma B.93 get Ψ′ ` σΨ.i : (Ψ.i) ·σΨ.
Furthermore, this can be written as:
Ψ′ ` σΨ.i : [Φ′ ·σΨ] t ′ ·σΨ.
Thus by typing inversion, and assuming σΨ.i = [Φ′ ·σΨ] t get:
Ψ′; Φ′ ·σΨ ` t : t ′ ·σΨ. From part 2 for σ get Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.
From lemma B.67 and the above we get Ψ′; Φ ·σΨ ` t · (σ ·σΨ) : (t ′ ·σΨ) · (σ ·σΨ).
Using the lemma B.90 we get that (t ′ ·σΨ) · (σ ·σΨ) = (t ′ ·σ) ·σΨ, thus the above is the desired.

Case (otherwise) �

The rest of the cases are trivial to adapt to account for indexes from lemma B.39.

Part 2. The cases for σ = • or σ = σ′, t are entirely similar as before.

Case
Ψ; Φ ` σ : Φ

′
Ψ.i = [Φ′]ctx Φ

′, Xi ⊆Φ

Ψ; Φ ` (σ, id(Xi)) : (Φ′, Xi)
�

In this case we need to prove that Ψ′; Φ ·σΨ ` (σ ·σΨ, idσΨ.i) : (Φ′ ·σΨ, σΨ.i).
By induction hypothesis for σ we get that Ψ′; Φ ·σΨ ` σ ·σΨ : Φ′ ·σΨ.
From lemma B.93 we also get: Ψ′ ` σΨ.i : Ψ.i ·σΨ.
We have that Ψ.i = [Φ′]ctx, so this can be rewritten as: Ψ′ ` σΨ.i : [Φ′ ·σΨ]ctx.
By typing inversion get σΨ.i = [Φ′ ·σΨ]Φ

′′ for some Φ′′ and:
Ψ′ ` [Φ′ ·σΨ]Φ

′′ : [Φ′ ·σΨ]ctx.
Now proceed by induction on Φ′′ to prove that Ψ′; Φ ·σΨ ` (σ ·σΨ, idσΨ.i) : (Φ′ ·σΨ, σΨ.i).

When Φ′′ = •, trivial.
When Φ′′ = Φ′′′, t, have Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ : (Φ

′ ·σΨ, Φ′′′) by induction hypothesis. We
can append f|Φ′·σΨ|,|Φ′′′| to this substitution and get the desired, because (|Φ′ ·σΨ|, |Φ′′′|) < |Φ ·σΨ|.
This is because (Φ′, Xi) ⊆ Φ thus (Φ′ ·σΨ, Φ′′′, t) ⊆ Φ and thus (|Φ′ ·σΨ|, |Φ′′′|, ·) ≤ |Φ|. When
Φ′′ = Φ′′′, X j, have Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ : (Φ′ ·σΨ, Φ′′′). Now we have that Φ′, Xi ⊆ Φ,
which also means that (Φ′ ·σΨ, Φ′′′, X j) ⊆ Φ ·σΨ. Thus we can apply the typing rule for id(X j) to
get that Ψ′; Φ ·σΨ ` σ ·σΨ, id[Φ′·σΨ]Φ′′′ , id(X j) : (Φ′ ·σΨ, Φ′′′, X j), which is the desired.

Part 3. Case
Ψ ` • wf

�

Trivial.



Case
Ψ `Φ wf Ψ; Φ ` t : s

Ψ ` (Φ, t) wf
�

By induction hypothesis we get Ψ′ `Φ ·Ψ wf.
By use of part 1 we get that Ψ′; Φ ·Ψ ` t ·Ψ : s.
Thus using the same typing rule we get the desired Ψ′ ` (Φ ·Ψ, t ·Ψ) wf.

Case
Ψ `Φ wf Ψ.i = [Φ]ctx

Ψ ` (Φ, Xi) wf
�

By induction hypothesis we get Ψ′ `Φ ·σΨ wf.
By use of lemma B.93 we get that Ψ′ ` σΨ.i : Ψ.i ·σΨ.
We have Ψ.i = [Φ]ctx thus the above can be rewritten as Ψ′ ` σΨ.i : [Φ ·σΨ]ctx.
By inversion of typing get that σΨ.i = [Φ ·σΨ]Φ

′ and that Ψ′ `Φ ·σΨ, Φ′ wf. This is exactly the desired result.

Part 4. Case
Ψ; Φ ` t : t ′

Ψ ` [Φ] t : [Φ] t ′
�

By use of part 1 we get that Ψ′; Φ ·σΨ ` t ·σΨ : t ′ ·σΨ.
Thus by application of the same typing rule we get exactly the desired.

Case
Ψ `Φ, Φ

′ wf

Ψ ` [Φ]Φ′ : [Φ]ctx
�

By use of part 3 we get Ψ′ `Φ ·σΨ, Φ′ ·σΨ wf.
Thus by the same typing rule we get exactly the desired.

Part 5. Case
Ψ
′ ` • : • �

Trivial.

Case
Ψ
′ ` σΨ : Ψ Ψ

′ ` T : K ·σΨ

Ψ
′ ` (σΨ, T ) : (Ψ, K)

�

By induction we get Ψ′′ ` σΨ ·σ′Ψ : Ψ.
By use of part 4 we get Ψ′′ ` T ·σ′

Ψ
: (K ·σΨ) ·σ′Ψ.

This is equal to K · (σΨ ·σ′Ψ) by use of lemma B.94. Thus we get the desired result by applying the same typing
rule.

Lemma B.98 If Ψ `Ψ′′ wf and Ψ′ ` σΨ : Ψ then Ψ′ `Ψ′′ ·σΨ wf.

By induction on the structure of Ψ′′.

Case Ψ
′′ = • � Trivial.

Case Ψ
′′ = Ψ

′′, [Φ] t �

By induction hypothesis we have that Ψ′ `Ψ′′ ·σΨ wf.
By inversion of well-formedness for Ψ′′, [Φ] t we get:
Ψ, Ψ′′ ` [Φ] t : [Φ]s.
We have for σ′

Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|, that Ψ′, Ψ′′ ·σΨ ` σ′

Ψ
: Ψ, Ψ′′.

Thus by application of lemma B.97, we get that:



Ψ′, Ψ′′ ·σΨ ` [Φ ·σ′Ψ] t ·σ′Ψ : [Φ ·σ′
Ψ
]s.

Thus `Ψ′, (Ψ′′, [Φ] t) ·σΨ wf, which is the desired.

Case Ψ
′′ = Ψ

′′, [Φ]ctx � Similarly as the previous case.

B.3 Final extension: bound extension variables

The metatheory presented in the previous subsection only has to do with meta and context variables that are free.
We now introduce bound extension variables, (which will be bound in the computational language), entirely
similarly to how we have bound and free variables for the logic. We will not re-prove everything here; all
theorems from above carry on exactly as they are. We will only prove two theorems that have to do with the
interaction of freshen/bind and extension substitutions.

Definition B.99 (Syntax of the language) The syntax of the logic language is extended below.

Φ ::= · · · | Φ,Bi

σ ::= · · · | σ, id(Bi)

t ::= · · · | Bi/σ

I ::= · · · | I, |Bi|

All the following definitions are extended trivially. Application of extension substitution leaves bound
extension variables as they are. Bound extension variables are untypable.

Definition B.100 (Freshening of extension variables) We define freshening similarly to normal variables. We
do not define extension variables limits: we will use the condition of well-definedness later. (So if dteMN,K is
well-defined, that means that it does not have extension variables larger than N +K).

dIeMN

d•e = •
dI, ·e = dIe , ·
dI,Xie = dIe , Xi⌈
I,BM+ j

⌉M
N,K = dIe , XN+K− j−1 when j < K

dI,BieMN,K = dIe , Bi when i < M

dteMN,K

d fIeMN,K = fdIeMN,K

dbieMN,K = bi

dλ(t1).t2eMN,K = λ(dt1eMN,K).dt2eMN,K
· · ·

dXi/σeMN,K = Xi/(dσeMN,K)⌈
BM+ j/σ

⌉M
N,K = XN+K− j−1/(dσeMN,K) when j < K

dBi/σeMN,K = Bi/(dσeMN,K) when i < M



dΦeMN,K

d•e = •
dΦ, te = dΦe , dte
dΦ,Xie = dΦe , Xi⌈
Φ,BM+ j

⌉M
N,K = dΦe , XN+K− j−1 when j < K

dΦ,BieMN,K = dΦe , Bi when i < M

dσeMN,K

d•e = •
dσ, te = dσe , dte
dσ, id(Xi)e = dσe , id(Xi)⌈
σ, id(BM+ j)

⌉M
N,K = dσe , id(XN+K− j−1) when j < K

dσ, id(Bi)eMN,K = dσe , id(Bi) when i < M

dTeMN,K

d[Φ] te = [dΦe] (dte)
d[Φ]Φ′e = [dΦe](dΦ′e)

dKeMN,K

d[Φ] te = [dΦe] (dte)
d[Φ]ctxe = [dΦe]ctx

dΨeMN,K

d•eMN,K = •
dΨ, KeMN,K = dΨeMN,K , dKeM+|Ψ|

N,K

Definition B.101 (Binding of extension variables) We define binding similarly to normal variables. Note that
this is a bit different (because binding many variables at once is permitted), so the N parameter is the length of
the resulting context (the number of free variables after binding has taken place), while N +K is the length of
the context where the bind argument is currently in.

bIcMN,K

b•c = •
bI, ·c = bIc , ·⌊
I,XN+ j

⌋M
N,K = bIc , BM+K− j−1 when j < K

bI,XicMN,K = bIc , Xi when i < N
bI,BicMN,K = bIc , Bi



btcMN,K

b fIcMN,K = fbIcMN,K

bbicMN,K = bi

bλ(t1).t2cMN,K = λ(bt1cMN,K).bt2cMN,K
· · ·⌊

XN+ j/σ
⌋M

N,K = BM+K− j−1/(bσcMN,K) when j < K
bXi/σcMN,K = Xi/(bσcMN,K) when i < N
bBi/σcMN,K = Bi/(bσcMN,K)

bΦcMN,K

b•c = •
bΦ, tc = bΦc , btc⌊
Φ,XN+ j

⌋M
N,K = bΦc , BM when j < K

bΦ,XicMN,K = bΦc , Xi when i < N
bΦ,BicMN,K = bΦc , Bi

bσcMN,K

b•c = •
bσ, tc = bσc , btc⌊
σ, id(XN+ j)

⌋M
N,K = bσc , id(BM+K− j−1) when j < K

bσ, id(Xi)cMN,K = bσc , id(Xi) when i < N
bσ, id(Bi)cMN,K = bσc , id(Bi)

bTcMN,K

b[Φ] tc = [bΦc] (btc)
b[Φ]Φ′c = [bΦc](bΦ′c)

bKcMN,K

b[Φ] tc = [bΦc] (btc)
b[Φ]ctxc = [bΦc]ctx

bΨcMN,K

b•cMN,K = •
bΨ, KcMN,K = bΨcMN,K , bKcM+|Ψ|

N,K

Definition B.102 Opening up and closing down an extension context works as follows:



�Ψ�N

�•�N = •
�Ψ, K�N = �Ψ�N , �K�0

N,|Ψ|

�Ψ�N

�•�N = •
�Ψ, K�N = �Ψ�N , �K�0

N,|Ψ|

Now we prove a couple of theorems.

Lemma B.103 (Freshening of extension variables and extension substitution) Assuming |σΨ| = N, d·eMN,K

and d·eMN′,K are well-defined, we have:

1. dI ·σΨeMN′,K = dIeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

2. dt ·σΨeMN′,K = dteMN,K · (σΨ, XN′ , · · · , XN′+K−1)

3. dΦ ·σΨeMN′,K = dΦeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

4. dσ ·σΨeMN′,K = dσeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

5. dT ·σΨeMN′,K = dTeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

6. dK ·σΨeMN′,K = dKeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

7. dΨ ·σΨeMN′,K = dΨeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

Part 2 By induction on t and use of the rest of the parts. The interesting case is t = BM+ j/sigma with
j < K. We have that the left-hand-side is equal to XN′+K− j−1/(dσ ·σΨeMN′,K), which by part 4 is equal to
XN′+K− j−1/(dσeMN,K ·(σΨ, XN′ , · · · , XN′+K−1). The right-hand-side is equal to (XN+K− j−1/dσeMN,K)·(σΨ, XN′ , · · · , XN′+K−1)=

XN′+K− j−1/(dσeMN,K · (σΨ, XN′ , · · · , XN′+K−1), which is exactly equal to the left-hand-side.

Part 7 By induction on Ψ. The interesting case occurs when Ψ = Ψ′, K.
In that case, we have that the left-hand-side is equal to:⌈
Ψ′ ·σΨ, K · (σΨ, XN′ , · · · , XN′+|Ψ′|)

⌉M
N′,K .

Since K does not contain variables bigger than X|σΨ| (since dKeMN,K is well-defined), we have that this is further
equal to:
dΨ′ ·σΨ, K ·σΨeMN′,K .
This is then equal to:
dΨ′ ·σΨeMN′,K , dK ·σΨeM+|Ψ′·σΨ|

N′,K . Setting σ′
Ψ
= σΨ, XN′ , · · · , XN′+K−1 we have by induction hypothesis and part

6 that this is equal to:
dΨ′eMN,K ·σ′Ψ, dKe

M+|Ψ′·σΨ|
N,K ·σ′

Ψ
.

The right-hand-side is equal to: dΨ′eMN,K ·σ′Ψ, dKe
M+|Ψ′|
N,K · (σ′

Ψ
, XN′+K−1, · · · , XN′+K−1+|Ψ′|

Since dKeM+|Ψ′|
N,K is well-defined, we have that it does not contain variables larger than XN+K−1, and thus we

have:
dKeM+|Ψ′|

N,K · (σ′
Ψ
, XN′+K−1, · · · , XN′+K−1+|Ψ′| = dKeM+|Ψ′|

N,K ·σ′
Ψ

.
Thus the two sides are equal.



Rest By direct application of the other parts.

Lemma B.104 (Binding of extension variables and extension substitution) Assuming |σΨ| = N, b·cMN,K and
b·cMN′,K are well-defined, we have:

1. bI · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bIcMN,K ·σΨ

2. bt · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = btcMN,K ·σΨ

3. bΦ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bΦcMN,K ·σΨ

4. bσ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bσcMN,K ·σΨ

5. bT · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bTcMN,K ·σΨ

6. bK · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bKcMN,K ·σΨ

7. bΨ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bΨcMN,K ·σΨ

Part 2 The interesting case is when t = XN+ j/σ with j < K. In that case, the left-hand-side becomes:⌊
XN′+ j/(σ · (σΨ, XN′ , · · · , XN′+K−1))

⌋M
N′,K = BM+K− j−1/(bσ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K) = BM/(bσcMN,K ·

σΨ) by part 4.
The right-hand-side becomes (BM+K− j−1/(bσcMN,K)) ·σΨ = BM/(bσcMN,K ·σΨ).

Rest Again, simple by induction and use of other parts; similarly as above.

Lemma B.105 1.
⌈
bIcMN,K

⌉M

N,K
= I

2.
⌈
btcMN,K

⌉M

N,K
= t

3.
⌈
bΦcMN,K

⌉M

N,K
= Φ

4.
⌈
bσcMN,K

⌉M

N,K
= σ

5.
⌈
bTcMN,K

⌉M

N,K
= T

6.
⌈
bKcMN,K

⌉M

N,K
= K

7.
⌈
bΨcMN,K

⌉M

N,K
= Ψ

Trivial by structural induction.

Lemma B.106 If |σΨ|= |Ψ| and �·�|Ψ| and �·�|Ψ′| are well-defined, then �Ψ′′�|Ψ| ·σΨ =�Ψ′′ ·σΨ�|Ψ′|

By induction on Ψ′′.
When Ψ′′ = •, trivial.
When Ψ′′ = Ψ′′, K we have that:
�Ψ′′, K�|Ψ|=�Ψ′′�|Ψ|,dKe|Ψ|,|Ψ′′|.
Applying σΨ to this we get:
�Ψ′′�|Ψ| ·σΨ,dKe|Ψ|,|Ψ′′| · (σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|).
By induction hypothesis the first part is equal to:



�Ψ′′ ·σΨ�|Ψ′|.
Using lemma B.87 for the second part we get that it’s equal to:
dK ·σΨe|Ψ′|,|Ψ′′|
Furthermore, since K does not contain variables greater than X|Ψ|, we have that K ·σΨ =K ·(σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|.
Thus, the left hand side is equal to

⌈
Ψ′′ ·σΨ, K · (σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′|

⌉
|Ψ′|,|Ψ′′|, which is equal to the right-

hand-side.

C. Definition and metatheory of computational language

Definition C.1 The syntax of the computational language is defined below.

k ::= ? | k→ k | Π(K).k
τ ::= Π(K).τ | Σ(K).τ | λ(K).τ | τ T
| unit | ⊥ | τ1→ τ2 | τ1× τ2 | τ1 + τ2 | µα : k.τ | ref τ | ∀α : k.τ | λα : k.τ | τ1 τ2 | α

e ::= Λ(K).e | e T | pack T return (.τ) with e | unpack e (.)x.(e′)
| () | error | λx : τ.e | e e′ | x | (e, e′) | proji e | inji e | case(e, x.e′, x.e′′) | fold e | unfold e | ref e
| e := e′ | !e | l | Λα : k.e | e τ | fix x : τ.e
| unify T return (.τ) with (Ψ.T ′ 7→ e′)

Γ ::= • | Γ, x : τ | Γ, α : k
Σ ::= • | Σ, l : τ

Definition C.2 Freshening and binding for computational kinds, types and terms are defined as follows.

dkeMN,K

d?eMN,K = ?

dΠ(K).keMN,K = Π(dKeMN,K).dkeM+1
N,K

dτeMN,K

dΠ(K).τeMN,K = Π(dKeMN,K).dτeM+1
N,K

dΣ(K).τeMN,K = Σ(dKeMN,K).dτeM+1
N,K

dλ(K).τeMN,K = λ(dKeMN,K).dτeM+1
N,K

dτ TeMN,K = dτeMN,K dTeMN,K
duniteMN,K = unit
d⊥eMN,K = ⊥
dτ1→ τ2eMN,K = dτ1eMN,K → dτ2eMN,K
dτ1× τ2eMN,K = dτ1eMN,K×dτ2eMN,K
dτ1 + τ2eMN,K = dτ1eMN,K + dτ2eMN,K
dµα : k.τeMN,K = µα : dkeMN,K .dτeMN,K
dref τeMN,K = ref dτeMN,K
d∀α : k.τeMN,K = ∀α : dkeMN,K .dτeMN,K
dλα : k.τeMN,K = λα : dkeMN,K .dτeMN,K
dτ1 τ2eMN,K = dτ1eMN,K dτ2eMN,K
dαeMN,K = α



deeMN,K

dΛ(K).eeMN,K = Λ(dKeMN,K).deeM+1
N,K

de TeMN,K = deeMN,K dTeMN,K

dpack T return (.τ) with eeMN,K = pack dTeMN,K return (.dτeM+1
N,K ) with deeMN,K

dunpack e (.)x.(e′)eMN,K = unpack deeMN,K (.)x.(de′eM+1
N,K )

d()eMN,K = ()

derroreMN,K = error
dλx : τ.eeMN,K = λx : dτeMN,K .deeMN,K
de1 e2eMN,K = de1eMN,K de2eMN,K
dxeMN,K = x
d(e, e′)eMN,K = (deeMN,K , de′eMN,K)

dproji eeMN,K = proji deeMN,K
dinji eeMN,K = inji deeMN,K

dcase(e, x.e′, x.e′′)eMN,K = case(deeMN,K , x.de′eMN,K , x.de′′eMN,K)

dfold eeMN,K = fold deeMN,K
dunfold eeMN,K = unfold deeMN,K
dref eeMN,K = ref deeMN,K
de1 := e2eMN,K = de1eMN,K := de2eMN,K
d!eeMN,K = !deeMN,K
dleMN,K = l
dΛα : k.eeMN,K = Λα : dkeMN,K .deeMN,K
de τeMN,K = deeMN,K dτeMN,K
dfix x : τ.eeMN,K = fix x : dτeMN,K .deeMN,K

dunify T return (.τ) with (Ψ.T ′ 7→ e′)e = unify dTeMN,K return (.dτeM+1
N,K ) with (dΨeMN,K .dT ′eM+|Ψ|

N,K 7→ de′eM+|Ψ|
N,K )

bkcMN,K

b?cMN,K = ?

bΠ(K).kcMN,K = Π(bKcMN,K).bkcM+1
N,K

bτcMN,K

bΠ(K).τcMN,K = Π(bKcMN,K).bτcM+1
N,K

bΣ(K).τcMN,K = Σ(bKcMN,K).bτcM+1
N,K

bλ(K).τcMN,K = λ(bKcMN,K).bτcM+1
N,K

bτ TcMN,K = bτcMN,K bTcMN,K
bunitcMN,K = unit



bτcMN,K (continued)

b⊥cMN,K = ⊥
bτ1→ τ2cMN,K = bτ1cMN,K → bτ2cMN,K
bτ1× τ2cMN,K = bτ1cMN,K×bτ2cMN,K
bτ1 + τ2cMN,K = bτ1cMN,K + bτ2cMN,K
bµα : k.τcMN,K = µα : bkcMN,K .bτcMN,K
bref τcMN,K = ref bτcMN,K
b∀α : k.τcMN,K = ∀α : bkcMN,K .bτcMN,K
bλα : k.τcMN,K = λα : bkcMN,K .bτcMN,K
bτ1 τ2cMN,K = bτ1cMN,K bτ2cMN,K
bαcMN,K = α

becMN,K

bΛ(K).ecMN,K = Λ(bKcMN,K).becM+1
N,K

be TcMN,K = becMN,K bTcMN,K

bpack T return (.τ) with ecMN,K = pack bTcMN,K return (.bτcM+1
N,K ) with becMN,K

bunpack e (.)x.(e′)cMN,K = unpack becMN,K (.)x.(be′cM+1
N,K )

b()cMN,K = ()

berrorcMN,K = error
bλx : τ.ecMN,K = λx : bτcMN,K .becMN,K
be1 e2cMN,K = be1cMN,K be2cMN,K
bxcMN,K = x
b(e, e′)cMN,K = (becMN,K , be′cMN,K)

bproji ecMN,K = proji becMN,K
binji ecMN,K = inji becMN,K

bcase(e, x.e′, x.e′′)cMN,K = case(becMN,K , x.be′cMN,K , x.be′′cMN,K)

bfold ecMN,K = fold becMN,K
bunfold ecMN,K = unfold becMN,K
bref ecMN,K = ref becMN,K
be1 := e2cMN,K = be1cMN,K := be2cMN,K
b!ecMN,K = !becMN,K
blcMN,K = l
bΛα : k.ecMN,K = Λα : bkcMN,K .becMN,K
be τcMN,K = becMN,K bτcMN,K
bfix x : τ.ecMN,K = fix x : bτcMN,K .becMN,K

bunify T return (.τ) with (Ψ.T ′ 7→ e′)c = unify bTcMN,K return (.bτcM+1
N,K ) with (bΨcMN,K .bT ′cM+|Ψ|

N,K 7→ be′cM+|Ψ|
N,K )

Definition C.3 Extension substitution application to computational-level kinds, types and terms.

k ·σΨ

? ·σΨ = ?
(k→ k) ·σΨ = k ·σΨ→ k ·σΨ

(Π(K).k) ·σΨ = Π(K ·σΨ).k ·σΨ



τ ·σΨ

(Π(K).τ) ·σΨ = Π(K ·σΨ).τ ·σΨ

(Σ(K).τ) ·σΨ = Σ(K ·σΨ).τ ·σΨ

(λ(K).τ) ·σΨ = λ(K ·σΨ).τ ·σΨ

(τ T ) ·σΨ = τ ·σΨ T ·σΨ

unit ·σΨ = unit
⊥·σΨ = ⊥
(τ1→ τ2) ·σΨ = τ1 ·σΨ→ τ2 ·σΨ

(τ1× τ2) ·σΨ = τ1 ·σΨ× τ2 ·σΨ

(τ1 + τ2) ·σΨ = τ1 ·σΨ + τ2 ·σΨ

(µα : k.τ) ·σΨ = µα : k ·σΨ.τ ·σΨ

(ref τ) ·σΨ = ref τ ·σΨ

(∀α : k.τ) ·σΨ = ∀α : k ·σΨ.τ ·σΨ

(λα : k.τ) ·σΨ = λα : k ·σΨ.τ ·σΨ

(τ1 τ2) ·σΨ = τ1 ·σΨ τ2 ·σΨ

α ·σΨ = α

e ·σΨ

(Λ(K).e) ·σΨ = Λ(K ·σΨ).e ·σΨ

(e T ) ·σΨ = e ·σΨ T ·σΨ

(pack T return (.τ) with e) ·σΨ = pack T ·σΨ return (.τ ·σΨ) with e ·σΨ

(unpack e (.)x.(e′)) ·σΨ = unpack e ·σΨ (.)x.(e′ ·σΨ)
() ·σΨ = ()
error ·σΨ = error
(λx : τ.e) ·σΨ = λx : τ ·σΨ.e ·σΨ

(e e′) ·σΨ = e ·σΨ e′ ·σΨ

x ·σΨ = x
(e, e′) ·σΨ = (e ·σΨ, e′ ·σΨ)
(proji e) ·σΨ = proji e ·σΨ

(inji e) ·σΨ = inji e ·σΨ

(case(e, x.e′, x.e′′)) ·σΨ = case(e ·σΨ, x.e′ ·σΨ, x.e′′ ·σΨ)
(fold e) ·σΨ = fold e ·σΨ

(unfold e) ·σΨ = unfold e ·σΨ

(ref e) ·σΨ = ref e ·σΨ

(e := e′) ·σΨ = e ·σΨ := e′ ·σΨ

(!e) ·σΨ = !e ·σΨ

l ·σΨ = l
(Λα : k.e) ·σΨ = Λα : k ·σΨ.e ·σΨ

(e τ) ·σΨ = e ·σΨ τ ·σΨ

(fix x : τ.e) ·σΨ = fix x : τ ·σΨ.e ·σΨ

(unify T return (.τ) with (Ψ.T ′ 7→ e′)) ·σΨ = unify T ·σΨ return (.τ ·σΨ) with (Ψ ·σΨ.T ′ ·σΨ 7→ e′ ·σΨ)

Γ ·σΨ

• ·σΨ = •
(Γ, x : τ) ·σΨ = Γ ·σΨ, x : τ ·σΨ

(Γ, α : k) ·σΨ = Γ ·σΨ, α : k ·σΨ



Definition C.4 The typing judgements for the computational language are given below.

Ψ ` k wf

`Ψ wf

Ψ ` ? wf

Ψ ` k wf Ψ ` k′ wf

Ψ ` k→ k′ wf

`Ψ, K wf Ψ, K ` dke|Ψ|,1 wf

Ψ `Π(K).k wf

Ψ; Γ ` τ : k

Ψ, K; Γ ` dτe|Ψ|,1 : ?

Ψ; Γ `Π(K).τ : ?

Ψ, K; Γ ` dτe|Ψ|,1 : ?

Ψ; Γ ` Σ(K).τ : ?

Ψ, K; Γ ` dτe|Ψ|,1 : k

Ψ; Γ ` λ(K).τ : Π(K).bkc|Ψ|,1

Ψ; Γ ` τ : Π(K).k Ψ ` T : K

Ψ; Γ ` τ T : dke|Ψ|,1 · (idΨ, T ) Ψ; Γ ` unit : ? Ψ; Γ ` ⊥ : ?

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1→ τ2 : ?

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1× τ2 : ?

Ψ; Γ ` τ1 : ? Ψ; Γ ` τ2 : ?

Ψ; Γ ` τ1 + τ2 : ?

Ψ ` k wf Ψ; Γ, α : k ` τ : k

Ψ; Γ ` µα : k.τ : k

Ψ; Γ ` τ : ?

Ψ; Γ ` ref τ : ?

Ψ ` k wf Ψ; Γ, α : k ` τ : ?

Ψ; Γ ` ∀α : k.τ : ?

Ψ ` k wf Ψ; Γ, α : k ` τ : k′

Ψ; Γ ` λα : k.τ : k→ k′

Ψ; Γ ` τ1 : k→ k′ Ψ; Γ ` τ2 : k

Ψ; Γ ` τ1 τ2 : k′
(α : k) ∈ Γ

Ψ; Γ ` α : k

Ψ; Σ; Γ ` e : τ

Ψ, K; Σ; Γ ` dee|Ψ|,1 : τ

Ψ; Σ; Γ ` Λ(K).e : Π(K).bτc|Ψ|,1
Ψ; Σ; Γ ` e : Π(K).τ Ψ ` T : K

Ψ; Σ; Γ ` e T : dτe|Ψ|,1 · (idΨ, T )

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ; Σ; Γ ` e : dτe|Ψ|,1 · (idΨ, T )

Ψ; Σ; Γ ` pack T return (.τ) with e : Σ(K).τ

Ψ; Σ; Γ ` e : Σ(K).τ Ψ, K, Σ; Γ, x : dτe|Ψ|,1 `
⌈
e′
⌉
|Ψ|,1 : τ

′
Ψ; Γ ` τ

′ : ?

Ψ; Σ; Γ ` unpack e (.)x.(e′) : τ
′

Ψ; Σ; Γ ` () : unit

Ψ; Σ; Γ ` error : τ

Ψ; Σ; Γ, x : τ ` e : τ
′

Ψ; Σ; Γ ` λx : τ.e : τ→ τ
′



Ψ; Σ; Γ ` e : τ→ τ
′

Ψ; Σ; Γ ` e′ : τ

Ψ; Σ; Γ ` e e′ : τ
′

(x : τ) ∈ Γ

Ψ; Σ; Γ ` x : τ

Ψ; Σ; Γ ` e1 : τ1 Ψ; Σ; Γ ` e2 : τ2

Ψ; Σ; Γ ` (e1, e2) : τ1× τ2

Ψ; Σ; Γ ` e : τ1× τ2 i = 1 or 2

Ψ; Σ; Γ ` proji e : τi

Ψ; Σ; Γ ` e : τi i = 1 or 2

Ψ; Σ; Γ ` inji e : τ1 + τ2

Ψ; Σ; Γ ` e : τ1 + τ2 Ψ; Σ; Γ, x : τ1 ` e1 : τ Ψ; Σ; Γ, x : τ2 ` e2 : τ

Ψ; Σ; Γ ` case(e, x.e1, x.e2) : τ

Ψ; Γ ` µα : k.τ : k Ψ; Σ; Γ ` e : τ[µα : k.τ/α] τ1 τ2 · · · τn

Ψ; Σ; Γ ` fold e : (µα : k.τ) τ1 τ2 · · · τn

Ψ; Γ ` µα : k.τ : k Ψ; Σ; Γ ` e : (µα : k.τ) τ1 τ2 · · · τn

Ψ; Σ; Γ ` unfold e : τ[µα : k.τ/α] τ1 τ2 · · · τn

Ψ; Σ; Γ ` e : τ

Ψ; Σ; Γ ` ref e : ref τ

Ψ; Σ; Γ ` e : ref τ Ψ; Σ; Γ ` e′ : τ

Ψ; Σ; Γ ` e := e′ : unit

Ψ; Σ; Γ ` e : ref τ

Ψ; Σ; Γ `!e : τ

(l : τ) ∈ Σ

Ψ; Σ; Γ ` l : ref τ

Ψ; Σ; Γ, α : k ` e : τ

Ψ; Σ; Γ ` Λα : k.e : Πα : k.τ

Ψ; Σ; Γ ` e : Πα : k.τ′ Ψ; Γ ` τ : k

Ψ; Σ; Γ ` e τ : τ
′[τ/α]

Ψ; Σ; Γ, x : τ ` e : τ

Ψ; Σ; Γ ` fix x : τ.e : τ

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `
⌈
Ψ
′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′⌉
|Ψ| `

⌈
T ′
⌉
|Ψ|,|Ψ′| : K Ψ,

⌈
Ψ
′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit

Ψ ` Γ wf

Ψ ` • wf

Ψ ` Γ wf Ψ; Γ ` k wf

Ψ ` (Γ, α : k) wf

Ψ ` Γ wf Ψ; Γ ` τ : ?

Ψ ` (Γ, x : τ) wf

` Σ wf

` • wf

` Σ wf •; • ` τ : ?

` (Σ, l : τ)

Definition C.5 β-equivalence for types τ is the symmetric, reflexive, transitive congruence closure of the
following relation. Types of the language are viewed implicitly up to β-equivalence. This means that the lemmas
that we prove about types need to agree on β-equivalent types.

(λα : K.τ) τ′ = τ[τ′/α]

Definition C.6 Small-step operational semantics for the language are defined below.

v ::= Λ(K).e | pack T return (.τ) with v | () | λx : τ.e | (v, v′) | inji v | fold v | l | Λα : k.e
E ::= • | E T | pack T return (.τ) with E | unpack E (.)x.(e′) | E e′ | v E | (E, e) | (v, E) | proji E | inji E
| case(E, x.e1, x.e2) | fold E | unfold E | ref E | E := e′ | v := E | !E | E τ

µ ::= • | µ, l 7→ v



( µ , e )−→ (( µ , e′ )|error)

( µ , e )−→ ( µ′ , e′ )

( µ , E[e] )−→ ( µ′ , E[e′] )
( µ , E[error] )−→ error ( µ , (Λ(K).e) T )−→ ( µ , dee0,1 ·T )

( µ , unpack 〈T, τ〉v (.)x.(e′) )−→ ( µ , (
⌈
e′
⌉

0,1 ·T )[v/x] ) ( µ , (λx : τ.e) v )−→ ( µ , e[v/x] )

( µ , proji(v1, v2) )−→ ( µ , vi ) ( µ , case(inji v, x.e1, x.e2) )−→ ( µ , ei[v/x] )

( µ , unfold (fold v) )−→ ( µ , v )
¬(l 7→ _ ∈ µ)

( µ , ref v )−→ ( (µ, l 7→ v) , l )

l 7→ _ ∈ µ

( µ , l := v )−→ ( µ[l 7→ v] , () )

l 7→ v ∈ µ

( µ , !l )−→ ( µ , v )
( µ , (Λα : k.e) τ )−→ ( µ , e[τ/α] ) ( µ , fix x : τ.e )−→ ( µ , e[fix x : τ.e/x] )

∃σΨ.(• ` σΨ : dΨe0 ∧
⌈
T ′
⌉

0,|Ψ| ·σΨ = T )

( µ , unify T return (.τ) with (Ψ.T ′ 7→ e′) )−→ ( µ , inj1 (
⌈
e′
⌉

0,|Ψ| ·σΨ) )

6 ∃σΨ.(• ` σΨ : dΨe0 ∧
⌈
T ′
⌉

0,|Ψ| ·σΨ = T )

( µ , unify T return (.τ) with (Ψ.T ′ 7→ e′) )−→ ( µ , inj2 () )

(l 7→ v) ∈ µ

(l 7→ v) ∈ (µ, l 7→ v)
(l 7→ v) ∈ (µ, l′ 7→ v′)⇐ (l 7→ v) ∈ µ

(l : τ) ∈ Σ

(l : τ) ∈ (Σ, l : τ)
(l : τ) ∈ (Σ, l′ : τ′)⇐ (l : τ) ∈ Σ

µ∼ Σ

(l 7→ v) ∈ µ ⇒ ∃τ.(l : τ) ∈ Σ∧•; Σ; • ` v : τ

(l : τ) ∈ Σ ⇒ ∃v.(l 7→ v) ∈ µ∧•; Σ; • ` v : τ

Σ⊆ Σ′

(l : τ) ∈ Σ ⇒ (l : τ) ∈ Σ′

µ[l := v]

(µ, l′ 7→ v′)[l := v] = µ[l := v], l′ 7→ v′

(µ, l 7→ v′)[l := v] = µ, l 7→ v

Lemma C.7 (Computational substitution commutes with logic operations) 1. dτ[τ′/α]eMN,K = dτeMN,K [dτ′eMN,K /α]



2. bτ[τ′/α]cMN,K = bτcMN,K [bτ′cMN,K /α]

3. (τ[τ′/α]) ·σΨ = τ ·σΨ[τ
′ ·σΨ/α]

4. de[τ/α]eMN,K = deeMN,K [dτeMN,K /α]

5. be[τ/α]cMN,K = becMN,K [bτcMN,K /α]

6. (e[τ/α]) ·σΨ = e ·σΨ[τ ·σΨ/α]

7. de[e′/x]eMN,K = deeMN,K [de′eMN,K /x]

8. be[e′/x]cMN,K = becMN,K [be′cMN,K /x]

9. (e[e′/x]) ·σΨ = e ·σΨ[e′ ·σΨ/x]

Simple by induction.

Lemma C.8 (Compatibility of β conversion with logic operations) If τ =β τ′ then:

1. dτeMN,K =β dτ′eMN,K

2. bτcMN,K =β dτ′eMN,K

3. τ ·σΨ =β τ′ ·σΨ

In all cases it’s trivially provable by expansion for τ = (λα : k.τ1)τ2 and τ′ = τ1[τ2/α] and use of lemma C.7.
The congruence cases for other τ, τ′ are provable by induction hypothesis.

Lemma C.9 Assuming |σΨ|= N, d·eMN,K and d·eMN′,K are well-defined for their respective arguments, we have:

1. dk ·σΨeMN′,K = dkeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

2. dτ ·σΨeMN′,K = dτeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

3. de ·σΨeMN′,K = deeMN,K · (σΨ, XN′ , · · · , XN′+K−1)

By structural induction. We prove only the interesting cases.

Part 1 When k = Π(K).k′, we have that the left-hand-side is equal to:
dΠ(K ·σΨ).(k′ ·σΨ)eMN′,K = Π(dK ·σΨeMN′,K).dk′ ·σΨeM+1

N′,K

We have by lemma B.103 that dK ·σΨeMN′,K = dKeMN,K · (σΨ, XN′ , · · · , XN′+K−1).
By induction hypothesis we have that dk′ ·σΨeM+1

N′,K = dk′eM+1
N,K · (σΨ, XN′ , · · · , XN′+K−1).

After expansion of freshening for the right-hand-side, we see that it is equal to the above.

Part 3 The most interesting case occurs when e = unify T return (.τ) with (Ψ.T ′ 7→ e′). We have that the left-
hand-side is equal to:
dunify T ·σΨ return (.τ ·σΨ) with (Ψ ·σΨ.T ′ ·σΨ 7→ e′ ·σΨ)eMN′,K
By expansion of the definition of freshening we get that this is equal to:
unify dT ·σΨeMN′,K return (.dτ ·σΨeM+1

N′,K ) with (dΨ ·σΨeMN′,K .dT ′eM+|Ψ·σΨ|
N,K 7→ de′eM+|Ψ·σΨ|

N′,K )
The right-hand-side is equal to:
(assuming σ′

Ψ
= σΨ, XN′ , · · · , XN′+K−1)

unify dTeMN,K ·σ′Ψ return (.dτeM+1
N,K ·σ′Ψ) with (dΨeMN,K ·σ′Ψ.dT ′e

M+|Ψ|
N,K ·σ′

Ψ
7→ de′eM+|Ψ|

N,K ·σ′
Ψ
)

In all cases, the respective terms match, by use of induction hypothesis, lemma B.103, and also the fact that
|Ψ|= |Ψ ·σΨ|.



Lemma C.10 Assuming |σΨ|= N, b·cMN,K and b·cMN′,K are well-defined for their respective arguments, we have:

1. bk · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bkcMN,K ·σΨ

2. bτ · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = bτcMN,K ·σΨ

3. be · (σΨ, XN′ , · · · , XN′+K−1)cMN′,K = becMN,K ·σΨ

Similarly as above, and use of lemma B.104.

Lemma C.11 1. (k ·σΨ) ·σ′Ψ = k · (σΨ ·σ′Ψ)
2. (τ ·σΨ) ·σ′Ψ = τ · (σΨ ·σ′Ψ)
3. (e ·σΨ) ·σ′Ψ = e · (σΨ ·σ′Ψ)

By induction, and use of lemma B.94.

Lemma C.12 If σΨ ⊆ σ′
Ψ

then:

1. If k ·σΨ is defined, then k ·σΨ = k ·σ′
Ψ

2. If τ ·σΨ is defined, then τ ·σΨ = τ ·σ′
Ψ

3. If e ·σΨ is defined, then e ·σΨ = e ·σ′
Ψ

4. If Γ ·σΨ is defined, then Γ ·σΨ = Γ ·σ′
Ψ

Most are trivial based on induction and use of lemma B.92

Lemma C.13 1. If Ψ ` k wf and Ψ′ ` σΨ : Ψ then Ψ′ ` k ·σΨ wf.

2. If Ψ; Γ ` τ : k and Ψ′ ` σΨ : Ψ then Ψ′; Γ ·σΨ ` τ ·σΨ : k ·σΨ.

3. If Ψ; Σ; Γ ` e : τ and Ψ′ ` σΨ : Ψ then Ψ′; Σ; Γ ·σΨ ` e ·σΨ : τ ·σΨ.

We only prove the interesting cases.

Part 1 Case
`Ψ, K wf Ψ, K ` dke|Ψ|,1 wf

Ψ `Π(K).k wf
�

We use the induction hypothesis for Ψ′, K ·σΨ ` (σΨ, X|Ψ′|) : Ψ, K and dke to get:
Ψ′, K ·σΨ ` dke|Ψ|,1 · (σΨ, X|Ψ′|) wf.
From lemma C.9 we have that dke|Ψ|,1 · (σΨ, X|Ψ′|) = dk ·σΨe|Ψ′|,1.
Therefore by use of the same typing rule we have the desired result.

Part 2 Case
Ψ, K; Γ ` dτe|Ψ|,1 : k

Ψ; Γ ` λ(K).τ : Π(K).bkc|Ψ|,1
�

We use the induction hypothesis for Ψ′, K ` (σΨ, X|Ψ′|) : Ψ, K and dτe to get, together with lemma C.9:
Ψ′, K ·σΨ; Γ · (σΨ, X|Ψ′|) ` dτ ·σΨe|Ψ′|,1
By C.12 and the fact that Ψ ` Γ wf, we have that Γ · (σΨ, X|Ψ′|) = Γ ·σΨ, so:
Ψ′, K ·σΨ; Γ ·σΨ ` dτ ·σΨe|Ψ′|,1 : k · (σΨ, X|Ψ′| ·σΨ)
By use of the same typing rule we get:
Ψ′; Γ ·σΨ ` λ(K ·σΨ).(τ ·σΨ) : Π(K ·σΨ).(

⌊
k · (σΨ, X|Ψ′|)

⌋
|Ψ′|,1).

We have that
⌊
k · (σΨ, X|Ψ′|)

⌋
|Ψ′|,1 = bkc|Ψ|,1 ·σΨ by lemma C.10, so this is the desired result.



Case
Ψ; Γ ` τ : Π(K).k Ψ ` T : K

Ψ; Γ ` τ T : dke|Ψ|,1 · (idΨ, T )
�

By induction hypothesis we have:
Ψ′; Γ ·σΨ ` τ ·σΨ : Π(K ·σΨ).(k ·σΨ)
By use of B.97 for T we have:
Ψ′ ` T ·σΨ : K ·σΨ

By use of the same typing rule we get:
Ψ′; Γ ·σΨ ` (τ ·σΨ) (T ·σΨ) : dk ·σΨe|Ψ′|,1 · (idΨ′ , T ·σΨ)

Now we need to prove that dk ·σΨe|Ψ′|,1 · (idΨ′ , T ·σΨ) = (dke|Ψ|,1 · (idΨ, T )) ·σΨ.
From lemma C.9, we get that the left-hand side is equal to:
(dke|Ψ|,1 · (σΨ, X|Ψ′|)) · (idΨ′ , T ·σΨ).
By application of lemma C.11 we get that it is further equal to:
(dke|Ψ|,1) · ((σΨ, X|Ψ′|) · (idΨ′ , T ·σΨ)).
By application of the same lemma to the right-hand side we have that it is equal to: (dke|Ψ|,1) ·
((id|Ψ|, T ) ·σΨ).
Thus we only need to prove that (σΨ, X|Ψ′|) · (idΨ′ , T ·σΨ) = (id|Ψ|, T ) ·σΨ.
We have that the left-hand side is equal to:
σΨ · (idΨ′ , T ·σΨ), T ·σΨ = σΨ · idΨ′ , T ·σΨ by lemma B.92.
Furthermore by lemma B.96 we have that σΨ · idΨ′ = σΨ.
The right-hand side is equal to:
id|Ψ| ·σΨ, T ·σΨ = σΨ, T ·σΨ due to lemma B.95.

Part 3 Most cases are proved as above, using the above lemmas. The most difficult case is the pattern matching
construct.

Case

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `
⌈
Ψ
′′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′′⌉
|Ψ| `

⌈
T ′
⌉
|Ψ|,|Ψ′′| : K Ψ,

⌈
Ψ
′′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit
�

From Ψ ` T : K and lemma B.97 we have:
Ψ′ ` T ·σΨ : K ·σΨ

From Ψ, K; Γ ` dτe|Ψ|,1 : ?, Ψ ` Γ wf, part 2 and lemma C.9 we have:
Ψ′, K ·σΨ; Γ ·σΨ ` dτ ·σΨe|Ψ′|,1 : ?
From Ψ ` dΨ′′e|Ψ| wf and lemmas B.98 and B.106 we have:
Ψ′ ` dΨ′′ ·σΨe|Ψ′| wf
From Ψ, dΨ′′e|Ψ| ; Σ; Γ` de′e|Ψ|,|Ψ′′| : dτe|Ψ|,1 ·(idΨ, T ′), σ′

Ψ
=σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψ′′·σΨ|−1 and Ψ′, dΨ′′ ·σΨe|Ψ′| `

σ′
Ψ

: (Ψ, dΨ′′e|Ψ|), lemma B.97, lemma B.103, and lemma B.92 we have:
Ψ′, dΨ′′ ·σΨe|Ψ′| ` dT ′ ·σΨe|Ψ′|,|Ψ′′·σΨ| : K ·σΨ

Similarly for the same σ′
Ψ

, and from Ψ, dΨ′′e|Ψ| ; Σ; Γ ` de′e|Ψ|,|Ψ′′| : dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|), lemma C.9
and induction hypothesis, we get:
Ψ′, dΨ′′ ·σΨe|Ψ′| ; Σ; Γ ·σΨ ` de′ ·σΨe|Ψ′|,|Ψ′′·σΨ| : (dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|)) ·σ′Ψ.
Thus we only need to prove that (dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|)) ·σ′Ψ = dτ ·σΨe|Ψ′|,1 · (idΨ′ , dT ′ ·σΨe|Ψ′|,|Ψ′′·σΨ|).
In that case we will use the same typing rule to get the desired result, using a similar proof as this last step, to
go from dτ ·σΨe|Ψ′|,1 · (idΨ′ , T ·σΨ) to (dτe|Ψ|,1 · (idΨ, T )) ·σΨ.



So we now prove (dτe|Ψ|,1 · (idΨ, dT ′e|Ψ|,|Ψ′′|)) ·σ′Ψ = dτ ·σΨe|Ψ′|,1 · (idΨ′ , dT ′ ·σΨe|Ψ′|,|Ψ′′·σΨ|):
By lemma C.9 and lemma B.103, we have that the right-hand side is equal to:
(dτe|Ψ|,1 · (σΨ, X|Ψ′|)) · (idΨ′ , dT ′e|Ψ|,|Ψ′′| ·σ′Ψ).
By application of lemma C.11 we see that both sides are equal if (σΨ, X|Ψ′|)·(idΨ′ , dT ′e|Ψ|,|Ψ′′| ·σ′Ψ)=
(idΨ, dT ′e|Ψ|,|Ψ′′|) ·σ′Ψ.
The left-hand side of this is equal to σΨ · (idΨ′ , dT ′e|Ψ|,|Ψ′′| ·σ′Ψ), dT ′e|Ψ|,|Ψ′′| ·σ′Ψ.
By lemma B.92 and B.96 we get that this is further equal to σΨ, dT ′e|Ψ|,|Ψ′′| ·σ′Ψ.
The right-hand side is equal to idΨ ·σ′Ψ, dT ′e|Ψ|,|Ψ′′| ·σ′Ψ, which is equal to the above using lemmas
B.92 and B.95.

Lemma C.14 1.
⌈
bkcMN,K

⌉M

N,K
= k

2.
⌈
bτcMN,K

⌉M

N,K
= τ

3.
⌈
becMN,K

⌉M

N,K
= e

Trivial by induction and use of lemma B.105.

Lemma C.15 (Substitution) 1. If Ψ, Ψ′; Γ, α′ : k′, Γ′ ` τ : k and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Γ, Γ′[τ′/α′] `
τ[τ′/α′] : k.

2. If Ψ, Ψ′; Σ Γ, α′ : k′, Γ′ ` e : τ and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Σ; Γ, Γ′[τ′/α′] ` e[τ′/α′] : τ[τ′/α′].

3. If Ψ, Ψ′; Σ Γ, x′ : τ′, Γ′ ` e : τ and Ψ; Σ; Γ ` e′ : τ′ then Ψ, Ψ′; Σ; Γ, Γ′ ` e[e′/x′] : τ.

Easily proved by structural induction on the typing derivations.

Let us now proceed to prove the main preservation theorem.

Theorem C.16 (Preservation) If •; Σ; • ` e : τ, µ ∼ Σ, ( µ , e ) −→ ( µ′ , e′ ) then there exists Σ′ such that
Σ⊆ Σ′, µ′ ∼ Σ′ and •; Σ′; • ` e′ : τ.

Proceed by induction on the derivation of ( µ , e )−→ ( µ′ , e ). When we don’t specify a different µ′, we have
that µ′ = µ, with the desired properties obviously holding.

Case
( µ , e )−→ ( µ′ , e′ )

( µ , E[e] )−→ ( µ′ , E[e′] )
�

By induction hypothesis for ( µ , e )−→ ( µ′ , e′ ) we get a Σ′ such that Σ⊆ Σ′, µ′ ∼ Σ′ and •; Σ; • ` e′ : τ. By
inversion of typing for E[e] and re-application of the same typing rule for E[e′] we get that •; Σ′; • ` E[e′] : τ.

Case ( µ , (Λ(K).e) T )−→ ( µ , dee0,1 ·T ) �

By inversion of typing we get:
•; Σ; • ` Λ(K).e : Π(K).τ′

• ` T : K
τ = dτ′e0,1 ·T
By further typing inversion for Λ(K).e we get:
•, K; Σ; • ` dee0,1 : τ′′

τ′ = bτ′′c0,1
For σΨ = •, T we have • ` (•, T ) : (•, K) trivially from the above.
By lemma C.13 for σΨ we get that:



•; Σ; • ` dee0,1 ·T : τ′′ ·T .

Now it remains to show that τ′′ ·T =
⌈
bτ′′c0,1

⌉
0,1
·T , which is proved by C.14.

Case ( µ , unpack 〈T, τ〉v (.)x.(e′) )−→ ( µ , (
⌈
e′
⌉

0,1 ·T )[v/x] ) �

By inversion of typing we get:
•; Σ; • ` 〈T, τ′′〉v : Σ(K).τ′

•, K; Σ; x : dτ′e0,1 ` de′e0,1 : τ

•; • ` τ : ?
By further typing inversion for 〈T, τ′′〉v we get:
τ′′ = τ′

• ` T : K
•, K; • ` dτ′e0,1 : ?
•; Σ; • ` v : dτ′e0,1 · (T )
First by lemma C.13 for e′, σΨ = T we get:
•; Σ; x : dτ′e0,1 ·T ` de′e0,1 ·T : τ ·T .
Second by lemma C.12 for τ we get that τ ·T = τ.
Thus •; Σ; x : dτ′e0,1 ·T ` de′e0,1 ·T : τ.
Furthermore by lemma C.15 for [v/x] we get that •; Σ; • ` (de′e0,1 ·T )[v/x] : τ, which is the desired.

Case ( µ , (λx : τ.e) v )−→ ( µ , e[v/x] ) �

By inversion of typing we get:
•; Σ; • ` λx : τ.e : τ′→ τ

•; Σ; • ` v : τ′

By further typing inversion for λx : τ.e we get:
•; Σ; x : τ ` e : τ

By lemma C.15 for [v/x] we get:
•; Σ; • ` e[v/x] : τ, which is the desired.

Case ( µ , proji(v1, v2) )−→ ( µ , vi ) �

By typing inversion we get:
•; Σ; • ` (v1, v2) : τ1× τ2
τ = τi

By further inversion for (v1, v2) we have:
•; Σ; • ` vi : τi, which is the desired.

Case ( µ , case(inji v, x.e1, x.e2) )−→ ( µ , ei[v/x] ) �

By typing inversion we get:
•; Σ; • ` v : τi

•; Σ; x : τi ` ei : τ

Using the lemma C.15 for [v/x] we get:
•; Σ; • ` ei[v/x] : τ

Case ( µ , unfold (fold v) )−→ ( µ , v ) �

By inversion we get: •; • ` µα : k.τ′ : k
•; Σ; • ` fold v : (µα : k.τ′) τ1 τ2 · · · τn

τ = τ′[µα : k.τ′] τ1 τ2 · · · τn

By further typing inversion for fold v:



•; Σ; • ` v : τ′[µα : k.τ/α] τ1 τ2 · · · τn

Which is the desired.

Case
l 7→ _ 6∈ µ

( µ , ref v )−→ ( (µ, l 7→ v) , l )
�

By typing inversion we get: •; Σ; • ` v : τ

For Σ′ = Σ, l : τ and µ′ = µ, l 7→ v we have that µ′ ∼ Σ′ and •; Σ′;• ` l : ref τ.

Case
l 7→ _ ∈ µ

( µ , l := v )−→ ( µ[l 7→ v] , () )
�

By typing inversion get:
•; Σ; • ` l : ref τ

•; Σ; • ` v : τ

Thus for µ′ = µ[l 7→ v] we have that µ′ ∼ Σ and •; Σ;• ` () : unit.

Case
l 7→ v ∈ µ

( µ , !l )−→ ( µ , v )
�

By typing inversion get: •; Σ; • ` l : ref τ

By inversion of µ∼ Σ get:
•; Σ; • ` v : τ, which is the desired.

Case ( µ , (Λα : k.e) τ
′′ )−→ ( µ , e[τ′′/α] ) �

By typing inversion we get:
•; Σ; • ` Λα : k.e : Πα : k.τ′

•; • ` τ′′ : k
τ = τ′[τ′′/α]
By further typing inversion for Λα : k.e we get:
•; Σ; α : k ` e : τ′

Using the lemma C.15 for [τ′′/α] we get:
•; Σ; • ` e[τ′′/α] : τ′[τ′′/α], which is the desired.

Case ( µ , fix x : τ.e )−→ ( µ , e[fix x : τ.e/x] ) �

By typing inversion get:
•; Σ; x : τ ` e : τ

By application of the lemma C.15 for [fix x : τ.e/x] we get:
•; Σ; • ` e[fix x : τ.e/x] : τ

Case
∃σΨ.(• ` σΨ :

⌈
Ψ
′⌉

0 ∧
⌈
T ′
⌉

0,|Ψ′| ·σΨ = T )

( µ , unify T return (.τ′) with (Ψ′.T ′ 7→ e′) )−→ ( µ , inj1 (
⌈
e′
⌉

0,|Ψ′| ·σΨ) )
�

By inversion of typing we get:
• ` T : K
•, K; Σ; • ` dτ′e0,1 : ?
• ` dΨ′e|Ψ| wf
dΨ′e0 ` dT ′e0,|Ψ′| : K
dΨ′e0 ; Σ; • ` de′e0,|Ψ′| : dτ′e0,1 · (T ′)
τ = (dτ′e0,1 ·T )+unit
By application of lemma C.15 for σΨ and de′e0,|Ψ′| we get:



•; Σ; • ` de′e0,|Ψ′| ·σΨ : (dτ′e0,1 ·T ′) ·σΨ.
All we now need to prove is that dτ′e0,1 ·T = (dτ′e0,1 ·T ′) ·σΨ.
Using the lemma C.11 we get that:
(dτ′e0,1 ·T ′) ·σΨ = dτ′e0,1 · (T ′ ·σΨ) = dτ′e0,1 ·T
It is now easy to complete the desired result using the typing rule for inj1.

Case
6 ∃σΨ.(• ` σΨ : dΨe0 ∧

⌈
T ′
⌉

0,|Ψ| ·σΨ = T )

( µ , unify T return (.τ) with (Ψ.T ′ 7→ e′) )−→ ( µ , inj2 () )
�

Trivial by application of the typing rule for inj2.

Lemma C.17 (Canonical forms) If •; Σ;• ` v : τ then

1. If τ = Π(K).τ′, then ∃e such that v = Λ(K).e.

2. If τ = Σ(K).τ′, then ∃T,v′ such that v = pack T return (.τ′′) with v′ with τ′ =β τ′′.

3. If τ = unit, then v = ().

4. If τ = τ1→ τ2, then ∃e such that v = λx : τ1.e.

5. If τ = τ1× τ2, then ∃v1,v2 such that v = (v1, v2).

6. If τ = τ1 + τ2, then ∃v′ such that either v = inj1 v′ or v = inj2 v′.

7. If τ = (µα : k.τ′) τ1 τ2 · · · τn, then ∃v′ such that v = fold v′.

8. If τ = ref τ′, then ∃l such that v = l.

9. If τ = Λα : k.τ′, then ∃e such that v = Λα : k.e.

Directly by typing inversion.

Theorem C.18 (Progress) If •; Σ; • ` e : τ and µ∼ Σ, then either µ, e−→ error, or e is a value v, or there exist
µ′ and e′ such that µ, e−→ µ′, e′.

We proceed by induction on the typing derivation for e. We do not consider cases where e= v (since the theorem
is trivial in that case), or where e = E[e′] with e 6=v. In that case, by typing inversion we can get that e′ is well-
typed under the empty context, so by induction hypothesis we can either prove that µ, e−→ error, or there exist
µ′, e′′ such that µ, E[e] −→ µ′, E[e′′] by the environment closure small-step rule. Thus we only consider cases
where e = E[v], or where e cannot be further decomposed into E[e′] with E 6=•. Last, when we don’t mention a
specific µ′, we have that µ′ = µ with the desired properties obviously holding.

Case
•; Σ; • ` v : Π(K).τ • ` T : K

•; Σ; • ` v T : dτe0,1 · (T )
�

By use of the canonical forms lemma C.17, we get that v = Λ(K).e.
By typing inversion we get that K; Σ; • ` dee0,1 : τ′.
So applying the appropriate operational semantics rule we get an e′ = dee0,1 ·T such that ( µ , e )−→ ( µ , e′ ).

Case
•; Σ; • ` v : Σ(K).τ •, K, Σ; •, x : dτe0,1 `

⌈
e′
⌉

0,1 : τ
′ •; • ` τ

′ : ?

•; Σ; • ` unpack v (.)x.(e′) : τ
′ �

By use of the canonical forms lemma C.17, we get that v = pack T return (.τ′′) with v′.
Furthermore we have that de′e0,1 is well-defined, so such will be de′e0,1 ·T too.
Thus the relevant operational semantics rule applies.



Case
•; Σ; • ` v : τ→ τ

′ •; Σ; • ` e′ : τ

•; Σ; • ` v e′ : τ
′ �

From canonical forms, we have that v = λx : τ′′.e′′, so the relevant step rule applies.

Case
•; Σ; • ` e : τ1× τ2 i = 1 or 2

•; Σ; • ` proji e : τi
�

From canonical forms, we have that v = (v1, v2), so using the relevant step rule for proji we get that
( µ , proji e )−→ ( µ , vi ).

Case
•; Σ; • ` v : τ1 + τ2 •; Σ; •, x : τ1 ` e1 : τ •; Σ; •, x : τ2 ` e2 : τ

•; Σ; • ` case(v, x.e1, x.e2) : τ
�

From canonical forms, we have that either v = inj1 v′ or v = inj2 v′; in each case a step rule applies to give an
appropriate e′.

Case
•; • ` µα : k.τ : k •; Σ; • ` v : (µα : k.τ) τ1 τ2 · · · τn

•; Σ; • ` unfold v : τ[µα : k.τ/α] τ1 τ2 · · · τn
�

From canonical forms, we get that v = fold v′, so the relevant step rule trivially applies.

Case
•; Σ; • ` v : τ

•; Σ; • ` ref v : ref τ
�

Assuming an infinite heap, we can find a l such that l 6∈ µ, and construct µ′ = µ, l 7→ v. Thus the relevant step
rule applies giving e′ = l.

Case
•; Σ; • ` v : ref τ

•; Σ; • `!v : τ
�

From canonical forms, we get that v = l. By typing inversion, we get that (l : τ) ∈ Σ.
From µ∼ Σ, we get that there exists v′ such that (l 7→ v′) ∈ µ.
Thus the relevant step rule applies and gives e′ = v′.

Case
•; Σ; • ` v : Πα : k.τ′ •; • ` τ : k

•; Σ; • ` v τ : τ
′[τ/α]

�

From canonical forms, we get that v = Λα : k.e. The relevant step rule trivially applies to give e′ = e[τ/α].

Case
•; Σ; •, x : τ ` e : τ

•; Σ; • ` fix x : τ.e : τ
�

Trivially we have that the relevant step rule applies giving e′ = e[fix x : τ.e/x].

Case

• ` T : K •, K; • ` dτe0,1 : ?
• `
⌈
Ψ
′⌉

0 wf •,
⌈
Ψ
′⌉

0 `
⌈
T ′
⌉

0,|Ψ′| : K •,
⌈
Ψ
′⌉

0 ; Σ; • `
⌈
e′
⌉

0,|Ψ′| : dτe0,1 · (
⌈
T ′
⌉

0,|Ψ′|)

•; Σ; • ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe0,1 · (T ))+unit
�

We have non-determinism here in the semantics, which we will fix in the next section, giving more precise
semantics to the patterns and unification procedure. In either case, we split cases on whether an σΨ with the
desired properties exists or not, and use the appropriate step rule to get an e′ in each case.



D. Typing and unification for patterns

D.1 Adjusting computational language typing

First, we will define two new notions: one is a stricter typing for patterns, allowing only certain forms to be
used; the second is relevant typing for patterns, making sure that all declared unification variables are actually
used somewhere inside the pattern. Together they are supposed to make sure that unification is possible using a
decidable deterministic algorithm; so there is only one unifying substitution, or there is none.

We change the pattern matching typing rule for the computational language as follows:

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `p
⌈
Ψ
′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K relevant

(
Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K

)
= Ψ̂,

⌈
Ψ
′⌉
|Ψ|

Ψ,
⌈
Ψ
′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit

Then we define the stricter typing for patterns `p. This will be entirely identical to normal typing, but will
disallow forms that would lead to non-determinism (e.g. context unification variables allowed anywhere inside
a pattern).

Then we define the notion of relevancy for extension variables. For a judgement Ψ;J, relevant(Ψ;J) = Ψ̂,
where Ψ̂ is a partial context, containing only the extension variables that actually get used. We will show that
functions used during typing and evaluation commute with this function.

Then, we prove that either a unique unification exists for a pair of a pattern and a term, yielding a partial
substitution for the relevant variables, or that no such unification exists. From this proof we derive an algorithm
for unification.

D.2 Strict typing for patterns

Definition D.1 (Pattern typing) We will adapt the typing rules for extended terms T , to show which of those
terms are accepted as valid patterns. We assume that the Ψ is split into two parts, Ψ, Ψu, where Ψu contains
only newly-introduced unification variables just for the purpose of type-checking the current pattern and branch.

Ψ `p Ψu wf

Ψ `p • wf

Ψ `p Ψu wf Ψ, Ψu `p [Φ] t : [Φ]s

Ψ `p (Ψu, [Φ] t) wf

Ψ `p Ψu wf Ψ, Ψu `p Φ wf

Ψ `p (Ψu, [Φ]ctx) wf

Ψ, Ψu `p T : K

Ψ, Ψu; Φ `p t : t ′ Ψ, Ψu; Φ ` t ′ : s

Ψ, Ψu `p [Φ] t : [Φ] t ′
Ψ, Ψu `p Φ, Φ

′ wf

Ψ, Ψu `p [Φ]Φ′ : [Φ]ctx

Ψ, Ψu `p Φ wf

Ψ, Ψu `p • wf

Ψ, Ψu `p Φ wf Ψ, Ψu; Φ `p t : s

Ψ, Ψu `p (Φ, t) wf

Ψ, Ψu `p Φ wf (Ψ, Ψu).i = [Φ]ctx i < |Ψ|
Ψ, Ψu `p (Φ, Xi) wf

Ψ `p Φ wf (Ψ, Ψu).i = [Φ]ctx i≥ |Ψ|
Ψ, Ψu `p Φ, Xi wf



Ψ, Ψu; Φ `p σ : Φ′

Ψ, Ψu; Φ `p • : •
Ψ, Ψu; Φ `p σ : Φ

′
Ψ, Ψu; Φ `p t : t ′ ·σ

Ψ, Ψu; Φ `p (σ, t) : (Φ′, t ′)

Ψ, Ψu; Φ `p σ : Φ
′ (Ψ, Ψu).i = [Φ′]ctx Φ

′, Xi ⊆Φ

Ψ, Ψu; Φ `p (σ, id(Xi)) : (Φ′, Xi)



Ψ, Ψu; Φ `p t : t ′

c : t ∈ Σ

Ψ, Ψu; Φ `p c : t

Φ.I = t

Ψ, Ψu; Φ `p fI : t

(s,s′) ∈A

Ψ, Ψu; Φ `p s : s′

Ψ, Ψu; Φ `p t1 : s Ψ, Ψu; Φ, t1 `p dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ, Ψu; Φ `p Π(t1).t2 : s′′

Ψ, Ψu; Φ `p t1 : s Ψ, Ψu; Φ, t1 `p dt2e|Φ| : t ′ Ψ, Ψu; Φ `p Π(t1).
⌊
t ′
⌋
|Φ|, · : s′

Ψ, Ψu; Φ `p λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

Ψ, Ψu; Φ `p t1 : Π(t).t ′ Ψ, Ψu; Φ `p t2 : t

Ψ, Ψu; Φ `p t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

Ψ, Ψu; Φ `p t1 : t Ψ, Ψu; Φ `p t2 : t Ψ, Ψu; Φ `p t : Type

Ψ, Ψu; Φ `p t1 = t2 : Prop

(Ψ, Ψu).i = T T = [Φ′] t ′ i < |Ψ| Ψ, Ψu; Φ `p σ : Φ
′

Ψ, Ψu; Φ `p Xi/σ : t ′ ·σ

(Ψ, Ψu).i = T T = [Φ′] t ′ i≥ |Ψ| Ψ, Ψu; Φ `p σ : Φ
′

Φ
′ ⊆Φ σ = idΦ′

Ψ, Ψu; Φ `p Xi/σ : t ′ ·σ

Ψ, Ψu; Φ `p t : t1 Ψ, Ψu; Φ `p t1 : Prop Ψ, Ψu; Φ `p t ′ : t1 = t2
Ψ, Ψu; Φ `p conv t t ′ : t2

Ψ, Ψu; Φ `p t1 : t Ψ, Ψu; Φ `p t1 = t1 : Prop

Ψ, Ψu; Φ `p refl t1 : t1 = t1

Ψ, Ψu; Φ `p ta : t1 = t2
Ψ, Ψu; Φ `p symm ta : t2 = t1

Ψ, Ψu; Φ `p ta : t1 = t2 Ψ, Ψu; Φ `p tb : t2 = t3
Ψ, Ψu; Φ `p trans ta tb : t1 = t3

Ψ, Ψu; Φ `p ta : M1 = M2
Ψ, Ψu; Φ `p M1 : A→ B Ψ, Ψu; Φ `p tb : N1 = N2 Ψ, Ψu; Φ `p N1 : A

Ψ, Ψu; Φ `p congapp ta tb : M1 N1 = M2 N2

Ψ, Ψu; Φ `p ta : A1 = A2
Ψ, Ψu; Φ,A1 `p dtbe : B1 = B2 Ψ, Ψu; Φ `p A1 : Prop Ψ, Ψu; Φ,A1 `p dB1e : Prop

Ψ, Ψu; Φ `p congimpl ta (λ(A1).tb) : Π(A1).bB1c= Π(A2).bB2c

Ψ, Ψu; Φ, A `p dtbe : B = B′ Ψ, Ψu; Φ `p Π(A).bBc= Π(A).
⌊
B′
⌋

: Prop

Ψ, Ψu; Φ `p congpi (λ(A).tb) : Π(A).bBc= Π(A).
⌊
B′
⌋

Ψ, Ψu; Φ, A `p dtbe : B1 = B2 Ψ, Ψu; Φ `p λ(A).bB1c= λ(A).bB2c : Prop

Ψ, Ψu; Φ `p conglam (λ(A).tb) : λ(A).bB1c= λ(A).bB2c

Ψ, Ψu; Φ `p λ(A).M : A→ B Ψ, Ψu; Φ `p N : A Ψ, Ψu; Φ `p A→ B : Type

Ψ, Ψu; Φ `p beta (λ(A).M) N : (λ(A).M) N = dMe · (idΦ,N)



Now we need to prove that all theorems that had to do with these typing judgements still hold. In most cases,
this holds entirely trivially, since the `p judgements are exactly the same as the ` judgements, with some extra
restrictions as side-conditions. The only theorems that we need to reprove are the ones that require special care
in exactly those rules that now have side-conditions. As these rules all have to do just with the use of extension
variables, we understand that the theorems that we need to adapt are the extension substitution lemmas. Their
statements need to be adjusted to account for part of the substitution corresponding to the Ψ part, and part of
it corresponding to the Ψu part (both in the source and target extension contexts of the substitution). Though
we do not provide the details here, the main argument why these continue to hold is the following: we never
substitute variables from Ψu with anything other than the same variable in a context that includes the same Ψu.
Thus the side-conditions will continue to hold.

Theorem D.2 (Extension of lemma B.97) If Ψ′, Ψu ·σΨ ` (σΨ,X|Ψ′|, · · · ,X|Ψ′|+|Ψu|) : (Ψ, Ψu) then:

1. If Ψ, Ψu; Φ `p t : t ′ then Ψ′, Ψu ·σΨ; Φ ·σΨ `p t ·σΨ : t ′ ·σΨ.

2. If Ψ, Ψu; Φ `p σ : Φ′ then Ψ′, Ψu ·σΨ; Φ ·σΨ `p σ ·σΨ : Φ′ ·σΨ.

3. If Ψ, Ψu `p Φ wf then Ψ′, Ψu ·σΨ `p Φ ·σΨ wf.

4. If Ψ, Ψu `p T : K then Ψ′, Ψu ·σΨ `p T ·σΨ : K ·σΨ.

In all cases proceed entirely similarly as before. The only special cases that need to be accounted for are the
ones that have to do with restrictions on variables coming out of Ψu.

Case
Ψ `p Φ wf (Ψ, Ψu).i = [Φ]ctx i≥ |Ψ|

Ψ, Ψu `p Φ, Xi wf
�

We need to prove that Ψ′, Ψ′u `p Φ · σ′
Ψ
, Xi · σ′Ψ wf, where σ′

Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|. By induction

hypothesis for Ψu = • we get that Ψ `p Φ ·σΨ wf, and because of lemma B.92 we get that also Ψ `p Φ ·σ′
Ψ

wf.
Also, we have that Xi ·σ′Ψ = Xi−|Ψ|+|Ψ′|.
We have that (Ψ′, Ψ′u).i−|Ψ|+ |Ψ′|= [Φ ·σ′

Ψ
]ctx.

Last, since i≥ |Ψ|, we also have that i−|Ψ|+ |Ψ′| ≥ |Ψ′|.
Thus by the use of the same typing rule, we arrive at the desired.

Case
(Ψ, Ψu).i = T T = [Φ′] t ′ i≥ |Ψ| Ψ, Ψu; Φ `p σ : Φ

′
σ = idΦ′

Ψ, Ψu; Φ `p Xi/σ : t ′ ·σ �

Similarly as above. Furthermore, we need to show that idΦ′ ·σ′Ψ = idΦ′·σ′
Ψ

, which is simple to prove by induction
on Φ′.

Lemma D.3 (Extension of lemma B.98) If Ψ `p Ψu wf then Ψ `p Ψu ·σΨ wf.

Similarly to lemma B.98 and use of the above lemma.

D.3 Relevant typing

We will proceed to define a notion of partial contexts: these are extension contexts where certain elements
are unspecified. It is presumed that in the judgements that they appear, only specified elements are relevant; the
judgements do not depend on the other elements at all (save for them being well-formed). We will use this notion
in order to make sure that all unification variables introduced during pattern matching are relevant. Otherwise,
the irrelevant variables could be substituted by arbitrary terms, resulting in the existence of an infinite number
of valid unification substitutions.

Definition D.4 The syntax for partial contexts is defined as follows.



Ψ̂ ::= • | Ψ̂, K | Ψ̂, ?

Definition D.5 Well-formedness for partial contexts is defined as follows.

` Ψ̂ wf

` • wf

` Ψ̂ wf Ψ̂ ` [Φ] t : [Φ]s

` (Ψ̂, [Φ] t) wf

` Ψ̂ wf Ψ̂ `Φ wf

` (Ψ̂, [Φ]ctx) wf

` Ψ̂ wf

` (Ψ̂, ?) wf

Other than the above change in the well-formedness definition, partial contexts are used with entirely the
same definitions as before. This means that if a typing judgement like Ψ̂; Φ ` t : t ′ tries to access the i-th
metavariable, this metavariable should be specified in Ψ̂ rather than being the unspecified element ? – because
the side-condition Ψ̂.i = K would otherwise be violated.

We proceed to define a judgement that extracts the relevant extension variables out of typing judgements that
use a concrete context Ψ, yielding a partial context Ψ̂. We first need a couple of definitions.

Definition D.6 The fully-unspecified partial context is defined as follows.

unspecΨ

unspec• = •
unspecΨ, K = unspecΨ, ?

Definition D.7 The partial context specified solely at i is defined as follows.

Ψ@̂i

(Ψ, K)@̂i = unspecΨ, K when |Ψ|= i
(Ψ, K)@̂i = (Ψ@̂i), ? when |Ψ|> i

Definition D.8 Joining two partial contexts is defined as follows.

Ψ̂◦ Ψ̂′

•◦• = •
(Ψ̂, K)◦ (Ψ̂′, K) = (Ψ̂◦ Ψ̂′), K
(Ψ̂, ?)◦ (Ψ̂′, K) = (Ψ̂◦ Ψ̂′), K
(Ψ̂, K)◦ (Ψ̂′, ?) = (Ψ̂◦ Ψ̂′), K
(Ψ̂, ?)◦ (Ψ̂′, ?) = (Ψ̂◦ Ψ̂′), ?

Definition D.9 The notion of one partial context being a less precise version of another one is defined as follows.

Ψ̂v Ψ̂′

• v •
(Ψ̂, K)v (Ψ̂′, K) ⇐ Ψ̂v Ψ̂′

(Ψ̂, ?)v (Ψ̂′, K) ⇐ Ψ̂v Ψ̂′

(Ψ̂, ?)v (Ψ̂′, ?) ⇐ Ψ̂v Ψ̂′



Definition D.10 We define a judgement to extract the relevant extension variables out of a context.

relevant(Ψ ` T : K) = Ψ̂

relevant

(
Ψ; Φ ` t : t ′ Ψ; Φ ` t ′ : s

Ψ ` [Φ] t : [Φ] t ′

)
= relevant

(
Ψ; Φ ` t : t ′

)

relevant

(
Ψ `Φ, Φ

′ wf

Ψ ` [Φ]Φ′ : [Φ]ctx

)
= relevant

(
Ψ `Φ, Φ

′ wf
)

relevant(Ψ `Φ wf) = Ψ̂

relevant

(
Ψ ` • wf

)
= unspecΨ relevant

(
Ψ `Φ wf Ψ; Φ ` t : s

Ψ ` (Φ, t) wf

)
= relevant(Ψ; Φ ` t : s)

relevant

(
Ψ `Φ wf (Ψ).i = [Φ]ctx

Ψ ` (Φ, Xi) wf

)
= relevant(Ψ `Φ wf)◦ (Ψ@̂i)



relevant(Ψ; Φ ` t : t ′) = Ψ̂

relevant

(
c : t ∈ Σ

Ψ; Φ ` c : t

)
= relevant(Ψ `Φ wf) relevant

(
Φ.I = t

Ψ; Φ ` fI : t

)
= relevant(Ψ `Φ wf)

relevant

(
(s,s′) ∈A

Ψ; Φ ` s : s′

)
= relevant(Ψ `Φ wf)

relevant

(
Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ; Φ `Π(t1).t2 : s′′

)
= relevant

(
Ψ; Φ, t1 ` dt2e|Φ| : s′

)

relevant

(
Ψ; Φ ` t1 : s Ψ; Φ, t1 ` dt2e|Φ| : t ′ Ψ; Φ `Π(t1).

⌊
t ′
⌋
|Φ|, · : s′

Ψ; Φ ` λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

)
=

relevant
(

Ψ; Φ, t1 ` dt2e|Φ| : t ′
)

relevant

(
Ψ; Φ ` t1 : Π(t).t ′ Ψ; Φ ` t2 : t

Ψ; Φ ` t1 t2 :
⌈
t ′
⌉
|Φ| · (idΦ, t2)

)
= relevant

(
Ψ; Φ ` t1 : Π(t).t ′

)
◦ relevant(Ψ; Φ ` t2 : t)

relevant

(
Ψ; Φ ` t1 : t Ψ; Φ ` t2 : t Ψ; Φ ` t : Type

Ψ; Φ ` t1 = t2 : Prop

)
=

relevant(Ψ; Φ ` t1 : t)◦ relevant(Ψ; Φ ` t2 : t) relevant

(
(Ψ).i = T T = [Φ′] t ′ Ψ; Φ ` σ : Φ

′

Ψ; Φ ` Xi/σ : t ′ ·σ

)
=

(relevant
(
Ψ�i` [Φ′] t ′ : [Φ′]s

)
,

|Ψ|−i times︷ ︸︸ ︷
?,?, · · · ,?)◦ relevant

(
Ψ; Φ ` σ : Φ

′)◦ (Ψ@̂i)

relevant

(
Ψ; Φ ` t : t1 Ψ; Φ ` t1 : Prop Ψ; Φ ` t ′ : t1 = t2

Ψ; Φ ` conv t t ′ : t2

)
=

relevant(Ψ; Φ ` t : t1)◦ relevant
(
Ψ; Φ ` t ′ : t1 = t2

)
relevant

(
Ψ; Φ ` t1 : t Ψ; Φ ` t1 = t1 : Prop

Ψ; Φ ` refl t1 : t1 = t1

)
= relevant(Ψ; Φ ` t1 : t)

relevant

(
Ψ; Φ ` ta : t1 = t2

Ψ; Φ ` symm ta : t2 = t1

)
= relevant(Ψ; Φ ` ta : t1 = t2)

relevant

(
Ψ; Φ ` ta : t1 = t2 Ψ; Φ ` tb : t2 = t3

Ψ; Φ ` trans ta tb : t1 = t3

)
=

relevant(Ψ; Φ ` ta : t1 = t2)◦ relevant(Ψ; Φ ` tb : t2 = t3)

relevant

(
Ψ; Φ ` ta : M1 = M2 Ψ; Φ `M1 : A→ B Ψ; Φ ` tb : N1 = N2 Ψ; Φ ` N1 : A

Ψ; Φ ` congapp ta tb : M1 N1 = M2 N2

)
=

relevant(Ψ; Φ ` ta : M1 = M2)◦ relevant(Ψ; Φ ` tb : N1 = N2)



relevant

(
Ψ; Φ ` ta : A1 = A2 Ψ; Φ,A1 ` dtbe : B1 = B2 Ψ; Φ ` A1 : Prop Ψ; Φ,A1 ` dB1e : Prop

Ψ; Φ ` congimpl ta (λ(A1).tb) : Π(A1).bB1c= Π(A2).bB2c

)
=

relevant(Ψ; Φ ` ta : A1 = A2)◦ relevant(Ψ; Φ,A1 ` dtbe : B1 = B2)

relevant

(
Ψ; Φ, A ` dtbe : B = B′ Ψ; Φ `Π(A).bBc= Π(A).

⌊
B′
⌋

: Prop

Ψ; Φ ` congpi (λ(A).tb) : Π(A).bBc= Π(A).
⌊
B′
⌋ )

=

relevant
(
Ψ; Φ, A ` dtbe : B = B′

)
relevant

(
Ψ; Φ, A ` dtbe : B1 = B2 Ψ; Φ ` λ(A).bB1c= λ(A).bB2c : Prop

Ψ; Φ ` conglam (λ(A).tb) : λ(A).bB1c= λ(A).bB2c

)
=

relevant(Ψ; Φ, A ` dtbe : B1 = B2)

relevant

(
Ψ; Φ ` λ(A).M : A→ B Ψ; Φ ` N : A Ψ; Φ ` A→ B : Type

Ψ; Φ ` beta (λ(A).M) N : (λ(A).M) N = dMe · (idΦ,N)

)
=

relevant(Ψ; Φ ` λ(A).M : A→ B)◦ relevant(Ψ; Φ ` N : A)

Ψ; Φ ` σ : Φ′

relevant

(
Ψ; Φ ` • : •

)
= relevant(Ψ `Φ wf)

relevant

(
Ψ; Φ ` σ : Φ

′
Ψ; Φ ` t : t ′ ·σ

Ψ; Φ ` (σ, t) : (Φ′, t ′)

)
= relevant

(
Ψ; Φ ` σ : Φ

′)◦ relevant
(
Ψ; Φ ` t : t ′ ·σ

)

relevant

(
Ψ; Φ ` σ : Φ

′ (Ψ).i = [Φ′]ctx Φ
′, Xi ⊆Φ

Ψ; Φ ` (σ, id(Xi)) : (Φ′, Xi)

)
= relevant

(
Ψ; Φ ` σ : Φ

′)
Lemma D.11 (More-informed contexts preserve judgements) Assuming Ψ̂v Ψ̂′:

1. If Ψ̂ ` T : K then Ψ̂′ ` T : K.

2. If Ψ̂ `Φ wf then Ψ̂′ `Φ wf.

3. If Ψ̂; Φ ` t : t ′ then Ψ̂′; Φ ` t : t ′.

4. If Ψ̂; Φ ` σ : Φ′ then Ψ̂′; Φ ` σ : Φ′.

Simple by structural induction on the judgements. The interesting cases are the ones mentioning extension
variables, as for example when Φ = Φ′, Xi, or t = Xi/σ. In both such cases, the typing rule has a side condition
requiring that Ψ̂.i = T . Since Ψ̂v Ψ̂′, we have that Ψ̂′.i = T .

Lemma D.12 (Relevancy is decidable) 1. If Ψ`T : K, then there exists a unique Ψ̂ such that relevant(Ψ ` T : K)=

Ψ̂.

2. If Ψ `Φ wf, then there exists a unique Ψ̂ such that relevant(Ψ `Φ wf) = Ψ̂.

3. If Ψ; Φ ` t : t ′, then there exists a unique Ψ̂ such that relevant(Ψ; Φ ` t : t ′) = Ψ̂.



4. If Ψ; Φ ` σ : Φ′, then there exists a unique Ψ̂ such that relevant(Ψ; Φ ` σ : Φ′) = Ψ̂.

The relevancy judgements are defined by structural induction on the corresponding typing derivations. It is
crucial to take into account the fact that `Ψ wf and Ψ `Φ wf are implicitly present along any typing derivation
that mentions such contexts; thus these derivations themselves, as well as their sub-derivations, are structurally
included in derivations like Ψ; Φ ` t : t ′. Furthermore, it is easy to see that all the joins used are defined, since
in most cases two results of the relevancy procedure on a judgement using the same context Ψ are joined, which
is always well-defined. The only case where this does not hold (use of extension variables in terms), the joins
are still defined because of the adaptation of the resulting Ψ̂ by affixing the unspecified elements.

Lemma D.13 (Properties of context join) 1. Ψ̂1 ◦ Ψ̂2 v Ψ̂1

2. Ψ̂1 ◦ Ψ̂2 v Ψ̂2

3. Ψ̂1 ◦ Ψ̂2 = Ψ̂2 ◦ Ψ̂1

4. (Ψ̂1 ◦ Ψ̂2)◦ Ψ̂3 = Ψ̂1 ◦ (Ψ̂2 ◦ Ψ̂3)

5. If Ψ̂1 v Ψ̂2 then Ψ̂1 ◦ Ψ̂2 = Ψ̂2

6. If Ψ̂1 v Ψ̂′1 then Ψ̂1 ◦ Ψ̂2 v Ψ̂′1 ◦ Ψ̂2

All are simple to prove by induction.

Lemma D.14 (Relevancy when weakening the extensions context) 1. If Ψ`T : K, then relevant(Ψ, Ψ′ ` T : K)=

relevant(Ψ ` T : K) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

2. If Ψ `Φ wf, then relevant(Ψ, Ψ′ `Φ wf) = relevant(Ψ `Φ wf) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

3. If Ψ; Φ ` t : t ′, then relevant(Ψ, Ψ′; Φ ` t : t ′) = relevant(Ψ; Φ ` t : t ′) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

4. If Ψ; Φ ` σ : Φ′, then relevant(Ψ, Ψ′; Φ ` σ : Φ′) = relevant(Ψ; Φ ` σ : Φ′) ,

|Ψ′|︷ ︸︸ ︷
?, · · · ,?.

Simple to prove by induction.

Lemma D.15 (Relevancy of sub-judgements is implied) 1.(a) relevant(Ψ `Φ wf)v relevant(Ψ `Φ, Φ′ wf)

(b) relevant(Ψ `Φ wf)v relevant(Ψ; Φ ` t : t ′)

(c) relevant(Ψ `Φ wf)v relevant(Ψ; Φ ` σ : Φ′).

2.(a) If Ψ; Φ ` t : t ′ then relevant(Ψ; Φ, Φ′ ` t : t ′) = relevant(Ψ; Φ ` t : t ′)◦ relevant(Ψ `Φ, Φ′ wf).

(b) If Ψ; Φ ` σ : Φ′ then relevant(Ψ; Φ, Φ′′ ` σ : Φ′) = relevant(Ψ; Φ ` σ : Φ′)◦ relevant(Ψ `Φ, Φ′′ wf).

3.(a) If Ψ; Φ ` t : t ′ and Ψ; Φ ` t ′ : s then relevant(Ψ; Φ ` t ′ : s)v relevant(Ψ; Φ ` t : t ′).

(b) If Ψ; Φ′ ` σ : Φ then relevant(Ψ `Φ wf)v relevant(Ψ; Φ′ ` σ : Φ).

4.(a) If Ψ; Φ ` t : t ′ and Ψ; Φ′ ` σ : Φ, then relevant(Ψ; Φ′ ` t ·σ : t ′ ·σ) v relevant(Ψ; Φ ` t : t ′) ◦
relevant(Ψ; Φ′ ` σ : Φ).

(b) If Ψ; Φ′ ` σ : Φ and Ψ; Φ′′ ` σ′ : Φ′, then relevant(Ψ; Φ′′ ` σ ·σ′ : Φ) v relevant(Ψ; Φ′ ` σ : Φ) ◦
relevant(Ψ; Φ′′ ` σ′ : Φ′).

Part 1(a) Trivial by induction the derivation of relevancy.



Part 1(b) By inversion of the derivation of relevant(Ψ `Φ wf) = Ψ̂. In the base cases, this is directly proved
by the relevancy judgement; in the case where we have relevant(Ψ; Φ ` t : t ′) = relevant(Ψ, Φ, t1 ` t2 : t3),
by induction hypothesis get that relevant(Ψ `Φ, t1 wf), which by inversion gives us the desired; in the
metavariables case trivially follows from repeated inversions of relevant(Ψ; Φ ` σ : Φ′).

Part 1(c) Trivial by induction and use of part 1(b).

Part 2 By induction on the typing derivations of t and t ′ all cases follow trivially.

Part 3(a) By induction on the derivation of Ψ; Φ ` t : t ′.

Case t = c � Simply using the above parts and the fact that Ψ; • ` t ′ : s, we have that relevant(Ψ; Φ ` t ′ : s) =
unspecΨ ◦ relevant(Ψ `Φ wf) = relevant(Ψ `Φ wf)v relevant(Ψ; Φ ` t : t ′).

Case t = s � Similarly as the above case.

Case t = vI � We have that Ψ; Φ�I`Φ.I : s, by inversion of the well-formedness derivation for Φ. Therefore
relevant(Ψ; Φ ` t ′ : s) = relevant(Ψ; Φ�I` t ′ : s) ◦ relevant(Ψ `Φ wf). By repeated inversion of Ψ ` Φ wf
we get that relevant(Ψ ` (Φ�I, Φ.I) wf) v relevant(Ψ `Φ wf). Thus we have that relevant(Ψ; Φ ` t ′ : s) v
relevant(Ψ `Φ wf), which proves the desired.

Case t = Π(t1).t2 � Trivially from the fact that relevant(Ψ; Φ ` s′′ : s′′′) = relevant(Ψ `Φ wf)v
relevant(Ψ; Φ, t1 ` dt2e)

Case t = λ(t1).t2 � We have that relevant(Ψ; Φ `Π(t1).bt ′c : s′) = relevant(Ψ; Φ, t1 ` dbt ′ce : s) =
relevant(Ψ; Φ, t1 ` t ′ : s). So by induction hypothesis, since Ψ; Φ, t1 ` t ′ : s is a sub-derivation in Ψ; Φ, t1 `
dt2e : t ′, we have that relevant(Ψ; Φ, t1 ` t ′ : s)v relevant(Ψ; Φ, t1 ` t2 : t ′), which is the desired.

Case t = t1 t2 � By induction hypothesis get that relevant(Ψ; Φ `Π(t).t ′ : s)v relevant(Ψ; Φ ` t1 : Π(t).t ′).
(Here we assume unique typing for Π types). Furthermore, we have that relevant(Ψ; Φ `Π(t).t ′ : s) =
relevant(Ψ; Φ, t ` dt ′e : s). Otherwise, it is simple to prove that relevant(Ψ; Φ ` (idΦ, t2) : (Φ, dt ′e)) =
relevant(Ψ; Φ ` t2 : dt ′e), thus the desired follows trivially following part 4.

Case t = Xi/σ � We have that relevant(Ψ; Φ′ ` t ′ : s) = relevant(Ψ�i; Φ′ ` t ′ : s) ,

|Ψ|−i times︷ ︸︸ ︷
?, · · · ,? from inversion

of well-formedness for Ψ. Furthermore, we have that Ψ; Φ ` σ : Φ′ from typing inversion. Thus, using part

4, we get that relevant(Ψ; Φ ` t ′ ·σ : s)v (relevant(Ψ�i; Φ′ ` t ′ : s) ,

|Ψ|−i times︷ ︸︸ ︷
?, · · · ,? )◦ relevant(Ψ; Φ ` σ : Φ′). Thus

the result follows directly, taking the properties of join into account.

Case t = (t1 = t2) � Trivial.

Case t = conv t t ′ � By induction hypothesis we get that relevant(Ψ; Φ ` t1 = t2 : Prop)v relevant(Ψ; Φ ` t ′ : t1 = t2).
By inversion of relevancy for t1 = t2 we get that it is equal to relevant(Ψ; Φ ` t1 : Prop)◦relevant(Ψ; Φ ` t2 : Prop)v
relevant(Ψ; Φ ` t2 : Prop). Thus the desired follows trivially using the properties of joining contexts.

Case (rest) � Following the techniques used above.

Part 3(b) By induction on the derivation of Ψ; Φ′ ` σ : Φ.



Case σ = • � Trivial.

Case σ = σ
′, t ′ � By induction hypothesis for σ′, use of part 3(a) for t ′, and definition of relevancy for Φ.

Case σ = σ
′, id(Xi) � By induction hypothesis for σ′, and also using the side condition for Xi being

part of Φ′: by inversion of well-formedness for Φ′, we get that Ψ@̂i v relevant(Ψ `Φ′ wf) and thus also
Ψ@̂iv relevant(Ψ; Φ′ ` σ : Φ), proving the desired.

Part 4(a) By induction on the typing derivation for t.

Case t = c � We have that relevant(Ψ; Φ ` c : t ′) = relevant(Ψ `Φ wf), and relevant(Ψ; Φ′ ` c ·σ : t ′ ·σ) =
relevant(Ψ `Φ′ wf). We need to show that relevant(Ψ `Φ wf)v relevant(Ψ `Φ′ wf)◦relevant(Ψ; Φ′ ` σ : Φ).
We have that relevant(Ψ `Φ′ wf) v relevant(Ψ; Φ′ ` σ : Φ), so the join in the above equality is well-defined;
from the properties of join it is evident that it is enough to show relevant(Ψ `Φ wf)v relevant(Ψ; Φ′ ` σ : Φ).
This is trivially proved by part 3(b).

Case t = s � Similarly.

Case t = fI � We have that relevant(Ψ; Φ′ ` fI ·σ : t ′ ·σ) = relevant(Ψ; Φ′ ` σ.i : t ′ ·σ). By inversion for σ,
we have that relevant(Ψ; Φ′ ` σ.i : Φ.i ·σ)v relevant(Ψ; Φ′ ` σ : Φ). Thus the desired directly follows.

Case t = Π(t1).t2 � By induction hypothesis for dt2e and σ = σ, f|Φ|, we get that:
relevant

(
Ψ; Φ′, t1 ·σ ` dt2e · (σ, f|Φ|) : s′′

)
v relevant(Ψ; Φ′, t1 ·σ ` dt2e : s′′)◦relevant

(
Ψ; Φ′, t1 ·σ ` (σ, f|Φ|) : (Φ, t1)

)
.

Also we have that relevant(Ψ; Φ′ ` σ : Φ) v relevant(Ψ; Φ′, t1 ·σ ` σ : Φ). Using the known properties of
freshening and substitutions, we know that relevant(Ψ; Φ′ ` t ·σ : s′′)= relevant

(
Ψ; Φ′, t1 ·σ ` dt2e · (σ, f|Φ|) : s′′

)
,

thus this is the desired.

Case t = λ(t1).t2 � Similar to the above.

Case t = t1 t2 � By induction hypothesis we get that:
relevant(Ψ; Φ′ ` t1 ·σ : Π(t ·σ).(t ′ ·σ))v relevant(Ψ; Φ ` t1 : Π(t).t ′)◦ relevant(Ψ; Φ′ ` σ : Φ), and that
relevant(Ψ; Φ′ ` t2 ·σ : t ·σ) v relevant(Ψ; Φ ` t2 : t) ◦ relevant(Ψ; Φ′ ` σ : Φ). Furthermore, we have that
relevant(Ψ; Φ′ ` t1 ·σ t2 ·σ : dt ′ ·σe · (idΦ′ , t2 ·σ))
= relevant(Ψ; Φ′ ` t1 ·σ : Π(t ·σ).(t ′ ·σ)) ◦ relevant(Ψ; Φ′ ` t2 ·σ : t ·σ). The desired follows trivially, using
the properties of join.

Case t = Xi/σ
′ � Trivial, using part 4(b).

Case (rest) � Using similar techniques as above.

Part 4(b) By induction and use of part 4(a).

Lemma D.16 (Relevancy soundness) 1. If Ψ ` T : K and relevant(Ψ ` T : K) = Ψ̂ then Ψ̂ ` T : K.

2. If Ψ `Φ wf and relevant(Ψ `Φ wf) = Ψ̂ then Ψ̂ `Φ wf.

3. If Ψ; Φ ` t : t ′ and relevant(Ψ; Φ ` t : t ′) = Ψ̂ then Ψ̂; Φ ` t : t ′.

4. If Ψ; Φ ` σ : Φ′ and relevant(Ψ; Φ ` σ : Φ′) = Ψ̂ then Ψ̂; Φ ` σ : Φ′.

Part 1 By induction on the derivation of Ψ ` T : K.



Case T = [Φ] t � By part 3 we have that if relevant(Ψ; Φ ` t : t ′) = Ψ̂, then Ψ̂; Φ ` t : t ′. From this we also
get that Ψ̂; Φ ` t ′ : s, and thus it is trivial to construct a derivation of Ψ̂ ` [Φ] t : [Φ] t ′.

Case T = [Φ]Φ′ � From part 2 we get that if relevant(Ψ `Φ, Φ′ wf) = Ψ̂, then Ψ̂`Φ, Φ′ wf, thus the desired
follows trivially.

Part 2 By induction on the derivation of Ψ `Φ wf.

Case Φ = • � Trivially we have that unspecΨ ` • wf.

Case Φ = Φ, t � We have that if relevant(Ψ; Φ ` t : s) = Ψ̂, then Ψ̂; Φ ` t : s by part 3, and furthermore using
the implicit requirement that Φ is well-formed, we also get that Ψ̂ ` Φ wf. Thus using the appropriate typing
rule we get Ψ̂ ` (Φ, t) wf.

Case Φ = Φ, Xi � By induction we get that if relevant(Ψ `Φ wf) = Ψ̂, then Ψ̂ ` Φ wf, and thus also
Ψ̂ ◦ (Ψ@̂i) ` Φ wf. Furthermore, (Ψ̂ ◦ (Ψ@̂i)).i = Ψ.i. Thus using the appropriate well-formedness rule for
Φ we get that Ψ̂ ` (Φ, Xi) wf.

Part 3 By induction on the derivation of Ψ; Φ ` t : t ′.

Case t = c � Trivially we have that Ψ̂; Φ ` c : t for any Ψ̂, Φ such that Ψ̂ ` Φ wf, which holds for the
corresponding Ψ̂ based on part 2.

Case t = s � Similarly as above.

Case t = fI � Again, as above.

Case t = Π(t1).t2 � Simple by induction hypothesis for dt2e, and also from the fact that relevant(Ψ; Φ ` t1 : s)v
relevant(Ψ ` (Φ, t1) wf)v relevant(Ψ; Φ, t1 ` dt2e : s′).

Case t = λ(t1).t2 � By induction hypothesis for dt2e, if relevant(Ψ; Φ, t1 ` dt2e : s′) = Ψ̂, we get that
Ψ̂; Φ, t1 ` dt2e : s′. Thus we also have that Ψ̂; Φ ` t1 : s, and also that either t ′ = Type′ (which is an impossible
case), or Ψ̂; Φ, t1 ` t ′ : s′′. By inversion of typing for Ψ; Φ `Π(t1).bt ′c : s′ we get that in fact s′′ = s′, and thus
it is easy to derive Ψ̂; Φ, t1 ` t ′ : s′ and Ψ̂; Φ ` Π(t1).bt ′c : s′. From these we get the desired derivation for
Ψ̂; Φ ` λ(t1).t2 : Π(t1).bt ′c.

Case t = t1 t2 � Trivial by induction hypothesis for t1 and t2.

Case t = (t1 = t2) � Again, trivial by induction hypothesis for t1 and t2, and also from the fact that Ψ̂1; Φ` t1 : t
implies Ψ̂1; Φ ` t : Type.

Case t = Xi/σ � From the first part (relevancy of T under the prefix context), we get that ` Ψ̂ wf. Furthermore,
using part 4 we get that Ψ̂; Φ ` σ : Φ′. Last, it is trivial to derive Ψ̂; Φ ` Xi/σ : t ′ ·σ using the same typing rule,
since Ψ̂.i = Ψ.i.

Part 4 By induction on the derivation of Ψ; Φ ` σ : Φ′.



Case σ = • � Trivial.

Case σ = σ
′, t � Trivial by induction hypothesis and use of part 3.

Case σ = σ
′, id(Xi) � By induction hypothesis get Ψ̂; Φ ` σ : Φ′. Furthermore, from Ψ̂ ` Φ wf and the fact

that Φ′, Xi ⊆Φ, we have by repeated typing inversions that Ψ@̂iv Ψ̂. Thus Ψ̂.i = Ψ.i, and we can construct a
derivation for Ψ̂; Φ ` (σ, id(Xi)) : (Φ′, Xi).

Definition D.17 Applying an extension substitution to a partial context is defined as follows, assuming that the
partial context does not contain extension variables bigger than X|Ψ|−1.

Ψ̂ ·σΨ

• ·σΨ = •
(Ψ̂, K) ·σΨ = Ψ̂ ·σΨ, K · (σΨ, X|Ψ|, · · · , X|Ψ|+|Ψ̂|)

(Ψ̂, ?) ·σΨ = Ψ̂ ·σΨ, ?

Lemma D.18 (Relevancy and extension substitution) 1. If unspecΨ,Ψ̂u v relevant(Ψ, Ψu ` T : K), Ψ′ `
σΨ : Ψ, and σ′

Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then unspecΨ′ ,Ψ̂u ·σΨv relevant(Ψ′, Ψu ·σΨ ` T ·σ′

Ψ
: K ·σ′

Ψ
).

2. If unspecΨ,Ψ̂uv relevant(Ψ, Ψu `Φ wf), Ψ′ `σΨ : Ψ, and σ′
Ψ
=σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then unspecΨ′ ,Ψ̂u ·

σΨ v relevant(Ψ′, Ψu ·σΨ `Φ ·σ′
Ψ

wf).

3. If unspecΨ,Ψ̂u v relevant(Ψ, Ψu; Φ ` t : t ′), Ψ′ ` σΨ : Ψ, and σ′
Ψ

= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then
unspecΨ′ ,Ψ̂u ·σΨ v relevant(Ψ′, Ψu ·σΨ; Φ ·σ′

Ψ
` t ·σ′

Ψ
: t ′ ·σ′

Ψ
).

4. If unspecΨ,Ψ̂u v relevant(Ψ, Ψu; Φ ` σ : Φ′), Ψ′ ` σΨ : Ψ, and σ′
Ψ
= σΨ, X|Ψ′|, · · · , X|Ψ′|+|Ψu|, then

unspecΨ′ ,Ψ̂u ·σΨ v relevant(Ψ′, Ψu ·σΨ; Φ ·σ′
Ψ
` σ ·σ′

Ψ
: Φ′ ·σ′

Ψ
).

Part 1 By induction on the typing derivation of T , and use of parts 2 and 3.

Part 2 By induction on the well-formedness derivation of Φ.

Case Φ = • � Trivial.

Case Φ = Φ
′, t � Using part 3 we get the desired result.

Case Φ = Φ
′, Xi �

We have that unspecΨ, Ψ̂u v relevant(Ψ, Ψu `Φ′ wf)◦ ((Ψ, Ψu)@̂i).
We split cases based on whether i < |Ψ| or not.
In the first case:

We trivially have unspecΨ, Ψ̂u v relevant(Ψ, Ψu `Φ′ wf), thus directly by use of the induction
hypothesis and the same rule for relevancy we get the desired.



In the second case:
Assume without loss of generality Ψ̂′u such that unspecΨ, Ψ̂′u v relevant(Ψ, Ψu `Φ′ wf), and
(unspecΨ, Ψ̂u) = (unspecΨ, Ψ̂′u)◦ ((Ψ, Ψu)@̂i).
Then by induction hypothesis get that unspecΨ′ , Ψ̂′u ·σΨ v relevant(Ψ′, Ψu ·σΨ `Φ′ ·σ′

Ψ
wf).

Now we have that (Φ′, Xi) ·σ′Ψ = Φ′ ·σ′
Ψ
, Xi−|Ψ|+|Ψ′|.

Thus relevant(Ψ′, Ψu ·σΨ ` (Φ′, Xi) ·σ′Ψ wf) = relevant
(
Ψ′, Ψu ·σΨ ` (Φ′ ·σ′Ψ, Xi−|Ψ|+|Ψ′|) wf

)
=

relevant(Ψ′, Ψu ·σΨ `Φ′ ·σ′
Ψ

wf)◦ ((Ψ′, Ψu ·σΨ)@̂i−|Ψ|+ |Ψ′|).
Thus we have that (unspecΨ′ , Ψ̂′u · σΨ) ◦ ((Ψ′, Ψu · σΨ)@̂i−|Ψ|+ |Ψ′|) v
relevant(Ψ′, Ψu ·σΨ ` (Φ′, Xi) ·σ′Ψ wf).
But (unspecΨ′ , Ψ̂′u ·σΨ)◦ ((Ψ′, Ψu ·σΨ)@̂i−|Ψ|+ |Ψ′|) = unspecΨ′ , Ψ̂u ·σΨ.
This is because (unspecΨ, Ψ̂u) = (unspecΨ, Ψ̂′u)◦ ((Ψ, Ψu)@̂i), so the i-th element is the only one
where unspecΨ,Ψ̂

′
u might differ from unspecΨ,Ψ̂u; this will be the i− |Ψ|+ |Ψ′|-th element after

σ′
Ψ

is applied; and that element is definitely equal after the join.

Part 3 By induction on the typing derivation for t.

Case t = c,s, or vI � Trivial using part 2.

Case t = Π(t1).t2 � By induction hypothesis for dt2e.

Case t = λ(t1).t2 � By induction hypothesis for dt2e.

Case t = t1 t2 � Assume Ψ̂1 and Ψ̂2 such that Ψ̂ = Ψ̂1 ◦ Ψ̂2. Then use induction hypothesis for t1 and t2. Last
combine the results using join to get the desired, noticing that both Ψ̂1 ·σΨ and Ψ̂2 ·σΨ are v Ψ̂ ·σΨ (so join is
defined between them), and also that (Ψ̂1 ◦ Ψ̂2) ·σΨ = Ψ̂1 ·σΨ ◦ Ψ̂2 ◦σΨ.

Case t = Xi/σ �

We split cases based on whether i < |Ψ| or not. In case it is, the proof is trivial using part 4. We thus focus on
the case where i≥ |Ψ|.
We have that unspecΨ, Ψ̂v relevant((Ψ,Ψu)�i` [Φ′] t : [Φ′]s)◦ relevant(Ψ, Ψu; Φ ` σ : Φ′)◦ ((Ψ, Ψu)@̂i).

Assume Ψ̂1
u,Ψ̂

′
u,Ψ̂

2
u such that (Ψ̂1

u = Ψ̂′u,

|Ψ|+|Ψu|−i times︷ ︸︸ ︷
?, · · · ,? ), unspecΨ, Ψ̂′u v relevant((Ψ,Ψu)�i` [Φ′] t : [Φ′]s),

unspecΨ, Ψ̂2
u v relevant(Ψ, Ψu; Φ ` σ : Φ′) and last that Ψ̂ = Ψ̂1

u ◦ Ψ̂2
u ◦ ((Ψ, Ψu@̂i)).

By induction hypothesis for [Φ′] t we get that:
unspecΨ′ , Ψ̂′u ·σΨ v relevant((Ψ′,Ψu ·σΨ)�i` [Φ′ ·σ′Ψ] t ·σ′Ψ : [Φ′ ·σ′

Ψ
]s ·σ′

Ψ
).

By induction hypothesis for σ we get that:
unspecΨ′ , Ψ̂2

u ·σΨ v relevant(Ψ′, Ψu ·σΨ; Φ ·σ′
Ψ
` σ ·σ′

Ψ
: Φ′ ·σ′

Ψ
)

We combine the above to get the desired, using the properties of join at @̂ as we did earlier.

Case (rest) � Similar to the above cases.

Part 4 Similar as above.

D.4 Unification

Here, we are matching a term with some unification variables against a closed term. Therefore we will use
typing judgements like Ψ `p T : K instead of Ψ′, Ψu `p T : K, as we did above. The single Ψ that we use
actually corresponds to Ψu; the normal context Ψ′ is empty.



First, we need to define the notion of partial substitutions, corresponding to substitutions for partial contexts
as defined above.

Definition D.19 (Partial substitutions) The syntax for partial substitutions follows.

σ̂Ψ ::= • | σ̂Ψ, T | σ̂Ψ, ?

Definition D.20 Joining two partial substitutions is defined below.

σ̂Ψ ◦ σ̂Ψ

′

•◦• = •
(σ̂Ψ, T )◦ (σ̂Ψ

′
, T ) = (σ̂Ψ ◦ σ̂Ψ

′
), T

(σ̂Ψ, ?)◦ (σ̂Ψ

′
, T ) = (σ̂Ψ ◦ σ̂Ψ

′
), T

(σ̂Ψ, T )◦ (σ̂Ψ

′
, ?) = (σ̂Ψ ◦ σ̂Ψ

′
), T

(σ̂Ψ, ?)◦ (σ̂Ψ

′
, ?) = (σ̂Ψ ◦ σ̂Ψ

′
), ?

Definition D.21 Comparing two partial substitutions is defined below.

σ̂Ψ v σ̂Ψ

′

• v •
(σ̂Ψ, T )v (σ̂Ψ

′
, T ) ⇐ σ̂Ψ v σ̂Ψ

′

(σ̂Ψ, ?)v (σ̂Ψ

′
, T ) ⇐ σ̂Ψ v σ̂Ψ

′

(σ̂Ψ, ?)v (σ̂Ψ

′
, ?) ⇐ σ̂Ψ v σ̂Ψ

′

Definition D.22 The fully unspecified substitution for a specific partial context is defined as:

unspec
Ψ̂
= σ̂Ψ

unspec• = ?
unspec

Ψ̂, ? = unspec
Ψ̂
, ?

unspec
Ψ̂, K = unspec

Ψ̂
, ?

Definition D.23 Applying a partial extension substitution to a term, a context, or a substitution is entirely
identical to normal substitution. It fails when a metavariable that is left unspecified in the extension substitution
gets used, something that already happens from the existing definition B.77.

Definition D.24 Replacing an unspecified element of a partial substitution with another works as follows.

σ̂Ψ[i 7→ T ] = σ̂Ψ

′

(σ̂Ψ, ?)[i 7→ T ] = σ̂Ψ, T when i = |σ̂Ψ|
(σ̂Ψ, T ′)[i 7→ T ] = σ̂Ψ[i 7→ T ], T ′ when i < |σ̂Ψ|
(σ̂Ψ, ?)[i 7→ T ] = σ̂Ψ[i 7→ T ], ? when i < |σ̂Ψ|



Definition D.25 Limiting a partial substitution to a specific partial context works as follows; we assume
|σ̂Ψ|= |Ψ̂|.

σ̂Ψ|Ψ̂

(•)|• = •
(σ̂Ψ, T )|

Ψ̂, ? = σ̂Ψ|Ψ̂, ?
(σ̂Ψ, T )|

Ψ̂, K = σ̂Ψ|Ψ̂, T
(σ̂Ψ, ?)|

Ψ̂, ? = σ̂Ψ|Ψ̂, ?

Definition D.26 Typing for partial substitutions is defined below.

• ` σ̂Ψ : Ψ̂

• ` • : •
• ` σ̂Ψ : Ψ̂ • ` T : K · σ̂Ψ

• `p (σ̂Ψ, T ) : (Ψ̂, K)

• `p σ̂Ψ : Ψ̂

• `p (σ̂Ψ, ?) : (Ψ̂, ?)

Lemma D.27 If • ` σ̂Ψ1 : Ψ̂1 and • ` σ̂Ψ2 : Ψ̂2, with Ψ̂1◦Ψ̂2 and σ̂Ψ1◦σ̂Ψ2 defined, then • ` σ̂Ψ1◦σ̂Ψ2 : Ψ̂1◦Ψ̂2.

By induction on the derivation of σ̂Ψ1 ◦ σ̂Ψ2 = σ̂Ψ

′.

Case •◦• � Trivial, since Ψ̂1 = Ψ̂2 = • by typing inversion.

Case (σ̂Ψ

′
1, T )◦ (σ̂Ψ

′
2, T ) � By typing inversion get Ψ̂1 = Ψ̂′1, K with T : K, and Ψ̂2 = Ψ̂′2, K with T : K.

Thus Ψ̂1 ◦Ψ̂2 = Ψ̂′1 ◦Ψ̂′2, K, and by induction hypothesis for σ̂Ψ

′
1, σ̂Ψ

′
2 and typing it is easy to prove the desired.

Case
(σ̂Ψ

′
1, ?)◦ (σ̂Ψ

′
2, T )

B
� y typing inversion get Ψ̂1 = Ψ̂′1, ?, and Ψ̂2 = Ψ̂′2, K with T : K. Thus Ψ̂1 ◦ Ψ̂2 =

Ψ̂′1 ◦ Ψ̂′2, K, and by induction hypothesis for σ̂Ψ

′
1, σ̂Ψ

′
2 and typing it is easy to prove the desired.

Case
(σ̂Ψ

′
1, T )◦ (σ̂Ψ

′
2, ?)

S
� imilar to the above.

Case
(σ̂Ψ

′
1, ?)◦ (σ̂Ψ

′
2, ?)

A
� gain by induction hypothesis and the fact that Ψ̂1 = Ψ̂′1,? and Ψ̂2 = Ψ̂′2,? by typing

inversion.

Lemma D.28 If • ` σ̂Ψ : Ψ̂, • ` Ψ̂′ wf and Ψ̂′ v Ψ̂, then σ̂Ψ|Ψ̂′ v σ̂Ψ and • ` σ̂Ψ|Ψ̂′ : Ψ̂′.

Trivial by induction on the derivation of σ̂Ψ|Ψ̂′ .
Now we are ready to proceed to a proof about the fact that either a unique unification partial substitution

exists for patterns and terms that are typed under the restrictive typing, or that no such substitution exists. The
constructive content of this proof will be our unification procedure.



To prove the following theorem we assume that if Ψ; Φ`p t : t ′, with t ′ 6= Type′, the derivation Ψ; Φ`p t ′ : s
for a suitable s is a sub-derivation of the derivation Ψ; Φ `p t : t ′. The way we have written our rules this
is actually not true, but an adaptation where the t ′ : s derivation becomes part of the t : t ′ derivation is
possible, thanks to the theorem B.68.

Theorem D.29 (Decidability and determinism of unification) 1. If Ψ`p Φ wf, • `p Φ′ wf, relevant(Ψ `p Φ wf)=
Ψ̂, then there either exists a unique substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂ and Φ · σ̂Ψ = Φ′, or no such substi-
tution exists.

2. If Ψ; Φ `p t : tT , •; Φ′ `p t ′ : t ′T and relevant(Ψ; Φ ` t : t ′T ) = Ψ̂′, then:
assuming that Ψ; Φ `p tT : s, •; Φ `p t ′T : s, relevant(Ψ; Φ `p tT : s) = Ψ̂ (or, if tT = Type′, that Ψ `p Φ wf,
• `p Φ wf, relevant(Ψ `p Φ wf) = Ψ̂) and there exists a unique substitution σ̂Ψ such that • ` σ̂Ψ : Ψ̂,
Φ · σ̂Ψ = Φ′ and tT · σ̂Ψ = t ′T ,
then there either exists a unique substitution σ̂Ψ

′ such that • ` σ̂Ψ

′ : Ψ̂′, Φ · σ̂Ψ

′
= Φ′, tT · σ̂Ψ

′
= t ′T and

t · σ̂Ψ

′
= t ′, or no such substitution exists.

3. If Ψ `p T : K, • `p T ′ : K and relevant(Ψ; Φ ` T : K) = Ψ, then either there exists a unique substitution σΨ

such that • ` σΨ : Ψ and T ·σΨ = T ′, or no such substitution exists.

Part 2 By induction on the typing derivation for t.

Case
c : t ∈ Σ

Ψ; Φ `p c : tT
�

We have t · σ̂Ψ

′
= c · σ̂Ψ

′
= c. So for any substitution to satisfy the desired properties we need to have that t ′ = c

also; if this isn’t so, no σ̂Ψ

′ possibly exists. If we have that t = t ′ = c, then the desired is proved directly by
assumption, considering that relevant(Ψ; Φ `p c : t) = relevant(Ψ; Φ `p tT : s) = relevant(Ψ `p Φ wf) (since
tT comes from the definitions context and can therefore not contain extension variables).

Case
Φ.I = t

Ψ; Φ `p fI : tT
�

Similarly as above. First, we need t ′ = fI′ , otherwise no suitable σ̂Ψ

′ exists. From assumption we have a unique
σ̂Ψ for relevant(Ψ; Φ `p tT : s). If I · σ̂Ψ = I′, then σ̂Ψ has all the desired properties for σ̂Ψ

′, considering the
fact that relevant(Ψ; Φ `p fI : tT ) = relevant(Ψ `p Φ wf) and relevant(Ψ; Φ `p tT : s) = relevant(Ψ `p Φ wf)
(since tT = Φ.i). It is also unique, because an alternate σ̂Ψ

′ would violate the assumed uniqueness of σ̂Ψ. If
I · σ̂Ψ 6= σ̂Ψ

′, no suitable substitution exists, because of the same reason.

Case
(s,s′) ∈A

Ψ; Φ `p s : s′
�

Entirely similar to the case for c.

Case
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : s′ (s,s′,s′′) ∈ R

Ψ; Φ `p Π(t1).t2 : s′′
�

First, we have either that t ′ = Π(t ′1).t
′
2, or no suitable σ̂Ψ

′ exists. Thus by inversion for t ′ we get:
•; Φ′ `p t ′1 : s∗, •; Φ′, t ′1 `p dt ′2e|Φ′| : s′∗, (s∗,s

′
∗,s
′′) ∈ R.

Now, we need s = s∗, otherwise no suitable σ̂Ψ

′ possibly exists. To see why this is so, assume that a σ̂Ψ

′ satis-
fying the necessary conditions exists, and s 6= s∗; then we have that t1 · σ̂Ψ

′
= t ′1, which means that their types

should also match, a contradiction.
We use the induction hypothesis for t1 and t ′1. We are allowed to do so because relevant(Ψ; Φ `p s′′ : s′′′) =
relevant(Ψ; Φ `p s : s′′′′), and the other properties for σ̂Ψ also hold trivially.



From that we either get a σ̂Ψ

′ such that: • ` σ̂Ψ

′ : Ψ̂′, where Ψ̂′ = relevant(Ψ; Φ `p t1 : s) and t1 · σ̂Ψ

′
= t ′1,

Φ · σ̂Ψ

′
= Φ′. Since a partial substitution unifying t with t ′ will also include a substitution that only has to

do with Ψ̂′, we see that if no σ̂Ψ

′ is returned by the induction hypothesis, no suitable substitution for t and t ′

actually exists.
We can now use the induction hypothesis for t2 and σ̂Ψ

′, since relevant(Ψ; Φ t1 `p s′ : s′′′′′)= relevant(Ψ; Φ `p t1 : s),
and the other requirements trivially hold. Especially for s′ and s′∗ being equal, this is trivial since both need to
be equal to s′′ (because of the form of our rule set R).
From that we either get a σ̂Ψ

′′ such that, • ` σ̂Ψ

′′ : Ψ̂′′, dt2e|Φ| · σ̂Ψ

′′
= dt ′2e|Φ′|, Φ · σ̂Ψ

′′
= Φ and t1 · σ̂Ψ

′′
= t ′1, or

that such σ̂Ψ

′′ does not exist. In the second case we proceed as above, so we focus in the first case.
By use of properties of freshening (like injectivity) we are led to the fact that (Π(t1).t2) · σ̂Ψ

′′
= Π(t ′1).(t

′
2),

so the returned σ̂Ψ

′′ has the desired properties, if we consider the fact that relevant(Ψ; Φ `p Π(t1).t2 : s′′) =

relevant
(

Ψ; Φ, t1 `p dt2e|Φ| : s′
)

.

Case
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : t3 Ψ; Φ `p Π(t1).bt3c|Φ|, · : s′

Ψ; Φ `p λ(t1).t2 : Π(t1).bt3c|Φ|, ·
�

We have that either t ′ = λ(t ′1).t
′
2, or no suitable σ̂Ψ

′ exists. Thus by typing inversion for t ′ we get:
•; Φ′ `p t ′1 : s∗, •; Φ′, t ′1 `p dt ′2e|Φ′| : t ′3, •; Φ′ `p Π(t ′1).bt3c|Φ′|, · : s′∗.

By assumption we have that there exists a unique σ̂Ψ such that relevant
(

Ψ; Φ `p Π(t1).bt3c|Φ|, · : s
)
= Ψ̂,

• ` σ̂Ψ : Ψ̂, Φ · σ̂Ψ = Φ′, (Π(t1).bt3c) · σ̂Ψ = Π(t ′1).bt ′3c, if relevant
(

Ψ; Φ `p Π(t1).bt3c|Φ,·|
)
= Ψ̂. From that

we also get that s′ = s′∗.
From the fact that (Π(t1).bt3c) · σ̂Ψ = Π(t ′1).bt ′3c, we get first of all that t1 · σ̂Ψ = t ′1, and also that t3 · σ̂Ψ = t ′3.
Furthermore, We have that relevant(Ψ; Φ `p Π(t1).bt3c : s′) = relevant(Ψ; Φ, t1 `p t3 : s′).
From that we understand that σ̂Ψ is a suitable substitution to use for the induction hypothesis for dt2e.
Thus from induction hypothesis we either get a unique σ̂Ψ

′ with the properties: • ` σ̂Ψ

′ : Ψ̂′, dt2e · σ̂Ψ

′
= dt ′2e,

(Φ, t1) · σ̂Ψ = Φ′, t ′1, t3 · σ̂Ψ = t ′3, if relevant
(

Ψ; Φ, t1 `p dt2e|Φ| : t3
)
= Ψ̂, or that no such substitution exists.

We focus on the first case; in the second case no unifying substitution for t and t ′ exists, otherwise the lack of
existence of a suitable σ̂Ψ

′ would lead to a contradiction.
This substitution σ̂Ψ

′ has the desired properties with respect to unification of t against t ′ (again using the
properties of freshening, like injectivity), and it is unique, because the existence of an alternate substitution
with the same properties would violate the uniqueness assumption of the substitution returned by induction
hypothesis.

Case
Ψ; Φ `p t1 : Π(ta).tb Ψ; Φ `p t2 : ta

Ψ; Φ `p t1 t2 : dtbe|Φ| · (idΦ, t2)
�

Again we have that either t ′ = t ′1 t ′2, or no suitable substitution possibly exists. Thus by inversion of typing for t ′

we get:
•; Φ `p t ′1 : Π(t ′a).t

′
b, •; Φ `p t ′2 : t ′a, t ′T =

⌈
t ′b
⌉
|Φ′| · (idΦ′ , t ′2).

Furthermore we have that Ψ; Φ `p Π(ta).tb : s and •; Φ `p Π(t ′a).t
′
b : s′ for suitable s, s′. We need s = s′, other-

wise no suitable σ̂Ψ

′ exists (because if t1 and t ′1 were unifiable by substitution, their Π-types would match, and
also their sorts, which is a contradiction).
We can use the induction hypothesis for Π(ta).tb and Π(t ′a).t

′
b, with the partial substitution σ̂Ψ limited only to

those variables relevant in Ψ `p Φ wf. In that case all of the requirements for σ̂Ψ hold (the uniqueness condition
also holds for this substitution, using part 1 for the fact that Φ and Φ′ only have a unique unification substi-
tution), so we get from the induction hypothesis either a σ̂Ψ

′ for Ψ̂′ = relevant(Ψ; Φ `p Π(ta).tb : s) such that
Φ · σ̂Ψ = Φ′ and (Π(ta).tb) · σ̂Ψ = Π(t ′a).t

′
b, or that no such σ̂Ψ

′ exists. In the second case, again we can show



that no suitable substitution for t and t ′ exists; so we focus in the first case.
We can now use the induction hypothesis for t1, using this σ̂Ψ

′. From that, we get that either a σ̂Ψ1 exists for
Ψ̂1 = relevant(Ψ; Φ `p t1 : Π(ta).tb) such that t1 · σ̂Ψ1 = t ′1 etc., or that no such σ̂Ψ1 exists, in which case we
argue that no global σ̂Ψ

′ exists for unifying t and t ′ (because we could limit it to the Ψ̂1 variables and yield a
contradiction).
We now form σ̂Ψ

′′ which is the limitation of σ̂Ψ

′ to the context Ψ̂′′ = relevant(Ψ; Φ `p ta : s∗). For that, we
have that • `p σ̂Ψ

′′ : Ψ̂′′, Φ · σ̂Ψ

′′
= Φ′ and ta · σ̂Ψ

′′
= ta. Also it is the unique substitution with those properties,

otherwise the induction hypothesis for ta would be violated.
Using σ̂Ψ

′′ we can allude to the induction hypothesis for t2, which either yields a substitution σ̂Ψ2 for
Ψ̂2 = relevant(Ψ; Φ `p t2 : ta), such that t2 · σ̂Ψ2 = t ′2, etc., or that no such substitution exists, which we prove
implies no global unifying substitution exists.
Having now the σ̂Ψ1 and σ̂Ψ2 specified above, we consider the substitution σ̂Ψr = σ̂Ψ1 ◦ σ̂Ψ2. This substi-
tution, if it exists, has the desired properties: we have that Ψ̂r = relevant(Ψ; Φ `p t1 t2 : dtbe · (idΦ, t2)) =
relevant(Ψ; Φ `p t1 : Π(ta).tb) ◦ relevant(Ψ; Φ `p t2 : ta), and thus • ` σ̂Ψr : Ψ̂r. Also, (t1 t2) · σ̂Ψr = t ′1 t ′2,
tT · σ̂Ψr = t ′T (because tb · σ̂Ψr = t ′b etc.), and Φ · σ̂Ψr = Φ′. It is also unique: if another substitution had the
same properties, we could limit it to either the relevant variables for t1 or t2 and get a contradiction. Thus this is
the desired substitution.
If σ̂Ψr does not exist, then no suitable substitution for unifying t and t ′ exists. This is again because we could
limit any potential such substitution to two parts, σ̂Ψ

′
1 and σ̂Ψ

′
2 (for Ψ̂1 and Ψ̂2 respectively), violating the

uniqueness of the substitutions yielded by the induction hypothesis.

Case
Ψ; Φ `p t1 : ta Ψ; Φ `p t2 : ta Ψ; Φ `p ta : Type

Ψ; Φ `p t1 = t2 : Prop
�

Similarly as above. First assume that t ′ = (t ′1 = t ′2), with t ′1 : t ′a, t ′2 : t ′a and t ′a : Type. Then, by induction hypothesis
get a unifying substitution σ̂Ψ

′ for ta and t ′a. Use that σ̂Ψ

′ in order to allude to the induction hypothesis for t1 and
t2 independently, yielding substitutions σ̂Ψ1 and σ̂Ψ2. Last, claim that the globally required substitution must
actually be equal to σ̂Ψ1 ◦ σ̂Ψ2.

Case
(Ψ).i = T T = [Φ∗] tT Ψ; Φ `p σ : Φ∗ Φ∗ ⊆Φ σ = idΦ∗

Ψ; Φ `p Xi/σ : tT ·σ
�

We trivially have tT ·σ = tT . We split cases depending on whether σ̂Ψ.i =? or not. If it is unspecified:
We split cases further depending on whether t ′ uses any variables higher than |Φ∗ · σ̂Ψ| − 1 or not.
That is, if t ′ < f |Φ∗ · σ̂Ψ| or not. In the case where this doesn’t hold, it is obvious that there is no
possible σ̂Ψ

′ such that (Xi/σ) · σ̂Ψ

′
= t ′, since σ̂Ψ

′ must include σ̂Ψ, and the term (Xi/σ) · σ̂Ψ

′ can
therefore not include variables outside the prefix Φ∗ · σ̂Ψ of Φ · σ̂Ψ.
In the case where t ′ < f |Φ∗ · σ̂Ψ|, we consider the substitution σ̂Ψ

′
= σ̂Ψ[i 7→ t ′]. In that

case we obviously have Φ · σ̂Ψ

′
= Φ′, tT · σ̂Ψ

′
= tT , and also t · σ̂Ψ = t ′. Also, Ψ̂′ =

relevant(Ψ; Φ `p Xi/σ : tT ·σ) = (relevant(Ψ�i; Φ∗ `p tT : s) ,?, · · · ,?)◦ relevant(Ψ; Φ `p σ : Φ∗)◦
(Ψ@̂i).
We need to show that • ` σ̂Ψ

′ : Ψ̂′. First, we have that relevant(Ψ; Φ `p σ : Φ∗) =
relevant(Ψ `p Φ wf) since Φ∗ ⊆ Φ. Second, we have that relevant(Ψ; Φ `p tT : s) =

(relevant(Ψ�i; Φ∗ `p tT : s) ,?, · · · ,?)◦ relevant(Ψ `p Φ wf). Thus we have that Ψ̂′ = Ψ̂◦ (Ψ@̂i). It
is now trivial to see that indeed • ` σ̂Ψ

′ : Ψ̂′.
If σ̂Ψ.i = t∗, then we split cases on whether t∗ = t ′ or not. If it is, then obviously σ̂Ψ is the desired unifying
substitution for which all the desired properties hold. If it is not, then no substitution with the desired properties
possibly exists, because it would violate the uniqueness assumption for σ̂Ψ.



Case (rest) � Similar techniques as above.

Part 1 By induction on the well-formedness derivation for Φ.

Case
Ψ `p • wf

�

Trivially, we either have Φ′ = •, in which case unspecΨ is the unique substitution with the desired properties,
or no substitution possibly exists.

Case
Ψ `p Φ wf Ψ; Φ `p t : s

Ψ `p (Φ, t) wf
�

We either have that Φ′ = Φ′, t ′ or no substitution possibly exists. By induction hypothesis get σ̂Ψ such that Φ ·
σ̂Ψ =Φ′ and • ` σ̂Ψ : Ψ̂ with Ψ̂= relevant(Ψ `p Φ wf). Now we use part 2 to either get a σ̂Ψ

′ which is obviously
the substitution that we want, since (Φ, t) · σ̂Ψ

′
= Φ′, t ′ and relevant(Ψ `p (Φ, t) wf) = relevant(Ψ; Φ `p t : s);

or we get the fact that no such substitution possibly exists. In that case, we again conclude that no substitution
for the current case exists either, otherwise it would violate the induction hypothesis.

Case
• `p Φ wf (Ψ).i = [Φ]ctx

Ψ `p Φ, Xi wf
�

We either have Φ′ = Φ, Φ′′, or no substitution possibly exists (since Φ does not depend on unification variables,
so we always have Φ · σ̂Ψ = Φ). We now consider the substitution σ̂Ψ = unspecΨ[i 7→ [Φ]Φ′′]. We obviously
have that (Φ, Xi) · σ̂Ψ = Φ, Φ′′, and also that • ` σ̂Ψ : Ψ̂ with Ψ̂ = Ψ@̂i = relevant(Ψ `p Φ, Xi wf). Thus this
substitution has the desired properties.

Part 3 By induction on the typing for T .

Case
Ψ; Φ `p t : tT Ψ; Φ ` tT : s

Ψ `p [Φ] t : [Φ] tT
�

By inversion of typing for T ′ we have: T ′ = [Φ] t ′, •; Φ `p t ′ : tT , •; Φ `p tT : s.
We obviously have Ψ̂ = relevant(Ψ; Φ `p tT : s) = unspecΨ, and the substitution σ̂Ψ = unspecΨ is the unique
substitution such that • ` σ̂Ψ : Ψ̂, Φ · σ̂Ψ = Φ and tT · σ̂Ψ = tT . We can thus use part 2 for attempting unification
between t and t ′, yielding a σ̂Ψ

′ such that • ` σ̂Ψ

′ : Ψ̂′ with Ψ̂′ = relevant(Ψ; Φ `p t : tT ) and t · σ̂Ψ

′
= t ′. We

have that relevant(Ψ; Φ `p t : tT ) = relevant(Ψ `p T : K), thus Ψ̂′ = Ψ by assumption. From that we realize
that σ̂Ψ

′ is a fully-specified substitution since • ` σ̂Ψ

′ : Ψ, and thus this is the substitution with the desired
properties.
If unification between t and t ′ fails, it is trivial to see that no substitution with the desired substitution exists,
otherwise it would lead directly to a contradiction.

Case
Ψ `p Φ, Φ

′ wf

Ψ `p [Φ]Φ′ : [Φ]ctx
�

By inversion of typing for T ′ we have: T ′ = [Φ]Φ′′, • `p Φ, Φ′′ wf, • `p Φ wf. From part 1 we get a σ̂Ψ unifying
Φ, Φ′ and Φ, Φ′′, or the fact that no such σ̂Ψ exists. In the first case, as above, it is easy to see that this is the
fully-specified substitution that we desire. In the second case, no suitable substitution exists, otherwise we are
led directly to a contradiction.

The above proof is constructive. Its computational content is actually a unification algorithm for our pat-
terns. We illustrate the algorithm below by giving its unification rules; notice that it follows the inductive



structure of the proof (and makes the same assumption about types-of-types being subderivations). If a
derivation according to the following rules is not possible, the algorithm returns failure.

Definition D.30 (Unification algorithm) We give the rules for the unification algorithm below.

(Ψ `p T : K)∼ (• `p T ′ : K). σ̂Ψ

(Ψ; Φ `p t : tT )∼
(
•; Φ `p t ′ : tT

)
/unspecΨ . σ̂Ψ

(Ψ `p [Φ] t : [Φ] tT )∼
(
• `p [Φ] t ′ : [Φ] t ′T

)
. σ̂Ψ

(
Ψ `p Φ, Φ

′ wf
)
∼
(
• `p Φ, Φ

′′ wf
)
. σ̂Ψ(

Ψ `p [Φ]Φ′ : [Φ]ctx
)
∼
(
• `p [Φ]Φ′′ : [Φ]ctx

)
. σ̂Ψ

(Ψ `p Φ wf)∼ (• `Φ′ wf). σ̂Ψ

(Ψ `p • wf)∼ (• ` • wf).unspecΨ

(Ψ `p Φ wf)∼
(
• `p Φ

′ wf
)
. σ̂Ψ (Ψ; Φ `p t : s)∼

(
•; Φ

′ ` t ′ : s
)
/ σ̂Ψ . σ̂Ψ

′

(Ψ `p (Φ, t) wf)∼
(
• ` (Φ′, t ′) wf

)
. σ̂Ψ

′

(Ψ `p Φ, Xi wf)∼
(
• `Φ, Φ

′ wf
)
.unspecΨ[i 7→Φ

′]

(Ψ; Φ `p t : tT )∼ (•; Φ′ ` t ′ : t ′T )/ σ̂Ψ . σ̂Ψ

′

(Ψ; Φ `p c : t)∼
(
•; Φ

′ ` c : t ′
)
/ σ̂Ψ . σ̂Ψ

′ (
Ψ; Φ `p s : s′

)
∼
(
•; Φ

′ ` s : s′
)
/ σ̂Ψ . σ̂Ψ

′

I · σ̂Ψ = I′

(Ψ; Φ `p fI : t)∼
(
•; Φ

′ ` fI′ : t ′
)
/ σ̂Ψ . σ̂Ψ

(Ψ; Φ `p t1 : s)∼
(
•; Φ

′ ` t ′1 : s
)
/ σ̂Ψ . σ̂Ψ

′(
Ψ; Φ, t1 `p dt2e|Φ| : s′

)
∼
(
•; Φ

′, t ′1 `p
⌈
t ′2
⌉
|Φ′| : s′

)
/ σ̂Ψ

′
. σ̂Ψ

′′
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : s′

(s,s′,s′′) ∈ R

Ψ; Φ `p Π(t1).t2 : s′′

∼

•; Φ ` t ′1 : s •; Φ

′, t ′1 `
⌈
t ′2
⌉
|Φ′| : s′

(s,s′,s′′) ∈ R

•; Φ
′ `Π(t ′1).t

′
2 : s′′

/ σ̂Ψ . σ̂Ψ

′′

(
Ψ; Φ, t1 `p dt2e|Φ| : t ′

)
∼
(
•; Φ

′, t ′1 `p
⌈
t ′2
⌉
|Φ′| : t ′′

)
/ σ̂Ψ . σ̂Ψ

′
Ψ; Φ `p t1 : s Ψ; Φ, t1 `p dt2e|Φ| : t ′

Ψ; Φ `p Π(t1).
⌊
t ′
⌋
|Φ|, · : s′

Ψ; Φ `p λ(t1).t2 : Π(t1).
⌊
t ′
⌋
|Φ|, ·

∼

•; Φ

′ ` t ′1 : s •; Φ
′, t ′1 `

⌈
t ′2
⌉
|Φ′| : t ′′

•; Φ
′ `p Π(t ′1).

⌊
t ′′
⌋
|Φ′|, · : s′

•; Φ
′ ` λ(t ′1).t

′
2 : Π(t ′1).

⌊
t ′′
⌋
|Φ′|, ·

/ σ̂Ψ . σ̂Ψ

′



(
Ψ; Φ `p Π(ta).tb : s′

)
∼
(
•; Φ `p Π(t ′a).t

′
b : s′

)
/ σ̂Ψ|relevant(Ψ`pΦ wf) . σ̂Ψ

′

(Ψ; Φ `p t1 : Π(ta).tb)∼
(
•; Φ

′ `p t ′1 : Π(t ′a).t
′
b
)
/ σ̂Ψ

′
. σ̂Ψ1

(Ψ; Φ `p t2 : ta)∼
(
•; Φ

′ `p t ′2 : t ′a
)
/ σ̂Ψ

′|relevant(Ψ; Φ`pta:s) . σ̂Ψ2

Ψ; Φ `p ta : s

Ψ; Φ `p Π(ta).tb : s′

Ψ; Φ `p t1 : Π(ta).tb
Ψ; Φ `p t2 : ta

Ψ; Φ `p t1 t2 : dtbe|Φ| · (idΦ, t2)


∼



•; Φ
′ `p t ′a : s

•; Φ `p Π(t ′a).t
′
b : s

•; Φ
′ `p t ′1 : Π(t ′a).t

′
b

•; Φ
′ `p t ′2 : t ′a

•; Φ
′ `p t ′1 t ′2 :

⌈
t ′b
⌉
|Φ′| · (idΦ′ , t ′2)


/ σ̂Ψ . σ̂Ψ1 ◦ σ̂Ψ2

(Ψ; Φ `p t : Type)∼
(
•; Φ

′ `p t ′ : Type
)
/ σ̂Ψ . σ̂Ψ

′

(Ψ; Φ `p t1 : t)∼
(
•; Φ

′ `p t ′1 : t ′
)
/ σ̂Ψ

′
. σ̂Ψ1 (Ψ; Φ `p t2 : t)∼

(
•; Φ

′ `p t ′2 : t ′
)
/ σ̂Ψ

′
. σ̂Ψ2

Ψ; Φ `p t1 : t Ψ; Φ `p t2 : t
Ψ; Φ `p t : Type

Ψ; Φ `p t1 = t2 : Prop

∼

•; Φ `p t ′1 : t ′ •; Φ `p t ′2 : t ′

•; Φ `p t ′ : Type

•; Φ `p t ′1 = t ′2 : Prop

/ σ̂Ψ . σ̂Ψ1 ◦ σ̂Ψ2

σ̂Ψ.i =? Ψ.i = [Φ∗] tT t ′ < f |Φ∗ · σ̂Ψ|
(Ψ; Φ `p Xi/σ : tT ·σ)∼

(
•; Φ

′ ` t ′ : t ′T
)
/ σ̂Ψ . σ̂Ψ[i 7→ [Φ∗] t ′]

σ̂Ψ.i = [Φ∗] t t = t ′

(Ψ; Φ `p Xi/σ : tT )∼
(
•; Φ

′ ` t ′ : t ′T
)
/ σ̂Ψ . σ̂Ψ

Lemma D.31 The above rules are algorithmic.

Proved by the fact that they obey structural induction on the typing derivations, and are deterministic; non-
covered cases signify the unification failure result.

By mimicking the unification proof above, we could show independently that the above algorithm is sound
– that is, that the σ̂Ψ

′ it returns if it is successful is actually a substitution that makes t and t ′ unify (as well
as Φ and Φ′, along with tT and t ′T ) and is of the right type, provided that the assumptions about the input
substitution σ̂Ψ do hold. Furthermore, we could show completeness, the fact that if the algorithm fails, no
such substitution actually exists.

D.5 Computational language

Here we will refine our results for progress and preservation from the previous section, using the above results.

Definition D.32 We refine the typing rule for pattern matching from definition C.4 as shown below.

Ψ ` T : K Ψ, K; Γ ` dτe|Ψ|,1 : ? Ψ `p
⌈
Ψ
′⌉
|Ψ| wf

Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K unspecΨ,

⌈
Ψ
′⌉
|Ψ| v relevant

(
Ψ,
⌈
Ψ
′⌉
|Ψ| `p

⌈
T ′
⌉
|Ψ|,|Ψ′| : K

)
Ψ,
⌈
Ψ
′⌉
|Ψ| ; Σ; Γ `

⌈
e′
⌉
|Ψ|,|Ψ′| : dτe|Ψ|,1 · (idΨ,

⌈
T ′
⌉
|Ψ|,|Ψ′|)

Ψ; Σ; Γ ` unify T return (.τ) with (Ψ′.T ′ 7→ e′) : (dτe|Ψ|,1 · (idΨ, T ))+unit

Lemma D.33 (Substitution) Adaptation of the substitution lemma from C.13.



All the cases are entirely identical to the previous proof, with the exception of the pattern matching construct
which has a new typing rule. In that case, proceed similarly as before, with the use of the lemmas D.2, D.3 and
D.18 proved above.

Theorem D.34 (Preservation) Adaptation of theorem C.16 to the new rules.

All the cases are entirely identical to the previous proof, with the exception of the pattern matching construct.
In that case, we need to explicitly allude to the fact that if • `p dΨ′e|Ψ| wf, then obviously also • ` dΨ′e|Ψ| wf.
Similarly we have that dΨ′e0 `p dT ′e0,|Ψ′| : K implies dΨ′e0 ` dT ′e0,|Ψ′| : K.

Theorem D.35 (Progress) Adaptation of theorem E.11 to the new rules.

Again the only case that needs adaptation is the pattern matching case. In that case, we first note that if • ` T : K
(as we have here), we also have • `p T : K. Then, we allude to the theorem 3 to split cases depending on whether
a suitable σΨ exists or not. In both cases, one step rule is applicable – if a unique σΨ exists, then it has the desired
properties for the first pattern matching step rule to work; if it does not, the second pattern matching step rule is
applicable.

D.6 Sketch: practical pattern matching

The unification algorithm presented above requires full typing derivations for terms, something that is unrealistic
to keep around as part of the runtime representation of terms. Here we will present an informal refinement of
the above algorithm, that works on suitably annotated terms, instead of full typing derivations. The annotations
are the minimal possible extra information needed to simulate the above algorithm.

Definition D.36 We define a notion of annotated terms, for which we reuse the t syntactic class; it will be
apparent from the context whether we mean a normal or an annotated term.

t ::= c | s | fI | bi | λ(t1).t2 | Πs(t1).t2 | (t1 : t) t2 | t1 =t t2 | Xi/σ

Lemma D.37 1. If t is an unannotated term with •, Ψu; Φ `p t : t ′ then there exists a derivation for Ψu; Φ `p

t : t ′ where all terms are annotated terms.

2. The inverse is also true.

These are trivial to prove by structural induction on the typing derivations.

Definition D.38 The unification procedure is defined through the following judgement. It gets Ψ as a global
parameter, which we omit here.

(T )∼ (T ′)

(t)∼
(
t ′
)
/unspecΨ . σ̂Ψ

([Φ] t)∼
(
[Φ] t ′

)
. σ̂Ψ

(
Φ, Φ

′)∼ (Φ, Φ
′′). σ̂Ψ(

[Φ]Φ′
)
∼
(
[Φ]Φ′′

)
. σ̂Ψ

(Φ′)∼ (Φ′′)

(•)∼ (•).unspec
Ψ̂

(Φ)∼
(
Φ
′). σ̂Ψ (t)∼

(
t ′
)
/ σ̂Ψσ̂Ψ

′

((Φ, t))∼
(
(Φ′, t ′)

)
. σ̂Ψ

′

(Φ, Xi)∼
(
Φ,Φ′

)
= unspec

Ψ̂
[i 7→ [Φ]Φ′]



(t)∼ (t ′)

(c)∼ (c)/ σ̂Ψ . σ̂Ψ (s)∼ (s)/ σ̂Ψ . σ̂Ψ

I · σ̂Ψ = I′

( fI)∼
(

f ′I
)
/ σ̂Ψ . σ̂Ψ

s = s′ (t1)∼
(
t ′1
)
/ σ̂Ψ . σ̂Ψ

′
(dt2e)∼

(⌈
t ′2
⌉)

/ σ̂Ψ

′
. σ̂Ψ

′′

(Πs(t1).t2)∼
(
Πs′(t ′1).t

′
2
)
/ σ̂Ψ . σ̂Ψ

′′
(dt2e)∼

(⌈
t ′2
⌉)

/ σ̂Ψ . σ̂Ψ

′

(λ(t1).t2)∼
(
λ(t ′1).t

′
2
)
/ σ̂Ψ . σ̂Ψ

′

(t)∼
(
t ′
)
/ σ̂Ψ . σ̂Ψ

′
(t1)∼

(
t ′1
)
/ σ̂Ψ

′
. σ̂Ψ1 (t2)∼

(
t ′2
)
/ σ̂Ψ

′
. σ̂Ψ2 σ̂Ψ1 ◦ σ̂Ψ2 = σ̂Ψ

′′

((t1 : t) t2)∼
(
(t ′1 : t ′) t ′2

)
/ σ̂Ψ . σ̂Ψ

′′

(t)∼
(
t ′
)
/ σ̂Ψ . σ̂Ψ

′
(t1)∼

(
t ′1
)
/ σ̂Ψ

′
. σ̂Ψ1 (t2)∼

(
t ′2
)
/ σ̂Ψ

′
. σ̂Ψ2 σ̂Ψ1 ◦ σ̂Ψ2 = σ̂Ψ

′′

(t1 =t t2)∼
(
t ′1 =t ′ t ′2

)
/ σ̂Ψ . σ̂Ψ

′′

σ̂Ψ.i =? t ′ < f |σ · σ̂Ψ|
(Xi/σ)∼

(
t ′
)
/ σ̂Ψ . σ̂Ψ[i 7→ t ′]

σ̂Ψ.i = t ′

(Xi/σ)∼
(
t ′
)
/ σ̂Ψ . σ̂Ψ

E. Simple staging support

Here we will add a light-weight staging support to the computational language. We extend the computational
language as follows.

Definition E.1 The syntax of the computational language is extended below.

e ::= · · · | letstatic x = e in e′

Γ ::= · · · | Γ, x :s τ

Definition E.2 Freshening and binding for computational types and terms are extended as follows.

deeMN,K

dletstatic x = e in e′eMN,K = letstatic x = deeMN,K in de′eM+1
N,K

becMN,K

bletstatic x = e in e′cMN,K = letstatic x = becMN,K in be′cM+1
N,K

Definition E.3 Extension substitution application to computational-level types and terms.

e ·σΨ

letstatic x = e in e′ ·σΨ = letstatic x = e ·σΨ in e′ ·σΨ



Definition E.4 Limiting a context to the static types is defined as follows.

Γ|static

•|static = •
(Γ, x :s t)|static = Γ|static, x : t
(Γ, x : t)|static = Γ|static
(Γ, α : k)|static = Γ|static

Definition E.5 The typing judgements for the computational language are extended below.

Ψ; Σ; Γ ` e : τ

•; Σ; Γ|static ` e : τ Ψ; Σ; Γ,x :s τ ` e′ : τ

Ψ; Σ; Γ ` letstatic x = e in e′ : τ

x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ

Definition E.6 Small-step operational semantics for the language are extended below.

e ::= Λ(K).e | e T | pack T return (.τ) with e | unpack e (.)x.(e′)
| () | error | λx : τ.e | e e′ | x | (e, e′) | proji e | inji e | case(e, x.e′, x.e′′) | fold e | unfold e | ref e
| e := e′ | !e | l | Λα : k.e | e τ | fix x : τ.e
| unify T return (.τ) with (Ψ.T ′ 7→ e′) | letstatic x = e in e′

v ::= Λ(K).ed | pack T return (.τ) with v | () | λx : τ.ed | (v, v′) | inji v | fold v | l | Λα : k.ed

ed ::= Λ(K).ed | ed T | pack T return (.τ) with ed | unpack ed (.)x.(e′d)
| () | error | λx : τ.ed | ed e′d | x | (ed , e′d) | proji ed | inji ed | case(ed , x.e′d , x.e′′d) | fold ed | unfold ed

| ref ed | ed := e′d | !ed | l | Λα : k.ed | ed τ | fix x : τ.ed

| unify T return (.τ) with (Ψ.T ′ 7→ e′d)
S ::= letstatic x = • in e′ | letstatic x = S in e′ | Λ(K).S | λx : τ.S | unpack ed (.)x.(S)
| case(ed , x.S, x.e2) | case(ed , x.ed , x.S) | Λα : k.S | fix x : τ.S | unify T return (.τ) with (Ψ.T ′ 7→ S)
| Es[S]

Es ::= Es T | pack T return (.τ) with Es | unpack Es (.)x.(e′) | Es e′ | ed Es | (Es, e) | (ed , Es) | proji Es

| inji Es | case(Es, x.e1, x.e2) | fold Es | unfold Es | ref Es | Es := e′ | ed := Es | !Es | Es τ

E ::= • | E T | pack T return (.τ) with E | unpack E (.)x.(ed) | E ed | v E | (E, ed) | (v, E) | proji E | inji E
| case(E, x.e′d , x.e′′d) | fold E | unfold E | ref E | E := ed | v := E | !E | E τ

µ ::= • | µ, l 7→ v

( µ , e )−→s (( µ , e′ )|error)

( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )

( µ , ed )−→ error

( µ , S[ed ] )−→s error
( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] )

( µ , letstatic x = v in e )−→s ( µ , e[v/x] )

Most lemmas are trivial to adapt. We adapt the substitution lemma for computational terms below.

Lemma E.7 (Substitution) 1. If Ψ, Ψ′; Γ, α′ : k′, Γ′ ` τ : k and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Γ, Γ′[τ′/α′] `
τ[τ′/α′] : k.



2. If Ψ, Ψ′; Σ Γ, α′ : k′, Γ′ ` e : τ and Ψ; Γ ` τ′ : k′ then Ψ, Ψ′; Σ; Γ, Γ′[τ′/α′] ` e[τ′/α′] : τ[τ′/α′].

3. If Ψ, Ψ′; Σ Γ, x′ : τ′, Γ′ ` ed : τ and Ψ; Σ; Γ ` e′d : τ′ then Ψ, Ψ′; Σ; Γ, Γ′ ` ed [e′d/x′] : τ.

4. If Ψ; Γ, x :s τ, Γ′ ` e : τ′ and •; Σ; • ` v : τ then Ψ; Σ; Γ, Γ′ ` e[v/x] : τ′.

5. If Ψ; Γ, x : τ, Γ′ ` e : τ′ and •; Σ; • ` v : τ then Ψ; Σ; Γ, Γ′ ` e[v/x] : τ′.

Easy proof by structural induction on the typing derivation for e. We prove the interesting cases below:

Part 3. Case
x :s τ ∈ Γ

Ψ; Σ; Γ ` x : τ
�

We have that ed [e′d/x] = e′d , and Ψ; Σ; Γ ` e′d : τ, which is the desired.

Case
•; Σ; Γ|static ` e : τ Ψ; Σ; Γ, x :s τ ` e′ : τ

′

Ψ; Σ; Γ ` letstatic x = e in e′ : τ
′ �

Impossible case, because the theorem only has to do with ed cases.

Part 4. Most cases are trivial. The only interesting case follows.

Case
•; Σ; Γ|static, x : τ, Γ

′|static ` e : τ Ψ; Σ; Γ, x :s τ, Γ
′, x′ :s τ

′′ ` e′ : τ
′

Ψ; Σ; Γ, x :s τ, Γ
′ ` letstatic x′ = e in e′ : τ

′ �

We use part 5 for e to get that •; Σ; Γ|static, Γ′|static ` e[v/x] : τ.
By induction hypothesis for e′ we get Ψ; Σ; Γ, Γ′,x′ :s τ′′ ` e′[v/x] : τ′.
Thus using the same typing rule we get the desired result.

Part 5. Trivial by structural induction.

Lemma E.8 (Types of decompositions) 1. If Ψ; Σ; Γ ` S[e] : τ with Γ|static = •, then there exists τ′ such that
•; Σ; • ` e : τ′ and for all e′ such that •; Σ; • ` e′ : τ′, we have that Ψ; Σ; Γ ` S[e′] : τ.

2. If Ψ; Σ; Γ ` Es[e] : τ then there exists τ′ such that Ψ; Σ; Γ ` e : τ′ and for all e′ such that Ψ; Σ; Γ ` e′ : τ′, we
have that Ψ; Σ; Γ ` Es[e′] : τ.

Part 1. By structural induction on S.

Case S= letstatic x = • in e′ � By inversion of typing we get that •; Σ; Γ|static ` e : τ. We have Γ|static, thus
we get •; Σ; • ` e : τ′. Using the same typing rule we get the desired result for S[e′].

Case S= letstatic x = S′ in e′′ � By inductive hypothesis for S′ we get the desired directly.

Case S= Λ(K).S′ � We have that dS′[ed ]e = S′′[dee] with S′′ = dS′[•]e. By inductive hypothesis for
Ψ, K; Σ; Γ ` S′′[dee] : τ we get that •; Σ; • ` dee : τ′. From this we directly get dee = e, and the desired
follows immediately (using the rest of the inductive hypothesis).

Case S= Es[S] � We have that Ψ; Σ; Γ ` Es[S[ed ]] : τ. Using part 2 for Es and S[ed ] we get that Ψ; Σ; Γ `
S[ed ] : τ′ for some τ′ and also that for all e′ such that Ψ; Σ; Γ ` e : τ′, Ψ; Σ; Γ ` Es[e′] : τ. Then using induction
hypothesis we get a τ′′ such that •; Σ; • ` ed : τ′′. For this type, we also have that •; Σ; • ` e′d : τ′′ implies
Ψ; Σ; Γ ` S[e′d ] : τ′, which further implies Ψ; Σ; Γ ` Es[S[e′d ]] : τ.

The rest of the cases follow similar ideas.



Part 2. By induction on the structure of Es. In each case, use inversion of typing to get the type for e, and then
use the same typing rule to get the derivation for Es[e′].

Theorem E.9 (Preservation) 1. If •; Σ; • ` e : τ, µ ∼ Σ, ( µ , e ) −→s ( µ′ , e′ ) then there exists Σ′ such that
Σ⊆ Σ′, µ′ ∼ Σ′ and •; Σ′; • ` e′ : τ.

2. If •; Σ; • ` ed : τ, µ ∼ Σ, ( µ , ed ) −→s ( µ′ , e′d ) then there exists Σ′ such that Σ ⊆ Σ′, µ′ ∼ Σ′ and
•; Σ′; • ` e′d : τ.

Part 1 We proceed by induction on the derivation of ( µ , e )−→ ( µ′ , e′ ).

Case
( µ , ed )−→ ( µ′ , e′d )

( µ , S[ed ] )−→s ( µ′ , S[e′d ] )
�

Using the lemma E.8 we get •; Σ; • ` ed : τ′. Using part 2, we get that •; Σ; • ` e′d : τ′. Thus, using again the
same lemma we get the desired.

Case ( µ , S[letstatic x = v in e] )−→s ( µ , S[e[v/x]] ) �

Using the lemma E.8 we get •; Σ; • ` letstatic x = v in e : τ′. By typing inversion we get that •; Σ; • ` v : τ′′,
and also that •; Σ; x :s τ′′ ` e : τ′. Using the substitution lemma E.7 we get the desired result.

The rest of the cases are trivial.

Part 2 Proceeds exactly as before, as ed entirely matches the definition of expressions prior to the extension.

Theorem E.10 (Unique decomposition) 1. For every expression e, we have:

(a) Either e is a dynamic expression ed , in which case there is no way to write ed as S[e′] for any e′.

(b) Or there is a unique decomposition of e into S[ed ].

2. For every expression ed , we have:

(a) Either it is a value v and the decomposition v = E[e] implies E= • and e = v.

(b) Or, there is a unique decomposition of ed into ed = E[v].

Part 1. Proceed by induction on the structure of the expression e.

Case Λ(K).e′ � By induction hypothesis on the structure of e′. If we have e′ = ed , then this is a dynamic
expression already. In the other cases, we get a unique decomposition of e′ into S′[e′′]. The original expression
e can be uniquely decomposed using S = Λ(K).S′, with e = S[e′′]. This decomposition is unique because the
outer frame is uniquely determined; if the inner frames or the expression filling the hole could be different, we
would violate the uniqueness part of the decomposition returned by induction hypothesis.

Case e′ T � By induction hypothesis we get that either e′ = e′d , or there is a unique decomposition of e′ into
S′[e′′]. In that case, e is uniquely decomposed using S= Es[S

′] with Es = • T , into e = S′[e′′] T .

Case unpack x (.)e′.(e′′) � By induction hypothesis on e′; if it is a dynamic expression, then by induction
hypothesis on e′′; if that too is a dynamic expression, then the original expression is too. Otherwise, use
the unique decomposition of e′′ = S′[e′′′] to get the unique decomposition e = unpack x (.)ed .(S

′[e′′′]). If e′

is not a dynamic expression, use the unique decomposition of e′ = S′′[e′′′′] to get the unique decomposition
e = unpack x (.)S′′[e′′′′].(e′′).



Case letstatic x = e′ in e′′ � By induction hypothesis on e′.
In the case that e′ = ed , then trivially we have the unique decomposition e = (letstatic x = • in e′′)[ed ].
In the case where e′ = S[ed ], we have the unique decomposition e = (letstatic x = S in e′′)[ed ].

The rest of the cases are similar.

Part 2. Trivial by induction on the structure of the dynamic expression ed .

Theorem E.11 (Progress) 1. If •; Σ; • ` e : τ and µ∼Σ, then either µ, e−→s error, or e is a dynamic expression
ed , or there exist µ′ and e′ such that µ, e−→s µ′, e′.

2. If •; Σ; • ` ed : τ and µ∼ Σ, then either µ, ed −→ error, or ed is a value v, or there exist µ′ and e′d such that
µ, ed −→ µ′, e′d .

Part 1 First, we use the unique decomposition lemma E.10, we get that either e is a dynamic expression, in
which case we are done; or a decomposition into S[e′d ]. In that case, we use the lemma E.8 and part 2 to get
that either e′d is a value or that some progress can be made: either by failing or getting a µ′,e′′d , in which case
we use the appropriate rule for −→s either to fail or to progress to µ′,S[e′′d ]. If e′d is a value, then we split cases
depending on S – if it is simply letstatic x = • in e or it is nested. In both cases we make progress using the
appropriate step rule.

Part 2 Identical as before.

F. Collapsing terms with extension variables into terms with normal variables

Definition F.1 A decidable judgement for deciding whether a term t, a context Φ, etc. are collapsable to a
normal logical term is given below.

Intuitively, it defines as collapsable terms where all context Φ involved (even inside extension variable types)
are subcontexts of a single context Φ′′ (which is the result of the procedure), and all extension variables are used
with identity substitutions of that context.

collapsible(Ψ)/Φ′ .Φ′′

collapsible(•)/Φ
′ .Φ

′
collapsible(Ψ)/Φ

′ .Φ
′′ collapsible(K)/Φ

′′ .Φ
′′′

collapsible(Ψ, K)/Φ
′ .Φ

′′′

collapsible(K)/Φ′ .Φ′′

K = T collapsible(T )/Φ
′ .Φ

′′

collapsible(K)/Φ
′ .Φ

′′
collapsible(Φ)/Φ

′ .Φ
′′

collapsible([Φ]ctx)/Φ
′ .Φ

′′

collapsible(T )/Φ′ .Φ′′

collapsible(Φ)/Φ
′ .Φ

′′ collapsible(t)/Φ
′′

collapsible([Φ] t)/Φ
′ .Φ

′′
collapsible(Φ1, Φ2)/Φ

′ .Φ
′′

collapsible([Φ1]Φ2)/Φ
′ .Φ

′′



collapsible(Φ)/Φ′ .Φ′′

collapsible(•)/Φ
′ .Φ

′
collapsible(Φ)/Φ

′ .Φ
′′

Φ = Φ
′′ collapsible(t)/Φ

collapsible(Φ, t)/Φ
′ . (Φ, t)

collapsible(Φ)/Φ
′ .Φ

′′
Φ⊂Φ

′′ collapsible(t)/Φ
′′

collapsible(Φ, t)/Φ
′ .Φ

′′
collapsible(Φ)/Φ

′ .Φ
′′

Φ = Φ
′′

collapsible(Φ, Xi)/Φ
′ . (Φ, Xi)

collapsible(Φ)/Φ
′ .Φ

′′
Φ⊂Φ

′′

collapsible(Φ, Xi)/Φ
′ .Φ

′′

collapsible(t)/Φ′

collapsible(s)/Φ
′ collapsible(c)/Φ

′ collapsible( fI)/Φ
′

collapsible(t1)/Φ
′ collapsible(dt2e)/Φ

′

collapsible(λ(t1).t2)/Φ
′

collapsible(t1)/Φ
′ collapsible(dt2e)/Φ

′

collapsible(Π(t1).t2)/Φ
′

collapsible(t1)/Φ
′ collapsible(t2)/Φ

′

collapsible(t1 t2)/Φ
′

collapsible(t1)/Φ
′ collapsible(t2)/Φ

′

collapsible(t1 = t2)/Φ
′

σ⊆ idΦ
′

collapsible(Xi/σ)/Φ
′

collapsible(Ψ ` T : K).Φ′

collapsible(Ψ)/•.Φ
′ collapsible(K)/Φ

′ .Φ
′′ collapsible(T )/Φ

′′ .Φ
′′

collapsible(Ψ ` T : K).Φ
′′

collapsible(Ψ `Φ wf).Φ′

collapsible(Ψ)/•.Φ
′ collapsible(Φ)/Φ

′ .Φ
′′

collapsible(Ψ `Φ wf).Φ
′′

Lemma F.2 1. If collapsible(Φ)/Φ′ .Φ′′ then either Φ′ ⊆Φ and Φ′′ = Φ, or Φ⊆Φ′ and Φ′′ = Φ′.

2. If collapsible(Ψ ` [Φ] t : [Φ] tT ).Φ′ then Φ⊆Φ′.

3. If collapsible(Ψ ` [Φ0]Φ1 : [Φ0]Φ1).Φ′ then Φ0,Φ1 ⊆Φ′.

Trivial by structural induction.

Lemma F.3 1. If collapsible(Ψ)/•.Φ and Φ⊆Φ′ then collapsible(Ψ)/Φ′ .Φ′.

2. If collapsible(K)/•.Φ and Φ⊆Φ′ then collapsible(K)/Φ′ .Φ′.

3. If collapsible(T )/•.Φ and Φ⊆Φ′ then collapsible(T )/Φ′ .Φ′.

4. If collapsible(Φ0)/•.Φ and Φ⊆Φ′ then collapsible(Φ0)/Φ′ .Φ′.



Trivial by structural induction on the collapsing relation.

Lemma F.4 If `Ψ wf and collapsible(Ψ)/•.Φ0, then there exist Ψ1, σ1
Ψ

, σ2
Ψ

, Φ1, σ1 and σ−1 such that:
Ψ1 ` σ1

Ψ
: Ψ,

• ` σ2
Ψ

: Ψ1,
Ψ1 `Φ1 wf,
Ψ1; Φ1 ` σ1 : Φ0 ·σ1

Ψ
,

Ψ; Φ0 ` σ−1 : Φ1 ·σ2
Ψ

,
for all t such that Ψ; Φ0 ` t : t ′, we have t ·σ1

Ψ
·σ1 ·σ2

Ψ
·σ−1 = t, and all members of Ψ1 are of the form [Φ∗] t

where Φ∗ ⊆Φ1.

By induction on the derivation of the relation collapsible(Ψ)/•.Φ0.

Case Ψ = • �

We choose Ψ1 = •; σ1
Ψ
= σ2

Ψ
= •; Φ1 = •; σ1 = •; σ−1 = • Φ1 = • and the desired trivially hold.

Case Ψ = Ψ
′, [Φ]ctx �

From the collapsable relation, we get: collapsible(Ψ′) / • .Φ′0, collapsible([Φ]ctx) /Φ′0 .Φ0. By induction
hypothesis for Ψ′, get:

Ψ′1 ` σ′1
Ψ

: Ψ′,
• ` σ′2

Ψ
: Ψ′1,

Ψ′1 `Φ′1 wf,
Ψ′1; Φ′1 ` σ′1 : Φ′0 ·σ′1

Ψ
,

Ψ′; Φ′0 ` σ′−1 : Φ′1 ·σ′2
Ψ

,
for all t such that Ψ′; Φ′0 ` t : t ′, we have t ·σ′1

Ψ
·σ′1 ·σ′2

Ψ
·σ′−1 = t, and all members of Ψ′1 are of the

form [Φ∗] t where Φ∗ ⊆Φ′1.
By inversion of typing for [Φ]ctx we get that Ψ′ `Φ wf.
We fix σ1

Ψ
= σ′1

Ψ
, [Φ′0 ·σ′1

Ψ
] which is a valid choice as long as we select Ψ1 so that Ψ′1 ⊆Ψ1. This substitution

has correct type by taking into account the substitution lemma for Φ′0 and σ′1
Ψ

.
For choosing the rest, we proceed by induction on the derivation of Φ′0 ⊆Φ0.
If Φ0 = Φ′0, then:

We have Φ⊆Φ′0 because of the previous lemma.
Choose Ψ1 = Ψ′1 ; σ2

Ψ
= σ′2

Ψ
; Φ1 = Φ′1 ; σ1 = σ′1 ; σ−1 = σ′−1.

Everything holds trivially, other than σ1
Ψ

typing. This too is easy to prove by taking into account the
substitution lemma for Φ and σ′1

Ψ
. Also, σ′−1 typing uses extension variable weakening. Last, for the

cancellation part, terms that are typed under Ψ are also typed under Ψ′ so this part is trivial too.
If Φ0 = Φ′0, t, then: (here we abuse things slightly – by identifying the context and substitutions from induction
hypothesis with the ones we already have: their properties are the same for the new Φ′0)

We have Φ = Φ0 = Φ′0, t because of the previous lemma (Φ0 is not Φ′0 thus Φ0 = Φ).
First, choose Φ1 = Φ′1, t ·σ′1

Ψ
·σ′1. This is a valid choice, because Ψ′; Φ′0 ` t : s; by applying σ′1

Ψ
we

get Ψ′1; Φ′0 ·σ′1
Ψ
` t ·σ′1

Ψ
: s; by applying σ′1 we get Ψ′1; Φ′1 ` t ·σ′1

Ψ
·σ′1 : s.

Thus Ψ′1 `Φ′1, t ·σ′1
Ψ
·σ′1 wf (and the Ψ1 we will choose is supercontext of Ψ′1).

Now, choose Ψ1 = Ψ′1, [Φ1] t ·σ′1Ψ ·σ′1. This is well-formed because of what we proved above about
the substituted t, taking weakening into account. Also, the condition for the contexts in Ψ1 being
subcontexts of Φ1 obviously holds.



Choose σ2
Ψ
= σ′2

Ψ
, [Φ1] f|Φ′1|. We have • ` σ2

Ψ
: Ψ1 directly by our construction.

Choose σ1 = σ′1, f|Φ′1|. We have that this latter term can be typed as Ψ1; Φ1 ` f|Φ′1| : t ·σ′1
Ψ
·σ′1, and

thus we have Ψ1; Φ1 ` σ1 : Φ′0 ·σ′1
Ψ
, t ·σ′1

Ψ
.

Choose σ−1 = σ′−1, f|Φ′0|, which is typed correctly since t · σ′1
Ψ
· σ′1 · σ′2

Ψ
· σ−1 = t. Last, assume

Ψ; Φ′0, t ` t∗ : t ′∗. We prove t∗ ·σ1
Ψ
·σ1 ·σ2

Ψ
·σ−1 = t∗.

First, t∗ is also typed under Ψ′ because t∗ cannot use the newly-introduced variable directly
(even in the case where it would be part of Φ0, there’s still no extension variable that has
X|Ψ′| in its context).
Thus it suffices to prove t∗ ·σ′1Ψ ·σ1 ·σ2

Ψ
·σ−1 = t∗.

Then proceed by structural induction on t∗. The only interesting case occurs when t∗ =
f|Φ′0|, in which case we have:
f|Φ′0| ·σ′1Ψ ·σ1 ·σ2

Ψ
·σ−1 = f|Φ′0·σ′1

Ψ
| ·σ1 ·σ2

Ψ
·σ−1 = f|Φ′1| ·σ2

Ψ
·σ−1 = f|Φ′1·σ2

Ψ
| ·σ−1 = f|Φ′0|

If Φ0 = Φ′0, Xi:
By well-formedness inversion we get that Ψ.i = [Φ∗]ctx, and by repeated inversions of the col-
lapsable relation we get Φ∗ ⊆Φ′0.
Choose Φ1 = Φ′1 ; Ψ1 = Ψ′1 ; σ2

Ψ
= σ′2

Ψ
; σ1 = σ′1; σ−1 = σ′−1.

Most desiderata are trivial. For σ1, note that (Φ′1, Xi) ·σ′1Ψ = Φ′1 ·σ′1
Ψ

since by construction we have
that σ′1

Ψ
always substitutes parametric contexts by the empty context.

For cancellation, we need to prove that for all t such that Ψ; Φ′0, Xi ` t∗ : t ′∗, we have t∗ ·σ1
Ψ
·σ1 ·

σ2
Ψ
·σ−1 = t∗. This is proved directly by noticing that t∗ is typed also under Ψ′ (if Xi was the just-

introduced variable, it wouldn’t be able to refer to itself).

Case Ψ = Ψ
′, [Φ] t �

From the collapsable relation, we get: collapsible(Ψ′)/•.Φ′0, collapsible(Φ)/Φ′0 .Φ0, collapsible(t)/Φ0. By
induction hypothesis for Ψ′, get:

Ψ′1 ` σ′1
Ψ

: Ψ′,
• ` σ′2

Ψ
: Ψ′1,

Ψ′1 `Φ′1 wf,
Ψ′1; Φ′1 ` σ′1 : Φ′0 ·σ′1

Ψ
,

Ψ′; Φ′0 ` σ′−1 : Φ′1 ·σ′2
Ψ

,
for all t such that Ψ′; Φ′0 ` t : t ′, we have t ·σ′1

Ψ
·σ′1 ·σ′2

Ψ
·σ′−1 = t, and all members of Ψ′1 are of the

form [Φ∗] t where Φ∗ ⊆Φ′1.
Also from typing inversion we get: Ψ′ `Φ wf and Ψ′; Φ ` t : s.
We proceed similarly as in the previous case, by induction on Φ′0⊆Φ0, in order to redefine Ψ′1,σ′1

Ψ
,σ′2

Ψ
,Φ′1,σ′1,σ−1

with the properties:
Ψ′1 ` σ′1

Ψ
: Ψ′,

• ` σ′2
Ψ

: Ψ′1,
Ψ′1 `Φ′1 wf,
Ψ′1; Φ′1 ` σ′1 : Φ0 ·σ′1

Ψ
,

Ψ′; Φ0 ` σ′−1 : Φ′1 ·σ′2
Ψ

,
for all t such that Ψ′; Φ0 ` t : t ′, we have t ·σ′1

Ψ
·σ′1 ·σ′2

Ψ
·σ′−1 = t, and all members of Ψ′1 are of the

form [Φ∗] t where Φ∗ ⊆Φ′1.
Now we have Φ⊆Φ0 thus Ψ′; Φ0 ` t : s.
By applying σ′1

Ψ
and then σ′1 to t we get Ψ′1; Φ′1 ` t ·σ′1

Ψ
·σ′1 : s. We can now choose Φ1 = Φ′1, t ·σ′1

Ψ
·σ′1.

Choose Ψ1 = Ψ′1, [Φ1] t ·σ′1
Ψ
·σ′1. It is obviously well-formed.

Now, will choose σ1
Ψ

:



Need to choose t1 such that Ψ1; Φ ·σ′1
Ψ
` t1 : t ·σ′1

Ψ
.

Assuming t1 = X|Φ′1|/σ, we need t ·σ′1
Ψ
·σ′1 ·σ = t ·σ′1

Ψ
and Ψ1; Φ ·σ′1

Ψ
` σ : Φ1.

Thus, what we require is the inverse of σ1. By construction, there exists such a σ, because σ1 is just
a variable renaming. (Note that this is different from σ−1.)
Therefore, set σ1

Ψ
= σ′1

Ψ
, [Φ]X|Φ′1|/σ, which has the desirable properties.

Choose σ2
Ψ
= σ′2

Ψ
, [Φ1] f|Φ′1|. We trivially have • ` σ2

Ψ
: Ψ1.

Choose σ1 = σ′1, with typing holding obviously.
Choose σ−1 = σ′−1, X|Ψ′|/idΦ. Consider the cancellation fact; typing is then possible.
It remains to prove that for all t∗ such that Ψ′, [Φ] t; Φ0 ` t∗ : t ′∗, we have t ·σ1

Ψ
·σ1 ·σ2

Ψ
·σ−1 = t.

This is done by structural induction on t∗, with the interesting case being t∗ = X|Ψ′|/σ∗. By inversion of col-
lapsable relation, we get that σ∗ = idΦ.
Thus (X|Ψ′|/idΦ) ·σ1

Ψ
·σ1 ·σ2

Ψ
·σ−1 = (X|Φ′1|/σ) ·(idΦ ·σ1

Ψ
) ·σ1 ·σ2

Ψ
·σ−1 = (X|Φ′1|/σ) ·(idΦ ·σ1

Ψ
) ·σ1 ·σ2

Ψ
·σ−1 =

(X|Φ′1|/σ) ·σ1 ·σ2
Ψ
·σ−1 = (X|Φ′1|/(σ ·σ1)) ·σ2

Ψ
·σ−1 = (X|Φ′1|/(idΦ1)) ·σ2

Ψ
·σ−1 = ( f|Φ′1| · (idΦ1 ·σ2

Ψ
)) ·σ−1 =

( f|Φ′1| · idΦ1 ·σ2
Ψ
) ·σ−1 = f|Φ′1·σ2

Ψ
| ·σ−1 = X|Ψ′|/idΦ.

Theorem F.5 If Ψ ` [Φ] t : [Φ] tT and collapsible(Ψ ` [Φ] t : [Φ] tT ) = Φ∗, then there exist Φ′, t ′, t ′T and σ such
that • `Φ′ wf, • ` [Φ′] t ′ : [Φ′] t ′T , Ψ; Φ ` σ : Φ′, t ′ ·σ = t and t ′T ·σ = tT .

Easy to prove using above lemma. Set Φ′ = Φ1 ·σ2
Ψ

, t ′ = t ·σ1
Ψ
·σ1 ·σ2

Ψ
, t ′T = tT ·σ1

Ψ
·σ1 ·σ2

Ψ
, and also set

σ = σ−1.


