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Abstract

Concurrency, as a useful feature of many modern programming lan-
guages and systems, is generally hard to reason about. Although
existing work has explored the verification of concurrent programs
using high-level languages and calculi, the verification of concur-
rent assembly code remains an open problem, largely due to the lack
of abstraction at a low-level. Nevertheless, it is sometimes neces-
sary to reason about assembly code or machine executables so as to
achieve higher assurance.

In this paper, we propose a logic-based “type” system for the static
verification of concurrent assembly programs, applying the “invari-
ance proof” technique for verifying general safety properties and
the “assume-guarantee” paradigm for decomposition. In particular,
we introduce a notion of “local guarantee” for the thread-modular
verification in a non-preemptive setting.

Our system is fully mechanized. Its soundness has been verified
using the Coq proof assistant. A safety proof of a program is semi-
automatically constructed with help of Coq, allowing the verifica-
tion of even undecidable safety properties. We demonstrate the us-
age of our system using three examples, addressing mutual exclu-
sion, deadlock freedom, and partial correctness respectively.

Categories and Subject Descriptors

F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—assertions, invariants,
mechanical verification; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—correctness proofs, formal methods;
D.3.1 [Programming Languages]: Formal Definitions and The-
ory
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1 Introduction

The Verifying Compiler, as a Grand Challenge [20] to the pro-
gramming languages community, solicits a programming frame-
work which guarantees the correctness of a program before run-
ning it. The criterion of correctness ranges from type-safety, which
has been widely applied in programming practice, to total correct-
ness of critical components, whose application is often limited by
an evaluation of the cost and benefits of accurate and complete for-
malization.

Whereas it is difficult to ensure correctness for sequential systems,
it is even more so for concurrent systems due to the interaction
and interference between multiple threads. Much existing work
has explored the verification of concurrent programs using high-
level languages and calculi (e.g.,CSP [19], CCS [26], CML [37],
TLA [24]). Unfortunately, the verification of concurrent assembly
code remains an open problem. On the one hand, the low-level ab-
straction is arduous to work with; On the other hand, the extreme
flexibility offered by assembly languages is tough to manage.

Nevertheless, any high-level program or computation must be trans-
lated before it is carried out on actual machines, and the translation
process in practice is invariably anything but trivial. It is at least
suspectable that the guarantee established at the high-level may be
invalidated by tricky compilation and optimization bugs. Therefore,
it is not only useful, but sometimes necessary to reason about as-
sembly code or machine executable directly so as to achieve higher
assurance. Furthermore, certain critical applications, such as core
system libraries and embedded software, are sometimes directly
written in assembly code for efficiency and expressiveness; their
verification should not be overlooked.

Our previous work [46, 47] investigated a logic-based approach for
verifying assembly code. We demonstrated that a simple low-level
language based on Hoare logic [17, 18], namely a language for
certified assembly programming (CAP), can be used to certify more
than type safety; and with help of a proof assistant, semi-automatic
proof construction is not unduly difficult, allowing the verification
of even undecidable program properties. Moreover, the machine-
checkable proofs for the safety of the assembly code directly en-



(Program) P ::= (C,S,I)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R)
(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗
(Register) r ::= {rk}k∈{0...7}

(Labels) f,l ::= n (nat nums)
(WordVal) w ::= n (nat nums)
(InstrSeq) I ::= c;I | jd f

(Command) c ::= add rd,rs,rt | movi rd,w | bgt rs,rt ,f

| ld rd,rs(w) | st rd(w),rs

(CdHpSpec) Ψ ::= {f ; a}∗
(Assert) a ∈ State→Prop

Figure 1. Syntax and verification constructs of Simple CAP.

able the encapsulation of verified CAP programs as Foundational
Proof-Carrying Code (FPCC) [4, 15] packages.

In this paper, we extend the previous work on CAP to the domain
of concurrent computation, presenting a concurrent language for
certified assembly programming (CCAP). The computation layer
of CCAP models a simple yet generic assembly language that sup-
ports the non-deterministic interleaved execution of two threads.
The “type” layer of CCAP, as is the case of CAP, engages the cal-
culus of inductive constructions (CiC) [35] to support essentially
higher-order predicate logic reasonings. To effectively model safety
properties and the interaction between threads, we adapt and apply
established approaches for reasoning about (high-level) concurrent
programs, namely the “invariance proof” technique [24] and the
“assume-guarantee” paradigm [27, 23].

The thread control in CCAP is non-preemptive—a thread’s execu-
tion will not be interrupted until it explicitly yields control. This
non-preemptive setting is very useful in clearly separating thread in-
teraction from other orthogonal issues of the verification of assem-
bly programs. Furthermore, besides facilitating simpler presenta-
tion and allowing easier understanding, the non-preemptive setting
is also more fundamental, because even preemptive thread controls
are essentially implemented with help of non-preemption, such as
the disabling of interrupts.

Non-preemption also introduces extra difficulties which have not
been addressed by previous researches that assume preemption.
Since the thread control will not be interrupted arbitrarily, programs
can be written in a more flexible manner (for most safety proper-
ties, a program that works correctly in a preemptive setting will
also work correctly in a non-preemptive setting, but not vice versa).
In this paper, we generalize the assume-guarantee paradigm by in-
troducing a notion of “local guarantee” to accommodate such extra
flexibility.

It is worth noting that CCAP is strictly more expressive than CAP—
it is a generalization to handle more problems in practice, rather
than a specialization for a particular problem domain. We also wish
to point out that generating FPCC packages for CCAP is as easy as
that for CAP, although a detailed account of which is omitted due
to space constraints.

We have developed the language CCAP and proved its soundness
using the Coq proof assistant [42]. The implementation in Coq
is available for download [43]. We illustrate the usage of CCAP
by discussing three example programs, whose safety properties of

(C,(H,R),I) 7−→ P where
if I = thenP =
jd f (C,(H,R),I′) whereC(f) = I′
add rd,rs,rt ;I′ (C,(H,R{rd ; R(rs)+R(rt)}),I′)
movi rd,w;I′ (C,(H,R{rd ; w}),I′)
bgt rs,rt ,f;I′ (C,(H,R),I′) whenR(rs)≤ R(rt); and

(C,(H,R),C(f)) whenR(rs) > R(rt)
ld rd,rs(w);I′ (C,(H,R{rd ; H(R(rs)+w)}),I′)

where(R(rs)+w) ∈ dom(H)
st rd(w),rs;I′ (C,(H{R(rd)+w ; R(rs)},R),I′)

where(R(rd)+w) ∈ dom(H)

Figure 2. Operational semantics of Simple CAP.

concern are mutual exclusion, deadlock freedom, and partial cor-
rectness respectively. For ease of understanding, we present the
central idea by modeling a simplified abstract machine, and give a
generalized account in the appendix.

2 Background

In this section, we review some key techniques used in the design
of CCAP. Section 2.1 presents a simplified CAP in a nutshell. Sec-
tion 2.2 discusses informally the technique of invariance proof for
proving safety properties, along with its connection with the syn-
tactic approach to type soundness [44]. A brief introduction to the
assume-guarantee paradigm is given in Section 2.3.

2.1 Simple CAP

As suggested by its name (a language for certified assembly
programming), CAP is an assembly language designed for writ-
ing “certified programs”,i.e., programs together with their formal
safety proofs. Here we introduce Simple CAP with a limited in-
struction set for ease of understanding. In particular, we omit the
support for higher-order code pointers (realized by an indirect jump
instruction in the original CAP), instead discussing its handling in
Section 6.3.

This language is best learned in two steps. Step one puts aside the
“certifying” part and focus on a generic assembly language (see the
upper part of Figure 1). A complete program consists of a code
heap, a dynamic state component made up of the register file and
data heap, and an instruction sequence. The instruction set is mini-
mal but extensions are straightforward. The register file is made up
of 8 registers and the date heap is potentially infinite. The opera-
tional semantics of this language (Figure 2) should pose no surprise.
Note that it is illegal to access a heap location (label) which does
not exist, in which case the execution gets “stuck.”

In step two, we equip this language with a constructΨ (Code
Heap Specification) for expressing user-defined safety requirements
in Hoare-logic style (see the lower part of Figure 1). A code
heap specification associates every code label with an assertion,
with the intention that the precondition of a code block is de-
scribed by the corresponding assertion. CAP programs are writ-
ten in continuation-passing style because there are no instructions
directly in correspondence with the calling and returning in a high-
level language. Hence postconditions in Hoare logic do not have an
explicit counterpart in CAP; they are interpreted as preconditions
of the continuations.

To check the validity of these assertions mechanically, we im-



Ψ ` C Ψ ` {a}I (a S)
Ψ ` {a}(C,S,I) (PROG)

Ψ = {f1 ; a1 . . .fn ; an}
Ψ ` {ai}Ii ∀i ∈ {1. . .n}
Ψ ` {f1 ; I1 . . .fn ; In}

(CODEHEAP)

∀S.a S⊃a1 S whereΨ(f) = a1

Ψ ` {a} jd f
(JD)

∀H.∀R.a (H,R)⊃a′ (H,R{rd ; R(rs)+R(rt)})
Ψ ` {a′}I

Ψ ` {a}add rd,rs,rt ;I
(ADD)

Figure 3. Sample inference rules of Simple CAP.

plement all CAP language constructs and their semantics using
the calculus of inductive constructions (CiC) [42, 35], which is
a calculus that corresponds to a variant of higher-order predicate
logic via the formulae-as-types principle (Curry-Howard isomor-
phism [22]). We further define our assertion language (Assert)
to contain any CiC terms which have typeState→Prop, where
Prop is a CiC sort corresponding to logical propositions, and the
various syntactic categories of the assembly language (such as
State) have been encoded using inductive definitions. Although
CiC is unconventional to most programmers, we implement the
CAP language using the Coq proof assistant [42] which implicitly
handles the formulae-as-types principle and hence programmers
can reason as if they were directly using higher-order predicate
logic. (Logic is something a programmer has to learn if formal
reasoning is desired. Higher-order logic appears to be fairly
close to what people usually use to reason.) For example, a
precondition specifying that the registersr1, r2 andr3 store the
same value is written in Coq as the assertion (state predicate)
[s:State] let (H,R)=s in R(r1)=R(r2) /\ R(r2)=R(r3)
where[s:State] is a binding of variables of typeState, let is
a pattern matching construct, and/\ is the logical connective∧.
Proving the validity of propositions is done by using tactics which
correspond to logical inference rules such as “∧-introduction.”

To reason about the validity of an assertion as a precondition of a
code block, we define a set of inference rules for proving specifica-
tion judgments of the following forms:

Ψ ` {a}P (well-formed program)
Ψ ` C (well-formed code heap)
Ψ ` {a}I (well-formed instruction sequence)

The intuition of well-formed instruction sequence, for example, is
that if the instruction sequenceI starts execution in a machine state
which satisfies the assertiona, then executingI is safe with respect
to the specificationΨ.

In Figure 3, we give some sample inference rules which the pro-
grammers use to prove the safety of their programs. A program
is well-formed (rulePROG) under assertiona if both the code heap
and the instruction sequence are well-formed, and the machine state
satisfies the assertiona. A code heap is well-formed (ruleCODE-
HEAP) if every code block is well-formed under the associated as-
sertion. A direct jump is safe (ruleJD) if the current assertion is
no weaker than the assertion of the target code block as specified

by the code heap specification. Here the symbol “⊃” is used to de-
note logical implication. Also note the slight notational abuse for
convenience—state meta-variables are reused as state variables.

An instruction sequence preceded by an addition is safe (ruleADD)
if we can find an assertiona′ which serves both as the postcondition
of the addition (a′ holds on the updated machine state after execut-
ing the addition, as captured by the implication) and as the precon-
dition of the tail instruction sequence. A programmer’s task, when
proving the well-formedness of a program, involves mostly apply-
ing the appropriate inference rules, finding intermediate assertions
like a′, and proving the logical implications.

The soundness of these inference rules is established with respect to
the operational semantics following the syntactic approach of prov-
ing type soundness [44]. The soundness theorem below guarantees
that given a well-formed program, the current instruction sequence
will be able to execute without getting “stuck” (normal type-safety);
in addition, whenever we jump to a code block, the specified asser-
tion of that code block (which is an arbitrary state predicate given
by the user) will hold.

Theorem 1 (CAP Soundness)If Ψ ` {a}(C,S,I), then for all
natural numbern, there exists a programP such that
(C,S,I) 7−→nP, and

• if (C,S,I)7−→∗(C,S′, jd f), thenΨ(f) S′;

• if (C,S,I)7−→∗(C,(H,R),(bgt rs,rt ,f)) andR(rs) > R(rt),
thenΨ(f) (H,R).

Interested readers are referred to the previous work [46, 47] for
a complete modeling of CAP and a certifiedmalloc/free library
whose correctness criterion involves more than type-safety.

2.2 Invariance Proof

The code heap type of CAP allows the specification of certain pro-
gram properties in addition to type safety. However, it appears
insufficient in modeling general safety properties, which typically
disallow undesired things from happening at any program points.
Directly accommodating such a property in CAP would require in-
spection of preconditions at all program points, resulting in an un-
wieldy specification.

Fortunately, many methods have been proposed for proving safety
(invariance) properties for both sequential and concurrent pro-
grams [12, 17, 33, 25, 24]. As observed by Lamport [24], “all of
these methods are essentially the same—when applied to the same
program, they involve the same proof, though perhaps in different
orders and with different notation.” In particular, the execution of
a program can be viewed as transitions of states, and a general in-
variance proof of a program satisfying a safety propertyP reduces
to finding an invariantI satisfying three conditions:

1. The initial state of the program satisfiesI ;

2. I impliesP;

3. If a state satisfiesI , then the next state satisfiesI .

Interestingly, this “invariance proof” technique also characterizes
certain principles found in the syntactic approach to type sound-
ness [44], as engaged by many modern type systems. In fact, the re-



(1) f1 : movi r1,1
(2) . . .
(3) yield
(4) st r2(0),r1
(5) jd f2

(6) f2 : movi r1,2
(7) st r2(1),r1
(8) yield
(9) . . .

(10) jd f3

Figure 4. Example: Non-preemptive thread control.

semblance is clear once we describe the type-safety proofs of these
systems as follows:

1. The program is initially well-typed;

2. If a program is well-typed, then it makes a step (usually re-
ferred to as a lemma of “progress”);

3. If a program is well-typed, then it is also well-typed af-
ter making a step (usually referred to as a lemma of “type-
preservation”).

It is not difficult to observe that the syntactic approach to type
soundness is in essence a special application of the invariance proof
where the invariantI is well-typedness of the program and the
safety propertyP is type-safety (i.e., non-stuckness). Since the
progress and preservation lemmas of such type systems are proved
once and for all, all that remains when writing a program is to verify
the (initial) well-typedness by typing rules.

The story of CAP is similar—the invariantI is the well-formedness
of the program and the safety propertyP is type-safety and satisfac-
tion of the code heap specification. The problem we encountered
applying CAP directly to general safety properties now becomes
apparent: type-safety and satisfaction of the code heap specifica-
tion is not sufficient in modeling arbitrary safety properties. On the
bright side, a solution becomes also apparent: it suffices to enhance
the judgment of well-formed programs so that it implies the validity
of a user specified predicateInv (referred to as a “global invariant”
in the remainder of this paper), which in turn implies a safety prop-
erty of concern. Such a CAP-like language maintains the flavor of
a type system, but the “typing rules” are practically “proof rules” of
a logic system.

2.3 Assume-Guarantee

A last piece of the puzzle is a compositional method for reason-
ing about the interaction between threads. Since Francez and
Pnueli [13] developed the first method for reasoning composi-
tionally about concurrency, various methods have been proposed,
the most representative ones of which areassumption-commitment
invented by Misra and Chandy [27] for message-passing sys-
tems andrely-guaranteeby Jones [23] for shared-memory pro-
grams. These two methods have thereupon been carefully stud-
ied [32, 36, 40, 41, 1, 45, 2, 5, 16, 11] and often referred to as
assume-guarantee.

Under this assume-guarantee paradigm, every thread (or process)
is often associated with a pair(A,G) consisting of a guaranteeG
that the thread will satisfy provided the environment satisfies the
assumptionA. Under the shared-memory model, the assumptionA

(Prog) P ::= (S,C1,C2,I1,I2, i) wherei ∈ {1,2}
(State) S ::= (M,R)
(Mem) M ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗
(Register) r ::= {rk}k∈{0...7}

(Labels) f,l ::= n (nat nums)
(WordVal) w ::= n (nat nums)
(CdHeap) C ::= {f ; I}∗
(InstrSeq) I ::= c;I | jd f

(Comm) c ::= yield | add rd,rs,rt | sub rd,rs,rt

| movi rd,w | bgt rs,rt ,f | be rs,rt ,f

| ld rd,rs(w) | st rd(w),rs

Figure 5. Syntax of CCAP.

of a thread describes what atomic transitions may be performed by
other threads, and the guaranteeG of a thread must hold on every
atomic transition performed by the thread itself. They are typically
modeled as predicates on a pair of states, which are often called
actions. Reasoning about a concurrent program then reduces to
reasoning about each thread separately, provided that the guarantee
of each thread be no weaker than the assumption of every other
thread.

We apply this approach at an assembly level, using assumptions and
guarantees to characterize the interaction between threads. In Sec-
tion 3, our abstract machine adopts a non-preemptive thread model,
in which threads yield control voluntarily with a commandyield.
An atomic transition in a preemptive setting then corresponds to a
sequence of commands between twoyield in our setting. Figure 4,
for example, shows two code blocks that belong to the same thread;
the state transition between the twoyield at lines(3) and(8) must
satisfy the guarantee of the current thread, and the potential state
transition at eitheryield, caused by other threads, is expected to sat-
isfy the assumption.

A difficulty in modeling concurrency in such a setting is that one
has to “look inside” an atomic operation. It is different from mod-
eling an atomic operation as a whole, as is the case of some previous
work on concurrency verification, where the state transition caused
is immediately visible when analyzing the atomic operation. When
an atomic operation is made up of a sequence of commands, its ef-
fect can not be completely captured until reaching the end. For ex-
ample, in Figure 4, the state change caused by thest at line(4) need
not immediately satisfy the guarantee; instead, it may rely on its fol-
lowing commands (i.e., lines (6) and (7)) to complete an adequate
state transition. Hence when verifying the safety of a command us-
ing CAP-style inference rules, it is insufficient to simply check the
guarantee against the state change cause by that command. In our
modeling, we introduce a “local guarantee”g for every program
point to capture further state changes that must be made by the fol-
lowing commands before it is safe for the current thread to yield
control.

Such a non-preemptive setting helps to separate thread interaction
from other orthogonal issues of assembly verification. For instance,
from the example of Figure 4, it is apparent that the thread inter-
action usingyield is orthogonal from the handling of control flow
transfer (e.g.,direct jumpjd or indirect jumpjmp). This also pro-
vides insights on the verification of preemptive threads, because a
preemptive model can be considered as a special case of the non-
preemptive model in which explicit yielding is used at all program
points.



((M,R),C1,C2,I1,I2,1) 7−→ P where
if I1 = thenP =
jd f ((M,R),C1,C2,I′,I2,1) whereC1(f) = I′
yield;I′ ((M,R),C1,C2,I′,I2, i) wherei ∈ {1,2}
bgt rs,rt ,f;I′ ((M,R),C1,C2,I′,I2,1) whenR(rs)≤ R(rt); and

((M,R),C1,C2,I′′,I2,1) whenR(rs) > R(rt) whereC1(f) = I′′
be rs,rt ,f;I′ ((M,R),C1,C2,I′,I2,1) whenR(rs) 6= R(rt); and

((M,R),C1,C2,I′′,I2,1) whenR(rs) = R(rt) whereC1(f) = I′′
c;I′ for remaining cases ofc (Next(c,(M,R)),C1,C2,I′,I2,1)

((M,R),C1,C2,I1,I2,2) 7−→ P defined similarly

Figure 6. Operational semantics of CCAP.

if c = thenNext(c,(M,R)) =
add rd,rs,rt (M,R{rd ; R(rs)+R(rt)})
sub rd,rs,rt (M,R{rd ; R(rs)−R(rt)})
movi rd,w (M,R{rd ; w})
ld rd,rs(w) (M,R{rd ; M(R(rs)+w)})

where(R(rs)+w) ∈ dom(M)
st rd(w),rs (M{R(rd)+w ; R(rs)},R)

where(R(rd)+w) ∈ dom(M)

Figure 7. Auxiliary state update macro.

3 CCAP

CAP supports mechanical verification on sequential assembly code;
invariance proof can be applied to reason about general safety
properties; and assume-guarantee allows the decomposition of a
concurrent program into smaller pieces which in turn can be rea-
soned about sequentially. The remaining task is to accommodate
these techniques in a single language CCAP. In particular, assume-
guarantee must be adapted to work for non-preemptive assembly
code, as briefly explained in the previous section.

In this section, we present CCAP based on an abstract machine that
supports the concurrent execution of two threads using a shared
memory. A generalized version supporting more threads is given
in Appendix A.

3.1 Abstract Machine

The abstract machine is a straightforward extension from CAP (see
Figure 5 for the syntax). A programP consists of a shared state
componentS made up of a memoryM and a register fileR, two
code heapsC (one for each thread), two current instruction se-
quencesI (one for each thread), and an indicatori indicating the
current thread.

Threads may interact using the shared memory, and yield control
(yield) voluntarily. Only a small set of commands are modeled
for simplicity, but extensions are straightforward. Note that there
is no need for instructions such as “test-and-set” because of non-
preemption.

The operational semantics is defined in Figures 6 and 7. Figure 7
defines a “next state” macro relation detailing the effect of some
commands on the machine state. For memory access or update
commands (ld, st), the macro is defined only if the side conditions
are met. In Figure 6, we only show the cases where thread 1 is the
current thread; the other cases are similar. At ayield command, the
machine picks a thread non-deterministically without affecting the

(ProgSpec) Φ ::= (Inv,Ψ1,Ψ2,A1,A2,G1,G2)
(CdHpSpec) Ψ ::= {f ; (p,g)}∗
(ThrdSpec) Θ ::= (Inv,Ψ,A,G)

(Invariant) Inv ∈ State→Prop
(Assertion) p ∈ State→Prop

(Assumption) A ∈ State→State→Prop
(Guarantee) G,g ∈ State→State→Prop

Figure 8. Verification constructs of CCAP.

state. Control flow commands (jd, bgt andbe) do not affect the state
either. Implicit from these two figures is that the machine gets stuck
when executing a memory access or update but the side condition
as specified by the macro is not met.

3.2 Inference Rules

Verification constructs of CCAP are introduced in Figure 8. A pro-
gram specificationΦ consists of a global invariant (Inv), assump-
tions (A) and guarantees (G), and code heap specifications (Ψ). A
programmer must find a global invariantInv for the program;Inv
should be no weaker than the safety property of interest and hold
throughout the execution of the program. A programmer must also
find for each thread a guaranteeG and an assumptionA describing
allowed atomic state transitions of the thread and its environment
respectively.

Every thread also has its own code heap specificationΨ. As is the
case of CAP,Ψ is a mapping from code labels to preconditions.
What’s different now is that a precondition in CCAP contains not
only an assertionp describing valid states, but also a guaranteeg
describing valid state transitions—it is safe for the current thread
to yield control only after making a state transition allowed byg.
We call g a “local guarantee” to distinguish it fromG. To prove
the safety of a program, the programmer needs to find appropriate
preconditions for all program points, and apply the inference rules
to be introduced later.

CCAP’s reasoning is thread-modular: the verification of a concur-
rent program can be decomposed into the verification of its com-
ponent threads, and each thread is reasoned about separately with
respect to its own thread specification. We useΘ to denote such a
thread specification, which consists of the global invariantInv, and
the code heap specificationΨ, assumptionA and guaranteeG of
the thread. The program specification can then be considered as a
union of the thread specification of every component thread.

We use the following judgment forms to define the inference rules:



Φ;(p1,p2,g) ` P (well-formed program)
Θ ` C (well-formed code heap)
Θ;(p,g) ` I (well-formed instr. seq.)

These judgment forms bear much resemblance to those of CAP,
noting that preconditions have evolved to include local guarantees.
When verifying for a well-formed program, an extra assertion is
used to describe a state expected by the idling thread; however, no
extra local guarantee is needed.

Well-formed program There are two rules for checking the
well-formedness of a program. RulePROG1 is used when thread
1 is the current thread, and RulePROG2 is used when thread 2 is
the current thread.

Φ = (Inv,Ψ1,Ψ2,A1,A2,G1,G2)
(Inv∧p1 S) ∀S′′.(g S S′′)⊃(p2 S′′)
∀S′.∀S′′.(Inv∧p2 S′)⊃(A2 S′ S′′)⊃(p2 S′′)
(Inv,Ψ1,A1,G1) ` C1 (Inv,Ψ1,A1,G1);(p1,g) ` I1
(Inv,Ψ2,A2,G2) ` C2 (Inv,Ψ2,A2,G2);(p2,G2) ` I2

Φ;(p1,p2,g) ` (S,C1,C2,I1,I2,1)
(PROG1)

Φ = (Inv,Ψ1,Ψ2,A1,A2,G1,G2)
(Inv∧p2 S) ∀S′′.(g S S′′)⊃(p1 S′′)
∀S′.∀S′′.(Inv∧p1 S′)⊃(A1 S′ S′′)⊃(p1 S′′)
(Inv,Ψ2,A2,G2) ` C2 (Inv,Ψ2,A2,G2);(p2,g) ` I2
(Inv,Ψ1,A1,G1) ` C1 (Inv,Ψ1,A1,G1);(p1,G1) ` I1

Φ;(p1,p2,g) ` (S,C1,C2,I1,I2,2)
(PROG2)

Since these two rules are symmetrical, we only explain
Rule PROG1, where thread 1 is the current thread. In this rule,
the well-formedness of a program is determined with respect to not
only the program specificationΦ, but also an assertionp1 describ-
ing the current state, an assertionp2 describing the state in which
thread 2 may take control, and a relationg describing the discrep-
ancy between these two states.

The premises of RulePROG1 may appear complex, but are rather
intuitive. Line 1 gives us the components ofΦ. Lines 2 requires that
both the global invariantInv and the current assertionp1 must hold
on the current state; it also restricts the assertionp2 of thread 2 and
the current guaranteeg of thread 1: if some operations satisfyingg
is performed on the current state, then the result state satisfiesp2.
This indicates that it is sufficient to refer tog for the expectation of
thread 2 when checking thread 1.

When thread 1 is executing, thread 2 should be in a “safe state”
whose properties described byp2 will not be disturbed by allowed
(assumed) transitions of thread 1. Hence line 3 restricts the as-
sertionp2 to preserve itself under state transitions that satisfy the
assumptionA2. Note that “⊃” is right associative,i.e., a⊃b⊃c is
interpreted asa⊃(b⊃c).

The last two lines decompose the verification task into two parts,
each performed independently for a single thread based on the cor-
responding thread specification. For thread 1 (line 4), the code heap
must be well-formed, and the current instruction sequence must be
well-formed under the current precondition. The requirements for
thread 2 is similar (line 5), except that the guaranteeG2 is used in
the precondition of thread 2, indicating necessary state transitions
before thread 2 may yield.

Another requirement is that the assumptions and the guarantees be
compatible,i.e.,G1⊃A2 andG2⊃A1. Noting that these relations
are constants and concern only the specification, we do not include

this requirement in the inference rules, but will use it as a premise
of a soundness lemma.

Well-formed code heap

Θ = (Inv,Ψ,A,G)
Ψ = {f j ; (p j ,g j )} j∈{1...n}

Θ;(p j ,g j ) ` I j ∀ j ∈ {1. . .n}
Θ ` {f j ; I j} j∈{1...n} (CODEHEAP)

A code heap is well-formed if every code block is well-formed un-
der the associated precondition. Note that after the decomposition
performed by RulesPROG1 and PROG2, every thread is verified
separately under its own thread specification.

Well-formed instruction sequence

Θ = (Inv,Ψ,A,G)
∀S.(Inv∧p S)⊃(g S S)
∀S.∀S′.(Inv∧p S)⊃(A S S′)⊃(p S′)
Θ;(p,G) ` I

Θ;(p,g) ` yield;I (YIELD )

Rule YIELD is used to verify an instruction sequence starting with
yield. It is safe to yield control under a stateS only if required state
transitions are complete,i.e., an identity transition fromS satisfies
the local guaranteeg. Furthermore, the assertionp must preserve
itself under transitions allowed by the assumptionA, indicating that
it is safe to execute any number of atomic operations by the other
thread. Lastly, one must verify the remainder instruction sequence
I with the local guarantee reset toG.

Θ = (Inv,Ψ,A,G)
∀S.(Inv∧p S)⊃(Inv∧p′ Next(c,S))
∀S.∀S′.(Inv∧p S)⊃(g′ Next(c,S) S′)⊃(g S S′)
Θ;(p′,g′) ` I c ∈ {add,sub,movi}

Θ;(p,g) ` c;I (SIMPL)

RuleSIMPL covers the verification of instruction sequences starting
with a simple command such asadd, sub or movi. In these cases,
one must find an intermediate precondition(p′,g′) under which the
tail instruction sequenceI is well-formed. Moreover, the global
invariantInv and the intermediate assertionp′ must hold on the up-
dated machine state, and the intermediate guaranteeg′ applied to
the updated machine state must be no weaker than the current guar-
anteeg applied to the current state.

Consider a sequence of statesS1 . . .Sn between two “safe points”
(i.e., between twoyield commands). Suppose we have a sequence
of guaranteesg1 . . .gn such that:

(g2 S2 Sn)⊃(g1 S1 Sn);
(g3 S3 Sn)⊃(g2 S2 Sn);
. . . ;
(gn−1 Sn−1 Sn)⊃(gn−2 Sn−2 Sn);
(gn Sn Sn)⊃(gn−1 Sn−1 Sn).

(LOCAL-GUAR)

From these we know that the state transition fromS1 to Sn satisfies
the original guaranteeg1 if only (gn Sn Sn), which will be estab-
lished at theyield command.

Θ = (Inv,Ψ,A,G)
∀M.∀R.(Inv∧p (M,R))⊃((R(rs)+w) ∈ dom(M))
∀S.(Inv∧p S)⊃(Inv∧p′ Next(c,S))
∀S.∀S′.(Inv∧p S)⊃(g′ Next(c,S) S′)⊃(g S S′)
Θ;(p′,g′) ` I c = ld rd,rs(w)

Θ;(p,g) ` c;I (LD)



Θ = (Inv,Ψ,A,G)
∀M.∀R.(Inv∧p (M,R))⊃((R(rd)+w) ∈ dom(M))
∀S.(Inv∧p S)⊃(Inv∧p′ Next(c,S))
∀S.∀S′.(Inv∧p S)⊃(g′ Next(c,S) S′)⊃(g S S′)
Θ;(p′,g′) ` I c = st rd(w),rs

Θ;(p,g) ` c;I (ST)

Verifying memory access or update with RulesLD or ST is in spirit
similar to verifying simple commands, except one must also estab-
lish the side condition as specified by the macroNext.

Θ = (Inv,Ψ,A,G) Ψ(f) = (p′,g′)
∀S.(Inv∧p S)⊃(p′ S)
∀S.∀S′.(Inv∧p S)⊃(g′ S S′)⊃(g S S′)

Θ;(p,g) ` jd f
(JD)

Direct jump is easily verified by fetching the precondition from the
code heap specification, as shown in RuleJD. There is no need to
re-establish the global invariantInv explicitly, because the machine
state remains the same.

Θ = (Inv,Ψ,A,G) Ψ(f) = (p′,g′)
∀M.∀R.(R(rs) > R(rt))⊃(Inv∧p (M,R))⊃(p′ (M,R))
∀M.∀R.∀S′.(R(rs) > R(rt))⊃(Inv∧p (M,R))

⊃(g′ (M,R) S′)⊃(g (M,R) S′)
∀M.∀R.(R(rs)≤ R(rt))⊃(Inv∧p (M,R))⊃(p′′ (M,R))
∀M.∀R.∀S′.(R(rs)≤ R(rt))⊃(Inv∧p (M,R))

⊃(g′′ (M,R) S′)⊃(g (M,R) S′)
Θ;(p′′,g′′) ` I

Θ;(p,g) ` bgt rs,rt ,f;I
(BGT)

Θ = (Inv,Ψ,A,G) Ψ(f) = (p′,g′)
∀M.∀R.(R(rs) = R(rt))⊃(Inv∧p (M,R))⊃(p′ (M,R))
∀M.∀R.∀S′.(R(rs) = R(rt))⊃(Inv∧p (M,R))

⊃(g′ (M,R) S′)⊃(g (M,R) S′)
∀M.∀R.(R(rs) 6= R(rt))⊃(Inv∧p (M,R))⊃(p′′ (M,R))
∀M.∀R.∀S′.(R(rs) 6= R(rt))⊃(Inv∧p (M,R))

⊃(g′′ (M,R) S′)⊃(g (M,R) S′)
Θ;(p′′,g′′) ` I

Θ;(p,g) ` be rs,rt ,f;I
(BE)

Lastly, a conditional command is safe if both branches can be veri-
fied, hence RuleBGT or BE can be understood as a combination of
RulesJD andSIMPL, noting that the comparison result can be used
in verifying the branches.

3.3 Soundness

The soundness of these inference rules with respect to the opera-
tional semantics of the machine is established following the syn-
tactic approach of proving type soundness. From the “progress”
and “preservation” lemmas (proved by induction onI; see the im-
plementation for detailed Coq proofs [43]), we can guarantee that
given a well-formed program under compatible assumptions and
guarantees, the current instruction sequence will be able to execute
without getting “stuck.” Furthermore, any safety property derivable
from the global invariant will hold throughout the execution.

Lemma 1 (Code Lookup) If ( ,Ψ, , ) ` C andΨ(f) = (p,g),
then there existsI such thatC(f) = I.

Proof sketch: By definition of well-formed code heap. 2

Lemma 2 (Progress) Φ = (Inv,Ψ1,Ψ2,A1,A2,G1,G2). If
Φ;(p1,p2,g) ` (S,C1,C2,I1,I2, i) wherei ∈ {1,2}, then(Inv S)
and there exists a programP such that(S,C1,C2,I1,I2, i) 7−→ P.

Proof sketch: By induction on the structure ofIi . (Inv S) holds by
definition of well-formed program. In the cases whereIi starts
with add, sub, movi or yield, the program can always make a step
by the definition of the operational semantics. In the cases whereIi
starts withld or st, the side conditions for making a step, as defined
by the operational semantics, are established by the corresponding
inference rules. In the cases whereIi starts withbgt or be, or
whereIi is jd, the operational semantics may fetch a code block
from the code heap; such a code block exists by Lemma 1.2

Lemma 3 (Code Well-formedness)If Θ = ( ,Ψ, , ), Θ ` C,
Ψ(f) = (p,g) andC(f) = I, thenΘ;(p,g) ` I.

Proof sketch: By definition of well-formed code heap. 2

Lemma 4 (Preservation) Φ = (Inv,Ψ1,Ψ2,A1,A2,G1,G2).
Suppose∀S′.∀S′′.(G1 S′ S′′)⊃(A2 S′ S′′) and
∀S′.∀S′′.(G2 S′ S′′)⊃(A1 S′ S′′).
If Φ;(p1,p2,g) ` (S,C1,C2,I1,I2, i) wherei ∈ {1,2},
and(S,C1,C2,I1,I2, i) 7−→ P,
then there existsp′1, p′2 andg′ such thatΦ;(p′1,p

′
2,g

′) ` P.

Proof sketch: By induction on the structure ofIi . We must estab-
lish the premises (lines 2–5) of RulePROG1 or PROG2.

The first half of line 2 is easily established: for any command that
updates the machine state, its corresponding inference rule dictates
that the global invariant and the postcondition hold on the updated
machine state. The second half of line 2 also follows naturally, be-
cause the inference rules yield a sequence of “strengthening” local
guarantees, as illustrated by the equationsLOCAL-GUAR.

UnlessIi starts withyield, line 3 is trivially preserved because the
precondition of the idling thread remains unchanged; in the case
whereIi starts withyield, the current thread may become the idling
thread, and line 3 follows from a premise of RuleYIELD .

The first half of lines 4 and 5 (well-formed code heaps) is not af-
fected by a program step, hence it is trivially preserved. For the
second half of lines 4 and 5 (well-formed instruction sequences),
in the cases whereIi starts withadd, sub, movi, yield, ld or st, the
well-formedness of the instruction sequence in the next state can
be directly derived from the corresponding inference rules; in the
cases whereIi starts withbgt or be, or is jd, we apply Lemma 3.2

4 Examples

CCAP is a realization of established verification techniques at the
assembly level. The expressiveness of these techniques and their
application to high-level programs are well-known. In this section,
we give 3 simple examples to demonstrate the mechanized veri-
fication of interesting safety properties for assembly code and, in
particular, illustrate the usage of local guarantees (g) as part of the
preconditions.

4.1 Mutual Exclusion

Dekker’s algorithm [10] is the first solution to mutual exclusion
problem for the two-process case. Flanaganet al. [11] have given
a modeling under the assume-guarantee paradigm for a high-level
parallel language of atomic operations. In this section, we show that
the subtle synchronization used in Dekker’s algorithm can be rea-
soned about as easily in CCAP, where atomic operations are com-
posed of sequences of instructions.

The algorithm is revised using 4 boolean variables [11] (Figure 9).
It is easy to observe that variablecsi is true if threadi is in its crit-



Variables:
boolean a1,a2,cs1,cs2;

Thread1:
while (true){
a1 := true;
cs1 := ¬a2;
if (cs1) {

// critical sec.
cs1 := false;

}
a1 := false;

}

Initially:
¬cs1∧¬cs2

Thread2 :
while (true){
a2 := true;
cs2 := ¬a1;
if (cs2) {

// critical sec.
cs2 := false;

}
a2 := false;

}
Figure 9. Dekker’s mutual exclusion algorithm.

Inv ≡ M(cs1),M(cs2),M(a1),M(a2) ∈ {0,1}
∧¬(M(cs1)∧M(cs2))
∧(M(cs1)⊃M(a1))∧ (M(cs2)⊃M(a2))

A1,G2 ≡ (M(a1) = M′(a1))∧ (M(cs1) = M′(cs1))
A2,G1 ≡ (M(a2) = M′(a2))∧ (M(cs2) = M′(cs2))

Initial M≡ {cs1 ; 0,cs2 ; 0,a1 ; ,a2 ; }
Initial thread:i wherei ∈ {1,2}
Initial instruction sequences:Ii ≡ jd loopi
Initial precondition triple:(p1,p2,g)≡ (True,True,Gi)

loop1 : −{(True,G1)}
yield
movi r1,a1
movi r2,1
st r1(0),r2
−{(H(a1) = 1,G1)}
yield
movi r1,cs1
movi r2,1
movi r3,a2
ld r4,r3(0)
sub r5,r2,r4
st r1(0),r5
−{(True,G1)}
yield
movi r1,cs1
ld r2,r1(0)
movi r3,0
bgt r2,r3,csec1
−{(H(cs1) = 0,G1)}
yield
jd reset1

csec1 : −{(True,G1)}
yield
−{(True,G1)}
movi r1,cs1
−{(R(r1) = cs1,G1)}
movi r2,0
−{(R(r1) = cs1∧

R(r2) = 0,G1)}
st r1(0),r2
−{(H(cs1) = 0,G1)}
yield
−{(H(cs1) = 0,G1)}
jd reset1

reset1 : −{(H(cs1) = 0,G1)}
yield
movi r1,a1
movi r2,0
st r1(0),r2
−{(True,G1)}
yield
jd loop1

Figure 10. CCAP implementation for Dekker’s algorithm.

ical section; hence the mutual exclusion property of this algorithm
can be expressed as¬(cs1∧cs2).

To decompose the verification problem into two sequen-
tial ones, thread i makes the assumption that the other
thread not modify variablesai and csi. Furthermore, the
mutual exclusion property is strengthened to the invariant
¬(cs1∧cs2)∧ (cs1⊃a1)∧ (cs2⊃a2).

Some key components of a corresponding CCAP implementation
of the algorithm are shown in Figure 10. Only the code of thread
1 is given, since that of thread 2 is similar. Yielding is inserted at
all the intervals of the atomic operations of the original program.

Variables:
nat fork1,fork2;

Thread1:
while (true){
acquire(fork1,1);
acquire(fork2,1);
// eat
release(fork2);
release(fork1);
// think

}

Initially:
fork1 = 0∧fork2 = 0

Thread2 :
while (true){
acquire(fork1,2);
acquire(fork2,2);
// eat
release(fork2);
release(fork1);
// think

}
Figure 11. Dining philosophers algorithm.

The code heap specification is separated and given as preconditions
(surrounded by−{}) at the beginning of each code block for ease
of reading. Extra preconditions are spread throughout the code as
an outline of the proof—the inference rules can be easily applied
once preconditions are given at all program points.

For expository convenience, we use variable names as short-hands
for memory locations. The boolean valuesfalse and true are
encoded using 0 and 1 respectively. We also omit the variable bind-
ings from the predicates. To be exact, a “λS.” is omitted from the
global invariant and every assertion; a “λS.λS′.” is omitted from
every assumption and guarantee. In these predicates,M andR re-
fer to the memory component and the register file component of the
bounded variableS respectively, andM′ andR′ refer to those of the
bounded variableS′.

For this example, state predicateTrue is used as the assertionp at
some of the yield instructions, becauseInv alone is sufficient in
characterizing the states at these points. Moreover, since thread 1
never modifies the value ofa2 or cs2, the guaranteeG1 can be
used as the local guaranteeg throughout the code of thread 1. Take
the code block labeledcsec1 as an example. There are two move
instructions used to put intermediate values into registers; their ef-
fect is apparent from the associated assertions. A following store
instruction writes into the memory locationcs1, after which the
global invariant is still maintained. It is a simple task to check the
well-formedness of this code block with respect to the precondi-
tions, because every assembly instruction only incur little change
to the machine state. The use of a proof assistant helps automate
most simple steps and keep the would-be arduous task manageable.

4.2 Deadlock Freedom

One way to prevent deadlock is to assign a total ordering to all
resources and stick to it when acquiring them. We give a sim-
plified example of dining philosophers in Figure 11, where two
philosophers (Thread1 and Thread2) share two forks (represented
by memory locationsfork1 andfork2). A philosopher picks up
(acquire) a fork by writing the thread id (1 or 2) into the mem-
ory location representing the fork, and puts down (release) a fork
by writing 0. Both philosophers acquirefork1 before acquiring
fork2.

The deadlock freedom property for this example can be expressed
as(fork2 = 0)∨ (fork2 = fork1), indicating that either a fork is
free or a philosopher is holding both forks. In the more general case
of three or more philosophers, the deadlock freedom property can
be expressed as(forkn = 0)∨ (∃i. forkn = forki), wheren is the
number of philosophers andforkn is the “greatest fork.” Note that



Inv ≡ (M(fork2) = 0)∨ (M(fork2) = M(fork1))
A1,G2 ≡ (M′(fork2) = 2⊃M′(fork1) = 2)

∧(M(fork1) = 1↔M′(fork1) = 1)
∧(M(fork2) = 1↔M′(fork2) = 1)

A2,G1 ≡ (M′(fork2) = 1⊃M′(fork1) = 1)
∧(M(fork1) = 2↔M′(fork1) = 2)
∧(M(fork2) = 2↔M′(fork2) = 2)

Initial M≡ {fork1 ; 0,fork2 ; 0}
Initial thread:i wherei ∈ {1,2}
Initial instruction sequences:Ii ≡ jd f ai
Initial precondition triple:(p1,p2,g)≡ (

M(fork1) 6= 1∧M(fork2) 6= 1,
M(fork1) 6= 2∧M(fork2) 6= 2,Gi)

f a1 : −{(M(fork1) 6= 1∧M(fork2) 6= 1,G1)}
yield
movi r1,fork1
ld r2,r1(0)
movi r3,0
bgt r2,r3, f a1
−{(M(fork1) = 0∧M(fork2) 6= 1

∧R(r1) = fork1,G1)}
movi r2,1
−{(M(fork1) = 0∧M(fork2) 6= 1

∧R(r1) = fork1∧R(r2) = 1,
(M′(fork2) = 1⊃M′(fork1) = 1)
∧(M′(fork1) 6= 2)
∧(M(fork2) = 2↔M′(fork2) = 2))}

st r1(0),r2
−{(M(fork1) = 1∧M(fork2) 6= 1,

(M′(fork2) = 1⊃M′(fork1) = 1)
∧(M′(fork1) 6= 2)
∧(M(fork2) = 2↔M′(fork2) = 2))}

yield
−{(M(fork1) = 1∧M(fork2) 6= 1,G1)}
jd f b1

f b1 : −{(M(fork1) = 1∧M(fork2) 6= 1,G1)}
yield
movi r1,fork2
ld r2,r1(0)
movi r3,0
bgt r2,r3, f b1
movi r2,1
st r1(0),r2
−{(M(fork1) = 1∧M(fork2) = 1,

(M′(fork2) = 1⊃M′(fork1) = 1)
∧(M′(fork1) 6= 2)
∧(M′(fork2) 6= 2))}

yield
−{(M(fork1) = 1∧M(fork2) = 1,G1)}
movi r1,fork2
movi r2,0
st r1(0),r2
yield
−{(M(fork1) = 1∧M(fork2) 6= 1,G1)}
movi r1,fork1
movi r2,0
st r1(0),r2
yield
−{(M(fork1) 6= 1∧M(fork2) 6= 1,G1)}
jd f a1

Figure 12. CCAP implementation for dining philosophers algo-
rithm.

Variables:
nat a,b;

Thread1:
while (a 6= b)
if (a > b)
a := a−b;

Initially:
a = α∧b = β

Thread2 :
while (b 6= a)
if (b > a)
b := b−a;

Figure 13. GCD algorithm.

we cannot use CCAP as is to reason about livelock or starvation
freedom, which are liveness properties and require different proof
methods [34].

The corresponding CCAP specification and program are shown in
Figure 12, where the same notational convention is used as estab-
lished in the previous section, and only the code for Thread1 is
given. In this example,Inv is exactly the desired property. Thread
1 guarantees (seeG1) to acquirefork2 only after acquiringfork1
(M′(fork2) = 1⊃M′(fork1) = 1). Due to the nature of our sim-
ulation using the values offork1 and fork2 to indicate the oc-
cupiers of the resources, Thread 1 also guarantees that it does not
release a resource held by Thread 2 or acquire a resource for Thread
2 (M( f orki) = 2↔ M′( f orki) = 2, where↔ means “if and only
if”). The case for Thread 2 is similar.

We explain the code block labeledf a1, which corresponds to the
first acquiring operation of Thread1. The precondition of this block
indicates that Thread1 owns neither resource at the beginning of the
loop. A busy waiting onfork1 is coded using the branch instruc-
tion (bgt). During the waiting, the guarantee is trivially maintained
because no state change is incurred. The thread executes past the
branch instruction only iffork1 is free, i.e., M(fork1) = 0, as
captured by the assertion immediately after the branch. At this
point, based on the current value offork1, which does not equal
to 2, we can simplify the local guarantee at the next step follow-
ing Rule SIMPL. The difference between the new guarantee and
the originalG1 lies in the handling offork1—the new guarantee
requires thatM′(fork1) 6= 2, because it is known that the original
value offork1 was not 2. The verification of the remainder of this
code block is straightforward. At the yielding instruction before
jumping to f b1, the local guarantee is instantiated twice on the cur-
rent state; its validity is trivial. After the yielding instruction, the
local guarantee is reset toG1 as required by RuleYIELD .

4.3 Partial Correctness

We consider a program for computing a Greatest Common Divi-
sor (GCD) as shown in Figure 13. This program satisfies the par-
tial correctness property thata andb become equal to the GCD of
their initial values when the program exits the loop.α andβ are
rigid variables ranging over natural numbers; they are introduced
for reasoning purposes.

Figure 14 gives the corresponding CCAP specification and pro-
gram. Only the code of Thread1 is shown. The global invariant of
this program is that the GCD ofa andb remains the same. Thread1,
for example, makes the assumption that Thread2 may change the
values ofa or b only if M(a) < M(b) and only in such a way that
the GCD can be preserved. The partial correctness property is ex-
pressed as the precondition of the code block labeleddone1—if the
execution ever reaches here, the value stored ina andb must be the
expected GCD.



Let δ be a shorthand for gcd(α,β).
Inv ≡ gcd(M(a),M(b)) = δ
A1,G2 ≡ (M(a)≥M(b)⊃ (M(a) = M′(a)∧M(b) = M′(b)))

∧(M(a) < M(b)⊃ (gcd(M′(a),M′(b)) = δ))
A2,G1 ≡ (M(b)≥M(a)⊃ (M(a) = M(a)∧M(b) = M′(b)))

∧(M(b) < M(a)⊃ (gcd(M′(a),M′(b)) = δ))

Initial M≡ {a ; α,b ; β}
Initial thread:i wherei ∈ {1,2}
Initial instruction sequences:Ii ≡ jd loopi
Initial precondition triple:(p1,p2,g)≡

(gcd(M(a),M(b)) = δ,gcd(M(a),M(b)) = δ,Gi)

loop1 : −{(True,G1)}
yield
movi r1,a
ld r2,r1(0)
movi r3,b
ld r4,r3(0)
be r2,r4,done1
−{(True,G1)}
yield
movi r1,a
ld r2,r1(0)
movi r3,b
ld r4,r3(0)
bgt r2,r4,calc1
−{(True,G1)}
yield
jd loop1

calc1 : −{(M(a) > M(b),G1)}
yield
−{(M(a) > M(b),G1)}
movi r1,a
−{(M(a)>M(b)∧R(r1)=a,

gcd(M′(a),M′(b)) = δ)}
ld r2,r1(0)
movi r3,b
ld r4,r3(0)
sub r5,r2,r4
st r1(0),r5
−{(True,

gcd(M′(a),M′(b)) = δ)}
yield
jd loop1

done1 : −{(M(a) = M(b) = δ,G1)}
yield
jd done1

Figure 14. CCAP implementation for GCD algorithm.

The most interesting code block is that labeledcalc1. After the first
yielding instruction, the comparison result ofM(a) > M(b) can be
used to simplify the next local guarantee to gcd(M′(a),M′(b)) = δ.
The actual proof of this certified program involves also apply-
ing mathematical properties such as gcd(a,a) = a and a > b ⊃
gcd(a,b) = gcd(a−b,b).

5 Implementation

In Section 2.1, we mentioned the use of Coq and the underlying
CiC for the mechanical verification of CAP programs. The same
approach is applied to implementing CCAP. We encode the syntax
of CCAP using inductive definitions, and define the operational se-
mantics and inference rules as a collection of relations. Embedding
the entire CCAP in Coq allows us to make use of Coq’s full ex-
pressiveness, including its facility for inductive definitions, to code
the verification constructs in Figure 8. This also allows us to write
down the soundness lemmas as Coq terms and formally prove their
validity as theorems using the Coq proof assistant. In particular,
our implementation contains about 350 lines of Coq code for the
language definition of CCAP, and about 550 lines of Coq tactics
for the soundness proof.

We have also verified the examples of Section 4 using this Coq
encoding (see the actual code [43] for details). The proof con-
struction of each of these examples, with help of the Coq proof
assistant, took no more than a few hours. On average, 11.5 lines
of proof in Coq tactics is written for every assembly instruction.
As we have expected, many premises of the CCAP inference rules
can be automatically verified given the intermediate preconditions.

This is especially true in the cases of simple instructions which do
not concern the memory. Human “smartness” is required occasion-
ally, however, to find proper intermediate preconditions and apply
mathematical properties such as those of the GCD. In principle, the
programer should possess informal ideas on why their programs
“work” when programming. Our system simply requires the pro-
gramer to present those in logic, something necessary if formal rea-
soning is desired.

Keen readers may have observed that these examples do not involve
any data structures, hence the simplicity in verifying them is not
surprising. Previous work [46, 47] has studied similar verification
on list-like data structures, and shown that the verification task is
also straightforward after developing proper lemmas detailing the
interaction between various instructions (in particularst) and data
structures.

6 Related and Future Work

6.1 Program Verification

The CAP languages (i.e., CAP and CCAP) approach the “verify-
ing compiler” grand challenge from the aspect of program verifica-
tion. They are developed as a complementary approach to Proof-
Carrying Code (PCC) [29, 28] where the safety proof of a program
is developed semi-automatically by the programmer with help of
a proof assistant. The human factor involved achieves safety in a
more general sense, allowing the verification of even undecidable
program properties. Some useful applications include core system
libraries and critical software components. Much further work is
required, however, on improving the modularity of the CAP lan-
guages before they can be applied to large scale applications. This
work includes modular support for higher-order code pointers (see
Section 6.3) and safe linking of software components [14]. In the
long run, it is conceivable to develop verified software components
one by one and eventually have even a complete operation system
verified. The modularity support for the CAP languages will be
crucial in realizing this ambition.

The CAP languages address program safety directly at the level of
machine code. The code being verified is so close to the actual ex-
ecutable that the translation between them is very trustworthy. This
contrasts with model checking, which operates on models of pro-
grams. The non-trivial abstraction step to construct a model from a
program indicates that a verified model may not necessarily imply a
verified program. On the other hand, focusing on high-level models
enables model checking to be effective in practice.

Type systems are another popular approach of reasoning about pro-
grams. Types document programmers’ intent and enable compil-
ers to detect certain programming errors automatically. In practice,
type systems have only been applied to reasoning about a limited
scope of properties, including non-stuckness of programs, infor-
mation flow, finite-state rules, races and deadlocks, and atomicity
of multithreaded programs. In essence, types are simply restricted
predicates, and the complexity of a type system is determined by the
complexity of the underlying property that it enforces. This makes
it hard to apply type systems to low-level code such as those found
in storage allocation libraries, whose properties often demand very
specialized type systems. The CAP languages, in contrast, directly
employ higher-order predicate logic, intending to formally present
the reasoning of a programmer. Proof construction is not unduly
difficult with help of a proof assistant.



Shaoet al. [39] developed a type system for certified binaries
(TSCB). An entire proof system (CiC) is integrated into a compiler
intermediate language so as to perform reasoning about certified
programs in a calculus but essentially using higher-order predicate
logic via the formulae-as-types principle [22]. Being a type system,
the soundness of TSCB only guarantees type-safety (non-stuckness
of well-typed programs). In comparison, the CAP languages allow
programmers to write arbitrary predicates in the specification to ac-
count for more general safety properties. Another convenient trait
of the CAP languages is that, using a proof assistant like Coq, the
well-formedness reasoning can be performed without the knowl-
edge about the CiC calculus, which may be desirable to some pro-
grammers.

6.2 Concurrency Verification

There has been much work on concurrency verification (see [9, 21]
for a systematic and comprehensive introduction). This paper
adapts and applies established techniques on this issue for assembly
code, a domain not covered by existing work. The proof methods
pertinent to this paper have been discussed in Sections 2.2 and 2.3.
In particular, our modeling has benefited from previous work by
Lamport [24] and Flanaganet al. [11], as elaborated below.

Lamport [24] proposed the Temporal Logic of Actions (TLA) as a
logic for specifying and reasoning about concurrent systems. He
pointed out a unified view of existing methods for proving invari-
ance (safety) properties, which can be described formally in TLA
as applications of a temporal inference rule namedINV1. Some
simple temporal reasoning followingINV1 shows that a general in-
variance proof can be reduced to finding an invariantI satisfying
three conditions. All these conditions are assertions about predi-
cates and actions, rather than temporal formulas; hence the proof
for invariance properties can be completed in ordinary mathematics
following the three conditions.

CCAP engaged a “syntactic approach” usually found in type sys-
tems. Well-formedness of the program is used as the invariant
I , and the soundness lemmas, namely progress and preservation,
cover two of the conditions. The last condition,i.e., initial well-
formedness of the program, is left for the programmer to establish
using “typing” rules (inference rules). It is not difficult to see that
the lack of temporal reasoning in CCAP does not limit its expres-
siveness in proving for safety properties, following the observation
from TLA.

Proving liveness properties, on the other hand, requires further
work. Existing work handles liveness properties using counting-
down arguments or proof lattices [34]. As observed by Lam-
port [24], although liveness properties are expressed by a variety
of temporal formulas, their proofs can always be reduced to the
proof of leads-to properties—formulas of the formP ; Q. It is an
interesting future work to investigate how to apply these existing
approaches to the mechanical verification of assembly code.

Flanaganet al. [11] investigated the mechanical checking of proof
obligations for Java programs. Their automatic checker takes as
input a program together with annotations describing appropriate
assumptions, invariants and correctness properties. The key tech-
niques used by the checker, including assume-guarantee decompo-
sition, are derived from a parallel language of atomic operations.

6.3 Higher-Order Code Pointers

Focusing on concurrency verification, we have left out from this
paper the orthogonal issue of higher-order code pointers. Higher-
order code pointers are the reflection of higher-order procedures at
the assembly level, and a common example is the return pointers
which are frequently used in most programs. Unfortunately, to the
authors’ knowledge, the modularity support for higher-order code
pointers (or procedures) in Hoare-logic systems has been a long-
standing open problem.

A preliminary support for higher-order code pointers in CAP can be
found in previous work [46, 47]. However, the solution there is not
sufficiently modular. Take a library function as an example, both
the caller’s resource and the callee’s resource need to be explicitly
written in the code heap specification for a CAP routine. Since a
library function is to be called at various places, its code heap spec-
ification entry in CAP is essentially a template to be instantiated
upon used.

Yu et al. [48] encountered the problem of “functional parameters”
when checking the correctness of MC68020 object code programs.
They handle it by asserting the correctness of the functional param-
eters using “constraints.” The correctness of the program is proved
assuming these constraints, and the correctness theorem of the pro-
gram is used repeatedly by substituting the functional parameters
with specific functions as long as these functions meet the imposed
constraints. Although plausible, the actual mechanization of this
idea, as explained by Yuet al. [48], is “extremely difficult.” Fur-
thermore, this approach is not truly satisfactory because the specifi-
cation of a program and its correctness theorem are essentially tem-
plates which need to be instantiated upon used. CAP’s approach, as
describe earlier, is very close to this: the actual code heap specifi-
cation is used when forming the “constraints.” In practice, we find
it awkward when certifying programs with extensive use of code
pointers, especially when these uses are unconventional compared
with return pointers.

Similar problems surfaced in some PCC systems as well. In par-
ticular, Configurable PCC (CPCC) systems, as proposed by Nec-
ula and Schneck [30], statically check program safety using sym-
bolic predicates which are called “continuations.” For checking the
safety of an indirect jump instruction which transfers the program
control given a code pointer, a trusted “decoder” generates an “in-
direct continuation” whose safety needs to be verified; this continu-
ation is indirect because the target address cannot be determined by
the decoder statically. For verification purpose, an untrusted “VC-
Gen extension” is responsible for proposing some “direct contin-
uations” (direct meaning that the target addresses are known stati-
cally) whose safety implies the safety of the “indirect continuation”
given by the decoder. In practice, the extension works by listing
all the possible values of the code pointer (essentially replacing the
code pointer in the continuations with all concrete functions that it
could stand for), which requires whole-program analysis and hence
is contradictory with the goal of modularity.

Changet al. [6] presented a refined CPCC system in which “lo-
cal invariants” refine “continuations.” A local invariant essentially
consists of two related components—an “assumption” of the cur-
rent state and a list of “progress continuations” which are used for
handling code pointers. To allow the VCGen extension to manipu-
late predicates using first-order logic, only a syntactically restricted
form of invariants are used. Although this is necessary for auto-
matic proof construction for type-safety, it is insufficient in han-
dling higher-order code pointers in general. As a result, these local



invariants are only used to handle more gracefully certain fixed pat-
terns of code pointers, such as return pointers. Other situations,
such as virtual dispatch, would still require whole-program anal-
ysis for the VCGen extension to discharge the decoder’s indirect
continuations. In particular, it is unclear how this approach extends
to support arbitrary safety policies and nested continuations.

Reynolds [38] identified a similar problem in separation logic and
referred to it as “embedded” code pointers, which are “difficult
to describe in the first-order world of Hoare logic.” He specu-
lated that a potential solution lies in marrying separation logic with
continuation-passing style. The idea was only described briefly
and informally, and a convincing development remains yet to come
forth. Recently, O’Hearnet al. [31] investigated proof rules for
modularity and information hiding for first-order procedures using
separation logic. However, it is unclear how their approach extends
to support higher-order features. It is also worth mentioning that
related problems on higher-order procedures in Hoare logic can be
traced back to the late seventies [7, 8].

We are currently working on a system which addresses this issue
more properly. It involves a unified framework for type systems and
Hoare logic, and allows reasoning using both types and predicates.
A similar idea on deploying a logic in a type system for an assembly
language is due to Ahmed and Walker [3]. We intend to present
this work, which is sufficiently interesting and self-contained, in a
separate paper.

6.4 Other Future Work

CCAP is based on an abstract concurrent machine which shields
us from the details of thread management such as creation and
scheduling. However, many concurrent programs are executed on
sequential machines, relying on thread libraries to take charge in
thread management. One interesting possibility is to implement a
certified thread library using a sequential CAP language by veri-
fying the implementation of thread primitives, which are really se-
quential programs with advanced handling of code pointers. This
work helps bring CCAP to a more solid ground regarding trustwor-
thy computing.

We are also working on the application of the CAP languages to a
realistic machine model, such as the Intel Architecture (x86). The
intention is to verify the very same assembly code as those running
on actual processors. Our experience indicates that the tasks in-
volved here are mostly engineering issues, including the handling
of fixed-size integers, byte-aligned (as opposed to word-aligned)
addressing mode, finite memory model (restricted by word-size),
and encoding and decoding of variable-length instructions. We be-
lieve, however, that these aspects are orthogonal to the reasoning of
most program properties of interest and hence their handling can be
facilitated with proper proof libraries.

7 Conclusion

We have presented a language CCAP for verifying safety proper-
ties of concurrent assembly code. The language is modeled based
on a concurrent abstract machine, adapting established techniques
for concurrency verification at an assembly level. CCAP has been
developed using the Coq proof assistant, alone with a formal sound-
ness proof and the verified example CCAP programs. Only small
examples are given in this paper for illustrative purposes, but prac-
tical applications are within reach, especially for small-scale soft-
ware such as core libraries, critical components or embedded sys-

tems. Its potential application to large-scale software calls for a
further development on modularity.
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A CCAP with Multiple Threads

The CCAP presented in Section 3 supports only two threads, which
is easy to understand yet sufficient in demonstrating all the key
ideas. This appendix gives a generalized account. Figures 15 and 16
give the syntax and operational semantics of a generalized CCAP
supporting more than two threads. The auxiliary state update macro
is the same as shown in Figure 7. Inference rules and soundness
lemmas follow. In particular, a generalized inference rule for well-
formed program is given to support multiple threads. The inference
rules for well-formed code heap and well-formed instruction se-
quence, in contrast, remain exactly the same as in the two-threaded
version (these rules are gathered here for ease of reference). This
demonstrates that CCAP is indeed thread-modular.



((M,R), [. . .(Ci ,Ii) . . . ], i) 7−→ P where
if Ii = thenP =
jd f ((M,R), [. . .(Ci ,I′) . . . ], i) whereCi(f) = I′
yield;I′ ((M,R), [. . .(Ci ,I′) . . . ], i′) wherei′ ∈ {1. . .n}
bgt rs,rt ,f;I′ ((M,R), [. . .(Ci ,I′) . . . ], i) whenR(rs)≤ R(rt); and

((M,R), [. . .(Ci ,I′′) . . . ], i) whenR(rs) > R(rt) whereCi(f) = I′′
be rs,rt ,f;I′ ((M,R), [. . .(Ci ,I′) . . . ], i) whenR(rs) 6= R(rt); and

((M,R), [. . .(Ci ,I′′) . . . ], i) whenR(rs) = R(rt) whereCi(f) = I′′
c;I′ for remaining cases ofc (Next(c,(M,R)), [. . .(Ci ,I′) . . . ], i)

Figure 16. Operational semantics of a generalized CCAP.

Note that we do not support the dynamic creation and termination
of threads in this language, but extensions on them are natural and
have little to do with the concurrency verification techniques pre-
sented in this paper. To be specific, even for a dynamically created
thread, the code has to be written beforehand, and the behavior has
to obey the global invariant, the assumptions and the guarantees.
Hence the thread’s counterparts exist statically in the code heap and
the specification. The safety reasoning used for a CCAP program
remains unchanged, no matter how many individual threads are cre-
ated for the same code. Therefore, the addition of thread creation
and termination mostly affects the operational semantics, and the
inference rules can be adapted with little effort.

Well-formed program Φ;([p1 . . .pn],g) ` P

Φ = (Inv, [Ψ1 . . .Ψn], [A1 . . .An], [G1 . . .Gn])
Θk = (Inv,Ψk,Ak,Gk) Θk ` Ck ∀k∈ {1. . .n}
(Inv∧pi S) ∀S′′.(g S S′′)⊃(pk S′′) ∀k 6= i
∀S′.∀S′′.(Inv∧pk S′)⊃(Ak S′ S′′)⊃(pk S′′) ∀k 6= i
Θi ;(pi ,g) ` Ii Θk;(pk,Gk) ` Ik ∀k 6= i

Φ;([p1 . . .pn],g) ` (S, [(C1,I1) . . .(Cn,In)], i)
(PROG)

Well-formed code heap Θ ` C

Θ = (Inv,Ψ,A,G)
Ψ = {f j ; (p j ,g j )} j∈{1...m}

Θ;(p j ,g j ) ` I j ∀ j ∈ {1. . .m}
Θ ` {f j ; I j} j∈{1...m} (CODEHEAP)

Well-formed instruction sequence Θ;(p,g) ` I

Θ = (Inv,Ψ,A,G)
∀S.(Inv∧p S)⊃(g S S)
∀S.∀S′.(Inv∧p S)⊃(A S S′)⊃(p S′)
Θ;(p,G) ` I

Θ;(p,g) ` yield;I (YIELD )

Θ = (Inv,Ψ,A,G)
∀S.(Inv∧p S)⊃(Inv∧p′ Next(c,S))
∀S.∀S′.(Inv∧p S)⊃(g′ Next(c,S) S′)⊃(g S S′)
Θ;(p′,g′) ` I c ∈ {add,sub,movi}

Θ;(p,g) ` c;I (SIMPL)

Θ = (Inv,Ψ,A,G)
∀M.∀R.(Inv∧p (M,R))⊃((R(rs)+w) ∈ dom(M))
∀S.(Inv∧p S)⊃(Inv∧p′ Next(c,S))
∀S.∀S′.(Inv∧p S)⊃(g′ Next(c,S) S′)⊃(g S S′)
Θ;(p′,g′) ` I c = ld rd,rs(w)

Θ;(p,g) ` c;I (LD)

Θ = (Inv,Ψ,A,G)
∀M.∀R.(Inv∧p (M,R))⊃((R(rd)+w) ∈ dom(M))
∀S.(Inv∧p S)⊃(Inv∧p′ Next(c,S))
∀S.∀S′.(Inv∧p S)⊃(g′ Next(c,S) S′)⊃(g S S′)
Θ;(p′,g′) ` I c = st rd(w),rs

Θ;(p,g) ` c;I (ST)

Θ = (Inv,Ψ,A,G) Ψ(f) = (p′,g′)
∀S.(Inv∧p S)⊃(p′ S)
∀S.∀S′.(Inv∧p S)⊃(g′ S S′)⊃(g S S′)

Θ;(p,g) ` jd f
(JD)

Θ = (Inv,Ψ,A,G) Ψ(f) = (p′,g′)
∀M.∀R.(R(rs) > R(rt))⊃(Inv∧p (M,R))⊃(p′ (M,R))
∀M.∀R.∀S′.(R(rs) > R(rt))⊃(Inv∧p (M,R))

⊃(g′ (M,R) S′)⊃(g (M,R) S′)
∀M.∀R.(R(rs)≤ R(rt))⊃(Inv∧p (M,R))⊃(p′′ (M,R))
∀M.∀R.∀S′.(R(rs)≤ R(rt))⊃(Inv∧p (M,R))

⊃(g′′ (M,R) S′)⊃(g (M,R) S′)
Θ;(p′′,g′′) ` I

Θ;(p,g) ` bgt rs,rt ,f;I
(BGT)

Θ = (Inv,Ψ,A,G) Ψ(f) = (p′,g′)
∀M.∀R.(R(rs) = R(rt))⊃(Inv∧p (M,R))⊃(p′ (M,R))
∀M.∀R.∀S′.(R(rs) = R(rt))⊃(Inv∧p (M,R))

⊃(g′ (M,R) S′)⊃(g (M,R) S′)
∀M.∀R.(R(rs) 6= R(rt))⊃(Inv∧p (M,R))⊃(p′′ (M,R))
∀M.∀R.∀S′.(R(rs) 6= R(rt))⊃(Inv∧p (M,R))

⊃(g′′ (M,R) S′)⊃(g (M,R) S′)
Θ;(p′′,g′′) ` I

Θ;(p,g) ` be rs,rt ,f;I
(BE)

Lemma 5 (Progress) Let
Φ = (Inv, [Ψ1 . . .Ψn], [A1 . . .An], [G1 . . .Gn]). If
Φ;([p1 . . .pn],g) ` (S, [(C1,I1) . . .(Cn,In)], i) wherei ∈ {1. . .n},
then(Inv S) and there exists a programP such that
(S, [(C1,I1) . . .(Cn,In)], i) 7−→ P.

Lemma 6 (Preservation) Let
Φ = (Inv, [Ψ1 . . .Ψn], [A1 . . .An], [G1 . . .Gn]). Suppose
∀S′.∀S′′.(G j S′ S′′)⊃(Ak S′ S′′) for all j 6= k. If
Φ;([p1 . . .pn],g) ` (S, [(C1,I1) . . .(Cn,In)], i) wherei ∈ {1. . .n},
and(S, [(C1,I1) . . .(Cn,In)], i) 7−→ P, then there existsp′1,. . . ,p′n
andg′ such thatΦ;([p′1 . . .p′n],g

′) ` P.


