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Abstract
Embedded code pointers (ECPs) are stored handles of functions
and continuations commonly seen in low-level binaries as well as
functional or higher-order programs. ECPs are known to be very
hard to support well in Hoare-logic style verification systems. As
a result, existing proof-carrying code (PCC) systems have to either
sacrifice the expressiveness or the modularity of program specifi-
cations, or resort to construction of complex semantic models. In
Reynolds’s LICS’02 paper, supporting ECPs is listed as one of the
main open problems for separation logic.

In this paper we present a simple and general technique for
solving the ECP problem for Hoare-logic-based PCC systems. By
adding a small amount of syntax to the assertion language, we
show how to combine semantic consequence relation with syntactic
proof techniques. The result is a new powerful framework that
can perform modular reasoning on ECPs while still retaining the
expressiveness of Hoare logic. We show how to use our techniques
to support polymorphism, closures, and other language extensions
and how to solve the ECP problem for separation logic. Our system
is fully mechanized. We give its complete soundness proof and a
full verification of Reynolds’s CPS-style “list-append” example in
the Coq proof assistant.

Categories and Subject Descriptors F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs—assertions, logics of programs, mechanical verification;
D.2.4 [Software Engineering]: Software/Program Verification—
correctness proofs, formal methods; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Verification

Keywords Hoare Logic, Proof-Carrying Code, Embedded Code
Pointers, Higher-Order Functions

1. Introduction
Proof-carrying code (PCC) [29] is a general framework that can,
in principle, verify safety properties of arbitrary machine-language
programs. Existing PCC systems [11, 20, 10, 12], however, have fo-
cused on programs written in type-safe languages [18, 25] or vari-
ants of typed assembly languages [27]. Type-based approaches are
attractive because they facilitate automatic generation of the safety
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proofs (by using certifying compilers) and provide great support to
modularity and higher-order language features. But they also suf-
fer from several serious limitations. First, types are not expressive
enough to specify sophisticated invariants commonly seen in the
verification of low-level system software. Recent work on logic-
based type systems [42, 38, 13, 2, 1] have made types more expres-
sive but they still cannot specify advanced state invariants and as-
sertions [37, 43, 44] definable in a general-purpose predicate logic
with inductive definitions [40]. Second, type systems are too weak
to prove advanced properties and program correctness, especially
in the context of concurrent assembly code [43, 15]. Finally, differ-
ent style languages often require different type systems, making it
hard to reason about interoperability.

An alternative to type-based methods is to use Hoare logic [16,
22]—a widely applied technique in program verification. Hoare
logic supports formal reasoning using very expressive assertions
and inference rules from a general-purpose logic. In the context
of foundational proof-carrying code (FPCC) [4, 43], the assertion
language is often unified with the mechanized meta logic (follow-
ing Gordon [17])—proofs for Hoare logic consequence relation and
Hoare-style program derivations are explicitly written out in a proof
assistant. For example, Touchstone PCC [30] used Hoare-style as-
sertions to express complex program invariants. Appel et al [5, 6]
used Hoare-style state predicates to construct a general semantic
model for machine-level programs. Yu et al [43, 44, 15] recently
developed a certified assembly programming framework that uses
Hoare-style reasoning to verify low-level system libraries and gen-
eral multi-threaded assembly programs.

Unfortunately, Hoare logic—as Reynolds [37] observed—does
not support higher-order features such as embedded code pointers
(ECPs) well. ECPs, based on context and time, are often referred
to as computed-gotos, stored procedures, higher-order functions,
indirect jumps, continuation pointers, etc. As the variations in its
name suggest, ECP has long been an extensively used concept in
programming. Because of the ECP problem, PCC systems based on
Hoare logic have to either avoid supporting indirect jumps [30, 44],
limit the assertions (for ECPs) to types only [19], sacrifice the
modularity by requiring whole-program reasoning [43], or resort
to construction of complex semantic models [6, 3]. In Reynolds’s
recent LICS paper [37], supporting ECPs is listed as one of the
main open problems for separation logic.

In this paper we present a simple technique for solving the
ECP problem in the context of certified assembly programming
(CAP) [43]. By adding a small amount of syntax to the assertion
language, we show how to combine semantic consequence relation
(for assertion subsumption) with syntactic proof techniques. The
result is a new powerful framework that can perform modular
reasoning on ECPs while still retaining the expressiveness of Hoare
logic. We show how to support polymorphism, closures, and other
language extensions and how to use our techniques to solve the



ECP problem for separation logic. Our paper makes the following
important new contributions:

• Our new framework provides the first simple and general so-
lution to the ECP problem for Hoare-logic-style PCC systems.
Here, by “simple,” we mean that our method does not alter the
structure of Hoare-style program derivations and assertions—
this is in contrast to previous work by Appel and Ahmed et
al [6, 3] which relies on building indexed semantic models and
requires pervasive uses of indices both in program derivations
and Hoare assertions. By “general”, we mean that our tech-
nique can truly handle all kinds of machine-level ECPs, includ-
ing those hidden inside higher-order closures. Previous work on
Hoare logic [33, 28] supports procedure parameters by internal-
izing Hoare-logic derivations as part of the assertion language
and by using stratification: a first order code pointer cannot
specify any ECPs in its precondition; an n-th order code pointer
can only refer to those lower-order ECPs. Stratification works
at the source level and for monomorphic languages [33, 28], but
for machine-level programs where ECPs can appear in any part
of the memory, tracking the order of ECPs is impossible: ECPs
can appear on the stack or in another function’s closure (often
hidden since closures are usually existentially quantified [26]).

• Our solution to the ECP problem is fully compatible with var-
ious extensions to Hoare logic such as separation logic [37]
and rely-guarantee-based reasoning for concurrent assembly
code [44, 15]. In fact, adding support to ECPs doesn’t alter the
definition and reasoning of the separation-logic primitives in
any way (see Section 5). This is not true for index-based ap-
proaches [6, 3] where indices can easily pollute reasoning.

• As far as we know, we are the first to successfully verify
Reynolds’s CPS-style “list-append” example—which he uses to
define the ECP problem for separation logic [37]. This example
(see Section 5) may look seemingly simple, but its full verifica-
tion requires a combination of a rich assertion language (from a
general-purpose logic, for correctness proofs), inductive defini-
tions (for defining linked lists), separation logic primitives (for
memory management), and support of general ECPs and clo-
sures (which often require “impredicative existential types”).
Doing such verification using type-based methods would re-
quire cramming all these features into a single type system,
which we believe is fairly difficult to accomplish.

• Our work gives a precise account on how to extract the key
ideas from syntactic techniques (often used in type systems)
and incorporate them into Hoare logic-based PCC systems. As
we will show later, this requires careful design and is by no
means trivial. In fact, even figuring out the precise difference
between CAP (as Hoare logic) [43] and typed-assembly lan-
guage (as type system) [27] has taken us a long time. Find-
ing a way to reconcile the requirements of CAP (i.e., weakest
precondition, using the underlying logical implications to sup-
port assertion subsumption) with modular support of ECPs us-
ing syntactic techniques constitutes one of our main technical
contributions (also see Section 6 for a comparison with TAL
and state logic [2]).

• We have implemented our system (including its complete
soundness proof and a full verification of Reynolds’s exam-
ple) [32] in the Coq proof assistant [40]. Because our new
framework does not alter the base structure of the assertion
language, we are able to build tactics that exactly mirror those
for the built-in meta-logic connectives; writing proofs in the
presence of ECPs is same as doing so in the original CAP. Be-
cause all logic connectives in our new framework are defined

and verified in the underlying meta logic, the trusted computing
base (TCB) remains as small as possible.

In the rest of this paper, we first review the CAP framework [43] for
Hoare logic and then discuss the ECP problem and its main chal-
lenges (Sec 2). We present our base XCAP framework for solv-
ing the ECP problem (Sec 3) and show how to extend it to sup-
port impredicative polymorphism (Sec 4). We show how to apply
the same framework to solve the ECP problem for separation logic
and present a full verification of Reynolds’s “list-append” example
(Sec 5). Finally we discuss related work and then conclude.

2. Background and Challenges
In this section we first present our target machine language and
its operational semantics, both of which are formalized inside a
mechanized meta logic. We then review the CAP framework [43]
for Hoare logic. Finally, we look into the ECP problem in detail
and discuss its main difficulties and challenges.

2.1 Target Machine and Mechanized Meta Logic
All verification systems presented in this paper share a common
raw target machine TM, as defined in Fig 1. A complete TM
program consists of a code heap, a dynamic state component made
up of the register file and data heap, and an instruction sequence.
The instruction set is minimal but extensions are straightforward.
The register file is made up of 32 registers and the data heap can
potentially be infinite. The operational semantics of this language
(see Fig 2) should pose no surprise. Note that it is illegal to access
or free undefined heap locations, or jump to a code label that does
not exist; under both cases, the execution gets “stuck.”

Both the syntax and the operational semantics of TM are for-
malized inside a mechanized general-purpose meta logic. In this
paper we use the calculus of inductive constructions (CiC) [34]
which is a variant of higher-order predicate logic extended with
powerful inductive definitions. Although our implementation is
done inside the Coq proof assistant[40], we believe that our results
can also apply to other proof assistants.

In the rest of this paper we’ll use the following syntax to denote
terms and predicates in the underlying mechanized meta logic:

(Term) A,B ::= Set | Prop | Type | x | λx :A.B | A B
| A→B | ind. def. | . . .

(Prop) p,q ::= True | False | ¬p | p∧q | p∨q | p⊃ q
| ∀x :A. p | ∃x :A. p | . . .

To represent TM, machine state can be embedded as a State type
(which has Set sort in Coq); machine instruction sequences and
commands can be defined as inductive definitions. General safety
policies can be defined as predicates over the entire machine con-
figuration; they will have the Program→ Prop type. For example,
the simple “non-stuckness” safety policy can be defined as follows:

λP.∀n :Nat. ∃P′ :Program. P 7−→n P′.
Here 7−→n is the composition of “ 7−→” for n times. Under this
setting, if Safe denotes a particular user-defined safety policy, an
FPCC package is just a pair of program P together with a proof
object of type Safe(P), all represented inside the underlying mech-
anized meta logic.

2.2 The CAP Framework
As suggested by its name (a language for certified assembly
programming), CAP [43] is a Hoare-logic framework for reasoning
about assembly programs.

Specification language. First we introduce a construct Ψ (Code
Heap Specification) for expressing user-defined safety require-



(Program) P ::= (C,S,I)
(CodeHeap) C ::= {f ; I}∗

(State) S ::= (H,R)
(Heap) H ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗
(Register) r ::= {rk}k∈{0...31}

(Word,Labels) w,f,l ::= i (nat nums)
(InstrSeq) I ::= c;I | jd f | jmp r

(Command) c ::= add rd ,rs,rt | alloc rd , i | bgti rs, i,f
| free rs, i | ld rd ,rs(i) | mov rd ,rs
| movi rd , i | st rd(i),rs

Figure 1. Syntax of target machine TM

if I= then (C,(H,R),I) 7−→
jd f (C,(H,R),C(f)) when f∈dom(C)
jmp r (C,(H,R),C(R(r))) when R(r)∈dom(C)
bgti rs, i,f;I′ (C,(H,R),I′) when R(rs)≤ i;

(C,(H,R),C(f)) when R(rs)> i
c;I′ (C,Nextc(H,R),I′)

where

if c = then Nextc(H,R) =
add rd ,rs,rt (H,R{rd ;R(rs)+R(rt)})
mov rd ,rs (H,R{rd ;R(rs)})
movi rd , i (H,R{rd ; i})
alloc rd , i (H{l; , . . . ,l+i−1; },R{rd ;l})

where l, . . . ,l+i−1 /∈ dom(H)
and is a random value

free rs, i (H/{R(rs), . . . ,R(rs)+i−1},R)
when R(rs), . . . ,R(rs)+i−1∈dom(H)

ld rd ,rs(i) (H,R{rd ;H(R(rs)+i)})
when R(rs)+i ∈ dom(H)

st rd(i),rs (H{R(rd)+i;R(rs)},R)
when R(rd)+i ∈ dom(H)

Figure 2. Operational semantics of TM

ments in Hoare-logic style (see Fig 3). A code heap specification
associates every code label with an assertion, with the intention that
the precondition of a code block is described by the corresponding
assertion. CAP programs are written in continuation-passing style
because there are no instructions directly in correspondence with
function call and return in a high-level language. Hence postcon-
ditions in Hoare logic do not have an explicit counterpart in CAP;
they are interpreted as preconditions of the continuations.

Following Gordon [17], CAP’s assertion language is directly
unified with the underlying mechanized meta logic (i.e., shallow
embedding). CAP assertions only track the state component in
the machine configuration, so any terms of type State→ Prop are
valid CAP assertions. For example, an assertion specifying that the
registers r1, r2, and r3 store the same value can be written as:

λ(H,R).R(r1)=R(r2)∧R(r2)=R(r3).

To simplify the presentation, we lift the propositional implication
(⊃) to the assertion level (⇒). Note the slight notational abuse for
convenience—state meta-variables are reused as state variables.

Inference rules. CAP defines a set of inference rules for proving
specification judgments for well-formed programs, code heaps, and
instruction sequences (see Fig 4). A TM program is well-formed

(CdH pSpec) Ψ ::= {f; a}∗
(Assertion) a ∈ State→ Prop

(AssertImp) a⇒a′ , ∀S.a S⊃ a′ S

Figure 3. Assertion language for CAP

ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG (a S) ΨG `{a}I
ΨG `{a}(C,S,I)

(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an}
(CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)
dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)

ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2
(LINK)

Ψ `{a}I (Well-formed Instruction Sequence)

a⇒ (a′ ◦Nextc) Ψ `{a′}I
c∈{add,mov,movi,alloc, free, ld,st}

Ψ `{a}c;I
(SEQ)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jd f

(JD)

(λ(H,R).R(rs)≤ i ∧ a (H,R))⇒ a′ Ψ `{a′}I
(λ(H,R).R(rs)> i ∧ a (H,R))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a}bgti rs, i,f;I
(BGTI)

a⇒ (λ(H,R).a′(H,R)∧R(r)∈dom(Ψ)∧Ψ(R(r))=a′)
Ψ `{a} jmp r

(JMP)

Figure 4. Inference rules for CAP

(rule PROG) under assertion a if both the global code heap and the
current instruction sequence are well-formed and the machine state
satisfies the assertion a.

To support separate verification of code modules, we have made
some changes to the inference rules for well-formed code heaps
from the original CAP. A module is defined as a small code heap
which can contain as few as one code block. Each module is as-
sociated with an “import” ΨIN interface and an “export” interface
Ψ. A programmer can first establish well-formedness of each in-
dividual module via the CDHP rule. Two non-conflicting modules
can then be linked together via the LINK rule. All code blocks will
eventually be linked together to form a single global code heap with
specification ΨG (which is used in the well-formed program rule).
These two code heap rules provide basic support for modular veri-
fication. However, as we’ll show later, the modularity breaks down
when we reason about ECPs.

The intuition behind well-formed instruction sequence judg-
ment is that if the instruction sequence I starts execution in a ma-
chine state which satisfies the assertion a, then executing I is safe
with respect to the specification Ψ. An instruction sequence pre-



ceded by c is safe (rule SEQ) if we can find another assertion a′
which serves both as the post-condition of c and as the precondi-
tion of the tail instruction sequence. A direct jump is safe (rule JD)
if the current assertion can imply the precondition of the target code
block as specified in Ψ. An indirect jump is similar (rule JMP) ex-
cept it refers to the register file for the target code label; unfortu-
nately, this treatment of ECPs requires reasoning about control flow
and breaks the modularity (see Sec 2.3).

The soundness theorem below guarantees that given a well-
formed program, if it starts with the current instruction sequence,
the machine will never get stuck:

Theorem 2.1 (Soundness) If ΨG `{a}P, then for all natural num-
ber n, there exists a program P′ such that P 7−→n P′.

The proof for this can be established following the syntactic ap-
proach of proving type soundness [41] by proving the progress and
preservation lemmas (omitted). In order to address the new LINK
rule, we need the following code heap typing lemma, whose proof
needs the instruction sequence weakening lemma below.

Lemma 2.2 (Code Heap Typing) If ΨIN ` C :Ψ and f∈dom(Ψ),
then f∈dom(C) and ΨIN `{Ψ(f)}C(f).

Lemma 2.3 (Instruction Sequence Weakening) If Ψ `{a}I,
Ψ⊆Ψ′, and a′⇒a then Ψ′ `{a′}I.
Yu et al [43, 44] have also shown that CAP can be easily extended
to prove more general safety properties by introducing invariant
assertions into the inference rules. Furthermore, by mechanizing
the CAP inference rules and the soundness proofs in Coq, we can
easily construct FPCC packages for CAP programs [43, 19].

2.3 Embedded Code Pointers
Embedded code pointers (ECPs) are stored handles of functions
and continuations commonly seen in low-level binaries as well as
higher-order programs. At the assembly level (as in TM), ECPs de-
note those memory addresses (labels) stored in registers or memory
cells, pointing to the start of code blocks. Supporting ECPs is an
essential part of assembly code verification. To understand better
about the ECP problem, let’s take a look at the following example:
f1: mov r1, f1 // no assumption

jd f2

f2: jmp r1 // r1 stores an ECP with no assumption

Here we have defined two assembly code blocks. The first block,
labeled f1, makes no assumption about the state; it simply moves
the code label f1 into register r1 and then directly jumps to the
other code block labeled f2. The f2 block requires that upon enter-
ing, register r1 must contain a code pointer that has no assumption
about the state; it simply makes an indirect jump to this embedded
code pointer and continues execution from there. If the execution
initially starts from f1, the machine will loop forever between the
two code blocks and never get stuck. It is important to note that
both code blocks are independently written so they are expected to
not just work with each other, but with any other code satisfying
their specifications as well.

We introduce a predicate, cptr(f,a), to state that value f is a
valid code pointer with precondition a. Following the notations in
Sec 2.2, we define the “no assumption” assertion as aT , λS.True.
The preconditions for f1 and f2 can be written as a1 , aT and

a2 , λ(H,R).aT (H,R) ∧ cptr(R(r1),aT ).

But what should be the definition of cptr(f,a)?

Semantic approach. The semantic approach to this problem is to
directly internalize the Hoare derivations as part of the assertion
language and to define cptr(f,a) as valid if there exists a Hoare
derivation for the code block at f with precondition a. Using the
notation from CAP, it can be informally written as:

cptr(f,a) , Ψ `{a}C(f).

This is clearly ill-formed since Ψ is not defined anywhere and it can
not be treated as a parameter of the cptr predicate—the assertion a,
which is used to form Ψ, may refer to the cptr predicate again.

Semantic approach: stratification. To break the circularity, one
approach is to stratify all ECPs so that only the cptr definitions (and
well-formedness proofs) for highly-ranked code blocks can refer to
those of lower-ranked ones. More specifically, a first order code
pointer does not specify any ECP in its precondition (its code does
not make any indirect jump) so we can define cptr over them first;
an n-th order code pointer can only refer to those lower-order ECPs
so we can define cptr inductively following the same order. The cptr
predicate definition would become:

cptr(f,a,k) , Ψk−1 `{a}Ck−1(f).

Stratification works for monomorphic languages with simple pro-
cedure parameters [33, 28], but for machine-level programs where
ECPs can appear in any part of the memory, tracking the orders of
ECPs is impossible: ECPs can appear on the stack or in another
function’s closure (often hidden because closures are usually exis-
tentially quantified [26]).

Semantic approach: indexing. Another approach, by Appel et
al [6, 3, 39], also introduces an parameter k to the cptr predi-
cate. Instead of letting k refer to the depth of nesting ECPs as the
stratification approach does, the “index” k now refers to the maxi-
mum number of safe future computation steps. Roughly speaking,
cptr(f,a,k) means that it is “safe” to execute the next (at most)
k−1 instructions, starting from the code block at f with precondi-
tion a. Indexing must also be done for assertions and all the Hoare
inference rules. For example, the indirect jump rule would have the
following shape:

a⇒ λ(H,R).a′ (H,R)∧ cptr(R(r),a′,k−1)
Ψ `k {a}jmp r

.

Indexed assertions can only describe safety properties of finite
steps. To establish safety properties about infinite future executions,
one needs to do induction over the index. Because of the perva-
sive uses of indices everywhere, indexing dramatically alters the
structure of Hoare-logic program derivations and assertions. This
makes it hard to use together with other extensions such as separa-
tion logic [37] and rely-guarantee-based reasoning [44, 15].

Syntactic approach. Rather than using the semantic methods,
CAP takes a syntactic approach and is essentially reasoning about
the control flow. Validity of ECPs is established in two steps. In the
first step, in indirect jump rule JMP it only requires that we look up
the assertion for the target code label stored in register r from the
code heap specification Ψ. (The equality of assertions used here is
the Coq equality eq which is equivalent to the Leibniz’ equality.)

a⇒ (λ(H,R).a′ (H,R) ∧ R(r)∈dom(Ψ) ∧ Ψ(R(r))=a′)
Ψ `{a} jmp r

.

Then in the top-level PROG rule the well-formedness of global code
heap is checked (ΨG ` C :ΨG ) to make sure that every assertion
stored in ΨG (which is the union of all local Ψ) is indeed a valid
precondition for the corresponding code block. The effect of this
two steps combined together guarantees that the Hoare derivations
internalized in the semantic approach is still obtainable in the



syntactic approach for the preservation of whole program. This
approach is often used by type systems such as TAL.

But how do we know that such label indeed falls into the domain
of Ψ? We reason about the control flow. Take the code block of f2
as an example, we need to prove:

a2 ⇒ (λ(H,R).a′ (H,R) ∧ R(r1)∈dom(Ψ) ∧ Ψ(R(r1))=a′)

which unfolds to

∀H,R.(aT (H,R) ∧ cptr(R(r1),aT ))
⊃ (a′ (H,R) ∧ R(r1)∈dom(Ψ) ∧ Ψ(R(r1))=a′).

Clearly we should require the following to hold:

∀H,R.cptr(R(r1),aT )⊃ (R(r1)∈dom(Ψ) ∧ Ψ(R(r1))=a′).

If we let the cptr predicate directly refer to Ψ in its definition, asser-
tion and specification become cyclic definitions since Ψ consists of
a mapping from code labels to assertions (which can contain cptr).

Previous CAP implementation [43] transforms the above for-
mula into:

∀H,R.cptr(R(r1),aT )⊃ R(r1)∈{ f | f∈dom(Ψ)∧Ψ(f)=aT }
and statically calculates the address set on the right side using the
global code heap specification ΨG . It can then define:

cptr(f,a) , f∈{ f′ | f′∈dom(ΨG)∧ΨG(f′)=a}.

This is clearly not satisfactory as the actual definition of cptr(f,a)
no longer refers to a! Instead, it will be in the form of f ∈
{f1, . . . ,fn} which is not modular and very hard to reason about.

Taking the modularity issue more seriously, from the JMP rule
again, we notice that all ECPs it can jump to are those contained
in the current local Ψ only. Since the CAP language presented in
previous section supports separate verification through linking rule
LINK, when checking each module’s code heap, we do not have the
global specification ΨG and only have the declared import interface
ΨIN . For our example, checking the code blocks under different
organizations of modules would result in different a2 assertions:

λ(H,R).R(r1)∈{f1} when f1 and f2 are in a same module
and there is no other block with precondition aT in it;

λ(H,R).R(r1)∈{f1,f3} when f1 and f2 are in a same module
and there is a block f3 also with precondition aT in it;

λ(H,R).R(r1)∈{} when f1 and f2 are not in a same module
and there is no other block with precondition aT in f2 module;

λ(H,R).R(r1)∈{f3} when f1 and f2 are not in a same module
and there is a block f3 also with precondition aT in f2 module.

Since we usually do not know the target addresses statically,
we cannot put all possible indirect code pointers into the import
specification ΨIN . The syntactic approach used by CAP cannot sup-
port general ECPs without resorting to the whole-program analysis.
This greatly limits CAP’s modularity and expressive power.

2.4 The Main Challenges
Given the ECP problem explained so far, we can summarize some
important criteria for evaluating its possible solutions:

• Is it expressive? The new system should retain all expressive
power from CAP. In particular, we still want to write assertions
as general logic predicates. Ideally, there should be a “type-
preserving” translation from CAP into the new system.

• Is it easy to specify? The specifications should be self-explained
and can be used to reason about safety properties directly. There
should be no need of translating ECP specifications into less
informative forms such as indexed assertions or addresses sets
as found in approaches previously discussed.

• Is it modular? The specifications should be independently
writable and ECPs can be freely passed across the modular
boundaries.

• Is it simple? The approach should better not involve over-
whelming efforts in design and implementation when com-
pared to CAP. It should not alter or pollute the basic structure
of Hoare-style program derivations and assertions.

• Can it support extensions easily? The approach should work
smoothly with common language features and popular exten-
sions to Hoare logic.

3. The XCAP Framework
In this section we present our new XCAP framework and show how
to use syntactic techniques to perform modular reasoning on ECPs
while still retaining the expressive power of Hoare logic. XCAP
shares the same target machine TM (see Fig 1 and 2) with CAP.

3.1 Informal Development
To avoid the “circular specification” problem in the syntactic ap-
proach (to ECP), we break the loop by adding a small amount of
syntax to the assertion language, and then split the syntax of as-
sertions from their “meanings” (or validities). The key idea here
is to delay the checking of the well-formedness property of ECPs.
Instead of checking them individually at the instruction sequence
level using locally available specification ΨIN , we collect all these
checks into one global condition that would only need to be estab-
lished with respect to the global code heap specification ΨG .

Basically cptr is now merely a syntactic constant and can ap-
pear in any assertion at any time in form of cptr(f,a). Its meaning
(or validity) is not revealed during the verification of local modules
(i.e., the well-formed instruction sequence rules). An “interpreta-
tion” will translate the ECP assertion syntax into its meaning (as a
meta proposition) when the global code heap specification ΨG is fi-
nally available in the top-level PROG rule. The PROG rule will then
complete the well-formedness check for the whole program. We
achieve modularity through this two-stage verification structure.

Note that requiring the global specification ΨG in the PROG rule
does not break any modularity, since at runtime all code (and their
specifications) must be made available before they can be executed.
Besides, the top-level rule PROG only needs to be validated once for
the initial machine configuration.

3.2 Formalization
Next we give a formal presentation of our new XCAP framework,
which has been fully implemented in Coq proof assistant and the
implementation is available at the FLINT web site [32].

Extended propositions and the specification language. Figure 5
defines the core of the XCAP specification language which we call
extended logical propositions (PropX). PropX can be viewed as a
lifted version of the meta logic propositions, extended with an addi-
tional cptr constant: the base case 〈p〉 is just the lifted proposition p
(thus PropX retains the full expressive power of meta logic propo-
sitions); cptr is the constructor for specifying ECP propositions; to
interoperate lifted propositions and ECP propositions, we also lift
all the logical connectives and quantifiers.

For universal and existential quantifications, we use higher-
order abstract syntax (HOAS) [36] to represent them. For example,
∀∀x :A.P is actually implemented as ∀∀(λx :A.P). The benefit here is
that we can utilize the full expressive power of the meta logic (in
our case, CiC/Coq) and use a single quantifier to quantify over all
possible types (A) such as Prop, State, and even State→ Prop.

Extended propositions can be used to construct “extended”
predicates using the abstraction facility in the underlying meta



(PropX) P,Q ::= 〈p〉 li f ted meta proposition

| cptr(f,a) embedded code pointer

| P∧∧Q con junction

| P∨∨Q dis junction

| P→→Q implication

| ∀∀x :A.P universal quanti f ication

| ∃∃x :A.P existential quanti f ication

(CdH pSpec) Ψ ::= {f; a}∗
(Assertion) a ∈ State→ PropX

(AssertImp) a⇒a′ , ∀Ψ,S. [[a ]]Ψ S⊃ [[a′ ]]Ψ S

Figure 5. Extended propositions and assertion language for XCAP

[[a ]]Ψ , λS. [[a S ]]Ψ

[[〈p〉 ]]Ψ , p

[[cptr(f,a) ]]Ψ , f∈dom(Ψ)∧Ψ(f)=a

[[P∧∧Q ]]Ψ , [[P ]]Ψ∧ [[Q ]]Ψ
[[P∨∨Q ]]Ψ , [[P ]]Ψ∨ [[Q ]]Ψ

[[P→→Q ]]Ψ , [[P ]]Ψ ⊃ [[Q ]]Ψ
[[∀∀x :A.P ]]Ψ , ∀B :A. [[P[B/x] ]]Ψ
[[∃∃x :A.P ]]Ψ , ∃B :A. [[P[B/x] ]]Ψ

Figure 6. Interpretations of extended propositions & assertions

logic. For example, the following extended state predicate of type
State→PropX says registers r1, r2, and r3 store the same value:

λ(H,R).〈R(r1) = R(r2)∧R(r2) = R(r3)〉.
Extended predicates are not limited to be over machine states only.
For example, the following extended value predicate resembles the
code pointer type found in type systems. (Here a, the precondition
of the code block pointed to by f, is an extended state predicate.)

code a , λf.cptr(f,a)

Using extended logical propositions and predicates, we can
also define code heap specifications (Ψ), assertions (a), and the
assertion subsumption relation (⇒) accordingly (see Fig 5).

Extended propositions adds a thin layer of syntax over meta
propositions. Fig 6 presents an interpretation of their validity in
meta logic. It is defined as a meta function. A lifted proposition
〈p〉 is valid if p is valid in the meta logic. Validity of ECP propo-
sitions can only be testified with a code heap specification Ψ, so
we make it a parameter of the interpretation function; Ψ is typ-
ically instantiated by (but not limited to) the global specification
ΨG . Interpretation of cptr(f,a) tests the equality of a with Ψ(f).
Here we use the inductively defined Coq equality eq (equivalent to
the Leibniz’ equality) extended with extensionality of functions (a
safe extension commonly used in the Coq [21] community). Note
that the use of equality predicate in logic is different from the use
of equality function in programming—a programmer must supply
the proper equality proofs in order to satisfy the ECP interpretation.
Extended logical connectives and quantifiers are interpreted in the
straight-forward way. Note that HOAS [36] is used in the interpre-
tation of extended implications.

ΨG `{a}P (Well-formed Program)

ΨG ` C :ΨG ( [[a ]]ΨG
S) ΨG `{a}I

ΨG `{a}(C,S,I)
(PROG)

ΨIN ` C :Ψ (Well-formed Code Heap)

ΨIN `{ai}Ii ∀fi

ΨIN ` {f1 ;I1, . . . ,fn ;In} :{f1 ;a1, . . . ,fn ;an}
(CDHP)

ΨIN 1 ` C1 :Ψ1 ΨIN 2 ` C2 :Ψ2 ΨIN 1(f)=ΨIN 2(f)

dom(C1)∩dom(C2)= /0 ∀f∈dom(ΨIN 1)∩dom(ΨIN 2)
ΨIN 1∪ΨIN 2 ` C1∪C2 :Ψ1∪Ψ2

(LINK)

Ψ `{a}I (Well-formed Instruction Sequence)

a⇒ (a′ ◦Nextc) Ψ `{a′}I
c∈{add,mov,movi,alloc, free, ld,st}

Ψ `{a}c;I
(SEQ)

a⇒Ψ(f) f∈dom(Ψ)
Ψ `{a} jd f

(JD)

(λ(H,R).〈R(rs)≤ i〉 ∧∧ a (H,R))⇒ a′ Ψ `{a′}I
(λ(H,R).〈R(rs)> i〉 ∧∧ a (H,R))⇒Ψ(f) f∈ dom(Ψ)

Ψ `{a}bgti rs, i,f;I
(BGTI)

a⇒ (λ(H,R).a′ (H,R) ∧∧ cptr(R(r),a′) )

Ψ `{a} jmp r
(JMP)

(λS.cptr(f,Ψ(f))∧∧a S)⇒ a′ f∈dom(Ψ) Ψ `{a′}I
Ψ `{a}I (ECP)

Figure 7. Inference rules for XCAP

Inference rules. To reason about TM programs in XCAP, just as
we did for CAP (in Fig 4), we present a similar set of inference rules
for well-formed programs, code heaps, and instruction sequences in
Fig 7. Other than the differences in the assertion language, we only
modified the PROG rule and the JMP rule, and added a new ECP rule
for introducing new ECP propositions into assertions on the fly. For
the unchanged rules, readers can refer to Sec 2.2 for explanations.

The difference for the PROG rule is minor but important. Here
we use the global specification ΨG in the interpretation of asser-
tions which may contain ECP propositions. For state S to satisfy
assertion a, we require a proof for the meta proposition ([[a ]]ΨG

S).
This is the only place in the XCAP inference rules where validity
of assertions (with ECP propositions) needs to be established. All
other rules only require subsumption between assertions.

For the JMP rule, instead of looking up the target code blocks’
preconditions a′ from the current (local) specification Ψ, we require
the current precondition a to guarantee that the target code label
R(r) is a valid ECP with a′ as its precondition. Combined with the
([[a ]]ΨG

S) condition established in the PROG rule, we can deduce
that a′ is indeed the one specified in ΨG .

If we call the JMP rule “consumer” of ECP propositions, then
the ECP rule can be called “producer.” It is essentially a “cast”



rule—it allows us to introduce new ECP propositions cptr(f,Ψ(f))
about any code label f found in the current code heap specification
Ψ into the new assertion a′. This rule is often used when we move
a constant code label into a register to create an ECP.

Combining the JMP and ECP rules, ECP knowledge can be built
up by one module at the time of ECP creation and be passed around
and get used for indirect jumps in other modules. For example,
given the following code where we assume register r30 contains
the return value and register r31 contains the return code pointer:

plus: add r30, r0, r1; // fun plus (a, b)
jmp r31 // = a + b

app2: mov r3, r0; // fun app2(f, a, b)
mov r0, r1; // = f(a, b)
mov r1, r2;
jmp r3

we can assign them with the following XCAP specifications and
make safe (higher-order) function calls such as app2(plus,1,2).

{plus ; λ(H,R).∃∃a,b,ret.
〈R(r0)=a∧R(r1)=b∧R(r31)=ret〉
∧∧cptr(ret, λ(H′,R′).〈R′(r30)=a+b〉)}

{app2 ; λ(H,R).∃∃ f ,a,b,ret.
〈R(r1)=a∧R(r2)=b∧R(r0)= f ∧R(r31)=ret〉
∧∧cptr( f , λ(H′,R′).∃∃a′,b′,ret ′.

〈R′(r0)=a′∧R′(r1)=b′∧R′(r31)=ret ′〉
∧∧cptr(ret ′, λ(H′′,R′′).〈R′′(r30)=a′+b′〉))

∧∧cptr(ret, λ(H′,R′).〈R′(r30)=a+b〉)}
Soundness. The soundness of XCAP is proved in the same way
as for CAP. We give the main lemmas and a proof sketch here; the
fully mechanized proof in the Coq proof assistant can be found in
our implementation [32].

Lemma 3.1 (Progress) If ΨG `{a}P, then there exists a program
P′ such that P 7−→ P′.
Proof Sketch: Suppose P = (C,S,I), by inversion we obtain
ΨG `{a}I. The proof is by induction over this derivation. ¥

Lemma 3.2 (Preservation) If ΨG `{a}P and P 7−→ P′ then there
exists an assertion a′ such that ΨG `{a′}P′.
Proof Sketch: Suppose P = (C,S,I); by inversion we obtain
ΨG ` C :ΨG , ([[a ]]ΨG

S), and ΨG `{a}I. We do induction over
derivation ΨG `{a}I. The only interesting cases are the JMP and
ECP rules.

For the JMP rule case, let S be (H,R). By the implication
a⇒ (λ(H,R).cptr(R(r),a′)) and the interpretation of cptr it fol-
lows that a′=ΨG(R(r)) and R(r)∈dom(ΨG). Then by the same
code heap typing lemma as discussed in Sec 2.2, it follows that
ΨG `{a′}C(R(r)). Finally by a⇒ a′ it follows that a′(H,R).

For the ECP case, by the code heap typing lemma and by
(λS.cptr(f,ΨG(f))∧∧a S)⇒ a′ it follows that [[a′ S ]]ΨG

. Also we
have ΨG `{a′}I. Then we use the induction hypothesis to finish
the proof. ¥

Theorem 3.3 (Soundness) If ΨG `{a}P, then for all natural num-
ber n, there exists a program P′ such that P7−→n P′.

3.3 Discussion
The main idea of XCAP is to support Hoare-style reasoning of
ECPs by extending the assertion language with a thin layer of syn-
tax. Next we review XCAP using the criteria given in Sec 2.4. The

following theorem presents a simple “type-preserving” translation
from CAP to XCAP and shows that XCAP is at least as powerful
as CAP. To avoid confusion, we use `CAP and `XCAP to represent
CAP judgments (as defined in Fig 4) and XCAP ones (as defined
in Fig 7). See our implementation [32] for the detailed proofs.

Theorem 3.4 (CAP to XCAP Translation)
We define the lifting of CAP assertions and specifications as:

paq , λS.〈a S〉
and p{f1 ;a1, . . . ,fn ;an}q , {f1 ;pa1q, . . . ,fn ;panq}.

1. If ΨG `CAP {a}P then pΨGq `XCAP {paq}P;
2. if ΨIN `CAP C :Ψ then pΨIN q `XCAP {C}pΨq;
3. if Ψ `CAP {a}I then pΨq `XCAP {paq}I.

Proof Sketch: (1) and (2) are straight-forward and based on (3).
For (3), as CAP’s JMP rule only reasons about preconditions in the
current Ψ, we use ECP rule on all pairs of code label and precondi-
tion in Ψ and use XCAP’s JMP rule to finish the proof. ¥

The specification written in XCAP assertion language is close
to a typical Hoare assertion and thus is easy to write and reason
about. From the user’s perspective, there is no need to worry about
the “meaning” of the ECP propositions because they are treated
abstractly almost all the time.

XCAP is still lightweight because the lifted propositions 〈p〉
and their reasoning are shallowly embedded into the meta logic,
which is the same as CAP. The added component of ECP proposi-
tions as well as other lifted connectives and quantifiers are simple
syntactic constructs and do not involve complex constructions.

As we will show in later sections, the XCAP framework can
be easily extended to support other language features and popular
extensions of Hoare logic.

4. XCAP with Impredicative Polymorphism
The XCAP system presented earlier enjoys great expressive power
from its underlying meta logic. As the mini examples have shown,
features such as data polymorphism can be easily supported. How-
ever, to support modular verification, when composing specifica-
tions, it is important to be able to abstract out and quantify over
(part of) the specifications themselves. This is especially important
for ECPs, since very often the specification for the target code is
only partially disclosed to the callers. In this section we show how
to support this kind of impredicative polymorphism in XCAP.

Impredicative polymorphism can be easily supported in type
systems. Take TAL [27] as an example, it allows quantifications
over value types, which correspond to value predicates in XCAP.
Since XCAP predicates are much more flexible than types, we
choose to support universal and existential quantifications over
arbitrary extended predicates of type A→PropX (where A does not
contain PropX). We reuse the quantifiers defined in XCAP in Sec 3
and write impredicative extended propositions as follows:

∀∀α :A→PropX.P and ∃∃α :A→PropX.P.

In the implementation of these impredicative quantifiers, the
HOAS technique used for predicative ones no longer works be-
cause of the negative-occurrence restriction for inductive defini-
tions. We use the de Bruijn notations [14] to encode the impred-
icative quantifiers. For more details, see Appendix A.

The next task is to find a way to establish the validity of
impredicative extended propositions. One obvious idea is to take
the previously defined interpretation function in Fig 6 and directly
apply it on the impredicative quantification cases as follows:



Γ `Ψ P (Validity of Extended Propositions) (The following presentation omits the Ψ in judgment Γ `Ψ P.)

(env) Γ := · | Γ,P
P ∈ Γ
Γ `P (ENV)

p
Γ `〈p〉 (〈〉-I) Γ `〈p〉 p ⊃ (Γ `Q)

Γ `Q (〈〉-E)
Ψ(f)=a

Γ `cptr(f,a)
(CP-I)

Γ `cptr(f,a) (Ψ(f)=a) ⊃ (Γ `Q)
Γ `Q (CP-E)

Γ `P Γ `Q
Γ `P∧∧Q (∧∧-I)

Γ `P∧∧Q
Γ `P (∧∧-E1)

Γ `P∧∧Q
Γ `Q (∧∧-E2)

Γ `P
Γ `P∨∨Q (∨∨-I1) Γ `Q

Γ `P∨∨Q (∨∨-I2)
Γ `P∨∨Q Γ,P `R Γ,Q `R

Γ `R (∨∨-E)
Γ,P `Q

Γ `P→→Q
(→→-I)

Γ `P→→Q Γ `P
Γ `Q (→→-E)

Γ `P[B/x] ∀ B :A
Γ `∀∀x :A.P

(∀∀-I1)
Γ `∀∀x :A.P B :A

Γ `P[B/x]
(∀∀-E1)

B :A Γ `P[B/x]
Γ `∃∃x :A.P

(∃∃-I1)

Γ `∃∃x :A.P Γ,P[B/x] `Q ∀ B :A
Γ `Q (∃∃-E1)

Γ `P[a/α] ∀ a :A→PropX
Γ `∀∀α :A→PropX.P

(∀∀-I2)
a :A→PropX Γ `P[a/α]

Γ `∃∃α :A→PropX.P
(∃∃-I2)

Figure 8. Validity rules for impredicative extended propositions

[[∀∀α :A→PropX.P ]]Ψ , ∀a :A→PropX. [[P[a/α] ]]Ψ
[[∃∃α :A→PropX.P ]]Ψ , ∃a :A→PropX. [[P[a/α] ]]Ψ

Unfortunately (but not surprisingly), the recursive call parameter
P[a/α] may be larger than the original ones as a can bring in un-
bounded new sub-formulas. The interpretation function no longer
terminates, and thus is not definable in the meta logic.

Our solution is to define the interpretation of extended proposi-
tions as the set of inductively defined validity rules shown in Fig 8.
The judgment, Γ `Ψ P, means that P is valid under environment
Γ (which is a set of extended propositions) and code heap specifi-
cation Ψ. An extended proposition is valid if it is in the environ-
ment. Constructors of extended propositions have their introduc-
tion and elimination rules. The introduction rules of lifted proposi-
tion 〈p〉 and ECP proposition cptr(f,a) require that p and Ψ(f)=a
be valid in the meta logic. Their elimination rules allow full meta-
implication power in constructing derivations of validity of the new
extended propositions. The rules for other constructors are standard
and require little explanation.

The interpretation of extended propositions can be now be
simply defined as their validity under the empty environment.

[[P ]]Ψ , · `Ψ P

Given the above definitions of interpretation and validity, we
have proved the following soundness theorem (with respect to
CiC/Coq) using the syntactic strong normalization proof method
by Pfenning [35]. For proof details, see Appendix B.

Theorem 4.1 (Soundness of PropX Interpretation)

1. If [[〈p〉 ]]Ψ then p;
2. if [[cptr(f,a) ]]Ψ then Ψ(f) = a;
3. if [[P∧∧Q ]]Ψ then [[P ]]Ψ and [[Q ]]Ψ;
4. if [[P∨∨Q ]]Ψ then either [[P ]]Ψ or [[Q ]]Ψ;
5. if [[P→→Q ]]Ψ and [[P ]]Ψ then [[Q ]]Ψ;
6. if [[∀∀x :A.P ]]Ψ and B :A then [[P[B/x] ]]Ψ;
7. if [[∃∃x :A.P ]]Ψ then there exists B :A such that [[P[B/x] ]]Ψ;
8. if [[∀∀α :A→PropX.P ]]Ψ and a :A→PropX then [[P[a/α] ]]Ψ;
9. if [[∃∃α :A→PropX.P ]]Ψ then there exists a :A→PropX such

that [[P[a/α] ]]Ψ.

Corollary 4.2 (Consistency) [[〈False〉 ]]Ψ is not provable.

To make impredicative extended propositions easy to use, in the
implementation of PropX and its interpretation, we define addi-
tional concrete syntax and proof tactics to hide the de Bruijn repre-
sentation and the interpretation detail. A user can mostly manipu-
late PropX objects in the same way as with Prop objects.

Inference rules and soundness. We change the indirect jump
rule JMP from the one presented in Fig 7 to the following:

a⇒ (λ(H,R). ∃∃a′. (a′ (H,R) ∧∧ cptr(R(r),a′)))
Ψ `{a} jmp r

(JMP).

The existential quantification over the assertion a′ (for the target
code block) is moved from (implicitly) over the whole rule to be
after the assertion subsumption (⇒). This change is important to
support polymorphic code—the target assertion a′ can now depend
on the current assertion a.

All other inference rules of XCAP remain unchanged. The
soundness of XCAP inference rules (Theorem 3.3) and the CAP
to XCAP translation (Theorem 3.4) only need trivial modifications
in the case of indirect jump. We do not restate them here. This im-
predicative version of XCAP has been implemented in Coq proof
assistant (see our implementation [32] for details).

With impredicative quantifications, ECP can now be specified
and used with great flexibility. For example, the app2 function in
previous section can now be assigned with the following more gen-
eral specification. Instead of being restricted to an argument with
the “plus” functionality, any functions that take two arguments a
and b and return a value satisfying (unrestricted) assertion aret(a,b)
can be passed to app2.

{app2 ; λ(H,R).∃∃ f ,a,b,ret,aret .

〈R(r1)=a∧R(r2)=b∧R(r0)= f ∧R(r31)=ret〉
∧∧cptr( f , λ(H′,R′).∃∃a′,b′,ret ′.

〈R′(r0)=a′∧R′(r1)=b′∧R′(r31)=ret ′〉
∧∧cptr(ret ′, aret(a′,b′)))

∧∧cptr(ret, aret(a,b))}
Subtyping on ECP propositions. The ECP proposition has a very
rigid interpretation. To establish the validity of cptr(f,a), Ψ(f)
must be “equal” to a. This is simple for the system, but is restrictive
in usage and differs from typical type systems where subtyping
can be used to relax code types. With support of impredicative
quantifications, instead of directly using cptr, we can define a more
flexible predicate for ECPs:



codeptr(f,a) , ∃∃a′.(cptr(f,a′)∧∧∀∀S.a S→→a′ S).
We can define the following subtyping lemma for ECP predicates.

Lemma 4.3 (Subtyping of ECP Propositions)
If [[codeptr(f,a′) ]]Ψ and [[∀∀S.a S→→a′ S ]]Ψ then [[codeptr(f,a) ]]Ψ.

Proof: From [[codeptr(f,a′) ]]Ψ it follows that
[[∃∃a′′.(cptr(f,a′′)∧∧∀∀S.a′ S→→a′′ S) ]]Ψ.

By the soundness of interpretation theorem it follows that
∃a′′. [[cptr(f,a′′) ]]Ψ∧ [[∀∀S.a′ S→→a′′ S ]]Ψ.

Using the ∀∀-I1, ∀∀-E1, →→ -I, and →→ -E rules it follows that
[[∀∀S.a S→→a′′ S ]]Ψ.

Using the ∧∧ -I and ∃∃-I2 rules it follows that
[[∃∃a′′.(cptr(f,a′′)∧∧∀∀S.a S→→a′′ S) ]]Ψ.

Which is [[codeptr(f,a) ]]Ψ. ¥

Discussion. In Fig 8 we have only included the introduction rules
for the two impredicative quantifiers. This could cause confusion
because from the logic perspective, missing the two elimination
rules would raise questions related to the completeness of the logic.
However, despite its name, PropX is not designed to be a general
(complete) logic; it is purely a level of syntax laid upon the meta
logic. While its expressive power comes from the lifted proposi-
tions 〈p〉, the modular handling of ECPs and impredicative poly-
morphism follows syntactic types.

To certify the examples in this paper (or any polymorphic TAL
programs), what we need is to establish the assertion subsumption
relation ⇒ between XCAP assertions. According to its definition,
assertion subsumption is merely a meta-implication between va-
lidities of XCAP propositions. Although in certain cases it is pos-
sible to first do all the subsumption reasoning in PropX and prove
[[P→→Q ]]Ψ, and then obtain the subsumption proof [[P ]]Ψ ⊃ [[Q ]]Ψ
by Theorem 4.1, it is not always possible due to the lack of com-
pleteness for PropX, and is not the way PropX should be used. In-
stead, one can always follow the diagram below in proving sub-
sumption relations (we use the impredicative existential quantifier
as an example):

[[∃∃α.P ]]Ψ
implication //___________

Theorem
4.1

®¶

[[∃∃α.Q ]]Ψ

∃a. [[P[a/α] ]]Ψ
meta-implication // ∃a. [[Q[a/α] ]]Ψ

ru
le
∃∃-

I2

KS

To prove the intended “implication” relation (the top one), we first
use Theorem 4.1 to turn the source proposition’s existential quan-
tification into the meta one, from which we can do (flexible) meta
implications. Then we reconstruct the existential quantification of
the target proposition via the introduction rule. This way, the con-
struction of subsumption proof in meta logic does not require the
reasoning at the PropX level.

In fact, the subtyping relation found in TAL can be simulated
by the subsumption relation in XCAP (with only the introduc-
tion rules for the two impredicative quantifiers). What the missing
“elimination rules” would add here is the ability to support a notion
of “higher-order subtyping” between “impredicative types”, which
does not appear in practical type systems such as TAL, FLINT, or
ML. Although it could be nice to include such feature in XCAP, we
did not do so since that would require a complex semantic strong
normalization proof instead of the simple syntactic one used for
Theorem 4.1 (see Appendix B).

5. Solving Reynolds’s ECP Problem
Separation logic [37] is a recent Hoare-logic framework designed
for reasoning about shared mutable data structures. Reynolds [37]
listed supporting ECPs as a major open problem for separation
logic. In this section, we show how to solve this problem in the
XCAP framework (with impredicative polymorphism).

XCAP directly supports separation logic specifications and rea-
soning by defining their constructs and inference rules in the asser-
tion language and meta logic as macros and lemmas. For example,
the following are some separation logic primitives defined over the
data heap (assuming ] is the disjoint union):

emp , λH.〈dom(H)={}〉
l 7→w , λH.〈dom(H)={l}∧H(l)=w〉
l 7→ , λH.〈∃w.(l 7→w H)〉

a1 ∗a2 , λH.∃∃H1,H2.〈H1]H2 =H〉∧∧a1 H1∧∧a2 H2

l 7→w1, . . . ,wn , l 7→w1 ∗ . . . ∗ l+n−1 7→wn

The frame rule can be defined as lemmas (derived rules) in XCAP:

a ⇒ (a′ ◦Nextc)

(a∗a′′) ⇒ ((a′ ∗a′′)◦Nextc)
(FRAME-INSTR)

{f1 ;a1, . . . ,fn ;an} `{a}I
{f1 ;a1 ∗a′, . . . ,fn ;an ∗a′} `{a∗a′}I

(FRAME-ISEQ)

ECP formulas can appear freely in these assertions and rules, thus
it is very convenient to write specifications and reason about shared
mutable data structures and embedded code pointers simultane-
ously. So our XCAP framework easily carries to separation logic.

Example: destructive list-append function in CPS. To demon-
strate the above point, we verify a destructive version of the list-
append example which Reynolds [37] used to define the ECP open
problem. Following Reynolds, our destructive list-append function
is written in continuation passing style (CPS):

append (x , y , rk ) =
if x == NULL then rk (y )
else let k (z ) = ([x +1] := z ; rk (x ))

in append ([x +1], y , k )

Here the append function takes three arguments: two lists x and y
and a return continuation rk. If x is an empty list, it calls rk with list
y. Otherwise, it first creates a new continuation function k which
takes an (appended) list z, makes list x’s head node link to z, and
passes the newly formed list (which is pointed to by x) to the return
continuation rk. Variables x and rk form the closure environment
for continuation function k. The append function then recursively
calls itself with the tail of list x, list y, and the new continuation k.
For node x, [x] is its data and [x+1] is the link to the next node.

We do closure conversion and translate append into TM as-
sembly code. The complete code, specification, and illustration of
the destructive list-append function is in Fig 9. In the presentation,
we often write a for assertion λ(H,R).∃∃x1 :A1, . . . ,xn :An.a, so all
free variables in a are existentially quantified right after the lambda
abstraction. Formulas such as (a∗a′ H) and R(r)=w are also sim-
plified to be written as a∗a′ and r=w.

Predicate (list ls l) describes a linked list pointed to by l where
the data cell of each node stores the value in ls respectively. Here
ls is a mathematical list where nil, w :: ls and ls++lt stand for
the cases of empty list, cons, and append respectively. Predicate
(cont aenv ls f) requires f to point to a continuation code block
which expects an environment of type aenv and a list which stores
ls. Predicate (clos ls l) describes a continuation closure pointed to
by l; this closure is a pair (cnt,env) where cnt is a continuation



In this figure, all undefined identifiers are the names of (implicitly) existentially quantified variables.

list nil l , emp ∧∧ 〈l=NULL〉
list (w :: ls) l , ∃∃l′.l 7→w,l′ ∗ list ls l′

nth(ls, 1)
l'

nth(ls, 2)
l'’-

nth(ls, n)
NULL-…...l

cont aenv ls f , codeptr(f, λS.∃∃env,z. 〈r0 =env ∧ r1 =z〉
∧∧ aenv env ∗ list ls z)

                                                                        continuation code blockenvironment of type aenvr0
r1

env
z linked list stores lsf

clos ls l , ∃∃aenv,cnt,env. l 7→cnt,env ∗ aenv env ∧∧cont aenv ls cnt
environment of type aenv

continuation code block 
expecting an environment 

aenv and a list stores ls
cnt
env

l

r0
r1

env
z linked list stores ls

x
rk

a
_closure expecting a list stores a::ls

k : ld r2, r0(0) {〈r0 =env ∧r1 =z 〉∧∧ list ls z ∗ x 7→a,_ ∗ clos (a :: ls) rk ∗ env 7→x,rk }
ld r3, r0(1) {〈· · · · · · · · · · · · · · · · · · ·∧r2 =x 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→_,rk}
free r0, 2 {〈· · · · · · · · · · · · · · · · · · · · · · · · · · · ·∧r3 =rk 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ env 7→_,_}
st r2(1), r1 {〈 · · · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·}
mov r1, r2 {〈 · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · ∗ x 7→a,z ∗ · · · · · · · · · · · · · ·}

r1
r3

x
rk linked list stores ls

a
z

                closure expecting a list stores a::ls                          linked list stores a::ls

environment of type aenv

continuation code block 
expecting an environment 
aenv and a list stores a::ls

cnt
env'

ld r31, r3(0) {〈 r1 =x ∧r3 =rk 〉∧∧ list (a :: ls) x ∗ aenv env’∧∧cont aenv (a :: ls) cnt ∗ rk 7→cnt,env’}
ld r0, r3(1) {〈 · · · · · · · ∧ · · · · · · · ·∧r31 =cnt〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,env’}
free r3, 2 {〈r0 =env’∧·· · · · · · ∧ · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,_}

r0
r1

env'
x linked list stores a::ls

environment of type aenv

r31 cnt

                                                                 continuation code blockenvironment of type aenvr0
r1

env'
x linked list stores a::ls

jmp r31 {〈r0 =env’∧r1 =x ∧r31 =cnt〉∧∧ list (a :: ls) x ∗ aenv env’∧∧cont aenv (a :: ls) cnt}

r0
r1

x
y linked list stores lt

closure expecting a list stores ls++ltr2 rk

linked list stores ls

append : bgti r0, 0, else {〈r0 =x ∧r1 =y∧r2 =rk 〉∧∧ list ls x ∗ list lt y ∗ clos (ls++lt) rk}
// the following ‘‘then’’ branch is almost same as the second half of function k

ld r31, r2(0) {〈 r1 =y∧r2 =rk 〉∧∧ list lt y ∗ aenv env ∧∧ cont aenv lt cnt ∗ rk 7→cnt,env}
ld r0, r2(1) {〈 · · · · · · · · · · · · · · · ·∧r31 =cnt〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,env}
free r2, 2 {〈r0 =env∧·· · · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ rk 7→_,_}
jmp r31 {〈r0 =env∧r1 =y ∧r31 =cnt〉∧∧ list lt y ∗ aenv env ∧∧ cont aenv lt cnt}

r0
r1

x
y linked list stores lt

closure expecting a list stores a::ls++ltr2 rk
linked list stores ls

a
b

                     linked list stores a::ls

else : alloc r3, 2 {〈r0 =x∧r1 =y∧r2 =rk 〉∧∧ list ls b ∗ list lt y ∗ clos (a :: ls++lt) rk ∗ x 7→a,b}
st r3(0), r0 {〈· · · · · · · · · · · · · · · · · · · · · · · · ·∧r3 =env〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗env 7→_,_}
st r3(1), r2 {〈· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗env 7→x,_}
ld r0, r0(1) {〈· · · · · · · · · · · · · · · ∧ · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗env 7→x,rk}
alloc r2, 2 {〈r0 =b∧·· · · · · ∧ · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗ x 7→a,_ ∗ · · · · · · · · · · ·}
st r2(1), r3 {〈· · · · · · · · · · · · · · ·∧r2 =nk∧·· · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗nk 7→_,_}
movi r3, k {〈· · · · · · · · · · · · · · · · · · · · · · · · · 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ∗nk 7→_,env}
st r2(0), r3 {〈· · · · · · · · · · · · · · · · · · · · · · · · ·∧r3 =k 〉∧∧ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·}

r0
r1

b
y linked list stores lt

closure expecting a list stores a::ls++ltr2 nk

linked list stores ls
a
_

x
rk

k
env

environment (aenv env)

// (ecp) rule {〈r0 =b∧r1 =y∧r2 =nk 〉∧∧ list ls b ∗ list lt y ∗ clos (a :: ls++lt) rk ∗ x 7→a,_ ∗env 7→x,rk ∗ nk 7→k,env}
r0
r1

b
y linked list stores lt

environment of type aenvr2 nk

linked list stores ls
k

env
continuation code block 

expecting an environment 
aenv and a list stores ls++lt

                closure expecting a list stores ls++lt     

jd append {〈r0 =b∧r1 =y∧r2 =nk 〉∧∧ list ls b ∗ list lt y ∗ clos (ls++lt) nk}
// where the aenv being packed is defined as aenv env , clos (a :: ls++lt) rk ∗ x 7→a,_∗env 7→x,rk

Figure 9. Complete code, specification, and illustration of destructive list append function in CPS



function pointer and env points to an environment for cnt. The
environment predicate aenv is hidden inside the closure predicate.

In Fig 9 we list the precondition for each instruction on its right
side. The instruction (or the comment on the left side) determines
which well-formed instruction rule to use at each step. State dia-
grams are drawn before all the interesting steps.

Our specification of the append function guarantees that the re-
turn continuation rk will get a correctly appended list (i.e., the list
contents are exactly same as the two input lists). Furthermore, even
though the function contains a large amount of heap allocation, mu-
tation, and deallocation (which are used to build and destroy contin-
uation closures and to append two lists on the fly), memory safety is
fully guaranteed (no garbage, no illegal free operation). The com-
plete Coq proof is also available in our implementation [32].

6. Related Work and Conclusion
Hoare logic. Earlier work such as Yu et al [45, 8] encountered
the problem of “functional parameters” when checking the cor-
rectness of MC68020 object code. They first prove correctness of
the program assuming some constraints about function parameters,
and then apply the correctness theorem of the program repeatedly
by substituting the functional parameters with concrete functions
matching the imposed constraints. This approach is very close to
CAP’s syntactic approach to ECP as the global code heap specifi-
cation is used when forming the “constraints”, and was described
by Yu et al. [45] as “extremely difficult.”

Reynolds [37] identified the ECP problem for separation logic
and described ECPs as “difficult to describe in the first-order world
of Hoare logic.” He speculated that a potential solution lies in
marrying separation logic with continuation-passing style and by
adding a reflection operator into the logic. The idea was only
described briefly and informally. Sec 5 of this paper solved the ECP
problem for separation logic.

In addition to the related work presented in Sections 1 and 2.3,
there are many other attempts made toward the ECP problem,
though they all use some forms of stratification or indexing.
Recently, borrowing ideas from typed π-calculus, Honda and
Yoshida [23] presented a formal reasoning system for a polymor-
phic version of PCF—they can support high-order functions but
their assertion language requires testing whether a computation is a
bottom (i.e., termination). Their subsequent work [24] built a com-
positional program logic which captures observational semantics
(standard contextual congruence) of a basic high-level program-
ming language, based on the suggestions from the encoding of the
language into the pi-calculus. Another subsequent work [7] added
aliasing pointers to their framework. It is unclear whether their
framework can be adapted to machine-level languages.

Proof-carrying code. Other than the semantic FPCC system dis-
cussed in Sec 2.3, similar ECP problems surfaced in some other
PCC systems as well. In particular, Configurable PCC (CPCC) sys-
tems, as proposed by Necula and Schneck [31], statically check
program safety using symbolic predicates which are called “con-
tinuations.” For checking the safety of an indirect jump instruction
which transfers the program control given a code pointer, a trusted
“decoder” generates an “indirect continuation” whose safety needs
to be verified; this continuation is indirect because the target ad-
dress cannot be determined by the decoder statically. For verifica-
tion purpose, an untrusted “VCGen extension” is responsible for
proposing some “direct continuations” (direct meaning that the tar-
get addresses are known statically) whose safety implies the safety
of the “indirect continuation” given by the decoder. In practice, the
extension works by listing all the possible values of the code pointer
(essentially replacing the code pointer in the continuations with all

concrete functions that it could stand for), which requires whole-
program analysis and is same as CAP’s syntactic approach to ECP.

Chang et al [9] presented a refined CPCC system in which “lo-
cal invariants” refine “continuations.” A local invariant essentially
consists of two related components—an “assumption” of the cur-
rent state and a list of “progress continuations” which are used for
handling code pointers. To allow the VCGen extension to manipu-
late predicates using first-order logic, only a syntactically restricted
form of invariants are used. Although this is necessary for auto-
matic proof construction for type-safety, it is insufficient in han-
dling embedded code pointers in general. As a result, these local
invariants are only used to handle more gracefully certain fixed
patterns of code pointers, such as return pointers. Other situations,
such as virtual dispatch, would still require whole-program anal-
ysis for the VCGen extension to discharge the decoder’s indirect
continuations. In particular, it is unclear how this approach extends
to support arbitrary safety policies and nested continuations.

TAL and assembly language with state logic. Both TAL [27] and
assembly language with state logic (SL) [2] also use syntactic tech-
niques to support ECPs, but they are rather different from the CAP-
based Hoare-logic systems. TAL types are simple syntactic entities
while CAP assertions are general-purpose logical predicates over
the entire machine state. SL formulas are more expressive than
TAL types but SL is still a specialized logic for reasoning about
adjacency, separation, and aliasing of memory blocks.

CAP specifications and deduction rules precisely track the
machine-state changes at each instruction (based on weakest pre-
conditions or strongest postconditions) and rely on semantic conse-
quence relation to support assertion subsumption. In other words,
assertion subsumption in CAP is implemented merely as logical
implications over extended propositions in the meta logic. TAL
and SL, on the other hand, use pure syntactic subsumption (or sub-
typing) rules; TAL and SL specifications are not expressive enough
to accurately track arbitrary state changes. Naively adapting the
TAL and SL framework to CAP would require us to axiomatize the
entire general-purpose predicate logic with inductive definitions (as
in Coq [40]) inside our mechanized meta logic. We didn’t take this
approach because it requires huge amount of work and is definitely
nontrivial and probably not even practical.

SL can also benefit from using the “semantic” subsumption re-
lation as we designed for XCAP, essentially by reasoning about the
SL formula sub-typing directly using the model built in a mech-
anized meta logic. Under this setup, SL formulas become user-
defined logical predicates; all the “syntactic” SL logical deduction
rules become lemmas (thus are no longer necessary). It would re-
sult in a simpler, more extensible, and more expressive system.

Index-based approaches. In Sections 1 and 2.3, we have given a
detailed comparison between our XCAP framework and the index-
based approach [6, 3, 39]. One remaining question is on how to
compare the expressive power of these two systems. To address
this formally, we need to first formalize an assembly language us-
ing the index-based approach based on step-counting. This is a big
and nontrivial task itself—even the Princeton FPCC group has not
written any such paper (this fact itself shows the complexity of in-
dexing): Appel and McAllester [6] does not support memory up-
dates; Amal Ahmed’s excellent PhD thesis [3] provides a formal-
ization of the semantic approach but only at the high level for a
lambda-calculus-like language; the actual FPCC proofs are still not
publicly available. We will thus leave this question as future work.

Conclusion. We presented a simple but powerful technique for
solving the ECP problem for Hoare logic in the context of cer-
tified assembly programming. We show how to combine seman-
tic consequence relation (for assertion subsumption) with syntactic
proof techniques. The result is a new powerful framework that can



perform modular reasoning on embedded code pointers while still
retaining the expressiveness of Hoare logic. Our new framework
can be applied to support other language features and is orthogonal
to other Hoare-logic extensions such as separation logic [37] and
CCAP [44]. We plan to evolve it into a general but simple system
for reasoning about machine-level programs.

Acknowledgments
We thank Hai Fang, Xinyu Feng, Nadeem A. Hamid, Andrew Mc-
Creight, Valery Trifonov, David Walker, Dachuan Yu, and anony-
mous referees for suggestions and comments on an earlier version
of this paper. This research is based on work supported in part by
gifts from Intel and Microsoft, and NSF grants CCR-0208618 and
CCR-0524545. Any opinions, findings, and conclusions contained
in this document are those of the authors and do not reflect the
views of these agencies.

References
[1] A. Ahmed, L. Jia, and D. Walker. Reasoning about hierarchical

storage. In Proc. 18th IEEE Symposium on Logic in Computer
Science, pages 33–44, June 2003.

[2] A. Ahmed and D. Walker. The logical approach to stack typing. In
Proceedings of the 2003 ACM SIGPLAN international workshop on
Types in languages design and implementation, pages 74–85. ACM
Press, 2003.

[3] A. J. Ahmed. Semantics of Types for Mutable State. PhD thesis,
Princeton University, 2004.

[4] A. W. Appel. Foundational proof-carrying code. In Proc. 16th Annual
IEEE Symposium on Logic in Computer Science, pages 247–258, June
2001.

[5] A. W. Appel and A. P. Felty. A semantic model of types and machine
instructions for proof-carrying code. In Proc. 27th ACM Symposium
on Principles of Programming Languages, pages 243–253, Jan. 2000.

[6] A. W. Appel and D. McAllester. An indexed model of recursive
types for foundational proof-carrying code. ACM Transactions on
Programming Languages and Systems, 23(5):657–683, Sept. 2001.

[7] M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing
in imperative higher-order functions. In Proc. 10th ACM SIGPLAN
International Conference on Functional Programming, pages 280–
293, Sept. 2005.

[8] R. S. Boyer and Y. Yu. Automated proofs of object code for a widely
used microprocessor. J. ACM, 43(1):166–192, 1996.

[9] B.-Y. E. Chang, G. C. Necular, and R. R. Schneck. Extensible code
verification. Unpublished manuscript, 2003.

[10] J. Chen, D. Wu, A. W. Appel, and H. Fang. A provably sound
tal for back-end optimization. In Proc. 2003 ACM Conference on
Programming Language Design and Implementation, pages 208–
219. ACM Press, 2003.

[11] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and K. Cline. A
certifying compiler for Java. In Proc. 2000 ACM Conference on
Programming Language Design and Implementation, pages 95–107,
New York, 2000. ACM Press.

[12] K. Crary. Toward a foundational typed assembly language. In Proc.
30th ACM Symposium on Principles of Programming Languages,
page 198, Jan. 2003.

[13] K. Crary and J. C. Vanderwaart. An expressive, scalable type
theory for certified code. In Proc. 7th ACM SIGPLAN International
Conference on Functional Programming, pages 191–205, 2002.

[14] N. G. de Bruijn. Lambda calculus notation with nameless dummies.
Indagationes Mathematicae, 34:381–392, 1972.

[15] X. Feng and Z. Shao. Modular verification of concurrent assembly
code with dynamic thread creation and termination. In Proc. 2005

International Conference on Functional Programming, pages 254–
267, Sept. 2005.

[16] R. W. Floyd. Assigning meaning to programs. Communications of
the ACM, Oct. 1967.

[17] M. Gordon. A mechanized Hoare logic of state transitions. In A. W.
Roscoe, editor, A Classical Mind—Essays in Honour of C.A.R. Hoare,
pages 143–160. Prentice Hall, 1994.

[18] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

[19] N. A. Hamid and Z. Shao. Interfacing hoare logic and type systems
for foundational proof-carrying code. In Proc. 17th International
Conference on Theorem Proving in Higher Order Logics, volume
3223 of LNCS, pages 118–135. Springer-Verlag, Sept. 2004.

[20] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic
approach to foundational proof-carrying code. In Proc. 17th Annual
IEEE Symposium on Logic in Computer Science, pages 89–100, July
2002.

[21] H. Herbelin, F. Kirchner, B. Monate, and J. Narboux. Faq about coq.
http://pauillac.inria.fr/coq/doc/faq.html#htoc38.

[22] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, Oct. 1969.

[23] K. Honda and N. Yoshida. A compositional logic for polymorphic
higher-order functions. In Proc. 6th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming,
pages 191–202, Aug. 2004.

[24] K. Honda, N. Yoshida, and M. Berger. An observationally complete
program logic for imperative higher-order functions. In Proc. 20th
IEEE Symposium on Logic in Computer Science, June 2005.

[25] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML (Revised). MIT Press, Cambridge, Massachusetts,
1997.

[26] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In Proc. 23rd ACM Symposium on Principles of Programming
Languages, pages 271–283. ACM Press, 1996.

[27] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. In Proc. 25th ACM Symposium on
Principles of Programming Languages, pages 85–97. ACM Press,
Jan. 1998.

[28] D. A. Naumann. Predicate transformer semantics of a higher-order
imperative language with record subtyping. Science of Computer
Programming, 41(1):1–51, 2001.

[29] G. Necula. Proof-carrying code. In Proc. 24th ACM Symposium on
Principles of Programming Languages, pages 106–119, New York,
Jan. 1997. ACM Press.

[30] G. Necula. Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon Univ., Sept. 1998.

[31] G. C. Necula and R. R. Schneck. A sound framework for untrustred
verification-condition generators. In Proceedings of IEEE Symposium
on Logic in Computer Science, pages 248–260. IEEE Computer
Society, July 2003.

[32] Z. Ni and Z. Shao. Implementation for certified assembly program-
ming with embedded code pointers. http://flint.cs.yale.edu/
publications/xcap.html, Oct. 2005.

[33] P. W. O’Hearn and R. D. Tennent. Algol-Like Languages. Birkhauser,
Boston, 1997.

[34] C. Paulin-Mohring. Inductive definitions in the system Coq—rules
and properties. In M. Bezem and J. Groote, editors, Proc. TLCA,
volume 664 of LNCS. Springer-Verlag, 1993.

[35] F. Pfenning. Automated theorem proving. http://www-2.cs.cmu.
edu/~fp/courses/atp/, Apr. 2004.

[36] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc.
1988 ACM Conference on Programming Language Design and
Implementation, pages 199–208. ACM Press, 1988.



[37] J. Reynolds. Separation logic: a logic for shared mutable data
structures. In Proc. 17th Annual IEEE Symposium on Logic in
Computer Science, 2002.

[38] Z. Shao, B. Saha, V. Trifonov, and N. Papaspyrou. A type system for
certified binaries. In Proc. 29th ACM Symposium on Principles of
Programming Languages, pages 217–232. ACM Press, Jan. 2002.

[39] G. Tan. A Compositional Logic for Control Flow and its Application
in Foundational Proof-Carrying Code. PhD thesis, Princeton
University, 2005.

[40] The Coq Development Team. The Coq proof assistant reference
manual. The Coq release v8.0, Oct. 2005.

[41] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

[42] H. Xi and F. Pfenning. Dependent types in practical programming.
In Proc. 26th ACM Symposium on Principles of Programming
Languages, pages 214–227. ACM Press, 1999.

[43] D. Yu, N. A. Hamid, and Z. Shao. Building certified libraries for PCC:
Dynamic storage allocation. Science of Computer Programming,
50(1-3):101–127, Mar. 2004.

[44] D. Yu and Z. Shao. Verification of safety properties for concurrent
assembly code. In Proc. 2004 International Conference on Functional
Programming, Sept. 2004.

[45] Y. Yu. Automated Proofs of Object Code For A Widely Used
Microprocessor. PhD thesis, University of Texas at Austin, 1992.

A. Implementation
We have implemented TM, CAP, XCAP, the CAP to XCAP trans-
lation, impredicative XCAP, Separation logic embedded in XCAP,
and the destructive list-append function example in Coq proof as-
sistant. Our implementation is available at [32].

For the XCAP extended propositions in Sec 3, we define it and
its interpretation function as below. The encoding uses higher-order
abstract syntax (HOAS) [36] to represent extended predicates.

Inductive PropX : Type
:= cptr: Word -> (State -> PropX) -> PropX
| prop: Prop -> PropX
| andx: PropX -> PropX -> PropX
| orx : PropX -> PropX -> PropX
| impx: PropX -> PropX -> PropX
| allx: forall A, (A -> PropX) -> PropX
| extx: forall A, (A -> PropX) -> PropX.

Definition CdHpSpec := Map Label (State -> PropX).

Fixpoint Itp (P:PropX) (Si:CdHpSpec) {struct P} : Prop
:= match P with

| cptr l a => lookup Si l a
| prop p => p
| andx P Q => Itp P Si /\ Itp Q Si
| orx P Q => Itp P Si \/ Itp Q Si
| impx P Q => Itp P Si -> Itp Q Si
| allx A P => forall x, Itp (P x) Si
| extx A P => exists x, Itp (P x) Si
end.

For the XCAP with impredicative polymorphism defined in
Sec 4, the HOAS encoding of extended propositions no longer
works. The positivity requirement in Coq inductive definition limits
the type A of the quantified terms to be of lower level than PropX,
which can not be used for impredicative quantifications. We use de
Bruijn notations [14] to encode them, but keep using HOAS for all
other constructors.

Inductive PropX : list Type -> Type :=
var : forall L A, A -> PropX (A :: L)

| lift: forall L A, PropX L -> PropX (A :: L)
| cptr: forall L, Word -> (State -> PropX L) -> PropX L
| prop: forall L, Prop -> PropX L
| andx: forall L, PropX L -> PropX L -> PropX L
| orx : forall L, PropX L -> PropX L -> PropX L
| impx: forall L, PropX L -> PropX L -> PropX L
| allx: forall L A, (A -> PropX L) -> PropX L
| extx: forall L A, (A -> PropX L) -> PropX L
| allv: forall L A, PropX (L ++ A :: nil) -> PropX L
| extv: forall L A, PropX (L ++ A :: nil) -> PropX L.

The interpretation validity rules of extended propositions are
defined as the following inductive definition.
Definition CdHpSpec := Map Label (State -> PropX nil).
Definition Env := list (PropX nil).

Inductive OK : Env -> CdHpSpec -> PropX nil -> Prop :=
| o_env : forall E Si p, In p E -> OK E Si p
| o_cptr_i: forall E Si l P,

lookup Si l P -> OK E Si (cptr nil l P)
| o_cptr_e: forall E Si l P q,

OK E Si (cptr nil l P) ->
(lookup Si l P -> OK E Si q) -> OK E Si q

| o_prop_i: forall E Si (p:Prop),
p -> OK E Si (prop nil p)

| o_prop_e: forall E Si (p:Prop) q,
OK E Si (prop nil p) ->
(p -> OK E Si q) -> OK E Si q

| ... .

Definition Itp P Si:= OK nil Si P.

B. Proof Structure of Theorem 4.1
In this section we give the proof structure of the soundness of
PropX interpretation (Theorem 4.1). We follow the syntactic strong
normalization proof methods in Pfenning [35]. We use structural
induction in most of the proof. The full proof has been mechanized
in Coq proof assistant and is available at [32].

The validity of extended propositions rules of form Γ `Ψ P
(see Fig 8) are natural deduction rules. We classified them into
the following two kind (and call them together as normal natural
validity rules) as shown in Fig 10.

Γ `Ψ P ⇑ Extended Proposition P has a normal deduction, and
Γ `Ψ P ↓ Extended Proposition P is extracted from a hypothesis.

And define the annotated natural deduction rules by annotating
each normal validity rules with a “+” symbol as Γ `+

Ψ P ⇑ and
Γ `+

Ψ P ↓ and adding the following coercion rule.

Γ `+
Ψ P ⇑

Γ `+
Ψ P ↓ (COER’)

We then define the sequent style validity rules of form Γ =⇒Ψ
P in Fig 11 and extend the sequent rules by annotating sequent
judgments with a “+” as Γ =⇒+

Ψ P and adding the cut rule.

Γ =⇒+
Ψ P Γ,P =⇒+

Ψ Q

Γ =⇒+
Ψ Q

(CUT)

The strong normalization proof process is

Γ `Ψ P B.3−→ Γ `+
Ψ P ⇑ B.7−→ Γ =⇒+

Ψ P

B.9−→ Γ =⇒Ψ P B.4−→ Γ `Ψ P ⇑ .

We first maps natural deduction derivations to that of a set
of sequent validity rules with cut. Then we do cut-elimination in
sequent rules, and map the new cut-free sequent derivation back



Γ `Ψ P ⇑ Γ `Ψ P ↓ (Validity of Extended Propositions) (The following rules omits the Ψ in judgments Γ `Ψ P ⇑ and Γ `Ψ P ↓.)

Γ `P ↓
Γ `P ⇑ (COER)

P ∈ Γ
Γ `P ↓ (ENV)

p
Γ `〈p〉 ⇑ (〈〉-I) Γ `〈p〉 ↓ p ⊃ (Γ `Q ⇑)

Γ `Q ⇑ (〈〉-E)
Ψ(f)=a

Γ `cptr(f,a) ⇑ (CP-I)

Γ `cptr(f,a) ↓ (Ψ(f)=a) ⊃ (Γ `Q ⇑)
Γ `Q ⇑ (CP-E)

Γ `P ⇑ Γ `Q ⇑
Γ `P∧∧Q ⇑ (∧∧-I)

Γ `P∧∧Q ↓
Γ `P ↓ (∧∧-E1)

Γ `P∧∧Q ↓
Γ `Q ↓ (∧∧-E2)

Γ `P ⇑
Γ `P∨∨Q ⇑ (∨∨-I1)

Γ `Q ⇑
Γ `P∨∨Q ⇑ (∨∨-I2)

Γ `P∨∨Q ↓ Γ,P `R ⇑ Γ,Q `R ⇑
Γ `R ⇑ (∨∨-E)

Γ,P `Q ⇑
Γ `P→→Q ⇑ (→→-I)

Γ `P→→Q ↓ Γ `P ⇑
Γ `Q ↓ (→→-E)

Γ `P[B/x] ⇑ ∀ B :A
Γ `∀∀x :A.P ⇑ (∀∀-I1)

Γ `∀∀x :A.P ↓ B :A
Γ `P[B/x] ↓ (∀∀-E1)

B :A Γ `P[B/x] ⇑
Γ `∃∃x :A.P ⇑ (∃∃-I1)

Γ `∃∃x :A.P ↓ Γ,P[B/x] `Q ⇑ ∀ B :A
Γ `Q ⇑ (∃∃-E1)

Γ `P[a/α] ⇑ ∀ a :A→PropX
Γ `∀∀α :A→PropX.P ⇑ (∀∀-I2)

a :A→PropX Γ `P[a/α] ⇑
Γ `∃∃α :A→PropX.P ⇑ (∃∃-I2)

Figure 10. Normal natural deduction validity rules

Γ =⇒Ψ P (Validity of Extended Propositions) (The following rules omits the Ψ in judgment Γ =⇒Ψ P.)

p
Γ =⇒ 〈p〉 (〈〉-R) p ⊃ (Γ,〈p〉=⇒ Q)

Γ,〈p〉=⇒ Q
(〈〉-L)

Ψ(f)=a

Γ =⇒ cptr(f,a)
(CP-R)

(Ψ(f)=a) ⊃ (Γ,cptr(f,a) =⇒ Q)
Γ,cptr(f,a) =⇒ Q

(CP-L)

Γ =⇒ P Γ =⇒ Q

Γ =⇒ P∧∧Q (∧∧-R)
Γ,P∧∧Q,P =⇒ R

Γ,P∧∧Q =⇒ R
(∧∧-L1)

Γ,P∧∧Q,Q =⇒ R

Γ,P∧∧Q =⇒ R
(∧∧-L2)

Γ =⇒ P
Γ =⇒ P∨∨Q (∨∨-R1) Γ =⇒ Q

Γ =⇒ P∨∨Q (∨∨-R2)

Γ,P∨∨Q,P =⇒ R Γ,P∨∨Q,Q =⇒ R

Γ,P∨∨Q =⇒ R
(∨∨-L)

Γ,P =⇒ Q

Γ =⇒ P→→Q
(→→-R)

Γ,P→→Q =⇒ P Γ,P→→Q,P =⇒ R

Γ,P→→Q =⇒ R
(→→-L)

P ∈ Γ
Γ =⇒ P

(INIT)
Γ =⇒ P[B/x] ∀ B :A

Γ =⇒∀∀x :A.P
(∀∀-R1)

Γ,∀∀x :A.P,P[B/x] =⇒ Q B :A
Γ,∀∀x :A.P =⇒ Q

(∀∀-L1)
B :A Γ =⇒ P[B/x]

Γ =⇒∃∃x :A.P
(∃∃-R1)

Γ,∃∃x :A.P,P[B/x] =⇒ Q ∀ B :A
Γ,∃∃x :A.P =⇒ Q

(∃∃-L1)
Γ =⇒ P[a/α] ∀ a :A→PropX

Γ =⇒∀∀α :A→PropX.P
(∀∀-R2)

a :A→PropX Γ =⇒ P[a/α]
Γ =⇒∃∃α :A→PropX.P

(∃∃-R2)

Figure 11. Sequent style validity rules

to a normal natural deduction derivation. Soundness of XCAP
interpretation can then be proved since the last rule in a normal
natural deduction derivation must be one of the introduction rules.

Theorem B.1 (Soundness of Normal Deductions)

1. If Γ `Ψ P ⇑ then Γ `Ψ P, and
2. if Γ `Ψ P ↓ then Γ `Ψ P.

Theorem B.2 (Soundness of Annotated Deductions)

1. If Γ `+
Ψ P ⇑ then Γ `Ψ P, and

2. if Γ `+
Ψ P ↓ then Γ `Ψ P.

Theorem B.3 (Completeness of Annotated Deductions)

1. If Γ `Ψ P then Γ `+
Ψ P ⇑, and

2. if Γ `Ψ P then Γ `+
Ψ P ↓.

Theorem B.4 (Soundness of Sequent Calculus)
If Γ =⇒Ψ P then Γ `Ψ P ⇑.

Theorem B.5 (Completeness of Sequent Derivations)

1. If Γ `Ψ P ⇑ then Γ =⇒Ψ P, and
2. if Γ `Ψ P ↓ and Γ,P =⇒Ψ Q then Γ =⇒Ψ Q.

Theorem B.6 (Soundness of Sequent Calculus with Cut)
If Γ =⇒+

Ψ P then Γ `+
Ψ P ⇑.

Theorem B.7 (Completeness of Sequent Calculus with Cut)

1. If Γ `+
Ψ P ⇑ then Γ =⇒+

Ψ P, and
2. if Γ `+

Ψ P ↓ and Γ,P =⇒+
Ψ Q then Γ =⇒+

Ψ Q.

Theorem B.8 (Admissibility of Cut)
If Γ =⇒Ψ P and Γ,P =⇒Ψ Q then Γ =⇒Ψ Q.

Theorem B.9 (Cut Elimination)
If Γ =⇒+

Ψ P then Γ =⇒Ψ P.

Theorem B.10 (Normalization for Natural Deduction)
If Γ `Ψ P then Γ `Ψ P ⇑.

A special form of the above theorem is “if [[P ]]Ψ then · `Ψ P ⇑”.
The soundness of PropX interpretation (Theorem 4.1) can be
proved using this theorem.


