
Bratin Saha

Summary of my Dissertation Research

The securityof information systemsis becomingcritical, especiallywith the increasingdependence
of businessesandindividualson highly networked computingsystems.Existing systemsenforcesecurity
eitherby authenticatingprograms,or by monitoringprogramexecution.Authenticationis usefulin estab-
lishing ownershipandfixing responsibility, andcanbeperformedstatically. It doesnot, however, give any
guaranteeabouttheruntimebehavior of programs.On theotherhand,programmonitoringdoesguarantee
thatmaliciouscodewill not beexecuted;but it incursa significantruntimepenaltysinceit requiresexten-
sive dynamicchecks,or usestheprotectionmechanismof theunderlyinghardwareandoperatingsystem.
Furthermore,a maliciousprogrammayhave to beabortedafter it haschangedstateor acquiredresources.
Moreover, hardwareandoperatingsystembasedprotectionmay not be feasiblein a resource-constrained
environment,suchasin portabledevices.

Certifyingcompilationis anew methodfor implementingsecuresystemsthatcombinesthekey featuresof
thepreviousapproaches:it staticallychecksandguaranteesthesafetyof a program.A certifying compiler
generatesnot only the object code,but also a proof that the codesatisfiesa securitypolicy. To ensure
compliancewith thepolicy, a codeconsumeronly needsto checkthattheproof is consistentwith thecode.
The checkingcan be doneoff-line, and therefore,doesnot incur a runtime penalty. Moreover, a code
consumerdoesnot needto trust the sourceof the program,or the compilergeneratingthe code. It only
needsto trustthechecker which is muchsmallerandsimpler(andhenceeasierto verify) thanthecompiler.

In my dissertationresearch,I have developeda new framework for generatinglow-level certifiedcode.
Theframework improvesuponthestateof theart in certifying systemsin thefollowing two ways.First, it
includesconstructsto certify runtimeservices.Second,it integratesanentireproof systeminto a compiler
intermediatelanguage.

Thereliability of a computingplatformdependscritically on thesafetyof theruntimeservicesprovided
by thehostsystem.Theseservicesconsistof functionslike thegarbagecollectorandthe linker which are
complex piecesof codeandoften introducesubtlebugs. Verificationof theseserviceswill increasethe
securityof a systemconsiderably, andhenceis animportantgoalof certifying compilation.Unfortunately,
it is a very hard problemand therefore,existing certifying systemsrely on trustedruntime servicesfor
their safety. Theseservicesanalyzetypes(to variousdegrees)at runtime.Moreover, they mayanalyzethe
typeof any runtimevalue. Researchersin type-directedcompilationhadworkedon runtimetypeanalysis.
Theproposedsolutions,however, hadsignificantlimitationsandcannotbeusedto certify functionslike a
garbagecollector. Analyzing the type of arbitrary runtimevalues,suchaspolymorphiccodeblocksand
functionclosures,still remainedanopenproblem.Usingparametricity, I have designeda new typesystem
thatremovesthelimitationsof previousapproachesandsolvestheproblemin its full generality. Theresultis
describedin thepaper“Fully Reflexive IntensionalTypeAnalysis” whichappearedin theACM SIGPLAN
InternationalConferenceon FunctionalProgramming(ICFP2000).

To demonstratetheexpressive power of theframework, I have shown that it canbeusedto write a prov-
ably type-safestop-and-copy garbagecollector. Proving the type-safetyof a garbagecollectorwas long
consideredto be oneof the mostchallengingproblemsin certifying compilation. Although I considered
only aprototypicalgarbagecollector, thesolutionhandlesforwardingpointerssatisfactorily, worksin asys-
temwith separatecompilation,andcanalsobeextendedto generationalcollectors.Thesolutionis shown
in thepaper“PrincipledScavenging”which appearedin theACM SIGPLAN conferenceon Programming
LanguageDesignandImplementation(PLDI 2001).



Currentcompilersthat generatecertifiedcodehave focusedonly on traditional type safety. The inter-
mediatelanguagein my framework goesa stepfurtherby supportingtheexplicit representationof proofs,
propositions,andinductive reasoning.This is significantsinceit allows many programinvariants,thatare
left implicit now, to be expressedin the languageandchecked mechanicallyby a verifier. Therefore,we
canstaticallyenforcemoresophisticatedprogramproperties.For example,onecanensurestatically that
unchecked arrayaccessesaresafe. The intermediatelanguageis describedin the paper“A Type System
for Certified Binaries” which will appearin the ACM SIGPLAN-SIGACT symposiumon Principlesof
ProgrammingLanguages(POPL2002).

I have implementeda prototypeversionof theframework in theFLINT-SML/NJ compiler. To make the
implementationefficient, I have usedhash-consingandmemoizationtechniquesextensively. Althoughthe
new compilerusesavastlymoreexpressivetypesystem,thesizeof typesgeneratedandthecompilationtime
increasesonly by a factorof 2 over thecurrentimplementation.I have alsodevelopeda new optimization
that forcesall type manipulationto occurat link time. This ensuresthat programsdo not incur a runtime
penaltydueto typepassing.Theimplementationresultswill appearin my dissertation.


