A PARALLELIZING COMPILER FOR A
NETWORK OF PROCESSORS

J. Mazumdar!, D. Das? , B. Saha, P. P. Das and S. C. DeSarkar
Dept. of Computer Science and Engineering,

Indian Institute of Technology, Kharagpur 721302.

email: deedee,ppdas@cse.iitkgp.ernet.in

ABSTRACT

We present a working parallelizing compiler for a loosely coupled network of processors.
The current compiler has been patched to a F77 front-end and a back-end generating code
for a network of machines running PVM (The Parallel Virtual Machine). We present the
performance of some well-known kernels using our compiler in such an environment.

1 INTRODUCTION

Distributed memory multiprocessors are increasingly being used for providing high levels
of performance for scientific applications. These machines offer significant advantages over
their shared memory counterparts in terms of cost and scalability, but they are much more
difficult to program than shared memory machines. This is because of the absence of a single
global address space. As a result, the programmer has to distribute the code and data across
processors and manage communication among tasks explicitly. Clearly there is a need for a
parallelizing compiler to relieve the programmer of this burden. The target machine we as-

sume for developing our parallelizing compiler is a loosely coupled message passing parallel

!Currently with Tata Consultancy Services
2Supported by K. S. Krishnan Fellowship

computer. The individual processors are connected by a time-shared communication bus.
We have developed a prototype compiler for such a system and run kernels on them. The
input to our compiler is the source code written in Fortran 77 and the output generated
are programs which run on the individual nodes/machines in a loosely synchronous manner.
Data dependencies are handled with explicit send or receive calls. We have used the PVMI5]
library calls for message passing and remote task creation. This approach of programming is
known as the SPMD [5] approach.

The rest of the paper is organized as follows: Section 2 highlights the requirements of de-
pendence analysis and their different approaches. Section 3 discusses our strategy of data
distribution in depth. Section 4 describes the partitioning analysis. Section 5 presents the
code generation strategy of our compiler. Section 6 presents the results of our study on For-

tran Benchmark programs. Finally we conclude in section 7.

2 DEPENDENCE ANALYSIS

Dependence Analysis is a compile time analysis of control and memory accesses to determine
the statement execution order that preserves the semantics of the original program. It is
needed in our approach for determining parallelization constraints(as discussed in section 3)
and to find out appropriate places for inserting messages. There are many approaches for
solving the data dependency problem. Some of the well known tests for data dependence
include Banerjee’s Test, Power test,Omega test etc. [2],[3],[4],[6],[7]. We have implemented

Power test in our work.

3 DISTRIBUTION ANALYSIS

The distribution of data across processors is of critical importance to the efficiency of parallel
programs in a distributed system. Since interprocessor communication is more expensive
than computation on processors, it is essential that a processor be able to do as much com-
putation as possible using just local data. Another important consideration of a good data
distribution scheme is the proper balancing of load across processors. In our work, we have
followed a constraint based approach, proposed by other researchers. The constraint based
approach tries to minimize the data communication traffic and maximally utilize the available

parallelism. Thus, the optimality of the data distribution is the main goal in the presence of

constraints.

The constraint based approach [1]basically deals with two types of constraints: parallelization
constraint and communication constraint. The former kind gives constraints on the distri-
bution of the arrays , appearing on the left hand side(lhs) of an assignment statement. The
distribution should be such that the array elements being assigned values in a parallelizable
loop are distributed evenly on as many processors as possible. The latter tries to ensure that
the data elements being read in a statement reside on the same processor.We follow the owner
computes rule by which the processor responsible for a computation, owns the data being
assigned a value in that computation.

For distributing the elements of arrays onto the processors, we have considered three kinds

of standard distribution techniques : row-wise,column-wise,and block-wise as shown in Fig 1.

0
0 1

1

0 1 2 3

2
3 2

3

Rowwise distribution Columnwise distribution Block distribution

Figure 1: Some data distribution techniques

Consider the code given in Fig 2:

for (i =1; i <n; i++)
for (j =0, j <n; j++)

ALTTTT = Al -11T5 15

Figure 2: Code example

Here, if A is distributed row-wise, each processor(except that one from which distribution
starts) has to access a boundary row from a processor that holds it. This results in a com-
munication overhead. If Jjhowever, A is column-wise distributed, this communication can be
avoided as the direction vector is of the form (<,=). Similarly, if the direction vector for an
array is found to be (=,<), row-wise distribution is suitable. However, in the presence of both
types of direction vectors ,the conflict is resolved by simply choosing block-wise distribution

. Parallelization constraint, thus, imposes a distribution on the lhs array.

For a rhs array, if the dimensions are not aligned according to the distribution of the lhs
array, significant communication may result as will be shown by examples later. Hence, one
of the major constraints that guide the distribution of a rhs array is its alignment with the
Ihs neighbour. This is termed as the communication constraint and imposes restrictions on
the possible ways of data (appearing on the rhs) distribution.

Our next step of finding data distribution is to build a Component-Affinity-Graph(CAG)[1].
In the CAG, nodes represent the dimensions of various arrays. Two nodes are connected by
an edge if the dimensions of corresponding arrays need to be aligned in order to localize data
access. In such a case, a weight is associated with the edge that is equal to the communication
cost if the dimensions are not aligned finally due to other conflicting constraints. Once the
alignments of the various array dimensions are known, the parallelization constraints are used
to choose the actual data distribution of the unconstrained data.

To build the CAG, we first determine the alignment of dimensions of various arrays used in
the program. For example, in the code given in Fig 3, 1st. dimension of A is aligned with
1st. dimension of B while 1st dimension of C is aligned with 2nd dimension of D i.e. if C is

row-wise distributed then D should be column-wise distributed.

for (i =1;i <n; i++)
for (j =0 j <n; j++) {

ALiILI] = Bl

aillil =Ojllil;

Figure 3: Code example

The communication cost can be calculated as follows: Suppose in the previous example A
is row-wise distributed and B is column-wise distributed. Then communication will occur
in the shaded portions as shown in the lhs part of Fig 4. If B is block-wise distributed then
communication will occur in the shaded portions as shown in the rhs part of fig 4. We maintain
a communication cost table. This table has an entry for each data distribution strategy and
communication costs for each remaining strategy if the data distributions conflict.

There may be conflicts in the CAG(a pair of graph nodes is said to be conflicted if they
correspond to different dimensions of the same array and there exists a path between them).
In that case , we partition the CAG into d (where d is the number of array dimensions)
disjoint subsets so that total weight of edges across nodes in different subsets is minimized.

In addition, no two nodes of different dimensions corresponding to the same array are in the

2 3

Figure 4: Data distribution with communication overhead

same subset. This correspondsto a d way cut. We have assumed the maximum dimensionality

of an array to be 2,50 we can partition the CAG into atmost two disjoint subsets. Nodes

which are grouped into the same partition correspond to different arrays whose dimensions

have to be aligned in order to reduce the communication overhead as a result of the data

distribution.We have used the maximum flow (minimum cut) algorithm to partition the

CAG into 2 disjoint partitions with the added property mentioned before.

Here we give a code segment in Fig 5 and its associated CAG with the partitions in Fig 6.

The values are based on a configuration of 4 processors and data distribution of the form

shown on the lhs part of Fig 4.

for (i 0;
for (]
z[i]

e[i]

for

(i 0;
z[1][i]
a[1] [i]

for (j 0;

z[i][3]
dij]

eljl;

i < 100; i++)

0; j <70; j++) {

(il =alillil + z[i][il;
z[i][]];

i < 30;
=d[i];
=d[i];

i++) {

j < 80;
=d[j];

J++) {

Figure 5: Code example

For selecting the final distribution of each array, each assignment statement which is in a

Figure 6: An example of a CAG and its associated partitions.

loop is taken. If the lhs is an array reference then each dimension of it is considered. If its
distribution is not yet selected, a distribution is set according to its parallelization constraint.
If any array appears in the rhs of that assignment statement, then consider each dimension
of it. If it is in the same subset with respect to any lhs dimension, the distribution is set
in terms of the distribution of the lhs array dimension. Finally, if a dimension of an array
is not aligned with a dimension of any other array, then that dimension is replicated among

processors. Consider the program for matrix multiplication:

for (i =0; i <n; i++) {
for (j =0; j <n; j++) {
aqillil =0;
for k =0; k <n; k++)

(
Aillil = dilli]l + Ali][k] * B[K][j];

Figure 7: Code example

In this case there is no conflicted node. There is no parallelization constraint on any array.
So the compiler chooses the row-wise distribution for array C. As the arrays A and C are row-
wise aligned, C takes the row-wise distribution too. Also, array B has its column aligned with
the column of array C.As C’s columns are replicated, columns of array B are also replicated
across processors. The rows of array B are not aligned with any array and hence replicated.

This means that the whole array B is replicated among the processors.

4 PARTITIONING ANALYSIS

After the data distribution phase is performed, the program-partitioning analysis divides
the overall data and computation among the processors. This is accomplished by first parti-
tioning all the arrays onto processors and then using the owner computes rule to derive the
functional decomposition of the program.Here, we will discuss briefly the computation of the
local index set of each array used in the program and the computation of the local iteration
set .

Since our compiler creates SPMD node programs, all processors must posses the same array
declarations. This forces all processors to adopt local indices . For example, consider the

following program segment :

for (i =1; i <= 100; i++)
Ali] = 0;

Figure 8: Code example

if the array A is row-wise block distributed across four processors then each processor will
get 25 elements i.e. the local index for A on each processor is [1:25] , even though the equi-

valent global indices for A are [1:25], [26:50], [51:75] and [76:100] on processors 1 through 4

respectively. The modified program is given below :

for (i =1; i <= 25; i++)
Ali] =0;

Figure 9: Code example

In the previous example, the original loop iterates from 1 to 100. While in the node program
it iterates from 1 to 25 because each processor owns 25 elements of the array. This constitutes
the local iteration set.

All loops in the program are checked . For each loop , say L , we check whether the loop
index is used to index any array , among all the statements under the control of this loop and
in that case consider the corresponding dimension of that array. If the dimension is replicated

among processors , then the loop is kept unchanged. Otherwise , the upper limit and and the

lower limit of the loop are modified. In the code of Fig 9, if A is a 100 x 100 array and it is
row- wise block distributed among 4 processors, the j loop remains same but loop i changes.

as shown below:

/* The original |oop */

for (i =1b; i < ub; i++)
for (j =1bl; j < ubl; j++)
Ali][jT = 0;
/* The nodified | oop */
for (i = max(lb,PIDt); i < mn(ub, (PID+tl)*t);
i++) {
/* map this index into | ocal index */
for (j =1bl; j < ubl; j++)
A1l =0

Figure 10: Code example

where PID is the processor logical id and each processor will get t number of rows. In this

example t = 100/4 = 25.

5 CODE GENERATION

Our compiler utilizes information concerning data dependence, data distribution ,local in-
dex and iteration sets to create the actual node program. In addition, issues like computing
nonlocal index set, finding proper position for message insertion, introducing send/receive

calls and creating the SPMD programs need to be looked at.

5.1 COMPUTING NONLOCAL INDEX SET

We have assumed that any array subscript expression appearing in the right hand side of
an assignment statement must be of the form i4c or i-c where i is an index variable and ¢
is any constant. For each right hand side array reference of an assignment statement, all

the dimensions are considered. If a dimension is replicated , no action is taken i.e. no com-

munication will occur along that dimension. Otherwise , the loop whose index is used in
the subscript expression of that dimension is found. If the iteration set of this loop is also
distributed among the processors, then communication will occur if the subscript expression
of that dimension is of the form i+c where c is a constant or constant expression and i is
an index variable. In this case , a particular processor will receive data from its left hand
side processor or from its right hand processor depending on the sign of c. Otherwise, if the
iteration set of the loop is not distributed among the processors, then a processor will receive
data from more than one processor. Similarly a processor will send data to more than one

processor. Consider the code in :

for (k = 0; k < 10; k++)
for (j =1,] <99; j++)
for (i =2; i < 97; i++)
ALTTTIT = Ali-2][j]1 + Al +3][]]
+ ALTT-11 + ALTT) +1];

Figure 11: Code example

After data distribution analysis is performed,array A is found to be row-wise block distrib-
uted. After local iteration set calculation the iteration set of the i loop is distributed among
the processors. We consider first the right hand side reference A[i-2][j]. Here c¢=-2 which
implies that boundary communication will occur for this reference.Similarly for the second
reference boundary communication will occur ,as in this case c=3.But for both the third and

fourth references, c=0 and no communication will occur in those cases.

5.2 FINDING POSITION FOR MESSAGE INSERTION

A well-known algorithm known as message vectorization is used for this purpose. It uses
the level of loop-carried data dependences to calculate whether communication may be leg-
ally performed at outer loops. This replaces many small messages with one large message,
reducing both message start-up cost and latency.

To vectorize messages for a rhs nonlocal index set , we examine all cross processor flow
dependences with the local iteration set R as a source. The commlevel for loop carried de-
pendence is the level of the dependence. For loop independent dependences it is defined to be

the level of the deepest loop common to both the source and the sink of a dependence. The

deepest commlevel of all such dependences determines the loop level at which the message
may be inserted. If the deepest commlevel is for a dependence carried by loop L , a message
tag marked carried is inserted at the header of loop L. This tag indicates that nonlocal data
accessed by R between iterations of loop L.

Otherwise, the deepest commlevel is for a loop independent dependence with loop L as the
deepest loop enclosing both the source and the sink. A tag for R is inserted marked inde-
pendent at the header of the next deeper loop enclosing R at level L4+1 , or at R if no such
loop exists. This tag indicates that nonlocal data accessed by R must be communicated at
that point on each iteration of loop L.

In the previous example , A is row-wise block distributed and nonlocal references occur for
the first and second reference. The reference A[i+3][j] has a cross-processor true dependence
carried on the k loop. A tag is inserted in the k loop header. The deepest loop-carried
dependence for Afi-2][j] is carried on the i loop, so we insert a tag at the i loop header.

We provide the message inserted code (not in its entirety) of the C code chunk provided

before.

for (k =0; k < 10; k++) {
if (pid>0) {
send_data(part of A pid-1); /* for the Ali+3,j] */
if (pid < MAX PID)
recv_data(part of A pid+l); /* for the Ali+3,j] */
for (j =1; j <99; j++) {
if (pid>0)
recv_data(part of A pid-1); /* for the Ali-2,j] */
/* block size is the size of the bl ock for bl ock
di stribution */
for (i = max(2, pi d*bl ock_si ze);
i <mn (97, (bl ock_size+l)*pid; i++) {
/* do the conputation */
}
if (pid < MAXPID)
send_data(part of A pid+l); /* for the Ali-2,j] */

Figure 12: Code example

5.3 MESSAGE GENERATION

The compiler uses the information computed in the nonlocal reference calculation to insert
appropriate positions in the source code. The cross-processor dependences are coded as send
or receive calls (in this case PVM calls). The send/receive may have to specify local buffers
from which the data is copied if the array referencing pattern is complex. Otherwise, most
send /receive primitives allow partial data copying from/to the arrays accessed. PVM sup-
plies non-blocking sends and blocking receives. Hence, for a sequence of send/receive calls
the sends are emitted first, followed by the receives. In the previous example the send_data()

portion will be coded as pvm send() and the receive_data as pvm receive().

6 RESULTS

This compiler was tested on different programs and the speedup obtained for the some well-
known kernels. The parallel versions of the programs were run using PVM installed on three
machines- a DEC ALPHA workstation, a HP workstation and a Silicon Graphics workstation.
The sequential versions were run on the DEC ALPHA workstation - the fastest of the three.

The time values have been obtained using the times call.

Table 1: Jacobi's Kernel

No. of Iterations 500 | 1000 | 5000 | 10000
Sequential Version Time | 19 38 188 | 379
Parallel Version Time 17 28 118 231

Speedup Obtained 1.11 | 1.35 | 1.59 | 1.64
This kernel was tested using a 60 x 60 matrix with the program being iterated a variable

number of times. The results are average values over 10 runs.

Table 2: Matrix Multiplication

Size of the matrix 60 x 60 | 99 x 99 | 150 x 150 | 210 x 210 | 300 x 300
Sequential Version Time | 10 40 144 420 1273
Parallel Version Time 13 33 97 245 699
Speedup Obtained 0.76 1.21 1.48 1.71 1.82

I'his program was tested using matrices of different sizes .

Table 3: Livermore Kernel

No. of Iterations 500 | 1000 | 5000 | 10000
Sequential Version Time | 30 56 270 | 530
Parallel Version Time 21 30 115 210

Speedup Obtained 1.42 | 1.86 | 2.34 | 2.52
This program was tested using a 60 x 60 matrix with the program being iterated a variable

number of times.

Since the sequential versions in all cases were run on the fastest machine, the speedup values
obtained are all on the conservative side. T'he programs were tested on machines without any

user load.

7 CONCLUSION

This paper presents a working parallelizing compiler for a loosely coupled network of pro-
cessors. The results, tested on a network of workstations environment on an Ethernet LAN,
show that even with high communication latency, sufficiently compute-intensive programs
can be run with favourable speedup values. We are currently in the process of making the

compiler more robust in addition to embedding run-time compilation strategies.

References

[1] P.Banerjee and et al. The PARADIGM compiler for distributed memory message passing
multicomputers. In Ist International Workshop on Parallel Processing, Bangalore, India,

pages 123-128, Dec 1994.

[2] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, Mass., 1988.

[3] C. D. Polychronopoulos. Parallel Programming and Compilers. Kluwer Academic Pub-
lishers, Boston, Mass., 1988.

[4] W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM
35,8, pages 102-115, Aug 1992.

[6] V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM Concurrent
Computing System: Evolution,Experiences and Trends. Parallel Computing, Apr 1994.

[6] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. Research Monographs in
Parallel and Distributed Computing. MIT Press, Cambridge, Mass., 1989b.

[7] M. J. Wolfe. Data Dependence and Program Restructuring. The Journal of Supercom-
puting, 4., pages 321-344, 1990.

