Yale University
Department of Computer Science

Efficient Runtime Type Passing

Bratin Saha
Dept. of Computer Science
Yale University

YALEU/DCS/CS-690 Report
May 5th, 1998

Contents

Acknowledgements v
Introduction vii
1 Overview of the FLINT /ML compiler 1
1.1 Introduction o L e e e e e e e e e 1
1.2 The FLINT Architecture L o i i i et e e e e e e e e e e s e 2
1.3 Typed Intermediate Format L L o 2
1.3.1 Rationale L e e e 2

1.3.2 Background e e e 3

1.3.3 The Core Language i i i it e e e 3

1.3.4 The Full Language e e e 4

1.3.5 Implementations e e 6

1.4 Compiling FLINT e e e e e e 7
1.4.1 Type Specialization e e 7

1.4.2 Lambda Reduction e 8

1.4.3 Representation Analysis Lo e e e e e e 8

1.4.4 Closure Conversion o ittt e e e e 8

1.5 Conclusions e e e e e e e e e e e e e e e e 8

2 Optimal Type Lifting 11
2.1 Introduction L L e e e e e e e e e e e 11
2.2 The Type Lifting Algorithm 13
2.2.1 Thelanguage L e e e e e 13

2.2.2 Informal description L e e e 13

2.2.3 Formalization L e e e e e 16

224 Anexample e e e e e e 17

2.3 Comparison with Jones’ and Minamide’s optimisations 18
2.4 Correctness of the Algorithm L 21
2.4.1 Type Preservation e e 23

2.4.2 Semantic Soundness L. oL e e e e e e e e e e e 24

2.5 The Lifting Algorithm for FLINT e 27
2.6 Implementation Results e 30
2.7 Related Work and Conclusions e 32

3 Common Type Expression Elimination 35
3.1 Imtroduction L L e e e e e e e e e e e e e 35
3.2 The CTE Algorithm e 36

ii

3.2.1
3.2.2
3.2.3
3.24

Formal Description

Elimination of Common Type Expressions

Type Preservation
Semantic Soundnesso
3.3 Implementation Results

4 Runtime Type Representation

4.1 Introduction
4.2 Description of the Algorithm
4.3 Implementation of the Algorithm

Conclusions

CONTENTS

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4

Top-Level Structure of the FLINT System 1
The Static Semantics of Core-FLINT i

Representing Kinds, Constructors, and Types o .. 10
An explicit Core-ML calculus e e 13
The Lifting Translation o e 16
The Explicit Core-ML calculus e 21
Static Semantics L L L e e e e e 21
The Lifting Translation e 22
Operational Semantics L L e e e e e e 24
Syntax of the Core-FLINT calculus e e e e e e e 28
The Lifting Translation for FLINT i et 31
Type Lifting Results e 32
Syntax of the Core-FLINT calculus i et 36
The CTE algorithm e 37
The algorithm IT. o e 38
Static Semantics L L L e e e e e e e e e e 39
Operational Semantics L L e e e e e e e 40
CTE Results o e e e e e e e e 43
The Kind and Constructor Calculus 45
The target term and type language L L oL e 46
The Kind Translation - Algorithm (IC) 46
The Translation of the Constructors 47

iii

iv

LIST OF FIGURES

Acknowledgements

I would like to thank my advisor Professor Zhong Shao for his help and guidance throughout the last year. We
had inumerable discussions and he always found time to help out if I needed any clarifications — which often
bordered on the numerous specially with regard to digging inside the FLINT /ML compiler. I also thank the
other members of the FLINT group — Chris League, Stefan Monnier and Valery Trifonov — for many useful
discussions.

vi

ACKNOWLEDGEMENTS

Introduction

This report is about efficient runtime type passing. I believe that passing types at runtime is desirable and can
be done efficiently.

Compilers for modern polymorphic languages like ML generate code that is not as efficient as code emitted
by compilers for languages like C, Pascal etc. One of the reasons for this is that compilers for languages like C
can make use of type information at compile time to determine calling conventions and allocate data efficiently.
In polymorphic languages, types are not known fully at compile time and moreover the types are variable at
runtime. As a result compilers for these languages have traditionally compiled by assuming a uniform data
representation and a fixed calling convention. A uniform data representation implies that every value is boxed
so that accessing data requires an extra level of indirection. Furthermore to support garbage collection and
overloaded operators, data values must also be tagged. Therefore the advanced type system in these languages
causes them to incur a runtime penalty.

One solution to the above problem is to pass types around at runtime as ordinary values. These types can
then be inspected and the appropriate code executed. For example, instead of using a boxed representation for
reals, we could use a natural representation. A polymorphic function can then use the type information available
at runtime to access the data correctly while monomorphic code pays no extra penalty. Similarly the garbage
collector could be passed type information at runtime so that it does not have to inspect tags to trace live
data. Overloaded operators could also be implemented more efficiently by adopting a type passing approach. At
runtime an overloaded operator could dispatch based on the type of its parameters and choose the appropriate
code to execute. Runtime type passing can also be used to support various other applications like pretty printing,
debugging, pickling, marshalling/unmarshalling of data etc. This shows that runtime type passing is a viable
approach to compiling modern polymorphic languages like ML.

What has prevented the widespread use of this technique is the perceived runtime cost of passing types.
Types in these languages specially for recursive data structures can quickly get complicated and the runtime
representation of such types may be costly. Under such conditions, constructing and passing types at runtime
may incur a significant overhead to the execution time of a program.

Our work therefore focusses on making type passing as efficient as possible. Through a series of transforma-
tions, we ensure that the runtime cost of passing types never blows up the execution cost. In Chapter 2, we
present an optimal type lifting algorithm that eliminates runtime type construction inside functions and guaran-
tees that all type information is constructed at linktime. In Chapter 3, we implement a common type expression
elimination algorithm that ensures that we share as much of the work of constructing types as possible. The
idea is similar to the common subexpression elimination done by most compilers. However since we represent
types as Debruijn indices, we can not lift a conventional algorithm and apply it straight to a FLINT program.
We need an algorithm that works with our representation of types. Having thus ensured that the runtime cost of
passing types is optimised to a minimum, we present a new runtime representation for types in Chapter 4. This
representation maintains complete type information at runtime and is therefore suitable for supporting applica-
tions like pretty printing, debugging, pickling and type dynamic. All of our work was done on the FLINT /ML
compiler which served as the testbed for the entire FLINT group. We therefore give an overview of the compiler
in Chapter 1.

vii

viii INTRODUCTION

Chapter 1

Overview of the FLINT /ML compiler

1.1 Introduction

In this chapter, we give an introduction to the FLINT /ML compiler. All our algorithms have been implemented
on this compiler and it has been the testbed for the entire FLINT group.

ML "Safe C" JAVA Haskell DSLs
Lexer&Parser Lexer&Parser Lexer&Parser Lexer&Parser Lexer&Parser COMPILATION
Y Y Y Y Y MANAGER
TypeChecker TypeChecker TypeChecker TypeChecker TypeChecker
\ 4 \ 4 Y Y 4
> MIDDLE-END
THE FLINT INTERMEDIATE LANGUAGE < OPTIMIZER
) 4
THE FLINT
BACK-END CODE GENERATOR CODE VERIFIER
Y | | Y | | Y | | y | | Y THE FLINT
Intel X86 SPARC ALPHA JAVA VM 0THER INTERPRETER

THE FLINT PORTABLE COMMON RUNTIME SYSTEM

(system libraries, bootstrapping, garbage collection)

Figure 1.1: Top-Level Structure of the FLINT System

2 CHAPTER 1. OVERVIEW OF THE FLINT/ML COMPILER
1.2 The FLINT Architecture

The FLINT system, as shown in Figure 1.1, is organized around a strongly typed intermediate language also
named FLINT. Programs written in various source languages are first fed into a language-specific front end which
does parsing, elaboration, type-checking, and pattern-match compilation; the source program is then translated
into the FLINT intermediate format. The middle end does conventional dataflow and loop optimizations [1, 48],
local and cross-module type specializations, and A-calculus-based contractions and reductions [3]; it then produces
an optimized version of the FLINT code. The back end compiles FLINT into machine code through the usual
phases such as representation analysis [43] (to compile polymorphism), safe-for-space closure conversion [46] (to
compile higher-order functions), register allocation, instruction scheduling, and machine-code generation [8]. All
the compilation stages are deliberately made independent of each other so that they may be pieced together in
different ways for different languages.

The runtime system provides support to system-wide garbage collection, foreign-function call interface, and
connections to lower-level operating system services. Our current implementation borrows SML/NJ’s runtime
system [40, 2, 15] which runs under all major machine platforms. We plan to extend it to support new services
such as dynamic linking and bytecode execution.

1.3 Typed Intermediate Format

Using common intermediate languages to share compiler infrastructure is not a new idea. Many existing com-
pilers, such as GNU GCC, Stanford’s SUIF [10], and U. Washington’s Vortex [6], all use some kind of shared
intermediate format for multiple source languages. In addition, the C programminglanguage has been used as the
de facto standard target language for a long time. Since all these are mainly designed for conventional imperative
languages, none of them directly support higher-order functions or advanced polymorphic type system.

FLINT is designed as a strongly typed common intermediate format for HOT languages. There are many
advantages in making the intermediate language type-safe. First, a rigorous type system can be used to reason
about the safety of a program, even at the intermediate language level. This is particularly important for
applications that must be as secure and mobile as the Java VM code. Second, type information makes it possible
to reason about principled interoperability among different languages. In fact, because all data representations
and function calling conventions are decided based on a uniform type system, it is possible to make programs
of different surface languages share the same runtime system (with the same garbage collector and foreign
function call interface). Finally, type information has proven invaluable for efficient compilation of statically
typed languages [21, 47, 49]; types are also useful for debugging compilers and proving properties of programs.

1.3.1 Rationale
The current FLINT language is designed based on the following principles:

e Strong and explicit typing. ML-like languages often have very tricky type inference problems. Having an
explicitly typed intermediate language leaves the type inference issues completely to the front end.

o Simple and well-defined semantics. The intermediate language must be simple, clean, and semantically
well-founded in order to be used as a common target language.

e FEzpressiveness. In order to support multiple HOT languages, the FLINT type system must be rich enough
to express HOT features such as higher-order functions, ML-like polymorphism, and higher-order modules.

e Pay-as-you-go efficiency. The intermediate language must, of course, be compiled to generate efficient code.
Furthermore, simple, first-order, monomorphic functions should be compiled as efficiently as in C or assem-
bly languages, even though the presence of polymorphic functions might complicate data representations
and function calling conventions.

1.3. TYPED INTERMEDIATE FORMAT 3

e Optimization ready. The compiler middle end performs various kinds of optimizations on the intermediate
code. For this reason, the intermediate representation must be compatible with all standard program
analysis and transformations [3, 1]. The intermediate language should also contain explicit loop (and
recursion) construct to support sophisticated loop optimizations.

o System-programming friendly. The intermediate language must provide excellent support to low-level
system programming such as safe type-cast, dynamic types, and bit-manipulation primitives. It should
also contain a subset of language features that can be used to write real-time programs (e.g., code fragments
that do not involve garbage collection).

e FExtensible. The intermediate language must be easily extended to support other advanced or domain-
specific language features (e.g., concurrency, objects, and user-defined datatypes).

To summarize, what we want is a intermediate language that behaves like a strongly typed assembly language.
It should be high-level enough to express polymorphism and higher-order functions but low-level enough to
support all standard optimizations.

1.3.2 Background

The core language of FLINT is a predicative variant of the Girard-Reynolds polymorphic A-calculus F,, [9, 41],
with the term language written in the A-normal form [42]. In the following, we first give a introduction about
F., and then formally define the Core-FLINT language.

The standard Girard-Reynolds polymorphic calculus F,, is often defined as follows:

(kinds) & == Q| k1 — k2
(types) o == t]oyg = o2 |VEuko
| Auko | o1]o2]
(terms) e == x| Az:0.e| Qejey
|

At:k.e | e[o]

The calculus contains three syntactic classes: kinds (k), types (¢), and terms (e). Here, kinds classify types, and
types classify terms. The extra “kind” hierarchy is used to regulate and define well-formed types. In F,, both
simple types (e.g., functions, records, integers) and polymorphic types (e.g., V¢ :: k.0) have kind Q; higher-order
types (or really, type functions) such as At :: k.o has kind k — &', if o belongs to kind «'. A higher-order type
o1 can be applied to another type o2, written as o1[o3].

At the term level, in addition to the usual lambda abstraction and application, F,, also support explicit type
abstraction and type application (written as At :: k.e and e[o]). Every type abstraction term such as At :: k.e
has the polymorphic type Vt :: k.0, assuming term e has type o.

For example, an F,, function f = At :: Q. Az : t. would have type o9 = Vt :: Q.t — t. In the standard F,,, the
polymorphic type such as oy is still considered to have kind 2, so expressions such as “Q(f[oo])f” would type
check, and yield type og.

Because F,, supports a very general kind of higher-order polymorphism, it is commonly used as the meta-
language to reason about formal logic and semantics. In fact, many advanced languages such as ML and Haskell
can be embedded into the F,-like calculus.

1.3.3 The Core Language

The core language of FLINT is based on the standard F,,, but with the following three important changes:

¢ In standard F,, polymorphic types are treated same as monomorphic types, and they both have kind €.
This complicates the semantics and makes the calculus impredicative. Following Harper and Morrisett [13],
we split the type hierarchy into two levels: a constructor level characterizes the monomorphic types (and

4 CHAPTER 1. OVERVIEW OF THE FLINT/ML COMPILER

type functions), and a type level expresses the polymorphic types. “Kind” is now used to classify “con-
structors” only; polymorphic types such as the previous o¢ no longer belongs to kind 2. So expressions
such as “Q(f[oo]) f” will no longer type check in our predicative variant.

e The call-by-value term language is split into two levels as well, with values denoting simple variables or
constants. The usual term expressions must now satisfy new syntactic restrictions as standard A-normal
forms [42]. More specifically, each function application (or type application) can only refer to values
(as @Quivy). The standard F, function application term Qejes is rewritten (according to call-by-value
semantics) into a nested let expressions followed by the actual value application.

e A new product kind k; ® ko is added into the kind language to express a sequence of type constructors.
The product kind makes it possible to define type functions that takes a sequence of type constructors as
argument and returns another sequence as the result. This is useful to express the parameterized modules
such as ML higher-order functors [24].

The Core FLINT contains the following five syntactic classes: kinds (x), constructors (u), types (o), terms
(e), and values (v):

(kinds) & = Q| K = kK| K1 ® ks
(coms) p = t]TInt | > (u,)

| Atukep | pafpe]

| ®(p1,p2) [Mip | Map
(types) o u= T(w)|Vtuko|or — o2
(terms) e u= wv|Az:c.e| Quivg

| At:uke | o[y

| let £ —e; in ey
(values) v = z|i

Here, kinds classify constructors, and types classify terms and values. Constructors of kind 2 now only name
monotypes. The monotypes are generated from variables, Int, through the constructors —. As in F,, the
application and abstraction constructors correspond to the function kind x; — k3. The pairing and selection
constructors (i.e., ®, II) correspond to the product kind k1 ® k2. Types in Core-FLINT include the monotypes,
and are closed under function spaces, and polymorphic quantification. We use T'(u) to denote the type corre-
sponding to the constructor x (which must be of kind). As in F,,, the terms are an explicitly typed A-calculus
(but in A-normal form) with explicit constructor abstraction and application forms. We intentionally included
the primitive constructor Int and the primitive constant ¢ to show how the core calculus might be extended into
a more complete languages.

The static semantics of Core-FLINT, given in Figure 1.2, consists of a collection of rules for constructor
formation, constructor equivalence, type formation, type equivalence, and term formation. The term formation
rules are in the form of A;T" + e : o where A is a kind environment mapping type variables to kinds, and T
is the type environment mapping term variables to types. Harper and Morrisett [13, 28] have shown that type
checking for predicative F-like calculus is decidable, and furthermore, its typing rules are consistent with the
standard call-by-value operational semantics.

1.3.4 The Full Language

In order to make FLINT as simple as possible, we let the front end deal with many higher-level language
constructs. For example, the front end for ML can translate higher-order modules into the Core-FLINT-like
calculus [45, 12] in a type-preserving way, thus completely eliminating the need of module constructs from the
intermediate language. Similarly, type classes in Haskell can also be embedded into F,, through explicit dictionary
passing.

1.3. TYPED INTERMEDIATE FORMAT

Constructor Formation and Constructor Equivalence:

Apvpup=2Q Ab py:Q

(v/i/fn) AW{t=r}>tuk A > Int:Q

Ap> — (/,Ll,/,bz) = Q
AW{t:ki} > pe ke Av ik =k Abd pyukw
(cfn/capp) S . :
A > (At ki) i KL = K2 > pafpe] = K
A pp ik A> ugi ke Ap> p:kr Qke)
(cprod) A pr Qpus ikl — K A Ip K (=1,2)
] AW{t:=rk'}> pk A> pg k' Apb pp ik A g ke
(cequiv) ; — — (i=1,2)
A > (At k) [p2] = [p2/tlp i K A b Ti(p ® p2) = pi = ki
Type Formation and Type Equivalence:
A p:Q Ab>oy Ab oy AW{t:k}>o
(tform) —_—
A > T(u) A > o1 — 02 A >Vt ko
Avpup=Q A pp:Q
(tequiv)

A v T(= (w1, p2)) = T(p) = T(pe)

Term Formation:

(value) Tk 4:Int 'tk 2:T(x)

Fw{z:01} F e:0o F'twvioc's0 T Fou:o
(fn/app) Ik Az:oj.e:01 = 09 ' Quup:o
ot F'terion TW{z:01} F ex:om
(let) ' let 2 =¢e; in ey : 0y
tn /i Ad{t:k}; T Fe:o Avpuuk ThHo:Vtako
(tfn/tapp) 'k At ke:Vt: ko T F oy : [p/t]lo

Figure 1.2: The Static Semantics of Core-FLINT

6 CHAPTER 1. OVERVIEW OF THE FLINT/ML COMPILER

The complete FLINT language still contains many more type and term constructs than the core languages.
Because FLINT is an explicitly typed language, adding new type constructors into FLINT does not involve any
type reconstruction problem. In the following, we summarize the main features in our current design:

e A letrec construct at the term level to allow the declaration of mutually recursive functions.

e A “sum” type constructor at the constructor level to represent ML-like concrete datatypes. Manipulating
values of sum types are done through a set of injection functions plus a “switch”-based projection function.

e A recursive operator at the constructor level to allow definitions of recursive type constructors (e.g., List).
At the term level, two primitive operators, roll and unroll, converts values of recursive types into those
of the underlying sum types.

e A primitive exception type Exn at the constructor level and a pair of term-level constructs: “raise v”
would raise the exception v, and “try e handle v” would run the expression e, if any exception is raised,
the handler v is called.

e An Abs constructor at the constructor level and a pair of primitives pack and unpack at the term level,
with the following kind and type signatures:

Abs :: Q2 — Q

pack : Vt :: Q.T(t) — T(Abs(t))
unpack : V¢ :: Q. T(Abs(t)) — T(t)

Every source-level abstract type t is represented in the form of Abs[u] inside FLINT, where p is the
internal representation type (hidden from the programmer). The representation types are useful when
pickling values of abstract types.

Almost all the remaining FLINT constructs can be expressed using the same “signature” form as the above Abs
primitives. Each signature defines a primitive type constructor at the constructor level and a set of primitive
constants and operators at the term level. The primitive functions often satisfy a set of axioms that can be used
to optimize the term-level expressions. Qur current implementation hardwires the axioms into the middle-end
optimizer, but we plan to automate this process in the future.

The FLINT language also includes primitives such as N-bit integers (trapping or non-trapping), N-bit words,
N-bit characters (ascii or unicode), N-bit floating-point numbers, strings, boolean types, boxed reference cells,
array, packed arrays, vectors, packed vectors, mono arrays and mono vectors, ML-like immutable records (nested
or flat), first-class continuations, control continuations (used by CML [39]), suspensions (or thunks, to support
lazy evaluations).

1.3.5 Implementations

One challenge in implementing the FLINT intermediate language is to represent constructors and types com-
pactly and efficiently. Type-based analysis often involve operations such as type application, normalization, and
equality test. Naive implementation of these operations would lead to duplicate copying, redundant traversal,
and extremely slow compilation.

We use the following techniques to optimize the representations of kinds, constructors, and types (see
Figure 1.3 for a fragment of the FLINT definitions, written as ML datatype definitions). First, we represent
all type variables as de Bruijn indices [5]. Under de Bruijn notations, all constructors and types have unique
representations.

We then hash-cons all the kinds, constructors, and types into three separate hash-tables. Each kind (tkind),
constructor (tyc), or type (1ty) is represented as an internal hash cell (or icell). Each icell is a reference cell that

1.4. COMPILING FLINT 7

contains three pieces of information: an integer hash code, a term, and a set of auxiliary information (aux_info).
The aux_info for constructors and types maintains two attributes: a flag that shows whether it is already in
the normal form, and if it is in the normal form, a set of its free type variables. Constructing a new type (or
constructor) under this representation would involve: (1) calculating the hash code from its subparts; (2) look
up the hash-table, if it is already in, we are done; otherwise, calculate the aux_info, and install the new icell
into the hash-table.

Finally, to make type reduction lazy, we use Nadathur’s suspension notations [30, 31] to represent the in-
termediate result of unevaluated type applications. Intuitively, a type suspension such as LT_ENV(¢, 1, j,e) is a
quadruple consisting of a term ¢ with two indices and an environment. The first index 7 indicates an embedding
level with respect to which variable references have been determined within the term, and the second index j
indicates a new embedding level [31]. The environment e determines the bindings for the type variables.

Figure 1.3 gives parts of the definitions of FLINT kind (tkind), constructor (tyc), and type (1ty) using
SML datatype definitions. Here, constructor abstraction TC_FN and polymorphic type LT_POLY all abstract or
quantify over a list of type variables; each type variable TC_VAR(i, 7) is represented as a de Bruijn index 7 plus an
integer j that indicates the exact position in the corresponding list. Suspension terms are denoted as TC_ENV and
LT_ENV; when a suspension ¢ is reduced, it will be replaced by a memoization node (i.e., TC_IND or LT_IND). Each
memoization node contains a pair: the reduction result ¢,, and the original term ¢,. We keep the original term in
the memoization node so that future creations of term ¢, can be directly hash-cons-ed to the same memoization
node (which requires checking equality against t,), thus saving unnecessary reductions.

The combination of these techniques have proven to be very effective. With icell-based hash-consing and
memoization, common operations such as equality test, testing if a type is in the normal form, and finding out
the set of free variables, can all be done in constant time. With the use of suspension terms, type application is
always done on a by-need basis, and once it is done, the result will be memoized for future use. Our preliminary
measurements have shown that on heavily functorized applications such as SML/NJ Compilation Manager [4],
our optimized implementation is an order-of-magnitude faster (in compilation time) than naive implementations.

Representing type variables as de Bruijn indices does have its drawback. For example, the type-based
manipulation becomes much harder to program. A simple beta-reduction such as v[p] where v = At :: k.e
requires adjustment of all type variables occurred free in e; furthermore, if ¢ occurs with some type abstractions,
then p must be adjusted as well.

1.4 Compiling FLINT

The FLINT code is compiled in two steps. First, the middle end performs a series of conventional control and data
flow optimizations. All optimizations are type-preserving so the resulting FLINT code will still type-check under
the same typing rules. Because FLINT terms are always in the A-normal form, all CPS-based optimizations [3]
apply to FLINT as well. Apart from the presence of polymorphism and higher-order functions, the resulting
FLINT code should be very close to the low-level machine languages.

After the optimizations, the back end uses flexible representation analysis [43] to compile polymorphism
and safe-for-space closure conversion to compile higher-order functions [46]; it then does the standard register
allocation, instruction scheduling, and machine code generation [8].

In the rest of this section, we glance at several important techniques used in our compiler back end.

1.4.1 Type Specialization

Because polymorphic functions are often more expensive than monomorphic functions, the middle end of our
compiler performs several rounds of type specialization to decrease the degree of polymorphism. The basic idea
can be illustrated by the following example:

8 CHAPTER 1. OVERVIEW OF THE FLINT/ML COMPILER

let f=At: QAz T (t).z
in let g = As :: Q.Ay = s.Q(f[s])y
in ... g[Int] ... g[Int] ...

Here, assume function f and g are only called as shown, then we can rewrite the above programs into the
following:

let f' = Az :: T(Int).z
in let ¢’ = Ay :: T(Int).Qf'y

?

in.. g ..g

g ...

Both f and g now become monomorphic functions. This transformation can be carried out through a bottom
up traversal: because function g is only applied to Int, g can be specialized to Int first; after this, f can be
specialized in the same way.

1.4.2 Lambda Reduction

Type specialization will only be most effective if it is combined with conventional dataflow optimizations such
as dead code elimination, common subexpression elimination, constant folding, constant propagation, and loop
invariants. The middle-end optimizer does all of these.

1.4.3 Representation Analysis

One novel aspect in our back end is to use the new flexible representation analysis technique [43] to compile
the polymorphic functions and functors. Under flexible representation analysis, recursive and mutable data
objects can use unboxed representations without incurring expensive runtime cost on heavily polymorphic code.
In contrast, the coercion-based approach used in Gallium [21] and SML/NJ [47] does not support unboxed
representations on recursive and mutable objects; the type-passing approach used in TIL [49] does handle all
data objects, but it involves heavy-weight runtime type analysis and code manipulations.

1.4.4 Closure Conversion

After the polymorphism is eliminated, we use an efficient and safe-for-space closure conversion algorithm [46]
to compile the higher-order functions. The algorithm exploits the use of compile-time control and data flow
information to optimize closure representations. By extensive closure sharing and allocating as many closures
in registers as possible, the closure conversion algorithm not only gives good performance but also satisfies the
strong safe for space complezity rule [3], thus achieving good asymptotic space usage.

1.5 Conclusions

To demonstrate the power of the FLINT language, we have built a new front end that translates the entire
SML’97 [26] plus MacQueen-Tofte higher-order modules [24]) into our typed common intermediate format. This
new front end and the FLINT middle end have been incorporated and released as part of the Standard ML
of New Jersey compiler since version 109.24 (January 9, 1997). Translation from the Core-ML-like (or Core-
Haskell-like) language to FLINT is same as the standard embedding of ML into F, [11]; other features such as
ML datatypes are translated into FLINT type constructors. Compilation from SML higher-order modules to
FLINT is quite a challenge because higher-order modules involve the use of dependent types which, in general,
cannot be expressed as F,-like polymorphism.

We believe that FLINT is a sufficiently rich intermediate language. While building a new front end will not
be completely trivial, it is definitely much easier than translating into C or building a compiler from scratch. If

1.5. CONCLUSIONS 9

we consider C as a common intermediate format for conventional imperative languages, FLINT plays the same
role but for modern HOT languages.

10

CHAPTER 1. OVERVIEW OF THE FLINT/ML COMPILER

type ’a icell

= (int * ’a * aux_info) ref

datatype tkindI

= TK_TYC

| TK_SEQ of tkind list
| TK_FUN of tkind * tkind
I

and tycl

TC_FIX
TC_ABS
TC_IND
TC_ENV

and 1tyIl
LT_TYC
LT_STR

of
of
of
of

of
of

TC_VAR of DebIndex.index * int
TC_PRIM of PrimTyc.primtyc
TC_FN of tkind list * tyc
TC_APP of tyc * tyc list
TC_SEQ of tyc list

TC_PROJ of tyc * int

(tkind * tyc) list * int
tyc

tyc * tycl

tyc * int * int * tycEnv

tyc
1ty list

LT_FCT of 1ty * 1ty

LT_IND of 1ty * 1ltyI
LT_ENV of 1ty * int * int * tycEnv

I
I
| LT_POLY of tkind list * lty
I
I
I

withtype tkind = tkindI icell
and tyc = tycI icell
and 1ty = 1tyI icell
and tycEnv =

(*

(*
(*
(*

(*
(*
(*
(*
(*
(*
(*
(*
(*
(*

(*
(*
(*
(*
(*
(*

(*
(*
(*
(*

internal hash-cell *)

the monotype kind *)
the sequence kind *)
the function kind *)

tyvar in de Bruijn notation *)
primitive tycons *)
constructor abstraction *)
constructor application *)
sequence of tycons *)
projection on sequence *)
recursive tycon *)

abstract tycon *)

tyc memoization node *)

tyc suspension *)

monotype *)

structure record type *)
functor arrow type *)
polymorphic type *)

1ty memoization node *)
1ty suspension *)

hash-consed tkindI cell x*)
hash-consed tycI cell *)
hash-consed 1tyI cell *)
tyc environment *)

Figure 1.3: Representing Kinds, Constructors, and Types

Chapter 2

Optimal Type Lifting

2.1 Introduction

Modern compilers for ML-like polymorphic languages [25, 26] usually use variants of the Girard-Reynolds poly-
morphic A-calculus [9, 41] as their intermediate languages (ILs). Implementation of these ILs often involves
passing types explicitly as run-time parameters [50, 49, 44]: each polymorphic type variable gets instantiated
to the actual type through run-time type application. Maintaining type information in this manner helps in
ensuring the correctness of a compiler; more importantly, it also enables many interesting optimizations and
applications. For example, both pretty-printing and debugging on polymorphic values require complete type
information at runtime in order to work correctly. Intensional type analysis [13, 49, 43], which is used by some
compilers [49, 44] to support efficient data representation, also requires the propagation of type information
into the target code. Finally, run-time type information is crucial to the implementation of tag-less garbage
collection [50], pickling, and type dynamic [22].

However, the added information available at run time as a result of type passing does not come for free.
Depending on the sophistication of the type representation, run-time type passing can add a significant overhead
to the time and space usage of a program. For example, Tolmach [50] implemented a tag-free garbage collector
via explicit type passing; he reported that the memory allocated for type information sometimes exceeded
the memory saved by the tag-free approach. Clearly, it is desirable to optimize the run-time type passing in
polymorphic code [27]. In fact, a better goal would be to guarantee that explicit type passing never blows up
the execution cost of a program.

Let’s consider the following sample code - we took some liberties with the syntax by using an explicitly typed
variant of the Core-ML. Here A denotes type abstraction and A denotes value abstraction. z[a] denotes type
application and z(e) denotes term application.

12 CHAPTER 2. OPTIMAL TYPE LIFTING

pair = As.)Ax:s*s.
let £ = At. Ay:t. ... (x, y)
in ... fls*s](x) ...

main = Aa.)a:a.
let doit = Ai:Int.
let elem = Array.sublaxal(a,i)
in ... pair[al(elem)

loop = Anp:Int.An:Int.Ag:Int—Unit.
if ni1 <= n»
(g(nl);
loop(ni+1,ns,g))
else ()
in loop(l,n,doit)

Here, f is a polymorphic function defined inside function pair; it references the parameter x of pair so £ cannot
be easily lifted outside pair. Function main executes a loop: in each iteration, it selects an element elem of the
array a and then performs some computation (i.e, pair) on it. Executing the function doit results in three type
applications, the Array . sub function, pair, and f. In each iteration, sub and pair are applied to types a*a and
a respectively. A clever compiler may do a loop-invariant removal [1] to avoid the repeated type construction
(e.g., @ x a) and application (e.g., pairf[a]). Notice that optimizing type applications such as f[s*s] is much
less obvious; f is nested inside pair, and its repeated type applications are not apparent in the doit function.
In other words, the loop invariant and the loop body are in different functions !! We may type-specialize £ but
in general this may lead to substantial code duplication. Every time doit is called, pair[a] gets executed and
then every time pair is called with all its arguments, f [sxs] will be executed. Since loop calls doit repeatedly
and each such call generates type applications of pair and f, we are forced to incur the overhead of repeated
type construction and application. If the type representation is complicated, this is clearly expensive.

In this chapter, we present an algorithm that minimizes the cost of run-time type passing. More specifically,
the optimization eliminates all type application inside any core-language function - it guarantees that the amount
of type information constructed at runtime is a static constant. This guarantee is important because it allows us
to use more sophisticated representations for run-time types (say, to suit the needs of certain application), yet
not have to worry about the run-time cost of doing so. We know for sure that this will not increase the execution
cost significantly.

The basic idea is as follows. We lift all polymorphic function definitions and type applications in a program to
the “top” level. By top level, we mean “outside any core-language function.” Intuitively, no type application is
nested inside any function abstraction ()); they are nested only inside type abstractions (A). All type applications
are now top-level code and the type information is resolved once and for all at the beginning of execution of each
compilation unit. In essence, the code after our type lifting would perform all of its type applications at “link”
time.! In fact, the number of type applications performed and the amount of type information constructed can
be determined statically.

This leads us to a natural question. Why do we restrict the transformation to type applications alone? Obvi-
ously the transformation could be carried out on value computations as well but what makes type computations
more amenable to this transformation is that we can guarantee that all type computations can be lifted to the top
level. Moreover, while the transformation is also intended to increase the runtime efficiency, a more important
goal is to ensure that type passing in itself is not costly. This will allow us to use a more sophisticated type
system and make greater use of type information at runtime.

1By “link” time, we don’t really mean the link time in the traditional sense. Rather, we use it to refer to the run time spent on
module initialization and module linkage (e.g., functor application) in an ML-style module language.

2.2. THE TYPE LIFTING ALGORITHM 13

We describe the algorithm in later sections and also prove that it is both type-preserving and semantically
sound. We have implemented it in the FLINT /ML compiler [44] and tested it on a few benchmarks. We provide
the implementation results at the end of this chapter.

2.2 The Type Lifting Algorithm

This section presents our optimal type lifting algorithm. We use an explicitly typed variant of the Core-ML
calculus [11], shown in Figure 2.1, as the source and target languages. The type lifting algorithm (Fig. 2.2) is
expressed as a type-directed program transformation that lifts all type applications to the top-level. We illustrate
the algorithm on an example program and then prove the type correctness and the semantic correctness of our
translation.

2.2.1 The language

We use an explicitly typed variant of the Core-ML calculus [11] as our source and target languages. The syntax
is shown in Fig 2.1. The static and dynamic semantics are all standard, and are given in (Sec 2.4) along with
the proofs.

(com’s) g ou= t|Int|pu — pe

(types) o == p|Vip

(terms) e = i|z|dz:pe| Qrizs | let z =e ine' | let z = At;. e, in e | z[n;]
(vterms) e, == 1|z |Az:ipe|letz=e, ine, | let z = Al;.e, in €} | z[n;]

Figure 2.1: An explicit Core-ML calculus

Here, terms e consist of identifiers (z), integer constants (z), function abstractions, function applications, and
let expressions. We differentiate between monomorphic and polymorphic let expressions in our language. We
use t; (and ;) to denote a sequence of type variables t1, ..., t, (and types) so V¢;. u is equivalent to Vi; ... Vi,.u.

There are several aspects of this calculus that are worth noting. First, we restrict polymorphic definitions
to value expressions (e,) only so that moving type functions and type applications is semantically sound [51].
Variables introduced by normal A-abstraction are always monomorphic, and polymorphic functions are introduced
only by the let construct. In our calculus, type applications of polymorphic functions are never curried and
therefore in the algorithm in Fig 2.2, the exp rule assumes that the variable is monomorphic. The tapp rule
also assumes that the type application is not curried and therefore the newly introduced variable v (denoting
the lifted type application) is monomorphic and is not further type applied. Finally, following SML [26, 25],
polymorphic functions are not recursive. > This restriction is crucial to proving that all type applications can be
lifted to the top level.

Throughout the paper we take a few liberties with the syntax: we allow ourselves infix operators, multiple
definitions in a single let expression to abbreviate a sequence of nested let expressions, and term applications
that are at times not in A-Normal form [7]. We also use indentation to indicate the program nesting structure.

2.2.2 Informal description

Before we move on to the formal description of the algorithm, we will present the basic ideas informally.
Define the depth of a term in a program to be equal to the number of A(value) abstractions within which it
is nested. Consider the terms outside any value abstraction to be at depth zero. Since terms at depth zero occur

2Qur current calculus does not support recursions, but recursive functions can be easily added. As in SML, recursive functions
are always monomorphic.

14 CHAPTER 2. OPTIMAL TYPE LIFTING

outside all functions, they are necessarily outside all loops in the program. In a strict language like ML, all these
terms are evaluated once and for all at the beginning of program execution. This may create new bindings in the
environment but since these terms never occur inside functions (and hence loops) they are never reevaluated.

We want to avoid repeated type applications and therefore the algorithm aims to move all type applications
to depth zero. This will ensure as we said before that type applications are carried out once and for all at the
beginning of program execution. But since we want to lift type applications, we must also lift the type functions
to depth zero. Therefore as the algorithm scans the input program, it collects all the type applications and
polymorphic functions occuring at depth greater than zero and adds them to a list H. (In the algorithm given in
Fig 2.2, the depth is implicitly assumed to be greater than zero). When the algorithm returns to the top level
of the program, it dumps the expressions contained in the list.

We will illustrate the algorithm on the sample code given in Sec 2.1 where the lifting is pretty straightforward.
But before that, we want to clarify one remaining feature of the algorithm. The type computations contained
in the body of a polymorphic definition (rule tfn) are dumped right in front of the type abstraction. Since this
polymorphic definition will in turn also get hoisted to depth zero and type abstractions do not increase the depth,
the dumped expressions also get lifted to the top level.

pair = As.Ax:s*s.
let £ = At. Ay:t. ... (x, y)
in ... fls*s](x) ...

main = Aa.)a:a.
let doit = Ai:Int.
let elem = Array.subl[oxal(a,i)
in ... pair[a](elem) ...

loop = Ani:Int.Anz:Int.\g:Int—Unit.
if n; <= no
(g(n1);
loop(ni+i,n2,g))
else ()
in loop(l,n,doit)

In the example above (reproduced from Sec 2.1), f[s*s] is at depth 1 since it occurs inside the Az,
Array.sub[axa] and pair[a] are at depth 2 since they occur inside the Aa and Ai. We want all of these
type applications to occur at depth zero. Transforming main first, the resulting code becomes —

2.2. THE TYPE LIFTING ALGORITHM

pair = As.)Ax:s*s.

let £ = At. Ay:t. ... (x, y)
in . fls*xs](x) ...
main =
Aa.
let vi = Array.sublaxal
vy = pairl[al
in Ja:a.
let

doit = Ai:Int.
let elem = vy (a,i)
in ... vo(elem) ...

loop = Anp:Int.Anz:Int.Ag:Int—Unit.
if n; <= no
(g(n1);
loop(ni+1,ns,g))
else ()
in loop(l,n,doit)

15

We then lift the type application of £ which means we must also lift £’s definition by abstracting over its free
variables. The resulting code becomes —

pair = As.
let £ = At.Ax:sxs.Ay:t. ... (x , y)
vy = f[sxs]
in Ax:s*s. ... (v3(x))(x) ...
main =
Aa.
let vi = Array.subl[oxal
vy = pairl[al
in Ja:a.
let doit =
Ai:Int.
let elem = v;(a,i)
in ... va(elem) ...
loop =

Anp:Int.Anz:Int.Ag:Int—Unit.
if n; <= ng
(g(n1);
loop(ni+l,n2,g))
else ()
in loop(l,n,doit)

In the code above, all type applications occur at depth zero. Therefore when main is called at the beginning
of execution, v;, vo and vs get evaluated which results in the type applications being performed now. During
execution, when loop runs through the array and g(which is really doit) is repeatedly applied, none of the type

applications are repeated since the type specialised functions are already available.

16 CHAPTER 2. OPTIMAL TYPE LIFTING

I'(z) = (u,-)
TFi:Int = ;0
(ezp) Thz:p=2;0;{z: p} i:Int =400
(app) [(z1) = (p1 = po,) I'(z2) = (p1,-)
T'kF @CEl.’ZIQ D e = @:Ell'Q;@;{:El D1 = U2, T /.Ll}
Tz {(u,) Fe:p' =€ ;H; F
(fn) THXz:pe:p—p' = Az pe;Hy F\{z: u}
(let) The:pm=eHi Fr Tz (ui,)] Fex: us = ey Ho Fy
I'Fletxz =e€; inesy: M2 = let = 6’1 in 6I2;H1||H2;F1 U (Fz\{$: /.1,1})
Phey:p =ej;Hi By L = List(Fy) Tz — (VE.u1, L) F ea : po = eb; Ha; Fy
(tfn) Tk let z = Af;.e; in ex : po = eh; (z, At;. LET(Hy,*L.€})) :: Hy; F
H,
I(z) = (Vti.u, L) v a fresh variable
(tapp) T & z[@] « [ui/tip = @*vL; [(v, 2[@m])]; Set(L)
N——_———
H,

Figure 2.2: The Lifting Translation

2.2.3 Formalization

Figure 2.2 gives our type-directed lifting algorithm. The translation is defined as a relation of the form I' - e :
u = ¢'; H; F, that carries the meaning that I' F e : u is a derivable typing in the input program, the translation
of the input term e is the term e’, H is the set of type expressions generated by the translation that must be
lifted to the top level and F is the set of free variables® of the translated term e’. H is also referred to hereafter
as the header. H consists of the polymorphic function definitions and the type applications occuring in the input
program that after translation are dumped at the top level. The final result of lifting a closed term e of type u
for which the algorithm infers § e : u = €'; H; () is LET(H,¢'), where the function LET(H,e) expands a list
of bindings H = [(z1,€1),.--,(ZTn,en)] and a term e into the term let ; =e; in ...let z, =€, ine.

The environment I' maps a variable to its type and also to a list of the free variables in its definition in the
case of let-bound polymorphic variables. We use standard notation for lists and operations on them in the
algorithm; in addition, the functions List and Set convert between lists and sets of variables using a canonical
ordering. The functions A* and @* are defined so that A*L.e and @*vL reduce to Az : p1.... ATy : fy.-€ and
Q(...(Quzy)...)z,, respectively, where L = [z1:p1,. .., Zpn o)

Rules (ezp) and (app) are just the identity transformations. Since the IL is in the A-normal form [7], no type
applications can occur in these terms.

Rule (fn) deals with abstractions. We first translate the body of the abstraction. H now contains the type
applications and the type functions that were in e and is returned as the header from the translation. The
resulting term is an abstraction over the translated expression.

The translation of monomorphic let expressions is similar. We translate each of the subexpressions replacing

3 Actually, this includes only the momorphically typed free variables of e’.

2.2. THE TYPE LIFTING ALGORITHM 17

the old terms with the new ones and return this as the result of the translation. The header H of the translation
is the concatenation of the headers H; and H> obtained in the translation of the subexpressions.

The real work is done in the last two rules which are the ones dealing with type expressions. In rule (ifn),
we first translate the body of the polymorphic function definition. H; now contains all the type expressions that
were in e; and F} is the free variables of e]. We then translate the body of the let expression in an augmented
environment that binds z to its type and its free variables. We will need this information when we encounter a
type application of z. The translation of e; returns a type lifted expression e, and Hy which contains the type
expressions occuring in e;. The result of the translation is only e, while the polymorphic definition introduced
by the let is put into the result header H, so that it is lifted to the top level and dumped there. The definition
of z (in H,) is closed by abstracting over its free variables L with the header H; dumped right after the type
abstractions. Note that since H, will be lifted to the top level, the expressions in H; will also as a result get
lifted to the top level.

The (tapp) rule replaces the type application by a new variable (v) applied to the free variables(L) in the
definition of z and adds the pair (v, 2[fz;]) to the header. When the header is dumped at the top, v will get bound
to the type application. Note that the free variables of the translated term do not include the newly introduced
variable v. This is because when the header obtained from translating an expression is written out at the top
level, the translated expression remains in the scope of the dumped header. Therefore the new variable need not
be abstracted.

Proposition 2.2.1 Suppose 't e: yu = €e'; H;F. Then in the expression LET(H,e'), €' does not contain any
type application and H does not have any type application nested inside a value abstraction.

This propostion can be proved by a simple structural induction on the structure of the source term e.

Theorem 2.2.2 (Full Lifting) Suppose that the translation yields ' - e : p = €'; H; F. Then the expression
LET(H,e'), does not have any type application nested inside a value abstraction.

The theorem follows from Proposition 2.2.1.

2.2.4 An example

This section illustrates the algorithm on an example program fragment. We show the construction of the header
and the translated expression as the algorithm proceeds. The notation used for the intermediate structures is
the same as in Fig 2.2. The program fragment used for the example is shown below.

Atl.Atz.)\x:fq.)\y:tg.
let £ = Ats.Atg. uits. Avits. (v,u,x)
in let g = Ats.Az:t5. @ (@ (£[t51[t11) 2) x
in @ (glt21) y

The number at the beginning of each block of code denotes the sequence of transformations.
1. After translating £’s body

e1 = Auits.Av:its. (v,u,x)
H =[]
F1 = {x:t1}

2. Now g’s body is translated

el = Az:ts. @(@(@vix)z)x
vi = flts]1[t:1]
Fi1 = {x:t1}

==}
fin
n

3. Now the body of the inner let

18

.
o~
]

Q(Qvzx)y

Hy = vo = glt2]

Fo = {x:t1,y:t2}

4. The inner let as a whole returns

e’ = @(Qvax)y
H=g-= (Ats.
let vi = flt5][t1]
in Ax:t;.)z:t5. @(Q(Qvix)z)x) ::
[vo = glt2]]
F = {x:t1,y:t2}

5. For the outer let

eh = Q(Qvax)y
Hs g = (Ats.
let vy = f[ts][t1]
in Ax:ti1.)z:ts5. @(@(Qvix)z)x) ::
[va = glt2] 1
Fo = {x:t1,y:t2}

6. The outer let as a whole returns

e’ = @(Quax)y

F = {x:t1,y:t2}
H=fFf = (Ats.Atg. Ax:t1. duts . Avits. (v,u,x)) ::
g = (Ats.

let vi = £[t5][t1]
in Ax:ti1.)z:t5. @(@(@vix)z)x) ::
[va = glta] 1]

7. After translating the lambda abstraction

e’ = Q(Qvax)y

F=11
H=f = (Atz.Atg. Ax:t1. du:tz. Avity. (v,u,x)) ::
g = (Ats.

let vy = £[t5][t1]
in Ax:ti.\z:t5. @(@(@vix)z)x) ::
[vo = glt2]]

The final translated code with all type applications lifted:

Ati1.Ats.
let £ = Atz.Ats.Ax:t1. ust3. Aveits. (v,u,x)
let g = Ats.

let vi = flts][t1]

in Ax:t1.\z:t5. @(@(@vix)z)x
let vz = glt2]
in Ax:ti.Ay:ta. @(Qvex)y

CHAPTER 2. OPTIMAL TYPE LIFTING

2.3 Comparison with Jones’ and Minamide’s optimisations

There are two transformations taking place simultaneously. One is the lifting of type applications and the other
is the lifting of polymorphic function definitions. At first glance, the lifting of function definitions may seem

2.3. COMPARISON WITH JONES’ AND MINAMIDE’S OPTIMISATIONS 19

similar to lambda lifting [17]. However the lifting in the two cases is different. Lambda lifting converts a program
with local function definitions into a program consisting only of global function definitions whereas the lifting
shown here preserves the nesting structure of the program.

The lifting of type applications is similar in spirit to the hoisting of loop invariant expressions outside a loop.
It could be considered as a special case of a fully lazy transformation [16, 37] with the maximal free subexpressions
restricted to be type computations. However, the fully-lazy transformation as described in Peyton Jones [37]
will not lift all type applications to the top level. Specifically, type applications of a polymorphic function that
is defined inside other functions will not be lifted to the top level. Our algorithm though is guaranteed to lift all
type applications to depth zero. As an example, we show below a fully lazy transformation on the code fragment
at the beginning of this subsection.

Aafry.
let u = (%y
)\$1.
let
Yy = At1.
let u; = f[ti1*al
in Azrz. ui(za) ...
Y2 = At3.
let up = yi [B*ts]
in Azs. u2(zs) ...
Yys = At5.
let us = ya[y*is]
in Az4. uz(zg) ...
in y3[ulz:

Minamide [27] has also worked on the same problem but has used an entirely different approach from ours.
He lifts the construction of type parameters from within a polymorphic function to the call sites of the function.
This lifting is propagated from the innermost type functions to the type applications at the top level. At runtime,
type construction is replaced by projection from type parameters. However, this increases the number of type
parameters of a polymorphic function since all the types that were previously constructed inside functions are
now passed in as parameters. Minamide therefore considers the uncurried version of this transformation. As an
example, consider his transformation on the code fragment shown at the beginning of this subsection. In the
example code below, type information is passed by the evidence variable u. It is assumed to hold an evidence
value that satisfies the predicate pr. #i(u) refers to the i** field of u.

Au:pro.Ax;.
let
y1 = Au:pri.Axz.f[#2(u)lx.. ..
y2 = Au:pra.Axs.yi[#2(uw)]xs. ..

y3 = Au:prs.Axg.y2 [#2(u)]xy4. ..
in
ya[#4(u)Ix;
pro = {a,B,7,{B*y, {y*B*y,{B*y*B*y,B*y*f*y*al}}}
pri1 = {ti,ti*a}
pr2 = {ts,{B*ts,B*ts*a}}
prs = {ts,{y*ts,{B*y*ts,B*y*ts*a}}}

The advantage of his method is that he eliminates the runtime construction of types and replaces it by
projection from type records. Even though he mentions in his paper that his calculus obeys the value restriction,
the transformation does not depend on it critically. However, the disadvantage is that he can no longer type-check
his transformation with the existing type system; instead, he has to make use of an auxiliary type system based
on the qualified type system of Jones [19] and the implementation calculus for the compilation of polymorphic

20 CHAPTER 2. OPTIMAL TYPE LIFTING

records of Ohori [33]. Our algorithm on the other hand is a source-to-source transformation whose output can
be type-checked with the type-checker for the source program. Finally, Minamide’s algorithm deals only with
the Core-ML calculus and does not mention how his method may be extended to ML-style modules. In our case
though, we have implemented our algorithm on the entire SML’97 language with higher-order modules.

Jones [18] has also worked on a similar problem related to type classes in the implementation of Haskell and
Gofer. Type classes in these languages are implemented by dictionary passing and if done naively can lead to
the same dictionaries being created repeatedly. Dictionaries are tuples of functions that implement the methods
defined in a Class. At runtime, a dictionary for the type at which an overloaded operator will be used is created
and passed to the function. The operation is then performed by selecting out the appropriate functions from the
dictionary.

We will briefly compare our approach with his optimisations on dictionary passing - we will not however talk
about eliminating dictionaries through partial evaluation [20]. Since the type systems and the implementation
of dictionaries differs slightly in Haskell and Gofer, we will consider the two separately.

Haskell [14] performs context reduction and simplifies the set of constraints in a type. Consider the following
Haskell example

f :: EQ a=>a->a ->Bool
fxy= ([x] == [yl) & ([y]l == [x]I)

The actual type of £ is Eq[a] => a — a — Bool from where after context reduction we get the type as
specified in the example code. Here [a] means a list of elements of type a. Eq a means that the type a must be
an instance of the Equality Class. Eq [a] means that the type List of a's must be an instance of the Equality
Class. Function f as shown above has type a — a — Bool, but a must be an instance of the Equality class. Jones
optimises this by constructing a dictionary for Eq [a] at the call site of £ rather than pass a dictionary for Eq a
and construct the dictionary for Eq [a/ inside the function f. He repeats this for all overloaded functions so that
he constructs dictionaries only once at the beginning of the program much as we perform all type applications
at the beginning of the program. But this approach does not work with separately compiled modules because
the type of £ that is exported to other modules does not specify the dictionaries that are constructed inside it -
therefore if f is called from a different module it will still be passed the dictionary for Eq a and the dictionary
for Eq [a] will be constructed during execution of f.

In Gofer [18], however, instance declarations are not used to simplify the context. Therefore the type of f in
the above example would be Eg[a] => a — a — Bool. Jones’ optimisation of dictionary parameters can now be
performed even in the presence of separately compiled modules.

Dictionaries in Haskell and types in ML share a similarity of purpose - both of them are used to specialise
a non-monomorphic function to values of a particular type. Therefore Jones’ optimisation of dictionary passing
may be adapted to type passing in ML. In that case, we would lift the construction of types from function bodies
to the call sites of the function, perform this optimisation repeatedly and ensure that types are constructed only
once at the beginning. In fact, Minamide’s transformation is very similar to this.

However, the ML module language (which we consider in Sec 2.5) supports functors that are modelled
by polymorphic abstractions - by this we mean that the abstracted variable is polymorphic. Suppose two
polymorphic functions £ and g have the same type(c) but they construct different types in their bodies. If we
transform the functions so that the types that are constructed are passed in as parameters, the two functions £
and g will no longer have the same type and the FLINT(Sec 2.5) typechecker will not, in general, type check the
code. This is because if we have a function (Az : o.€), we could previously pass either £ or g as parameters. But
now since the two functions have different types, we cannot use them in the same context. So the method used
by Jones for optimising dictionary passing does not extend to the Full-ML language.

2.4. CORRECTNESS OF THE ALGORITHM 21

(com’s) poou= t]Int | — pe

(types) o == p|Vi.p

(terms) e = |z |Xz:pe| Qrizs | let z =€ ine' | let z = At;. e, in e | z[i;]
(vterms) e, == 1|z |Az:p.e|letxz=e, ine, | let z = Al;.e, in €} | z[i;]

Figure 2.3: The Explicit Core-ML calculus

2.4 Correctness of the Algorithm

In this section, we give the proofs of the type preservation theorem and the semantic-soundness theorem. We
first repeat the definitions of our source calculus (see Fig 2.1) used in the translation algorithm as in Figure 2.3.

(const/var) I'F i:Int 'k z:T(z)
() Tw{z:m}F e:pe
'k Xx:pj.e:ug = po

(app) F'bFazy:p—>p TF 2oy
PP ' Qrizo: p
(i) They:p TW{z:Vi i} b e:ps

'k let z = At;.e, ine: o
(tapp) 'k z:V.u

U afm] : [/ tip

T'ke:m TW{z:m}F ex:ps
' letx=e; ines: o

(let)

Figure 2.4: Static Semantics

Figure 2.4 gives the typing rules which are useful in defining the type-preservation theorem. Figure 2.5 gives
a slightly modified version of the translation algorithm given in Figure 2.2. More specifically, we divide the
type environment I into two separate ones: one for monomorphic variables (T';,), and another for polymorphic
variables (I';). This is used only in proving the theorems; it doesnot change the semantics of the algorithm in
any way.

Notation 1 In the figure and the rest of this section we use A*F.e and @*2F to denote repeated abstractions
and applications respectively. If F' = {x1, ..., zn}, then A*F.e reduces to Azy : pi1.(-..(AZyp : pin-€)..) where py,...tun
are the types of T1,...,xn 1 Ty Similarly @*zF reduces to Q(..(Qzz1)..)zy,.

Throughout this section, we assume lambda-bound identifiers are always unique, and there are no variable
redefinitions in the source term. In the following, we will state some lemmas that are used in proving subsequent
theorems. We omit the proofs for these lemmas because they follow in a straightforward manner.

22 CHAPTER 2. OPTIMAL TYPE LIFTING

Pin(z) = p
T';T,;HE7: Int
(eap) ToiTp HE a:p = 205 {a} milpi H b it Int = 40;0
(app) Pim(z1) = p1 — po Um(22) = ma
PP Fm;Fp;H = @$1$2 Do = @xlwg;(?); {$1,$2}
Tple = piTpHEe:p' = € 5Hy F
(fn) TpsTpi HE Az e p— p' = A s pes Hi; F\{z : p}
(let) TCoiTpsHbEer:pn = e Hiy Fr Tz ;T H b ea: po = eby; Hoj Fo
e
Tp;Tp; HE let © = e1 in ep : po = let z = e} in eh; Hy + Ho; Fy U (F2\{z})
TpiTpsHEer:pn = el Hi; By H, = {x = At;.Let Hj in *Fy.e},Vt;.T(F1) — p1)
(tfn) Fm;Fp[:E — <Vt_,/.L1,F1>],H +HiFey: Mo = €I2;H2;F2
Tp;Tp; HE let = Atjer ines: o = ey Hy + Hoy F
p(z) = (Vtip, F) Tg(z) =V, T(F) = u z a fresh variable
(tapp) Lo Tps H & a[fi] = [pi/tiln = @*2F; (2 = o), T(F) — [pi/tilp); F
H

Figure 2.5: The Lifting Translation

Notation 2 In the lemmas and the rest of the section, if L is a set of variables, then T (L) refers to the types of the
variables in L under the environment I'y,. If L = {21, %2, ...,2,} and the types of the variables are respectively
Wiy ooy i, then T(L) — Tis shorthand for p1w — (... = (un — 7)..). Iy and T, bind monomorphic and
polymorphic variables to their types respectively while a,, and a, bind monomorphic and polymorphic variables
to their values respectively.

Lemma 2.4.1 [fT+e:7, thenT - AL.e: T(L) — 7 where L is the set of free variables of e and T (L) respects
T.

Lemma 2.4.2 (H is closed) If H is closed and T'y,;Tp; HF e: p= e'; Hi; F, then H + Hy is closed.

Proof. Lemma 2.4.2 follows directly by structural induction on the structure of e.

Lemma 2.4.3 IfT',,;Tp; HF e: p = e';Hi; F, and the set of variables bound by Ty, and H are disjoint, then
the set of variables bound by 'y, and H + Hy are disjoint.

Proof By structural induction on e. Notice that T',, binds only monomorphic variables and H binds only
polymorphic or newly introduced variables.

Lemma 2.4.4 IfT',;T; HE e: p=€e'; Hy; F, then the variables in F are bound in T'y,.

Proof. Again by straightforward induction on the structure of e.
The translation of a closed term e occurs as

2.4. CORRECTNESS OF THE ALGORITHM 23
0;0;0Fe:p=e;H;0

Therefore initially H is closed and the set of variables bound by T',, and H are disjoint. This leads to the
following corollary —

Corollary 2.4.5 During the translation, H is always closed and the set of variables bound by Ty, and H are

always disjoint.

2.4.1 Type Preservation

Before we prove the type soundness of the translation, we will define a couple of predicates on the header — 'y
and well-typedness of H. Intuitively, I'y denotes the type that we annotate with each expression in H during
the translation and well-typedness ensures that the type we annotate is the correct type. Together these two
ensure that the header formed is well typed.

Definition 2.4.6 (Let H in e)

If H=hg...hy,, then Let H in e is shorthand for let hg in ... let h, in e. The typing rule is as follows —
TpsTghtlethine: pif Ty Tg+Th e p.

Definition 2.4.7 (I'y)
If H=(hg-..hp),then Ty =T, ... Ty, . If h; i= (z =e,7), then Ty, := 2z — 7.
Definition 2.4.8 (H is well typed)

H is well typed if hg...h, are well typed. h; is well typed if hg...h; 1 are well typed and —

e h; == (z = At;.Let Hy in e,Vt;.u), then Ty p,_, F Let Hy ine: p.

o h; == (z = z[@], [pi/ti]u), then Tpy p,, F 2 : Vip

Theorem 2.4.9 (Type Preservation) Suppose T'yy;Tp; Hb:e:p= €' Hi; F. If H is well typed then H + Hy
is well typed and if Ty;Tp b e : p then Tpy; Ty - Let Hy in €' : p.

Proof. The proof is by structural induction on the structure of e. We will consider the two interesting cases

here — tfn and tapp.
HI

e

7

Case tapp = To prove - given H is well-typed, then H + (z = z[@;], T (F) — [p;/t:]p) is well-typed
and if T'py; Ty - 2] : 7 then T'ypys Ty - Let H' in @Q*2F : 7

Since we assume H is well typed, we need to prove H' is well typed. To prove H' is well typed we have to
prove 'y F z : V¢, T(F) — p which is true by the precondition on the translation. Therefore H' is well typed.

From the well-typedness of H + H' we get I'y F z : Vt;.T'(F) — p. From this we get
Ty b z:T(F) — [p;/t;]p- Since F is the free variables of , it cannot have ¢; as a free type variable. There-
fore, I'; Tym F @*2F' : [p;/t;]p- Note that T'(F) is the type of the variables in F' under the environment I',,
which remains the same throughout the program since we assume that identifiers are unique. Also the type of
z remains unchanged since I',,, and H bind a disjoint set of variables. Therefore, the type preservation theorem
follows.

Case tfn = To prove - given H is well-typed , then H + Hy + H, is well-typed and if I';;,; T, F let z =
Ati.e; in es : s then T'yy; Ty &+ Let Hy + Ha in €)= po.

24 CHAPTER 2. OPTIMAL TYPE LIFTING

(const/var) abi—=i atz—a(z)
(fn) at Az:p.e — Clos(z™ e, a)
at z; = Clos(zt,e,a') abzy—v d4+z—vFe—ow

(app) al Qrizy — v
(tfn) at At;.e, = Clost(t;, e,,a)

et ake = v atz—=uv e —w
(let) abletz=¢€; iney; > v
(tapp) at x5 Clost(t;,ey,a') a'Feyfpi/ti] = v

app

at z[@]—wv

Figure 2.6: Operational Semantics

By induction, if H is well-typed , then H + Hj is well-typed and T',,; 'y F Let H{ in e} : p1. This implies
that T'yy; Ty b Let Hy in *Fy.e} : T(F1) — p1 where T(F}) is the type of the variables F; in T',,. Since we
assume unique identifiers, these types always remain the same. That is, the variable name unambigously denotes
a type and this denotation remains the same at all times in the program. Now since A*Fj.ej is closed with
respect to monomorphic variables, we no longer require the environment I',,. Therefore we get
Ty + Let H| in *Fy.e} : T(F1) — p1. By definition, this implies H; is well-typed and therefore H + H; is
well-typed.

Again by induction we have if H + H; is well-typed, then H + H; + H; is well-typed and if
T Tp+2 = (VEip, Fi) b ea: po then T'yy; Ty, b Let Hy in e : po. From this we get that T'py; ey gy 451, F
eb : o which leads easily to the type preservation theorem.

2.4.2 Semantic Soundness

Before proving the semantic soundness, we first give the operational semantics of our calculus in Fig 2.6.
There are only three kinds of values - integers, function closures and type function closures.

(values) v u= i | Clos{z*, e, a) | Clost(t; e, a)

Notation 3 The relation a : T'+ e — v means that in a value environment a respecting T', e evaluates to v. a
respects T means that if a(z) = v and T'(z) = p, thenT kv : p.

Notation 4 The notation a(z — ..) means that in the environment a, = has the given value. Whereas a[z — ..]
means that the environment a is augmented with the given binding. Continuing from above we get,

Definition 2.4.10 (Type of a Value)

e I'Hi:int

2.4. CORRECTNESS OF THE ALGORITHM 25
e if 'FAz:pe:pu—p, then I'F Clos{z*,e,a) : p — p'
o if T' - A#;.e, : VE;.u , then T F Clost(t;,e,,a) : VEi.u
Throughout the proofs we assume that the subject reduction lemma holds. That isifa: T'F e — v and

I'Fe:p,thenT' F v : pu. This lemma can be proved from the given operational semantics by structural induction
on the syntactic structure of e.

Definition 2.4.11 (Equivalence of Values)
e Equivalence of Int — Suppose I' -4 : int and T’ - ¢’ : int. Then i ~i' iff i = 4.
e Equivalence of Closures

— Suppose T'+ Clos(z#,e,a) : u — p' and T - Clos{z*,e',a') : p — p'.
— Suppose further that '+ v : pand I' F o} : p and vy & 0.

Then Clos{z",e,a) ~ Clos(z*,e',a') if Yvi,0; a:T+z—wvikte—svandd :I"+z—0j ke -
and v & o'

e Equivalence of Type Closures Suppose I' + Clos'(t;,ey,a) : VE;.pu and T' = Clost(t;,el,a’) : Vii.p.
Then Clos®(;,e,,a) ~ Clos*(t;, e ,a') iff a : T & ey[u;/ti] = vand o' : T' F € [u;/ti] = v' and v = V'

Definition 2.4.12 (Equivalence of terms) Suppose a : T'F e s> v anda : T"F e - v withT Fe:pu
and TV e’ : p. If v = v, then we say that the terms e and €' are semantically equivalent and denote this by
a:Themad:T"kH€.

Lemma 2.4.13 ifa:TFem~a :T"F e, thena:TF elu;/t;] = a' : T' F e'[u;/ti]

Before we get into the proof, we want to define a couple of predicates on the header - ag and well-formedness
of H. Intuitively ag represents the addition of new variable-value bindings in the environment as the header
gets evaluated. Well-formedness of the header will ensure that the lifting of the type function and the type
application does not change the semantics of the program. We will semantically equate the old unlifted type
application and the lifted type application applied to the free variables of the definition, both of them in the
same environment.

Definition 2.4.14 (Let H in e)

Suppose H = hi...h,. Then Let H in e is shorthand for let hy ... in let hy in e. If h; == (x = e,T), then
let h; is shorthand for let x = e. The evaluation rule is a,, : I'y - Let H in e = ay, : I'p;ag : Ty - e. Note
that since we assume subject reduction holds ag always respects I'y.

Definition 2.4.15 (ay)

ag is equal to ap,...p, and ap; is —

o hj u= (z = At;.e,) then

ap; := &+ Clos'(t;, e, ang. .h;_,)

J

e hi == (2 =z[m),7) and hj ==z — Clos*(t;,e,an) j < k, then ap, := z — v where
ap :Th Felui/ti] = v

Definition 2.4.16 (H is well-formed w.r.t a,, : [pjap : T'p)

26 CHAPTER 2. OPTIMAL TYPE LIFTING

H is well-formed w.r.t. am:I'n;ap:0p, if ho,. .., hy are well-formed. A header entry h; is well-formed if all its
predecessors hy, ..., h;_1 are well-formed, and furthermore,

o If hj := (z = At;.e,7), then h; is well-formed w.r.t an, : T ap : T'p iff suppose T'p(z) = (Vii.u, F) and

am : Cmyap : Tp b 2[f3] = v and
Am Ui @ng. by 2 Tho.ony Flet 2 = 2[g] in @*2F — o

then v ~ v’ is true.
o If h; ::= (2 = 2[[53], 7), then h; is well-formed.
We will sometimes abbreviate — H is well-formed w.r.t. an,:I'n;ap: I, —by simply writing H is well-formed.

Theorem 2.4.17 (Semantic Soundness) Suppose we have I'yy;Tps H F e : u = €5 Hi; F and ay, : Tz ap:
TpFe—v. If H is well-formed with respect to am:Tm;ap:Tp and am : Tyyam : Te b Let Hy in e — v' then
v

Proof. The proof is by induction on the structure of e. The only interesting cases are tapp and tfn.

Case tapp = To prove — a,, : Iy;ap : Ty F 2[5] — v and H is well-formed with respect to ap, : 'y ap: T
then if a,, : T)y;ag : Ty F Let Hy in Q*2F — o' implies v =~ v'.
Substituting the value of Let H; the required equivalence gets converted to — given H is well-formed

am :Tmsap : Tp P[] 2 viffap : Thpsa : T k- let 2 = 2[f;] in @*2F — v’ and v = v'.

By the precondition on the translation rule T'p(z) = (Vt;.u, F') and since I'y also binds 2 to a polymorphic
type, there exists some h; € H such that hj ::= (z = At;.e,T)

Since H is well-formed, h; is well-formed as well and so we get —

am : Tmsap i Tp b 2[f;]) = v and
am Ui @hg.ny Tho.ony Flet 2 = 2[i] in @*2F — o

then v & v’ is true.

But we assume that variables are bound only once. Therefore there exists no other hy € H such that hy
binds x and specifically hj;1,..., by, do not affect z. Therefore the definition of well-formedness can be reduced
to

am : Tmiap: Tp b 2[f;] = v and
am :Cmyag : T b let 2z = z[@;] in @*2F —

then v &~ v’ is true.
which is what we want to prove.

Case tfn = To prove - given H is well-formed and also that a,, : ['y;ap : Ty F let 2 = At;.eq in e — v then
ifay : Tyyam : Ty + Let Hy + Hs in ey, — v' implies that v =~ v'.

By induction we have that — given H is well-formed and if a,,, : I'yy;a, : I'p Feg — v1 and
am : Tmiag : Ty b Let Hi in €] — v} then v &~ v].

Assume for the time being that H + H; is well-formed. Then if an, : T'jap[z — Clost(t;, e1,am + ap)] :
Tplz — (VEip1, F)] b ex = va and ar, : T amtm, : Taym, B Let Hy in ey, — vh implies that v = vj.

But from the operational semantics we can easily deduce that vs = v and that vy = v’. This therefore leads
to the semantic soundness theorem.

We are therefore left with proving that H + H; is well-formed. By assumption, H is well-formed, therefore
we must prove that H; is well-formed. From the definition, equating h; to H; we need to prove that

2.5. THE LIFTING ALGORITHM FOR FLINT 27

Ay, 2 Dhpyay : Ty F 2] — v and
ar T sagym, :Caem, Flet z=2[f;] in @*2F =
then v & v' is true.
But from the operational semantics we get that in the untranslated expression z +— Clos'(%;, e1, am +a,) and
therefore

ap, Tsay, : Ty 2] & am : Tsap : Tp - ex[pi /L]

m

Again by definition,
ap, =z — Clos'(t;, Let H| in *F.e},an).

Therefore z — Clos(FT\F), €} [ui/ti],anm + ag:[, ¢,]) (skipping a couple of steps) and so we get —

a’m : Flm;a’H-‘rHl : FH+H1 Flet z = :I:[m] in Q*z2F ~ a;n(F) : I‘Qn;aH : FH + aH{[lLi/ti] : FH{[,ui/ti] - 61[#1‘/%]

So the equivalence reduces to
am : Umiap i Tp Ferfui/ti] = ap,(F) :Thsam : T+ am e : THyfus e F eilpi/ti]

But a,(F) = a.,,(F) since variables are unique. Moreover since F' consists of all the free variables of €| that
are bound in a}, and by extension in a,,, evaluating e} in a,,(F) and in a,, is equivalent. So the equivalence
simplifies further to

am :Tmsap : Tp F el[ﬂi/ti] A Umag : g + R [/t;] FH{[;u/ti] F e’l[,ui/ti]

But the above equivalence follows from the inductive assumption on the translation of e; and by applying
Lemma 2.4.13 to it. This proves that H; is well-formed.

2.5 The Lifting Algorithm for FLINT

Till now, we have only considered the Core-ML calculus while discussing the algorithm. But what happens when
we take into account the module language as well? Does the algorithm extend to the full language in an obvious
way?

To compile the Full-ML langauge, we compile the source code into the FLINT intermediate language. The
details of the translation to FLINT are given in [45]. In ML, structures are the basic module unit and functors
are parameterised structures. Polymorphic functions may escape as part of structures and be initialized later at
a functor application site. We will not get into the details of the ML module calculus, but what is of relevance
here is that the module language does not fit into the constraints of the Core-ML calculus. (which is why we
compile it to FLINT). Thus, to model functors, abstractions are now allowed to be polymorphic. Therefore type
applications involving abstracted variables cannot be lifted above the abstraction binding the variable. Moreover,
type applications may be curried since we may have escaping polymorphic functions. Since all the application
sites of an escaping polymorphic function cannot be determined statically, we cannot arrange to pass in the free
variables at each function call. Therefore an escaping polymorphic function with free variables in its definition
cannot be lifted to the top level and hence its type applications also cannot be lifted to the top level. As a result,
the algorithm cannot be extended to FLINT in a straightforward manner.

But there is a silver lining to the dark clouds. Functors in a program always occur outside any Core-ML
functions. Furthermore, only functor parameters give rise to partial type applications. Therefore, we can lift the
partial type applications to where the functor parameter is bound and hence outside all Core-ML functions. We
will formalise these constraints in terms of the FLINT calculus later in this section.

The core language of FLINT is based upon a predicative variant of the Girard-Reynolds polymorphic A-
calculus F,, [9, 41], with the term language written in A-normal form [7]. It contains the following four syntactic

28 CHAPTER 2. OPTIMAL TYPE LIFTING

classes: kinds (k), constructors (u), types (o), terms (e), as shown in Figure 2.7. Here, kinds classify constructors,
and types classify terms. Constructors of kind {2 name monotypes. The monotypes are generated from variables,
from Int, and through the — constructor. As in F,, the application and abstraction constructors correspond to
the function kind k; — k3. Types in Core-FLINT include the monotypes, and are closed under function spaces
and polymorphic quantification. We use T(u) to denote the type corresponding to the constructor u (when
u is of kind Q). As in F,, the terms are an explicitly typed A-calculus (but in A-normal form) with explicit
constructor abstraction and application forms.

(kinds) K Q| k1 = K2

(constructors) p == t|Int | pg — po | Mukp | pape]
(types) o u= T(w)| o1 = o2 |Vizko

(terms) e i|z|let z=e¢1 ines | Qzyzy

| fZ.’L‘[.’L‘Z : ai,ei]

| let £ = Al; = kjey in en | 2[ug]
(values) ey u= i|z|letz=e,inel | fizx[z;: 0, €]

let z = At; :z kj.e, in e | 2[ui]

Figure 2.7: Syntax of the Core-FLINT calculus

In the FLINT calculus, abstractions model both functors and functions. However the type of the abstracted
variable is used to distinguish between functors (polymorphic) and functions (monomorphic). In a translated
program, this implies that polymorphic abstractions are never nested inside a monomorphic abstraction since
functors are never nested inside functions. Moreover, since partial type applications can involve only polymorphic
variables, monomorphic abstractions cannot prevent their lifting.

Therefore with a preprocessing phase, any input FLINT program can be converted into a well-formed program
which is defined to satisfy the following constraints

¢ No polymorphic abstraction is nested inside a monomorphic abstraction.
e No partial type application is nested inside a monomorphic abstraction.

We now redefine the depth of a term in a program as the number of function abstractions (monomorphic
abstractions) within which it is nested with depth 0 terms being the ones outside all function abstractions. Note
that depth 0 terms now may not occur outside all abstractions since they may be nested inside polymorphic
abstractions (functors in the source language). We then perform type lifting as in Fig 2.2 for terms at depth
greater than zero and lift the polymorphic definitions and type applications to depth 0. For terms already at
depth zero, the translation is just the identity translation and the header returned is empty.

We present the algorithm formally in Fig 2.8. The translation rules are expressed as sequents of the form

I';d;td-e=€e;H; F

d refers to the number of A abstractions within which we are nested. td refers to the number of A abstractions
within which we are nested. e is the input term and e’ is the output term. H is the header as defined before —
it contains the list of type expressions in e that must be lifted to depth 0. F' as in the previous algorithm is the
list of free variables of e'.

T is the type environment that maps a variable to its type, the depth (no. of \) at which it was defined,
type depth (no. of A) at which it was defined, and the free variables in its definition. Note that the free variable
information is irrelevant in the case of monomorphic variables.

The final result of lifting a closed term e of type u for which the algorithm infers §;0;0F e : u = €'; H; 0 is
LET(H,e'), where the function LET(H,e) expands a list of bindings H = [(z1,e1),..., (Zn,en)] and a term e
into the term let z; = e; in ...let z, = €, in e.

2.5. THE LIFTING ALGORITHM FOR FLINT 29

We will briefly explain the algorithm here. Firstly note that the second tapp rule deals with partial type
applications and the fct rule deals with functors. In the fn rule, we deal only with non-recursive functions — the
general case follows easily. At depth d = 0, no lifting takes place and consequently the header returned is always
nil. Therefore in the second tfn rule and the fct rule, the headers from the translation are empty lists. The
case for full type application is similar to the Core-ML case. In the case of partial type applications, we need
to know the remaining type parameters before we can pass in the free variables of the polymorphic function.
This results in the simultaneous introduction of the polymorphic abstraction and the type application. In case
we are at depth 0, the transformation is just the identity function since no lifting takes place at d = 0. In the
second tfn rule, the polymorphic function need not be lifted since it is already at the top level. Therefore the
translation is just a combination of the translations for the subterms. Moreover since we are already at depth 0,
the result header is also empty.

The rule for functors is slightly different. We want to ensure that all type applications are nested only inside
functors. We do not want to lift them outside functors. Therefore while translating the body of the functor, we
reinitialize the depth to zero. This ensures that all type applications inside the functor body will be lifted outside
functions and nested only inside the functor. And since we set the depth to 0, the resulting header from the
translation is empty. The case for functions is similar in essence to the Core-ML case. We process the function
body and on returning if we find that we are at depth 0, then we dump the result header. (The LET function
is defined above). Otherwise the translation continues in the normal way.

We illustrate the lifting algorithm on the example code shown below. The syntax is not totally faithful to
the FLINT syntax shown before but it makes the code clearer.

Atg.MX1:8S.
y = #1(Xy1)
f = Av.
let id = Ati.Ax2.x2
vi = ... id[Int](3)
in v
va = yltolf

which gets translated to

Atg.\X1:8S.
y = #1(X;)
f = let
id = Aty.Ax2.x2
z1 = id[Int]
. (Other type expressions in f’s body)..
in Av.
let (type lifted body of f)
Vi = ... Z1(3)
in Vi
vy = yltolf

In the code above, the parameter X; is a higher-order functor whose first component is another functor. The
type S denotes a structure type. Suppose f is just a single-element structure. As we explained above, y, f and
vy are at depth 0 even though they are nested inside the functor abstraction(A\X;). This also means that the
type application y[to] is at depth 0 and therefore we will not attempt to lift it. It is only inside the function f
that the depth increases. The algorithm dumps all the type applications just outside the function abstraction
(Av), they are not lifted outside the functor abstraction (AX7).

Is the reformulation above merely an artifice to get around the problems posed by FLINT ? No, the main
aim of the type lifting transformation is to perform all the type applications during “link” time—when the top
level code is being executed—and eliminate runtime type passing inside functions. Functors are top level code

30 CHAPTER 2. OPTIMAL TYPE LIFTING

as well and are applied at “link” time. Moreover they are non-recursive and do not occur inside loops. Therefore
having type applications nested only inside functors still results in the type applications being performed once
and for all at the beginning of program execution. As a result, we still eliminate runtime type passing inside
functions.

In passing, we note that depth 0 in Core-ML (according to the definition above) coincides with the top level
of the program since we do not have functors and hence polymorphic abstractions in Core-ML; therefore the
Core-ML translation is merely a special case of the translation for FLINT.

2.6 Implementation Results

We would first like to discuss a few performance issues before we actually examine the runtime figures.

Our algorithm lifts type applications to the top level and this makes the simultaneous uncurrying of both
value and type applications difficult. At runtime, type applications result in the formation of closures. But all
of these closures are created only at the top level and are never created repeatedly. We therefore believe that
this is not a significant penalty. Related to this is the cost of function application because this involves selecting
the environment and the code from the closure before the function can actually be applied. However, in most
cases, the selection of the code and the environment will be a loop invariant expression and can therefore be
optimised. Secondly we need to address the issue of closure size of the lifted functions. Our optimal type lifting
does not introduce any free type variables. And since the body of the function after lifting does not use the
type variables any more these type variables do not need to be included in the closure. However the tapp rule
in our algorithm introduces new variables(the Set L) which may increase the number of free variables of the
function body. Moreover local polymorphic definitions are now lifted from function bodies which also increases
the closure size.

We speculate that the increase in closure size, if any, and hence in the closure creation time does not incur a
significant runtime penalty. This is borne out by the results on the benchmark suite. None of the benchmarks
slows down significantly - some of the benchmarks show a moderate speedup. Note that the type information
currently maintained in the FLINT compiler is very minimal. Types are represented by integers and the type
information is just sufficient to distinguish between integers, reals and records. As a result, presently type
construction and type application are not expensive. However we intend to make the type representation more
sophisticated in the near future. The main motivating goal of the transformation is to ensure that in the presence
of a more complicated type representation we do not incur a significant runtime penalty - yet at the same time
make use of the enhanced type information at runtime.

We have implemented the type-lifting algorithm in the FLINT /ML compiler version 1.0. All the tests were
performed on a Pentium Pro 200 Linux workstation with 64M physical RAM.

The algorithm is implemented in a single pass by a bottom up traversal of the syntax tree. An earlier
stage of the compiler performs type specialization. This phase also checks for duplicate type applications and
performs “common type-application elimination”. We use de Bruijn notations [5, 30] to represent types. But
the type information to be manipulated is kept to a minimum by the algorithm. In Figure 2.2 Rule (¢fn), when
we lift polymorphic function definitions, we dump all the expressions in H; in front of the type abstraction
even though we need only dump those terms (in H;) whose set of free type variables contain any of the t}s.
The advantage of dumping all the expressions at that point is that the de Bruijn depth of the terms in H;
does not change. Hence we do not have to change the de Bruijn indices of the type expressions in H;. The
only time we need to manipulate the type information is when we abstract the free variables of a polymorphic
definition—we need to adjust the de Bruijn indices of the types associated with the variables bound by the newly
introduced abstractions. The type environment used in the implementation also remembers the depth (defined
in Section 2.5) at which a variable was defined. This is used to ensure that the number of variables abstracted
when a polymorphic definition is closed is kept to a minimum; variables that will still remain in scope after the
lifting are not abstracted.

2.6. IMPLEMENTATION RESULTS

31

(ezp)

(app)

(let)

(tap)

I'(z) = (4, 1)
T;ditd -z = z;0; [z : p

Ti;d;td Fi=4;0;0

F(‘Tl) = </J’1 — M2, - o —> F(xZ) = </J'17] —>
F;d; td Qzizy = @1‘1.’E2;@; [:El DU — M2, Tk /,Ll]

F;d;td Fe = 6'1;H1;F1 F[$ — (,U,l,d,td,F1>];d; tdF ex = 6'2;H2;F2

T;d;td let 2 = e; in e; = let z = e} in eh; H1||Ha; F1 U (F2\[z : p1])

T(z) = (V&.u, -, -, L) v fresh variable
T;d > 0;td & z2[m;] = QuL; (v, z[i;]); L
I;d = 0;td - 2] = x[m]; nil;nil

I(z) = (Vtp, -, -, L) v fresh variable
T;d > 0;td b o[@;) = At 2 ki.Q(v[t;]) L; (v, z[@m]); L
T;d = 0;td - z[@m;] = 2[m]; nil;nil

Diditd+ 1+ ey = €l Hy; Fy
[z — (Vti.u,d,td, F1)];d;td - e = eb; Ha; Fy
T;d > 0;td - let = At; =t kseq in es = eb;exp s Hoj Fy
exp = let x = At; : k;. LET(Hy, fiz[F1,e}])

Ti;ditd + 1+ e; = e;nil; Fy
[z — (Y&, d, td, F1)]; d; td - ea = eb; nil; Fy

T;d = 0;td - let = At; == ki.e; in ey = let = AL; :: ky.ef in eb;nil; Fy U Fy

[z — (0,0,td,)];d = 0;td + e = €';nil; F
Tyd;td b fiz[z : 0,e] = fiz[z: 0,€'];nil; Fi\[z : 0]

Mz - (u,d+1,td,));d+ 1;td - e = €', H; F

T;d > 0;td & fiz[z: p,e] = fiz[z: p,e'); H; F\[z : y]
I';d=0;td ¢ fiz[z: p,e] = LET(H, (fiz[z : p,e']));nil; F\[z : y

Figure 2.8: The Lifting Translation for FLINT

32 CHAPTER 2. OPTIMAL TYPE LIFTING

Benchmark Description New Time | Old Time | Ratio
Simple A spherical fluid-dynamics program 7.04 9.78 0.72
Viiw A VLIW instruction scheduler 4.22 4.31 0.98
lexgen A lexical-analyzer generator 2.38 2.36 1.01
ML-Yacc The ML-yacc 1.05 1.11 0.95
Mandelbrot The Mandelbrot curve construction 4.62 4.62 1.0
Kb-comp Knuth-Benedix Completion Algorithm 2.98 3.11 0.96
Ray A ray-tracer 10.68 10.66 1.01
Life Runs 10,000 generations of the Life Simulation 2.80 2.80 1.0
Boyer A simple theorem prover 0.49 0.52 0.96

Figure 2.9: Type Lifting Results

Our algorithm is a source-to-source transformation and the output from it is again a FLINT program. We
do not need any auxiliary type system to type-check the transformation, the FLINT type-checker suffices which
is a big gain. This helped us immensely in implementing the algorithm and fixing the bugs that cropped up
during the implementation.

Figure 2.9 shows CPU times for executing the Standard ML benchmark suite with type lifting turned on
and turned off. The third column (New Time) indicates the execution time with lifting turned on and the next
column (Old Time) indicates the execution time with lifting turned off. The last column gives the ratio of the
new time to the old time. We get moderate speedups for some of the benchmarks and a good speedup for one
benchmark—an average of about 5% for the polymorphic benchmarks. Simple has a lot of polymorphic function
calls occuring inside loops and therefore benefits greatly from lifting. Boyer and mandelbrot are monomorphic
benchmarks (involving large lists) and predictably do not benefit from the optimization. Even though life is a
heavily polymorphic benchmark, most of its time is spent in the polymorphic equality function [47]. Type lifting
does not obviate this and hence the speedup is negligible.

2.7 Related Work and Conclusions

Tolmach [50] has worked on a similar problem and proposed a method based on the lazy substitution on types. He
used the method in the implementation of the tag-free garbage collector. Minamide [27] has also attacked the same
problem but has used an entirely different approach from ours. He proposes a refinement of Tolmach’s method
to eliminate runtime construction of type parameters. We have elaborated on this difference in Section 2.3.
The speedups obtained in our method are comparable to the ones reported in his paper. Mark P. Jones [18]
has worked on the related problem of optimising dictionary passing in the implementation of type classes. We
elaborated on this in Section 2.3.

In their study of the type theory of Standard ML, Harper and Mitchell [11] argued that an explicitly typed in-
terpretation of ML polymorphism has better semantic properties and scales more easily to cover the full language.
The idea of passing types to polymorphic functions is exploited by Morrison et al. [29] in the implementation of
Napier. The work of Ohori on compiling record operations [33] is similarly based on a type passing interpretation
of polymorphism. Jones [19] has proposed evidence passing—a general framework for passing data derived from
types to “qualified” polymorphic operations. Harper and Morisett [13] proposed an alternative approach for
compiling polymorphism where types are passed as arguments to polymorphic routines in order to determine
the representation of an object. The boxing interpretation of polymorphism which applies the appropriate coer-
cions based on the type of an object was studied by Leroy [21] and Shao [43]. Many modern compilers like the
FLINT/ML compiler [44], TIL [49] and the Glasgow Haskell compiler [34] use an explicitly typed language as
the intermediate language for the compilation.

2.7. RELATED WORK AND CONCLUSIONS 33

Lambda lifting and full laziness are part of the folklore of functional programming. Hughes [16] showed that
by doing lambda lifting in a particular way, full laziness can be preserved. Johnsson [17] describes different
forms of lambda lifting and the pros and cons of each. Peyton Jones [38, 35, 37] also described a number of
optimizations which have similar spirits but have totally different aims. Appel [3] describes let hoisting in the
context of ML. In general, using correctness preserving transformations as a compiler optimization [1, 3] is a well
established technique and has received quite a bit of attention in the functional programming area.

We have proposed a method for minimizing the cost of runtime type passing. Our algorithm lifts all type
applications out of functions and therefore eliminates the construction of types inside functions at runtime. The
amount of type information constructed at run time is a static constant. We can guarantee that in Core-ML
programs, all type applications will be lifted to the top level.

34

CHAPTER 2. OPTIMAL TYPE LIFTING

Chapter 3

Common Type Expression Elimination

3.1 Introduction

In the last chapter, we presented a method of eliminating runtime type constructions and ensuring that all
type information was resolved once and for all at linktime. This ensures that the cost of manipulating types at
runtime never blows up. However, while constructing types during linktime, we want to ensure that the sharing
between the types that is maintained during compilation is also preserved during linktime — we want to make
sure that we expend as little effort as possible on constructing types. More formally, we want to ensure that if
the compilation of a program resulted in the creation of k types, then during linktime we construct ©(k) types.
We know from our experience in compiling that preserving the sharing between types is critical to compilation
time which leads us to believe that even if we were to construct types only at the beginning, we could still incur
a significant overhead if we don’t preserve the sharing. Therefore eliminating common type expressions was
essential in ensuring efficient runtime type passing.

We had several options about how to proceed. One was to reify the types and then apply common subexpres-
sion elimination to the resultant code. This would involve no extra effort since both the phases already exist in
our compiler. However, this would imply that there would be one stage in the compiler when the type information
would blow up which was unacceptable. The FLINT/ML compiler guarantees that all type preserving stages —
including the execution phase if types are passed at runtime — will preserve the asymptotic time and space usage
in representing and manipulating types. This condition would have been violated if we had followed the above
approach.

The other option was to perform the common type expression elimination as part of the reify stage — in some
ways combine the type expression elimination and the reification into a single stage. We did not favour this
approach in the interest of modularity. If we changed the runtime type representation at some later point and
therefore needed to modify the reification stage, we might have had to redo some of the elimination code. We
believed it was better to have it as a separate stage in the compiler.

The fact that we use Debruijn indices to represent types made the algorithm and the implementation non-
trivial. FLINT does not support an explicit lettype construct by which we may bind type expressions to
type variables. We therefore used a combination of a polymorphic definition and a type application for the
same purpose. So for example, the following code lettype t = p in exp end is represented as (At.e)[u] and a
sequence of such lettypes is represented as a nested sequence of polymorphic abstractions and type applications.
This was sufficient for our purpose since in FLINT only constructors are passed at runtime — therefore we are
actually interested in eliminating common constructor expressions only. But the introduction of polymorphic
abstractions meant that the Debruijn index of terms was going to change and was going to change in a pretty
drastic and random manner which in turn made the implementation pretty hairy. We talk more about this in
the implementation section.

36 CHAPTER 3. COMMON TYPE EXPRESSION ELIMINATION

The next section(Fig 3.2) describes the algorithm formally. Here we will just informally explain it. The only
non-trivial cases are the type application and the polymorphic abstraction. In the type application, we look up
the constructor in the environment. The function I first checks to see whether u exists in the environment. If it
does, it then returns the type variable bound to it. Otherwise, I finds out all the common type expressions inside
p and replaces them with the corresponding type variables. It then enters p into the environment and binds a
newly introduced type variable to it. In the code, u is then replaced with this variable. When we encounter a
polymorphic abstraction, we add a new layer to the environment. This layer will hold all the type expressions
that involve the type variable ¢; but none of the type variables introduced by abstractions inside e. When we
return, we pop off this layer and bind the type expressions contained in this layer to the corresponding type
variables.

The question that arises naturally at this point is — why wasn’t common type expression elimination performed
till now in the FLINT /ML compiler? The reason being that till now types were only represented as small integers
at runtime. Therefore passing types at runtime was never costly. However as we shall see in chapter 4, we now
intend to make the type representation in FLINT more sophisticated and therefore the cost of constructing types
now becomes an issue.

3.2 The CTE Algorithm

In this section, we present the algorithm formally and prove the type preservation and the semantic-soundness
theorems. We also show that every common type expression is eliminated.

3.2.1 Formal Description

The source language for the algorithm is shown in Fig 3.1 and is the standard predicative variant of the Girard-
Reynolds polymorphic A-calculus F,,.

(kinds) kK u= Q] K = K

(constructors) p == t|Int | p1 — po | Mukp | pafpe]

(types) o u= T(u)|oL— o2 |Viuko

(terms) e u= i|z|letz=e; ines | Az:p.e | Quras | At::k.e | z[y]

Figure 3.1: Syntax of the Core-FLINT calculus

Figure 3.2 shows the common type-expression elimination algorithm. The translation is defined as a relation
of the form H; A;T F e = €'; H', that carries the meaning that the translation of the input term e is the term
e', H is the type expression environment at the beginning of the translation, H' is the environment after the
translation. T is the type environment mapping variables to types and A is the kind environment mapping type
variables to their kinds. The type expression environment H is actually a list of environments h; ... h,. Each h;
is added as we enter a new type abstraction At; and is popped off as we leave the abstraction. Each h; in turn
is a mapping between newly introduced type variables and the type expressions that they denote. All the type
expressions contained in a particular h; involve the type variable ¢; — that is the type variable introduced by the
corresponding A abstraction — and do not include any type variable introduced by a A abstraction nested inside
it.

In the presentation of the algorithm and later on in the proofs, we will often ignore the fact that H is actually
a two dimensional environment and will instead linearise it. This is only to simplify the presentation. We will
also use a few more notational shortcuts to keep the presentation uncluttered and we will state them as we
proceed.

3.2. THE CTE ALGORITHM 37

(exp) H; N THi=4;H HA\;T+z=>xH H;\;T+ Qzizo = Qri20; H

H; ATz pl-e=e€;H

(abs) H;N;TFHAz:pe = Az:p.e's H
et H;\;T ke = el H H;; ATz : pl b ex = ehy; H”
(et) H;A\;TF1letz =e; iney = let z =€ ine); H"
(tap) z:Vtp' I(p) = (4, Hy)

P H; AT aly] = ojty); Hy
. H + hlt; — ti, k; Alt; = kl;TFe=¢e;H +h'
(tfn) H; ;T F Atyke = At k.Tlet(h',e'); H'

Figure 3.2: The CTE algorithm

The Tlet(h,e) construct used in the algorithm above is akin to the lettype construct. If h = [t; —
p1] ... [tn — pp] then Tlet(h,e) is expanded as

so that in the expression e, the type variables ¢; ... ¢, get bound to the type expressions p - . . fin-

The I function used in the algorithm does the actual common type expression elimination and is shown in
Fig 3.3. The S function actually searches for the type expression in the environment and if it already finds the
expression in the environment returns the type variable bound to it. Before we describe the S function we define
the following terms —

e ndepth = nesting depth of the innermost bound type variable in a type expression.

e adj(u) = converts the type expression y to ' such that ndepth(y') is equal to 1. We assume a familiarity
with Debruijn indices and how they are used to represent types. The adj function basically manipulates
the Debruijn indices.

The S function is defined as follows —
1. d = ndepth(u)
2. u' = adj(p) and i = hash(y')

3. let h = Hy. Search in h for the expression with hash value i.

3.2.2 Elimination of Common Type Expressions

Lemma 3.2.1 A common type expression p will always be eliminated if u is stored in Hq where d = ndepth(u).

Proof. Suppose there is another type expression y’ equal to u in the program. Since we assume unique bindings,
we can also assume that two common type expressions will be structurally equal and vice versa (if we were to

38 CHAPTER 3. COMMON TYPE EXPRESSION ELIMINATION

. t— (u, k) e H
(foar) T, H) = (1, k)
(int) I(int,H) = (H,int, Q)
(-) S(ul _>,u'2) :¢ I(MlaH):(Hlvtlv—) I(,U'2aH1) :(H2’t2a—) t a new typevar
fin = pi2 I(p1 = pio, H) = (H[t = t1 — t2,9],1,9)
([]) S(,L'/l[,u/2]) = ¢ I(/JflaH) = (Hlatlakl) I(/"’27H1) = (H2at2’k2) t a new typevar
Fe (pa[pa], H) = (H[t = ta[ta], ka ko] b, Fa o))
S(Aty = kyp) =@ ANty iz kyp) = kg — ko t a new typevar
(Mt 2 k)

I()\tl il k‘l.p,, H) = (H[t — A kl-M,kl — kz],t, ki — kz)

Figure 3.3: The algorithm I

replace the Debruijn indices by the corresponding type variable). Therefore ndepth(u) = ndepth(n'). Since we
use Debruijn indices, adj(u) = adj(u'). This implies that hash(adj(u)) = hash(adj(y')). And since p is stored
in H; and we also search in Hy, the common type expression u' will be eliminated.

Again to simplify the actual presentation, we assume in Fig 3.3 that when the environment H is augmented
with a new binding, the new binding is added at the correct place. We do not show explicitly the process of
finding out the ndepth and then the calling of adj before adding a type expression to the environment.

Notation 5 To simplify things we will use the following notation for lettype. When we have the following
expression (Aty(Aty ... (Aty.€)pn ..)u2)p1, it means that py is first substituted right through for t1 and then us
is substituted right through for ta and so on. We will abuse notation and use €[ty /p1] ... [tn/pn] to denote this
process of performing the substitutions in a nested manner but performing them completely at each stage.

Definition 3.2.2 I preserves well kindedness if [(H,p) = (H',t, k) and u also has kind k in the kind environment
A.

Lemma 3.2.3 The algorithm I above preserves well kindedness.

Proof. The proof can be done easily by induction over the structure of y - the only non-trivial case being that
of constructor application.

Definition 3.2.4 Suppose I(H,u) = (H',t,k) and H' = [t1 — p1]...[tn — pn]. Then I preserves well formed-
ness if (t)[t1/pa]-- - [tn/1n] evaluates to p.

Lemma 3.2.5 The algorithm I above preserves well formedness.

Proof. This can be shown by induction over the structure of u. The only non-trivial case is that of constructor
abstraction. where we need to note that the type variables introduced by polymorphic abstractions are mapped
only to themselves. It is only newly introduced type variables that are mapped to type expressions. Therefore
the body of the constructor abstraction will remain unchanged.

3.2. THE CTE ALGORITHM 39

3.2.3 Type Preservation

We will now state and prove the type preservation theorem. The static semantics for the language is shown in
Fig 3.4. The only addition from the ones we have already seen is the rule for T'let which says that to typecheck
the body, we first substitute the “letType bounded variable” in the body with the type expression.

(const/var) A;THi:Int ATz ()
NTW{z:ptte:po
(fn) NsTHEAT s pye: g — pe
NiThzyip = p ANThRa:p
(app) AT HQzizs :
Alt:k;TFe:p
(¢fn) : AT
AT Atcke: Vick.p
(tapp) AN TR Vicky Apv p ok
a
PP AT Fafp) : [/p
» N;Ther: ANiTW{z:p}Fea: po
(let) A;THlet x =€ ineg: pa
N;TEe[u /1] :
(Tlet [w'/t] :

AT (Ate)[p'] s p

Figure 3.4: Static Semantics

Theorem 3.2.6 (Type Preservation) If H; \;T' + e = €'; H' and H is well kinded and well formed and
AT ey, then A;T R Tlet(H' e') : w and H' is well kinded and well formed.

Proof. The proof is by induction on the structure of e. We will only consider the ¢tfn case here. The other
cases are not difficult.

Case tfn = To prove that if H is well formed and kinded and At::k.e : Vt.u, then Tlet(H', At::k.Tlet(h',e')) :
Vt.u and H' is well formed and well kinded.

By induction we know that H'+h' is well kinded and well formed and therefore H' is also well kinded and well
formed. Also by induction At::k.Tlet(H' + h',e') : Vt.u. which implies that At::k.Tlet(H', Tlet(h',e")) : Vt.u.

Suppose H' = [t1 — p1]...[tn = n]. In the expression Tlet(H', At :: k.Tlet(h',e')), notice that ¢ does
not occur in any of the p}s and is not equal to any of the t}s. Therefore the expression may be rewritten as
At:k.Tlet(H',Tlet(h',e')) which is what we get from the inductive assumption.

3.2.4 Semantic Soundness

We will now prove the semantic soundness property of the algorithm. The operational semantics is shown in
Fig 3.5, the only addition being the rule for T'let. To evaluate such an expression, we first substitute for the
“lettype bounded variable” in the expression and then evaluate the resulting expression.

There are only three kinds of values - integers, function closures and type function closures.

40 CHAPTER 3. COMMON TYPE EXPRESSION ELIMINATION

(const/var) ati—i atz— a(z)
(fn) at Ax:pu.e — Clos(zH, e, a)

at z; = Clos(zt,e,a') abzy—v d4+z—ivFe—ow

(app) at Qzizs — v

(tfn) at At::k.e — Clost(t,e,a)

. ake = v atz—=uv e —w
(let) abletz=e; iney; > v

. atz~ Clost(t,e,a’) a' Fe[u/t]—v
(tapp) atzpl—wv

(Tlet) atelu/t] =v

at (At:k.e)[p] = v

Figure 3.5: Operational Semantics

(values) v u= 14| Clos{z*, e, a) | Clost(t; e, a)

Notation 6 The relation a : T'+ e — v means that in a value environment a respecting I', e evaluates to v. a
respects T' means that if a(z) = v and T'(z) = p, thenT kv : p.

Notation 7 The notation a(z — ..) means that in the environment a, & has the given value. Whereas a[z — ..]
means that the environment a is augmented with the given binding. Continuing from above we get,

Definition 3.2.7 (Type of a Value)
e I'Fi:int
e if T'HAz:p.e:pu— p, then Tt Clos(z¥,e,a) : p — i/
o if T'F At;.e: VE;.u , then T Clost(t;,e,a) : V.

Throughout the proofs we assume that the subject reduction lemma holds. That isifa: T'F e — v and
I'kFe:p,thenT F v : . This lemma can be proved from the given operational semantics by structural induction
on the syntactic structure of e.

Definition 3.2.8 (Equivalence of Values)
e Equivalence of Int — Suppose I' -4 : int and I - ¢’ : int. Then i ~¢' iff i =4,
¢ Equivalence of Closures

— Suppose T' - Clos(z",e,a) : p — p' and T - Clos(zH,e',a') : p — p'.

3.3. IMPLEMENTATION RESULTS 41
— Suppose further that T' - v : g and IV F of : p and vy = vy.

Then Clos(z*,e,a) ~ Clos(z",e',a') if Vvi,v} a:T+z—~viFe—vandad :T'+2z—0] ke =
and v &~ v/

¢ Equivalence of Type Closures Suppose I' - Clost(t;,e,a) : Vt;.u and TV - Clost(t;,¢e’,a’) : Vt;.u. Then
Clost(t;,e,a) ~ Clost(t;,e',a'y if a : T+ e[u;/t;] > v and a' : T' F €'[u;/t;] = v' and v = v'.

Definition 3.2.9 (Equivalence of terms) Suppose a : T'Fe s v anda' : T Fe — o withTFe: py and
"k e :p Ifv v, then we say that the terms e and €' are semantically equivalent and denote this by
a:TrFe~xad :T'Feé.

Lemma 3.2.10 ifa:TFema :T'F e, thena:TF e[u;/t;] = a' : T F e'[u;/ti]

Theorem 3.2.11 (Semantic Soundness) Suppose H; A\;T' - e = e'; H'. Then if a respects ', and a : T' -
e—v, thena:TFTlet(H',e') = v andv = v'.

Proof. The proof is by induction on the structure of e. Again we will consider only the tfn case. The other
cases follow without much difficulty by a similar process.

We need to prove that a : T' & e[u/t] ~ a : T'+ Tlet(H',(Tlet(h',€e')[u/t])). But suppose that H' = [t; —
pa]...[tn = pp]. Then t is not equal to any of the tis and is not contained in any of the uls. Therefore we
need to prove that a : T' F e[u/t] ~ a : T' F (Tlet(H',Tlet(h',€')))[p/t] or that a : T F e[u/t] ® a: T +
(Tlet(H' + n',e"))[p/t] or that a : T'F e m a:T'F Tlet(H' + h',e') which follows by the inductive hypothesis.

3.3 Implementation Results

We will now talk about the actual implementation of the algorithm on the FLINT /ML compiler version 110.5.
Since we represent types by Debruijn indices and the CTE algorithm involves a lot of manipulation of types, the
implementation gets pretty tricky.

We implemented the algorithm as a two pass algorithm with each pass taking time proportional to the length
of the input program. In the first pass, we collect the common type expressions and in the second pass we
substitute the type expressions with the newly introduced type variables. Doing the whole thing in a single pass
is pretty tricky. Consider a code fragment

Atl....el... Atz....eg...
At3....63..

The common type expressions involving ¢; will be dropped as a letType just in front of the corresponding
abstraction. But the problem is that we donot know a-priori how many such expressions will be collected. So for
example, when we are processing e2 we do not know how many expressions will be dropped at the ¢; abstraction.
This is because we could encounter expressions involving ¢; while processing the code fragment e3. Therefore
while processing es during the first pass, we have no idea of what its final Debruijn depth will be.

Another complication relates to the fact that the required adjustment of the Debruijn indices is not uniform.
Consider the type expression (t; * t3) occuring in e;. Previously this would be represented as ((2,0) * (1,0)).
Now this gets represented as ((m,0) * (n,0)) with no relation between m,n. This is because the values of m,n
depend on the number of common type expressions dumped at the two abstractions which are not related to
each other.

We implemented the algorithm as follows. In the first pass we collect all the common type expressions
in the code. We use the Debruijn indices to compute hash values and for easy equality testing. But in this
pass, we replace the common type expressions by named type variables — the code at the end of the first pass

42 CHAPTER 3. COMMON TYPE EXPRESSION ELIMINATION

therefore contains named type variables instead of Debruijn indices. During the second pass, we maintain a
mapping between the names of type variables and the depth at which they are defined and replace the named
type variables with their corresponding Debruijn indices.

In the algorithm shown in Fig 3.2, we do not eliminate common type expressions inside type functions. This
was done to make the algorithm simpler — otherwise it introduces a few extra parameters and complicates the
proofs. In the actual implementation of course, we catch common type expressions inside type functions.

In Fig 3.6, we show some performance figures for the CTE eliminator. It shows the number of common type
expressions eliminated and the size of the eliminated type expressions. For some heavily polymorphic benchmarks
like vliw, kb-comp, boyer, the savings are considerable while in the case of monomorphic benchmarks like fft,
the gains are negligible.

The algorithm presented here is of course based on the idea of common subexpression elimination [1, 3] that
is done by any standard compiler. The TIL compiler [49] uses an explicit lettype construct in the language to
eliminate common type expressions.

3.3. IMPLEMENTATION RESULTS

43

Benchmark Description N0,° ?f Exps Slz.e ?f Exps
eliminated eliminated
Vliw A VLIW instruction scheduler 5 1
92 2
2 3
4 4
51 613
2 614
10 742
1 7
140 105
11 1848
lexgen A lexical-analyzer generator 12 1
7 2
8 3
8 6
5 9
12 15
7 19
5 23
Mandelbrot The Mandelbrot curve construction 0 0
Kb-comp Knuth-Benedix Completion Algorithm 1 1
115 13
14 14
14 26
1 27
27 28
8 29
Ray A ray-tracer 1 16
Life Runs 10,000 generations of the Life Simulation 105 2
Boyer A simple theorem prover 3 44
3 53
14 22
3 26
fft A Fast-Fourier Transform 0 0

Figure 3.6: CTE Results

44

CHAPTER 3. COMMON TYPE EXPRESSION ELIMINATION

Chapter 4

Runtime Type Representation

4.1 Introduction

In this chapter, we show the new runtime representation of types in FLINT. This is yet to be fully implemented.
Unlike the previous two phases, the correctness of this phase is critical to the compiler. The optimisations
mentioned before can be turned off and the most we end up paying is a performance penalty. But this phase is
closely linked to the reification stage of the compiler. Any bugs in this phase renders the compiler unusable and
is therefore disastrous.

Presently the FLINT compiler represents all types by small integers. We need to distinguish between a few
types only — integers, floats, a pair of floats, a record of floats. This is because we use a more efficient data
representation for these cases and therefore the functions to access these data types can not assume a standard
boxed representation. We assign a unique integer to each of these types and a different integer value to all other
types so that at runtime we can check whether a particular object uses a boxed representation or a natural
representation. However, in applications such as pretty printing, debugging and type dynamic we want a more
sophisticated type representation. The new runtime type representation that we are implementing now maintains
full type information at runtime with a view to supporting these applications.

4.2 Description of the Algorithm

We need to define two mappings — one from the kinds to the types and the other from the constructors to the
terms. This is because FLINT is an explicitly typed calculus and therefore the translated terms must be annotated
with type information as well. The kind and the constructor calculus in FLINT is repeated in Fig 4.1 Monotypes
like Int and Real are of kind Q. The arrow constructor (43 — p2) and the tuple constructor [u; X ... X p,] are
also of kind Q. The constructor function has the function kind while the sequence of constructors (w1, ...,)
has the sequence kind. The projection operator projects from a sequence of constructors.

(kinds) K Q| k1= k2| (K1y.-,Kn)
(constructors) p == t|Int|Real | u1 — p2 | Atuk.p
| {1 X oo X pn] | pafp] | (s oy pin) | mip

Figure 4.1: The Kind and Constructor Calculus

The target type and term language is shown in Fig 4.2 and is mostly standard. It has a dedicated type Rtype
which is needed to type the runtime representation of the constructors. The kind Q maps to this type. The

46 CHAPTER 4. RUNTIME TYPE REPRESENTATION

term language also includes a bunch of primops. These primops which are predefined in the language have the
function type. They operate upon values of the argument type and yield a term having the result type.

(types) o == T(u)|Rtype| o1 = o2 |Viuko | (01,-..,00)
(terms) e === i|z|letz=e; iney | Qejes | (e1,.-.,€n) | me
| Az:o.e | At:k.e | z[u] | prim(e)

Figure 4.2: The target term and type language

The kind translation is given in Fig 4.2. The kind €2 maps to the type Rtype and the other kind translations
are defined recursively.

The constructor translation is defined in Fig 4.4. One of the problems of the translation is that the represen-
tation of the base constructors such as Int,Real and the representation of the tuple and arrow constructors must
all have the same type since they all have the same kind. We could represent them all as a record. But firstly
this is grossly inefficient. Secondly this would lead to typechecking problems under the given kind translation.
Thirdly, we need a representation for a sequence of constructors. The kind checking rules for a sequence of
constructors suggest that it maps naturally to a record of the runtime representations of the constituent con-
structors. On the other hand, to maintain complete type information, we need to retain the representation of
every constituent of a tuple constructor or an arrow constructor.

Our solution is to use primops to build the runtime representation. The types of the primops are defined so
that the result has the proper type — in essence we cast the result to the proper type. In the algorithm in Fig 4.4,
primty is a primop that takes an integer and casts it to the type Rtype. In Fig 4.4 7 and j are the integers that
will be used to denote Int and Real. The primops primarr and primtup similarly construct a record of the
runtime representations and cast the result to the type Rtype.

We therefore represent primitive type constructors like Int and Real as small integers. A tuple of constructors
or the arrow constructor is represented as a record of the representations of the corresponding constructors. A
sequence of constructors is also represented as a record. We use a tag to distinguish between the different cases.
A projection constructor is represented as a selection from a record. A constructor function is represented as a
function at the term level with the kind translation determining the argument type of the function. Finally, a
constructor application is represented as an application at the term level.

Q) Q0 = Rtype
ki = o1 ks = o9
(k1 = K2) ki = ko = 01 = 02
ki = oy
(k5o bn)) G T) = (0nee o)

Figure 4.3: The Kind Translation - Algorithm (K)

4.3. IMPLEMENTATION OF THE ALGORITHM 47

Tt)==
(tvar) THt=a
(prims) T F Int = primty! () ' - Real = primtyt(5)
FI—/J,1=>61 Fl—u2¢eg
(arrov) 'k py — e = primarri(eg, ez)
runl 'k Mi = €;
(tuple) Tk [p1 X oo X pn] = primtupt(er .. .en)
() T'Fp; = e
e TF (u1,..0ypn) = (€1,--.,€n)
F'Fpu=e
(sel) F|—7ri/.t=>71'i6
Tt—z]Fpu=e 2z anew variable
(fn) TEMXukp= Az K(k).e
FI—/J,1:>€1 Fl—,ll,2:>€2
(app)

'k M1 [,uz] = Qe;es
1 Their implementation is described in the text

Figure 4.4: The Translation of the Constructors

4.3 Implementation of the Algorithm

As we said at the beginning of the chapter, this is still very much work in progress. We have tried to be very
conservative in making changes to the existing type representation and reification code. Presently, we are working
by representing everything as a record and tagging the first field of the record according to the constructor. This
makes the implementation a lot easier and once we are confident about the current implementation, we will move
to a more efficient one. The final implementation should closely match the algorithm given in this chapter except
that we intend to represent a record of floats as a small integer as well — this would make testing for a floating
point record a little more efficient.

The other matter which we didn’t address in this chapter and haven’t handled in the implementation yet is
the representation of recursive datatypes. We will represent recursive types as a fix point of a function where
the function is derived inductively in an obvious way. This in turn leads to the question of testing two recursive
datatypes for equality — how do we compare the respective functions for equality. For this we will be comparing
the two functions for structural equality.

48

CHAPTER 4. RUNTIME TYPE REPRESENTATION

Conclusions

This report deals with efficient runtime type passing. We presented the optimal type lifting algorithm in Chap-
ter 2 which eliminates runtime type construction inside functions and guarantees that all type information is
computed at link time. We saw that it provides moderate speedup for the polymorphic benchmarks. We pre-
sented the common type expression elimination algorithm in Chapter 3 and saw that it eliminates a lot of type
construction for the polymorphic benchmarks. We then presented the new runtime type representation in Chap-
ter 4 which maintains complete type information at runtime so that we can support applications like pretty
printing, debugging, pickling and type dynamic.

49

50

CONCLUSIONS

Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

A. W. Appel. A runtime system. Lisp and Symbolic Computation, 3(4):343-380, 1990.
A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
M. Blume. A compilation manager for SML/NJ. as part of SML/NJ User’s Guide, 1995.

N. de Bruijn. A survey of the project AUTOMATH. In To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 579-606. Edited by J. P. Seldin and J. R. Hindley, Academic Press, 1980.

J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An optimizing compiler for object-oriented
languages. In Proc. ACM SIGPLAN ’96 Conf. on Object-Oriented Programming Systems, Languages, and applica-
tions, pages 83-100, New York, October 1996. ACM Press.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. In Proc. ACM
SIGPLAN ’93 Conf. on Prog. Lang. Design and Implementation, pages 237-247, New York, June 1993. ACM Press.
L. George, F. Guillaume, and J. Reppy. A portable and optimizing backend for the SML/NJ compiler. In Proceedings
of the 1994 International Conference on Compiler Construction, pages 83-97. Springer-Verlag, April 1994.

J. Y. Girard. Interpretation Fonctionnelle et Elimination des Coupures dans l’Arithmetique d’Ordre Superieur. PhD
thesis, University of Paris VII, 1972.

M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, and M. Lam. Maximizing multiprocessor
performance with the SUIF compiler. JEEE Computer, December 1996.

R. Harper and J. C. Mitchell. On the type structure of Standard ML. ACM Trans. Prog. Lang. Syst., 15(2):211-252,
April 1993.

R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase distinction. In Seventeenth Annual
ACM Symp. on Principles of Prog. Languages, pages 341-344, New York, Jan 1990. ACM Press.

R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis. In Twenty-second Annual
ACM Symp. on Principles of Prog. Languages, pages 130-141, New York, Jan 1995. ACM Press.

P. Hudak, S. P. Jones, and P. W. et al. Report on the programming language Haskell, a non-strict, purely functional
language version 1.2. SIGPLAN Notices, 21(5), May 1992.

L. Huelsbergen. A portable C interface for Standard ML of New Jersey. Technical memorandum, AT&T Bell
Laboratories, Murray Hill, NJ, January 1996.

R. Hughes. The design and implementation of programming languages. PhD thesis, Programming Research Group,
Oxford University, Oxford, UK, 1983.

T. Johnsson. Lambda Lifting: Transforming Programs to Recursive Equations. In The Second International Confer-
ence on Functional Programming Languages and Computer Architecture, pages 190-203, New York, September 1985.
Springer-Verlag.

M. P. Jones. Qualified Types: Theory and Practice. PhD thesis, Oxford University Computing Laboratory, Oxford,
july 1992. Technical Monograph PRG-106.

M. P. Jones. A theory of qualified types. In The 4th Furopean Symposium on Programming, pages 287-306, Berlin,
February 1992. Spinger-Verlag.

51

52

[20]

21]

[22]

23]
[24]

[25]
[26]

(27]
28]

[29]

(30]

31]

32]

[33]

[34]

[35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

BIBLIOGRAPHY

M. P. Jones. Dictionary-free overloading by partial evaluation. In Proceedings of the ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation, pages 107-117. University of Melbourne TR 94/9,
June 1994.

X. Leroy. Unboxed objects and polymorphic typing. In Nineteenth Annual ACM Symp. on Principles of Prog.
Languages, pages 177-188, New York, Jan 1992. ACM Press. Longer version available as INRIA Tech Report.

X. Leroy and M. Mauny. Dynamics in ML. In The Fifth International Conference on Functional Programming
Languages and Computer Architecture, pages 406—426, New York, August 1991. Springer-Verlag.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1997.

D. MacQueen and M. Tofte. A semantics for higher order functors. In The 5th European Symposium on Programming,
pages 409-423, Berlin, April 1994. Spinger-Verlag.
R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge, Massachusetts, 1990.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997.

Y. Minamide. Full lifting of type parameters. Technical report, RIMS, Kyoto University, 1997.

G. Morrisett. Compiling with Types. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, December 1995. Tech Report CMU-CS-95-226.

R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the implementation of polymor-
phism. ACM Trans. Prog. Lang. Syst., 13(3), July 1991.

G. Nadathur. A notation for lambda terms II: Refinements and applications. Technical Report CS-1994-01, Duke
University, Durham, NC, January 1994.

G. Nadathur and D. S. Wilson. A representation of lambda terms suitable for operations on their intensions. In 1990
ACM Conference on Lisp and Functional Programming, pages 341-348, New York, June 1990. ACM Press.

G. Necula. Proof-carrying code. In Twenty-Fourth Annual ACM Symp. on Principles of Prog. Languages, New York,
Jan 1997. ACM Press.

A. Ohori. A compilation method for ML-style polymorphic record calculi. In Nineteenth Annual ACM Symp. on
Principles of Prog. Languages, New York, Jan 1992. ACM Press.

S. Peyton Jones. Implementing lazy functional languages on stock hardware: the Spineless Tagless G-machine.
Journal of Functional Programming, 2(2):127-202, April 1992.

S. Peyton Jones. Compiling haskell by program transformation: a report from trenches. In Proceedings of the
European Symposium on Programming, Linkoping, April 1996.

S. Peyton Jones and J. Launchbury. Unboxed values as first class citizens in a non-strict functional language. In The
Fifth International Conference on Functional Programming Languages and Computer Architecture, pages 636—666,
New York, August 1991. ACM Press.

S. Peyton Jones and D. Lester. A modular fully-lazy lambda lifter in haskell. Software — Practice and Ezxperience,
21:479-506, 1991.

S. Peyton Jones, W. Partain, and A. Santos. Let-floating: moving bindings to give faster programs. In Proc.
International Conference on Functional Programming (ICFP’96), New York, June 1996. ACM Press.

J. H. Reppy. CML: A higher-order concurrent language. In Proc. ACM SIGPLAN ’91 Conf. on Prog. Lang. Design
and Implementation, pages 293-305. ACM Press, 1991.

J. H. Reppy. A high-performance garbage collector for Standard ML. Technical memorandum, AT&T Bell Labora-
tories, Murray Hill, NJ, January 1993.

J. C. Reynolds. Towards a theory of type structure. In Proceedings, Colloque sur la Programmation, Lecture Notes
in Computer Science, volume 19, pages 408-425. Springer-Verlag, Berlin, 1974.

A. Sabry and P. Wadler. A reflection on call-by-value. In Proc. 1996 ACM SIGPLAN International Conference on
Functional Programming (ICFP’96), pages 13-24. ACM Press, June 1996.

BIBLIOGRAPHY 53

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Z. Shao. Flexible representation analysis. In Proc. 1997 ACM SIGPLAN International Conference on Functional
Programming (ICFP’97), pages 85-98. ACM Press, June 1997.

Z. Shao. An overview of the FLINT /ML compiler. In Proc. 1997 ACM SIGPLAN Workshop on Types in Compilation,
June 1997.

Z. Shao. Typed cross-module compilation. Technical Report YALEU/DCS/RR-1126, Dept. of Computer Science,
Yale University, New Haven, CT, November 1997.

Z. Shao and A. W. Appel. Space-efficient closure representations. In 199/ ACM Conference on Lisp and Functional
Programming, pages 150-161, New York, June 1994. ACM Press.

Z. Shao and A. W. Appel. A type-based compiler for Standard ML. In Proc. ACM SIGPLAN ’95 Conf. on Prog.
Lang. Design and Implementation, pages 116-129. ACM Press, 1995.

D. Tarditi. Design and Implementation of Code Optimizations for a Type-Directed Compiler for Standard ML. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, December 1996. Tech Report
CMU-CS-97-108.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing compiler for
ML. In Proc. ACM SIGPLAN ’96 Conf. on Prog. Lang. Design and Implementation, pages 181-192. ACM Press,
1996.

A. Tolmach. Tag-free garbage collection using explicit type parameters. In Proc. 1994 ACM Conf. on Lisp and
Functional Programming, pages 1-11, New York, June 1994. ACM Press.

A. K. Wright. Polymorphism for imperative languages without imperative types. Technical Report Tech Report TR
93-200, Dept. of Computer Science, Rice University, Houston, Texas, February 1993.

