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Abstract

A certified binaryis a value together with a proof that the value satisfies a given specification. Existing compilers that generate certified
code have focused on simple memory and control-flow safety rather than more advanced properties. In this paper, we present a general
framework for explicitly representing complex propositions and proofs in typed intermediate and assembly languages. The new framework
allows us to reason about certified programs that involve effects while still maintaining decidable typechecking. We show how to integrate
an entire proof system (the calculus of inductive constructions) into a compiler intermediate language and how the intermediate language can
undergo complex transformations (CPS and closure conversion) while preserving proofs represented in the type system. Our work provides
a foundation for the process of automatically generating certified binaries in a type-theoretic framework.
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Abstract

bly languages. We show how to integrate an entire proof system

(the calculus of inductive constructions [35, 10]) into an intermedi-
A certified binaryis a value together with a proof that the value ate language, and how to define complex transformations (CPS and
satisfies a given specification. Existing compilers that generate cer-closure conversion) of programs in this language so that they pre-
tified code have focused on simple memory and control-flow safety serve proofs represented in the type system. Our paper builds upon
rather than more advanced properties. In this paper, we presenta large body of previous work in the logic and theorem-proving
a general framework for explicitly representing complex proposi- community (see Barendregt al.[4, 3] for a good summary), and
tions and proofs in typed intermediate and assembly languages.makes the following new contributions:

The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking. M
We show how to integrate an entire proof system (the calculus of
inductive constructions) into a compiler intermediate language and
how the intermediate language can undergo complex transforma-
tions (CPS and closure conversion) while preserving proofs rep-
resented in the type system. Our work provides a foundation for

the process of automatically generating certified binaries in a type-
theoretic framework.

1 Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [30,
29], allows a code producer to provide a machine-language pro-
gram to a host, along with a formal proof of its safety. The proof
can be mechanically checked by the host; the producer need not be
trusted because a valid proof is incontrovertible evidence of safety.

The PCC framework is general because it can be applied to cer-
tify arbitrary data objects with complex specifications [32, 1]. For
example, the Foundational PCC system [2] can certify any property
expressible in Church’s higher-order logic. Hargtral. [19, 6]
call all these proof-carrying constructs certified binaries (or deliv-
erables [6]). Acertified binaryis a value (which can be a function,

a data structure, or a combination of both) together with a proof
that the value satisfies a given specification.

Unfortunately, little is known on how to construct or generate .
certified binaries. Existing certifying compilers [31, 8] have fo-
cused on simple memory and control-flow safety only. Typed inter-
mediate languages [22] and typed assembly languages [28] are ef-
fective techniques for automatically generating certified code; how-
ever, none of these type systems can rival the expressiveness of the
actual higher-order logic as used in some PCC systems [2].

In this paper, we present a type-theoretic framework for con-
structing, composing, and reasoning about certified binaries. Our ®
plan is to use thdormulae-as-typegrinciple [24] to represent
propositions and proofs in a general type system, and then to in-
vestigate their relationship with compiler intermediate and assem-
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ions, findings, and conclusions contained in this document are those of the authors and
do not reflect the views of these agencies.

We show how to design new typed intermediate languages
that are capable of representing and manipulating proposi-
tions and proofs. In particular, we show how to maintain

decidability of typechecking when reasoning about certified

programs that involve effects. This is different from the work

done in the logic community which focuses on strongly nor-

malizing (primitive recursive) programs.

We maintain a phase distinction between compile-time type-
checking and run-time evaluation. This property is often lost
in the presence of dependent types (which are necessary for
representing proofs in predicate logic). We achieve this by
never having the type language (see Section 3) dependent on
the computation language (see Section 4). Proofs are instead
always represented at the type level using dependent kinds.

We show how to use propositions to express program invari-
ants and how to use proofs to serve as static capabilities. Fol-
lowing Xi and Pfenning [44], we use singleton types [23]
to support the necessary interaction between the type and
computation languages. We can assign an accurate type to
unchecked vector (or array) access (see Section 4.2). Xi and
Pfenning [44] can achieve the same using constraint check-
ing, but their system does not support arbitrary propositions
and (explicit) proofs, so it is less general than ours.

We use a single type language to typecheck different com-
piler intermediate languages. This is crucial because it is im-
practical to have separate proof libraries for each intermedi-
ate language. We achieve this by using inductive definitions
to define all types used to classify computation terms. This in
turn nicely fits our work on (fully reflexive) intensional type
analysis [39] into a single system.

We show how to perform CPS and closure conversion on our
intermediate languages while still preserving proofs repre-
sented in the type system. Existing algorithms [28, 21, 26, 5]
all require that the transformation be performed on the entire
type language. This is impractical because proofs are large
in size; transforming them can alter their meanings and break
the sharing among different languages. We present new tech-
niques that completely solve these problems (Sections 5-6).



e Our type language is a variant of the calculus of inductive
constructions [35, 10]. Following Werner [41], we give rig-
orous proofs for its meta-theoretic properties (subject reduc- .
tion, strong normalization, confluence, and consistency of the (kscm w = Kind|...
underlying logic). We also give the soundness proof forour  (kind) « 1=k, —k2 | Q] ...
sample computation language. See Sections 3 and 4, and the
appendix for more details. (type) To=t|M:ikT|TiT2 | TI—T2 VKT ...

THE TYPE LANGUAGE:

As far as we know, our work is the first comprehensive study on  THE COMPUTATION LANGUAGE:

how to incorporate higher-order predicate logic (with inductive

terms and predicates) into typed intermediate languages. Ourre- (exp e :u==x|Az:T.e|eiex|At:k.e|e[r]]...
sults are significant because they open up many new exciting pos-

sibilities in the area of type-based language design and compila- Figure 1: Typed\-calculi—a skeleton
tion. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at

the meta level can now be expressed inside the actual language it- e computation language contains just the lowest level which
self. For example, much of the past work on program verification ig yhere we write the actual program. This language will eventu-
using Hc_)are-llke _Ioglcs may now be captured and made explicit in ally be compiled into machine code. We often use names such as
a typed intermediate language. computation terms, computation values, and computation functions
From the standpoint of type-based language design, recentto refer to various constructs at this level.
work [22, 44, 12, 14, 40, 39] has produced many specialized,
increasingly complex type systems, each with its own meta-
theoretical proofs, yet it is unclear how they will fit together. We
can hope to replace them with one very general type system whoserpe first step is to represent propositions and proofs for a particular
meta theory is proved once and for all, and that allows the definition logic in a type-theoretic setting. The most established technique
of specialized type operators via the general mechanism of induc-js 1, yse théormulae-as-typeprinciple (a.k.a. the Curry-Howard
tive definitions. For example, inductive definitions subsume and correspondence) [24] to map propositions and proofs into a typed
generalize earlier systems on intensional type analysis [22, 13, 39]. \ ca|culus. The essential idea, which is inspired by constructive
We have started implementing our new type system in the |ogic, is to use types (of kind2) to represent propositions, and
FLINT compiler [36, 37], but making the implementation realis-  expressions to represent proofs. A proof of an implicafin Q is
tic still involves solving many remaining problems.g, efficient a function object that yields a proof of propositiGnwhen applied
proof representations). Nevertheless, we believe our current contri-to g proof of proposition?. A proof of a conjunction? A Q is a
butions constitute a significant step toward the goal of providing a pajr (¢, e5) such that; is a proof of P ande; is a proof ofQ. A

2.1 Representing propositions and proofs

practical end-to-end compiler that generates certified binaries. proof of disjunctionP v Q is a pair(b, e)—a tagged union—where
b is either0 or 1 and ifb=0, thene is a proof of P; if b=1 thene
2 Approach is a proof ofQ. There is no proof for the false proposition. A proof

of a universally quantified propositioriz € B.P(z) is a function

Our main objectives are to design typed intermediate and low-level that maps every elemeatof the domainB into a proof of P(b)
languages that can directly manipulate propositions and proofs, and"Wn€re’ is a unary predicate on elements/@f Finally, a proof of
then to use them to certify realistic programs. We want our type a7 €xistentially quantified propositich:c B.P(z) is a pair(b, e)
system to be simple but general; we also want to support complex Whereb is an element of3 ande is a proof of P(b). o
transformations (CPS and closure conversion) that preserve proofs ~ Proof-checking in the logic now becomes typechecking in the
represented in the type system. In this section, we describe the mairforresponding typed-calculus. There has been a large body of
challenges involved in achieving these goals and give an high-level Work done along this line in the last 30 years; most type-based
overview of our main techniques. proof assistants are based on this fundamental principle. Baren-
Before diving into the details, we first establish a few naming dregtetal.[4, 3] give a good survey on previous work in this area.

conventions that we will use in the rest of this paper. Typed inter-

mediate languages are usually structured in the same way as type@®.2 Representing certified binaries

A-calculi. Figure 1 gives a fragment of a richly typ@ecalculus, ) . » o )
organized into four levels: kind schemies¢m) w, kind &, typer, Under the type.-theoretlc setting, a certified bin&rys just a pair
and expressiorep) e. If we ignore kind schema and other exten- (v, €) that consists of:

sions, this is just the polymorphiccalculusF,, [18].

We divide each typed intermediate language into a type sub-
language and a computation sub-language. The type language con-
tainS the tOp thl’ee IeVeIS. K|nd SChemaS ClaSSify klnd terms Wh||e ° and a proofe Of P(U) Wherep is a unary predicate on ele_
kinds classify type terms. We often say that a kind tarfvas kind ments of typer.
schemau, or a type termr has kindx. We assume all kinds used
to classify type terms have kind scheiiad, and all types usedto  Heree is just an expression with typB(v). The predicate” is a

e avaluev of typer wherev could be a function, a data struc-
ture, or any combination of both;

classify expressions have kisel Both the function type — 72 dependent type constructor with kimd— Q. The entire packagé
and the polymorphic typ®t : k.7 have kindQ2. Following the has a dependent strong-sum type: 7. P(z).

tradition, we sometimes say “a kind' to imply that x has kind For example, suppos¥at is the domain for natural numbers
schem&Kind, “a typer” to imply that 7 has kind(2, and “a type and Prime is a unary predicate that asserts an elemen¥af as
constructorr” to imply that7 has kind ' — - - - — €2.” Kind terms a prime number, we introduce a typet representingVat, and a
with other kind schemas, or type terms with other kinds are strictly type constructoprime (of kind nat — €2) representing’rime. We
referred as “kind terms” or “type terms.” can build a certified prime-number package by pairing a value



(a natural number) with a proof for the propositiprime(v); the To represent propositions and proofs, we lift everything one
resulting certified binary has typEz : nat. prime(x). level up: we use kinds to represent propositions, and type terms
Function values can be certified in the same way. Given a func- to represent proofs. The domalut is now represented by a kind

tion f that takes a natural number and returns another one as theNat; the predicaté’rime is represented by a dependent kind term

result {.e,, f has typenat — nat), in order to show thaf always Prime which maps a type term of kinNat into a proposition. A
maps a prime to another prime, we need a proof for the following proof for propositionPrime(n) certifies that the type term is a
proposition: prime number.
To maintain decidable typechecking, we insist that the type lan-
Vxz€Nat. Prime(z) D Prime(f(x)) guage is strongly normalizing and free of side effects. This is pos-

] ) ) -~ o sible because the type language no longer depends on any runtime
In a typed setting, this universally quantified proposition is repre- computation. Given a type-level functigrof kind Nat — Nat, we

sented as a dependent product type: can certify that it always maps a prime to another prime by build-
. . ing a proofr, for the following proposition, now represented as a
Ilz:nat. prime(z) — prime(f()) dependent product kind:
The resulting certified binary has type IT¢: Nat.Prime(t) — Prime(g(t)).
¥ f:nat — nat. Ilz:nat. prime(z) — prime(f(x)) Essentially, we circumvent the problems with dependent types by

replacing them with dependent kinds and by lifting everything (in
Here the type is not only dependent on values but also on function the proof language) one level up.

applications such ag(z), so verifying a certified binary involves To reason about actual programs, we still have to connect terms
typechecking the proof which in turn requires evaluating the under- i, the type language with those in the computation language. We
lying function application. follow Xi and Pfenning [44] and use singleton types [23] to relate

computation values to type terms. In the previous example, we in-
2.3 The problems with dependent types troduce a singleton type constructant of kind Nat — 2. Given a

type termn of kind Nat, if a computation value has typesnat(n),
The above scheme unfortunately fails to work in the context of thenv denotes the natural number represented by
typed intermediate (or assembly) languages. There are at least four A certified binary for a prime number now contains three parts:
problems with dependent types; the third and fourth are presenta type termn of kind Nat, a proof for the propositio®rime(n),
even in the general context. and a computation value of typ@at(n). We can pack it up into
First, real programs often involve effects such as assignment, an existential package and make it a first-class value with type:
I/O, or non-termination. Effects interact badly with dependent
types. In our previous example, suppose the funcfidoes not ter- In:Nat.3¢: Prime(n).snat(n).
minate on certain inputs; then clearly, typechecking—which could
involve applying f—would become undecidable. It is possible to
use the effect discipline [38] to force types to be dependent on pure
computation only, but this does not work in some typedalculi;
for example, a “pure” term in Girard’3U [18] could still diverge.
Even if applyingf does not involve any effects, we still have .
more serious problems. In a type-preserving compiler, the body 12Ve typenat(n) as long as we can construct a proof fofme ()
of the function/ has to be compiled down to typed low-level lan- ~ Pased on the information from the context. )
guages. A few compilers perform typed CPS conversion [28], but We can alsc_J build certified binaries for programs that involve
in the presence of dependent types, this is still an open problem [5]. €ffects. Returning to our example, assume again fhata func-
Also, typechecking in low-level languages would now require per- tion in the computation language which may not terminate on some
forming the equivalent of-reductions on the low-level (assembly) ~ iNPuts. Suppose we want to certify that if the inputftes a prime,
code; this is awkward and difficult to support cleanly. and_the ca_II t_qf does return, _then the result is also a prime. We can
Third, it is important to maintain a phase distinction between achle\_/e this in two steps. First, we construct a type-Ith_eI function
compile-time typechecking and run-time evaluation. Having de- 9 Of kind Nat — Nat to simulate the behavior of (on all inputs
pendent strong-sum and dependent product types makes it hardef'nere.f does terminate) and show thahas the following type:
to preserve this property. It is also difficult to support first-class
certified binaries.
Finally, it would be nice to support a notion of subset types [9, Here following Figure 1, we us¢ and— to denote the polymor-
33]. A certified binary of typ&iz : nat. prime(z) contains a natural phic and function types for the computation language. The type for
numberv and a proof thab is a prime. However, in some cases, we f says that if it takes an integer of typeat(n) as input and does

Here we used rather than® to emphasize that types and kinds
are no longer dependent on computation terms. Under the erasure
semantics [15], this certified binary is just an integer value of type
snat(n) at run time.

A valuew of the subset type (for prime numbers) would simply

Vn:Nat. snat(n) — snat(g(n))

just wantv to belong to a subset tyde: : nat | prime(z)},i.e, vis not loop forever, then it will return an integer of typeat(g(n)).
a prime number but the proof of this is not together wittnstead, Second, we construct a proef showing thatg always maps a
it can be constructed from the current context. prime to another prime. The certified binary fdmow also con-

tains three parts: the type-level functignthe proofr,, and the
computation functionf itself. We can pack it into an existential
package with type:

g :Nat— Nat. 3p: (IIt: Nat.Prime(t) — Prime(g(t))).
Vn:Nat. snat(n) — snat(g(n))

2.4 Separating the type and computation languages

We solve these problems by making sure that our type language is
never dependent on the computation language. Because the actual
program {.e., the computation term) would have to be compiled
down to assembly code in any case, it is a bad idea to treat it as
part of types. This strong separation immediately gives us back the
phase-distinction property.

Notice this type also contains function applications such(as,
but g is a type-level function which is always strongly normalizing,
so typechecking is still decidable.



We can also restricf so that it can only be applied to prime  with impredicative polymorphism on both the kind and type levels,
numbers; all we need is to add an additional proof argument, so the proof language becomes Girard® [18] which is known to
has type: be inconsistent.

Vn:Nat.Vt: Prime(n). snat(n) — snat(g(n)). 2.6 Proof-preserving compilation

Here, the parameterr serves as a static capability; a proof for  gyen with a proof system integrated into our intermediate lan-

Prime(n) exists only ifn is indeed a prime. guages, we still have to make sure that they can be CPS- and
closure-converted down to low-level languages. These transforma-
2.5 Designing the type language tions should preserve proofs represented in the type system; in fact,

they should not traverse the proofs at all since doing so is impracti-
We can incorporate propositions and proofs into typed intermedi- cal with large proof libraries.
ate languages, but designing the actual type language is stillachal-  These challenges are non-trivial but the way we set up our type
lenge. For decidable typechecking, the type language should notsystem makes it easier to solve them. First, because our type lan-
depend on the computation language and it must satisfy the usualyage does not depend on the computation language, we do not

meta-theoretical properties.g.strong normalization). ~ have the difficulties involved in CPS-converting dependently typed
~ But the type language also has to fulfill its usual responsibil- \_calculi [5]. Second, all our intermediate languages share the
ities. First, it must provide a set of types (of kif) to classify same type language thus also the same proof library; this is possible
the computation terms. A typical compiler intermediate language pecause the kind (and the associated types) for each intermediate
supports a large number of basic type constructis (nteger, ar- language is just a regular inductive definition.

ray, record, tagged union, and function). These types may change Finally, a type-preserving program transformation often re-
their forms during compilation, so different intermediate languages qyjres translating the source types (of the sowdednd) into the
may .have different definitions d®; for example, a computation target types (of the targe® kind). Existing CPS- and closure-
function at the source level may be_turned_lnto CPS-style, or later, cqnversion algorithms [28, 21, 26] all perform such translation at
to one whose arguments are machine registers [28]. We also wantne meta-level: they have to go through every type term (thus every
to support intensional type analysis [22] which is crucial for type-  hroof term in our setting) during the translation, because any type
checking runtime services [27]. ) ) ~ term may contain a sub-term which has the sodénd. In our

Our solution is to provide a general mechanism of inductive framework, the fact that eadh kind is inductively defined means
definitions in our type language and to define each Sd@s an  that we can internalize and write the type-translation function in-
inductive kind. This was made possible only recently [39] and it side our type language itself. This leads to elegant algorithms that
relies on the use of polymorphic kinds. Taking the type language in do not traverse any proof terms but still preserve typing and proofs
Figure 1 as an example, we add kind variatiteend polymorphic (see Sections 5-6 for details).
kindsTIk : u. x, and replacé2 and its associated type constructors
with inductive definitions (not shown): N

2.7 Putting it all together

(kscm) == Kind]| ... A certifying compiler in our framework will have a series of in-

(kind) K :i=r1—ke | k| Tk:u k... termediat_e Ignguages, each gorresponding to a particular stage in
the compilation process; all will share the same type language. An
(typg Tu=t|A:k.T|TiT2 [ AkiuoT | T[] ... intermediate language is now just the type language plus the cor-
. . , ) responding computation terms, along with the inductive definition
Atthe type level, we add kind abstractiot : u. 7 and kind appli-  for the corresponding kind. In the rest of this paper, we first give
catlo.nr[n}. The kind<2 is now inductively defined as follows (see 5 tormal definition of our type language (which will be named as
Sections 3-4 for more details): TL from now on) in Section 3; we then present a sample computa-

tion language\ iy in Section 4; we show howy can be CPS- and
closure-converted into low-level languages in Sections 5-6; finally,
we discuss related work and then conclude.

Inductive Q : Kind :=—: Q—0Q—Q
|V : IIk:Kind. (k— Q) —Q

Here— andV are two of the constructors (6f). The polymorphic 3 The Type Language TL

type Vvt : k. 7 is now written asv[x] (At : . 7); the function type

1 — T2 IS just— 11 72. Our type language TL resembles the calculus of inductive construc-
Inductive definitions also greatly increase the programming tions (Qc) implemented in th&oq proof assistant [25]. This is a

power of our type language. We can introduce new data objects great advantage becau€eq is a very mature system and it has

(e.g, integers, lists) and define primitive recursive functions, all at a large set of proof libraries which we can potentially reuse. For

the type level; these in turn are used to help model the behaviors ofthis paper, we decided not to directly usee@s our type language

the computation terms. for three reasons. First,1C contains some features designed for
To have the type language double up as a proof language Program extraction [34] which are not required in our case (where

for higher-order predicate logic, we add dependent product kind Proofs are only used as specifications for the computation terms).

IIt: k1. k2, which subsumes the arrow kind — r: we also add Second, as far as we know, there are still no formal studies covering

kind-level functions to represent predicates. Thus the type languagethe entire Gc language. Third, for theoretical purposes, we want

naturally becomes the calculus of inductive constructions [35]. 0 understand what are the most essential features for modeling cer-
Notice standard formulation of Church's higher-order logic tified binaries.

puts propositions at the same level as terms (which are type terms

in our setup); proofs are then represented at a level below (parallelMotivations ~ Following the discussion in Section 2.5, we orga-

to our computation language). This does not work because we al-nize TL into the following three levels:

ready require polymorphic kinds for the inductive definitiorfpf



(kscm)  w =z |tk u | Ik u1. uz | Kind

kin Ku=k|M:ki. ko | k[T] | Nk u. Kk | K1 K2
(
| t: k1. k2 | Tk u. k| IIz: Ksem. &
| Ind(k:Kind){&} | Elim[x’, u](7){R}
type Tiu=t| Mk T|TiT2|AE:w.T| Tk
yp

| Az:Ksem. 7 | T[u] | Ctor (4, k)
| Elim[s’, k] (") {7}

Here kind schemakécn) classify kind terms while kinds classify
type terms. There are variables at all three levels: kind-schema
variablesz, kind variablest, and type variables We have an ex-
ternal constanKscm classifying all the kind schemas; essentially,
TL has an additional level abowescm of which Kscm is the sole
member.

A good way to comprehend TL is to look at its fité con-
structs: there are three at the kind level and two at the kind-schema
level. We use a few examples to explain why each of them is neces-
sary. Following the tradition, we use arrow termsy, <1 — x2) as
a syntactic sugar for the non-dependdrterms €.9.,I1t: k1. k2 IS
non-dependent if does not occur free iRs).

e Kinds It : k1.k2 andk; — ko are used to typecheck the
type-level function\t : k.7 and its application formr 7.
Assuming(2 andNat are inductive kinds (defined later) and
Prime is a predicate with kind schemidat — Kind, we
can write a type term such as : €.¢ which has kind
Q — Q, a type-level arithmetic function such akis which

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ: Nat— Nat
plus : Nat— Nat— Nat

At:Nat. ¢
At":Nat. succ ((plus t) ')

plus(zero)
plus(succ t)

ifez : Nat— (IIk:Kind. k — (Nat— k) — k)

Ak :Kind. A\t1:k. Mto:Nat— k. t1
Ak :Kind. M1 :k. Mo :Nat— k.t ¢

ifez(zero)
ifez(succ t)

le : Nat— Nat — Bool

At:Nat. true
At':Nat. ifez ¢’ Bool false (le t)

le(zero)
le(succ t)

It : Nat— Nat— Bool
It At:Nat. le (succ t)

Cond : Bool — Kind — Kind — Kind

Cond(true) Ak1:Kind. Mk2 :Kind. kq
Cond(false) Ak1:Kind. Ak2 : Kind. k2

Figure 2: Examples of inductive definitions

has kindNat — Nat — Nat, or the universally quantified
proposition in Section 2.2 which is represented as a kind
IT¢ : Nat.Prime(t) — Prime(g(t)).

Kinds ITk : u. x andu — « are used to typecheck the type-
level kind abstraction\k : w. 7 and its application formr [x].

As mentioned in Section 2.5, this is needed to support inten-
sional analysis of quantified types [39]. It can also be used to
define logic connectives and constagts}.

Kind IIk:Kind. k— k
Kind ITk : Kind. k

True :
False :

True has the polymorphic identity as a proof:
id Ak:Kind. At k.t

: True

but False is not inhabited (this is essentially the consistency
property of TL which we will show later).

Kind Iz : Kscm. k is used to typecheck the type-level kind-
schema abstractionz : Kscm.7 and its application form
7[u]. This is not in the core calculus of constructions [10].
We use it in the inductive definition df (see Section 4)
where both thé/kscm and3kscm constructors have kinHz :
Ksem. (z — Q) —Q. These two constructors in turn allow
us to typecheck predicate-polymorphic computation terms,
which occur fairly often since the closure-conversion phase
turns all functions with free predicate variables (€Rgime)

into predicate-polymorphic ones.

Kind schemadlt: x. u andx — u are used to typecheck the
kind-level type abstractioit: k1. k2 and its application form
k[7]. The predicatePrime has kind schem&lat — Kind.

A predicate with kind schemHt : Nat. Prime(¢) — Kind is
only applicable to prime numbers. We can also deéiriea

binary relation:
LT Nat — Nat — Kind

so thatLT ¢; t2 is a proposition asserting that the natural
number represented Iy is less than that of,.

Kind schemadlIk : ui.u2 andu; — us are used to type-
check the kind-level function\k : u. x and its application
form x1 k2. We use it to write higher-order predicates and
logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind — Kind Ak :Kind. (k— False)

The consistency of TL implies that a proposition and its nega-
tion cannot be both inhabited—otherwise applying the proof
of the second to that of the first would yield a prooffafse.

TL also provides a general mechanism of inductive defini-
tions [35]. The termind(k : Kind){R} introduces an inductive
kind k£ containing a list of constructors whose kinds are speci-
fied by K. Here k must only occur “positively” inside each;
(see Appendix D for the formal definition of positivity). The term
Ctor (4, k) refers to the-th constructor in an inductive kingl. For
presentation, we will use a more friendly syntax in the rest of this
paper. An inductive kind = Ind(k: Kind){K} will be written as:

Inductive I : Kind :=c¢; : [I/k]k1
‘ Co ¢ [I/k]lig

[ cn : [1/k]kn

We give an explicit name; to each constructor, sg is just an
abbreviation ofCtor (i, I). For simplicity, the current version of
TL does not include parameterized inductive kinds, but supporting
them is quite straightforward [41, 35].

TL provides two iterators to support primitive recursion on in-
ductive kinds. The small eliminatioBlim[x’, x](7'){7} takes a
type term7’ of inductive kindx’, performs the iterative operation
specified by (which contains a branch for each constructok9f
and returns a type term of king '] as the result. The large elimi-
nationElim[x’, u](7){K} takes a type term of inductive kindx’,
performs the iterative operation specified #yyand returns a kind



(sort) s = Kind | Kscm | Ext
(var) X u=z|k|t
(ptm) A, B:u=s|X|AX:A. B|AB|IIX:A.B

| Ind(X:Kind){/T}LCtor (i, A)
| Elim[A’, B'|(A){B}

Figure 3: Syntax of the type language TL

term of kind schema as the result. These iterators generalize the
Typerec operator used in intensional type analysis [22, 13, 39].

Figure 2 gives a few examples of inductive definitions including
the inductive kindBool andNat and several type-level functions
which we will use in Section 4. The small elimination fiiat
takes the following formElim[Nat, x](7'){71; 72}. Here,x is a
dependent kind with kind scheniat — Kind; 7’ is the argument
which has kindNat. The term in thezero branch,r;, has kind
k[7']. The term in thesucc branch,, has kindNat — «[7'] —
k[7']. TL uses the-reduction to perform the iterator operation.
For example, the twe-reduction rules foNat work as follows:

Elim[Nat, s](zero){r1; 72} ~. 71
Elim[Nat, x](succ 7){71; 72} ~», 72 7 (Elim[Nat, ](7){71;72})

The generak-reduction rule is defined formally in Appendix D.

In our examples, we take the liberty of using the pattern-matching

names for the sorts reflect the fact we lifted everything one level
up; they are related to other systems via the following table:

Systems Notations '
TL Kind Kscm Ext
Werner [41] Set Type Ext
Coq/Cic [25] | Set,Prop Type(0) Type(1)
Barendregt [3] * i VAN

The axioms in the setl denote the relationship between different
sorts; an axiom §; : s2” means thatss classifiess;. The rules in
the setR are used to define well-formdd constructs, from which
we can deduce the set of well-formeddefinitions and applica-
tions. For example, the five rules for TL can be related to the five
IT constructs through the following table:

PTSrule§ptm | IIX:A.B AMX:A.B | AB
(Kind, Kind) IIt: k1. Ko Mk, T T1 T2
(Ksecm, Kind) k:u. k Ak:u. T 7[K]

(Ext,Kind) | IIz:Ksecm.k | Az:Ksem.7 | 7[u]
(Kind, Kscm) IMt:k.u A K1, Ko K[T]
(Kscm, Kscm) | IIk:ui.us Ak:u. K KK

We define a contexA as a list of bindings from variables to pseu-
doterms:

(ctxt) A== -|AX:A

syntax (as in ML) to express the iterator operations, but they can be The typing judgment for the PTS-style TL now takes the fakm-

easily converted back to thgim form.

In Figure 2,plus is a function which calculates the sum of two
natural numbers. The functidfez behaves like a switch statement:
if its argument iszero, it returns a function that selects the first

branch; otherwise, the result takes the second branch and applies

it to the predecessor of the argument. The funciéoevaluates to

A : A’ meaning that within contex\, the pseudoterm is well-
formed and hasA’ as its classifier. We can now write a single
typing rule for all thell constructs:

AFA:s1 AX:AF B:ss
AFIIX:A B: so

(s1,80) ER (PROD)

true if its first argument is less than or equal to the second. The Take the rulgKind, Kscm) as an example. To build a well-formed

functionlt performs the less-than comparison.

The definition of functionCond, which implements a condi-
tional with result at the kind level, uses large eliminationBwol.
It has the formElim[Bool, u](7){x1; k2 }, wherer is of kind Bool;
both the true and false branches @ndx:) have kind schema.

Formalization =~ We want to give a formal semantics to TL and
then reason about its meta-theoretical properties. But thelfive

constructs have many redundancies, so in the rest of this paper, we

will model TL as a pure type system (PTS) [3] extended with in-

term IIX : A. B, which will be a kind schema (because is
Kscm), we need to show that is a well-formed kind andB is
a well-formed kind schema assumifghas kindA. We can also
share the typing rules for all the-definitions and applications:

AX:AF B:B AFTX:A B :s

(FUN)
AFMNX:AB:IIX:A. B

A+ A:IIX:B" A A+ B:B
A+ AB:[B/X]A

(APP)

ductive definitions. Intuitively, instead of having a separate syntac- 1he reduction relations can also be shared. TL supports the stan-

tical category for each level, we collapse all kind schemasnd
termsk, type termsr, and the external constakiscm into a single
set of pseudotermgptm), denoted asA or B. Similar constructs
can now share typing rules and reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. There is
now only onell construct [IX : A. B), one A-abstraction XX :
A. B), and one application formA' B); two iterators for inductive
definitions are also merged into onElign[A’, B')(A){B}). We
useX andY to represent generic variables, but we will still use
k, andz if the class of a variable is clear from the context.

TL has the following PTS specification which we will use to
derive its typing rules:

S = Kind, Kscm, Ext
A = Kind:Ksem, Kscm: Ext
R = (Kind,Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

dard - andn-reductions (denoted as g and~,) plus the previ-
ously mentioned-reduction (denoted as»,) on inductive objects
(see Appendix D). We use g, >,, andr>, to denote the relations
that correspond to the rewriting of subterms using the relatieps
~n, and~-, respectively. We use» andr> for the unions of the
above relations. We also writeg,, for the reflexive-symmetric-
transitive closure of>.

The complete typing rules for TL and the definitions of all
the reduction relations are given in Appendix D. Following
Werner [41] and Geuvers [16], we have shown that TL satisfies
all the key meta-theoretic properties including subject reduction,
strong normalization, Church-Rosser (and confluence), and consis-
tency of the underlying logic. The detailed proofs for these proper-
ties are given in Appendix D.

4 The Computation Language Mgy

HereS contains the set of sorts used to denote universes. We haveThe language of computations; for our high-level certified in-

to add the constarlixt to support quantification ovedfscm. Our

termediate format uses proofs, constructed in the type language, to



(AX:B. f)[4] — [A/X]f (R-TY-53)

(exp e =z |n|tt|ff]f]|fixz:A flee |e[A] o
| <X:A, EIAI> ‘ open e as <X7 ZL'> in e/ Se|[14](<’l)()7 . 'un_1>,m) — Um (m < TL) (R'SEL)
| {eo, .. en—1) | sel[A](e,€') | e aop e’ open (X'=A, v:A'Yas (X, z)ine (R-0PEN)

| e cope’ | if[A, A'](e, X1.e1, Xa.e€2) — [v/z][A/X]e
wheren € N (fixx: A flv — ([fixx: A f/z]f)v (R-FIX)
(fun) f a=dz:Ae|AX:Af (fixz: A. f)[A] — ([fixz:A. f/x]f)[A"] (R-TYFIX)
(arith) aop =:=+]... m+n — m+n (R-ADD)
(emp  cop =< W< ot (m<n) (R-LT-T)
Figure 4: Syntax of the computation language. Mm<n — ff (m >n) (R-LT-F)
if[B,A](tt, )(1.617 X2.62) — [A/Xﬂel (R-lF-T)
verify propositions which ensure the runtime safety of the program. if[B, AJ(ff, X1.e1, Xo.e2) — [A/Xa]es (R-IF-F)

Furthermore, in comparison with other higher-order typed calculi,

the types assigned to programs can be more refined, since progranin evaluation contexts encodes the call-by-value discipline:
invariants expressible in higher-order predicate logic can be rep-

resented in our type language. These more precise types serve as E:=e|FEe|v E| E[A]|(X=A, E:A)

more complete specifications of the behavior of program compo- | open E as (X, z) ine | open v as (X, z)in E
nents, and thus allow the static verification of more programs. | (o vi, B, e en_1) | sel[A](E, €)
One approach to presenting a language of computations is to | sel[’A](v é) \7E aoz;e | ;aopE | E cope ’

encode its syntax and semantics in a proof system, with the benefit
of obtaining machine-checkable proofs of its properteeg, type

safety. This appears to be even more promising for a system With t,5 notationfz{e} stands for the term obtained by replacing the
a type language like IC, which is more expressive than higher- g0 o in 15 by ¢. The single step computation relatesE{e} to
order predicate logic: TheI€ proofs of some program properties, E{e'} whene — ¢/, andr—* is its reflexive transitive closure.

ggﬁgggeﬁ] ?ns;ép:ﬁ)t?égstérr\ntge tﬂLosgir? mémgg er)mg b|2 retr:\)sn)é rrfgf’r:qe' As shown the semantics is standard except for some additional
) y Y P P passing of type terms in ReL and R+F-T/F. However an inspec-

all the reasoning in . However our exposition of the language tion of the rules shows that types are irrelevant for the evaluation,

;jl’é elss r:g?ijnscels d%nalltls;‘eueiﬁrgz gﬁ%’:p\?véa&%lﬁ?;é?ggvgotﬂfsquse;t_ly Ithence atype-erasure semantics, in which all type-related operations
P and parameters are erased, would be entirely standard.

bility for future work, and give a standard meta-logical presentation

instead; we address some of the issues related to adequacy in our

discussion of type safety. 4.1 Static semantics
In this section we often use the unqualified “term” to refer to a

computation term (expression) with syntax defined in Figure 4.

Most of the constructs are borrowed from standard higher-order

typed calculi. To simplify the exposition we only consider con-

stants representing natural numbefisi the value representing crucial for the conversion to CPS, since it makes possible trans-

n € N) and boolean valuest(andff). The term-level abstraction . - L
and application are standard; type abstractions and fixed points areformlng direct-style types to CPS types within the type language.

restricted to function values, with the call-by-value semantics in
mind and to simplify the CPS and closure conversions. The type

| veop E |if[A, A')(E, Xi.e1, X2.e2)

The static semantics of; shows the benefits of using a type lan-
guage as expressive as TL. We can now define the type construc-
tors of A\ as constructors of an inductive kil instead of having
them built intoAz. As we will show in Section 5, this property is

Inductive € : Kind :=snat : Nat—Q
| sbool : Bool — 2

variable bound by a type abstraction, as well as the one bound by |- :0—0-0

theopen construct for packages of existential type, can have either |tup :Nat— (Nat—Q)—Q

a kind or a kind schema. Dually, the type argument in a type ap- | Viing : 1Tk : Kind. (k— Q) —Q

plication, and the witness type terrhin the package construction | Fking : Tk : Kind. (k— Q) —Q

(X=A, e: A’) can be either a type term or a kind term. Visem : 112 Ksem. (2 — Q) —Q
The constructs implementing tuple operations, arithmetic, and | Breem : Iz : Ksem. (z— Q) —Q

comparisons have nonstandard static semantics, on which we focus

in section 4.1, but their runtime behavior is standard. The branch- Informally, all well-formed computations have types of kiftdin-

ing construct is parameterized at the type level with a proposition cluding singleton types of natural numbenat A and boolean val-
(which is dependent on the value of the test term) and its proof; the uessbool B, as well as function, tuple, polymorphic and existential
proof is passed to the executed branch. types. To improve readability we also define the syntactic sugar

A—B=— AB
Vs X:A.B=V, A(MX:A.B)
IsX:A.B=3, A(MX:A.B)

Dynamic semantics  We present a small step call-by-value op-
erational semantics forz in the style of Wright and Felleisen [42].

}wheres € {Kind, Kscm}
The values are defined as

a7 Lt | fF fix 2 A X—=A v:A o and often drop the sostwhens = Kind; e.g.the typevoid, con-
vasmle|f]f]fxe:A f]{ » oA [ (v, o tn) taining no values, is defined &$: 2. t = Vking Q (A£:Q.1).
The reduction relation— is specified by the rules Using this syntactic sugar we can give a familiar look to many

of the formation rules for\y expressions and functional values.

(\o:A.e)v — [v/z]e (R-6) Figure 5 contains the inference rules for deriving judgments of the



form A; I' - e : A, which assign typed to the expression in a To simplify the presentation of our type language, we allowed in-
contextA and a type environmeiiit defined by ductive kinds of kind schemKind only. Thus to stay within the
scope of this paper we actually use a Church encodirgrafde-
(typeeny T':=-|[z:A fined later); this is sufficient since proof objects are never analyzed
We introduce some of the notation used in these rules in the coursein A, so the full power of elimination is not necessary [dr.
of the discussion. In the component selection construet[A](e, e’) the type A
Rules ENAT, E-TRUE, and EFALSE assign singleton types to  represents groof that the value of the subscript is less than the
numeric and boolean constants. For instance the conistersttype size of the tuplee. In rule ESEL this condition is expressed as
succ zero in any valid environment. In rule BAT we use the meta- ~ an application of the type teral. Due to the consistency of the
function™ to map natural numbers € N to their representations  logic represented in the type language, only the existence and not
as type terms. It is defined inductively By= zero andn+1 = the structure of the proof objeet is important. Since its existence
succ 71, SOA F 7 : Nat holds for all validA andn € N. is ensured statically in a well-formed expressidnyould be elim-

Singleton types play a central role in reflecting properties of nated in a type-erasure semantics.
values in the type language, where we can reason about them con-  1he branching construdf[ B, A](e, X1.e1, Xa.e2) takes a
structively. For instance rules Ebp and E4T use respectively the ~ YP€ termA representing a proof of the proposition encoded as ei-
type termsplus andlt (defined in Section 3) to reflect the semantics ther B true or B false, depending on the value ef The proof is
of the term operations into the type level via singleton types. passed to the appropriate branch in its bound type variabjeof
However, if we could only assign singleton types to computa- X5). The correspondence between the value ahd the kind of

tion terms, in a decidable type system we would only be able to A. is again established through a sigglgton type. Note that unlike
typecheck terminating programs. We regain expressiveness of thei)(I an?] Hatr)per [t43] \t/v_etallov;/ :m[zreglstehlnform?_tlonogow |ntc|> the
computation language using existential types to hide some of the Pranches by notrestricting false to be the negation of true. In -
too detailed type information. Thus for example one can define the particular this makes possible the encoding of the usual oblivious

usual types of all natural numbers and boolean values as (in proof-passing senséusing B = At: Bool. True.

nat : Q = 3¢:Nat.snat ¢

bool - O — 3¢ Bool. shool 4.2 Example: bound check elimination

L _ ) A simple example of the generation, propagation, and use of proofs
For any terne with singleton typesnat A the packaggt =4, e : in Az is a function which computes the sum of the components of

;Tla: t>92a:n<tjyge§;ﬁoig]%i I&:n;[ygri_eerrisslgde ?ﬁggr}gcﬁﬁumimeany vector of naturals. Let us first introduce some auxiliary types
yp p . X X and functions. The type assigned to a homogeneous tuple (vector)
overhead for the packaging. For eache N there is a value

of this type denoted bji = (£ — 7, 7 : snat £). Operations on of n terms of typeA is Bn.-convertible to the fornvec n A for

terms of typenat are derived from operations on terms of singleton vec : Nat—Q—
types of the fornsnat A; for example an addition function of type vec = At:Nat. A\t': Q. tup ¢ (nth (repeat ¢ t'))
nat — nat — nat is defined as the expression
where
add = Axj :nat. Ax2 :nat. repeat : Nat— (2 — List
open x1 as (t1, x| ) in open x2 as (t2, x5) in repeat zero = At': Q. nil
(t=plus t1 t2, Xj +x5:snat t) repeat (succ t) = A\t': Q. t"::(repeat t) ¢’

Rule ETup assigns to a tuple a type of the formp A B, in Then we can define a term which sums the elements of a vector
which thetup constructor is applied to a typé representing the with a given length as follows:

tuple size, and a functio®® mapping offsets to the types of the
tuple components. This function is defined in terms of operations ~ sumVec: Vi:Nat.snat { — vec ¢ nat — nat
on lists of types: = At:Nat. An:snat ¢t. A\v:vec t nat.
(fix loop:nat — nat — nat.
Ai:nat. Asum:nat.
openias (t',i')in
if[LTOrTrue ' ¢, ItPrf ¢’ ]
(i" <n,
t1.loop (add i 1)
(add sum (sel[t1](v,1'))),

Thusnth L n reduces to thei-th element of the list whenn is ta .sum))ﬁﬁ
less than the length df, and tovoid otherwise. We also use the

Inductive List : Kind :=nil : List
| cons :  — List— List

nth : List— Nat—
nth nil = At:Nat. void
nth (cons ¢ t2) = At:Nat.ifez ¢t Q ¢1 (nth ¢2)

infix form A::A” = cons A A’. The type of pairs is derivedd x where .
A" = tup 2 (nth (A::A’::nil)). Thus for instance;- - (42,7) : LTOrTrue : Nat— Nat— Bool — Kind
snat 42 x snat 7 is a valid judgment. LTOrTrue = At :Nat. At2: Nat. At:Bool. Cond ¢ (LT ¢1 t2) True

The rules for selection and testing for the less-than relation (the and |tPrf of kind IT¢' : Nat. IT¢ : Nat. LTOrTrue ¢/ ¢ (It ' t) is a
only comparison we discuss for brevity) refer to the kind té&ffn type term defined later.
with kind schemaNat — Nat — Kind. Intuitively, LT represents a

binary relation on kindNat, soLT m 7 is the kind of type terms  yjon, test, checks whether the indiéss smaller than the vector size
representing proofs ofy < n. LT can be thought of as the param- |, "¢t is  the adequacy of the type terinwith respect to the less-
eterized inductive kind of proofs constructed from instances of the 45, relation ensures that the type tdtRf ¢’ ¢ represents a proof

axiomsVn € N.0 < ntlandvm,n € N.m <n D mtl < ntl: of the corresponding proposition at the type level, nandly’ ¢.

The comparisoiif < n, used in this example as a loop termina-

Inductive LT : Nat— Nat— Kind This proof is then bound te; in the first branch of théf, and the
:= Itzs : ITt: Nat. LT zero (succ t) sel construct uses it to verify that theth element of/ exists, thus
| Itss : TT¢: Nat. ITt' : Nat. LT ¢ ¢’ — LT (succ t) (succ t') avoiding a second test. The type safety\gf (Theorem 1) guaran-



A F Kind : Kscm AFT ok AFT ok

TE-MT STt o - -
AF - ok ( ) ATFz:T@ (VAR AT F tt:sbooltrue  (ETRYE)
AFT ok AFA:Q AT ok AFT ok
TE-EXT ot ok - -
A Txz:A ok ( ) A; T F m:snatn (E-NAT) A; T' = ff: sbool false (E-FALSE)
AFA:Q A;Te:AFE f: A (E-Fix) A; T F e:snat A A;T F € :snat A’ (E-ADD)
AT E fixz:A f: A A;T - e+e :snat (plus A A')
AFA:Q AT z:AF e A . . . ’ '
. : ; - (E-FUN) A;T'F e:snat A A; T F e :snat A (E-LT)
AT E AziAe: A— A A; T+ e<e :sbool (It A A)
AT He: A=A AT Fex: A (E-APP) foralli<n AT Foep: A
AT Foeren: A AT F (eo, ... en—1) (E-TUP)
stup 7 (nth (Ao:i...iAp_1nil))
AF B:s AX:B;TF f: A <X¢A) (E-TFUN)
A;THAX:B.f:VsX:B. A s # Ext A;T Fe:tupA” B A; T - e isnat A
, Ak A:LT A A (E-sEL)
A;T'He:VsX:B A AFA:B
: > Ext E-TAPP A; T F sel[A](e,e'): B A
AT F elA]: [A/X]A (s 7 Bxt) ) LAl(e. )
A F B:Bool—Kind A;T I e:sbool A”
AFA:B AP B:s AF A:BA" A, X1:Btrue; T F eq: A
AT Fe:[4/X]A (B (EPACO  AFA:Q A Xy Bfalse; T k- ep: 4 (EIF)
A; I+ <X:A, €2Al> : HSX:B.AI AT+ if[B,A](e, X1.e1, XQ.EQ)SA’
A;TRe:3X:B.A AR A:Q AT Ee: A A =gy, A’ AE A :Q
i A (E-coNv)
AT Fe: A

AX:B;T,z:[X/X'|AF & A (X ¢ A) (E-OPEN)

A; T+ openeas (X, z)ine : A’ s # Ext

Figure 5: Static semantics of the computation language

tees that implementations gfl need not check the subscript at run-  Proof sketch (3) For the forward direction it suffices to observe

time. Since the proof, is ignored in the “else” branchtPrf ¢’ ¢ that the structure of the meta-logical proofaf < n (in terms
is defined to reduce to the trivial proof @tue when the value of of the above axioms of ordering) can be directly reflected in a type
is not less than that of. term of kindLT m n. The inverse direction is shown by examining

The usual vector type, which keeps the length packaged with the structure of closed type terms of this kind in normal forntJ
the content, is
Theorem 1 (Safety ofAy) If -;-F e: A, then eithee —™ v and
vector : Q—Q = A\t:Q.3t":Nat.snat ' x vec ¢’ ¢. +F w: A, ore diverges (e, for eache’, if e —* ¢/, then there
existse’’ such that’ — e”).

Now we can write a wrapper function feumVec with the standard Proof sketch Follows from Lemmas 4 and 5 (Appendix A). O

typevector nat — nat; we leave the details to the reader.
Since Gc is more expressive than higher-order predicate logic,
4.3 Type safety adequacy of the representations of meta-proofs does not hold in
general; in particular, the ability to eliminate inductive kinds ircC
The type safety of\y is a corollary of its properties of progress  allows analysis of proof derivations to be used in proof construc-
and subject reduction. A pivoting element in proving progress tion, a technique not employed in standard meta-reasoning. This
(Lemma 4 in Appendix A) is the connection between the existence issue does not arise for first-order proof representationsLiike
of a proof (type) term of kind T m n, provided by rule ESEL, and (where no constructors have parameters of a function kind), and we
the existence of a (meta-logical) proof of the side conditioa n, do not expect it to be a concern in practice. In cases when it does
required by rule RseL. Similarly, subject reduction (Lemma 5in  arise, it could be resolved by using the underlying consistent logic
Appendix A) in the cases of RbD and R+iT-T/F relies on the of Cic instead of the meta-logic; for instance in our presentation
adequate representation of addition and comparisgsidsyand|t. the question of adequacy is raised because the operational seman-
tics of Ay is defined in meta-logical terms, but this question would

Lemma 1 (Adequacy of the TL representation of arithmetic) be moot if Ay and its semantics were defined ac@erms. To

1. Forallm,n € N, plus i 71 =g,,, m+n. eliminate the interaction with the meta-logic, this approach should
R ) . be applied all the way down to the hardware specification (as done
2. Forallm,n € N, It m . =gy, trueifand only if m < n. in some PCC system [2]); we plan to pursue this in the future.

3. Forallm,n € N, m < n if and only if there exists a typd
suchthat = A : LT m n.



4.4 An example of proof generation

Here we show the type teritPrf which generates the proof of the
propositionL.TOrTrue ¢’ ¢ (It ¢’ t), needed in thaumVec exam-
ple. We first present a Church encoding of the kind tefirand its
“constructors’ltzs andltss.

LT : Nat— Nat— Kind

LT = At:Nat. At': Nat.
IIR:Nat— Nat— Kind.
(I1t: Nat. R zero (succ t)) —
(ITt:Nat. It :Nat. R t ' — R (succ t) (succ t')) —
Rtt

Itzs : IT¢: Nat. LT zero (succ t)

Itzs = At:Nat. AR:Nat— Nat — Kind.
Az:(ITt: Nat. R zero (succ t)).
As:(ITt:Nat. It :Nat. R ¢t t' — R (succ t) (succ t')).
zt

Itss : TT¢:Nat. 1" : Nat. LT ¢ ¢’ — LT (succ t) (succ t')

Itss = At:Nat. Mt :Nat. A\p: LT ¢ ¢'. A\R:Nat — Nat — Kind.
Az:(ITt: Nat. R zero (succ t)).
As:(ITt:Nat. ITt' :Nat. R ¢t t' — R (succ t) (succ t')).
stt (pRzs)

Next we define dependent conditionals on kihis andBool.

IT¢: Nat. ITk : Nat — Kind.
k zero— (ITt' :Nat. k (succ t')) —k ¢
= Ak:Nat—Kind. A\t; : k zero.
Ato: (Tt :Nat. k (succ t')). 1
dep.ifez (succ t) = Ak:Nat— Kind. Aty : k zero.
Ato: (It :Nat. k (succ t')).ta t

dep_ifez :

dep_ifez zero

dep_if : IIt:Bool. Ilk: Bool — Kind. k true—k false—k ¢
dep_if true = Ak:Bool— Kind. Aty : k true. Ato: k false. t1
dep_if false = Ak:Bool — Kind. Aty : k true. A2 : k false. t2

Finally, some abbreviations, and then the proof generator itself.

LTcond : Nat— Nat— Kind
LTcond = At’:Nat. At:Nat. LTOrTrue ¢’ ¢ (It ¢ ¢)

LTimp : Nat— Nat— Bool — Kind
LTimp = At’': Nat. A\t:Nat. At : Bool.
LTOrTrue t' t t” — LTOrTrue (succ t') (succ t) t”

[tPrf : IIt': Nat. IIt:Nat. LTcond ¢’ ¢
[tPrf = At’:Nat. A¢t: Nat.
Elim[Nat, At} : Nat. IT¢1 : Nat. LTcond ¢ t1](¢'){
At1:Nat. dep_ifez t1 (LTcond zero) id ltzs;
Ath:Nat. Mt p: (ITt1 : Nat. LTcond ¢} #1). At1:Nat.

dep_ifez t;

(LTcond (succ t1))

id

(At1:Nat. dep_if (It ¢} t1)
(LTimp ¢} 1)
(Itss th t1)
(id True)
(tp t1))}

5 CPS Conversion

In this section we show how to perform CPS conversion\en
while still preserving proofs represented in the type system. This
stage transforms all unconditional control transfers, including func-
tion invocation and return, to function calls and gives explicit
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names to all intermediate computations. The basics of our ap-
proachj.e.the target language and the transformation of types, are
shown in this section. The static semantics of the target language
and the transformation of terms are given in Appendix B.

We call the target calculus for this phakg, with syntax:

(val) vu=x|m|tt|ff|{(X=A,v:A")|{vo, ... Vn_1)

| fix 2’ [X1: A1, ... Xn:An](z: A). e

e n=v[A1, ... Ap](v) | letz=vine
| let (X, z) =openvin e | let z =sel[A](v,v) ine
|letx=vaopv'ine|letz=vcopv ine
| H:[A,A/](’l}7 X1.61, X2.62)

(exp

Expressions in\x consist of a series dét bindings followed by a

function application or a conditional branch. There is only one ab-

straction mechanisnfix, which combines type and value abstrac-

tion. Multiple arguments may be passed by packing them in a tuple.
Ak shares the TL type language wity;. The types for\x

all have kindQ2x which, as in\g, is an inductive kind defined

in TL. The Qx kind has all the constructors 6f plus one more

(func). Since functions in CPS do not return values, the function

type constructor of2 x has a different kind:

— QA —Qx
We use the more conventional syntdx— | for — A. The new
constructofunc forms the types of function values:

func Qx — Ok

Every function value is implicitly associated with a closure envi-
ronment (for all the free variables), so thc constructor is useful
in the closure-conversion phase (see Section 6).

Typed CPS conversion involves translating both types and com-
putation terms. Existing algorithms [21, 28] require traversing and
transforming every term in the type language (which would include
all the proofs in our setting). This is impractical because proofs are
large in size, and transforming them can alter their meanings and
break the sharing among different intermediate languages.

To see the actual problem, let us convert the expression
(X =A, e: B) to CPS, assuming that it has tygél : A’. B. We
useKyy to denote the meta-level translation function for the type
language andCey, for the computation language. Under existing
algorithms, the translation also transforms the witnéss

Kep[(X=A, e:B)] =
Ak: Kyp[3X : A", B].
Kexple] (Az:Kyp[[A/X]B].
X =Kuyp[A], z:Kyp[ B]))

Here we CPS-convettand apply it to a continuation, which puts
the result of its evaluation in a package and handles it to the return
continuationk. With proper definition offCy, and assuming that
Kiyp[ X ] = X on all variablesX, we can show that the two types
Kuyp[[A/X]B] and[Kyp[ A]/ X](Kyp[ B]) are equivalent (under
=sn.). Thus the translation preserves typing.

But we do not want to touch the witnegls so the translation
function should be defined as follows:

Kep[(X=A, e:B)] =
Ak: Kyp[3X : A", B].
Kewle] (Az: Kyp[[A/X]B].
k(X=A, z:Ky[ B]))
To preserve typing, we have to make sure that the two types

Kuyp[[A/X]|B] and[A/X](Kyp[ B]) are equivalent. This seems
impossible to achieve Ky is defined at the meta level.



Our solution is to internalize the definition &y, in our type to traverse proofs represented in the type system.
language. We repladey, by a type functiorK of kind 2 — Q.

For readability, we use the pattern-matching syntax, but it can be  Cl (snat t) = XM':Qgk.snatt
easily coded using thElim construct. Cl (sbool t) = M :Qk.sbool t
Cl (t—1) = M:Qk.(t' xCl(t) L)—L

K (snat t) = snatt Cl (func t) = M :Qk.3t1:Qk. (Cl (¢) t1 x t1)
K (sbool t) = sbool ¢ Cl(tupti t2) = A :Qg.tupti (An:Nat.Cl (¢2 n) ')
K (tl — t2) = func ((K(tl) X Kc(tz))‘ﬂ-) Cl (VKind k t) = At/:QK.VKind k (At1 k. Cl (t tl) tl)
K (tup t1 t2) = tupti (At:Nat.K(t2 t)) Cl (Vksem 2 1) = M :Qk.Vkina 2 (Ak:2.Cl (E k) t')
K (VKind k t) = func (VKind k (Atl k. Kc(t tl)*’J-)) Cl (EHKind k t) = A\ :Qx . Jkind k (Ah k. Cl (t t1) t/)
K (VKscm z t) = func (VKscm z (Ak’Z Kc(t k) _>J—)) Cl (EHKscm z t) = A\ :Qx. Iksem 2 ()\kZ Cl (t k‘) t/)
K (EHKind k t) = kg k ()\t1:k. K(t tl))
K (Fksem 2 t) Fksem 2 (Ak: 2. K(t k)) 7 Related Work
Kec = At:Q. func (K(t)—1)

o o B ] Our type language is a variant of the calculus of constructions [10]

The definition ofK is in the spirit of theinterp function of Crary extended with inductive definitions (with both small and large elim-

and Weirich [13]. Howeveinterp cannot be used in defining asim-  ination) [35, 41]. We omitted parameterized inductive kinds and

ilar CPS conversion, because its domain does not cover (nor is theregependent large elimination to simplify our presentation, however,

an injection to it from) all types appearing in type annotations. In g our meta-theoretic proofs carry over to a language that includes

A these types are in the inductive kifbland can be analyzed by them. We support-reduction in our language while the official

K. We can now prov&K ([A/X]B) =gy, [A/X](K (B)) by first Coq system does not. The proofs for the properties of TL are

reducingB to the normal formB’. Clearly, K ([A/X]B) =g, adapted from Werner [41] and Geuvers [16]; the main difference

K ([4/X]B’) and [A/X](K (B')) =g, [A/X](K (B)). We is that our language has kind-schema variables and a new product

then proveK ([A/X]B’) =gy, [A/X](K (B')) by induction over  formation rule(Ext, Kind) which are not in Werner’s system.

the structure of the normal fo_rnB’. The complete CPS-conversion The Coq proof assistant provides support for extracting pro-

algorithm is given in Appendix B. grams from proofs [35]. It separates propositions and sets into
two distinct universe®rop and Set. We do not distinguish be-

6 Closure Conversion tween them because we are not aiming to extract programs from
our proofs, instead, we are using proofs as specifications for our

In this section we address the issue of how to make closures explicitcOmputation terms. In fact, the logic in our type language does not
for all the CPS terms in . This stage rewrites all functions so that ~have to be constructive; there is no problem with adding classical
they contain no free variables. Any variables that appear free in a féasoning to our proof system.
function value are packaged in anvironmentwhich together with Burstall and McKinna [6] proposed the notion of deliverables,
the closed code of the function fornclosure When a function is which is essentially the same as our notion of certified binaries.
applied, the closed code and the environment are extracted fromThey use dependent strong sum to model each deliverable and give
the closure and then the closed code is called with the environmentits categorical semantics. Their work does not support programs
as an additional parameter. Again, the basics of our approach arewith effects and has all the problems mentioned in Section 2.3.
shown in this section and more details are given in Appendix C. Xi and Pfenning’s DML [44] is the first language that nicely
Our approach to closure conversion is based on Morriett ~ combines dependent types with programs that may involve effects.
al. [28], who adopt a type-erasure interpretation of polymorphism. Our ideas of using singleton types and lifting the level of the proof
We use the same idea for existential types. The language that welanguage are directly inspired by their work. Xi's system, however,

use for this phase is called: with syntax: does not support arbitrary propositions and explicit proofs. It also
does not define th& kind as an inductive definition so it is un-

(val) vu=ax|m|tt|ff|fix2'[X1: A1, ... Xn: AL (z:A). e clear how it interacts yvith intensiqnal type analysis [39] and how it

| v[A] | (vo, ... vp—1) [ (X =4, v: A") preserves proofs during compilation.

, ) " We have discussed the relationship between our work and those

(exp en=wvv'[letz=vine|letz=sel[A](v,v) ine on PCC, typed assembly languages, and intensional type analysis

|let (X, x)=openvine|letz=vaopv ine in Section 1. Inductive definitions subsume and generalize earlier

|let z=v copv’ ine|if[B, Al(v, X1.e1, X2.e2) systems on intensional type analysis [22, 13, 39]; the type-analysis

construct in the computation language can be eliminated using the
Ac is similar to Ax, the main difference being that type applica- technique proposed by Craey al.[15].
tion and value application are again separate. Type applications  Concurrent with our work, Crary and Vanderwaart [11] recently
are values in\¢ reflecting the fact that they have no runtime ef-  proposed a system called LTT which also aims at adding explicit
fectin a type-erasure interpretation. We use the same kind of typesproofs into typed intermediate languages. LTT uses Linear LF [7]
Qr asinAk. We define the transformation of types as a function  as its proof language. It shares some similarities with our system
Cl:Qx —Qx —Qx, the second argument of which represents the jn that both are using singleton types [44] to circumvent the prob-
type of the environment. As in CPS conversion, we wteas a lems of dependent types. However, since LF does not support the
TL function so that the closure-conversion algorithm does not have E|im construct on inductive definitions, it is unclear how LTT can
support intensional type analysis and type-level primitive recursive
functions [14]. In fact, to defin€ as an inductive kind [39], LTT
would have to add proof-kind variables and proof-kind polymor-
phism, which could significantly complicate the meta-theory of its
proof language. LTT requires different type languages for different
intermediate languages; it is unclear whether it can preserve proofs
during CPS and closure conversion. The power of linear reasoning
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in LTT is desirable for tracking ephemeral properties that hold only [12]
for certain program states; we are working on adding such support
into our framework.

[13]

8 Conclusions

We presented a general framework for explicitly representing (14]
propositions and proofs in typed intermediate or assembly lan-
guages. We showed how to integrate an entire proof system into
our type language and how to perform CPS and closure conversion 15]
while still preserving proofs represented in the type system. Our
work is a first step toward the goal of building realistic infrastruc-
ture for certified programming and certifying compilation. [16]
Our type system is fairly concise and simple with respect to the
number of syntactic constructs, yet it is powerful enough to express [17]
all the propositions and proofs in the higher-order predicate logic [1g]
(extended with induction principles). In the future, we would like
to use our type system to express advanced program invariants such
as those involved in low-level mutable recursive data structures. 1]
Our type language is not designed around any particular pro-
gramming language. We can use it to typecheck as many different 20]
computation languages as we like; all we need is to define the cor-
responding? kind as an inductive definitions. We hope to evolve

our framework into a realistic typed common intermediate format. 21]
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A Properties of Ay

The proof of the following lemma is by induction on the structure
of typing derivations.

Lemma2 f A, X:B;T I e: A andA + A: B, then
A; T [A/X]e: [A/X]A.

We also need a proposition guaranteeing that equivalence of con-
structor applications implies equivalence of their arguments; it is a
corollary of the confluence of TL (Theorem 76).

Lemma 3 If Ctor (i, I) A =g, Ctor (i’,1') A, theni = i’ and

I =pp. I andA’:Bm A,

Lemma 4 (Progress) If -;-+ e : A, then eithek is a value, or
there existg’ such that — ¢’

Proof sketch By standard techniques [42] using induction on
computation terms. Due to the transitivity-ef,,, any derivation of

A; T+ e: A can be converted to a standard form in which there
is an application of rule EZONV at its root, whose first premise
ends with an instance of a rule other tharcEnv, all of whose
term derivation premises are in standard form.

We omit the proofs for the cases of standard constructs and the
induction on the structure of evaluation contexts. The interesting
case is that of the dependently typedtl

If e = sel[A’](v,v"), by inspection of the typing rules the

ends with an EcoNv, in the premise of which another rule assigns
v atypeBni-equivalent taup 4> A”. Then by Lemma 3 this type
must be an application dfup, and again by inspection the only
rule which applies is Erup, which impliesv = (v, ... vn_1),
and the derivatiorD must have the form

_ D
b v 0

Vi<n I
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b {vo, ... vp—1) s tup 0 AY
Also by Lemma 34, =g, n. Similarly the only rule assigning
to a value a type convertible to that in the conclusiorDdfis E-
NAT, henceA; =g,, m for somem € N, andv’ = m. Then,
by adequacy oET (Lemma 1(3)), the conclusion éfimplies that
m < n. Hence by rule RSEL e — vp,. a

Lemma 5 (Subject Reduction) If -;-- e : A ande — ¢, then
kel Al

Proof sketch Since evaluation contexts bind no variables, it suf-
fices to prove subject reduction fer and a standard term substi-
tution lemma. We show only some cases of redexes involséhg
andif.

e The derivation fore = sel[A']({vo, ... vn—1), M) in stan-
dard form has the shape

D,
Vi<n T
v AT G D’
5 (0) stupm AY - i snat m g
ok () rtup As A” R miismat Ay - B AT LT Ay Ao

sk sel[A]((vo, .. vn—1),m) : A” Ay
-k sell[A']((vo, ... vn—1),m) : A

whereA =g,, A" A1, A =3, A”,andA4; =g,, M. Since
e — ¢’ only by rule RsEL, we havem < n ande’ = v,,, SO
from D,,, and AY M =g, A" M =g, A" A1 =, Awe

obtain a derivation of;-- ¢’ : A.

In the case oif the standard derivatioP® of
e I'F[B7 Al](tt, Xi.e1, Xo. 62) : A

ends with an instance of EoNv, preceded by an instance of
E-IF. Using the notation from Figure 5, from the premises
of this rule it follows that we have a derivatiah of - +

A" : B A", andA"” =g, true (since rule E¥RUE assigns
sbool true to tt), hence we have - A’ : B true by CONV.

By Lemma 2 from& and the derivation oX : B true; - -

e1 : A (provided as another premise), sinke is not free in

A (ensured by the premise- A : ©2) we obtain a derivation
of -+ [A"/X1]er : A. O

B CPS Conversion (Details)

We start by defining a version ofy using type-annotated terms.
By f ande we denote the terms without annotations. Type annota-
tions allow us to present the CPS transformation based on syntactic

instead of typing derivations.

derivation of-;-+ e : A in standard form must have an instance of
rule E-SELin the premise of its root. Hence the subderivatiorfor
must assign to it a tuple type, and the whole derivation has the form

D D £ (exp e =t
s vitup Ay AY b Wisnat Ay - F AT:LT Ay A en=gz|n|tt|ff| f|fixz:A f|ee |elA]
gk sel[A](v,0") 1 A Ay [(X=A,e:A") |openeas (X, x)ine
-k sel[A'](v,0") : A | (eo, ... en—1) | sel[A](e, ) | e aop €’
’ . 4
where A =g,, A” A;. By inspection of the typing rules, rules | e cop e [f[A, A')(e, Xi.e1, Xz e2)
other than Econv assign to all values types which are applications (fun) f o= f4
of constructors of2. Since the derivatio® is in standard form, it fo=Ar:Ae|AX:Af
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The target languaggx of the CPS conversion stage has been de-
fined in Section 5. We use the following syntactic sugar to de-
note non-recursive function definitions and value applications in
Ak (herex’ is a fresh variable):

Az: A e=fixz'[|(z: A).e
v =v[](v')
AX1:A1. ... AX, A, Az Ae
=fix 2'[X1: A1, ... X An](z: A). e

In the static semantics ofx we use two forms of judgments.
As in Am, the judgment\; T" Fx v : Aindicates that the value
is well formed and of typel in the type and value contexts andl’
respectively. Moreover); I" I, e indicates that the expression
e is well formed inA andT'. In both forms of judgments, we omit

Kna[Az: A eP)A 7P = Azarg : K(A) x Ke(B).
let 2 = sel[ItPrf 0 2](Zarg, 0) in
let k = sel[ItPrf 1 2](#arg, 1) in
Kexp[e®] k
’Cfval[[(AX:A- fB)VSXA.B]] —
AX:A Xk:Ke(B). k (Knal[ f2])

Kexp[ ] = Ak:Kc(A). k (€)
fore One Ofl'A —snat 1 ttsbool true ffsbool false
Kexl /] = Ak:Ke(A). k (’Cfval[[f )ﬂ

Kexpl (fix z: A. f ) 1=
Ak:Ko(A). k (fix z[](k: Ke(A)). k (Knal F1))
2M)P]

the subscript front - when it can be deduced from the context. Kexpl (€277 = Ak:K¢(B).

The static semantics ofx is specified by the following forma- Kegler®™?] (Az1:K(A — B).
tion rules (we omit the rules for environment formation, variables, Kexple2] (Az2: K(A).
constants, tuples, packages, and type conversion on values, which z1 {x2,k)))

are the same as ikg):

forallie{l...n} AF A :s;

A X1:A XA B AQ
AX1iAL XAy T Al A e
AT F fixa' [Xi:Ar, o Xt Apl(xiA).e s A

where
A" =func (Vs; X1:41.... Vs, Xpn: Ap. A—1)

(K-FI1x)

foralli e {1...n} AF Ai:B;
A; TRV func(Vs, X1:Bi... . Vs, Xn:Bpn. A—1)

Sn

AT F v [AL/X1] ... [An/X0]A (K-APP)
A; T F o'[Ag, .. AR (v)

A;THwo: A A; T z:AF e
A;T F letx=vine

(K-VAL)

A;T Fow:tupA” B A; T F v :snat A
AR A:LT A A A;T,x:BA F e (K-SEL)

A; T F letx=sel[A](v,v") ine

A;T'Ho:3,Y:B. A
AX:B;Tz:[X/Y]AF e (X%A) (K-0PEN)
A;T b let (X, z)=openvine \$ 7 Ext

A;T F v:isnat A A;T F o csnat A’
A; T z:snat (plus A A') + e (K-ADD)

A;T - letz=v+v ine

A;T Fov:isnat A A; T - o :snat A
A; T, z:sbool (It AA) F e (K-LT)

A;T F letz=v<v'ine

A F B : Bool—Kind AFA:BA
A; T F v:sbool A
A, X1:Btrue; T' F e A, X5:B false; I' - es (K-1F)

A; I+ If[B,A](U, Xl.el, X2.62)

Except for the rules Krix and K-App, which must take into ac-
count the presence @finc, the static semantics forx is a natural
consequence of the static semanticsXar.

The definition of the CPS transformation for computation terms
of Ay to computation terms ok is given in Figure 6, where we
use the abbreviations introduced in Section 5.
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Kexp[ (€75 4 B[A])E 4] = Ak:Kc(B A).
Kexp[e”s &' B] (Az:K(V,s A’ B).
z[A](k))

Kool (€°, - )] = M Ke(A).
Kexp[[eo I (Azo:K(Ao).

ICexp[[e " ! (A:En_l : K(An_l)
k(xo, . xn_1>)...)
K:expllseI[A](eltup A B7 ernat A/)B A/]] —
Mk:Ke(B A'). Kexplex™ A" B] (A1 :K(tup A” B).
Kexp[e2™t 4] (Az2:K(snat A').
let ' =sel[A](z1,z2) in k z))
ICexp[[ <X:A, e[A/X]B ZB>A/H =
Mk:Ko(A). Kexp[ e A/XIB] (Az:K([A/X]B).
k(X=A, z:K(B)))
Kexp| (open €17V B a5 (X, z) inex™?] =
Mk:Ke(A). Kexpler Y4 B] (Az1:K(3.Y : A" B).
let (X, x)=open z1 in Kexp[ 2] k)
ICexp[[ (elsnat AL 62snat A/)snat (plus A A/)]] —

Ak:Ke(snat (plus A A%)). Kexp[e1*™* 4] (A1 :K(snat A).
Kexp[e2"t 4] (Az2:K(snat A’).
let z' =21+ 22 inkz'))

,Cexp[[ (elsnat A < 62snat A/)sbool (It A A’)]] —
Ak: Ke(sbool (It A A')). Kexp[er™ AT (Az1 :K(snat A).
Kexp[e2"t 4] (Az2:K(snat A).
let ' =21 <22 ink 2'))
Kewl (f[B, A (e 4", X1.e1Y, Xo. 22 )] =
Ak: Ko(A'). Kexp[ € 4" ] (Az:K(sbool A”).
if[B, Al(z, X1.Kesp[erd ]k, Xo. Kexp[e2™ ] k))

Figure 6: CPS conversion: froly to A k.

Proposition 2 (Type Correctness of CPS Conversion)
If by e: A, then;- g ICexp[[éA]] : func (Kc(A)—1).



C Closure Conversion (Details)

The main difference in the static semantics betwggnand \¢ is

that in the latter the body of a function must not contain free type Cva[(X=A4, v:B)]

or term variables. This is formalized in the rulerCx below. The

rules C1aPpP and CAPP corresponding to the separate type and

value application in\¢ are standard.

Cval[v] =, for v one ofz, m, tt, ff
Cval[ {(vo, ... vn—1)] = (Cva[vo]; - - - Cvallvn-1])
= (X=A4, Cafv]:Cl (B) L)
Cualfix '[X1: A1, ... Xn: Ap](z: A).e] =

<X:Aen\,7 <'Ucodc [Y1] . [Ym}, Uenv> :Ax>

where
foralli <n A Ax =A'x x X
~,X12A1 ...,Xn:An FA:Q A/X =V51X12A1....V51LXTL:A”. (X x Cl (A) J_)—>L
',XlIAl...,XnZAn; ',IIZB,J}ZA Fe (C'F|X) {l‘gl?,.--$£71€171}:FV(6)*{$, (E/}
AT F fixa'[X1: Ay, . Xy Apl(z:A).e: B {(yPr, yBmy =
whereB :V31X12A1....VsanZAn.A—ﬂ_ FTV(fIX x,[XliAl, XnAn}(mA)e)
AT F v:V,X:A.B AL A:A Aenvj Cl (tup k (nth (A'g::... A'k—1:nil))) L
(C-TAPP) Venv = (T ... Tk—1)
A; T - o[A]: [A/X]B Veode = fix Vax[Y1:B'1, ... Vi : B/, X1: A1, ... Xt As
. . . ) (Targ : Aenv X Cl (A) 1).
AlFw:A-d ATFv:A (C-APP) let Teny = sel[ltPrf 0 2](Zarg, 0) in

A; T F vy v

The definition of the closure transformation for the computation
terms of Ak is given in Figure 7.

let 2 =sel[ItPrf T 2](zarg, 1) in
let ' = (X = Acny,

<Uﬁx [Yl] N [Y;n]y menv> :AX> in
let 2o = sel[ItPrf 0 k] (Zeny, 0) in ...

Proposition 3 (Type Correctness of Closure Conversion) let I[itPrf P E]( 1) in Cexle]
et rp—1=5se r — Zenv, K — IN Cexpll €

If -k v: A thens o Cuafv] : ClI(A) L.

Cexplv1[A1, ... An](v2)] = let (Xenv, Targ) =open Cval[v1] in
let Tcode = sel[IltPrf 0 2](Targ, 0) in

let Zony = sel[ltPrf T 2] (L arg, 1) in

D Formalization of TL (Details)

In this appendix we prove the meta-theoretic properties of our type A A C
language TL. The proofs are based on the methods in Werner [41]. o Icodc_[ i [, nl (Zenv, G v2])
We formalize the language in Section D.1. In Section D.2 we prove Coxpllet z=v in ¢] = let z=Cuav] in Cexp[ ]
subject reduction, in Section D.3 we prove the strong normaliza- Cexp[let z =sel[A](v,v") ine] =
tion, in Section D.4 we prove the Church-Rosser property, in Sec- let 2 = sel[A](Cvai[ v ], Cvar[v']) in Cexp[ €]
tion D.5 we prove the consistency of the underlying logic. Cexplet (X, z)=openvine] =
let (X, ) =open Cva[v] in Cexpl €]

Coxpllet z=vi+vaine] =letz=Cuafv1]+Cuav2] in Cexple]
Cexpllet z=vi<vaine] =letz=Cuafvi] <Cualv2] in Cexple]
Cexp[[if[B, A](’l}, X1. e1, XQ. 62)H =

if[B, A](Cva|[[1]]], Xl. Cexp[[61ﬂ, X2. Cexp[[ez]])

D.1 Syntax and semantics

The syntax for the pseudoterms is:

(Cxt) A s=-|AX:A

(sort) s = Kind | Kscm | Ext Figure 7: Closure conversion: froi to Ac.

(var) X u=z|k]|t

(ptm) A, Bu=s|X|AX:A.B|AB|IIX:A.B Definition 4 A term A is strictly positive inX if A is eitherX or

| Ind(X :Kind){A} | Ctor (i, A)
| Elim[A’, B'|(A){B}

IIY : B. A’, where A’ is strictly positive inX, X does not occur
freeinB,andX #Y.

In addition to the symbols defined in the syntax, we will also  pefinition 5 A term C is a well-formed constructor kindor X
useC to denote general term%; and Z for variables, and for (written wfc  (C)) if it has one of the following forms:

inductive definitions. We usel to denote a sequence of terms
Ai,..., A,. Also, we distinguish betweeAd and A since every
element inA would be referred ad; anyway.

TL has the following PTS specification which will be used to
derive its typing rules:

1. X;

2. IIY : B.C’, whereY # X, X is not free inB, andC’ is a
well-formed constructor kind fokX'; or

3. A— C’, whereA is strictly positive inX andC’ is a well-

f\ z ﬁ::j’ 222’7 E’im Ext formed constructor kind foX.
R = (Kind,Kind), (Kscm, Kind), (Ext, Kind) Note that in the definition ofyfc , (C), the second clause covers

(Kind, Kscm), (Kscm, Kscm) the case wheré€ is of the formA — C’, and X does not occur

In order to ensure that the interpretation of inductive definitions frée in A. Therefore, we only allow the occurrence &t in the
remains consistent, and they can be interpreted as terms closed un?on-dependent case.
der their introduction rules, we impogesitivity constraint®n the In the rest of this paper we often write the well-formed con-
constructors of an inductive definition. The positivity constraints structor kind forX asIIY : B. X. We also denote terms that are
are defined in Definition 4 and 5. strictly positive inX by ITY : B. X, whereX is not free inB.

15



Definition 6 LetC' be a well-formed constructor kind fdf. Then

C is of the formHY A X. If all the Y's aret’s, that is,C is of

the formII: A. X, then we say that’ is a small constructor kind

(or just small constructor when there is no ambiguity) and denote it
assmall(C).

Our inductive definitions reside idind, whereas a small construc-
tor does not make universal quantification over objects of type
Kind. Therefore, an inductive definition with small constructors
is a predicative definition. While dealing with impredicative induc-
tive definitions, we must forbid projections on universes equal to
or bigger than the one inhabited by the definition [17]. In particu-
lar, we restrict large elimination to inductive definitions with only
small constructors.

Next, we define the set of reductions on our terms. The defi-
nition of 8- andn-reduction is standard. Thereduction defines
primitive recursion over inductive objects.

Definition 7 Let C' be a well-formed constructor kind foX and
let A’, B’, andI be pseudoterms. We defidex ; 5/ (C, A") re-
cursively based on the structure@f

D 1,5 (X, A) oA
@X,,,B,( :B.C",A") Y A\Y:B. &y, p(C,AY)
@X,,,B,(( ny:B.X)—c', 4) «
Z:(IY:B.I).®x 13 (C', A" Z (\Y:B.B (ZY)))
Definition 8 The reduction relations on our terms are defined as:
(AX:A.B) A" ~p [A/X]B
AMX:A.(BX) ~, B, ifX¢FV(B)

Elim[I, A”](Ctor (3, 1) AT){B?} ~, (®x,1,8(Ci, By)) A
I = Ind(X :Kind){C}
B' = \Y:I.(Elim[I, A")(Y){B})

By >3, >,, andr>, we denote the relations that correspond to
the rewriting of subterms using the relationss, ~,, and~»,
respectively. We use» and > for the unions of the above re-
lations. We also write>* and >* (respectively>} etc.) for
the reflexive-transitive and transitive closurestef(respectively
>3 etc.) and=g,, for the reflexive-symmetric- transitive closure
of >. We say that a sequence of terms,..., A,,, such that
A> A > As...> A,,isachain of reductlons starting frorh

Let us examine thereduction in detail. IfElim[I, A”](A){ B},

the termA of type I is being analyzed. The seque@&ontains
the set of branches fdtlim, one for each constructor @f In the
case wher; = X, which implies that4 is of the formCtor (4, I),

the Elim just selects the3; branch:

Elim[I, A"](Ctor (i, 1)){B} ~». Bi

where

In the case whel; = =Y :B.X where X does not occur free

in B, thenA must be in the fornCtor (i, 1) A with A; of type B;.
None of the arguments are recursive. Therefore Hiva should
just select theB; branch and pass the constructor arguments to it.
Accordingly, the reduction yields (by expanding thenacro):

Elim[I, A"](Ctor (i, I) A){B} ~», B; A

The recursive case is the most interesting. For simplicity assume

that thei-th constructor has the foriiiY : 5. X — IIY”: B”. X.
Therefore, A is of the formCtor (i, I) A with A; being the re-

cursive component of typEY : B’. X, andAs . .. A,, being non-
recursive. The reduction rule then yields:

Elim[I, A”](Ctor (i, 1) A){B}
~ By A1 (AY : B7.Elim[I, A"](A; Y){B}) A,
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TheElim construct selects thB; branch and passes the arguments
Ai,..., Ay, and the result of recursively processidg. In the
general case, it would process each recursive argument.

Definition 9 defines th& macro which represents the type of
the largeElim branches. Definition 10 defines tljemacro which
represents the type of the small elimination branches. The different
cases follow from the-reduction rule in Definition 8.

Definition 9 Let C' be a well-formed constructor kind foX and
let A" and I be two terms. We defin@ x ;(C, A’) recursively
based on the structure 6f:

def A
AY Y B W (C,

def

Ux (X, A)
Wy (IIY:B.C,
\I’XJ(A—>C/7 A,)

A
[I/X]A—[A"/X]A—-Tx (C', A")

whereX is not free inB and A is strictly positive inX.

Definition 10 Let C be a well-formed constructor kind fof and
let A’, I, and B’ be terms. We definéx,;(C, A’, B') recursively
based on the structure 6f:

Cxr(X, A", B)

(x,1(IIY :B.C", A", B")

(x MY:B.X - C',A,B) ¥
1Z:(IIY:B.1).IY :B. (A’ (Z

def

A" B

Y :B.¢x(C',A',B'Y)

Y)) = ¢x1(C, A B’ 2)
whereX is not free inB and 5.

Definition 11 We useA|, ; to denote that the environment does
not contain any variables.

Here are the complete typing rules for TL. The three weakening
rules make sure that all variables are bound to the right classes of
terms in the context. There are no separate context-formation rules;
a contextA is well-formed if we can derive the judgmerX +

Kind : Kscm (notice we can only add new variables to the context
via the weakening rules).

- F Kind : Kscm (ax1)
- F Kscm : Ext (AX2)
AF C:Ki AFA:B D A
C : Kind t ¢ Dom(A) (WEAK1)
At:C+ A:B
AFC:K A+ A:B Dom/(A
C : Kscm k ¢ Dom(A) (WEAK2)
Ak:CFHA:B
AFC:E A+ A:B D A
C: Ext z ¢ Dom(A) (WEAK3)
Az:CHA:B
A F Kind : Kscm X € Dom(A)
(VAR)
AF X :AX)
AX:AF B:B AFTX:A B :s (FUN)
AFMX:AB:IIX:A.B
AFA:TIX:B. A AFB:B (APP)
A+ AB:[B/X]A
A+ A:s A,X:A'_B:SQ (Sl,Sz)ER (PROD)

AFIIX:A B: s



forallt A, X:Kind F C; : Kind

A+ Ind(X :Kind){C} : Kind

wfc (CZ)

(IND)

A F I :Kind wherel = Ind(X :Kind){C'}

(con)
A F Ctor (i, 1) : [I/X]C;

AFA:T AR A :T—Kind
for alli A+ B;:(x,1(Ci, A, Ctor (i, 1))
A + Elim[I, A'|(A){B}: A" A
wherel = Ind(X :Kind){C'}

(ELIM)

AkFA:T Ayt A Ksem
for alli small(C;) A+ B;i:Ux (Ci,A)

A+ Elim[I, A')(A){B} : A’
wherel = Ind(X :Kind){C}

(L-ELIM)

A+ A:B
A+ B:s

AFA:B

Ak B :s B =g, B’ (conv)

D.2 Subject Reduction

The proof is structured as follows:

Is]|=s
X=X
| Ar Ag || = | A | || Az |
[AX: A1 Ay || = AX i || Ao |
ITLX < Av. Ao || = TLX o] Ay ||| Az
—_—

1 1nd(X : Kind) { A} || = Ind(X : Kind){[| A ][}
| Ceor (3, A1) | = Cror (i, ]| A ) -
| Elim[1, A2](A1){A} || =Elim[[| T[], | A2 [[J(Il Az [D{II A}

Lemma 6 For all termsA, B, A’, B’, and for all variablesy and
Y, we have thap\Y : A’. B/ X]|A =g, [\Y:B'. B/ X]A.

Proof Considerd, = [A\Z : A'.(\Y:B'.B) Z/X]A. Then

Ay [(A\Z:A'.[Z)Y]|B)/X]A and As 1>, [\Y : B'. B/ X]A.
Alpha converting the first reduct leads to the required result

Lemma 7 For all termsA, we haveA =g, || A||.

Proof Follows from lemma 6. O

Definition 12 (o reduction) We say thatdt>,, || A’ || iff A, A’
and|| A|#[| A"l.

Proposition 13 For all termsA and A’, if A>3 A’, then|| A ||
>g || A" or|| A|l=||A"||. Similarly, if we have thatd >, A’, then

o We first define a calculus of unmarked terms. These are terms || A || >, || A’[| or [| A[|=[| A" ||. Moreover, if[| A|| 4., [|A"[,
with no annotations at lambda abstractions. We show that this then there exists 4" such thatd >5, A” and|| A" ||=| 4’|

language is confluent.

e We then prove Geuvers’ lemma — a weak form of confluence.
It says that a term that is equal to one in head normal form

can be reduced to aprexpanded version of this head normal
form.

e From Geuvers’ lemma, we are able to prove the inversion

lemma which relates the structure of a term to its typing
derivation.

e \We are then able to prove the uniqueness of types and subject

reduction forg3. reduction.

e \We are then able to prove that the system preserves sorts —
that is, if two terms are convertible and well sorted, then they

have the same sort.

e Finally, we prove the strengthening lemma and then subject

reduction forn reduction.

D.2.1 Unmarked terms

The PTS language is non-confluent.
lowing counterexample — lefl be the term defined bp X :
A1.(AY:A2.Y)X. Then we have thatl >g AX : A;. X and
Ay, AY : A2 Y. For our proofs we want to operate in a lan-

guage that is confluent. We will therefore introduce the notion of
unmarked terms. As non-confluence is due to the presence of type
annotations in\ abstractions, the unmarked terms are obtained by

erasing the type annotations.
The set of unmarked ternis A || are defined below. We are
given a marked variablethat can not be used elsewhere.
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Nederpelt gave the fol-

Lemma 8 (Confluence for unmarked terms) For all unmarked
terms|| A ||, the Bn.o reduction is confluent.

The proof is based on the method of parallel reductions due to Tait
and Martin-Lof.

Definition 14 (Parallel reduction) Define— on unmarked terms
as below, in which we assume that— A’, B — B’, etc:

A— A
AB—A' B
AX: L A— AX:_ A
IIX:A.B—TIX:A. B
Ind(X :Kind){A} — Ind(X :Kind){A"}
Ctor (i, I) — Ctor (3, I')
Elim[A, C](I){A} — Elim[A, C"|(I"){A"}
(AX:_.A) B— [B'/X]A
AX:AX — A'if X ¢ FV(A)
Elim[7, C]((Ctor (i, I) B)){A} — (Px,1,5/(C}, A})) B’
where I = Ind(X :Kind){C}
B’ = XY :_. (Elim[I',C"|(Y){A"})

The parallel reduction commutes with respect to substitution.

Lemma9 If A — A’ andB — B’, then
[B/X]A — [B'/X]A'.

Proof By induction over the fact that — A’. |

The parallel reduction also has the following properties with
respect to terms such as products and inductive definitions. The
proof in each case is immediate and follows by induction over the
structure of the term.



Proposition 15 Supposed = I1X : B.Y C. If A can be reduced
to A’ through a reduction relation-, 1>, etc.), thenA’ = T1.X :

B'.Y C" where all theB andC' can be reduced t&’ andC" by
the same reduction relation.

Proposition 16 Supposed = I1X : B.Y ¢ and A’ = IIX :
B’.Y " be two terms such that both can be reduced’tahrough
a reduction relation--, >, etc.). Thend” = I1X : B”.Y C"
whereB and B’ can be reduced t8” by the same relation and
andC" can be reduced t67 by the same relation.

The parallel reduction is important because it subsumes the sin-
gle step reduction; that is, il > A’, then we have thatt — A’
which also implies thati>* A’. From here, to show the confluence
of >, it suffices to show the confluence of parallel reduction.

Lemma 10 For all unmarked term®, D’, D", we have that if
D — D’ andD — D", then there exists ®" such that
D/ s D/// andD// NN D///.

Proof The proof is by induction over the structuref We will
only show one case here.

e SupposeD = Elim[I, C]((Ctor (i, 1) B)){A}.

— We can then havé’ = (®x v p/(Cl, AL)) B' and
D" = (®x. .5 (C,AY)) B". We have thatl’ =
Ind(X : Kind){C"} and I” = Ind(X : Kind){C"}.
This implies thatC; — C; andC; — C/'. By ap-
plying the induction hypothesis to the subterms, we get
that!” — 1"’ andI” — I"” and so on for the other
subterms. From here and proposition 16, it follows that

we can takeD"”’ = (®x. i g/ (CL, AY")) B!,
SupposeD’ = Elim[I’, C"]((Ctor (i, 1') B")){A"}
and D" = (®x v 5 (C/, AY)) B”. As above we
can again defind’”’, C/”, etc. and takeD"”" =
(®x,1m,m(C", AT")) B

Also D' = Elim[I’,C"]((Ctor (i, I’
D" = Elim[I"”,C"]((Ctor (i, I") B")){
case, we can again take that

D" = Elim[I",C""|((Ctor (z, I'"") B"")){ A"}

—
!

) B ){A‘f} and

)
A}, In this

O

As a corollary of the confluence of unmarked terms we get the
following:

Corollary 17 If A andB are two distinct sorts or two distinct vari-
ables or a variable and a sort, then we have that B.

We will need another lemma — that of the delay;akduction.
But before that, we have to define another variant of.theduc-
tion. This essentially says that aeduction that would appear only
after a series of eta reductions can be reduced straightaway with-
out going through the eta reductions. For well typed terms, this is
equivalent ta reduction, but it also allows us to retain the property
of delay ofn reduction for ill-typed terms.

Elim[I, A”"]J(AX : A". (Ctor (i, 1) A)C'){B} >,
(®x,1,50(Ci, Bi)) A
wherel = Ind(X :Kind){C}
B' = \Y :I.(Elim[I, A"](Y){B})

-,

Ci' >, X; andX; ¢ FV(A) U FV(I)
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Proposition 18 For all termsA; and Az, we have thatd; =g,
Az ifand only if Ay =g,/ As.

Lemmall If A, A" g, A”, then eitherd >7%,, A”, or there
exists ad”’ such thatd >g5,, A" >; A”.

Proof The proof is by induction over the structure df We
will consider only the cases that do not follow directly from the
induction hypothesis.

e A= (C D. There are two cases.

— If C >, C’, then it follows immediately from the in-
duction hypothesis.

— If D>, D’ andC = A\X:B. B’ andA” = [D'/X|B/,
then takeA”" = [D/X]|B’. The other cases follow
from the induction hypothesis.

e A= )X:C.B X. Supposed” = B’ whereB >4, B’
But then we also have that >3, AX:C. B’ X. Since the
reduction does not introduce new free variables, this term can
now n-reduce taB’.

Lemma 12 (Delay ofy reduction) For all terms4 and A’, if
A" A’, then there exists a ters” such thatd >3, A" > A’

Proof Follows from lemma 11. m|

We will next prove Geuvers’ lemma which is essentially a weak
form of confluence. This is enough to prove the uniqueness of types
and subject reduction. But before that we need to define the coun-
terpart of the” reduction for unmarked terms. We define it in the
obvious way

Definition 19 (.o reduction) We say thatd>,, || A’ | iff A, A’
and|| A[|#]| A" |].

As before it has the following property:

Proposition 20 Supposed 1>,, A’. Then either| A||=|| A’ ||, or
[ All >, [[A"[l. Moreover, if| A|| >, |[|A’]|, thenA ., A".

Lemma 13 (Geuvers lemma)
o If A=p, X A, then
A5, A\Y A (X B C)
where for all i,A; =g, B; and for all j,C; 7 Yj.
o If A=p,, I1X:A;. A, then

A5, AY A7 (TIX : As. As) B)
whereA; =g, Az andAz =g,, A4 and foralli,B; > Y;.
e If A=g,, Ctor(i,I) C,then
A%, AY A ((Ctor (i, 1) C') B)

where for all i, C; =g, C; and for all j, B; t>; Y;, and
I=p,TI.



o If A=p,, Ind(X:Kind){A} C, then

Ak, AY A ((Ind(X :Kind){A"}) C") B
where for all i, 4; =g,,, A7 and for all j,C; =3, Cj, and
forall k, By >}, Ys.

o If A=g,, Elim[I, A5](A:){A"} C,then

A5, AY A (Elim[I’, B)(B){B} C") B’

whereA; =g, B, andA; =g,, B’, andl =g,, I', and for
all'i, A} =g, B; and for all ,C; =3, Cj and for all k,
B;/6 I>:; Y.

Proof  The proof for each of the cases is similar and is by induc-
tion over the length of the equivalence relation. We will show only
one case here.

e Supposed =g,, X A By the induction hypothesis, there
exists and” such that

—

A" 5 Y AL (X B C)

andA >g, A" or A" >, A.

— The case wherd >3, A” is immediate.

— The case wherdl >, A" follows from the lemma of
delay ofn-reduction.

— If A” >, A, then the required result follows from the
confluence of3.’ reduction.

— SupposeA” >, A. Then from the confluence of
Bnu reduction on unmarked terms, we get that ||

>*X D where|| B; || > gy, Di. From the lemma of
delay ofn-reduction, we get that

[All 55, AY i X D'F > X D

From proposition 20 we can deduce the existence of
a term A; such thatd >3, Ar and|| A1 [|= AY :
_. X D'F. The required result follows from here.

D.2.2 Classification of terms

Definition 21 We partition the set of terms into four classes: the
set of typedTy, the set of kind<<i, the set of kind schem&s:, and
Ex. The class of a term is defined as follows:

Cls(Kind) =Sc
Cls(Ksecm) = Ex
Cls(t) =
Cls(k) =
Cls(z) =
C|S(A1 Ag) C|S( )
ClS()\X Al Az) ClS( )
ClS(HX Al Ag) C|S( )
Cls(Ind(X : Kmd){A}):
Cls(Ctor (i, A1 )):Ty
Cls(Elim[I, Ag}(Al){A}) Ty if Cls(A2) = Ki, elseKi

We also define the following function:

lift(Ty) = Ki
lift(Ki) = Sc
lift(Sc) = Ex
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Lemma 14 If A = A, : A is derivable, then we have
lift(Cls(A1)) = Cls(Az2). In particular,A; # Ext. Moreover, for

all pairs(X, A) in A, we haveCls(A) = lift(Cls(X)).
Proof Immediate by induction over the derivation of the judg-
ment. O

D.2.3 Well typed terms

We now consider the well typed terms. The following lemmas are
proved easily by induction over the typing derivations.

Lemma 15 (Substitution) If we can derive
A1, (X,A),A2 F B:CandA; F A;: A, then we can derive

Proof
tion.

Straightforward induction over the structure of the deriva-
O

Lemma 16 If we can deriveA, (X, A), As + B : C, thenwe
also have thaf\; + A : s for some sort. Moreover, we also
have thatAq, (X, A), A F A : s.

Proof
tion.

The proof is by induction over the structure of the deriva-
O

Lemma 17 If we have thatA + TIX: A. B : s, then we have
thatA, X:A+ B:s.

Proof The only interesting case is for tlwoNV case which fol-
lows from Corollary 17. O

Lemma 18 If the judgmentA + A : B is derivable, then either
B =Ext,orA F B : sfor some sors.

Proof The proof is a straightforward induction over the structure
of the derivation. a

Lemma 19 (Inversion) If the judgmentA + A : B is derivable,



te A

B =pn. A(l)

A F B:Kind

ke A

B =pn A(k)

A+ B:Kscm
z€A

B =pn. A(2)

A F B: Ext

B =3, Kscm

B = Ext

A = A1 © S
A,X:Al I A2 82
B =pn. s2

wheres; is any sort and
s2 = Kind, or

s1 € {Kind, Kscm} and
so = Ksecm

A+ A1 181

A XA F Ay As
= A3 82

=pn HXA1A3
- B: S2

AF A IIX:B.A
. B

A=z

A = Kind
A = Kscm
A=TIX:A;. Ay

iy

A= )\X:Al.Ag

A=A A

A =Ind(X:Kind){A} = A, X:Kind - 4, : Kind
wfcy (AZ)
B =4, Kind
I = Ind(X :Kind){ 4}
same conditions oh
B =g, [I/X]A:i
I = Ind(X :Kind){4}
same conditions oA
AFA:T
AF A : T — Kind
AF B:Kind B=g, A’ A
A+ B;:

Cx,r(Ai, A, Ctor (i, 1))
I = Ind(X :Kind){A}
same conditions oh
AFA:T
A F A : Kscm
A+ B:KsecmandB =g,, A’
A l_ Bz : \I/X’](Ai,A/)
for alli small(A;)

A = Ctor (4, I)

A = Elim[I, A')(A){B} =

A = Elim[I, A'|(A){B} =

Proof By induction over the structure of the derivation. For every
case we consider the set of possible typing derivations. |

Lemma 20 (Uniqueness of types)f A - A: A; and
A+ A: A, thenA1 =B As.

Proof By induction over the structure of. We use the fact that

if A1 =g, BandAz =g,, B, thenA; =g, As. For every case,
we use the corresponding clause from lemma 19. a

Corollary 22 SupposeA is a well typed term. IfA >,, A’, then
A, A

D.2.4 Reductions on well typed terms

Lemma 21 (Subject reduction for 3. reduction) If the
judgmentA + A : Bis derivable, and ifA >4, A’ and
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A >, A, then we have that

AFA:B A+ A:B

Proof The interesting cases are therpandeLIM.

e APP When only the sub-terms reduce without a reduction at
the head, the lemma follows by using the induction hypothesis
on the sub-terms. Suppose that

AFA:TIX:B.A AFrB:B
A+ AB:[B/X]A
andA B >4 [B/X]A2. We know from lemma 19 that
A,X:Al }_ A2 : Ag
HX:ALA:; =pBne HX:B/.A/

A}—Alzsl
A}_B/:SQ

A: )\X:AI.AQ

This implies thatd; =g, B’ andAs =g,, A’. Moreover,
Cls(B') = Cls(A1) = lift(Cls(X))
Therefore, we get from lemma 14 that
Cls(s2) = Cls(s1)

Applying the coNnv rule we get thatA - B : A;. By
lemma 15 we get thah + [B/X]A> : [B/X]As. We can
show in a similar manner as before tifas(A;) = Cls(A’).
This allows us to apply theonv rule again which leads to
the required result.

= 82 = 81

e L-ELIM We will only consider the case when ameduction
takes place at the head. The other cases follow easily by struc-
tural induction.

AFA:T AF A :Ksem
for all ¢ AF B :Ux (Ci, AT
A b Elim[I, A')(A){B}: &'
wherel = Ind(X :Kind){C}andVi. small(C;)
The interesting case is when we consider the reduction
Elim[I, A")(Ctor (i, 1) A){B} >, (®x.1.5/(Ci,Bi)) A
where I = Ind(X :Kind){C}
B’ = \Y:I.(Elim[I, A')(Y){B})

Supposed” = (®x ;.5 (Ci, Bi)) A. Suppose thatl =
A1..n. We have thah + B; : Ux ;(C;, A"). The proof is
by induction on the fact that’; is a kind of a constructor and
the length ofA. We consider the different cases by which
is a kind of a constructor.

— If C; = X, thenA” = B,. From definition 9 we can
see that in this casé3; has the typed’.
- If C; =11Y : B. C, then
A" = (®x 1 p([A1/Y]C, B; A1)) As. .. We have
that A + B; Al : ‘I/X,[([Al/Y]C, A,) By the in-
duction hypothesis, the reduct has tyfpe
—IfC; =1IY: B. X — C, then
A// —
®x.5(C,Bi AL AY:B.B (A Y))) Az,

From Definition 9 we have that

AF B [I/X]A—[A/X]|A—=VUx (C',A"). We
also know thatA + A; : [I/X]A. From here, we can
apply the induction hypothesis and show that the reduct
has typed’.



e ELIM We will only consider the case when arreduction

takes place at the head. The other cases follow easily by struc-

tural induction.

AFA:T AFA:I—Kind
for all i A+ B;:(x,1(Ci, A, Ctor (i,1))
A F Elim[I, A')(A){B} : A" A*
wherel = Ind(X :Kind){C}

The interesting case is when we consider the reduction

Elim[I, A'|(Ctor (i, I) A){B}
where I = Ind(X :Kind){C}
B’ = \Y:I. (Elim[I, A|(Y){B})

—

>, (‘I’X,I,B’ (Oiv Bz)) A

SupposeA” = (®x . p/(Ci, B;)) A. Suppose thatl =
Ai..n. We have that\ + B; : (x,1(C;, A’, Ctor (i, I)). By
using the inversion lemma we can get tiat- B’ : 11X :
I. A’ X. By induction on the structure @¥; (whereC; is a
kind of a constructor), we can show thatif = I1Y : B. X,
thenA + ®x ;. 5/(Ci, B) : IY : B. A’ Ctor (i, I) Y. The
required result follows from here.

O

Corollary 23 Supposed is a well formed term. IfA>7,, A’, then
Apj, A"andA’ is well formed.

Corollary 24 Supposed is a well formed term. IfA >* A’, then
there exists a well formed term” such thatd >3, A” >7 A’

Lemma?22 LetA - A: BandA + A’ : B’ be two derivable
judgments. IfA =g,, A’, thenCls(A) = Cls(A").

Proof
A,. This implies that

HAH ‘>;(3th l>:] Ao and HA/” DZ;L()BI D:] Ao
From here we get that

A, BoandA' >, B'og where | Bo ||= B and || B'o||= B’

Eta reduction does not change the class of a term. Moving from
marked to unmarked terms also does not change the class of a term

Therefore, we get that

Cls(A) = Cls(Bo) = Cls(B) = Cls(A2)
Cls(Az) = Cls(B") = Cls(B’p) = Cls(A")

and

O

Corollary 25 LetA F A: sy andA + B : s be two derivable
judgments. IfA =g,,, B, thens; = s».

Lemma23 If A,,Y:C,A> - A: Band
Y ¢ FV(A2) U FV(A), then there exists B’ such that
A1As = A: B'. (This also implies thaB =g,,, B’).

Proof
We will consider only the important cases.

We know that| A || and|| A’ || have a common reduct, say

The proof is by induction on the structure of the derivation.
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e caserUN. We know that

A,Y:C,A2, X:AF B: B
A1,Y:C,Ay FIIX:A. B :s

A, Y:C Ay F AX:A. B:TIX:A. B

Applying the induction hypothesis to the formation®f
ANy, X:AF B:C' B =g, C
By lemma 18 we have that

A1A2, X:A F C': swhich implies
ANy FIIX:A.C x5

Therefore we get that
A1As H AX:A. B:IIX:A.C'

e caseAaPP We know that

ALY :C,As - A:TIX:B'. A
AL,Y:C,As - B: B

A17Y2C7A2 FAB: [B/X}A/

By applying the induction hypothesis we get that
AlAQ FA: Az andAlAg F B: A3 where
Ao =Bne IX:B'. A andA3 =Bne B’

From lemma 134, >4, AY : A. (IIX:B"”. A”) B. Since
(B reduction preserves type, aag is well formed, we have
that Ay >4, 11X : B”. A”. This implies thatd” =g, A’
and B” =g,, B’. We also get thatl; =g,, B"”. From
corollary 25 we get thatl; and B” have the same sort. By
applying theconv rule we get that

AlAz = A: HX:BN.AU andA1A2 F B: BN
Therefore, we get that
A1As F AB:[B/X]A"

As a corollary we now get that

Lemma 24 (Strengthening) If A1,Y:C, A2 F A: Band
Y ¢ FV(A2) UFV(A)U FV(B),thenA1A; - A: B.

Lemma 25 (Subject reduction forn reduction) If A - A: B,
andA >, A’andA >, A’, thenwe have that

A+ A:B A'+A:B
Proof The interesting case is that of functions. Suppose that
A AX:A1.As X :B X ¢ FV(As) AX:A1. Az X >,y As
From lemma 19 we know that

AX:A F Ay X:As B=p, [IX:A1.A3 AF B:s
Again applying lemma 19 we get that

A X:AL F Ay TIYV:B' A" B' =4, A1 A3z =5, [X/Y]A

By applying theconv rule now, we getthaf\, X : A; + As : B.
By applying lemma 24 we get that + A, : B. o

Theorem 26 (Subject reduction) If A - A: B,andA > A’
andA > A’, thenwe have thatA - A’ : B and A’ - A: B.
O

Proof Follows from lemma 21 and 25.



D.3 Strong Normalization
The proof is structured as follows:

e We introduce a calculus of pure terms. This is just the pure
calculus extended with a recursive filtering operator. We do
this so that we can operate in a confluent calculus.

e We define a notion of reducibility candidates. Every schema
gives rise to a reducibility candidate. We also show how these

candidates can be constructed inductively.

o We then define a notion of well constructed kinds which is a
weak form of typing.

e \We associate an interpretation to each well formed kind. We
show that under adequate conditions, this interpretation is a

candidate.

e We show that type level constructs such as abstractions and
constructors belong to the candidate associated with their

kind.

e We show that the interpretation of a kind remains the same

under(n reduction.

o We define a notion of kinds that are invariant on their domain

—these are kinds whose interpretation remains the same upon

reduction.

e We show that kinds formed with large elimination are invari-
ant on their domain.

e From here we can show the strong normalization of the cal-
culus of pure terms. We show that if a type is well formed,
then the pure term derived from it is strongly normalizing.

e We then reduce the strong normalization of all well formed
terms to the strong normalization of pure terms.

D.3.1 Notation

The syntax for the language is:

(ctxt) A =-|AX:A

(sort) s = Kind | Kscm | Ext

(var) X u=z|k|t

(ptm) A, B:u=s|X|AX:A.B|AB|IIX:A.B
| Ind(X :Kind){A} | Ctor (i, A)
| Elim[A’, B')(A){B}

The proof of strong normalization uses the stratification in the
language shown below.

(ctxt) A=A z:Ksem | A k:u | Atk
(kscm) w =z |It:k.u | Ik:u1. uz | Kind
(kind) Kk ==k|At:Kk1. K52 | &[T] | Me:u. Kk | K1 K2
| IIt: k1. k2 | Tk u. k| IIz: Ksem. &
| Ind(k:Kind){<} | Elim[x’, u](7){K}
(type 7 u=t|M:k.T| T2 | Meiu.T | T]K]

| Az:Ksem. 7 | T[u] | Ctor (3, k)

| Elim[x’, ] (7'){7} | Elim[+/, k] (') {7}

D.3.2 Pure terms

The pure terms are defined as:

(A) a,b,c::=t]|ab]|A.a|Co(n)|matcht.{a}

The set of reductions on the pure terms are defined as:

(At.a) b [b/t]la
At.(at)>ya ift¢ FV(a)
match t.{@} (Co(i) b) >, ([match t.{@}/t]a:) b

The translation from types to pure terms is defined as:

It|=t
|Ti 2| =71 |72
| T[] |=]7]
|T[u]| =]
| At k. T|= At T|
[Ak:u.T|=]|T|
[ Az:Ksem. 7| =|7]|
| Ctor (n, k) | = Co(n)

|Elim[r, s'[(1){7} | =
(match t.{Y (K4, |7 |, M2t t2)}) |7|
wherex = Ind(k:Kind){R} and

(k a1,a2):a1
T(Ht K1.R2,01,Q 2):At.T(Hg,a1 t,ag)
T(Ik:u. k,a1,a2) =Y (k,a1,az)
T(Hz Ksem. k, a1, a2) = Y(k, a1, az2)

T(HX.A. k— k,a1,a2)=
MY (ka1 t (N X |az (¢ | X)), a2)

Lemma 26 Let 7 and7r’ be two well formed types and lete a
type variable. Thet[r'/t]r|=[|7'] /t] | T].

Proof Itis a straightforward proof by induction over the structure
of 7. O

The following lemma uses Definitions 9 and 7 in Section D.2
and also the definition of from above.

Lemma 27 |®x. 1, 5(k, T)|=

—_—————>
[match t.{T(Hi, |T7; |7 Atz.ttg)}/t]’r(.‘i, ‘T|, )\tQ.t tQ)

Proof The proof is by induction on the fact thatis the kind of
a constructor. O
Lemma 28 For all well formed proof terms; andr, if

71 > 7o, then|m | 7 |72 | wherej <.

Proof Follows from lemmas 26 and 27. m|
D.3.3 Interpretation of schemas

Definition 27 (Arity) We call ground kind schemas arities de-
noted asrity(u, Kind). The arities are defined with the following
grammar:

(ksem)  w = Kind | k:uy. ug | IIE: k. u

Definition 28 (Schema map)We define a kind schema mapping
K as a function mapping kind schema variablet arities. We

In this section, the types are also referred to as proof terms. We also useC, z : u to say thafC has been augmented with the mapping

sometimes usé to refer to an inductive definition.
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Definition 29 We define the functiop(u)x as:

pu)x = po(K(u))

e po(Kind) is the set of sets of pure terms;

where

o po(Ilk:u1.u2) is the set of functions fromg (u1) to po (u2);
and

e po(It: k. u) is the set of functions from to po(u).

Definition 30 For each kind schema and mappindC, we define
in p(u)x the relation of partial equivalence written asc(,) as
follows:

e forall C andC’ in po(Kind), we have tha€' ~iny C' <~
c=C

e forall C andC’ in po(Ilk:u1.uz), we haveC ~; uy C’
< forall C; andC5 in po(u1) with C1 ~,, C> we get
thatC Cy ~,, C’ Cs; and

e forall C andC’ in po(I1t: k. u), we have thaC ~r.. ., C’
<= for all @ andb in A such thata =g,, b, we get that
C a~, Ch

Definition 31 (Invariant) GivenC' in p(u)x, we say that’' is in-
variant <= C ~x ) C.

Definition 32 (Neutral terms) A term is called neutral if it has
neither of the following forms At.a, Co(4) @, or matcht.{a}.

Definition 33 We defineCR(Kind) as consisting of all set§
such that:

e if a € C, thena is strongly normalizing;
e if a1 > az anda, € C, thenas € C; and

o if ais neutral and for all terms’ such that:>a’ anda’ € C,
thena € C.

Definition 34 (Candidates) We defineCR(u)x as a subset of

p(u)x as:
CR(u)k =CRo(K(u)) where
e CRo(Kind) is defined as in Definition 33;

e CRo(Ilt: k. u) is the set of invariant elements belonging
to po (I1t: k. u) such thal’ A C CRo(u); and

e CRo(Ilk:u,. u2) is the set of invariant elementsbelonging
to po (I1k :uy. u2) such thatC (CRo(u1)) C CRo(u2).

Proposition 35 All reducibility candidates are invariant.
Proposition 36 Let (C;),., be a family of reducibility candidates
of Kind indexed by a set. Thenn;c;C; is a reducibility candidate

of schem&Kind.

Lemma 29 LetC € p(u)k. If Cisinvariant, then
C € CR(u)x <= YC' € Dom(CR(u)x).C C' € CR(Kind)x

Proof  Straightforward induction over the structureféfu). O

Definition 37 Let a; be a strongly normalizing term. Then the

length of the longest sequence of reductions to a normal form is

denoted ag(a1).
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Lemma 30 Leta; andas be two terms and lef' € CRo(Kind)
be a reducibility candidate. i is strongly normalizing, and if
laz/tlar € C, then(At.a1) a2 € C.

Proof By induction oven/(a1) + v(az). O
Corollary 38 Let a; be a pure term and lef’ be a reducibility
candidate of schemidind. Let# anda’ be respectively a sequence
of variables and terms of the same length. If foriall; is strongly

normalizing, and ifa’ /f]a; € C, then(\.a1) o € C.

Lemma 31 For all reducibility candidate€’ of kind Kind, for all
sequences of strongly normalizidgandb and for alli less than
the length ofa, we have that

match t.{@} (Co(i) b) € C <= ([matcht.{@}/t]a;) be C

Proof  Follows by induction over(a;) + v(b;) (foralli). O

Definition 39 (Canonical candidates) DefineCan(u)x as:

Can(u)x = Cang(K(u)) where

e Cang(Kind) is the set of all strongly normalizing terms;

e Cang(II¢ : k.u) is the function mapping all pure terms to
Cang(u); and
(

e Cang(IIk : ui.u2) is the function mapping all elements of
po(U1) to Cano(uQ).

D.3.4 Properties of candidates

In this section, we state some properties of the reducibility candi-
dates. The properties with respect to the union and the intersection
of a family of candidates will be used for the inductive construc-
tions of candidates.

Definition 40 (Order over candidates) For each kind schema
and mappingdC, we define inp(u)« the relation<y,, as follows:

e forall C andC’ in po(Kind), we have thaC' <ing €' <~
Ccc

e forall C andC’ in po(Ik:u1.us), we haveC <iriw;.uy C’
<= forall Cy in po(u1), we getthat C; <., C' Cy; and

e forall C andC’ in po(ILt: k. u), we have thal <irg.. C’
<= forallain A, we getthaC a <, C’ a.

Definition 41 For all schemas and mappingC, for all families
of elements irp(u), we define/\,; C; as:

e forallC; € po(Kind), /\iEI Ci = NierCl;

e forall C; € po(Ht:li.u), /\1161 Ci=beA— /\iel C; b;
and

e forall C; € po(l'[k:ul.ug), /\iel C; = C' € po(’LL1) —
/\ie[ C; C.

Lemma 32 Letwu be a schema and a mapping and’; a family
of elements op(u)xc. ThenVj € I, A,c; Ci <x(u) Cj-

Proof It follows in a straightforward way by induction over the
structure ofiC(u). O

The following two propositions also follow easily by induction
over the structure of (u).



Proposition 42 Letwu be a schema and a mapping and’; a fam-
ily of elements ofp(u). If all C; are invariants, then the same
holds for A, ; Ci.

Proposition 43 Letwu be a schema anfd a mapping and’; a fam-
ily of elements ofCR(u)xc. Then we also have that, , C; €
CT\’,(U))C.

Corollary 44 We get thafCR (u)k, <x(v)) is an inf-semi-lattice
for all schemau and mappindC. We usemin(K(u)) to denote the
smallest element.

Definition 45 For all schemas and mappindC, for all families

of elements ip(u)x, we define\/, ., C; as:

e forall C; € po(Kind), vie] Ci = Uie1C;

e forall C; € po(Ilt: k. u), \/
and

iEICi =beA— \/ieIC’i b;
o for all C; € po(Hk:U1.U2), \/iel C; = c’ S po(U1) —
Vier Gi c.

Lemma 33 Letu be a schema and be a mapping. LefC;)
and(C";),, be two families of elements @f(u) . If for all
elements of I we have thaC; ~x (. C;, then we also have that

Vier Ci =k Vies Ci-

Straightforward induction over the structurefofu). O

icl

Proof

Corollary 46 Letu be a schema arfd be a mapping. LefC;)
be a family of elements op(u)«.
V,e; Ci is also invariant.

iel
If all C; are invariant, then

Lemma 34 Letwu be a schema and be a mapping. LefC;)
be a family of elements gf(u)x andC' € p(u)x. If for all 4,
C; <K (u) C, then\/ie] C; <K(u) C.

iel

Proof The proof is by induction over the structure/6fv). O

Lemma 35 Let (C;),, be atotally ordered family of elements of
CR(u)k. Then\/iel C; € CR(u)k.

Proof The proofis by induction over the structuref6fu). Sup-
pose\/,.; Ci = C".

O

Definition 47 (Schema interpretation) A schema interpretation
U is a function that maps a kind variabitdo an element op(u)x.
We also usé/, k : C to say that{ has been augmented with the
mappingk — C.

Definition 48 (Well formed kinds) Let v be a schemax be a
kind, L be a mapping, antl be an interpretation. We say that
« is a well formed kind of schemi(u) underkC andi/ iff :

1.k =kandU (k) = p(u)x;

2. k = IIt : k1. k2 With K(u) =g, Kind andx, andx. are
both well constructed of schenkdnd under/C andi/;

3. k = Ik : /. k" with K(u) =, Kind andx’ is well con-
structed of schemiind underk andi{, k: p(u)x;

4. k = Ilz:Kscm. &’ with K(u) =g,, Kind and for allu’ such
thatu’ € arity(u1, Kind), we have that’ is well constructed
of schem&Kind underiC, z: v’ andif;

5. k = K1 k2 if there exists two schemas, andug with k2
well constructed of schemi@(u2) underC and{, alsox,
well constructed of schem@(I1k : uz. w1 ) underC andi{,
andp(u)x = p([k2/klu1)x;

6. k = k1 71 if there exists a schema, and kindx. such that
1 is well constructed of schemia(I1t: k2. uz) underkC and
U andp(u)c = p([r1/t]uz)x;

7. k = Ak : ui. k1 if there exists auz such thatx; is well
constructed of schemfd(u2) underkC andi/, k: p(u1)x and
p(uw)k = p(Ilk:uq. u2)k;

8. Kk = At : k1.ko if there exists aus such thatk, is well
constructed of schemf(uz) underC andi/ andp(u)x =
p(Ht:K,LuQ)/c;

9. k = Ind(k : Kind){<} if all x; are kinds of constructors
and well constructed of schentéind underC and i/, k :
po(Kind), andp(u)x = po(Kind); and

10. k = Elim[x’,«'](7){R} if &' = Ind(k : Kind){x"}, andx’
is well constructed of schentéind under/C andi/, alsow’
is a schema ankl (u) =3, u’, ands; is well constructed of
schemaC (U, ./ (x5, v')) underkC andif.

Definition 49 We define compatible mappings and interpretation

e K(u) = Kind. We have to make sure that all three conditions as:
in Definition 33 are satisfied. The first two conditions follow

obviously. For the third case, assume thd neutral and for 1.

all termsa; such thata > a;, we have that; € C’. This
implies thata; € C; for somej. Since there are finitely

many suchC; and they are totally ordered, we can choose a 2.

C), among them that contains all thi¢;s. Since thisC}, is
also a candidate, it contains Thereforea € \/,; C:.

e K(u) = It : k. u. Since all theC; are invariant, it follows
from Definitions 30 and 31 that for a temme A, we have that
C; aisinvariant. Again from Definition 40, it is clear that the
C; a are totally ordered. Also from Corollary 46 we get that
V,e: Ci aisinvariant. Applying the induction hypothesis we
getthaty/,_; C; a € CRo(u). From Definition 34, it follows
that\/iel C; e CRo(Ht:H. u)

e K(u) =IIk:u:i.uz. Similar to the previous case.
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Proof

A mappingl is compatible with a contexh if for all z € A,
we havelC(z) = arity(u, Kind).

An interpretatior/ is compatible with a contexf\ and a
compatible mappingC if for all pairs (k,u) € A, we have
Uk) € p(u)r.

Lemma 36 If A F « : u, then for all compatibldC andi/, we
have thats is well constructed of schenia(u).

By induction over the structure af. O



D.3.5 Inductive constructions

Consider an increasing function F g (Kind) for the order<gind.
Denote the smallest element @f(Kind) as_L. Sincepo(Kind) is
closed unden, and (po(Kind), <kind) is an inf-semi-lattice, the
function F has a least fixed pointflp). We will construct this least
fixed point inductively. We first define the transfinite iteration of F.

Definition 50 Let C' € po(Kind) ando be an ordinal. We define
the iteration of ordeo of F overC' as:

o FO(C) = C;
o [°THC) = F(F°(C)); and

° Flim(U) — erUFO(C).

Lemma 37 Leto be an ordinal; we have” (L) <kina {fp(F).

Proof The proofis by induction oves. If o = 0, then it follows
immediately. Otherwise,

e 0 = o + 1 Then we have thaf°(L) = F(F°(L)).
By the induction hypothesis, we get thE(F"I(J_)) <Kind
F(Lfp(F)). This implies that?(F° (1)) <kina Lfp(F).

e o = lim(U) Follows immediately from the induction hypoth-
esis and lemma 34.

O

Remark 51 Since we do not consider the degenerate case of
F(Ll) = 1, it follows from lemma 37 that for some ordinal
we have that fp(F) = F°(L1).

Lemma 38 SupposeS is a subset opo (Kind) satisfying:

o if (C;),c is atotally ordered family of elements &f then
UierCs € S;

e F(L)e S;and
e forallCinS, F(C) € S.
Thenlfp(F) € S.

Proof
ordinalo.

Follows from the fact thal fp(F) = F°(L) for some

O

Definition 52 Leta € Ifp(F). We definedeg(a) as the smallest
ordinal such thai € F9&() (1),

Definition 53 To alla € Ifp(F'), we associatered(a) defined as
Fdeg(a)—l(L).

Lemma 39 For alla, deg(a) is an ordinal successor.

Proof  Suppose it is the limit of the séf. From Definition 50,
there exists some € U for whicha € F°(L). This leads to a
contradiction. |

Definition 54 (Partial order) Suppose& andC’ are two elements
of CRo(Kind). We say thaC' <r C"if C = F°(L) andC’

F° (1), ando < 0.

25

D.3.6 Interpretation of kinds

In this section we interpret kinds as members of reducibility candi-
dates. First we augment the schema interpretation

Definition 55 We augment{ so that it maps a kind variable to an
element ofp(u)xc, and a type variable to a pure term

Definition 56 We denote the interpretation of a typeasCy (7).

To form this, we first construct the corresponding pure terifrand

then substitute the type variables by the corresponding pure terms
inU. This is equivalent td{(| 7 ).

Definition 57 (Interpreting kinds) Consider a kindz, a schema
u, @ mappingC, and an interpretatiot. Supposes is well con-
structed of schem& (u) underC andi{. We define by recursion
onk:

1. Cl (k) =U(k)

2. CN(IIt : k1.k2) = {a € AVar € Cf(ki1),aa1 €
Cg,t:al (K’Z)}

- Cli (Mk:ua. k1) = Neeer (uy) e Chipc (K1)

,z:ul(

Cf(Hz:Kscm.m) = ﬁulearitywmnd)cg K1)

Cli (k1 ) = Cly (k1) Cly ()
Cli (k1 K2) = Clf (k1) Clf (K2)
(

C

N g &

K. Iiz) =a€EAN— CZ};,t:a(K2)

a <a <a <&

. Ci(Ak:ui. k1) = C € CR(u1 )k — sz,k:c(’fl)

. 5 (Ind(k : Kind){R}) = the least fixed point of the function
F from po(Kind) to po(Kind) defined as :

for all S € po(Kind), for all C" in CR(I — Kind)x (where
I = Ind(k : Kind){R}), for all sequences of pure terms
with for all z,

bi € Clf s, a1 mrcoti) (Ch1 (i, A', B))

F(S) is the union ofmin(Kind) with the set of pure terms
such that

(match t'{CZ’/{C,a,i:bi (T(Fui, aq, Atg.ttg))}) acC' a

10. Cf (Elim[k, u](7){x'}) = G(CK (k)

wherex = Ind(k : Kind){<} is well constructed of schema
Kind underC andi/ andG(C') € p(u)x is defined for all
C € dom(<,) as follows K, is the order induced by the
inductive definitionx):

e If CX(7) has a normal fornb = Co(i) @ such thab
C

G(C) = Clf 1.6 (prea(v)) (Pr, 1,11 (3, 57)) (@)
e Can(u)x otherwise

Lemma 40 The functionF in Definition 57.9 is monotonic.



Proof We must prove that if®; <kina Co, then

Cg,k’:}gg,A’:C’,B’:Co(i)(gk,I(K'ivAlvB/)) <Kind
! /
Cu,k:cl,A':Cf,Bf:CO(i)(Ck,l(’fiaA . B")

The proof is by induction on the fact that is the kind of a con-
structor.

o If k; = k, then both sides reduce @ Co(3).

o If K, =I1X: Ay. As, then it follows directly from the induc-
tion hypothesis and becauka&loes not occur im;.

o If k; =TIX: Ak — Az, then

Ck,I(HMAl?BI) =
NZ:(IX:A k).TX :A (A (Z X)) — Ce1(As, A", B' Z)

Supposét’ = U,k : C", A" : C', B’ : Co(i) whereC" is
eitherC or Cs. The required set is then

a € A, suchthatia, € CX, (11X : A. k),
Vaz € Cfyr 4.0, TIX": AL A" (Z X))
aar az € Cly .0, (Cr1(A2, A", B' Z))

The set ofa; andas is larger for the LHS. By the induction
hypothesis, the result a1 a2 must occur in a smaller set for
the LHS. The required result follows from this.

O

Remark 58 The previous lemma ensures that the interpretation of
an inductive type sets up a well defined order. This ensures that
the interpretation of large elimination (Definition 57.10) is well
formed.

We get a bunch of substitution lemmas. The proof for each of
these is similar and follows directly by induction over the structure
of k. We state them below:

Proposition 59 Let x be a well constructed kind of schemaun-
der  and{. Lett be a type variable, and a type. We have

that ’C .
Cu ([r/t)R) = Cy y.cxs () (R)

Proposition 60 Let x be a well constructed kind of schemaun-
der/C andi{. Let k be a kind variable and; a kind such thak is
well constructed undelC andi/ of the same schema &&k). We

have that . .
Cui ([r1/k]k) = Cu,k:cg(m)(“)

Proposition 61 Let x be a well constructed kind of schemaun-
der/C andi{. Let z be a schema variable, amg be a schema such
thatC(u1) is an arity. We have that

Cei ([ur/2Jw) = €™ (w)

D.3.7 Candidate interpretation of kinds

Definition 62 We say thal/ andl/’ are equivalent interpretations
if for all k, we have that{(k) ~ U’(k) and for allt we have that
U(t) =pn. U'(t).

Lemma 41 Letu be a schemd be a mapping, antd and/’ be
two equivalent interpretations. Supposés well constructed of
schemaC(u) underk and both/ andi/’. Then

Cl (k) ~k ) Cl ().
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Proof The proof is by induction over the structureafMost of
the cases follow directly from the induction hypothesis.

e k = Elim[x’,u](r){s'}. Herex’ = Ind(k : Kind){7}.
First note thaiC (v') = CJ/ (x'). Therefore, the function
F whosel fp generates the inductive definition is the same.
Moreover,CX (1) =g, Ci%/ (7). Since the set of pure terms
is confluentCl (1) andCjy, () have the same normal form.
We can now do induction on the structuresgfto prove that

V) ~

CS,tlcc;(p]rced(b)) (P, 1,81 (i K7))
/
Cl/{’,tl:G(pred(b)) (P, 1,11 (Fis K7))

O

Lemma 42 Let K be a mapping/ a candidate interpretation,
be a kind and: be a schema such thatis a well constructed kind
of schemdC(u). ThenCl (k) € CR(u)k.

Proof The proofis by induction over the structuresafMost of
the cases follow in a direct way.

e k = Ind(k : Kind){K}. We will use lemma 38 to prove
this. ForS € CRo(Kind), the first condition is satisfied by
lemma 35.

— SupposeS = L. If none of the branches is recur-
sive then the functior¥ is a constant function and the
proof is similar to the non-bottom case. Suppose the
ith branch is recursive. Then it is easy to see thabthe
defined as:

b; € Cg,k:J_,A/:C,B/:CO(z‘)(Ck,I(’% A',B"))

includes the set of all terms, including non-normalizing
ones. Therefore, there are no terathat would satisfy
the condition that:

(match t.{Cf{ a,5, (T (Ki, ai, M2t t2))}) a € C a

This implies thatF'(L) = L and we know thatlL €
CRo(Kind).

Consider any othe. We will show thatF'(S) sat-
isfies the conditions in Definition 33 and hence be-
longs toCRo(Kind). F(S) is defined as the union of
min(Kind) with the set of pure terms such that

(match t,{Cﬁal:bi (Y(Ki,ai, Ma.tt2))}) a € Ca

Since(C is a candidate, the termsmust be strongly
normalizing.

To see that the set is closed under reduction, sup-
posea > a’. Since(C is a candidate we have that
(matcht.{...}) @’ € C a. Moreover, we have that
C a = C d. Thereforeg' is also in the generated set.
Supposes is a neutral term and for alk’ such that

a > a’, we have that’ belongs to this set. We have
to prove thatz belongs to this set. This implies that we
must prove:

(match t.{CLy a,, (T (Ki, ai, Mot t2))}) a € C a

Sinceaq is a neutral term, the above term does not have
a redex at the head. From the induction hypothesis, we
getthatCl; . ar.c.prcori) (Cr.i (ki A, B)) is a can-
didate and therefore closed under reduction. Moreover,
thed; are strongly normalizing. We can now consider
all possible redices and prove by induction owéb;)

that the above condition is satisfied.



o k= Elim[x’, u](7){x'} wherex’ = Ind(k:Kind){R}. First

Lemma 47 Let A + Elim[k, x1](7){7'} : k1 be a derivable

note that’5 («') is a candidate by induction and gives rise to  judgment wheres, is a kind. Suppos£ is a mapping andf is a

awell founded order 0GR, (Kind). We will do induction on
this order. Suppos&fy (x) = G(CX (x")). We will show that
for all setsS belonging to the order generated kY and for
all pure terms, we have thaG(S) € CR(u)x. For the non-

recursive case, the proof is immediate. For the recursive case,

considerC/y , . pred(s)) (P b, (i, 7). Note thatpred (b)
belongs to the same order. The required result follows now
by doing induction over the structure ef and applying the
induction hypothesis t6/(pred(b)).

O

Definition 63 SupposeA is a context andC and/ are a mapping
and an interpretation. We say thidtandi/ are adapted ta\ if:

e Vz € A, we have thatC(z) is an arity and + K(z) : Kscm.
o Vk € A, we have that/ (k) € CR(A(k))k.
e Vt € A, we have that/(t) € Cff (A(t)).

D.3.8 Interpretation of abstractions

We get a bunch of lemmas that state that an abstraction at the typ
level belongs to the corresponding kind. The proof of each of these

lemmas is straightforward and follows in a similar way. We will
show the proof for only one of the lemmas.

Lemma 43 LetA F Mt:k.7: IIt: k. k1 be ajudgment anil
andi/ be a mapping and a candidate interpretation adaptéd to
We haveCly (\t: . 1) € Cff (ITt: k. k1) if and only if for all pure
termsa € Cfy (k), we have thal/y ;.. (1) € Cff .a(k1).

Lemma 44 Let A F Ak:u. 7 : Ik:u. k be ajudgment antl
andi/ be a mapping and a candidate interpretation adaptéd to
We haveC (\k:u. ) € CX (ITk:u. &) if and only if for all
reducibility candidate§’ € CR(u)x we have that

Cli ko () € Cli po(K) .

Lemma 45 Let A F A\z:Ksem. 7 : I1z: Kscm. x be a judgment
andK andi/ be a mapping and a candidate interpretation adapted
to A. We haveCly (\z:Kscm. 7) € CY (T1z: Kscm. ) if and only

if for all u € arity(u’, Kind) we have tha€js (1) € C)y*™ ().

Proof By definition Cfy (A\z : Ksem.7) = Cfi (). Similarly
Cl (T2 : Ksem. £) = My, carity(u,kina)Cog > * (k). Theif part fol-
lows directly from the definition.

For theonly if, suppose thatfs (1) € C)y** (k) for all arities
u. This implies thaCl§ (1) € Nu, carity(u.king)Cog =" (k). This
implies thatC/; (1) € Cff (T1z: Ksem. k). O

D.3.9 Interpretation of weak elimination

For this sections = Ind(k : Kind){K}. Suppose also thaf e
CR(/‘C — Klnd)lc andn c CZ’;,A/:C,B/:Co(i) (Ck"l(ﬂi, A/, B/))

Lemma 46 Suppose: € Cfy (k). We have then

_—
(match t.{Y (ks, Ti, M.t t2)}) a € C a

Proof  Follows immediately from the definition @f5 (x).
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e

candidate interpretation adaptedo If C5 () € C%(x) and
Cl (t]) € ClY (Cr1(k4, k1, Ctor (4, k))), then we have

C&(Elim[li, m](r){;’}) € Cﬁ(m)

Proof Follows now from the previous lemma.

D.3.10 Interpretation of constructors

For this section, suppose= « = Ind(k : Kind){R}. Also, sup-
poseC € CR(I — Kind)k.

Lemma 48 For alli, Co(i) € C (ki)

Proof We know thats; is of the formIIX : A. k. SupposeB €
Cﬁ,k;cg(z)(X:A)- Then we need to prove théb(i) B € C5(I).
This means that we need to prove that
N . _,
(match t.{Y (k;, a;, Ma.tt2)}) (Co(i) B) € C (Co(i) B)

wherea; belongs to the appropriate candidate. This implies that
we need to prove that

Y(ki,ai, Mta.matcht.{.. .} t2) B € C (Co(i) B)

This follows directly by an induction over the structuresgf O

D.3.11 Invariance under [ reduction

In this section, we show that the interpretation of kinds remains
invariant unders reduction.

Lemma 49 Let x be a well constructed kind of schemainder a
mappingk and candidate interpretatién If x >3 «', thens' is
well constructed of schemaunderC andi/, and

Cli (k) = Cly (k).

Proof The proof is by induction over the structure ©f Most
of the cases follow directly from the induction hypothesis. We will
only consider3 reductions at the head.
e k= (At:K1.k2) 7. By definition,
Cl((Mt:kr. k2) T) = ClY (At k1. k) Ciy (1)

Again by definition this is equal tﬁg £:CK () (k2). By propo-
Rady
sition 59 this is equal t6}§ ([r/t]xz)

o 1 = (Ak:uy. K1) k2. By definition,
Cﬁ(()\k:uym) K2) = Cg()\k:uym) C&(,‘ig)

By lemma 42 we have thal (xk2) € CR(u1)x. Therefore,
we get that

C&(()\kul lﬂ) :‘12) = ngkzcg(rw)(ﬁl)

By proposition 60 this is equal @ ([x2/k]x1).



D.3.12 Invariance under 7 reduction

In this section, we show that the interpretation remains the same
undern reduction. The unmarked ternfjs< || are defined in Sec-
tion D.2.1.

Lemma 50 Let s be a well constructed kind of schemainder a
mappingK and candidate interpretation If >, ', thenx’ is
well constructed of schemaunder/C andi{, and

Cly (k) = C ().

Proof The proof is again by induction over the structurexof
We will consider only the cases where the reduction occurs at the
head.

e k= M\t:r1. (k2 t). By definitionCy () is equal to:
a€lr— C&,t:a(’ﬂ) Cﬁ,t:a(t)
Sincet does not occur free iRo, this is equivalent to
aeA— Cl(r2)a

Sincea does not occur free now iy (k2), we get that this
is equivalent taC/ (x2). Note from Definition 34 that the
domain ofCJ$ (k2) is A.

K = Mk:ui. (k2 k). By definitionCfy () is equal to:
C € CR(w1)x — Cli ko (k2) Clipec (k)
Sincek does not occur free iR, this is equivalent to
C € CR(u1)x — Cly (k2) C

SinceC does not occur free now @5 (k2), we get that this
is equivalent taCjy (k2). Note from Definition 34 that the
domain ofCJS (k2) is CR(u1)k.

O

Lemma 51 For all well constructed kinds of schemau under/C
andi/, we haveC; (k) = Cf (|| k).

Proof Follows from the fact that =g, || ||.

D.3.13 Invariance under . reduction

In this section we essentially show that interpretation remains the
same under large elimination.

Lemma 52 Let Elim|[x, u](7){x’} be well constructed of schema
K(u) underC andi{. Supposex = Ind(k:Kind){R}. Suppose&

is the function used for the interpretation of the large elimination.
If ¢ (1) € CK (), then for allC' € CRo(Kind) with Cff (1) € C,
we have thaG (Cf5 (k)) = G(C).

Proof The proof is immediate.

Lemma 53 Supposd = « = Ind(k:Kind){&K}. Suppose the
constructors of are all small. Suppose theth constructor off
has the forniIY : 5. k and we have a sequence of terbrsich
thatCo(m) b € G5 (I). Then we have that

bi € CC (Bs).

U, Vk<i.Yy, by, k:pred(Co(m) b)

Proof We can have two cases.
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e pred(Co(m) b) # L

This implies thapred(Co(m) b) € CRo(Kind). Suppose
K

S = CM,Vk<i.Yk:bk,k:pred(Co(m) l;)(BZ) Then we have that
S is a candidate of schenttind. Suppose also that’ be-
longs toCR(I — Kind)x and maps elements in the do-
main of I - Kind to 8. Then for all indicesi’, we
have thatC; , i cotm) &),a7:c” (C,1(kir, A', Ctor (i, I)))
is a reducibility candidate dfind.

To prove the lemma we need to show that if for all indices
K .
Ti € Cf k. pred(Co(m) 5),A':C/(<k»1(“i7 A’ Ctor (4, 1))

then we have thab, ; g/ (km, 7m) can reduce td; by a head
reduction. To have this, for the indicés# m chooser; as
some variable. For,, choose the term that returns tkia

argument of the constructor.

-,

pred(Co(m) b) = L We can show that the constructors now
are not recursive. Hendedoes not occur free in any of the
B;s. The proof for the previous case can be reused here.

O

Lemma 54 Let A + Elim[x,u](7){~'} : u be a derivable
judgment. LetlC be a mapping antd be an interpretation adapted
to A. Supposd = k = Ind(k:Kind){R}. Suppose

CY () € % (k) andT >* Ctor (i, k) A. Also suppose

B’ = At:I.Elim[k, u](t){~'}. We then have that

Cly (Elim[w, u] (1) {K"}) = Clf (1,87 (wi, K1) (A)).

Proof Let G be the function used for interpreting large elimina-

tion. SupposeCo(i) @ is the normal form o’S (7). Then given
the assumptions we have that:

Cli (Elim[w, u] (7){x'}) =
C§,B’:G(pred(Co(i) (i))(q)k,l,B/(Hi? KJ;)) (C_l:)
We therefore have to prove that

Cg,B/:G(pred(Co(i) a))(q’k,l,lz’ (ri,K7)) (@)
Cli (Pr, 1,57 (K, K1) (A))

e x; = kit follows directly.

e rx; = IIt: k1. k2 We have to prove that

CE,B’:G(pred)éCo(i) a)).t:ay (q)k,I,B’(F‘J% ’i:; t)) (a24.n) =
Cu,t:al ((bk,I,B'(K'27 K/:', t) (A2'fl))

Applying the induction hypothesis leads to the result.

k; = I R. k — k2 The LHS becomes

CZ’;’ (¢k,I,B’ (F{,Q, .‘i;t(k? : R’ Bl(t?)))) (a2“n)
whereld’ = U, B’ : G(pred(Co(i) @)),t : a1

By lemma 5341 belongs taC; ,.p.eq(co(i) a) (1t : &. k). This
implies thata; Y € pred(Co(i) @). Moreover, by lemma 52
G(pred(Co(i) @))(a1 Y) is equal toG(CY (x))(a1 Y) and
which is in turn equal ta?}y (Elim[x, u](A; Y){x'}). The
required result follows directly from here by performing one
head reduction on the RHS and applying the induction hy-
pothesis.

O



D.3.14 Kinds invariant on their domain where B = \Y : I.Elim[x, u](7){x'}, and B” = \Y :
I' Elim[&" u'](7"){x"}. Itis evident thatB. is a reduct of

Definition 64 Let A F x : u be a derivable judgment and By, and therefore we need to prove tiiét, Kind, A, IC, )

andl be a mapping and an interpretation adapted\toWe say

(k,u, A, K,U) is invariant if: IS |.nvar|ant. ) )
) This follows by an induction over the structure of and by
o u = Kind Kand for all " such thatx >* ', we have that using the condition 2. The non-recursive cases follow di-
Cri (k) =Cly(k); rectly. For the recursive case, we use lemma 53 to show that
pe : .
e u = ITt: ky1. u; then for all derivable judgmen®& + 7 : k1 dBef;rs];jng;;d to a smaller argument with respect to the order

andCl (1) € Cfy(x1), we have thatk 7, [7/t]ui, A, K, U)
IS Invariant; o We are left with the case wherreduces to a term of the form
Ctor (4, I)C. In going fromk; A to k2, we will now have a

e u = Ilk: . uz then for all derivable judgmenta - r; : ¢ reduction. The sequence of reductions is now

u1, we have thatx k1, [k1/k]uz, A, IC,U) is invariant.

e u = z and we have thaC(), K(u), K(A), K, U) is invari- k1 A >* Elim[k,u](Ctor (i, I) A){r'}
ant. >, (cpk,f,xg (ki, B') (B’))f‘Y
>" Ko
Lemma55 Let A F k1 : Kind andA + k2 : Kind be two
derivable judgments and andi/ be a mapping and an The first reduction does not change the interpretation since
interpretation adapted t. If (1, Kind, A, IC, /) and we are reducing only a type. By lemma 54, the second does
(k2, Kind, A, K,U/) are invariant an@, =g, k2, then not change the interpretation. Finally, as above, we can prove
Cli (k1) = CY (k2). that the result of the reduction is invariant oveind.
Proof We know that there exists & such that| x; || >* B and o
|| k2 || " B. This implies that there exists4 and axs (lemma 13
and 12) such that; >4, 1 and|| s || 5 B. Similarly, ko >, k5 D.3.16 Instantiation of contexts

and|| k5 || t5 B. From here we get that
Definition 66 Let A be a well formed context. Le®d be a con-
Cl (k1) = Clf (Kh) = Cl (B) = CY (k) = Cff (k2) text andg be a mapping from variables to terms such that ¢
A d(X) = X.
0 We say thai©, ¢) is an instantiation ofA if for all variables
- o ) X € A, we have tha® + ¢(X) : ¢(A(X)).
Proposition 65 If ([7/t]x,u, A, K,U) is invariant, and alsa\ +

(At:hr. k) 72w, then((At: k1. £) 7, u, A, K, U) is invariant. Lemma57 Let A + A : B be a derivable judgment ari@®, )

an instantiation of\. Then® + ¢(A) : ¢(B).
D.3.15 Interpretation of large elimination

. Proof By induction over the structure of. O
Lemmab56 Let A + Elim[x,u](7){x’} : u be a judgment.
Supposdl = r = Ind(k:Kind){#}. Let K andi{ be a mapping Definition 67 (Adapted instantiation) We say that an instantia-
and an interpretation adaptedAo Suppose tion (©, ¢) is adapted to a context if:

1. (1) e ¢l ().

o forallt € A, ¢(t) € CL,, o) (B(A(1)));
2. foralli, (k}, U 1(ki,u), A, KC,U) is invariant.

. o forallk € A, (¢(k), p(A(k)), 0,0, Cang(®)) is invariant;

Then we have thaElim[x, u](7){x'}, u, A, KC,U) is invariant. . .
e forall z € A, (¢(2),Ksecm, ©,0, Cang(©)) is invariant and

Proof Supposes; = Elim[x, u](7){~'}. Suppose we are given ¢(z) is an arity.
a sequence of termd of the proper type so that; Ais in Kind.
To show the invariance, we have to show thatif A >* s, then
Cl (k1 A) = CY (k2). We will reason by induction o6, (7) over
the order defined by.

Definition 68 SupposeA + « : u is a derivable judgment. We
say that all instantiations df:,u, A) are invariant if for all instan-
tiations (©, ¢) adapted taA and for all interpretations/ adapted
to ©, we have thaté(x), ¢(u), ©,0,U) is invariant.
e If the termCJ () can not be reduced to a term of the form
Co(4)a, then it is minimal with respect to the order defined p 317 Kind schema invariant on their domain
by I. Thenk, is necessarily of the form
Elim[x’,u']("){<"} A’ and we have that the interpretation Decfjizfj{itigm 69 LetA - ud: Ksc_:rrtm be atdtgrivabée J'lidgpfi/r\llt arid
X ; . an e a mapping and an interpretation adapted\toWe say
of both, A andss is Cano (Kind). that (u, Kscm, A, IC,U{) is invariant:
e Suppose the ternd)s (7) can be reduced to a term of the

form Co(i)d, but 7 is not reduced to a term of the form e if u = Kind, then(u, Ksem, A, K, U) is invariant;

Ctor (i, I)C. Thenr: is again of the form o if w = IIt : ki.u1, then it is invariant if and only if
Elim[s"",u'](7"){x"} A’. By definition, we have that (k1, Kind, A, KC,U) is invariant and for all terms such that
. . o A+ 7 : k1 is derivable andy (1) € CX (k1), we have that

By =Cli(s1 A) =Cf; ; ra(Prrp (i, Ki) (1) A) ([r/tJu1, Ksecm, A, K, U) is invariant;

Ba = Clf (k2) = C 1a(Pror,m (K1, /1) (DAY)
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e if w = IIk : wi.ue2, then it is invariant if and only if
(u1, Ksem, A, KC,U) is invariant, and for all kinds such that
A F k:uy isderivable andk, u1, A, IC,U) is invariant, we
have tha{([/k]uz, Ksem, A, KC,U) is invariant;

e if u = 2, then it is invariantff (IC(z), Ksem, A, IC,U) is
invariant.

Lemmab58 LetA - x:uandA F u' : Kscm be derivable
judgments. LefC andi/ be a mapping and an interpretation
adapted ta\. Suppose: =g, v’, and(u, Ksem, A, K,U) and
(u', Ksem, A, KC,U) are invariant. If(x, u, A, KC,U) is invariant,
then(x, ', A, KC,U) is also invariant.

Proof The proof is by induction over the structurewfindu’.

e if u =’ = Kind, then it is trivially true.
e if u =’ = 2, then again it is trivially true.

o if u = It : ki.u1 andu’ = IIt : ka.ue, then we have
that k1 =gn. k2 andui =g, u2. By assumption, we
know that (1, Kind, A, IC,U) and (k2, Kind, A, IC,U) are
invariant. This means thaty (k1) = CX(x2). Moreover,
A F 7 kpistrueiff A F 7 : ko is true. Applying the
induction hypothesis now leads to the required result.

if u=TIk:u1.ue andu’ = Ik :u}. ub, the proof is similar
to the previous case.

O

Definition 70 SupposeA + wu : Ksem is a derivable judgment.
We say that all instantiations df:,Kscm, A) are invariant if for
all instantiationg©, ¢) adapted ta\ and for all interpretation&/
adapted t®, we have thaté(u), Ksem, ©, 0, U) is invariant.

D.3.18 Strong normalization of pure terms

Theorem 71 Let A 7 : k be a derivable judgment arid and
Ubea magping and an interpretation adapted tahen
cl(r) e ¢ (k).

Proof The proofis by induction over the length of the derivation.
The induction hypothesis are as follows:

e if A F 7: kandK andl/ be a mapping and an interpretation
adapted ta\, thenC (1) € Cfy (x);

e if A F k:u,thenallinstantiations dfk,u, A) are invariant;
e if A F u: Kscm, then all instantiations ofu,Kscm, A) are
invariant;

type formation rules
form A F 7 : k.

This paragraph deals with rules of the

e abstractions — Follows directly from the induction hypothesis

and lemmas 43 and 44 and 45.

var — Follows because the interpretatidns adapted to the
contextA.

weak elimination — Follows from lemma 47.
constructor — Follows from lemma 48.

weakening — Follows directly from the induction hypothe-
sis since the mapping and interpretation remain adapted for
a smaller context.
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e conv — Follows from the recursion hypothesis and lemma 55.

e app — All three cases of app are proved similarly. We will
show only one case here.

— A+ 7[4/] : 5. Then we know thal\ + 7 : Tlz:
Ksem. k1 andA + o' : Ksem and[u’/z]k1 = k. By
the induction hypothesis

05 (T) S mul Earity(u,Kind)CSYZ:u1 (ffl)

Supposeu; = K(u'). Then we know that () €

Cf’”/l (k1). By proposition 61 we know thaty (1) €

C&([u'/z]m). BUICS(T[U']) =CK(7).

kind formation rules
formA F k: w.

This paragraph deals with rules of the

e product — All the product formation rules are proved in the
same way. We show only one case here.

— Consider the following formation rule

A, z:Ksecm F & : Kind
A F IIz:Ksem. x : Kind

We have to prove that for all instantiatiof®, ¢) we
have tha{Tlz: Kscm. ¢(x), Kind, ©, 0, i) is invariant.
This implies that we must prove that if > «’, then
Cl(Iz : Ksem. ¢(k)) = Ch(I1z : Kscm. ¢(x')). By
the induction hypothesis, for all instantiatiof3, ¢; = :
arity(u, Kind)) we have that

(¢; 2 arity(u, Kind)(k), Kind, ©, 0, 1)
is invariant. This implies that if > " then

Ci{z:arity(u,Kind) (K/) _ CZ,/{z:arity(u,Kind) (K/)

The required result follows from here.
var — follows since the instantiation is adapted.
conv — follows from lemma 58.

application — Both of the applications are proved similarly
and follow directly from the induction hypothesis. We will
show only one case here.

—If A+ k1 kK2 @ [k2/k]u, then givenO, ¢, and/,
we must prove thatp(k1 k2), ¢([k2/k]u), ©,0,U) is
invariant. But by the induction hypothesis we know that
(6(K1), p(ITk : u1.u),O,0,U) is invariant andA +
K2 :u1. By lemma570 F ¢(k2) : ¢(u1). This leads
to the required result.

ind — Suppose = Ind(k : Kind){R}. Note thatC (I)
depends Only Oﬂg,k:S,AIIC,B/:CO<i) (CkJ (H’h A/7 Bl)) where

S € po(Kind) andC € CR(I — Kind)x. By induction on
the structure of;, we can show that this is invariant. This im-
plies that ifx; > & then the interpretation remains the same.
If I > 1I', then for somé, «; I> ;. From here we can deduce
thatif I > I’, thenCfy (I) = Cfy (I').

large elim — Follows from lemma 56.

abstraction — Both of the abstractions are proved similarly. So
we will show only one of the cases.



— A F M:ki.ke : It : k1.u. We must prove that

(¢(Mt = k1. ko), d(IIt = k1. u),©,0,U) is invariant, S(Ksem) = Kscm
given®, ¢, andi{. This implies that ifo - 7 : ¢(k1) U(Kscm) = Kind
and 7 belongs to the appropriate candidate, then we K(Ksem) = A

must have(¢(At : k1. k2) 7, [T/t]p(u), ©,0,U) is in-

variant. By proposition 65 we must prove that The encoding for schemas is as follows:

([r/1)p(r2), [/t]¢(u), ©,0,U) U(Kind) = Kind
. . . : . o : I¢:k.u) =11t: K(k). U(u)
is invariant. But(¢,t : 7) is an instantiation that is u( ~
adapted td A, t : x1). Applying the induction hypoth- U(Ilk: us. “2):Hk U(ur). Ity K (u1). U(uz)
esis now leads to the result. U(z)==
K(Kind)=A
schema formation rules  This paragraph deals with rules of K(Ilt: k. u) =1It: K (k). K(u)
the formA F u : Ksem. K(Ik:ui.ug) =1k:U(uy). tg: K (u1). K(u2)
=k,
e v = Kind follows directly. K()
. . o T(Kind)=8B A
e u = z follows since the instantiation is adapted. T(I0t: k. u) = BlA — TIt: K (k). A — A]
— . i T(k)(At: K(k). T(u))
o u = ITk : u1.ue Given©, ¢, andi/ we have to prove that
(p(T1k : u1.u2), Kscm, ©,(,U) is invariant. By the induc- T(Ik:ur.uz) = B[A — Ik:U(u1) Ttk : K (u1). A — A
tion hypothesis, we know that(u1), Kscm, ©, 0, 14) is in- T(ur)(Ak:U (ur). Abge: K (ua). T (uz))
variant. The induction hypothesis also says that T(z)=t-
(¢, k : K](u2), Kscm, ©,0,U) is invariant. We also know . . . )
thatA + & : ¢(u1) and(x, p(u1), ©, 0, U) is invariant since The encoding for kinds is as follows:
the instantiation is adapted. This implies that
(¢([r/k]uz), Ksem, ©, 0, U) is invariant. K(k)=k
e u = IIt: k1. us the proof is very similar to the above case. K(I0t: k1. ko) =11t K (k1). K (k2)
K(Ik:u. k) =11k U(u). ity : K (u). K (k)
O K(IIz:Ksem. k) =11z : Ksem. Ik, : Kind. 1Tt : A. K (k)
K(Ak:u. k) =Xk:U(u). My : K (u). K(k)
Corollary 72 If T is a well formed type| | is strongly normaliz- K(At:k1.k2) =At: K(k1). K(k2)
ing. K(k7)=K() T(r)
K (k1 'fz)IK( 1) K(k2)T(k2)
Proof  Sincer is well formed we have tha + 7 : k. We K (Ind(k:Kind){"}) = Ind(k: K,nd){K(ﬁ)}
only need to construct an interpretation and a mapping. For the ) —
interpretation, let/(t) = t for every type variable. Then we get K (Elim(r, u)(r){x'}) = Elim[K (), U (w)}(T (7)) { K (x")}
ci(r) =l
We can build the rest @ff and/C as: T(k) =ty
e if A = thenl(k) = Cano(Kind) andk(z) = Kind for all T(t:k1. k2) = BA — TIt: K (k1). A — A]
variablesk andz; T(r1)(Mt: K (k1). T (k2))
T(k:u. k) =B[A — k:U(u). Tts: K (u). A — A
o if A = A’/t: kthen return thé/ and K’ associated with T(u)(MNk:U(u). Mg : K (u). T(K))
A T(I1z:Ksem. k) =
BlIlz:K Ik, :Kind. 11t - A.
o if A = A/,k : u thenld = Z/{/,k : CandK = K:/, where [ ¥ Scm()\Z.KSC2 Ak K./Iérl'ldA)\?.él] T(K))
> , ! L : Ak At A
C € CR(u)xr andK’ andi/’ are associated with'; . _
T(\k:u. k)
o if A= A z: Ksemthenk = K/, z : Kind andi = U’ Me:U(u). Ab : K (u). (A A T'(k)) T (u)
whereK’ andl/” are associated with'. T(At:re w2) = ALK (K1) (A A T(w2))T (K1)
T(k1)=T(k) T(1)
Od T(Hl KQ)ZT(H1)[K HQ)}T(K/Q)

T(Ind(k:Kind){<}) =
B[(Kind = A— (A—...—> A) — A) — A]
(Ake:Kind. Mg : A XY (A — ... — A). (Y T(ki)))
In this section, we use an encoding that maps all well formed terms T(Elim[s, u] (T){,Z/}) =
to types. This encoding preserves the number of reductions. The Elim[K (k), (Ax: K (k). K (w))](T(7))
idea is similar to that of Harpeat al[20]. (O A A AL T ()T (=) T ()}
The encoding uses two constant.is a kind andB is a type. R ’
* is a variable that is never used, it is a wild-card.

A :Kind
B :11k:Kind. k
% unused variable

D.3.19 Normalization of terms

The encoding for types is as follows:

The encoding foKscm is as follows:
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T(t)=t
TM:k.T)=M:K(k). A A.T(1)T (k)
T(T1 TQ) IT(7’1) T(TQ)
TMk:u.7)=Ak:U(u). Mg K(u). (Ax: A.T(7))T(u)
T(7[]) =T () [K()]T(x)
T(Az:Ksem. 7) = Az:Ksem. Ak :Kind. At : A. T'(7)
T(ru]) =T (T)[U(w)][K ()] T(u)
T(_Ctor (3, k) = (A A. Ctor (i, K (k)))T' (k)
(Elim[k, k1](T){T}) =
Elim[K (k), K(k)][(T(7){(A*x: A X A T(1:))T (k)T (k1) }

We have to define a similar transformation on contexts:

() - A:Kind, B: ITk: Kind. &
['(A,t:k) T(A), t: K (x)
(A kiw) = T(A)k:U(u),th: K (u)
I'(A, z:Kscm) I'(A), z ‘Ks scm, k :Kind, t.: A

D.3.20 Coding and reduction

In this section we state lemmas that prove that the coding preserveﬁ T(A

the number of reductions. We omit the proofs since they follow by
a straightforward induction over the structure of terms.

Lemma 59 For all well typed termsi, if A >3 A’, then we have

T(A) >yt T(A)
K(A)>5 K(A)
U(A) >3 U(A)

Moreover, if|| A|| 341, then there existsl, such that
|42 [|= Ar and[T(A)| > |T(A2)].

Lemma 60 For all well typed termsd, if A>, A, then we have

T(A) > T(A)
K(A)>; K(A)
U(A)>; UA)

Moreover, if|| A|| ., A1, then there existgl; such that
[ 4z [|= Av and[T(4)| &' |T(A2)].

Lemma 61 For all well typed terms4, if A >,, A’, then we have

T(A) >};; T(A)
K(A)>p, K(A")
U(A) >p, U(A)

D.3.21 Coding and typing

In this section we show that the coding of a well typed term is also
well typed. For this we need to prove that the coding preserves
Bne equality. This requires a confluent calculus. Therefore, we use
the unmarked terms from Section D.2.1. We extend the coding to
unmarked terms by defining:

It is now easy to prove by a straightforward induction on the
structure of terms that the following lemma holds:
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Lemma 62 Supposel + A : B andB # Ext. Then we have
that

(A) F T(A) : K(B)andI'(A) + K(B) : Kind
I'(A) F K(A) : U(B) andI'(A) F U(B) : Kscm if defined
(A) F U(A): S(B)andI'(A) + S(B) : Ext if defined

Corollary 73 SupposeA + A : B andB # Ext. Then|T'(A) |
is strongly normalizing.

D.3.22 Normalization of unmarked terms

Lemma 63 For all well typed terms4, we have thaf] A || is
strongly normalizing for3n.o reduction.

Proof Since there can not be an infinite sequence @&ductions

and we can delay reductions, we need to prove the normalization
for Buo reductions only. SupposeA || is not normalizing and there
exists asequencé; ... A; ... suchthatd; >g,, Ai+1 andAo =||

A||l. By lemma 59 and 60, we get that there exists a sequence of
terms A} ... A} ... such that| A} ||_ A;and| T(AY) | >yl |
(A’ZH) | and also\ T(A)| >4 | T(A}) | This implies that

)| is not strongly normallzmg which is a contradiction. O

D.3.23 Normalization of all terms

Lemma 64 Supposed >, B. Then|T(A)|| > FT(B)|.

Proof By induction over the derivation od >3, B. Note that

in taking a termA to T'(A), all the termsC that appear as annota-
tions at lambda abstractions are duplicated with the corresponding

T(C). O

Lemma 65 Suppose) + A : B. ThenA is strongly
normalizing.

Proof We only have to prove normalization f@ reduction. By
lemma 64, ifA is not normalizing, thetl T'(A) || is also not nor-
malizing. But by lemma 62 we have thBf{A) + T'(A) : K(B)
which implies (lemma 63) thdt7'(A) || is strongly normalizing.
O

Theorem 74 (Strong normalization) All well typed terms are
strongly normalizing.

Proof Follows from lemma 65.

D.4 Church-Rosser Property
The proof is structured as follows:

o We first prove that a well typed tersh in 5. normal form has
the same) reductions a§ A||.

e From here we know that it and A’ are in normal form, then
|| Al and|| A’ || are equal. We then show that the annotations
in the A-abstractions are equal.
D.4.1 Structure of normal forms

Lemma 66 All well typed 5. normal termsV have the following
form:

1. )\XZNLNQ.
2. IIX:Ni. No.



. s € {Kind, Kscm, Ext}.
X N.
. Ind(X :Kind){N}.

o U A W

. Ctor (i, N) N whereN is of the form 5.

7. Elim[N, N2](N1){N} N’ whereN is of the form 5 andV,
is of the form 4.

Lemma67 LetA,X:C,A’ - A: Bbe ajudgment and in 3¢
normal form. If X does not occur in
FV(BYUFV(A"YUFV(||A|), thenX ¢ FV(A).

Proof The proof is by induction over the size of. We use
lemma 66 to enumerate the different cases.

e The case wherd is a variable or a sort is immediate.

e SupposeAd, X : C,A’ F IIY : Ni. N2 : B. It follows
directly from the induction hypothesis that does not occur
in N1 andNa.

e Supposeh, X :C,A’ + AY:N;. N> : BandB = IIY :
Np. A’. We know thatA, X : C, A’ = N; : s and therefore
X ¢ FV(N;). Also B>*TIY : N{. A” andA, X :C, A’ Y :
Ni F N, : A”. SinceX ¢ FV(A")uU FV(N;), we can
apply the induction hypothesis and therefoéfeZ FV (Nz).

e Suppose), X :C, A’ - Y N : B. This implies thatA, X :
C, AN FY :IIZ: A Ay andA, X : C,A F Ny
A1. From lemma 23 and 13 we have that X : C, A" +
Y : IIZ : As. Ay where X does not occur free inls and
Az =pn. A1 and A4 =g, A2. From here we can show that
A, X:C,A" - Nj : As. We can now apply the inductive
hypothesis to show that ¢ F'V (Ny). lterating in this way,
we can show thak ¢ FV (N;).

e Supposeh, X : C,A’ + Ind(Y : Kind){N} : B. Follows
directly from the induction hypothesis that ¢ FV (N;).

e Suppose\, X :C, A’ + Ctor (i, 1) N : B. Follows directly
from the induction hypothesis that ¢ FV (I). We can then
show as above that' ¢ FV (N;).

e SupposeA, X : C,A’ + Elim[N, Ni](N2){N} N’ : B.
SinceA, X : C,A’ = N : Kind, it follows from the induc-
tion hypothesis thal ¢ FV (N). Similarly, sinceA, X :
C,A" + Ny :Kscm,orA, X:C,A’ + N1 : N — Kind, it
follows thatX ¢ F'V(N1). Similarly we can prove directly
from the induction hypothesis that ¢ FV (N2) U FV (N).

Finally, as above we can prove thiit¢ 'V (N'). O

Corollary 75 Let A + A : B. If Aisin normal form, then| A||
is also in normal form.

Proof We must show thaf| A || does not contain any re-
ductions. The interesting case is whdnis of the formAX :
N;. N2 X. We want to show that ifX ¢ FV(|| N2 ||), then
X ¢ FV(N3). Since it is well typed we know thah + X :
Ni. N2 X : IIX : N;.C. We have thatX ¢ FV(IIX : Ny.C).
From here we getthaf, X : Ny - N, : IIX : N;.C. This
implies that if X ¢ FV (|| N2||), thenX ¢ FV (N2). O

33

D.4.2 Church-Rosser

Theorem 76 (Church-Rosser)Let A - A: BandA - A’ : B
be two derivable judgments. & =3, A’, andif A andA’ are in
normal form, therd = A’.

Proof We know thatl| A || and|| A’ || are in normal form. Since
the unmarked terms are confluent we have that|=|| A" ||. The
proof is by induction over the structures.dfandA’.

e The case wheml = A’ = sor A = A’ = avariable is
immediate.

e Supposed = AX:N;. N andA’ = AX : Ni. Nj. We know
that B =g, IX : N1. A3 =g, [IX : Ni. A3. This implies
that N1 =g, N1 which implies that both of them have the
same sort. This implies thaf; = Ni. We can now apply the
induction hypothesis t&V> and V5 to get thatN, = N3.

e Supposed = I1X: N;. Ny andA’ = II1X : Ni. N5. Follows
directly from the induction hypothesis.

e Supposed = X N andA’ = X N’. We know that in the
contextA, the variableX has the typdlY : B. As. Therefore
each of theN; and N; have the same type. Applying the
induction hypothesis to each of them leads to the required
result.

e SupposeA = Ind(X : Kind){N} and 4’ = Ind(X :
Kind){]\7’}. By the typing rules we know thak, X : Kind +
N; : Kind andA, X : Kind - N/ : Kind. Applying the
induction hypothesis leads 18; = N.

e Supposed = Ctor (i, N) N and A’ = Ctor (i, N')N'. We
know that bothN and N’ have typeKind. The induction
hypothesis directly leads t%h = N’. We can then show as
above thatV; = N;.

e Supposed = Elim[N, N1](N2){N} N and
A" = Elim[N’, N{](N3){N'} N’y. SinceN and N’ are
both of typeKind, it follows that N = N’. From here we get
that N2 = NJ. Since bothV; and N7 have the typé<scm or
have the typeV — Kind, it follows thatN; = N7. From this
we can show that th&/; and N, are equal. Finally as above,
we can show that th&/y; and theN’; are equal. O

Theorem 77 (Confluence)Let A - A: BandA - A’ : B be
two judgments. 1fA =g,, A’, thenA and A’ have a common
reduct — there exists a ter@ such thatd >* C andA’ >* C.

Proof We know that bothd and A’ reduce to normal formsl,
and A’. Due to subject reduction, both; and A} have the same
type B. By the previous lemmal; = Aj. o

D.5 Consistency

Theorem 78 (Consistency of the logic)There exists no term
for which- A : TIX :Kind. X.

Proof Suppose there exists a tetinfor which- + A : 11X :
Kind. X. By theorem 74, there exists a normal foBnfor A. By
the subject reduction - B : I1X : Kind. X. We can show now

that this leads to a contradiction by case analysis of the possible

normal forms for the types in the calculus. a



