
56 CommuniCaTionS of ThE aCm | dECEmBEr 2010 | vol. 53 | No. 12

contributed articles

CoMpUter soFtWare is one of the most influential
technologies ever created. Software has entered every
aspect of our lives, used to control everything from
computing and communication devices (such as
computers, networks, cellphones, and Web browsers),
to consumer products (such as cameras, TVs, and
refrigerators), to cyber-physical systems (such as
automobiles, medical devices, and aviation systems),
and to critical infrastructure (such as financial,
energy, communications, transportation, and national
defense).

Unfortunately, software is also sometimes our
least dependable engineering artifact. Software
companies lack the kind of meaningful warranty
most other engineering organizations are expected
to provide. Major corporations and government
agencies worldwide invest in fixing software bugs,

but prospects for building reliable
software are bleak. The pervasive pres-
ence of software bugs also makes all
existing computing and information
systems vulnerable to security and pri-
vacy attacks.

An important cause of such dif-
ficulty is the sheer complexity of the
software itself. If each line of code is
viewed as an individual component,
software systems are easily the most
complicated things we humans have
ever built. Unlike hardware compo-
nents, software execution can eas-
ily lead to an unbounded number of
states, so testing and model-checking
techniques cannot guarantee reliabil-
ity. As the hardware community moves
deep into new multi-core and cyber-
physical platforms, and as software is
thoroughly integrated into everyday
objects and activities, the complex-
ity of future software could get much
worse, even as demand for dependable
software becomes more urgent.

For most of today’s software, es-
pecially low-level forms like operat-
ing systems, nobody knows precisely
when, how, and why they actually
work. They lack rigorous formal speci-
fications and were developed mostly
by large teams of developers using
programming languages and libraries
with imprecise semantics. Even if the
original developers had a good infor-
mal understanding of the inner work-

Certified
Software

Doi:10.1145/1859204.1859226

Only if the programmer can prove (through
formal machine-checkable proofs) it is free of
bugs with respect to a claim of dependability.

BY zhonG Shao

 key insights

 The dependability of a software system
should be treated separately from its
execution environment; the former is a
rigorous mathematical entity, but the
latter is imperfect and far less rigorous.

 Building end-to-end certified
software requires a rich metalogic for
expressiveness, a set of domain-specific
program logics for modularity and
automation, a certified linking framework
for interoperability, and machine-
checkable proofs for scalability.

 The trusted computing base of a good
certified framework should contain
only components whose soundness
and integrity can also be validated by
independent third parties.

dECEmBEr 2010 | vol. 53 | No. 12 | CommuniCaTionS of ThE aCm 57

i
l

l
U

S
t

r
a

t
i

o
n

 b
y

 j
o

h
n

 h
e

r
S

e
y

ings, their knowledge and assump-
tions about system behavior (often
implicit) are easily lost or broken in
subsequent development or mainte-
nance phases.

The software research community
has sought to tackle these problems in
recent years but remains hampered by
three key difficulties:

Lack of metrics. Metrics are still
lacking for measuring software de-
pendability, making it difficult to
compare different techniques and
build steady progress in the field. De-
pendability often includes attributes
like reliability, safety, availability, and
security. A system’s availability can be
measured retroactively as a percent-
age of its uptime in a given year; for ex-
ample, 99.9999% means 31.5 seconds
downtime per year, but quantifying
other attributes is much more diffi-
cult. A program with one bug is not
necessarily 10 times more secure than
a program with 10 bugs. A system’s re-
liability depends on its formal specifi-
cation, which is often nonexistent.

Worse, software dependability is of-
ten confused with the dependability of
the software’s execution environment,
which consists of not just hardware
devices but also human operators and
the physical world. Since the depend-
ability of the execution environment
is often beyond human control, many
people view software as a complex bio-
logical system, rather than as a rigor-
ous mathematical entity;

System software. A software appli-
cation’s dependability also relies on
the dependability of its underlying
system software, including OS kernel,
device driver, hypervisor, garbage col-
lector, and compiler. These low-level
programs are often profoundly com-
plex and bug-prone, but little has been
done to make them truly dependable.
For example, if an OS kernel or even
a compiler has security holes, the en-
tire system could be compromised,
regardless of what software developers
do at a higher level19,31; and

Last-mile problem. Despite recent
progress in formal-methods research,

58 CommuniCaTionS of ThE aCm | dECEmBEr 2010 | vol. 53 | No. 12

contributed articles

Software
dependability is
often confused with
the dependability
of the software’s
execution
environment, which
consists of not just
hardware devices
but also human
operators and the
physical world.

program verification still involves
a vexing “last-mile problem.” Most
software-verification research con-
centrates on high-level models rather
than on actual programs—valuable for
finding bugs but leaving a big gap that
must be closed before meaningful de-
pendability claims can be made about
actual software. Failure to reason
about actual code also has serious im-
plications for maintainability; for ex-
ample, it is difficult for programmers
to pinpoint the source and a fix when
a new bug is identified and ensure that
subsequent updates (to actual code)
will not break the code’s high-level
model.

Leading research on certified soft-
ware aims to tackle all three. For exam-
ple, concerning the lack of good met-
rics, a line is drawn between the actual
machine-executable software and the
surrounding physical environment
(such as hardware devices and human
operators). We can neither predict the
future of the physical world nor for-
mally certify human behavior, but at
least under a well-defined, stable hard-
ware platform (such as the x86 instruc-
tion set), the behavior of each machine
executable is a rigorous mathematical
entity. With a formal specification stat-
ing its desirable behavior, we can (at
least in theory) rigorously “certify” that
the machine executable behaves as ex-
pected. A good dependability metric is
then just the formal claim developers
make and certify about each program.

The long-term goal for research on
certified software is to turn code—of-
ten a system’s weakest link—into its
most dependable component. The
formal specification given may not
precisely capture the behavior of the
physical environment, so the overall
system may still not function properly,
but at least when a problem occurs,
programmers and users alike are as-
sured that the behavior of the software
is properly documented and rigor-
ously enforced. The specifications for
functional correctness of individual
components may occasionally be too
large to be comprehensible, but many
systemwide safety, liveness, and secu-
rity properties can be stated succinctly
and certified with full confidence.

To address the second and third
difficulties, software developers must
also certify the actual system-software

code. Most needed is a new “certified”
computing platform where program-
mers have firm control over the be-
havior of its system software stack, in-
cluding bootloader, OS kernel, device
driver, hypervisor, and other runtime
services. Software consisting of mostly
certified components would be easier
to maintain, because the effects of up-
dating a certified component would be
easier to track, and new bugs would
quickly be localized down to the non-
certified modules.

Constructing large-scale certified
software systems is itself a challenge.
Still unknown is whether it can be
done at all and whether it can be a
practical technology for building truly
dependable software. In this article, I
explore this new field, describing sev-
eral exciting recent advances and chal-
lenging open problems.

What it is
Certified software consists of a ma-
chine-executable program C plus a
rigorous formal proof P (checkable by
computer) that the software is free of
bugs with respect to a particular de-
pendability claim S. Both the proof P
and the specification S are written us-
ing a general-purpose mathematical
logic, the same logic ordinary program-
mers use in reasoning every day. The
logic is also a programming language;
everything written in logic, including
proofs and specifications, can be de-
veloped using software tools (such as
proof assistants, automated theorem
provers, and certifying compilers).
Proofs can be checked automatically
for correctness—on a computer—by a
small program called a proof checker.
As long as the logic used by program-
mers is consistent, and the depend-
ability specification describes what
end users want, programmers can be
sure the underlying software is free of
bugs with respect to the specification.

The work on certified software fits
well into the Verified Software Initia-
tive (VSI) proposed by Hoare and Mis-
ra14 but differs in several distinct ways
from traditional program-verification
systems:

First, certified software stresses use
of an expressive general-purpose met-
alogic and explicit machine-checkable
proofs to support modular reasoning
and scale program verification to han-

contributed articles

dECEmBEr 2010 | vol. 53 | No. 12 | CommuniCaTionS of ThE aCm 59

dle all kinds of low-level code.3,10,24,32
Using a rich mechanized metalogic
allows programmers to define new
customized “domain-specific” logics
(together with its meta theory), apply
them to certify different software com-
ponents, and link everything to build
end-to-end certified software.7 With
machine-checkable proofs, proof-
checking is automated and requires
no outside assumptions. As long as the
metalogic is consistent, the validity of
proof P immediately establishes that
the behavior of program C satisfies
specification S.

Existing verification systems of-
ten use a rather restricted assertion
language (such as first-order logic) to
facilitate automation but do not pro-
vide explicit machine-checkable proof
objects. Program components verified
using different program logics or type
systems cannot be linked together to
make meaningful end-to-end depend-
ability claims about the whole software
system. These problems make it more
difficult for independent third parties
to validate claims of dependability.

Second, with an expressive meta-
logic, certified software can be used
to establish all kinds of dependability
claims, from simple type-safety prop-
erties to more advanced safety, live-
ness, security, and correctness prop-
erties. Building these proofs need not
follow Hoare-style reasoning15; much
of the earlier work on proof-carrying
code23 constructed safety proofs auto-
matically using such technologies as
type-preserving compilation29,30 and
typed assembly language.22 However,
most traditional program verifiers
concentrate on partial correctness
properties only.

Third, certified software empha-
sizes proving properties for the ac-
tual machine executables, rather than
their high-level counterparts, though
proofs can still be constructed at the
high level, then propagated down to
the machine-code level using a certify-
ing or certified compiler. On the other
hand, most existing program verifiers
target high-level source programs.

Fourth, to establish a rigorous de-
pendability metric, certified software
aims to minimize the trusted comput-
ing base, or TCB—the small part of a
verification framework in which any
error can subvert a claim of end-to-end

dependability. TCB is a well-known
concept in verification and security, as
well as a source of confusion and con-
troversy.5

The dependability of a computing
system rests on the dependable be-
havior of its underlying hardware de-
vices, human operators, and software.
Many program verifiers are comfort-
able with placing complex software
artifacts (such as theorem provers, OS,
and compilers) in the TCB because it
seems that the TCB of any verification
system must include those “hard-to-
reason-about” components (such as
hardware devices and human opera-
tors) so is already quite large.

All program-verification systems
are able to create a formal model
about the underlying execution envi-
ronment. Any theorem proved regard-
ing the software is with respect to the
formal model only, so the TCB for any
claim made regarding the software
alone should not include hardware de-
vices and human operators.

Still, any bug in the TCB would (by
definition) compromise the credibility
of the underlying verification system.
A smaller TCB is generally more desir-
able, but size is not necessarily the best
indicator; for example, a 200-line gar-
bage collector is not necessarily more
reliable than a 2,000-line straightfor-
ward pretty printer. The TCB of a good
certified framework must include only
components whose soundness and
integrity can also be validated by inde-
pendent third parties.

Components of a certified frame-
work. A typical certified framework
(see Figure 1) consists of five compo-
nents:

The certified software itself. Includ-
ing both machine code and formal
proof;

Formal machine model. Providing

the operational semantics for all ma-
chine instructions;

Formal dependability claim for the
software. Including safety property, se-
curity policy, and functional specifica-
tion for correctness;

Underlying mechanized metalogic
(not shown). For coding all proofs,
specifications, and machine-level pro-
grams; and

Proof checker. For checking the va-
lidity of all the proofs following the in-
ference rules of the metalogic.

If the proof of a given certified soft-
ware package can be validated by the
proof checker, then execution of the
software on the formal machine mod-
el is guaranteed to satisfy a formal de-
pendability claim.

Things can still, however, go wrong.
First, the mechanized metalogic could
be inconsistent, a risk that can be
minimized if the framework design-
ers choose a simple, well-understood,
general-purpose metalogic and prove
(perhaps on paper) why it is indeed
consistent.

Second, the proof checker is a com-
puter program, so it could go wrong
all by itself. But if the framework uses
a simple logic with a small number of
inference rules, the proof checker can
be made quite small, written in assem-
bly, and verified by hand.

Third, the formal machine model
might not reflect hardware behavior.
Most hardware vendors perform in-
tensive hardware verification, so this
risk can be minimized if hardware
and software developers share the
machine specifications. Even if not
possible, the framework designer can
still validate the model by comparing
its operational semantics with the in-
struction-set reference manuals.

Finally, the formal dependability
specification (SP) may not accurately

figure 1. Components of a certified framework.

dependability Claim

Proof Checker

Proof

human and the
Physical World

No

Yes
machine

code

devices and memory

CPus

60 CommuniCaTionS of ThE aCm | dECEmBEr 2010 | vol. 53 | No. 12

contributed articles

capture the behavior of the human or
physical world. Nevertheless, SP is for-
mally stated and the code is guaran-
teed to satisfy SP. Here, I deliberately
decoupled the correctness of verifica-
tion from the specification process.
Existing efforts validating and testing
specifications are, of course, valuable
and complementary to the certifica-
tion process.

Since a dependability claim is made
regarding only the formal machine
model, the TCB of such a certified
framework consists of just the consis-
tency proof of the metalogic and the
integrity of the proof checker, both
of which should be demonstrable by
independent third parties (such as
through the peer-review process of a
top-quality journal). If the computer
science community would agree on a
single metalogic (a good thing), this
task of standardizing a metalogic
would need to be done only once. Cer-
tified software would then no longer
be the weakest link in a dependable
system.

Mechanized metalogic. A key en-
abling technology for certified soft-
ware is to write formal proofs and
specifications as typed functional
programs, then have a computer au-
tomatically check the validity of the
proofs, in the same way a static type-
checker does type-checking. This idea
came from the well-known Curry-How-
ard correspondence referring to the
generalization of a syntactic analogy
between systems of formal logic and
computational calculi first discovered
by the American logicians Haskell Cur-
ry and William Howard. Most advanc-
es for developing large-scale machine-
checkable proofs were made only
during the past 10 years; see an excel-
lent survey by Barendregt and Geuvers2
and a 2008 overview article by Hales.11

In the context of certified software,
a few more requirements must be ad-
dressed: The logic must be consistent
and expressive so software developers
can express everything they want to
say. It must also support explicit ma-
chine-checkable proof objects and be
simple enough that the proof checker
can be hand-verified for correctness.

Because software components may
be developed using different program-
ming languages and certified using
different domain-specific logics and

type systems, mechanized metalogic
must also support meta-reasoning. It
can be used to represent the syntax,
inference rules, and meta-proofs (for
their soundness) of the specialized ob-
ject logics.

Much of the current work on certi-
fied software is carried out in the Coq
proof assistant.16 Coq itself provides a
rich higher-order logic with powerful
inductive definitions, both crucial to
writing modular proofs and expressive
specifications.

Advantages. With certified software,
the dependability of a software system
would be measured by the actual for-
mal dependability claim it is able to
certify. Because the claim comes with a
formal proof, the dependability can be
checked independently and automati-
cally in an extremely reliable way.

A formal dependability claim can
range from making almost no guar-
antee, to simple type-safety property,
to deep liveness, security, and to cor-
rectness properties. It provides a great
metric for comparing different tech-
niques and making steady progress
toward the system’s overall depend-
ability.

If the software community would
agree on a metalogic and work out the
formal models of a few popular com-
puting platforms, certified software
would provide an excellent framework
for accumulating dependable software
components. Since proofs are incon-
trovertible mathematical truths, once
a software component is certified, its
trustworthiness (with respect to its
specification) would presumably last
for eternity.

Unlike higher-level programming
languages, certified software places
no restrictions on the efficiency of its
underlying code and the way programs
are developed. Because the metalogic
is as rich as the one programmers use
in daily reasoning, and everything run-
ning on a computer must eventually
be executed as a machine executable,
if programmers believe (informally)
that their super-efficient and sophisti-
cated code really works as they claim,
there should be a way to formally write
down their proofs. When dependabil-
ity is not an issue, the software can be
used as is, assuming proper isolation
from the rest of the system; when pro-
grammers really care about depend-

ability, they must provide the formal
machine-checkable proof.

On the other hand, certified soft-
ware encourages the usual best prac-
tices in software engineering and
program verification. Certifying large-
scale systems clearly benefits from
high-level programming abstraction,
domain-specific logics, modular de-
composition and refinement, model-
driven design and development, the
correctness-by-construction method-
ology,12 and automated theorem-prov-
ing tools. The only difference is they
now insist on receiving hard evidence
(such as machine-checkable proof ob-
jects) as a way to deliver quality assur-
ance and measure the effectiveness of
the technologies.

Certified software also decouples
the proof-construction and program-
development tools from the proof-
checking infrastructure. The rich
metalogic provides the ultimate frame-
work for building up layers of abstrac-
tion for complex software. Once they
are formed, programmers can build
different software components and
their proofs using completely different
methods. Because specifications and
proofs are both represented as pro-
grams (within a computer), they can
be debugged, updated, transformed,
analyzed, and reused by novel proof-
engineering tools.

Certified software also significantly
improves the maintainability of the
underlying system. A local change
to an individual component can be
checked quickly against its specifica-
tion, with its effect on the overall sys-
tem known immediately. A major reor-
ganization of the system can be done
in a principled way by comparing the
changes against high-level specifica-
tions programmers have for each certi-
fied component.

Challenges. The main challenge
of certified software is the potentially
huge cost in constructing its specifica-
tions and proofs, though it can be cut
dramatically in the following ways:

First, how software is developed
makes a big difference in the system’s
future dependability. If the software is
full of bugs or developed without con-
sideration of the desirable depend-
ability claim, post-hoc verification
would be extremely expensive in terms
of time and money or simply impos-

contributed articles

dECEmBEr 2010 | vol. 53 | No. 12 | CommuniCaTionS of ThE aCm 61

Since proofs are
incontrovertible
mathematical
truths, once
a software
component is
certified, its
trustworthiness
(with respect to
its specification)
would presumably
last for eternity.

sible. A proactive approach (such as
correctness-by-construction12) should
lower the cost significantly.

Second, building certified software
does not mean that programmers
must verify the correctness of every
component or algorithm used in its
code; for example, in micro-kernels or
virtual-machine monitors, it is often
possible for programmers to verify a
small set of components that in turn
perform run-time enforcement of
security properties on other compo-
nents.33

Dynamic validation (such as trans-
lation validation for compiler cor-
rectness26) also simplifies proofs
significantly; for example, it may be
extremely difficult to verify that a so-
phisticated algorithm A always takes
an input X and generates an output Y
such that R(X, Y) holds; instead, a pro-
grammer could extend A by adding an
additional validation phase, or vali-
dator, that checks whether the input
X and the output Y indeed satisfy the
predicate R, assuming R is decidable.
If this check fails, the programmer
can invoke an easier-to-verify (though
probably less-efficient) version of the
algorithm A. To build certified soft-
ware, all the programmer needs to do
is certify the correctness of the valida-
tor and the easier version of the algo-
rithm, with no need to verify algorithm
A anymore.

Third, the very idea that proofs and
specifications can be represented as
programs (within a computer) means
that developers should be able to ex-
ploit the synergy between engineering
proofs and writing large programs,
building a large number of tools and
proof infrastructures to make proof
construction much easier.

Finally, formal proofs for certified
software ought to be much simpler
and less sophisticated than those used
in formal mathematics.11 Software de-
velopers often use rather elementary
proof methods to carry out informal
reasoning of their code. Proofs for soft-
ware are more tedious but also more
amenable for automatic generation.6,28

Certified software also involves
other challenges. For example, time
to market is likely terrible, assuming
dependability is not a concern, so the
cost of certification would be justified
only if end users truly value a depend-

ability guarantee. Deployment would
be difficult since most real-world en-
gineers do not know how to write for-
mal specifications, let alone proofs.
Pervasive certification requires funda-
mental changes to every phase in most
existing software-development prac-
tices, something few organizations are
able to undertake. The success of certi-
fied software critically relies on efforts
initially developed in the research
community.

Recent advances
Advances over the past few years in cer-
tified software have been powered by
advances in programming languages,
compilers, formal semantics, proof
assistants, and program verification.
Here, I sample a few of these efforts
and describe the remaining challeng-
es for delivering certified software:

Proof-carrying code. Necula’s and
Lee’s 1996 work23 on proof-carrying
code (PCC) is the immediate precur-
sor to the large body of more recent
work on certified software. PCC made
a compelling case for the importance
of having explicit witness, or formal
machine-checkable evidence, in such
applications as secure mobile code
and safe OS kernel extensions. PCC
allows a code producer to provide a
(compiled) program to a host, along
with a formal proof of safety. The host
specifies a safety policy and a set of
axioms for reasoning about safety; the
producer’s proof must be in terms of
these axioms.

PCC relies on the same formal
methods as program verification but
has the advantage that proving safety
properties is much easier than pro-
gram correctness. The producer’s for-
mal proof does not, in general, prove
the code produces a correct or mean-
ingful result but does guarantee execu-
tion of the code satisfies the desirable
safety policy.

Checking proofs is an automated
process about as simple as program-
ming-language type-checking; on the
other hand, finding proofs of theo-
rems is, in general, intractable. Subse-
quent work on PCC focused on build-
ing a realistic certifying compiler4 that
automatically constructs proofs (for
simple type-safety properties) for a
large subset of Java and on reducing
the size of proof witness, an important

62 CommuniCaTionS of ThE aCm | dECEmBEr 2010 | vol. 53 | No. 12

contributed articles

machine-
checkable proofs
are necessary
for allowing third
parties to quickly
establish that a
software system
indeed satisfies
a desirable
dependability claim.

concern in the context of mobile code.
An important PCC advantage in-

herited by certified software is that the
software does not require a particular
compiler. As long as the code producer
provides the proof, the code consumer
is assured of safety. This significantly
increases the flexibility available to
system designers.

The PCC framework is itself quite
general, but the original PCC systems
suffered from several major limita-
tions: Most notable was that the proof
checker had to rely on a rather specific
set of typing rules so did not support
more expressive program properties;
the typing rules were also error-prone,
with their soundness often not proved,
so a single bug could undermine the
integrity of the entire PCC system.

Foundational PCC, or FPCC,1,13
tackled these problems by construct-
ing and verifying its proofs using a
metalogic, with no type-specific axi-
oms. However, FPCC concentrated on
building semantic models for high-
level type-safe languages, rather than
performing general program verifica-
tion.

Certified assembly programming.
CAP32 is a logic-based approach for
carrying out general program veri-
fication inside a rich mechanized
metalogic (such as the one provided
by Coq). Like Hoare logic, a CAP pro-
gram consists of assembly code an-
notated with pre- and post-conditions
and program invariants. Unlike tra-
ditional Hoare-style verification, all
CAP language constructs (such as as-
sembly instruction sets), program as-
sertions, inference rules, operational
semantics, and soundness proofs
are implemented inside the mecha-
nized metalogic. This design makes
it possible to build a complete certi-
fied software package with formal
dependability-claim and machine-
checkable proofs. With help from a
proof assistant, programmers are able
to combine manually developed proof
scripts with automated proof tactics
and theorem provers, allowing CAP to
support verification of even undecid-
able program properties.

CAP marries type-based FPCC with
Hoare-style program verification, lead-
ing to great synergy in terms of modu-
larity and expressiveness. Hoare logic
is well known for its limited support

for higher-order features; most Hoare
systems do not even support verifica-
tion of simple type-safety properties.
However, both shortcomings are eas-
ily overcome in type-based approach-
es. Subsequent work on CAP over the
past five years developed new special-
ized program logics for reasoning
about such low-level constructs as em-
bedded code pointers,24 stack-based
control abstractions,10 self-modifying
code,3 and garbage collectors.21

Under type-based FPCC, function
returns and exception handlers are of-
ten treated as first-class functions, as
in continuation-passing style (CPS),
even though they have more limited
scope than general first-class continu-
ations. For functional programmers,
CPS-based code is conceptually sim-
ple but requires complex higher-order
reasoning of explicit code pointers
(and closures). For example, if a func-
tion needs to jump to a return address
(treated as continuation), the function
must assert that the return address is
indeed a valid code pointer to jump to.
But the function does not know exactly
what the return address will be, so it
must abstract over properties of all
possible return addresses, something
difficult to do in first-order logic.

In our work on stack-based con-
trol abstraction,10 my colleagues and
I showed that return addresses (or ex-
ception handlers) are much more dis-
ciplined than general first-class code
pointers; a return address is always
associated with some logical control
stack, the validity of which can be es-
tablished statically; a function can cut
to any return address if it establishes
the validity of its associated logical
control stack. Such safe cutting to
any return address allows program-
mers to certify the implementation of
sophisticated stack operations (such
as setjmp/longjmp, weak continua-
tions, general stack cutting, and con-
text switches) without resorting to
CPS-based reasoning. For example,
when programmers certify the body
of a function, they do not need to treat
its return address as a code pointer;
all they need is to make sure that at
the return, the control is transferred
to the original return address. It is the
caller’s responsibility to set up a safe
return address or valid code pointer;
this is much easier because a caller

contributed articles

dECEmBEr 2010 | vol. 53 | No. 12 | CommuniCaTionS of ThE aCm 63

often knows the return address that
must be used.

Local reasoning and separation log-
ic. Modular reasoning is the key tech-
nique for making program verification
scale. Development of a certified soft-
ware system would benefit from a top-
down approach where programmers
first work out the high-level design and
specification, then decompose the en-
tire system into smaller modules, re-
fine high-level specifications into actu-
al implementation, and finally certify
each component and link everything
together into a complete system.

However, there is yet another criti-
cal dimension to making program
verification modular. Traditional
Hoare logics often use program speci-
fications with arbitrarily large “foot-
prints.” Separation logic17,27 advocates
“local reasoning” using small-foot-
print specifications; that is, the speci-
fication of each module (or procedure)
should refer only to data structures
actually touched by a module’s un-
derlying code. By concisely specifying
the separation of heap and other re-
sources, separation logic provides suc-
cinct yet powerful inference rules for
reasoning about shared mutable data
structures and pointer anti-aliasing.

Concurrent separation logic (CSL)25
applies the same idea to reasoning
about shared-memory concurrent
programs, assuming the invariant
that there always exists a partition of
memory among different concurrent
entities and that each entity can ac-
cess only its own part of memory. This
assumption might seem simple but is
surprisingly powerful. There are two
important points about the invariant:
First, the partition is logical; program-
mers do not need to change their mod-
el of the physical machine, which has
only one global shared data heap, and
the logical partition can be enforced
through separation logic primitives.
Second, the partition is not static and
can be adjusted dynamically during
program execution by transferring the
ownership of memory from one entity
to the other.

Under CSL, a shared-memory pro-
gram can be certified as if it were a
sequential program since it is always
manipulating its private heap; to ac-
cess shared memory, it must invoke
an atomic operation that transfers re-

sources between the shared heap and
the local heap. Several recent efforts
have extended CSL with rely-guarantee
reasoning, so even lock-free concur-
rent code can be certified using modu-
lar small-footprint specifications.

Domain-specific logics and certi-
fied linking. A key first step toward
making certified software practical is
to show it is possible to carry out end-
to-end certification of a complete soft-
ware system. Large software systems,
especially low-level system software,
use many different language features
and span many different abstraction
levels. For example, the Yale FLINT
group’s (http://flint.cs.yale.edu) ongo-
ing project8 to verify a simplified OS
kernel exposes such challenges. In it,
the kernel includes a simple bootload-
er, kernel-level threads and a thread
scheduler, synchronization primitives,
hardware interrupt handlers, and a
simplified keyboard driver. Although
it has only 1,300 lines of x86 assembly

code, it uses dynamic code loading,
thread scheduling, context switching,
concurrency, hardware interrupts,
device drivers, and I/O. How would a
programmer use machine-checkable
proofs to verify the safety or correct-
ness properties of such a system?

Verifying the whole system in a
single program-logic or type system
is impractical because, as in Figure
2a, such a verification system would
have to consider all possible interac-
tions among these features, including
dynamic code loading, concurrency,
hardware interrupts, thread schedul-
ing, context switching, and embed-
ded code pointers, many at different
abstraction levels. The resulting logic,
if it exists, would be highly complex
and difficult to use. Fortunately, soft-
ware developers seem to never use all
features simultaneously. Instead, they
use only a limited combination of fea-
tures—at a particular abstraction lev-
el—in individual program modules. It

figure 2. using domain-specific logics to verify modules.

(a) one-for-all Logic(a) The One-for-All Logic (b) Domain-Specific Logics

L1

L2

L3

L4

C

M

Y

CM

MY

CY

CMY

K

shao-fig2.pdf 1 10/8/10 4:45 PM

(b) Domain-Specific Logics(a) The One-for-All Logic (b) Domain-Specific Logics

L1

L2

L3

L4

C

M

Y

CM

MY

CY

CMY

K

shao-fig2.pdf 1 10/8/10 4:45 PM

figure 3. an open framework for building certified software.

oCAP Inference rules

Formal machine model

mechanized meta-logic

…

module

…

…

…
sound sound

L1

[[]]L1

Ln

[[]]Ln

module

…

…

oCAP
soundness

… certified package trusted baseproof

64 CommuniCaTionS of ThE aCm | dECEmBEr 2010 | vol. 53 | No. 12

contributed articles

would be much simpler to design and
use specialized “domain-specific” log-
ics (DSL) to verify individual program
modules, as in Figure 2b. For example,
for the simplified OS kernel, dynamic
code loading is used only in the OS
boot loader, and interrupts are al-
ways turned off during context switch-
ing; embedded code pointers are not
needed if context switching can be
implemented as a stack-based control
abstraction.

To allow interactions of modules
and build a complete certified soft-
ware system, programmers must also
support interoperability of different
logics. In 2007, my colleagues and I
developed a new open framework for
CAP, or OCAP,9 to support verification
using specialized program logics and
for certified linking of low-level het-
erogeneous components. OCAP lays a
set of Hoare-style inference rules over
the raw operational semantics of a ma-
chine language (see Figure 3), and the
soundness of these rules is proved in
a mechanized metalogic so it is not in
the TCB. OCAP uses an extensible and
heterogeneous program-specification
language based on the higher-order
logic provided by Coq. OCAP rules are
expressive enough to embed most ex-
isting verification systems for low-level
code. OCAP assertions can be used to
specify invariants enforced in most
type systems and program logics (such
as memory safety, well-formedness of
stacks, and noninterference between
concurrent threads). The soundness
of OCAP ensures these invariants are
maintained when foreign systems are
embedded in the framework.

To embed a specialized verifica-
tion system L, OCAP developers must
first define an interpretation [[]]L that
maps specifications in L into OCAP
assertions; they then prove system-
specific rules/axioms as lemmas based
on the interpretation and OCAP rules.
Proofs constructed in each system can
be incorporated as OCAP proofs and
linked to compose the complete proof.

There are still many open issues
concerning OCAP design: For exam-
ple, to reason about information-flow
properties, it must provide a seman-
tic-preserving interpretation of high-
order types (in an operational setting).
And to support liveness properties, it
must support temporal reasoning of
program traces.

Certified garbage collectors and
thread libraries. In 2007, my col-
leagues and I used OCAP to certify sev-
eral applications involving both user-
program code and low-level runtime
code. In one application,9 we success-
fully linked programs in typed assem-
bly language (TAL)22 with a certified
memory-management library. TAL
supports only type-preserving memory
updates; the free memory is invisible
to TAL code. We certified the memory-
management library in stack-based
CAP, or SCAP,10 supporting reasoning
about operations over free memory
while ensuring that the invariants of
TAL code are maintained.

Also in 2007, in another applica-
tion,21 we developed a general frame-
work for certifying a range of garbage
collectors and their mutators. If we
had tried to develop a single type sys-
tem to type-check both an ML-like

type-safe language and the underlying
garbage collector (requiring fancy run-
time type analysis), the result would
have involved analyzing polymorphic
types, which is extremely complex.
However, the ML type system never
needs to know about runtime tagging
and the internals of the garbage col-
lector. Moreover, implementation of
the collector need not understand the
polymorphic type system used in type-
checking ML code; it needs to only dis-
tinguish pointers from non-pointers.
A better approach, which we followed
in 2007, is to certify these modules
using different domain-specific log-
ics, thus avoiding the difficult task of
designing a universal program logic.
Certified garbage collectors can then
be linked with certified mutator code
to form a complete system.

A year later, in a third application,8
we successfully certified the partial
correctness of a preemptive thread li-
brary extracted from our simplified OS
kernel. The kernel was implemented
in 16-bit x86 assembly and worked in
real mode for uniprocessor only. It
consisted of thread context switch-
ing, scheduling, synchronizations,
and hardware interrupt handlers. We
stratified the thread implementation
by introducing different abstraction
layers with well-defined interfaces. In
Figure 4, at the highest level (Level A),
preemptive threads follow the stan-
dard concurrent programming model.
The execution of a thread can inter-
leave with or be preempted by other
threads. Synchronization operations
are treated as primitives. Hardware
interrupts are abstracted away and
handled at Level B where code in-
volves both hardware interrupts and
threads; synchronization primitives,
input/output operations, device driv-
ers, and interrupt handlers are all im-
plemented at this level, and interrupt
handling is enabled/disabled explic-
itly using sti/cli. At the lowest level
(Level C), the thread scheduler and the
context-switching routine manipulate
the threads’ execution contexts stored
in thread queues (on the heap). Inter-
rupts are invisible at this level because
they are always disabled. Libraries im-
plemented at a lower level are exposed
as abstract primitives for the level
above it, and their operational seman-
tics in the high-level abstract machine

figure 4. Decomposition of a preemptive thread implementation.

scheduler and context switching and…

…

1

1

0

1

1

0

1

0

… …

A

B

C

…

locks
condition
variable

I/o and
driver ISr

sti/cli

 irq0

 irq1

 irq2

 irq3

 irq4

 irq5

 irq6

 irq7

contributed articles

dECEmBEr 2010 | vol. 53 | No. 12 | CommuniCaTionS of ThE aCm 65

serve as formal specifications for the
low-level implementation.

The stratified system model gives
programmers a systematic and prin-
cipled approach for controlling com-
plexity. Programmers can thus focus
on a subset of language features at
each level and certify different soft-
ware components using specialized
program logics.

Certified and certifying compila-
tion. Much work in the program-veri-
fication community concentrates on
source-level programs written in high-
level languages (such as C, Java, and
C#). In order to turn these programs
into certified assembly components
suitable for linking in the OCAP frame-
work, OCAP developers must show
that their corresponding compiler is
also trustworthy.

CompCert is a certified compiler
for a subset of C (called C minor, or
Cm) developed in 2006 by Leroy.20 By
“certified” compiler, I mean the com-
piler itself is proved correct. Indeed,
Leroy specified formal operational se-
mantics for Cm, as well as for the ma-
chine language, building a machine-
checkable proof in Coq whereby the
compiler preserves behavior from
one operational semantics to another.
However, the current CompCert com-
piler supports only sequential Cm pro-
grams. It also must be bootstrapped by
the OCaml compiler, even though the
OCaml compiler is not verified.

On the other hand, a certifying
compiler is not necessarily correct but
will take a (certified) source program
and generate certified assembly code.
Much work on certifying compilation
focuses on type-safe source languages
and can preserve only type-safety prop-
erties. A challenging open problem
is to extend certifying compilation to
preserve deep correctness and security
properties.

Lightweight formal methods.
Building large-scale certified software
systems does not always require heavy-
weight program verification. Most
software systems are built from modu-
lar components at several levels of ab-
straction. At the lowest levels are the
kernel and runtime-system compo-
nents discussed earlier. At the highest
levels are components with restricted
structure operating on well-defined in-
terfaces. The restricted structure can

use a type-safe, high-level program-
ming language with high-level concur-
rency primitives or C programs (even
concurrent C programs) in a style un-
derstandable to static-analysis tools.
Both restricted styles are in wide-
spread commercial use today.

Lightweight formal methods (such
as high-level type systems, specialized
program logic, with decidable deci-
sion procedure, and static analysis)
can help guarantee important safety
properties with moderate program-
mer effort; error messages from the
typechecker, decision procedure, and
static-analyzer usually give appropri-
ate feedback in the programming pro-
cess. These properties are sometimes
also security properties, as in this
example: “Module A cannot read the
private variables of module B, except
through the public methods provided
by B.” Using information-flow type sys-
tems or static analysis a programmer
can obtain a stronger version of the
same guarantee while also adding “…
and not only that, but the public meth-
ods of module B do not leak the value
of private variable x.”

Lightweight formal methods can
be used to dramatically cut the cost
of building certified software. For a
programmer, the challenge is to make
them generate explicit proof witness
(automatically) and link them to cer-
tified low-level kernel and runtime
components. With proper embedding,
lightweight formal methods would
fit nicely into the DSL-centric OCAP
framework for constructing end-to-
end certified software.

Automation and proof engineer-
ing. The end goal of certified software
is a machine-checkable dependabil-
ity metric for high-assurance software
systems. Certified software advocates
the use of an expressive metalogic
to capture deep invariants and sup-
port modular verification of arbitrary
machine-code components. Machine-
checkable proofs are necessary for
allowing third parties to quickly es-
tablish that a software system indeed
satisfies a desirable dependability
claim. Automated proof construction
is extremely important and desirable
but should be done only without vio-
lating the overall integrity and expres-
siveness of the underlying verification
system.

Much previous research on verifi-
cation reflected full automation as a
dominating concern and was reason-
able if the primary goal is finding bugs
and having an immediate effect on
the real world’s vast quantity of run-
ning software. Unfortunately, insist-
ing on full automation also severely
hinders the power and applicability
of formal verification; many interest-
ing program properties (that end users
care about) are often undecidable (full
automation is impossible), so human
intervention is unavoidable. Low-level
program modules often have subtle
requirements and invariants that can
be specified only through high-order
logic; programming libraries verified
through first-order specifications of-
ten have to be adapted and verified
again at different call sites.

Nevertheless, there is still great
synergy in combining these two lines
of software-verification work. The
OCAP framework described earlier
emphasizes domain-specific (includ-
ing decidable first-order) logics to
certify the components in a software
system. Successful integration would
allow programmers to get the best of
both lines.

Developing large-scale mechanized
proofs and human-readable formal
specifications will be an exciting re-
search field on its own, with many
open issues. Existing automated theo-
rem provers and Satisfiability Modulo
Theories solvers6 work on only first-or-
der logic, but this limited functionality
conflicts with the rich metalogic (often
making heavy use of quantifiers) re-
quired for modular verification of low-
level software. Proof tactics in existing
proof assistants (such as Coq) must be
written in a different “untyped” lan-
guage, making it painful to develop
large-scale proofs.

Conclusion
Certified software aligns well with a
2007 study on software for dependable
systems18 by the National Research
Council (http://sites.nationalacade-
mies.org/NRC/index.htm) that argued
for a direct approach to establishing
dependability, whereby software devel-
opers make explicit the dependability
claim and provide direct evidence that
the software indeed satisfies the claim.
However, the study did not explain

66 CommuniCaTionS of ThE aCm | dECEmBEr 2010 | vol. 53 | No. 12

contributed articles

what would make a clear and explicit
dependability claim, what would serve
as valid evidence, and how to check the
underlying software to ensure it really
satisfies the claim without suffering
credibility problems.5

The study also said that the depend-
ability of a computer system relies not
only on the dependability of its soft-
ware but also on the behavior of all
other components in the system, in-
cluding human operators and the sur-
rounding physical environment. Certi-
fied software alone cannot guarantee
the dependability of the computer
system. However, many advantages,
as explained earlier, follow from sepa-
rating the dependability argument for
the software from the argument for the
software’s execution environment.

Computer software is a rigorous
mathematical entity for which pro-
grammers can formally certify claims
of dependability. However, the behav-
ior of human operators depends on
too many factors outside mathemat-
ics; even if they try hard, they would
probably never achieve the kind of
rigor they can for software. By focusing
on software alone and insisting that all
certified software come with explicit
machine-checkable proofs, a formal
claim of dependability can be used as
a metric for measuring software de-
pendability. Formal specifications are
also more complete and less ambigu-
ous than informal specifications writ-
ten in natural languages; this should
help human operators better under-
stand the behavior of the underlying
software.

A key challenge in building depend-
able systems is to identify the right
requirements and properties for verifi-
cation and decide how they would con-
tribute to the system’s overall depend-
ability. Certified software does not
make this task easier. Research on cer-
tifying low-level system software would
give software developers more insight
into how different programming-ab-
straction layers would work together.
Insisting on machine-checkable proof
objects would lead to new high-level
certified programming tools, modu-
lar verification methodologies, and
tools for debugging specifications, all
of which would make developing de-
pendable software more economical
and painless.

acknowledgments
I would like to thank Xinyu Feng, Dan-
iel Jackson, George Necula, Ashish
Agarwal, Ersoy Bayramoglu, Ryan Wis-
nesky, and the anonymous reviewers
for their valuable feedback.

References
1. appel, a.W. Foundational proof-carrying code. in

Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science (boston, june 16–19). ieee
press, los alamitos, Ca, 2001, 247–258.

2. barendregt, h.p. and geuvers, h. proof-assistants
using dependent type systems. in Handbook of
Automated Reasoning, a. robinson and a. Voronkov,
eds. elsevier Scientific publishing bV, amsterdam, the
netherlands, 2001, 1149–1238.

3. Cai, h., Shao, S., and Vaynberg, a. Certified self-
modifying code. in Proceedings of the 2007 ACM
Conference on Programming Language Design and
Implementation (San diego, june 10–13). aCm press,
new york, 2007, 66–77.

4. Colby, C., lee, p., necula, g., blau, F., plesko, m., and
Cline, K. a certifying compiler for java. in Proceedings
of the 2000 ACM Conference on Programming
Language Design and Implementation (Vancouver,
b.C., june 18-21). aCm press, new york, 2000,
95–107.

5. demillo, r.a., lipton, r.j., and perlis, a.j. Social
processes and proofs of theorems and programs. in
Proceedings of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (los angeles, jan.17–19). aCm press, new
york, 1977, 206–214.

6. de moura, l.m. and bjørner, n. Z3: an efficient Smt
solver. in Proceedings of the 14th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (Vol. 4963 of
LNCS) (budapest, mar. 29–apr. 6). Springer-Verlag,
berlin, 2008, 337–340.

7. Feng, X., Shao, Z., guo, y., and dong, y. Combining
domain-specific and foundational logics to verify
complete software systems. in Proceedings of
the Second IFIP Working Conference on Verified
Software: Theories, Tools, and Experiments (Vol. 5295
of LNCS) (toronto, oct. 6–9). Springer-Verlag, berlin,
2008, 54–69.

8. Feng, X., Shao, Z., dong, y., and guo, y. Certifying
low-level programs with hardware interrupts and
preemptive threads. in Proceedings of the 2008 ACM
Conference on Programming Language Design and
Implementation (tucson, aZ, june 10–13). aCm
press, new york, 2008, 170–182.

9. Feng, X., ni, Z., Shao, Z., and guo, y. an open
framework for foundational proof carrying code. in
Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Language Design and
Implementation (nice, France, jan. 16). aCm press,
new york, 2007, 67–78.

10. Feng, X., Shao, Z., Vaynberg, a., Xiang, S., and ni, Z.
modular verification of assembly code with stack-
based control abstractions. in Proceedings of the
2006 ACM Conference on Programming Language
Design and Implementation (ottawa, june 11–14).
aCm press, new york, 2006, 401–414.

11. hales, t.C. Formal proof. Notices of the AMS 55, 11
(dec. 2008), 1370–1380.

12. hall, a. and Chapman, r. Correctness by construction:
developing a commercial secure system. IEEE
Software 19, 1 (jan./Feb. 2002), 18–25.

13. hamid, n.a., Shao, Z., trifonov, V., monnier, S., and
ni, Z. a syntactic approach to foundational proof-
carrying code. in Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science
(Copenhagen, july 22–25). ieee press, los alamitos,
Ca 2002, 89–100.

14. hoare, C.a.r. and misra, j. Verified software: theories,
tools, experiments. in Proceedings of the First IFIP
Working Conference on Verified Software: Theories,
Tools, and Experiments (Vol. 4171 of LNCS) (Zurich,
oct. 10–13). Springer-Verlag, berlin 2005, 1–18.

15. hoare, C.a.r. an axiomatic basis for computer
programming. Commun. ACM 12, 10 (oct. 1969),
576–580.

16. huet, g., paulin-mohring, C., et al. The Coq Proof
Assistant Reference Manual. The Coq Release v6.3.1,
may 2000; http://coq.inria.fr

17. ishtiaq, S. and o’hearn, p.W. bi as an assertion
language for mutable data structures. in Proceedings
of the 28th ACM Symposium on Principles of
Programming Languages (london, jan. 17–19). aCm
press, new york, 2001, 14–26.

18. jackson, d., thomas, m., and millett, l. Software
for Dependable Systems: Sufficient Evidence? the
national academies press, Washington, d.C., 2007.

19. King, S.t., Chen, p.m., Wang, y.-m., Verbowski, C., Wang,
h.j., and lorch, j. Subvirt: implementing malware
with virtual machines. in Proceedings of the 2006
IEEE Symposium on Security and Privacy (oakland,
Ca, may 21–24). ieee press, los alamitos, Ca, 2006,
314–327.

20. leroy, X. Formal certification of a compiler back-end
or: programming a compiler with a proof assistant.
in Proceedings of the 33rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (Charleston, SC, jan. 11–13). aCm press,
new york, 2006, 42–54.

21. mcCreight, a., Shao, Z., lin, C., and li, l. a general
framework for certifying garbage collectors and
their mutators. in Proceedings of the 2007 ACM
Conference on Programming Language Design and
Implementation (San diego, june 10–13). aCm press,
new york, 2007, 468–479.

22. morrisett, g., Walker, d., Crary, K., and glew, n.
From System F to typed assembly language. in
Proceedings of the 25th ACM Symposium on Principles
of Programming Languages (San diego, jan. 19–21).
aCm press, new york, 1998, 85–97.

23. necula, g. and lee, p. Safe kernel extensions without
run-time checking. in Proceedings of the Second
USENIX Symposium on Operating System Design
and Implementation (Seattle, oct. 28–31). USeniX
association, berkeley, Ca, 1996, 229–243.

24. ni, Z. and Shao, Z. Certified assembly programming
with embedded code pointers. in Proceedings of
the 33rd Symposium on Principles of Programming
Languages (Charleston, SC, jan. 11–13). aCm press,
new york, 2006, 320–333.

25. o’hearn, p.W. resources, concurrency and local
reasoning. in Proceedings of the 15th International
Conference on Concurrency Theory (Vol. 3170 of
LNCS) (london, aug. 31–Sept. 3). Spinger-Verlag,
berlin, 2004, 49–67.

26. pnueli, a., Siegel, m., and Singerman, e. translation
validation. in Proceedings of the Fourth International
Conference on Tools and Algorithms for Construction
and Analysis of Systems (Vol. 1384 of LNCS) (lisbon,
portugal, mar. 28–apr. 4). Springer-Verlag, berlin
1998, 151–166.

27. reynolds, j.C. Separation logic: a logic for shared
mutable data structures. in Proceedings of the
17th Annual IEEE Symposium on Logic in Computer
Science (Copenhagen, july 22–25). ieee press, los
alamitos, Ca 2002, 55–74.

28. Schulte, W., Xia, S., Smans, j., and piessens, F. a
glimpse of a verifying C compiler. in Proceedings of
the C/C++ Verification Workshop (oxford, U.K., july 2,
2007).

29. Shao, Z. an overview of the Flint/ml compiler. in
Proceedings of the ACM SIGPLAN Workshop on Types
in Compilation (amsterdam, the netherlands, june 8,
1997).

30. tarditi, d., morrisett, g., Cheng, p., Stone, C., harper,
r., and lee, p. til: a type-directed optimizing
compiler for ml. in Proceedings of the 1996 ACM
Conference on Programming Language Design and
Implementation (philadelphia, may 21–24). aCm
press, new york, 1996, 181–192.

31. thompson, K. reflections on trusting trust. Commun.
ACM 27, 8 (aug. 1984), 761–763.

32. yu, d., hamid, n.a., and Shao, Z. building certified
libraries for pCC: dynamic storage allocation. in
Proceedings of the 2003 European Symposium on
Programming (Vol. 2618 of LNCS) (Warsaw, apr. 7–11).
Springer-Verlag, berlin, 2003, 363–379.

33. Zeldovich, n. Securing Untrustworthy Software Using
Information Flow Control. ph.d. thesis, department
of Computer Science, Stanford University, oct. 2007;
http://www.cs.stanford.edu/histar/

Zhong Shao (zhong.shao@yale.edu) is a professor in the
department of Computer Science at yale University, new
haven, Ct.

© 2010 aCm 0001-0782/10/1200 $10.00

