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Abstract
Proof-carrying code (PCC) is a general framework that can, in
principle, verify safety properties of arbitrary machine-language
programs. Existing PCC systems and typed assembly languages,
however, can only handle sequential programs. This severely limits
their applicability since many real-world systems use some form of
concurrency in their core software. Recently Yu and Shao proposed
a logic-based “type” system for verifying concurrent assembly pro-
grams. Their thread model, however, is rather restrictive in that no
threads can be created or terminated dynamically and no sharing of
code is allowed between threads. In this paper, we present a new
formal framework for verifying general multi-threaded assembly
code with unbounded dynamic thread creation and termination as
well as sharing of code between threads. We adapt and general-
ize the rely-guarantee methodology to the assembly level and show
how to specify the semantics of thread “fork” with argument pass-
ing. In particular, we allow threads to have different assumptions
and guarantees at different stages of their lifetime so they can co-
exist with the dynamically changing thread environment. Our work
provides a foundation for certifying realistic multi-threaded pro-
grams and makes an important advance toward generating proof-
carrying concurrent code.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; D.2.4 [Software Engineering]: Software/Program Verifica-
tion — correctness proofs, formal methods; D.3.1 [Programming
Languages]: Formal Definitions and Theory—semantics; D.4.5
[Operating Systems]: Reliability—verification

General Terms Languages, Verification

Keywords Concurrency Verification, Proof-Carrying Code, Rely-
Guarantee, Dynamic Thread Creation

1. Introduction
Proof-carrying code (PCC) [28] is a general framework that can,
in principle, verify safety properties of arbitrary machine-language
programs. Existing PCC systems [29, 6, 2] and typed assembly lan-
guages (TAL) [27, 26], however, can only handle sequential pro-
grams. This severely limits their applicability since most real-world
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systems use some form of concurrency in their core software. Cer-
tifying low-level concurrent programs is an important task because
it helps increase the reliability of software infrastructure and is cru-
cial for scaling the PCC and TAL technologies to realistic systems.

As an important first step, Yu and Shao [42]—at last year’s
ICFP—proposed a certified formal framework (known as CCAP)
for specifying and reasoning about general properties of concur-
rent programs at the assembly level. They applied the “invariance
proof” technique for verifying general safety properties and the
rely-guarantee methodology [23] for decomposition. They intro-
duced a notion of “local guarantee” for supporting thread-modular
verification even inside the middle of an atomic instruction se-
quence. Their thread model, however, is rather restrictive in that
no threads can be created or terminated dynamically and no shar-
ing of code is allowed between threads; both of these features are
widely supported and used in mainstream programming languages
such as C, Java, and Concurrent ML [34].

Certifying dynamic thread creation and termination turns out to
be a much harder problem than we had originally anticipated [42].
Dynamic thread creation and termination imply a changing thread
environment (i.e., the collection of all live threads in the system
other than the thread under concern). Such dynamic environment
cannot be tracked during static verification, yet we still must some-
how reason about it. For example, we must ensure that a newly cre-
ated thread does not interfere with existing live threads, but at the
same time we do not want to enforce non-interference for threads
that have no overlap in their lifetime. Using one copy of code to
create multiple threads also complicates program specification.

Existing work on the verification of concurrent programs al-
most exclusively uses high-level calculi (e.g., CSP [21], CCS [25],
TLA [24]). Also, existing work on the rely-guarantee methodology
for shared-memory concurrency only supports properly nested con-
current code in the form of cobegin P1‖ . . . ‖Pn coend (which is a
language construct for parallel composition where code blocks P1,
. . . , Pn execute in parallel and all terminate at the coend point).
They do not support dynamic thread creation and termination.

Modularity is also needed to make verification scale. Existing
work on the rely-guarantee methodology supports thread modular-
ity, i.e., different threads can be verified separately without looking
into other threads’ code. However, they do not support code reuse
very well. In CCAP, if a procedure is called in more than one thread,
it must be verified multiple times using different specifications, one
for each calling thread. We want a procedure to be specified and
verified once so it can be reused for different threads.

In this paper, we propose a new framework for supporting
certified multi-threaded assembly programming (CMAP). CMAP
is based on a realistic abstract machine which supports dynamic
thread creation with argument passing (the “fork” operation) as
well as termination (the “exit” operation). Thread “join” can also be



implemented in our language using synchronization. Our approach
builds on previous work on type systems and program verification
but makes the following important new contributions:

• The “fork/join” thread model is more general than “cobe-
gin/coend” in that it supports unbounded dynamic thread cre-
ation, which poses new challenges for verification. To our
knowledge, our work is the first to successfully apply the rely-
guarantee method to verify concurrent programs with dynamic
thread creation and termination. Our CMAP framework pro-
vides a foundation for certifying realistic multi-threaded pro-
grams and makes an important step toward generating concur-
rent certified code.

• The presence of dynamic threads makes it impossible to track
the actual live threads during verification. This poses great
challenge in enforcing the rely-guarantee condition. To solve
this, we collect all dynamic threads into a single environment
(i.e., the dynamic thread queue) and reason about the envi-
ronment’s assumption and guarantee requirements as a whole.
Although the dynamic thread queue cannot be tracked stati-
cally, we can update and approximate the environment’s as-
sumption and guarantee at each program point. In fact, we
can unify the concepts of the current running thread’s assump-
tion/guarantee with its environment’s guarantee/assumption. As
we will demonstrate in Sections 3 and 4, making this work in a
formal framework (i.e., CMAP) is not trivial and it constitutes
our main technical contribution.

• To ensure that the dynamic thread environment is well-formed,
we enforce the invariant that the active threads in the system
never interfere with each other. We maintain this invariant by
following the approach used for type checking the dynamic data
heap [27]. By combining the type-based proof techniques with
the rely-guarantee based reasoning, we get a simple, extensi-
ble, and expressive framework for reasoning about the flexible
“fork/join” thread model.

• We allow one copy of thread code to be activated multiple times
at different places. Different “incarnations” may have different
behavior, depending on the value of the thread argument. This
allows us to support unbounded thread creation.

• We show how to maintain thread-modular reasoning even in the
presence of dynamic thread creation and termination. Unlike
CCAP, we allow each code segment to be specified indepen-
dently of threads. Our work provides great support for code-
and verification sharing between threads.

• We have also solved some practical issues such as thread ar-
gument passing and the saving and restoring of thread-private
data at context switches. These issues are important for realistic
multi-threaded programming but as far as we know have never
been discussed in existing work.

We have developed CMAP and proved its soundness using the
Coq proof assistant [37]. The implementation in Coq is avail-
able for download [10]. Our work makes an important advance
toward building a complete PCC system for multi-threaded pro-
grams. Without formal systems such as CMAP, we cannot formally
reason about concurrent assembly code. Still, more work must be
done before we can construct a fully practical system. For exam-
ple, a highly desirable goal is a high-level language with concise
human-readable annotations that can be automatically compiled
into CMAP programs and proofs. We leave this as future work.

In the rest of this paper, we first give an overview of the rely-
guarantee-based reasoning and a detailed explanation of the key
challenges in verifying multi-threaded assembly code (Section 2).
We then give an informal description of our approach to address
these problems in Section 3, and present our work on CMAP with
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Figure 1. Rely-guarantee-based reasoning
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Figure 2. R-G in a non-preemptive setting

formal semantics in Section 4. We use a few examples to illustrate
CMAP-based program verification in Section 5. Finally we discuss
related work and conclude.

2. Background and Challenges
2.1 Rely-Guarantee-Based Reasoning

The rely-guarantee (R-G) proof method [23] is one of the best-
studied approaches to the compositional verification of shared-
memory concurrent programs. Under the R-G paradigm, every
thread is associated with a pair (A, G), with the meaning that
if the environment (i.e., the collection of all of the rest threads)
satisfies the assumption A, the thread will meet its guarantee G
to the environment. In the shared-memory model, the assumption
A of a thread describes what atomic transitions may be performed
by other threads, while the guarantee G of a thread must hold on
every atomic transition of the thread. They are typically modeled
as predicates on a pair of states, which are often called actions.

For instance, in Figure 1 we have two interleaving threads T1

and T2. T1’s assumption A1 adds constraints on the transition
(S0, S1) made by the environment (T2 in this case), while G1 de-
scribes the transition (S1, S2), assuming the environment’s transi-
tion satisfies A1. Similarly A2 describes (S1, S2) and G2 describes
(S0, S1).

We need two steps to reason about a concurrent program con-
sisting of T1 and T2. First, we check that there is no interference
between threads, i.e., that each thread’s assumption can be satis-
fied by its environment. In our example, non-interference is sat-
isfied as long as G1 ⇒ A2 (a shorthand for ∀S, S′.G1(S, S′) ⇒
A2(S, S′)), and G2 ⇒ A1. Second, we check that T1 and T2 do not
lie, that is, they satisfy their guarantee as long as their assumption
is satisfied. As we can see, the first step only uses the specification
of each thread, while the second step can be carried out indepen-
dently without looking at other threads’ code. This is how the R-G
paradigm achieves thread-modularity.

2.2 R-G in Non-Preemptive Thread Model

CMAP adopts a non-preemptive thread model, in which threads
yield control voluntarily with a yield instruction, as shown in Fig-
ure 2. The preemptive model can be regarded as a special case of



Variables:
nat[100] data;

Initially:
data[i] = ni, 0 ≤ i < 100

main1 :
data[0] := f(0);
fork(chld, 0);

...
data[99] := f(99);
fork(chld, 99);
. . .

main2 :
nat i := 0;
while(i < 100){
data[i] := f(i);
fork(chld, i);
i := i + 1;

}
. . .

void chld(int x){
data[x] := g(x, data[x]);

}

Figure 3. Loop: high-level program

the non-preemptive one, in which an explicit yield is used at every
program point. Also, on real machines, programs might run in both
preemptive and non-preemptive settings: preemption is usually im-
plemented using interrupts; a program can disable the interrupt to
get into non-preemptive setting.

An “atomic” transition in a non-preemptive setting then corre-
sponds to a sequence of instructions between two yields. For in-
stance, in Figure 2 the state pair (S2, S

′

2) corresponds to an atomic
transition of thread T1. A difficulty in modeling concurrency in
such a setting is that the effect of an “atomic” transition cannot
be completely captured until the end. For example, in Figure 2, the
transition (S1, S

′

1) should satisfy G2. But when we reach the inter-
mediate state S, we have no idea of what the whole transition (i.e.,
(S1, S

′

1)) will be. At this point, neither (S1, S) nor (S, S′

1) need
satisfy G2. Instead, it may rely on the remaining commands (the
commands between comm and yield, including comm) to com-
plete an adequate state transition. In CCAP [42], a “local guaran-
tee” g is introduced for every program point to capture further state
changes that must be made by the following commands before it is
safe for the current thread to yield control. For instance, the local
guarantee g attached to comm in Figure 2 describes the transition
(S, S′

1).

2.3 Challenges for Dynamic Thread Creation

To prove safety properties of multi-threaded programs, the key
problem is to enforce the invariant that all executing threads
must not interfere with each other. As mentioned in Section 2.1,
threads do not interfere (or they satisfy the non-interference or
interference-free property) only if each thread’s assumption is im-
plied by the guarantee of all other threads1. For languages that do
not support dynamic thread creation, the code for each thread cor-
responds to exactly one executing thread. Using the rely-guarantee
method, we can assign an assumption and guarantee to each thread
code and enforce non-interference by checking all of these as-
sumptions and guarantees, as is done in [42] and [13]. However,
the following example shows that this simple approach cannot sup-
port dynamic thread creation and and multiple “incarnation” of the
thread code.

In Figure 3, the high-level pseudo code (using C-like syntax)
shows the code for (two versions of) a main thread and child
threads. The main thread initializes 100 pieces of data using some
function f, and distributes them to 100 child threads that will work
on their own data (by applying a function g) in parallel. The fork

function creates a child thread that will execute the function pointed

1 We will formalize the Non-Interference property in Section 4.4.
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Figure 4. Interleaving of threads

to by the first argument. The second argument of fork is passed to
the function as argument. The thread main1 does this in sequential
code while main2 uses code with a loop. We assume that the high
level code runs in preemptive mode. In other words, there is an
implicit yield at any program point.

It is easy to see that both versions are “well-behaved” as long as
the function g has no side effects, and all other threads in the rest
of the system do not update the array of data. However, the simple
approach used in [42] and [13] even cannot provide a specification
for such trivial code.

1. Figure 4 (a) illustrates the execution of main1 (time goes down-
wards). When doing data initialization (at stage A-B, meaning
from point A to point B), the main thread needs to assume that
no other threads in the environment (say, T2) can change the ar-
ray of data. However, the composition of the main thread’s en-
vironment changes after a child thread is created. The assump-
tion used at A-B is no longer appropriate for this new environ-
ment since the first child thread will write to data[0]. And the
environment will keep changing with the execution of the main
thread. How can we specify the main1 thread to support such a
dynamic thread environment?

One possible approach is that the main thread relaxes its as-
sumption to make exceptions for its child threads. However, it is
hard to specify the parent-child relationship. Another approach
is to use something like the program counter in the assumption
and guarantee to indicate the phase of computation. This means
the specification of the main thread is sensitive to the imple-
mentation. Also the program structure of the main thread has
to be exposed to the specification of the child threads, which
compromises modularity. The worst thing is that this approach
simply won’t work for the version main2.

2. Since multiple child threads are created, we must make sure
that there is no interference between these children. It is easy
for the above example since we can let the assumption and
guarantee of the chld code be parameterized by its argument,
and require Gi ⇒ Aj given i 6= j. However, this approach
cannot be generalized for threads that have dummy arguments
and their behavior does not depend on their arguments at all.
In this case Gi ≡ Gj and Ai ≡ Aj for any i and j. Then
requiring Gi ⇒ Aj is equivalent to requiring Gi ⇒ Ai, which
cannot be true in general, given the meaning of assumptions and
guarantees described in section 2.1. Do we need to distinguish
these two kinds of threads and treat them differently? And how
do we distinguish them?

3. Another issue introduced by dynamic thread creation, but not
shown in this example program, is that the lifetimes of some
threads may not overlap. In the case shown in Figure 4 (b),
the lifetimes of T2 and T3 do not overlap and we should not
statically enforce non-interference between them. Again, how
can we specify and check the interleaving of threads, which can
be as complex as shown in Figure 4 (c)?



In the next section we’ll show how these issues are resolved in
our development of CMAP.

3. Our Approach
In the rest of this paper, to distinguish the executing thread and the
thread code, we call the dynamically running thread the “dynamic
thread” and the thread code the “static thread”. In Figure 3 the
function chld is the static child thread, from which 100 dynamic
child threads are activated.

As explained in Section 2.3, the approach that requiring non-
interference of static threads is too rigid to support dynamic
thread creation. Our approach, instead, enforces the thread non-
interference in a “lazy” way. We maintain a dynamic thread queue
which contains all of the active threads in the system. When a new
thread is created, it is added to the dynamic thread queue. A thread
is removed from the queue when its execution terminates. We also
require that, when specifying the program, each static thread be
assigned an assumption/guarantee pair. However, we do not check
for non-interference between static thread specifications. Instead,
each dynamic thread is also assigned an assumption and guarantee
at the time of creation, which is an instantiation of the correspond-
ing static thread specification with the thread argument. We require
that dynamic threads do not interfere with each other, which can be
checked by inspecting their specifications.

Our approach is very flexible in that each dynamic thread does
not have to stick to one specification during its lifetime. When its
environment changes, its specification can be changed accordingly.
As long as the new specification does not introduce interference
with other existing dynamic threads, and the subsequent behavior
of this thread satisfies the new specification, the whole system is
still interference-free. In this way, we can deal with the changing
environment resulting from dynamic thread creation and termina-
tion. Problem 1 in Section 2.3 can be solved now.

If the lifetimes of two threads do not overlap they will not show
up in the system at the same time. Therefore we do not need to
check for interference at all. Also, since each dynamic thread has
its own specification, we no longer care about the specification of
the corresponding static thread. Therefor problems 2 and 3 shown
in Section 2.3 are no longer an issue in our approach.

3.1 Typing The Dynamic Thread Queue

We define the dynamic thread queue Q as a set of thread identifiers
ti, and the assignment Θ of assumption/guarantee pairs to dynamic
threads as a partial mapping from ti to (Ai, Gi)

2. The queue Q is
“well-typed” with regard to Θ if:

• Q = dom(Θ), where dom(Θ) is the domain of Θ;
• threads in Q do not interfere, i.e., ∀ti,tj .ti 6= tj ⇒ (Gi ⇒

Aj); and
• each dynamic thread ti is “well-behaved” with regard to

(Ai, Gi), i.e., if Ai is satisfied by the environment, ti’s ex-
ecution does not get stuck and satisfies Gi.

Therefore, the invariant we need to maintain is that during the
execution of the program, for the queue Q at each step there exists
a Θ such that Q is well-typed with regard to Θ. In fact, we do not
require Θ to be part of the program specification. We only need
to ensure that there exists such a Θ at each step, which may be
changing.

The content of the thread queue keeps changing, so how can we
track the set of threads in the queue by a static inspection of the
program? Here we follow the approach used for type-checking the

2 This is a temporary formulation to illustrate our basic idea. We will use
different definitions in our formal development of CMAP in Section 4.

dynamic data heap [27], which is dynamically updated by the store
instruction and extended by the alloc instruction. We can ensure our
invariant holds as long as the following conditions are satisfied:

• At the initial state (when the program starts to run) we can
find a Θ to type-check the initial Q. Usually the initial Q only
contains the main thread, which will start to execute its first
instruction, so we can simply assign the assumption/guarantee
in the specification of the static main thread to the dynamic
main thread.

• For each instruction in the program, assume that before the ex-
ecution of the instruction there is a Θ such that Q is well typed.
Then as long as certain constraints are satisfied to execute the
instruction, there must exist a Θ′ that can type check the result-
ing Q′. For most instructions which do not change the content
of the thread queue, this condition can be trivially satisfied. We
are only interested in the “fork” and “exit” operation which will
change the content of Q.

For the “exit” instruction, the second condition can also be satisfied
by the following lemma which can be trivially proven.

Lemma 3.1 (Thread Deletion)
If Q is well-typed with regard to Θ, then for all t ∈ Q we know
Q \ {t} is well-typed with regard to Θ \ {t}.

For the “fork” instruction, things are trickier. We need to ensure that
the new child thread does not interfere with threads in the parent
thread’s environment. We also require that the parent thread does
not interfere with the child thread. The following lemma ensures
the first requirement.

Lemma 3.2 (Queue Extension I)
Suppose Q is well-typed with regard to Θ and the current executing
thread is t. If

• Θ(t) = (A, G);
• a new thread t′ is created by t;
• (A′, G′) is the instantiation of the corresponding static thread

specification by the thread argument;
• A ⇒ A′ and G′ ⇒ G;

then Q′ ∪ {t′} is well-typed with regard to Θ′{t′
; (A′, G′)},

where Q′ = Q \ {t} and Θ′ = Θ \ {t}.

Here Q′ is the environment of the current thread t. Since t does
not interfere with its environment (because Q is well-typed), we
know that its assumption A is an approximation of what the envi-
ronment can guarantee (Ge), and similarly that G is an approxima-
tion of the environment’s assumption (Ae). By this interpretation,
we can unify the concepts of the current running thread’s assump-
tion/guarantee with its environment’s guarantee/assumption. To en-
sure the new thread t′ does not interfere with t’s environment, we
need G′ ⇒ Ae and Ge ⇒ A′, which can be derived from G′ ⇒ G
and A ⇒ A′.

Still, we need to ensure that thread t does not interfere with
t′. As mentioned above, A and G are approximations of Ge and
Ae, respectively. Since the environment is extended with the child
thread, the guarantee G′

e for the new environment is Ge ∨ G′ and
the assumption for the new environment A′

e is Ae∧A′. We want to
change A and G correspondingly to reflect the environment change.
First, the following lemma says that the specification of a dynamic
thread can be changed during its lifetime.

Lemma 3.3 (Queue Update)
Suppose Q is well-typed with regard to Θ and that the current
executing thread is t. If



• Θ(t) = (A,G);
• G′′ ⇒ G and A ⇒ A′′;
• the subsequent behavior of the current thread satisfies (A′′, G′′);

then Q is well-typed with regard to Θ{t ; (A′′, G′′)}.

Now we can change the specification of the parent thread t to let it
reflect the change of the environment.

Lemma 3.4 (Queue Extension II)
Suppose Q is well-typed with regard to Θ and the current executing
thread is t. If

• Θ(t) = (A,G);
• a new thread t′ is created by t;
• (A′, G′) is the instantiation of the corresponding static thread

specification by the thread argument;
• (A ⇒ A′) ∧ (G′ ⇒ G);
• the remainder behavior of the thread t also satisfies (A ∨

G′, G ∧ A′);

then Q∪ {t′} is well-typed with regard to Θ{t′
; (A′, G′),t ;

(A ∨ G′, G ∧ A′)}.

If t later creates another thread t′′, because the specification of t
already reflects the existence of t′, by Lemma 3.2 we know that
t′′ will not interfere with t′ as long as its specification satisfies the
constraints. Therefore we do not need to explicitly check that t′

and t′′ are activated from the same static thread or that multiple
activations of a static thread do not interfere with each other.

These lemmas are used to prove the soundness of CMAP. They
are somewhat similar to the heap update and heap extension lem-
mas used in TAL’s soundness proof [27]. People familiar with the
traditional rely-guarantee method may feel this is nothing but the
parallel composition rule used to support nested cobegin/coend.
However, by combining the invariant-based proof technique used
by type systems and the traditional rely-guarantee method, we can
now verify multi-threaded assembly program with a more flexible
program structure than the cobegin/coend structure. In particular,
programs which are not properly nested, as shown in Figure 4(c)
and the main2 program in Figure 3, can be supported in our sys-
tem. This is one of the most important contributions of this paper.

3.2 Parameterized Assumption/Guarantee

The assumptions and guarantees are interfaces between threads,
which should only talk about shared resources. As we allow mul-
tiple activations of static threads, the behavior of a dynamic thread
may depend on its arguments, which is the thread’s private data.
Therefore, to specify a static thread, the assumption and guarantee
need to be parameterized over the thread argument.

In our thread model, the flat memory space is shared by all
threads, and as in most operating systems, the register file is saved
at the moment of context switch. Therefore the register file is
thread-private data. The thread argument is stored in a dedicated
register.

Rather than letting the assumption and guarantee be parameter-
ized over the thread argument, we let them be parameterized over
the whole register file. This makes our specification language very
expressive. For instance, we allow the dynamic thread to change
its specification during its lifetime to reflect change in the envi-
ronment. If the thread has private data that tracks the composition
of the environment, and its specification is parameterized by such
data, then its specification automatically changes with the change
of the data, which in turn results from the change of the thread en-
vironment. This is the key technique we use to support unbounded
dynamic thread creation, as shown in the program main2 in Fig-
ure 3.
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Figure 5. Code sharing between different threads

3.3 Support of Modular Verification

The rely-guarantee method supports thread modularity well, i.e.,
code of one thread can be verified independently without inspecting
other threads’ code. However, it does not have good support for
code reuse. In CCAP, each thread has its own code heap and there
is no sharing of code between threads. As Figure 5(a) shows, if an
instruction sequence is used by multiple threads, it has multiple
copies in different threads’ code heaps, each copy verified with
regard to the specifications of these threads.

Based on the rely-guarantee method, the thread modularity is
also supported in our system. In addition, using our “lazy” checking
of thread non-interference, and by the queue update lemma, we can
allow instruction sequences to be specified independently of their
calling thread, thus achieving better modularity.

As shown in Figure 5(b), we assign an assumption/guarantee
pair to the specification of each instruction sequence, and require
the instruction sequence be well-behaved with regard to its own as-
sumption/guarantee. Similar to threads, the instruction sequence is
well-behaved if, when it is executed by a dynamic thread, its exe-
cution is safe and satisfies its guarantee, as long as other dynamic
threads in the environment satisfy the assumption. The instruction
sequence only needs to be verified once with respect to its own
specification, and can be executed by different threads as long as
certain constraints are satisfied.

Intuitively, it is safe for a dynamic thread t with specification
(Ai, Gi) to execute the instruction sequence labeled by f as long
as executing it does not require a stronger assumption than Ai, nor
does it violate the guarantee Gi. Therefore, if the specification of
f is (A,G), t can call f as long as Ai ⇒ A and G ⇒ Gi. The
intuition is backed up by our queue update lemma.

4. CMAP
The language CMAP is based on an “untyped” low-level abstract
machine supporting multi-threaded programs with dynamic thread
creation and argument passing. The “type” system of CMAP uses
the calculus of inductive constructions (CiC) [32] to essentially
support reasoning in higher-order predicate logic.

4.1 The Abstract Machine

Figure 6 shows the definition of our abstract machine.
A CMAP program (corresponding to a complete machine state)

is made up of an updatable state S (which is made up of the shared
memory M and the register file R), a dynamic thread queue Q,
two shared code heaps C (for basic code blocks) and T (for thread
entries), and the current instruction sequence I of the currently
executing thread. Here C and T can be merged, but conceptually it
is cleaner to have them separated because the specification of T and
is different from that of C (See Section 4.3: for T we do not need
to specify a local guarantee). Memory is a partial mapping from



((M, R), Q, T, C, I) 7−→ P

if I = then P =

fork h,r; I′′ ((M, R), Q{t ; (R′, I′)}, T, C, I′′)
where I′ = T(h), t 6∈ dom(Q), t 6= R(rt), and R′ = {r0 ; , . . . ,r15 ; , rt ; t, ra ; R(r)}

yield; I′′ ((M, R′), (Q{R(rt) ; (R, I′′)}) \ {t}, T, C, I′)
where t ∈ dom(Q) and (R′, I′) = Q(t) or t = R(rt) and (R′, I′) = (R, I′′)

exit ((M, R′), Q \ {t}, T, C, I′) where t ∈ dom(Q) and (R′, I′) = Q(t)
jd f ((M, R), Q, T, C, I′) where I′ = C(f)
bgt rs,rt,f; I′′ ((M, R), Q, T, C, I′′) if R(rs) ≤ R(rt),

((M, R), Q, T, C, I′) otherwise, where I′ = C(f)
beq rs,rt, f; I′′ ((M, R), Q, T, C, I′′) if R(rs) 6= R(rt),

((M, R), Q, T, C, I′) otherwise, where I′ = C(f)
c; I′′ for remaining (Next(c, (M, R)), Q, T, C, I′′)

cases of c

Figure 8. Operational semantics of CMAP

(Program) P ::= (S, Q, T, C, I)
(State) S ::= (M, R)

(Memory) M ::= {l ; w}∗

(RegFile) R ::= {r ; w}∗

(Register) r ::= r0 | r1 | . . . | r15 | rt | ra
(CdHeap) C ::= {f ; I}∗

(Labels) f,l ::= n (nat nums)
(WordVal) w ::= n (nat nums)
(TEntries) T ::= {h ; I}∗

(TQueue) Q ::= {t ; (R, I)}∗

(THandles) h ::= n (nat nums)
(ThrdID) t ::= n (nat nums)

(InstrSeq) I ::= c; I | jd f | exit
(Commd) c ::= yield | fork h,r | add rd, rs,rt | sub rd, rs,rt

| movi rd,w | bgt rs,rt,f | beq rs, rt, f
| ld rd,rs(w) | st rd(w), rs

Figure 6. The abstract machine

if c = then Next(c, (M, R)) =

add rd,rs,rt (M, R{rd ; R(rs) + R(rt)})
sub rd, rs,rt (M, R{rd ; R(rs) − R(rt)})
movi rd,w (M, R{rd ; w})
ld rd,rs(w) (M, R{rd ; M(R(rs) + w)})

where (R(rs) + w) ∈ dom(M)
st rd(w), rs (M{(R(rd) + w) ; R(rs)}, R)

where (R(rd) + w) ∈ dom(M)

Figure 7. Auxiliary state update function

memory locations to word-sized values. The register file R maps
registers to word-sized values. In our machine, there are 16 general
purpose registers (r0 - r15) and two special registers (rt and ra) that
hold the current thread id and the thread argument. Code heaps map
code labels to instruction sequences, which are lists of instructions
terminated by a jd or exit instruction. Code labels pointing to thread
entries are also called thread handles. T maps thread handles to
thread entries (instruction sequences from which a thread starts to
execute). Thread entries are also called static threads. The current
instruction sequence I plays the role of the program counter of the
current executing thread.

For simplicity, we just model the queue of ready threads, which
is the dynamic thread queue Q that maps the dynamic thread id
to an execution context of a thread. The dynamic thread id t
is a natural number generated randomly at run time. The thread
execution context includes the snapshot of the register file and the
program point where the thread will resume its execution. Note that
Q does not contain the current executing thread, which is different
from the dynamic thread queue used in Section 3.

The instruction set of CMAP just contains the most basic and
common assembly instructions. It also includes primitives fork,
exit and yield to support multi-threaded programming which can
be viewed as system calls to a thread library. We do not have a join
instruction because thread join can be implemented using synchro-
nization. Readers who are eager to see a CMAP program can take
a quick look at Figure 10 in Section 5.1 (ignore the specifications
and annotations in program for the time being), which is the CMAP
implementation of programs main2 and chld shown in Figure 3.

The execution of CMAP programs is modeled as small-step
transitions from one program to another, i.e., P 7−→ P′. Figure 8
defines the program transition function.

The primitive fork creates a new thread using the static thread
h, and passes the value R(r) to it as the argument. The new thread
will be assigned a fresh thread id and placed in the dynamic thread
queue waiting for execution. The current thread continues with the
subsequent instructions.

At a yield instruction, the current thread will give up the control
of the machine. Its execution context is stored in Q. The scheduler
will pick one thread non-deterministically from the thread queue
(which might be the yielding thread itself), restore its execution
context, and execute it.

The exit instruction terminates the execution of the current
thread and non-deterministically selects a thread from the thread
queue. Here we have the implicit assumption that there is always
an idle thread in the thread queue that never changes the state or
terminates, ensuring that the thread queue will never be empty.

Semantics for the rest of the instructions are standard. The “next
state” function defined in Figure 7 describes the effects of some
instructions on the state.

4.2 The Meta-Logic

To encode the specification and proofs, we use the calculus of
inductive constructions (CiC) [37, 32], which is an extension of
the calculus of constructions (CC) [7] with inductive definitions.
CC corresponds to Church’s higher-order predicate logic via the
Curry-Howard isomorphism.

CiC has been shown strongly normalizing [38], hence the cor-
responding logic is consistent. It is supported by the Coq proof as-
sistant [37], which we have used to implement CMAP.

In the remainder of this paper, we will mainly use the more fa-
miliar mathematical and logical notations, instead of strict CiC or
Coq representation. We use Prop to denote the type of all propo-
sitions. No knowledge of CiC and Coq is required to understand
them.

4.3 Program Specifications

The verification constructs of CMAP are defined in Figure 9. The
program specification Φ is a global invariant (Inv), a static thread



(ProgSpec) Φ ::= (Inv,∆, Ψ)
(ThrdSpec) ∆ ::= {h ; θ}∗

(ThrdType) θ ::= (p, A, G)
(CdHpSpec) Ψ ::= {f ; (p,g, A, G)}∗

(ActTSpec) Θ ::= {t ; (p, A, G)}∗

(Invariant) Inv ∈ Mem→Prop
(Assertion) p ∈ State→Prop

(Assumption) A ∈ RegFile→Mem→Mem→Prop
(Guarantee) G,g ∈ RegFile→Mem→Mem→Prop

Figure 9. Verification constructs of CMAP

specification ∆, and a code heap specification Ψ. The invariant
Inv is a programmer specified predicate, which implies a safety
property of concern. It must hold throughout the execution of the
program. The static thread specification ∆ contains a specification
θ for each static thread in T. Each θ contains a precondition p to
invoke this thread, and an assumption A and guarantee G for this
thread with regard to the environment at its creation time.

A code heap specification Ψ assigns a quadruple (p,g, A, G)
to each instruction sequence. The assertion p is the precondition
to execute the code sequence. The local guarantee g, as introduced
in Section 2.2, describes a valid state transition – it is safe for the
current thread to yield control only after making a state transition
described by g. As explained in Section 3.3,, we assign a pair of
A and G to each instruction sequence as part of its specification.
The instruction sequence can be verified with regard to its own
specification without knowing which thread executes it. Here the
A and G reflect knowledge of the dynamic thread environment at
the time the instruction sequence is executed.

The global invariant Inv is a CiC term of type Mem → Prop,
i.e., a predicate over memory. Inv does not specify the register
file, which contains thread-private data and keeps changing. In
contrast to Inv, assertions (p) are predicates over the whole state.
Assumptions and guarantees (e.g., A, G and g) are CiC terms with
type RegFile → Mem → Mem → Prop, which means predicates
over a register file and two instances of memory. Assumptions
and guarantees specify the behavior of threads by describing the
change of shared memory. As mentioned in Section 3.2, they are
parameterized over the register file, which contains the private data
of threads.

We also define the specification Θ of active threads in the thread
queue Q. Within Θ, each triple (p, A, G) describes a dynamic
thread at its yield point (or at the beginning if it has just forked).
The assertion p gives the constraint of the state when the thread gets
control back to execute its remaining instructions. The assumption
and guarantee used by the thread at the yield point are given by A

and G. As we said in Section 3.1, the A and G of each dynamic
thread may change during the lifetime of the thread. Notice that
Θ is not part of the program specification. It is used only in the
soundness proof.

4.4 Inference Rules

We use the following judgement forms to define the inference rules:

Φ; Θ; (p,g, A, G) ` P (well-formed program)
Φ; Θ; (g, S) ` Q (well-formed dynamic threads)
Φ ` T (well-formed static threads)
Φ ` C (well-formed code heap)
Φ; (p,g, A, G) ` I (well-formed instr. sequence)

Before introducing the inference rules, we first define some
shorthands in Table 1 to simplify our presentation.

Well-formed programs. The PROG rule shows the invariants that
need to be maintained during program transitions.

Representation Definition

S(r) R(r) where S = (M, R)
Inv ∧ p λ(M, R).Inv M ∧ p (M, R)
g S M′ g R M M′, where S = (M, R)
A S M′, G S M′ similar to g S M′

p ◦ c λS.p (Next(c, S))
g ◦ c λS.λM′. g (Next(c, S)) M′

A ◦ c, G ◦ c similar to g ◦ c
p ⇒ p′ ∀S.p S ⇒ p′ S

p ⇒ g ∀R, M.p (M, R) ⇒ g R M M

p ⇒ g ⇒ g′ ∀S, M′.p S ⇒ g S M′ ⇒ g′ S M′

A ⇒ A′ ∀R, M, M′.A R M M′ ⇒ A′ R M M′

G ⇒ G′ ∀R, M, M′.G R M M′ ⇒ G′ R M M′

p
R

=⇒ g
R′

=⇒ p′ ∀M, M′.p (M, R) ⇒ g R M M′ ⇒ p (M′, R′)

(Inv, p 	 A, R) (Inv ∧ p)
R

=⇒ A
R

=⇒ p

Table 1. Assertion definitions and syntactic sugar

(Inv, ∆,Ψ) = Φ (M, R) = S t = R(rt)

Φ ` T Φ ` C (Inv ∧ p) S Φ; (p,g, A, G) ` I

Φ;Θ; (g, S) ` Q NI(Θ{t ; (p, A, G)}, Q{t ; (R, I)})

Φ; Θ; (p, g, A, G) ` (S, Q, T, C, I)
(PROG)

The well-formedness of a program is judged with respect to
the program specification Φ, the dynamic thread specification Θ,
and the specification of the current executing thread (p, g, A, G).
Compared with the triples in Θ, we need the local guarantee g here
to specify the transition which the current thread must make before
it yields control.

In the first line, we give the composition of the program speci-
fication, the current state and the current thread id. Here we use a
pattern match representation, which will be used in the rest of this
paper.

We require the code, including the thread entry points T and the
code heap C, always be well-formed with respect to the program
specification. Since Φ, T and C do not change during program
transitions, the check for the first two premises in line 2 can be
done once and for all.

The next premise shows the constraints on the current state S:
it must satisfy both the global invariant Inv and the assertion p of
the current thread. The last premise in line 2 essentially requires it
be safe for the current thread to execute the remainder instruction
sequence I.

Premises in line 3 require the well-formedness of dynamic
threads in Q, which is checked by the rule DTHRDS, and the non-
interference between all the live threads.

Non-interference. The non-interference macro NI(Θ, Q) re-
quires that each dynamic thread be compatible with all the other. It
is formally defined as:

∀ti, tj ∈ dom(Θ).∀M, M′.
ti 6= tj ⇒ Gi Ri M M′ ⇒ Aj Rj M M′,

where ( , Ai, Gi) = Θ(ti), ( , Aj , Gj) = Θ(tj), Ri = Q(ti)
and Rj = Q(tj).

As explained in Section 3, here we enforce the non-interference
by a lazy check of specifications Θ of dynamic threads in Q, instead
of checking the specification ∆ of all static threads in T.

Well-formed dynamic threads. The rule DTHRDS ensures each
dynamic thread in Q is in good shape with respect to the specifi-
cation Θ, the current program state S, and the transition g that the
current thread need do before other threads can take control.



(Rk , Ik) = Q(tk), (pk, Ak , Gk) = Θ(tk), ∀tk ∈ dom(Q)

(Inv,pk 	 Ak, Rk) ∀M′.g R M M′ ⇒ pk (M′, Rk)
(Inv,∆,Ψ); (pk, Gk, Ak, Gk) ` Ik

(Inv,∆,Ψ); Θ; (g, (M, R)) ` Q
(DTHRDS)

The first line gives the specification of each thread when it
reaches a yield point, and its execution context.

The first premise in line 2 requires that if it is safe for a thread
to take control at certain state, it should be also safe to do so after
any state transition satisfying its assumption. Note that the state
transition will not affect the thread-private data in Rk.

The second premise describes the relationship between the lo-
cal guarantee of the current thread and the preconditions of other
threads. For any transitions starting from the current state (M, R),
as long as it satisfies g, it should be safe for other threads to take
control at the result state.

Line 3 requires that for each thread its remainder instruction
sequence must be well formed. Note we use Gk as the local guar-
antee because after yield, a thread starts a new “atomic transition”
described by its global guarantee.

Well-formed static threads. This rule checks the static thread
entry is well formed with respect to its specification in ∆.

(pk , Ak, Gk) = ∆(hk), Ik = T(hk), ∀hk ∈ dom(T)

∀R.(Inv, pk 	 Ak, R) (Inv, ∆,Ψ); (pk, Gk, Ak , Gk) ` Ik

(Inv,∆,Ψ) ` T
(THRDS)

The first line gives the specification for each static thread in T.
We implicitly require dom(∆) = dom(T).

The first premise in line 2 says that if it is safe to invoke the new
thread at certain state, it should also be safe to delay the invocation
after any transition satisfying the assumption of this thread.

The initial instruction sequence of each thread must be well-
formed with respect to the thread specification. This is required by
the last premise.

Well-formed code heap. A code heap is well formed if every in-
struction sequence is well-formed with respect to its corresponding
specification in Ψ.

dom(Ψ) = dom(C) (Inv,∆,Ψ); Ψ(f) ` C(f), ∀f ∈ dom(Ψ)

(Inv,∆, Ψ) ` C
(CDHP)

Thread creation. The FORK rule describes constraints on new
thread creation, which enforces the non-interference between the
new thread and existing threads.

(p′, A′, G′) = ∆(h)

A ⇒ A′′ G′′ ⇒ G (A ∨ G′′) ⇒ A′ G′ ⇒ (G ∧ A′′)

∀R, R′. (R(rt) 6= R′(rt) ∧ R(r) = R′(ra)) ⇒ ((Inv ∧ p)
R

=⇒ g
R′

=⇒ p′)
(Inv,∆,Ψ); (p,g, A′′, G′′) ` I

(Inv,∆,Ψ); (p, g, A, G) ` fork h,r; I
(FORK)

As explained in Section 3.1, the parent thread can change its
specification to reflect the change of the environment. To maintain
the non-interference invariant, constraints between specifications
of the parent and child threads have to be satisfied, as described in
Lemma 3.4. Here we enforce these constraints by premises in line
2, where (A ∨ G′′) ⇒ A′ is the shorthand for:

∀(M, R).∀M′, M′′.∀R′.(Inv ∧ p) (M, R) ⇒ R(rt) 6= R′(rt)
⇒ R(r) = R′(ra) ⇒ (A ∨ G′′) R M′ M′′ ⇒ A′ R′ M′ M′′,

and G′ ⇒ (G ∧ A′′) for:

∀(M, R).∀M′, M′′.∀R′.(Inv ∧ p) (M, R) ⇒ R(rt) 6= R′(rt)
⇒ R(r) = R′(ra) ⇒ G′ R′ M′ M′′ ⇒ (G ∧ A′′) R M′ M′′.

Above non-interference checks use the extra knowledge that:

• the new thread id is different with its parent’s, i.e., R(rt) 6=
R′(rt);

• the argument of the new thread comes from the parent’s register
r, i.e., R(r) = R′(ra);

• the parent’s register file satisfies the precondition, i.e., (Inv ∧
p) (M, R).

In most cases, the programmer can just pick (A∨ Ĝ′) and (G∧

Â′) as A′′ and G′′ respectively, where Ĝ′ and Â′ are instantiations
of G′ and A′ using the value of the child’s argument.

The premise in line 3 says that after the current thread completes
the transition described by g, it should be safe for the new thread
to take control with its new register file (R′), whose relationship
between the parents register file R is satisfied.

The last premise checks the well-formedness of the remainder
instruction sequence. Since the fork instruction does not change
states, we need not change the precondition p and g.

Yielding and termination.
∀R. (Inv, p 	 A, R) (Inv ∧ p) ⇒ g (Inv,∆,Ψ); (p, G, A, G) ` I

(Inv, ∆,Ψ); (p,g, A, G) ` yield; I
(YIELD)

The YIELD rule requires that it is safe for the yielding thread to
take back control after any state transition satisfying the assump-
tion A. Also the current thread cannot yield until it completes the
required state transition, i.e., an identity transition satisfies the lo-
cal guarantee g. Lastly, one must verify the remainder instruction
sequence with the local guarantee reset to G.

(Inv ∧ p) ⇒ g

(Inv, ∆,Ψ); (p,g, A, G) ` exit
(EXIT)

The rule EXIT is simple: it is safe for the current thread to
terminate its execution only after it finishes the required transition
described by g, which is an identity transition.

Type-checking other instructions.
c ∈ {add rd, rs,rt, sub rd,rs,rt, movi rd,w}, rd 6∈ {rt, ra}
(Inv ∧ p) ⇒ (Inv ∧ p′) ◦ c (Inv ∧ p) ⇒ (g′ ◦ c) ⇒ g
A ⇒ A′ ◦ c G′ ◦ c ⇒ G (Inv,∆,Ψ); (p′,g′, A′, G′) ` I

(Inv, ∆,Ψ); (p,g, A, G) ` c; I
(SIMP)

The rule SIMP covers the verification of instruction sequences
starting with a simple command such as add, sub or movi. We
require that the program not update registers rt and ra. In these
cases, one must find an intermediate precondition (p′,g′, A′, G′)
under which the remainder instruction sequence I is well-formed.

The global invariant Inv and the intermediate assertion p′ must
hold on the updated machine state, and the intermediate guarantee
g′ applied to the updated machine state must be no weaker than the
current guarantee g applied to the current state.

Since A and G are parameterized over R, which will be changed
by the instruction c, one may change A and G to ensure the
assumption does not become stronger and the guarantee does not
become weaker.

(p′,g′, A′, G′) = Ψ(f)

(Inv ∧ p) ⇒ p′ (Inv ∧ p) ⇒ g′ ⇒ g A ⇒ A′ G′ ⇒ G

(Inv,∆,Ψ); (p, g, A, G) ` jd f
(JD)

The JD rule checks the specification of the target instruction
sequence. As mentioned before, each instruction sequence can have



its own specification, independent of the thread that will jump to it.
It is safe for a thread to execute an instruction sequence as long
as executing the instruction sequence does not require a stronger
assumption than the thread’s assumption A, nor does it break the
guarantee G of the thread.

Inference rules for memory operations are quite similar to the
SIMP rule. Here we also need ensure the memory address is in the
domain of the data heap.

c = ld rd,rs(w) rd 6∈ {rt, ra}
∀M.∀R.(Inv ∧ p) (M, R) ⇒ ((R(rs) + w) ∈ dom(M))
(Inv ∧ p) ⇒ (Inv ∧ p′) ◦ c (Inv ∧ p) ⇒ (g′ ◦ c) ⇒ g
∀S, M, M′.A (S.R) M M′ ⇒ A′ (Next(c, S).R) M M′

∀S, M, M′.G′ (Next(c, S).R) M M′ ⇒ G (S.R) M M′

(Inv, ∆,Ψ); (p′, g′, A′, G′) ` I

(Inv,∆,Ψ); (p, g, A, G) ` c; I
(LD)

c = st rd(w),rs

∀M.∀R.(Inv ∧ p) (M, R) ⇒ ((R(rd) + w) ∈ dom(M))
(Inv ∧ p) ⇒ (Inv ∧ p′) ◦ c (Inv ∧ p) ⇒ (g′ ◦ c) ⇒ g
(Inv,∆,Ψ); (p′,g′, A, G) ` I

(Inv, ∆,Ψ); (p,g, A, G) ` c; I
(ST)

Rules for conditional branching instructions are similar to the
JD rule, which are straightforward to understand.

(p′,g′, A′, G′) = Ψ(f) A ⇒ A′ G′ ⇒ G

∀S.(Inv ∧ p) S ⇒ (S(rs) > S(rt)) ⇒ (p′ S)
∀S.∀M′.(Inv ∧ p) S ⇒ (S(rs) > S(rt)) ⇒ (g′ S M′) ⇒ (g S M′)

∀S.(Inv ∧ p) S ⇒ (S(rs) ≤ S(rt)) ⇒ (p′′ S)
∀S.∀M′.(Inv ∧ p) S ⇒ (S(rs) ≤ S(rt)) ⇒ (g′′ S M′) ⇒ (g S M′)
(Inv,∆,Ψ); (p′′,g′′, A, G) ` I

(Inv, ∆,Ψ); (p,g, A, G) ` bgt rs, rt, f; I
(BGT)

(p′,g′, A′, G′) = Ψ(f) A ⇒ A′ G′ ⇒ G

∀S.(Inv ∧ p) S ⇒ (S(rs) = S(rt)) ⇒ (p′ S)
∀S.∀M′.(Inv ∧ p) S ⇒ (S(rs) = S(rt)) ⇒ (g′ S M′) ⇒ (g S M′)

∀S.(Inv ∧ p) S ⇒ (S(rs) 6= S(rt)) ⇒ (p′′ S)
∀S.∀M′.(Inv ∧ p) S ⇒ (S(rs) 6= S(rt)) ⇒ (g′′ S M′) ⇒ (g S M′)
(Inv,∆,Ψ); (p′′,g′′, A, G) ` I

(Inv,∆, Ψ); (p,g, A, G) ` beq rs, rt,f; I
(BEQ)

4.5 Soundness of CMAP

The soundness of CMAP inference rules with respect to the opera-
tional semantics of the machine is established following the syntac-
tic approach of proving type soundness [39]. From the “progress”
and “preservation” lemmas, we can guarantee that given a well-
formed program under compatible assumptions and guarantees, the
current instruction sequence will be able to execute without getting
“stuck”. Furthermore, any safety property derivable from the global
invariant will hold throughout the execution. We define P

n
7−→ P′ as

the relation of n-step (n ≥ 0) program transitions. The soundness
of CMAP is formally stated as Theorem 4.3.

Lemma 4.1 (Progress)
Φ = (Inv, ∆, Ψ). If there exist Θ, p, g, A and G such that
Φ; Θ; (p,g, A, G) ` ((M, R), Q, T, C, I), then (Inv M), and there
exists a program P̃ such that ((M, R), Q, T, C, I) 7−→ P̃.

Lemma 4.2 (Preservation)
If Φ; Θ; (p,g, A, G) ` P and P 7−→ P̃, where P = (S, Q, T, C, I)

and P̃ = (S̃, Q̃, T, C, Ĩ), then there exist Θ̃, p̃, g̃, Ã and G̃ such
that Φ; Θ̃; (p̃, g̃, Ã, G̃) ` P̃.

Theorem 4.3 (Soundness)
Φ = (Inv, ∆, Ψ). If there exist Θ, p, g, A and G such that
Φ; Θ; (p,g, A, G) ` P0, then for any n ≥ 0, there exist M, R,
Q, T, C and I such that P0

n
7−→ ((M, R), Q, T, C, I) and (Inv M).

The proofs for these two lemmas and the soundness theorem
are given in Appendix A. We have also implemented the complete
CMAP system [10] in the Coq proof assistant so we are confident
that CMAP is indeed sound and can be used to certify general
multi-threaded programs.

5. Examples
5.1 Unbounded Dynamic Thread Creation

In Figure 3 we showed a small program main2 which spawns
child threads within a while loop. This kind of unbounded dynamic
thread creation cannot be supported using the cobegin/coend
structure. We show how such a program is specified and verified
using our logic. To simplify the specification, we trivialize the
function f and g and let f(i) = i and g(x, ) = x + 1.

We assume the high-level program works in a preemptive mode.
Figure 10 shows the CMAP implementation, where yield instruc-
tions are inserted to simulate the preemption. This also illustrates
that our logic is general enough to simulate preemptive thread
model.

To verify the safety property of the program, the programmer
need find a global invariant and specifications for each static thread
and the code heap. In Figure 10 we show definitions of assertions
that are used to specify the program. Proof sketches are also in-
serted in the program. For ease of reading, we use named variables
as short-hands for their values in memory. The primed variables
represent the value of the variable after state transition. We also
introduce the shorthand [r] for R(r).

The following formulae show the specifications of static threads,
and the initial memory and instruction sequence.

Inv ≡ True
∆ ≡ {main ; (True, A0, G0), chld ; (p, A, G)}
Ψ ≡ {loop ; (p′, G1, A1, G1), cont ; (p3, G3, A3, G3)}
Initial M ≡ {data ; , . . . , data + 99 ; }
Initial I ≡ movi r0, 0; movi r1, 1; movi r2, 100; jd loop

For each child thread, it is natural to assume that no other
threads will touch its share of the data entry and guarantee that
other threads’ data entry will not be changed, as specified by A and
G. For the main thread, it assumes at the beginning that no other
threads in the environment will change any of the data entries (A0).

Specifying the loop body is not easy. We need find a loop
invariant (p′, G1, A1, G1) to attach to the code label loop. At
first glance, A1 and G1 can be defined the same as A3 and G3,
respectively. However, this does not work because our FORK rule
requires G ⇒ G1, which cannot be satisfied. Instead, our A1

and G1 are polymorphic over the loop index r0, which reflects
the composition of the changing thread environments. At the point
that a new child thread is forked but the value of r0 has not been
changed to reflect the environment change, we explicitly change
the assumption and guarantee to A2 and G2. When the value of r0

is increased, we cast A2 and G2 back to A1 and G1.

5.2 The Readers-Writers Problem

Our logic is general enough to specify and verify general proper-
ties of concurrent programs. In this section, we give a simple solu-
tion of the readers-writers problem and show that there is no race
conditions. This example also shows how P/V operations and lock
primitives can be implemented and specified in CMAP.

Figure 11 shows the C-like pseudo code for readers and writers.
Note that this simple code just ensures that there is no race con-



p ≡ 0 ≤ [ra] < 100 A ≡ data[ra] = data′[ra]
G ≡ ∀i.(0 ≤ i < 100 ∧ i 6= [ra]) ⇒ (data[i] = data′ [i])

A0 ≡ ∀i.0 ≤ i < 100 ⇒ (data[i] = data′[i]) G0 ≡ True

A1 ≡ ∀i.(0 ≤ i < 100 ∧ i ≥ [r0]) ⇒ (data[i] = data′[i])
G1 ≡ ∀i.(0 ≤ i < 100 ∧ i < [r0]) ⇒ (data[i] = data′ [i])
A2 ≡ ∀i.(0 ≤ i < 100 ∧ i > [r0]) ⇒ (data[i] = data′[i])
G2 ≡ ∀i.(0 ≤ i < 100 ∧ i ≤ [r0]) ⇒ (data[i] = data′ [i])

A3 ≡ True G3 ≡ ∀i.0 ≤ i < 100 ⇒ (data[i] = data′ [i])
p′ ≡ 0 ≤ [r0] < 100 ∧ [r1] = 1 ∧ [r2] = 100 p3 ≡ [r0] = 100

main : −{(True, A0, G0)}
movi r0, 0
movi r1, 1
movi r2, 100
jd loop

loop : −{(p′, G1, A1, G1)}
beq r0, r2, cont
yield
st r0(data), r0
yield
fork chld,r0
−{(p′, G1, A2, G2)}
yield
add r0, r0, r1
−{(p′, G1, A1, G1)}
yield
jd loop

cont : −{(p3, G3, A3, G3)}
. . .

chld : −{(p, A, G)}
movi r0, data
yield
add r0, r0, ra
yield
ld r1,r0(0)
yield
movi r2, 1
yield
add r1, r1,r2
yield
st r0(0), r1
exit

Figure 10. Loop: the CMAP program

Variables :
int[100] rf, wf;
int cnt, writ, l, v;

Initially :
rf[i] = wf[i] = 0, 0 ≤ i < 100;
cnt = 0 ∧ writ = 1 ∧ l = 0;

writer(int x){
while(true){
P(writ);

wf[x] := 1;

write v . . .

wf[x] := 0;

V(writ);
}

}

reader(int x){
while(true){
lock acq(l);
if (cnt = 0){
P(writ);

}
cnt := cnt + 1;
rf[x] := 1;

lock rel(l);

read v . . .

lock acq(l);
rf[x] := 0;
cnt := cnt− 1;
if(cnt = 0){
V(writ);

}
lock rel(l);

}}

Figure 11. Readers & writers : the high-level program

ditions. It does not ensure fairness. Verification of liveness prop-
erties is part of our future work. We assume that 100 readers and
writers will be created by a main thread. The main thread and its
specification will be very similar to the main program shown in the
previous section, so we omit it here and just focus on the readers
and writers code. The array of rf and wf are not necessary for the
implementation. They are introduced as auxiliary variables just for
specification and verification purpose.

Figure 13 shows the CMAP implementation of the high-level
pseudo code. Yielding is inserted at all the intervals of the atomic
operations of the high-level program. The lock primitives and P/V
operations, as shown in Figure 12, are implemented as program
macros parameterized by the return label. They will be instantiated

acq(f) : −{}
yield
movi r0, 0
movi r1, l
ld r2, r1(0)
bgt r2,r0, acq
st r1(0), rt
jd f

rel(f) : −{}
yield
movi r0, 0
st r0(l), r0
jd f

p writ(f) : −{}
yield
movi r0, 0
movi r1, writ
ld r2,r1(0)
beq r2,r0, p writ

st r1(0), r0
jd f

v writ(f) : −{}
movi r1, 1
movi r2, writ
st r2(0), r1
jd f

Figure 12. Lock & semaphore primitives

reader : −{(p1, g, Ar, Gr)}
JD acq(cont 1)

cont 1 : −{(p2, g, Ar, Gr)}
yield
movi r0, 0
movi r1, cnt
ld r2,r1(0)
yield
beq r2,r0, getw
jd inc cnt

getw : −{(p3, g, Ar, Gr)}
JD p writ(inc cnt)

inc cnt : −{(p4, g, Ar, Gr)}
yield
movi r1, cnt
ld r2,r1(0)
yield
movi r3, 1
add r2,r2,r3
st r1(0), r2
yield
movi r1, 1
st ra(rf), r1
−{(p5, g, Ar, Gr)}
JD rel(cont 2)

cont 2 : −{(p6, g, Ar, Gr)}
yield
. . .
yield
−{(p6, g, Ar, Gr)}
JD acq(cont 3)

cont 3 : −{(p7,g, Ar, Gr)}
yield
movi r0, 0
st ra(rf), r0
yield
movi r1, cnt
ld r2,r1(0)
yield
movi r3, 1
sub r2,r2,r3
st r1(0), r2
yield
beq r2,r0, relw
−{(p8,g, Ar , Gr)}
JD rel(reader)

relw : −{(p9,g, Ar, Gr)}
yield
JD v writ(cont 4)

cont 4 : −{(p8,g, Ar, Gr)}
JD rel(reader)

writer : −{(p10, g, Aw, Gw)}
JD p writ(cont 5)

cont 5 : −{(p11, g1, Aw, Gw)}
movi r1, 1
st ra(wf), r1
yield
. . .
yield
movi r0, 0
st ra(wf), r0
−{(p11, g2, Aw, Gw)}
JD v writ(writer)

Figure 13. Readers & writers : the CMAP program

and inlined in the proper position of the code. We introduce a
pseudo instruction JD to represent the inlining of the macro.

We define the global invariant and reader/writer’s assumptions
and guarantees in Figure 14. The code heap specifications are em-
bedded in the code as annotations, as shown in Figure 13. Speci-
fications of lock primitives and P/V operations are given at places
they are inlined. Definitions of assertions and local guarantees used
in code heap specifications are shown in Figure 14.

The assertion inv1 says that out of the critical section protected
by the lock, the value of the counter cnt is always consistent and
reflects the number of the readers that can read the value of v; inv2

says at one time there is at most one writer that can change the
value of v; while inv3 and inv4 states the relationship between the
counter cnt, the semaphore variable writ and the actual number



inv1 ≡ l = 0 ⇒
∑

i rf[i] = cnt inv2 ≡
∑

i wf[i] ≤ 1
inv3 ≡

∑
i wf[i] = 1 ⇒ (cnt = 0 ∧ writ = 0)

inv4 ≡ writ = 1 ⇒ cnt = 0 Inv ≡ inv1 ∧ inv2 ∧ inv3 ∧ inv4

idr ≡ ∀i.rf[i] = rf′[i]
idr1(i) ≡ ∀j.i 6= j ⇒ rf[j] = rf′[j] idr2(i) ≡ rf[i] = rf′[i]
idw ≡ ∀i.wf[i] = wf′[i]
idw1(i) ≡ ∀j.i 6= j ⇒ wf[j] = wf′[j] idw2(i) ≡ wf[i] = wf′[i]

Ar ≡ idr2([ra]) ∧ (rf[ra] = 1 ⇒ v = v′) ∧ (l = [rt] ⇒ cnt = cnt′)
Gr ≡ idw ∧ idr1([ra]) ∧ v = v′ ∧ (l 6∈ {[rt], 0} ⇒ cnt = cnt′)

Aw ≡ idw2([ra]) ∧ (wf[ra] = 1 ⇒ v = v′)
Gw ≡ idr ∧ idw1([ra]) ∧ ((writ = 0 ∧ wf[ra] = 0) ⇒ v = v′)

g ≡ λR, M, M′.M = M′ g1 ≡ λR, M, M′.M{wf[ra] ; 1} = M′

g2 ≡ λR, M, M′.M{writ ; 1} = M′ p1 ≡ rf[ra] = 0 ∧ l 6= [rt]
p2 ≡ rf[ra] = 0 ∧ l = [rt] p3 ≡ p2 ∧ cnt = 0
p4 ≡ p2 ∧ writ = 0 p5 ≡ rf[ra] = 1 ∧ l = [rt]
p6 ≡ rf[ra] = 1 ∧ l 6= [rt] ∧ cnt > 0
p7 ≡ rf[ra] = 1 ∧ l = [rt] ∧ cnt > 0 p8 ≡ l = [rt] ∧ rf[ra] = 0
p9 ≡ l = [rt] ∧ writ = 0 ∧ cnt = 0 ∧ rf[ra] = 0
p10 ≡ wf[ra] = 0 p11 ≡ wf[ra] = 0 ∧ writ = 0 ∧ cnt = 0

Figure 14. Program specifications

of writers that can write the data, which must be maintained to
ensure the mutual exclusive access between readers and writers.
The program invariant Inv, which is the conjunction of the four,
must be satisfied at any step of the execution.

The assumptions and guarantees of readers and writers are pa-
rameterized by their thread id (in rt) and thread argument (in ra).
The reader assumes (Ar) that if it has the right to read the data v

(i.e., rf[ra] = 1), nobody can change the data. Also, if it owns the
lock, nobody else can change the value of the counter. Finally, it
assumes its auxiliary variable rf[ra] will never be changed by oth-
ers. Readers guarantee (Gr) that they will never change the shared
data v and auxiliary variables of other threads, and it will not re-
vise the counter unless it owns the lock. Writers’ assumption (Aw)
and guarantee (Gw) are defined in a similar way to ensure the non-
interference.

5.3 More Examples

Yu and Shao [42] have shown by examples that CCAP is expres-
sive enough to verify general properties of concurrent programs,
like mutual exclusion, deadlock freedom, and partial correctness.
CMAP, as an extension of CCAP with dynamic thread creation, is
more expressive than CCAP (it is straightforward to translate the
CCAP code and verification to PCC packages in CMAP). There-
fore, CMAP also applies for those CCAP examples. In Appendix
B, we give a variation of the GCD program shown in [42], where
collaborating threads are forked by a main thread. We also show
how thread join can be implemented and reasoned in CMAP.

6. Related Work and Conclusion
We have presented a certified programming framework for verify-
ing multi-threaded assembly code with unbounded dynamic thread
creation. Our work is related to two directions of research: con-
currency verification and PCC. The rely-guarantee method [23, 35,
36, 1, 13, 42] is one of the best studied technique for compositional
concurrent program verification. However, most of the work on it
are based on high-level languages or calculi, and none of them sup-
port unbounded dynamic thread creation. On the other hand, many
PCC frameworks [28, 27, 2, 18, 41, 8, 42] have been proposed for
machine/assembly code verification, but most of them only support
sequential code. The only intersection point of these two directions
is the work on CCAP [42], which applies the R-G method at the
assembly level to verify general concurrency properties, like mu-

tual exclusion and deadlock-freedom. Unfortunately, CCAP does
not support dynamic thread creation either.

Recently, O’Hearn and others [31, 4, 3] applied separation logic
to reason about concurrent programs. Bornat et al. [3] showed how
to verify the race-free property of a program solving the readers
and writers problem, which is similar to the program presented
in this paper. However, their work heavily depends on the higher-
level language features, such as resources and conditional critical
regions. As other traditional work on concurrency verification, they
only support nested cobegin/coend structure. It is not clear how
their technique can be applied to support assembly code verification
with unbounded dynamic thread creation.

A number of model checkers have been developed for concur-
rent software verification, but most of them only check programs
with a fixed finite number of threads [22, 9, 19, 5, 16, 14]. The
CIRC algorithm [20] supports unbounded number of threads, but it
doesn’t model the dynamic thread creation and the changing thread
environment. Qadeer and Rehof [33] pointed out that verification
of concurrent boolean program with unbounded parallelism is de-
cidable if the number of context switches is bounded, but they do
not directly verify dynamic thread creation either. Given a context
bound k, they reduce a dynamic concurrent program P to a pro-
gram Q with k+1 threads and verify Q instead. 3VMC [40] sup-
ports both unbounded number of threads and dynamic thread cre-
ation, but it is not based on the rely-guarantee method and does not
support compositional verification.

Many type systems are also proposed to reason about concur-
rent programs [11, 12, 15, 17]. Unlike CMAP, which uses high-
order predicate logic to verify general program properties, they are
designed to automatically reason about specific properties of pro-
grams, like races, deadlocks and atomicity. Also, they do not di-
rectly generate proofs about program properties. Instead, proofs are
implicitly embedded in their soundness proofs.

CMAP extends previous work on R-G method and CCAP with
dynamic thread creation. We unify the concepts of a thread’s as-
sumption/guarantee and its environment’s guarantee/assumption,
and allow a thread to change its assumption and guarantee to
track the changing environment caused by dynamic thread creation.
Code segments in CMAP can be specified and verified once and
used in multiple threads with different assumptions and guaran-
tees, therefore CMAP achieves better modularity than CCAP. Some
practical issues, such as argument passing at thread creation, thread
local data, and multiple invocation of one copy of thread code, are
also discussed to support practical multi-threaded programming.
CMAP has been developed using the Coq proof assistant, along
with a formal soundness proof and the verified example programs.

The goal of our work is to provide an explicit and general frame-
work (with smaller TCB) such that code and specifications at the
higher level can be compiled down to the assembly level. Although
directly specifying and proving CMAP programs may be daunting,
it is simpler at the higher level. Also, there are common concur-
rent idioms that would permit the assumption/guarantee to be gen-
erated automatically during compilation. For example, for critical
sections protected by lock, the assumption is always like ”nobody
else will update the protected data if I am holding the lock...” (see
Figure 14). Another scenario is illustrated by the example shown in
Figure 3 and 10, where each thread is exclusively responsible for
a single piece of global data. In these scenarios, the assumption is
always like ”nobody else will touch my share of data” and the guar-
antee is like ”I will not update other threads’ data”. Automatically
generating assumptions/guarantees and proofs for common idioms,
and compiling higher level concurrent programs and specifications
down to CMAP, will be our future work.

The thread primitives in CMAP are higher-level pseudo instruc-
tions. They can be replaced by system calls to certified thread li-



braries, which is part of our ongoing work. Also we separate issues
in multi-threaded programming from the embedded code pointer
problem which is addressed in a companion paper [30]. Applying
that framework to our thread model will be part of the future work.
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A. The Soundness of CMAP
Lemma A.1 (Progress)
Φ = (Inv, ∆, Ψ). If there exists Θ, p, g, A and G such that
Φ; Θ; (p,g, A, G) ` ((M, R), Q, T, C, I), then (Inv M), and there
exists a program P̃ such that ((M, R), Q, T, C, I) 7−→ P̃.

Proof sketch: By induction over the structure of I. (Inv M) holds
by the assumption and the inversion of the rule PROG. In the
cases where I starts with add, sub, movi, fork, exit, or yield, the
program can always make a step by the definition of the operational
semantics (recall in our abstract machine we always assume there
is an “idle” thread in Q, therefore the instructions fork and exit
can go through). In the cases where I starts with ld and st, the side
conditions for make a step, as defined by the operational semantics,
are established by the rules LD and ST. In the cases where I starts
with bgt or beq, or where I is jd, the operatinal semantics may
fetch a code block from the code heap; such a code block exists by
the inversion of the rule CDHP. 2

Lemma A.2 (Preservation)
If Φ; Θ; (p,g, A, G) ` P and P 7−→ P̃, where P = (S, Q, T, C, I)

and P̃ = (S̃, Q̃, T, C, Ĩ), then there exist Θ̃, p̃, g̃, Ã and G̃ such
that Φ; Θ̃; (p̃, g̃, Ã, G̃) ` P̃.

Proof sketch. By the assumption Φ; Θ; (p,g, A, G) ` P and the
inversion of the rule PROG, we know that

1. (Inv, ∆, Ψ) = Φ, (M, R) = S, t = S(rt);
2. Φ ` T;
3. Φ ` C;
4. (Inv ∧ p) S;
5. Φ; (p,g, A, G) ` I;
6. Φ; Θ; (g, S) ` Q;
7. NI(Θ{t ; (p, A, G)}, Q{t ; (R, I)}) (see Section 4.4 for

the definition of NI).

We prove the lemma by induction over the structure of I. Here we
only give the detailed proof of cases where I starts with fork and
yield. Proof for the rest cases are trivial.
Case I = fork h, r; I′′.
By the operational semantics, we know that S̃ = S, Q̃ = Q{t′

;

(R′, I′)}, and Ĩ = I′′, where R′ = {r0 ; , . . . ,r15 ; , rt ;

t′, ra ; S(r)}, I′ = T(h), t′ 6∈ dom(Q) and t′ 6= t. According
to 5 and the inversion of the FORK rule, we know that there exist
p′, A′, G′, A′′ and G′′ such that

f.1 (p′, A′, G′) = ∆(h);
f.2 A ⇒ A′′, G′′ ⇒ G, (A ∨ G′′) ⇒ A′, and G′ ⇒ (G ∧ A′′);
f.3 ∀(M, R).∀R′.∀M′.(Inv ∧ p) (M, R) ⇒ R(rt) 6= R′(rt) ⇒ R(r) =

R′(ra) ⇒ g R M M′ ⇒ p′ (M′, R′);
f.4 (Inv,∆,Ψ); (p,g, A′′, G′′) ` I′′

Then we let Θ̃ = Θ{t′
; (p′, A′, G′)}, p̃ = p, g̃ = g, Ã = A′′,

and G̃ = G′′.
According to the rule PROG, to prove Φ; Θ̃; (p̃, g̃, Ã, G̃) ` P̃,

we need prove the following:

• Φ ` T and Φ ` C. They trivially follow 2 and 3. Since these
two conditions never change, we will omit the proof of them in
the following cases.

• (Inv ∧ p) S. By 4.
• Φ; (p,g, A′′, G′′) ` I′′. By f.4.

• Φ; Θ̃; (g, S) ` Q̃. By 6 and the inversion of the rule DTHRDS,
we need check the following for the new thread t′:

∀M′, M′′.(Inv ∧ p′)(M′, R′) ⇒ A′ R′ M′ M′′ ⇒
p′(M′′, R′). By 2 and the inversion of the rule THRDS.

(Inv, ∆, Ψ); (p′, G′, A′, G′) ` I′. By 2 and the inversion of
the rule THRDS.
∀M′′.g S M′′ ⇒ p′ (M′′, R′). By 4, and f.3.

• NI(Θ̃{t ; (p, A′′, G′′)}, Q̃{t ; (R, I′′)}). By 4, 7, f.2, and
Lemma 3.4.

Case I = yield; I′′.
By the operational semantics, we know that S̃ = (M, R′), Q̃ =

(Q{R(rt) ; (R, I′′)}) \ {t}, and Ĩ = I′, where t ∈ dom(Q) and
(R′, I′) = Q(t) or t = R(rt) and (R′, I′) = (R, I′′).

If t = R(rt), the yield instruction is like a no-op instruction.
The proof is trivial. So we just consider the case that t ∈ dom(Q)
and (R′, I′) = Q(t).

We let Θ̃ = (Θ{R(rt) ; (p, A, G)}) \ {t}, p̃ = p′, g̃ = G′,
Ã = A′, and G̃ = G′, where (p′, A′, G′) = Θ(t). According to
the rule PROG, to prove Φ; Θ̃; (p̃, g̃, Ã, G̃) ` P̃, we need prove:

• (Inv ∧ p′) (M, R′). By 4 we know that Inv (M, R′) (note that
Inv is independent of R).

By 6 and the inversion of the DTHRDS rule, we know that
∀M′′.g S M′′ ⇒ p′ (M′′, R′), also by 4, 5 and the inversion
of the YIELD rule we get g S M. Therefore we can prove
p′ (M, R′).

• Φ; (p′, G′, A′, G′) ` I′. By 6 and the inversion of DTHRDS.

• Φ; Θ̃; (G′, (M, R′)) ` Q̃. To prove this, we only check the
following for the yielding thread:

∀M′, M′′.(Inv ∧ p)(M′, R) ⇒ A R M′ M′′ ⇒ p(M′′, R).
This follows 5 and the inversion of the rule YIELD.
(Inv, ∆, Ψ); (p, G, A, G) ` I′′. This follows 5 and the in-
version of the rule YIELD.
∀M′′.G′ R′ M M′′ ⇒ p (R, M′′). By 7 we know
∀M′, M′′.G′ R′ M′ M′′ ⇒ A R M′ M′′. Therefore,
we only need prove: ∀M′′.A R M M′′ ⇒ p (M′′, R). By
5, the inversion of the rule YIELD, and 4 we get it.

• NI(Θ̃{t ; (p′, A′, G′)}, Q̃{t ; (R′, I′)}), which follows 7.

2

Theorem A.3 (Soundness)
Φ = (Inv, ∆, Ψ). If there exists Θ, p, g, A and G such that
Φ; Θ; (p,g, A, G) ` P0, then for any n ≥ 0, there exist M, R,
Q, T, C and I such that P0

n
7−→ ((M, R), Q, T, C, I) and (Inv M).

Proof sketch. Given the progress and the preservation lemmas,
this theorem can be easily proved by induction over n. However,
instead of proving (Inv M), we need strengthen the induction
hypothesis and prove “ Φ; Θ̃; (p̃, g̃, Ã, G̃) ` ((M, R), Q, T, C, I)

for some Θ̃, p̃, g̃, Ã and G̃”. 2

B. Partial Correctness of A Lock-Free Program
Figure 16 and 17 give the CMAP implementation of the GCD algo-
rithm shown in Figure 15, where two threads collaborate to com-
pute the greatest common divisor of two numbers. This is a lock-
free algorithm, i.e., no synchronization is required to ensure the
non-interference even if atomic operations are machine instruc-
tions. To show the lock-free property, we insert yield instructions
at every program point of the chld thread (some yield instructions
are omitted in the main thread for clarity).

In Figure 18 we show definitions of assertions used to specify
the program. The following formulae show the specifications of
static threads, and the initial memory and instruction sequence.

Inv ≡ True
∆ ≡ {main ; (True, A0, G0), chld ; (p2 ∧ p8, Ag , Gg)}
Initial M ≡ {a ; , b ; , flag ; , (flag + 1) ; }
Initial I ≡ jd begn



Variables:
nat a, b;
nat[2] flag;

Main :
a := α; b := β;
flag[0] := 0;
fork(gcd, 0);
flag[1] := 0;
fork(gcd, 1);
while (!flag[0])
yield;

while (!flag[1])
yield;

post proc . . .

void gcd(int x){
while (a 6= b){
if ((a > b)&&(x = 0))
a := a− b;

else if ((a < b)&&(x = 1))
b := b− a;

}
flag[x] := 1;

}

Figure 15. GCD: high-level program

main : −{(True, A0, G0)}
jd begn

begn : −{(True, G0, A0, G0)}
movi r0, α
movi r1, a
st r1(0), r0
yield
movi r0, β
movi r1, b
st r1(0), r0
yield
movi r0, 0
movi r1, flag
st r1(0), r0
yield
movi r2, 0
fork chld, r2

next : −{p2,g, A1, G1}
yield
st r1(1), r0
yield
movi r2, 1
fork chld,r2

join1 : −{p2 ∧ p3,g, A2, G2}
yield
ld r2,r1(0)
beq r0,r2, join1

join2 : −{p2 ∧ p4,g, A2, G2}
yield
ld r2,r1(1)
beq r0,r2, join2

post : −{(p2 ∧ p5,g, A2, G2)}
yield
. . .

Figure 16. GCD: the main thread

Inv is simply set to True. The partial correctness of the gcd

algorithm is inferred by the fact that p2 is established at the entry
point and Gg is satisfied.

Two child threads are created using the same static thread chld.
They use thread arguments to distinguish their task. Correspond-
ingly, the assumption Ag and Gg of the static thread chld also use
the thread argument to distinguish the specification of different dy-
namic copies. The child thread does not change its assumption and
guarantee throughout its lifetime. Therefore we omit Ag and Gg in
the code heap specifications. Since we insert yield instructions at
every program point, every local guarantee is simply Gg , which is
also omitted in the specifications.

At the data initiation stage, the main thread assumes no threads
in the environment changes a, b and the flags, and guarantees
nothing, as shown in A0 and G0 (see Figure 18). After creating
child threads, the main thread changes its assumption and guarantee
to reflect the changing environment. The new assumption is just the
disjunction of the previous assumption and the guarantee of the new
thread (instantiated by the thread id and thread argument), similarly
the new guarantee is the conjunction of the previous guarantee and
the new thread’s assumption.

This example also shows how thread join can be implemented
in CMAP by synchronization. We use one flag for each thread to
indicate if the thread is alive or not. The assumptions and guaran-
tees of the main thread also take advantages of these flags so that
it can weaken its guarantee and strengthen its assumption after the
child threads die.

chld : −{(p2 ∧ p8, Ag, Gg)}
jd gcd

gcd : −{p2 ∧ p8}
yield
movi r0, 0

loop : −{p2 ∧ p8 ∧ p9}
yield
ld r1, r0(a)
yield
−{p2 ∧ p9 ∧ p10}
ld r2, r0(b)
yield
−{p2 ∧ p9 ∧ p11}
beq r1,r2, done
yield
bgt r1, r2, calc1
yield
jd calc2

done : −{p1 ∧ p2 ∧ p8}
yield
movi r0, 1
yield
st ra(flag), r0
exit

calc1 : −{p2 ∧ p9 ∧ p12}
yield
beq r0, ra, cld1
yield
jd loop

cld1 : −{p2 ∧ p9 ∧ p13}
yield
sub r3, r1, r2
yield
st r0(a), r3
yield
jd loop

calc2 : −{p2 ∧ p9 ∧ p14}
yield
movi r3, 1
yield
beq r3, ra, cld2
yield
jd loop

cld2 : −{p2 ∧ p9 ∧ p15}
yield
sub r3, r2, r1
yield
st r0(b), r3
yield
jd loop

Figure 17. GCD: the chld thread

id1 ≡ a = a′ id2 ≡ b = b′

id3 ≡ (flag[0] = flag′[0]) ∧ (flag[1] = flag′[1])

G0 ≡ True A0 ≡ id1 ∧ id2 ∧ id3

p ≡ id2 ∧ (a > b ⇒ (GCD(a, b) = GCD(a′, b′))) ∧ (a ≤ b ⇒ id1)
p′ ≡ id1 ∧ (a < b ⇒ (GCD(a, b) = GCD(a′, b′))) ∧ (a ≥ b ⇒ id2)

Gg ≡ (flag′[ra] = 0 ⇒ (([ra] = 0 ∧ p) ∨ ([ra] = 1 ∧ p′)))
∧(flag′[ra] = 1 ⇒ (id1 ∧ id2 ∧ a′ = b′))
∧(flag[ra] = 1 ⇒ S = S′)
∧(flag[1 − ra] = flag′[1 − ra])

Ag ≡ (flag′[ra] = 0) ⇒ ((flag[ra] = flag′[ra])
∧(([ra] = 0 ∧ p′) ∨ ([ra] = 1 ∧ p)))

G1 ≡ G0 ∧ (flag′[0] = 0 ⇒ ((flag[0] = flag′[0]) ∧ p′))
A1 ≡ A0 ∨ ((flag[1] = flag′[1]) ∧ (flag′[0] = 0 ⇒ p)

∧(flag′[0] = 1 ⇒ (id1 ∧ id2 ∧ a′ = b′)))
∧(flag[0] = 1 ⇒ S = S′))

G2 ≡ G1 ∧ (flag′[1] = 0 ⇒ ((flag[1] = flag′[1]) ∧ p))
A2 ≡ A1 ∨ ((flag[0] = flag′[0]) ∧ (flag′[1] = 0 ⇒ p′)

∧(flag′[1] = 1 ⇒ (id1 ∧ id2 ∧ a′ = b′)))
∧(flag[1] = 1 ⇒ S = S′))

g ≡ S = S′ p1 ≡ a = b p2 ≡ GCD(a, b) = GCD(α, β)
p3 ≡ flag[0] = 0 ∨ (flag[0] = 1 ∧ p1)
p4 ≡ (flag[1] = 0 ∨ flag[1] = 1) ∧ flag[0] = 1 ∧ p1

p5 ≡ flag[0] = 1 ∧ flag[1] = 1 ∧ p1

p6 ≡ [ra] = 0 ∧ flag[0] = 0 p7 ≡ [ra] = 1 ∧ flag[1] = 0
p8 ≡ p6 ∨ p7 p9 ≡ [r0] = 0
p10 ≡ (p6 ∧ [r1] = a) ∨ (p7 ∧ ([r1] ≤ b => [r1] = a))
p11 ≡ (p6 ∧ [r1] = a ∧ ([r1] ≥ [r2] => [r2] = b))

∨(p7 ∧ [r2] = b ∧ ([r1] ≤ [r2] => [r1] = a))

p12 ≡ [r1] > [r2] ∧ ([ra] = 0 ⇒ (flag[0] = 0 ∧ [r1] = a ∧ [r2] = b))
p13 ≡ p6 ∧ [r1] > [r2] ∧ [r1] = a ∧ [r2] = b

p14 ≡ [r1] < [r2] ∧ ([ra] = 1 ⇒ (flag[1] = 0 ∧ [r1] = a ∧ [r2] = b))
p15 ≡ p7 ∧ [r1] < [r2] ∧ [r1] = a ∧ [r2] = b

Figure 18. GCD: Assertion Definitions


