Yale University
Department of Computer Science

Optimal Type Lifting

Bratin Saha Zhong Shao
Dept. of Computer Science
Yale University

YALEU/DCS/TR-1159
August 24, 1998

This research was sponsored in part by the DARPA ITO under the title “Software Evolution using
HOT Language Technology”, DARPA Order No. D888, issued under Contract No. F30602-96-
2-0232, and in part by an NSF CAREER Award CCR-9501624, and NSF Grant CCR-9633390.
The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government. A preliminary version of this paper
appeared in the second International Workshop on Types in Compilation, March 1998.



Optimal Type Lifting

Bratin Saha Zhong Shao
Dept. of Computer Science
Yale University
New Haven, CT 06520-8285

saha,shao{@cs.yale.edu
y

August 24, 1998

Abstract

Modern compilers for ML-like polymorphic languages have used explicit run-time type passing to sup-
port advanced optimizations such as intensional type analysis, representation analysis and tagless garbage
collection. Unfortunately, maintaining type information at run time can incur a large overhead to the time
and space usage of a program. In this paper, we present an optimal type-lifting algorithm that lifts all type
applications in a program to the top level. Our algorithm eliminates all run-time type constructions within
any core-language functions. In fact, it guarantees that the number of types built at run time is strictly a
static constant. We present our algorithm as a type-preserving source-to-source transformation and show
how to extend it to handle the entire SML’97 with higher-order modules.

1 Introduction

Recent compilers for ML-like polymorphic languages [25, 27] have begun to use variants of the Girard-Reynolds
polymorphic A-calculus [5, 22] as their intermediate language (IL). Implementation of these ILs often involves
passing types explicitly as parameters [29, 28, 24] at runtime: each polymorphic type variable gets instantiated
to the actual type through run-time type application. Maintaining type information in this manner helps to
ensure the correctness of a compiler. More importantly, it also enables many interesting optimizations and
applications. For example, both pretty-printing and debugging on polymorphic values require complete type
information at runtime. Intensional type analysis [7, 28, 23], which is used by some compilers [28, 24] to
support efficient data representation, also requires the propagation of type information into the target code.
Run-time type information is also crucial to the implementation of tag-less garbage collection [29], pickling
and marshalling [3], and type dynamic [13].

However, the advantages of runtime type passing do not come for free. Depending on the sophistication of
the type representation, run-time type passing can add a significant overhead to the time and space usage of

This research was sponsored in part by the DARPA ITO under the title “Software Evolution using HOT Language Technology”,
DARPA Order No. D888, issued under Contract No. F30602-96-2-0232, and in part by an NSF CAREER Award CCR-9501624,
and NSF Grant CCR-9633390. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government. A preliminary version of this paper appeared in the second International Workshop on Types in Compilation,
March 1998.



a program. For example, Tolmach [29] implemented a tag-free garbage collector via explicit type passing; he
reported that the memory allocated for type information sometimes exceeded the memory saved by the tag-free
approach. Clearly, it is desirable to optimize the run-time type passing in polymorphic code [15]. In fact, a
better goal would be to guarantee that explicit type passing never blows up the execution cost of a program.

Consider the sample code below — we took some liberties with the syntax by using an explicitly typed variant
of the Core-ML. Here A denotes type abstraction, A denotes value abstraction, z[a] denotes type application
and z(e) denotes term application.

pair = As.)Ax:sxs.
let £ = At . Ay:t. ... (x, )
in ... f[s*s](x)

main = Aa.)a:a.
let doit = Ai:Int.
let elem = Array.sublaxa](a,i)
in ... pair[a](elem)

loop = Anji:Int.Anz:Int.Ag:Int—Unit.
if n1 <= n»
(g(n1);
loop(n;+1,n2,g))
else ()
in loop(l,n,doit)

Here, f is a polymorphic function defined inside function pair; it refers to the parameter x of pair, so f cannot
be easily lifted outside pair. Function main executes a loop: in each iteration, it selects an element elem of
the array a and then performs some computation (i.e, pair) on it. Executing the function doit results in
three type applications arising from the Array.sub function, pair, and £f. In each iteration, sub and pair
are applied to types a * @ and o respectively. A clever compiler may do a loop-invariant removal [1] to avoid
the repeated type construction (e.g., @ * @) and application (e.g., pair[a]). But optimizing type applications
such as f[sxs] is less obvious; f is nested inside pair, and its repeated type applications are not apparent
in the doit function (specially, if one considers that pair could be defined in a separate module). We may
type-specialize f to get rid of the type application but in general this may lead to substantial code duplication.
Every time doit is called, pair[a] gets executed and then every time pair is called, f [s*s] will be executed.
Since loop calls doit repeatedly and each such call generates type applications of pair and f, we are forced
to incur the overhead of repeated type construction and application. If the type representation is complicated,
this is clearly expensive.

In this paper, we present an algorithm that minimizes the cost of run-time type passing. More specifically,
the optimization eliminates all type application inside any core-language function — it guarantees that the
amount of type information constructed at runtime is a static constant. This guarantee allows us to use a more
sophisticated representation for run-time types without having to worry about the run-time cost of doing so.

The basic idea is as follows. We lift all polymorphic function definitions and type applications in a program
to the “top” level. By top level, we mean “outside any core-language function.” Intuitively, no type application
is nested inside any function abstraction (\); they are nested only inside type abstractions (A). All type
applications are now performed once and for all at the beginning of execution of each compilation unit. In
essence, the code performs all of its type applications at “link” time.! In fact, the number of type applications

IWe are not referring to “link time” in the traditional sense. Rather, we are referring to the run time spent on module



performed and the amount of type information constructed can be determined statically.

This leads us to a natural question. Why do we restrict the transformation to type applications alone?
Obviously the transformation could be carried out on value computations as well, but what makes type com-
putations more amenable to this transformation is the guarantee that all type applications can be lifted to the
top level. Moreover, while the transformation does aim to reduce the runtime overhead, a more important goal
is to ensure that type passing, in itself, is not costly. This will allow us to use a more sophisticated runtime
type representation and make greater use of type information at runtime.

We describe the algorithm in later sections and also prove that it is both type-preserving and semantically
sound. We have implemented it in the FLINT/ML compiler [24] and tested it on a few benchmarks. We
provide the implementation results at the end of this paper.

2 The Lifting Algorithm for Core-ML

This section presents our optimal type lifting algorithm. We use an explicitly typed variant of the Core-ML
calculus [6] (Figure 1) as the source and target languages. The type lifting algorithm (Figure 2) is expressed
as a type-directed program transformation that lifts all type applications to the top-level.

2.1 The language

We use an explicitly typed variant of the Core-ML calculus [6] as our source and target languages. The syntax
is shown in Figure 1. The static and dynamic semantics are standard, and are given in the Appendix.

(con’s) g u= t|Int | — pe

(types) o o= p|Viip

(terms) e = i|z|Az:pe | Qrizy | let z =€ ine' | let z = At;.e, in e | o[
(vterms) e, u= i|z|Az:p.e]|letz=¢e, inel | let z = Al;. e, in €) | z[@]

Figure 1: Syntax of the Core-ML calculus

Here, terms e consist of identifiers (z), integer constants (i), function abstractions, function applications,
and let expressions. We differentiate between monomorphic and polymorphic let expressions in our language.
We use t; (and ;) to denote a sequence of type variables ¢y, ..., t, (and type constructors) so V¢;. u is equivalent
to Viy...Vt,.u. The vterms (e,) denote values — terms that are free of side-effects.

There are several aspects of this calculus that are worth noting. First, we restrict polymorphic definitions
to value expressions (e,) only, so that moving type applications and polymorphic definitions is semantically
sound [30]. Variables introduced by normal A-abstraction are always monomorphic, and polymorphic functions
are introduced only by the let construct. In our calculus, type applications of polymorphic functions are never
curried which implies that polymorphic functions do not escape. Therefore in the algorithm in Figure 2, the
exp rule assumes that the variable is monomorphic. The tapp rule also assumes that the type application is not
curried and therefore the newly introduced variable v (bound to the lifted type application) is monomorphic
and is not instantiated by further type application. Finally, following SML [14], polymorphic functions are not

initialization and module linkage (e.g., functor application) in a ML-style module language.



recursive. 2 This restriction is crucial to proving that all type applications can be lifted to the top level.

Throughout the paper we take a few liberties with the syntax: we allow ourselves infix operators, multiple
definitions in a single let expression to abbreviate a sequence of nested let expressions, and term applications
that are at times not in A-Normal form [4]. We also use indentation to indicate the nesting.

2.2 Informal description

Before we move on to the formal description of the algorithm, we will present the basic ideas informally.

I'(z) = (4,-)
Tk i:Int = i;nil;
(ezp) Tka:p=znil;{z: u} P:Int = & nal;
(app) D(z1) = (p1 = pa, ) ['(z2) = (p1,-)
Tk Qzyzs : po = Qzyzo;nil; {zy 2 p1 — p2, T2 : p1}
Oz — (u,0)]Fe:py =>€;H; F
(fn) TEXz:pe:p—pu' = Az pesHyF\{z: u}
(let) Thei:p=el;H;Fi Tz (u1,0)]F ex: ps = eh; Hy; Fy
e
I'klet 2 =e; in ey U = let z = 6’1 in 6'2;H1||H2;F1 U (Fz\{d? : /,61})
Fhey:p =eHiy By
(tf ) F[il? [ d <\Vlt_1,/,l,1,F1>] Fes: Mo = 8;;H2;F2
n — —
Tk let 2 = Af;.e; in es : pup = eb; (z, At;. LET(Hq, \*Fi.€})) :: Ho; Fy
H,
[(z) = (Vi;.u, L) v a fresh variable
(tapp) T+ 2] « [pi/tilp = @*vL; [(v, z[@])]; L
N———
H,

Figure 2: The Lifting Translation

We first define the depth of a term in a program as the number of \(value) abstractions within which it is
nested. Consider the terms outside all value abstractions()) to be at depth zero. Obviously, terms at depth
zero occur outside all loops in the program. In a strict language like ML, all these terms are evaluated once and
for all at the beginning of program execution. Therefore to avoid repeated type applications, the algorithm
tries to lift all of them to depth zero. But in order to lift type applications, we must also lift the polymorphic
functions to depth zero. The algorithm scans the input program and collects all the type applications and
polymorphic functions occuring at depths greater than zero and adds them to a list H. (In the algorithm given
in Figure 2, the depth is implicitly assumed to be greater than zero). When the algorithm returns to the top
level of the program, it dumps the expressions contained in the list.

20ur current calculus does not support recursive functions but they can be easily added. As in SML, recursive functions are
always monomorphic.



We will illustrate the algorithm on the sample code given in Section 1. In the example code, the type
application f [s*s] is at depth 1 since it occurs inside the Az (of the pair function), and the type applications
Array.subl[a*a] and pair[a] are at depth 2 since they occur inside the Aa and Ai (of the main function). We
want to lift all of these type applications to depth zero. Translating main first, the resulting code becomes —

pair = As.)Ax:sxs.
let £ = At.Ay:t. ... (x, y)
in ... fls*s](x)

main = Aa.

let vi = Array.sublaxal
vy = pairlal
in Ja:a.
let
doit = Ai:Int.
let elem = v;(a,i)
in ... vo(elem) ...
loop = An;:Int.Anz:Int.Ag:Int—Unit.
if n1 <= n»
(g(n1);
loop(ni+1,ns,g))
else ()

in loop(1,n,doit)

We then lift the type application of £ (inside pair). This requires us to lift £’s definition by abstracting over
its free variables. In the resulting code, all type applications occur at depth zero. Therefore vy, vo and vs
get evaluated now at the beginning of execution. When the function loop runs through the array and calls
function doit, none of the type applications are repeated — the type specialised functions v;, ve and v are
used instead.

pair = As.
let £ = At.Az:s*s.Ay:t. ... (z , y)
vy = f[s*s]
in Ax:s#s. ... (va(x))(x) ...
main = Aa.
let vy = Array.subl[oaxal
vy = pair[al
in Jda:a.
let doit =
Ai:Int.
let elem = vi(a,i)
in ... vo(elem) ...
loop =

Anp:Int.Anz:Int.\g:Int—Unit.
if n1 <= no
(g(ni1);
loop(n;+1,n2,g))
else ()
in loop(l,n,doit)



2.3 Formalization

Figure 2 shows the type-directed lifting algorithm. The translation is defined as a relation of the form I' -
e : o = €';H; F, that carries the meaning that I' F ¢ : o is a derivable typing in the input program, the
translation of the input term e is the term €', and F is the set of free variables of ¢’ (the set F' is restricted to
the monomorphically typed free variables of e'). The header H contains the polymorphic functions and type
applications occuring in e at depths greater than zero. The final result of lifting a closed term e of type y is
LET(H,e') when the algorithm infers §) - e : u = €'; H;§. The function LET(H, e) expands a list of bindings
H = [{(z1,€1),.--,(Tp,en)] and a term e into the resulting term let z; =e; in ...in let z,, = e, ine.

The environment I' maps a variable to its type and to a list of the free variables in its definition. In
the algorithm, we use standard notation for lists and operations on lists. The functions A\* and @Q* are
defined so that A*L.e and @*vL reduce to Az1:p1.... ATy : fp-e and Q(...(Quzy)...)z,, respectively, where
L={z1:p1,...,Zn:pun}. We use || to denote the append operation and :: to denote the consing operation.

Rules (ezp) and (app) are just the identity transformations. Rule (fn) deals with abstractions. We translate
the body of the abstraction and return a header H containing all the type applications and type functions in
the term e.

The translation of monomorphic let expressions is similar. We translate each of the subexpressions replac-
ing the old terms with the translated terms and return this as the result of the translation. The result header,
H, is the concatenation of the headers, H; and Hj, formed during the translation of the subexpressions.

The real work is done in the last two rules which deal with type expressions. In rule (¢fn), we first translate
the polymorphic function body. H; now contains all the type expressions that were in e; and Fj is the free
variables of e]. We then translate the body of the let expression(ez2). The result of the translation is only e};
the polymorphic function introduced by the let is added to the result header H,, so that, it is lifted to the
top level. The polymorphic function body (in H,) is closed by abstracting over its free variables F; with the
header H; dumped right after the type abstractions. Note that since H, will be lifted to the top level, the
expressions in H; will also get lifted to the top level.

The (tapp) rule replaces the type application by an application of the newly introduced variable (v) to the
free variables(L) of the corresponding function definition. The type application is added to the header and
lifted to the top level where it gets bound to v. Note that the free variables of the translated term do not
include the newly introduced variable v. This is because, after the header is written out at the top level, the
translated expression remains in the scope of the header.

Proposition 1

Suppose T' F e : u = €'; H; F. Then in the expression LET(H,e'), the term €' does not contain any type
application and H does not contain any type application nested inside a value(\) abstraction.

Proof This is proved by induction on the structure of the source term e. Most of the cases follow directly from
the inductive assumption. We will consider only the (¢fn) and (tapp) cases here.

case tfn By induction on the translation of e;, the header H; does not have any nested type application
and the term e} does not have any type application. This implies that H, does not have any nested type
application. By induction on the translation of ez, the result term e} does not have any type application and
the header H; does not have any nested type application. The required result follows from here.

case tapp In the translated term, the type application gets replaced by the newly introduced variable v; in



the result header, the type application is clearly not nested inside an abstraction.

Theorem 2 (Full Lifting)

Suppose I' - e : u = €'; H; F. Then the expression LET(H,e'), does not have any type application nested
inside a value abstraction.

Proof The theorem follows from Proposition 1.

2.4 An Example Transformation

This section illustrates the algorithm on a code fragment. We show the construction of the header and the
translated expression as the algorithm proceeds. The notation used for the intermediate structures is the same
as in Figure 2. The program fragment used for the example is shown below.

Atl.Atz.)\X:tl./\y:tz.
let £ = Atz.Atg. u:ts. Avity. (v,u,x)
in let g = Ats.Az:t5. @ (@ (f[ts]1[t:1]1) =2) x
in @ (glt21) y

The number at the beginning of each block of code denotes the sequence of transformations.

1. After translating £’s body

e’1 = du:tz.Av:ts. (v,u,x)
H =[]
Fi = {x:t1}

2. Now g’s body is translated

e’; = Az:t5. @(@(Q@vix)z)x
Hi = vi = £[t5][t1]
F1 = {x:t:}

3. Now the body of the inner let

e’y = @(Qvax)y
Hy = vz = glto]
Fo = {x:t1,y:t2}

4. The inner let as a whole returns

e’ = @(Qvax)y
H=g = ( Ats.

let vi = f[ts][t1]

in Ax:ti.Az:ts. @(@(Qvix)z)x ) :: [ va = glta] 1]
F = {x:t1,y:t2}



5. For the outer let

e’y = Q(Quax)y
H2=g=(At5.

let vi = flts][t1]

in Ax:ti.Az:t5. @(@(@vix)z)x ) :: [ va = glta] ]
Fz = {x:t1,y:t2}

6. The outer let as a whole returns

e’ = @(Qvax)y
H=f=(Ats.Atg. x:t1. uzt3. Av:its. (v,u,x) ) ::
g=(At5.

let vi = f[t5] [t1]

in Ax:ti;.Az:t5.Q(Q(Qvix)z)x ) :: [ va = glta] ]
{x:t1,y:t2}

L]
1]

7. After translating the lambda abstraction

e’ = @(Qvax)y
H=f=(Ats.Atg.Ax:t1. uztz. Av:its. (v,u,x) ) ::
g=(A‘b5.
let vi = £[ts][t1]
in Ax:t1.Az:t5.0(Q(Qvix)z)x ) :: [ vo = glted ]

The final translated code with all type applications lifted:

At1 .At2 .
let £ = Atz .Atg. Ax:t1. uzt3. vty (v,u,x)
let g = Ats.

let vi = f[ts][t1]

in Ax:t1.\z:ts5. @(@(@vix)z)x
let va = glta]
in Ax:ti.Ay:t2. @(Qvex)y

3 The Lifting Algorithm for FLINT

Till now, we have only considered the Core-ML calculus while discussing the algorithm. But what happens
when we take into account the SML module language [14] as well?

To handle the Full-ML langauge, we compile the source code into the FLINT intermediate language 3.
The details of the translation are given in [26]. FLINT is based upon a predicative variant of the Girard-
Reynolds polymorphic A-calculus [5, 22], with the term language written in A-normal form [4]. The monotypes
are generated from variables, from Int, and through the — constructor. Types in Core-FLINT include the
monotypes, and are closed under function spaces and polymorphic quantification. We use T(u) to denote the
type corresponding to the constructor u. The terms are an explicitly typed A-calculus (but in A-normal form)
with explicit constructor abstraction and application.



(cons) I t|Int| pr — p2
(types) o T(p) | o1 = o2 | Vt.o
(

(

terms) e u= i|z|letz=e; iney | Qzyze | X2:T(u). | \™z:0.e | let z = Al;.e, in es | 2[f;]
iz |let x=¢e, inel | Xz:T(p).e | \""z:0.e | let & = At;.e, in el | z[R;]

values) e,
Figure 3: Syntax of the Core-FLINT calculus

In ML, structures are the basic module unit and functors abstract over structures. Polymorphic functions
may now escape as part of structures and get instantiated later at a functor application site. In the FLINT
translation [26], functors are represented as a combined type and value abstraction (fct = AZ#; :: k;.A\™z :
o.e). The variable x in the functor definition is polymorphic since the parameterised structure may contain
polymorphic components. In the functor body e, the polymorphic components of x may be instantiated by
type application. Functor application itself consists of a type application and a term application [26], with
the type application instantiating the type parameters (¢;s). Though abstractions model both functors and
functions, the translation allows us to distinguish between them. In the FLINT calculus, A°z: T'(u).e denotes
functions, whereas A"z :c.e denotes functors. The rest of the term calculus is standard.

This calculus complicates the lifting since type applications arising from an abstracted variable (the variable
z in fct above) can not be lifted to the top level. This also differs from the Core-ML calculus in that type
applications may now be curried to allow for escaping polymorphic functions.

However, the ML module calculus obeys some nice properties. Functors in a program always occur outside
any Core-ML functions. Type applications arising out of functor parameters (when the input structure contains
a polymorphic component) can therefore be lifted outside all functions. Escaping polymorphic functions (and
therefore the corresponding curried type applications) are also not nested inside Core-ML functions. This leads
to the notion of a well-formed FLINT program (Figure 4), satisfying the following constraints —

o All functor abstractions (A™) occur outside function abstractions (\¢).
e No partial type application occurs inside a function abstraction (A¢).

e No functor application occurs inside a function abstraction (A¢).

We now redefine the depth of a term in a program as the number of function abstractions within which
it is nested, with depth 0 terms occuring outside all function abstractions only. Note that depth 0 terms may
not occur outside all abstractions since they may be nested inside functor abstractions. As before, we perform
type lifting only for terms at depth greater than zero.

We illustrate the algorithm on the example code in Figure 5. The syntax is not totally faithful to the
FLINT syntax in Figure 3 but it makes the code easier to understand. In the code in Figure 5, F' is a functor
which takes the structure X as a parameter. The type S denotes a structure type. Assume the first component
of X, that is (#1(X)), is a polymorphic function which gets instantiated in the functor body(and gets bound
to v2). f is a locally defined function in the functor body. According to the above definition of depth, fand v
are at depth 0 even though they are nested inside the functor abstraction(AX). Moreover, the type application
(#1(X))[to] is also at depth 0. It is only inside the function f, that the depth increases; which implies that
the type application id[Int] occurs at d > 0. The algorithm will lift the type application to just outside the
function abstraction (Av), it is not lifted outside the functor abstraction (AX). The resulting code is shown in
Figure 6.



(int)

(var)

(app1)

(app2)

(tapp)

TydEY i Int
TidbEY z: T(w)

F(wl) =01 — 02 F($2) = 01
F;d =0 w @CEl.’L‘z 109

(1) = T(p = p2)  T(z2) = T()
T;d Y Qzyzs 0 T(ps)

Tz T(pw;id+1FYe: T(y)
D;d Y Xex:T(u).e: T(u— u)

[z ol;d=0F"e: 0’
I;d=0F" A\"z:0.e:0 — o'

I;dH-ve,:0 Tz Vi.o;dEY e o’
I;dF* let ¢ = At;.e, ine' : o'

F(:l?) =Vt.0 j <t

T;d =" 2[@;] : ofwi/ti]
T5d=0F" z[g;] : ofu;/t;]

Iid=0F%¢; : 01 Tz o1];d=0F"e2: 09

(letD)

I'id=0F"1let z =e; ines : 09

T;d-Yer: T(ur) Tz T(p);dF" ex: 09

(let2)

IdEY let £ =€y ines : 09

Figure 4: The Well Formedness Relation -*

Ato.)\mx S
f = A\°.
let id = At1.A°x2.%2
vi = ... id[Int](3) ....
in w1

vy = (#1(X)) [to]

Figure 5: Example FLINT code

10



F = Ato.A™X:S.

f = let

id = At1.)2%x2.%0

z; = id[Int]

.. (Other type expressions in f’s body)..

in A,
let ..... (type lifted body of f)
Vi = ... Z1(3)

in Vi

ve = (#1(X)) [to]

Figure 6: FLINT code after type lifting

The algorithm is shown in Figure 7. It does not assume that the input program is well formed. The
translation rules are expressed as sequents of the form

Iidheio=¢€; H; F

Here e is the input term; e’ is the output term; d denotes the depth of the term e; H is as defined before, it
contains the list of type expressions in e that will be lifted; F' consists of the monomorphic free variables of €’;
T is the type environment that maps a variable to its type, and the free variables in its definition.

The final result of lifting a closed term ¢ of type o for which the algorithm infers §;0 e : 0 = €'; H;( is
LET(H,e€'), where the function LET(H,e) expands a list of bindings H = [(z1,€1),..-,(Zn,es)] and a term e
into the term let z; = e; in ...let z,, = ¢, ine.

The (tapp) rule deals with both partial and full type applications. (for full type applications, ¥ = 0). If
d > 0, the type application is included in the header and bound to v at d = 0. When the header is dumped at
d = 0, the type application gets bound to v. The set F' contains the free variables in the definition of z.

The first (¢fn) rule deals with polymorphic functions at depth greater than zero. We close the function body
by abstracting over its free variables, (only the monomorphically typed variables), and add it to the header. As
in the Core-ML case, the result of the translation is simply the translation of e;. The second (¢fn2) rule deals
with polymorphic functions at d = 0. Since the function definition is already at the top level, the algorithm
simply translates each subexpression.

Note that at d = 0, the header formed is empty. The algorithm adds expressions to the header only at
d > 0. The (fct) rule deals with functors. Since the algorithm restricts itself to lifting expressions only outside
functions, (type applications are allowed to remain nested inside functors), the depth is reset to zero while
translating the functor body.

The (fn) rule deals with functions. The algorithm first collects the type applications and polymorphic
functions occuring in the body. When the algorithm returns to depth zero, it writes out the header. This
ensures that while translating a term at depth zero, the header returned is always empty. This invariant is
useful in formulating the algorithm and in the proofs of type presrvation and semantic soundness.

In the algorithm, we donot abstract over polymorphic variables. (Hence we donot add them to the free
variable list). let introduced polymorphic variables are lifted to the top, and therefore, remain in scope.
Polymorphic variables introduced by functors remain in scope as well, since no expressions are lifted outside

11



(int)

(var)

(app)

(app?2)

(let)

(let2)

(tfn)

(tfn2)

(tapp)

(fet)

Iydbi:Int=4; nil; 0

L(z) = (T(p),-) I'(z) = (0,07)
Tydbz:T(p) = z; nil; {z:T(u)} ydbzio=x; nil; 0

Tidbazi:T(p— p) =215 nil; {20:T(p— 1)} Tidb e T(u) = 2o nil; {z2: T(p)}

TidFQzize: T(p1) = Qzyzo 5 nil; {z1:T(p = p1),z2: T(u)}

Iydbxii00 201 =230l 0 Ti;dbxo:00 = 295 nil; 0
F,dl— Qz1z9:01 = @.’E1$2; m'l; 0

Tidber:T(u) = ey ; H; Fi Tz (T(w),nil)];db ex:o2 = e ; Hy; F
I';db-let 2 =e; ineyiop = let z =e] iney; Hy || Ha; F1 U Fo\{z: T(u1)}

Tidbej:or=e€l; H; Fi Tz (o1,nil)];dbex:oa = eb 5 Ha; Fa
T;dblet z =e; iney:oy = let z =€) in LET(Hs,eh) ; Hy; F1 U Fy

Iidbejior =€) ; Hi; Fy H' = (z = At;.LET(Hq, \*Fy.€}))
[z — (Vi.01, F1)];dF eaio2 = eb 5 Ha 5 Fo
I;d>0F let £ = Atj.e; iney:og = e ; H' || Hy 5 Fa

F;dZOI_€120'1:>6’1;H1;F1 H; = nil
F[a: — <V¥,O’1,’I’L2l>],d: OFey:09 = 6'2 ; Hoy H Fy Hy = nil

[;d=0F let £ = At;.e; ines:02 = let £ = Al;.¢] iney; nil; Fy U Fy

[(z) = (Vt.0, F) k=i—3j
T5d > 0F aff@;]:[u; /t;]Vik.0 = let ¢ = ALy Q*(v[{y])F inz ; v = z[F;]; F
[id = 0F a[@;]:[u;/t;j]Vtk.o = let z = Aty.Q*(z[;][tx]) F in z ; nil ; F

[z~ (0,0/);d=0Fe:0’ =€ ; H; F  H=nil
T;d+- AN"z:0.e:0 = o' = A"z:0.e' ; nil ; F

Mz (T(p),nil)];d+1Fe:T(u)=>¢€; H; F
Tid>0F Xz:T(p)-e: T(uw— p') = Az:T(p).e' ; H; F\{z:T(n)}
Tid=0F Xz: T(p).e: T(uw — p') = LET(H, Xz: T (p).e') ; nil ; F\{z: T(u)}

Figure 7: The Lifting Algorithm For FLINT

12



functor abstractions.
Proposition 3

In a well formed expression e, terms at d = 0 occur outside all Core-ML functions (A°).

Proof In Figure 4, the depth is zero either initially, before any (\°) is encountered, or is reset to zero by the
(fet) rule. Assume that the above proposition does not hold. Then there exists a term €', such that, e’ is nested
inside a (A°), but the depth of ¢’ is zero. This is possible only if an occurence of rule (fct) inside the (\°) resets
the depth to zero. But this implies an occurence of the (fct) rule at (d > 0), and since e is well formed, this
cannot happen. Therefore the above proposition is true.

O

Proposition 4

Suppose I';d - e:0 = €' ; H; F and e is a well formed expression. If z has type V#;.c and x[ﬁj] occurs in e
at d > 0, then j = .

Proof Since e is well formed, every subterm must satisfy the constraints in Figure 4. Rule (tapp) restricts
partial type applications to d = 0. Therefore the above proposition must be true.
O

Proposition 5

Suppose I';d - e: 0 = ¢ ; H ; F. Suppose further that e¢ is well formed and contains the subterm
let £ = e; in ey at some depth d'. Then z must be of type T(u) if d' > 0.

Proof Since e is well formed, every subterm must satisfy the constraints in Figure 4. Therefore, if z is of type
o, the term let £ = e; in e; must satisfy rule (let!) which restricts the Let definition to d = 0.
O

Lemma 6

Suppose T';d Fe:0 = €' ; H; F. Suppose further that e is well formed. Then the term e’ does not contain
any type application if d > 0.

Proof This is proved by induction over the structure of e. We will consider only the cases that do not follow
directly from the inductive assumption.

case let2 Since e is well formed and d > 0, by Proposition 5, this case does not arise.

case tfn Since e is well formed, e> must be well formed as well. By induction on the translation of ez, the
result term e}, does not contain any type applications.

case tapp By Proposition 4, £ = 0 for d > 0. Therefore the result term reduces to @*v F'.

case fct Since e is well formed and d > 0, from Figure 4, rule (fct), this case does not arise.

13



Lemma 7

Suppose I';d - e:0 = €' ; H ; F and e is well formed. Then both H and e’ do not contain any type application
nested inside a function abstraction (A°).

Proof The proof is by induction on the structure of e. We consider only the cases that do not follow directly
from the inductive hypothesis.

case tfn By Lemma 6, ] does not contain any type applications. By induction, H; does not contain type
applications nested inside a (A¢). Therefore H' does not contain any type application nested inside a (A°). By
induction on ez, both Hy and e} do not contain nested type application; the lemma follows from this.

case tfm2 The result follows directly from the inductive assumptions on the translation of e; and es.

case tapp The lemma is clearly satisfied for this case since the type applications in either the header or the
translated term are not nested inside a (A°).

case fct Since e is well formed, this rule occurs only for d = 0. Therefore, the inductive assumption leads
directly to the lemma.

case fn By Lemma 6, ¢’ does not contain any type applications. Therefore the term \°z: T(u).e' does not
contain any type application nested inside a (A®). By induction on the translation of e, the header H does not
contain any nested type application; the lemma follows from this.

O

Theorem 8 (Full Lifting)

Suppose T';dFe:0 = €' ; H; F. Suppose further that e is well formed. Then the expression LET(H, e') does
not have a type application nested inside a function abstraction (A°).

Proof The theorem follows from Lemma 7.
O

In the Appendix, we prove the type preservation property and the semantic soundness of the algorithm.

Is the reformulation merely an artifice to get around the problems posed by FLINT ? No, the main aim
of the type lifting transformation is to perform all the type applications during “link” time—when the top
level code is being executed—and eliminate runtime type construction inside functions. Functors are part
of the top level code and are applied at “link” time. Moreover, they are non-recursive. Therefore having
type applications nested only inside functors results in the type applications being performed only once at the
beginning of program execution. As a result, we still eliminate runtime type passing inside functions.

To summarize, we note that depth 0 in Core-ML (according to the definition above) coincides with the top
level of the program, since Core-ML does not have functors; therefore the Core-ML translation is merely a
special case of the translation for FLINT.

4 Implementation

We have implemented the type-lifting algorithm in the FLINT/ML compiler version 1.7 and the SML/NJ
compiler v110.7. All the tests were performed on a Pentium Pro 200 Linux workstation with 64M physical

14



RAM. Figure 8 shows CPU times for executing the Standard ML benchmark suite with type lifting turned on
and turned off. The third column (New Time) indicates the execution time with lifting turned on and the next
column (Old Time) indicates the execution time with lifting turned off. The last column gives the ratio of the
new time to the old time.

Benchmark Description New Time | Old Time | Ratio
Simple A fluid-dynamics program 7.04 9.78 0.72
Vliw A VLIW instruction scheduler 4.22 4.31 0.98
Lexgen lexical-analyzer generator 2.38 2.36 1.01
ML-Yacc The ML-yacc 1.05 1.11 0.95
Mandelbrot | Mandelbrot curve construction 4.62 4.62 1.0
Kb-comp Knuth-Bendix Algorithm 2.98 3.11 0.96
Ray A ray-tracer 10.68 10.66 1.01
Life The Life Simulation 2.80 2.80 1.0
Boyer A simple theorem prover 0.49 0.52 0.96

Figure 8: Type Lifting Results

The current FLINT/ML and SML/NJ compilers maintain a very minimal set of type information. Types are
represented by integers since the compiler only needs to distinguish primitive types (e.g., int, real) and special
record types. As a result, runtime type construction and type application are not expensive. The test results
therefore yield a moderate speedup for most of the benchmarks and a good speedup for one benchmark—
an average of about 4% for the polymorphic benchmarks. Simple has a lot of polymorphic function calls
occuring inside loops and therefore benefits greatly from lifting. Life, (after specialisation), and mandelbrot
are monomorphic benchmarks (involving large lists) and predictably do not benefit from the optimization.

What are the tradeoffs involved in the algorithm? Our algorithm makes the simultaneous uncurrying of
both value and type applications difficult. Therefore at runtime, a type application will result in the formation
of a closure. However, these closures are created only once, at linktime, and do not represent a significant
penalty.

We also need to consider the closure size of the lifted functions. The (tapp) rule in the lifting algorithm
introduces new variables which may increase the number of free variables of a function. Moreover after type
applications are lifted, the type specialised functions become free variables of the function body. On the other
hand, since all type applications are lifted, we no longer need to include the free type variables in the closure.
We believe therefore that the increase in closure size, if any, does not incur a significant penalty. This is borne
out by the results on the benchmark suite — none of the benchmarks slows down significantly.

The creation of closures makes function application more expensive since it involves the extraction of the
environment and the code. However, in most cases, the selection of the code and the environment will be a
loop invariant and can therefore be optimised.

The algorithm is implemented in a single pass by a bottom up traversal of the syntax tree. The (tfn) rule
simplifies the implementation considerably by reducing the amount of type information to be adjusted. In the
given rule, all the expressions in H; are dumped right in front of the type abstraction. Note however that we
need to dump only those terms (in H;) which contain any of the ¢}s as free type variables. The advantage of
dumping all the expressions is that the de Bruijn depth of the terms in H; remains the same even after lifting.
Therefore, the algorithm needs to adjust the type information only while abstracting the free variables of a
polymorphic definition. (The types of the abstracted variables have to be adjusted.) The implementation also

15



ensures that the number of variables abstracted while lifting a definition is kept to a minimum — by recording
the depth at which a variable is defined.

Our algorithm is a source-to-source transformation and the output is again a FLINT program. We do not
need any auxiliary type system to type-check the transformation, the FLINT type-checker suffices which is a

big gain. This helped us immensely in implementing the algorithm and fixing the bugs that cropped up during
the implementation.

5 Related Work

The algorithm performs two transformations simultaneously. One is the lifting of type applications and the
other is the lifting of polymorphic function definitions. At first glance, the lifting of function definitions may
seem similar to lambda lifting [10]. However the lifting in the two cases is different. Lambda lifting converts
a program with local function definitions into a program consisting only of global function definitions whereas
the lifting shown here preserves the nesting structure of the program.

Consider the program fragment given below. (assuming f is externally defined)

Aafy. Az .
let
y1 = At1.Aza. Q(f[t1*al)za. ..

Y2 Atz . Azs3. @(y1 [ﬂ*ts] Yzs. ..
ys = Ats. Azg. Q(y2[y*ts1)za. ..
in @(ys[B*y]) 1

Johnsson-style lambda-lifting [10] converts this into:

y1 = Aat1.Az2. @(f[t1*aldza. ..

y2 = Aafts.Axs. @(yilal [Bxts])xs. ..

ys = AaByts.Aze. @(y2lal [B] [y*t3])zs. ..
expr = Aofy.Az1. @(yslad [B]1[y]1[B*y])z:

But we translate this into (ignoring the lifting of type applications for the time being as it is not relevant to
our argument):

Aafy.
let
y1 = Aty.
let v1 = flti1*al
in )\.’Bz. @’Ulmz.. .
Yz = At3.
let v2 = y1[f*ts]
in Az3. Quazs...
ys = At5.
let w3 = yal[y*ts]
in Az4. Quszg...
vg = ys[f*y]
in Az;. Quazi

Retaining the lexical nesting of the program has some important implications. The conventional lambda lifting
has to abstract over the free type variables of the function definition. As nested functions are lifted, the number

16



of free type variables may start increasing in a cascading manner (when the set of lifted functions have distinct
free type variables). In our case, type abstractions are never introduced.

The lifting of type applications is similar in spirit to the hoisting of loop invariant expressions. It could
be considered as a special case of a fully lazy transformation [9, 20] with the maximal free subexpressions
restricted to be type applications. However, the fully-lazy transformation as described in Peyton Jones [20]
will not lift all type applications to the top level. Specifically, type applications of a polymorphic function
defined inside other functions, will not be lifted to the top level. Our algorithm though, is guaranteed to lift
all type applications to depth zero. As an example, we show below a fully lazy transformation on the code
fragment at the beginning of this subsection.

Aapry.
let u = [*y
)\101.
let
Yy = At1.
let u; = flt1*al
in Azs2. Quizs ...
Y2 = At3.
let uz = yi[B*ts]
in Az3. Quszs ...
Yys = At5.
let us = ya[y*ts]
in Az4. Quszyg ...
in @(ys[ul)z;

Minamide [15] has also worked on the same problem but uses an entirely different approach from ours.
Instead of constructing types inside functions, he constructs them at the call sites and passes them in as
parameters. This transformation is recursively propagated to the call sites at the top level. However, this
increases the number of type parameters of a polymorphic function since all the types that were previously
being constructed inside functions are now passed in as parameters. He therefore passes in a record of types
and replaces type construction by projections from this record. As an example, consider his transformation on
the code fragment shown at the beginning of this subsection. In the example code, type information is passed

by the evidence variable u. It is assumed to hold an evidence value that satisfies the predicate pr. #i(u) refers
to the i field of u.

Au:pro. Ax;.
let
y1 = Au:pri.Axz. Q(f[#2(w))x2...

y2 = Au:pra.Axs. @(yi[#2(w)1)xs...

y3 = Au:prs.Axs. @(y2[#2(w)1)x4...
in

Q(ys[#4(w)])x:1

pro = {a,B,7,{8%y, {y*Bry,{B*y*Bry, Bry*B*y*a}}}}

pri = {ti,t1*a}
pr2 = {ts,{B*ts,B*ts*a}}
pra = {ts,{y*ts,{B%y*ts,B*y*ts*a}}}

The advantage of his method is that he eliminates the runtime construction of types. However, the dis-
advantage is that he can no longer type-check his transformation with the existing type system; instead, he

17



has to use an auxiliary type system based on the qualified type system of Jones [12], and the implementation
calculus for the compilation of polymorphic records of Ohori [17]. Our algorithm on the other hand is a source-
to-source transformation. Finally, Minamide’s algorithm deals only with the Core-ML calculus and does not
mention how his method may be extended to ML-style modules. On the other hand, we have implemented our
algorithm on the entire SML’97 language with higher-order modules.

Jones [11] has also worked on a similar problem related to the implementation of type classes in Haskell [8]
and Gofer [11]. Type classes in these languages are implemented by dictionary passing and if done naively, can
lead to the same dictionaries being created repeatedly.

We will briefly compare our approach with his optimisations on dictionary passing. Since the type systems
and the implementation of dictionaries differs slightly in Haskell and Gofer, we will consider the two separately.

Haskell [8] performs context reduction and simplifies the set of constraints in a type. Consider the following
Haskell example

f :: Eq a=>a->a->Bool
fxy= ([x] ==I[yl) & ([y]l == [xI)

The actual type of £ is Eg[a] => a — a — Bool, but after context reduction, we get the type shown in the
example. Here [a] means a list of elements of type a. Eq a means that the type ¢ must be an instance of the
Equality Class. Eq [a] means that the type List of a's must be an instance of the Equality Class. Function £
in the example above, has type a = a — Bool, with a being an instance of the Equality class. Jones optimises
this by constructing a dictionary for Eq [a] at the call site of f; rather than pass a dictionary for Fq a and
construct the dictionary for Eq [a] in the function f. He repeats this for all overloaded functions so that all
dictionaries are created statically. But this approach does not work with separately compiled modules since
the type of £ being exported to other modules does not specify the dictionaries that are constructed inside it.

In Gofer [11], however, instance declarations are not used to simplify the context. Therefore the type of £
in the above example would still be Eg[a] => a — a — Bool. Jones’ optimisation can now be performed even
in the presence of separately compiled modules. In fact, Minamide’s transformation is very similar to this.

However, the ML module language (which we considered in Section 3) supports functors that get translated
into polymorphic abstractions — meaning thereby, that the abstracted variable is polymorphic. Suppose two
polymorphic functions £ and g have the same type(o;) but the types constructed in their bodies are different.
If we transform the functions, so that the types that are constructed are passed in as parameters, the two
functions, £ and g, will no longer have the same type. Suppose we had a function (h = Az : 01.€). Previously,
we could pass either f or g as parameters. But now, since the two functions have different types, we cannot
use them in the same context. So the method used by Jones for optimising dictionary passing does not extend
to the Full-ML language.

Tolmach [29] has worked on a similar problem and proposed a method based on the lazy substitution
on types. He used the method in the implementation of the tag-free garbage collector. Minamide’s [15]
method, in fact, is a refinement of Tolmach’s method to eliminate runtime construction of type parameters.
Peyton Jones [21, 19, 20] also described a number of optimizations which are similar in spirit but have totally
different aims. Appel [2] describes let hoisting in the context of ML. In general, using correctness preserving
transformations as a compiler optimization [1, 2] is a well established technique, and has received quite a bit
of attention in the functional programming area.

In their study of the type theory of Standard ML, Harper and Mitchell [6] argued that an explicitly typed

18



interpretation of ML polymorphism has better semantic properties and scales more easily to cover the full
language. The idea of passing types to polymorphic functions is exploited by Morrison et al. [16] in the imple-
mentation of Napier. The work of Ohori on compiling record operations [17] is similarly based on a type passing
interpretation of polymorphism. Jones [12] has proposed evidence passing—a general framework for passing
data, derived from types, to “qualified” polymorphic operations. Harper and Morisett [7] proposed an alter-
native approach for compiling polymorphism where types are passed as arguments to polymorphic routines in
order to determine the representation of an object. Many modern compilers like the FLINT /ML compiler [24],
TIL [28] and the Glasgow Haskell compiler [18] use an explicitly typed language as the intermediate language
in the compilation.

6 Conclusions

We have proposed a method for minimizing the cost of runtime type passing. Our algorithm lifts all type
applications out of functions and therefore eliminates the runtime construction of types inside functions. The
amount of type information constructed at run time is a static constant. We can guarantee that in Core-ML
programs, all type applications will be lifted to the top level. The method we have proposed can also be
used in optimising dictionary passing in Haskell. However, since Haskell supports polymorphic recursion, we
cannot guarantee that all dictionaries will be constructed statically. We are now working towards a more
comprehensive runtime type-representation in FLINT; so that we can maintain complete type information,
yet, not incur a significant penalty at runtime.

7 Acknowledgements

We would like to thank Valery Trifonov, Chris League and Stefan Monnier for many useful discussions and
comments about earlier drafts of this paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

[2] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[3] A.Birrell, G. Nelson, S. Owicki, and E. Wobber. Network objects. In Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles, 1993.

[4] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continuations. In Proc. ACM
SIGPLAN ’93 Conf. on Prog. Lang. Design and Implementation, pages 237-247, New York, June 1993. ACM Press.

[6] J. Y. Girard. Interpretation Fonctionnelle et Elimination des Coupures dans U’Arithmetique d’Ordre Superieur.
PhD thesis, University of Paris VII, 1972.

[6] R.Harper and J. C. Mitchell. On the type structure of Standard ML. ACM Trans. Prog. Lang. Syst., 15(2):211-252,
April 1993.

[7] R. Harper and G. Morrisett. Compiling polymorphism using intensional type analysis. In Twenty-second Annual
ACM Symp. on Principles of Prog. Languages, pages 130-141, New York, Jan 1995. ACM Press.

[8] P. Hudak, S. P. Jones, and P. W. et al. Report on the programming language Haskell, a non-strict, purely functional
language version 1.2. SIGPLAN Notices, 21(5), May 1992.

19



[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

18]

[19]

[20]

21]

[22]

23]

[24]

25]

[26]

27]

28]

[29]

(30]

R. Hughes. The design and implementation of programming languages. PhD thesis, Programming Research Group,
Oxford University, Oxford, UK, 1983.

T. Johnsson. Lambda Lifting: Transforming Programs to Recursive Equations. In The Second International Con-
ference on Functional Programming Languages and Computer Architecture, pages 190-203, New York, September
1985. Springer-Verlag.

M. P. Jones. Qualified Types: Theory and Practice. PhD thesis, Oxford University Computing Laboratory, Oxford,
july 1992. Technical Monograph PRG-106.

M. P. Jones. A theory of qualified types. In The 4th Furopean Symposium on Programming, pages 287-306, Berlin,
February 1992. Spinger-Verlag.

X. Leroy and M. Mauny. Dynamics in ML. In The Fifth International Conference on Functional Programming
Languages and Computer Architecture, pages 406426, New York, August 1991. Springer-Verlag.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT Press,
Cambridge, Massachusetts, 1997.

Y. Minamide. Full lifting of type parameters. Technical report, RIMS, Kyoto University, 1997.

R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the implementation of
polymorphism. ACM Trans. Prog. Lang. Syst., 13(3), July 1991.

A. Ohori. A compilation method for ML-style polymorphic record calculi. In Nineteenth Annual ACM Symp. on
Principles of Prog. Languages, New York, Jan 1992. ACM Press.

S. Peyton Jones. Implementing lazy functional languages on stock hardware: the Spineless Tagless G-machine.
Journal of Functional Programming, 2(2):127-202, April 1992.

S. Peyton Jones. Compiling haskell by program transformation: a report from trenches. In Proceedings of the
European Symposium on Programming, Linkoping, April 1996.

S. Peyton Jones and D. Lester. A modular fully-lazy lambda lifter in haskell. Software — Practice and Ezperience,

21:479-506, 1991.

S. Peyton Jones, W. Partain, and A. Santos. Let-floating: moving bindings to give faster programs. In Proc.
International Conference on Functional Programming (ICFP’96), New York, June 1996. ACM Press.

J. C. Reynolds. Towards a theory of type structure. In Proceedings, Colloque sur la Programmation, Lecture Notes
in Computer Science, volume 19, pages 408-425. Springer-Verlag, Berlin, 1974.

Z. Shao. Flexible representation analysis. In Proc. 1997 ACM SIGPLAN International Conference on Functional
Programming (ICFP’97), pages 85-98. ACM Press, June 1997.

Z. Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIGPLAN Workshop on Types in Compi-
lation, June 1997.

Z. Shao. Typed common intermediate format. In Proc. 1997 USENIX Conference on Domain Specific Languages,
pages 89-102, October 1997.

Z. Shao. Typed cross-module compilation. In Proc. 1998 ACM SIGPLAN International Conference on Functional
Programming (ICFP’98). ACM Press, 1998.

D. Tarditi. Design and Implementation of Code Optimizations for a Type-Directed Compiler for Standard ML.
PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, December 1996. Tech
Report CMU-CS-97-108.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed optimizing compiler for
ML. In Proc. ACM SIGPLAN ’96 Conf. on Prog. Lang. Design and Implementation, pages 181-192. ACM Press,
1996.

A. Tolmach. Tag-free garbage collection using explicit type parameters. In Proc. 1994 ACM Conf. on Lisp and
Functional Programming, pages 1-11, New York, June 1994. ACM Press.

A. K. Wright. Polymorphism for imperative languages without imperative types. Technical Report Tech Report
TR 93-200, Dept. of Computer Science, Rice University, Houston, Texas, February 1993.

20



A Proofs For The Core-ML Algorithm

In this section, we prove the semantic soundness and the type preservation property of the algorithm.

m(z) = p
T';Ti; HE G : Int s il
(ezp) Tp; T H bz p = zynil; {z: u} my = P2 Int = isnil;
(app) Lp(z1) = 1 — po L(22) =
a -
PP Tps Ty HE Quizg o = Quyzo;nil; {21t 1 — po, T2t pa }
TCplz— p;iTyHbEe: y = e;H; F
(fn) LT HE Az e p— p/ = Az pe's H F\{z : u}
(let) TriTisHEer:ip = e Hy i Tz = ;T HE ex: pe = eh; Hoy F
e
Tp;Ti;HElet 2 =e1 ineg: g = let z =€) ineh; Hy || Ho; F1 U (Fo\{z : p1})
;I H Fep: M1 = ell;Hl;Fl H = [<I = At_i.LET(Hl,)\*Fl.ell»]
(tfn) Fm;Fl[:E — <Vt_z/.l,1,F1>],H ” H €2 . U = e'2;H2;F2

Tp;Ti; HE let o = Atj.e; inex: us = eb; H' || Ho; Fy

Ty(z) = (Vi;.u, F) z a fresh variable
(tapp) Ui Dos H E 2] : [pi/tilp = @*2F; [(z = a[m])]; F
N——_—————
Hy

Figure 9: The Lifting Translation

Notation \*F.e and Q*zF

We use A*Fl.e and @*zF to denote multiple abstractions and applications respectively. If F' = {z; :
M1, ey T, © fin }, then A* Fle denotes Azq : p1.(-..(AZyp : pp-€)..). Similarly @*2F denotes Q(..(Qzz1)..)2,.

Notation Ty(L)
If L = {z1,23,...,2,} and the types of the variables are respectively ui,..., in, then Ty(L) — u is
shorthand for p1 — (... = (un — p)..).

Throughout this section, we assume unique variable bindings — variables are never redefined in the program.

The variable environment is split up into 2 environments — I',, which binds the monomorphic variables,
and I'; which binds the variables introduced by polymorphic let expressions.

Lemma 9

Suppose I',,;T;; H - e:0 = €' H'; F. If z occurs free in €', and z € T,,,, then z € F.

21



Proof The proof is by induction on the structure of e. Most of the cases follow directly from the inductive
hypothesis; the only cases of interest being tapp and tfn.

case tapp The only variables occuring free in e’ are z and the variablesin F. The variable z is newly introduced
and hence cannot occur in I',,,, while F' is returned.

case tfn By the inductive hypothesis, if y € T',,, and y occurs free in e}, then y € F>. The free variables of
the translated term are the free variables of e}, and therefore the lemma is satisfied.
a

Lemma 10

Suppose I',,; T H - e:0 = €' H'; F. Then if ¢ € IT',,,, then = does not occur free in H'.

Proof The proof is by induction on the structure of e. We will only consider the cases that donot follow
directly from the inductive assumption.

case tapp The only free variable in the header is z which occurs in T.

case tfn By Lemma 9, we know that A\*Fj.e} is closed with respect to variables in I',,,. By induction on e,
we know that H,; is closed with respect to variables in T',,. This implies that H' is closed with respect to
variables in I';,,. By induction on es, we know that Hs is closed with respect to variables in T',,,, which proves
the lemma.

O

Lemma 11
The variables bound in I';, and I'; are mutually disjoint; and the variables bound in I'), and 'y are mutually
disjoint.

Proof The proof is again a straightforward induction over the translation rules. In each rule, only one of the
environments is augmented with a variable binding.
O

A.1 Type Preservation

In this section, we prove that the transformation preserves the type of the original expression.
Definition 1 (LET(H,e))

If H ::= [h1,..., hy], and each h; ::= (y; = e;), then LET(H, e) is shorthand for let y; = e; in ...inlety, =
e, in e.

Definition 2 (I'y Header Type Environment)

Suppose I'y;Tj;HE e:o = €' ;H'; F. If H = [hy,...,hy], then Tg =Ty, W... Wy . If by == (y; = &),
and I'p; Thyoopioy o €izoy; then Ty, := g = 03

22



(const/var) Tt i:Int Tk z:T(z)

Fw{z:m} F e:p

(fn) I'F Az:pi.e: pg — po

F'Fazy:p>p TF zo:p
(app) ' F Qzize: p

TFey:m TW{z:Viu} b e:pus t; not free in T

(¢fn) —

' b let x = At;.ep ine: po

Tk z:V.p

(tapp) Z

U F alm] : (i /tip

Tk oe:w TW{z:m} F ex:po

(let) '+ letx=e; ines: o

Figure 10: Static Semantics

Definition 3 (H is well formed with respect to I'})

H is well formed iff T';(z) = (V¢;.u, F) implies that Ty (z) = V. Ty(F) — p.

The static semantics is shown in Figure 10. The environment I' is a generic environment which means that
for the source terms, I' is substituted with T',,,; T;, and for the target terms, T is substituted with T',,,; Tg.

Lemma 12

Suppose I';,; Ty + let © = LET(Hy,€’) in LET(H2,€"”) : ps and z does not occur free in H; or Hy. Then
Tp; Ty F LET(Hy || H2,let z =€’ ine€) : po

Proof From the typing rules, T',,; Ty F LET(H,e€') : p (for some p) and T'yy[z — p]; Ty - LET(Ha,€") = po.
This implies that T',,,; Ty Wy, - €' : p. Since variables bound in H; do not occur in LET(H>,e"), we get that
Twlz = p);Teg Wy, F LET(Ha,e") : pa. Therefore T'yy; Ty Wy, - let 2 =€’ in LET(Ha, ") : po.

The header Hs ::= [hq, ..., h,] where each h; ::= y; = e;. Therefore write LET(H2,¢e") as let y; = e; ine
where e = LET([hg, ..., hy],e"). When we consider the typing rules for this expression, we get that I',,[z —
u; Ty Wy, ey pg (for some pg) and Tz = pl;Tp Wy, Wiy — p1] b e: pa. We know that z does not
occur in ej, therefore we can remove it from the environment while typing e;. Further y; does not occur in €’
and can therefore be introduced into the environment while typing e’. So we get the following typing equations
T Tl ber:pand Ty TpWlg Wy — ] e tpand Tz = p);TpWly Wlyr = pi] b e pa.
This implies that T'p,; Ty W Ty, F let y3 = e; in let £ =€’ in e : us. By continuing this process of breaking
H, into its components, in the end, we get the following typing equations — T',;; Ty W Ty, W Ty, e’ : p and
Tz = p);Tg Wy, Wy, e : pa. which proves the lemma.

O

23



Lemma 13

Suppose that T'y,; Ty F Az : w.LET(H',e) : u — p'. Suppose further that z does not occur free in H'. Then
Tp; T FLET(H Az pe) : p— p'.

Proof The header H' ::= [hy, ..., h,] with each h; ::= y; = e;. Therefore write LET(H’,e) as let y; = e; ine”
where e ::= LET([ha,...,hys],e). The typing rule for the expression Az : u.LET(H’,e) can be written as
Tlz = p);Ta Fep : pr (for some type p1) and Tz — p]; Trlyr — pa] Fe” = p'. Since z does not occur free
in e;, we can remove it from the environment while typing e;. Therefore the typing equations now become
T;Teber:pand Tz — pl;Tylys = pa] B e’ o p!. This implies that T'y,; Ty - let y3 = €1 in Az:p.e’ :
pu — p'. Continuing to break H' like this, we finally reach I',,,;; 'y F LET(H', Az:p.€) : p — p'.

O

Theorem 14 (Type Preservation)

Suppose I',,; Ty H - e:o0 = €'; H'; F. Suppose further that H is well formed with respect to I';. If I',,,; Ty F e :
o, then T',; Ty - LET(H',¢') : 0.

Proof The proof is by induction on the structure of e.
case int Both the source and target terms have type Int.

case var z occurs in I';;, and a variable does not occur in more than one environment(Lemma 11). Therefore
both the source and the target terms have type I';, ().

case app By an argument similar to the (varl) case, we can deduce that T',,;;Ty F 21 : g1 — p2 and
I; T b z2 0 pi. This implies that T',,; Ty - Qzyza @ po.

case let By the inductive hypothesis, I'y,; 'y F LET(Hy,€}) : g1 and I'pJz — pq];Te B LET(Hz,€h) = po.
Since H» and H; are closed with respect to variables in T, (Lemma 10),  does not occur free in Hy and H;.
Applying Lemma 12 leads to the preservation theorem.

case tapp From the antecedent we know that I';(z) = (V%;.u, F'). By the well formedness of H, we know that
Ty(z) = Vt;. Ty(F) — p. Therefore T',y; Ty b z[g;] : Ty(F) — plui/t;]. Since F consists of the free variables
of z, the type Ty(F') cannot contain any of the ¢; as a free type variable. Therefore the translated term has
type p[pi/t;] which is the same as the source term.

case tfn We need to prove that T',,; Ty F LET(H' || Ha, €b) : u2 which implies that T',; TgWT g F LET(Ha, €5) :
p2 must be true. By definition, I'gy: ::= z + o' where I'y,; Ty F At;.LET(Hy, \*Fi.e}) : ¢'. By the inductive
hypothesis, we know that T',,; Ty - LET(Hy,e}) : p1. This implies that T',,; T = A* Fy . LET(Hy, €}) : Ty(F1) —
w1 where F is the set of free variables of ) bound in I';,,. By generalising Lemma 13, we get that T',,,; Ty F
LET(Hy, \*Fi.e}) : Ty(F1) — p1 since none of the F; occur free in H; (Lemma 10). By the inductive assumption,
we knew that H was well formed with respect to T';; we now showed that H || H' is well formed with respect
to Ty[z — (Vii.p1,F1)]- Applying the inductive hypothesis now to the translation of es leads to the type
preservation theorem.

case fn By the inductive assumption, I';, [ — p]; Ty F LET(H',e') : p'. This implies that I';y; Ty F Az :
wLET(H',e') : p — y'. By Lemma 10, z does not occur free in H'. Applying Lemma 13, we get I',,,;; Ty F
LET(H', Az:p-e') : p— p'.

O

24



A.2 Semantic Soundness
There are only three kinds of values - integers, function closures and type function closures.
(values) v == i | Clos{z* e, E) | Clost(t;,e, E)

Type of a Value e I'-i:int
o if T'H Az:p.e:u— p',then T+ Clos{(zt,e,E) : uy — p
o if ' At;.e, : V., then T+ Clost(t;, ey, E) : Vi;.10
Notation F respects I’
If E respects I' then E(z) = v and I'(z) = ¢ implies that T' v : 0.

Notation F:T'Fe— v

Implies that in a value environment F respecting I', e evaluates to v.

Henceforth in this section, we will assume that the value environment E respects the type
environment I' . To avoid clutter in the presentation, we will not state this explicitly. This also implies that
if a variable z is bound to a value v, and ' - 2:0, then T' - v: 0.

Equivalence of Values Two values, v and v', are equivalent (v & v') under the following conditions
e ix~iiffTFi:Intand T'Fi: Int andi =7
e Clos{z*, e, E) ~ Clos{z",¢e', E') iff
—TkXz:ipe:p—p and T F Az:p.e 1 p— o', and
— E[z — v1]F e = v and v; ~ v} implies that E'[z — v]]F e’ — v’ and v =~ v’
o Clost(t;,e, E) ~ Clost(t;,¢e', E') iff
—Tre:W.pand T+ €' : VE;.u, and
— EF e[u;/t;] — v implies that E' F e'[u;/t;] — v', and v & v'.

Compatible Environments Two environments E and E' are compatible iff dom(E) = dom(E') and Vz €
E,E(z) =~ E'(z),

Definition 4 (Ey Header Value Environment)

Suppose I'y,; Ty HE e:o = €' H'; F. If H :=[hy,...,hy], then Eg = Ep, W ... W Ey . If h; n= (y; = €;),
and Ep,; Epg..p;_, - €~ v;, then By, :=y; — v;.

Definition 5 (H is well founded )

Suppose I',,,;;T;; H - e:0 = €' H'; F' and Ty(z) = (Vi;.0, F). Suppose further that F,, is compatible to
E!,. We say that H is well founded iff, Vz € Ej, E,,; E; I z[g;] ~ v implies that E! ; Eg - @Q*z[g,;]F ~ v' and
v

In the above definition, note that the environments E,,, E/, respect I'y,; the environment Ey respects 'y
and the environment E; respects I';. As we said above, we shall leave this implicit to help the presentation,
but it should be kept in mind that the value environment respects the type environment.

25



(const/var) Eti—i EFz— E(z)

(fr) EtF Az:p.e — Clos{z*, e, E)
Etz1 — Clos(z*,e,E') Eblzy—>1v E+z—dvbFe—ovw
(app) EF Qzizy — v
(tfn) E + At;.e, — Clost(t;, ey, E)
] Ele — v E+z—vtey—wv
(let) Elrletxz=e; iney v
Etzw— Clost(ti,en, E') E'Fey[ui/ti] = v
(tapp)

Et z[p]) — v

Figure 11: Operational Semantics

The operational semantics is shown in Figure 11. The environment F is a generic environment which means
that for the source terms, F is substituted with E,,; E; and for the target terms, F is substituted with E! ; Ep.

Lemma 15

Suppose F.,; Eg + let £ = LET(Hy,e') in LET(H3,e") ~ v and z does not occur free in either H; or Hs.
Then E,,; Eg - LET(H, || H2,let z =€’ ine") ~ v

Proof The proof is exactly similar to the proof for Lemma 12. We only need to replace the type environments
(T'y;T) with the corresponding value environments (E,,; Eg).
O

Theorem 16 (Semantic Soundness)

Suppose I'y,;Ti; H F e:o = e'; H'; F'. Suppose further that E,, and E, are compatible. If H is well
founded and E,,; E; - e ~ v, then E! ; Eg - LET(H',e') ~ v' with v =~ v'.

Proof The proof is by induction on the structure of e.
case int Both the source and the target terms evaluate to 1.

case var The source term evaluates to E,,(z); the target term to E; (z). The equivalence follows since E,,
and E;, are compatible.

case app In the source term, z; evaluates to a closure, E,,(z1), say vi. =3 evaluates to E,,(z2), say vs. In the
target term, z; evaluates to a closure, E] (z1), say v{. z2 evaluates to E], (z2), say vj. Since E,, and E], are
compatible, v; & v] and vy & v5. The required equivalence follows now from the definition of the equivalence
of closures.

26



case let By the inductive assumption, if E,,; E; - e; ~ vq, then E ; Eg F LET(Hy,€}) ~ v; and v; & v].
Similarly, by induction on eq, if E,[z — v1]; E; F e2 ~ v, then E! [z — vi]; Eg b LET(Haz,e}) ~ vj and
vo & v This implies that E/ ; Eg - let ¢ = LET(Hq,€}) in LET(Hy, €}) ~ v}. By Lemma 10, 2 does not occur
free in either Hy or H>. But by Lemma 15, this implies that E/ ; Eg F LET(Hy || H2,let z = €| in e}) ~» v}.
The required equivalence follows from this.

case tapp We need to prove that if E,,; E; - z[@;] ~ v, then E! ; Eg F @*z[g;]F ~ v’ and that v & v'; given
that E,, and E], are compatible. But this follows from the definition of well foundedness of the header H.

case tfn We need to prove that if E,,; E; I let z = At;.e; in es ~ va, then E] ; Ey b LET(H' || Hz, €h) ~ v}
and vy & vh. We will first prove that the augmented environment H || H' is well founded during the translation
of e. By definition, Eg ::= z — Clost(t;, LET(Hy, \*Fy.€}), E.., Ex).

Now for any compatible pairs of environments; E,,, and E;, , and environments E;,, E}; , we need to
prove that if B, ; Ey, F z[@;] ~ v then E], ;Ey F @*z[m,]Fy ~ v' and v =~ v'. This implies we need to

mi?
prove that if E,,; E; & ei[ui/t;] ~ v then E ;Ey F @*z[g;]Fy ~ v' and v ~ v'. We will simplify the
evaluation of the target term. FE, ; Ey F z[g;] reduces to E ; Eg = LET(Hy, \*Fi.ej)[pi/t;]. This in turn

reduces to Clos(FlT () et [pi/ti], B, Ex © Em, [y, /t,])- Therefore, the evaluation of the target term reduces
to E;, ; Ey F @*Clos(FlTy(Fl), ei[pi/til, By, En W Eg,py, /¢,) F1- This in turn reduces to E, W E}, (F1); Eg W

m1?

Ey, [”:/ti] F e [ui/ti]. Since variables are bound only once, E;, (F1) = E, (F1). Therefore E], (F1)WE, = E, .
And so the evaluation of the target term can be reduced finally to E, ; Ex W Eg, [, /¢, F €i[ui/ti] ~ v'. But by
induction on the translation of e, we get that v =~ v'. Hence H || H' is well founded with respect to Ej[z — v].
And so we can apply the inductive hypothesis to the translation of ez which leads directly to the semantic

soundness result.

case fn We need to prove that if E,,; E; - Az:p.e ~ v, then E/ ; Eg b LET(H', Az: p.e') ~ v' and v = v'. By
the inductive hypothesis, we know that if E,,[z — v1]; E; F e ~ vy, then E] [x — v{]; Eg - LET(H',€e') ~ v}
and vy &~ vy. By Lemma 10, z does not occur free in H'. The header H' actually consists of [h1, .. ., h,] and each
h; == y; = e;. Consider the expression LET(H',e') as let y; = e; in e” where e’ = LET([ho, ..., hy],€'). From
the evaluation rules we can deduce that E [z — vi]; Eg | e; ~ u; (for some u;) and E/ [z — vi]; Egly1 —
u1] F €" ~ vh. But since z does not occur in e;, we can remove the binding of z from the environment while
evaluating e;. Therefore we get that E! ;Eg F e; ~ w; and E! [z — vi]; Eglyr — ui] F €’ ~ v}, By
continuing this process of splitting H', we can prove the required equivalence.

a

B Proofs For The FLINT Algorithm

In this section, we prove the semantic soundness and the type preservation property of the algorithm.

Notation \*F.e and Q*zF

We use \*F.e and @*2F to denote multiple abstractions and applications respectively. If F' = {z; :
01,y &n © Op }, then \*F.e denotes Az1 : 01.(...(A\2y, : 0y.€)..). Similarly @*zF denotes Q(..(Qzz1)..)zy,.

Notation Ty(L)

If L = {z1,22,...,2,} and the types of the variables are respectively o1,...,0p, then Ty(L) — o is
shorthand for o7 — (... = (op, = 0)..).

Throughout this section, we assume unique variable bindings — variables are never redefined in the program.

27



(int)

(var)

(app)

(app2)

(let)

(let2)

(tapp)

(tapp2)

(tfn2)

(fet)

(fn)

Dp;Tps Ty Hyd FizInt = 45 nil 5

Lole) = T(1) L) = 0
Ui DT Hyd bz T(p) = 25 nil 5 {z: T (w)} LTy T Hydb zio = 25 nil 5 0

Pp(z1) = T(pr = p2)  Tw(22) = T(a)
i Dps T Hyd = Qzyzy: T(p2) = Qzza ; nil; {z1: T(pn — p2),z2: T(p1)}

Fp(dll) = 01 — O3 Fp(.’tz) =01
Fm;Fp;Fl;H;dl_ @$1$2:0’2 = @$1$2 ; @ ; @

Lo TpsTy Hyd b er: T(pu) =€y 5 Hi; Fr Tz T(u);Tp;Tis H;d b egion = ey ; Ho; B

Lp;Tp; T Hyd b let ¢ =€ inep:op = let w =€) ineh; Hy || Hy; F1 U Fo\{z:T (1)}

LTy T Hydberio1 =€y 5 Hi 5 Fy Lo Tple = oq]; T Hyd b ea:oa = e 5 Ho 3 By
Tp;Tps T H;d - let £ = eq in ex:oo = let z = e} in LET(Ha,e}); H1; F1 U Fy

T(z) = (Vti.0, L) k=i—3j z new variable
Lin; Dps Tos Hyd = 0 & 2[f;]: (VEe.0) [y /t5] = AV.Q* (2[R;][t'4]) L 5 nil 5 L
Co; Tps Ty Hyd > 0 F z[@;): (Vtg.o)[p;/t;] = At',.@*(2[t's])L; [(z = z[i;])]; L

Ly(z)=0 z new variable
Tp;Tps Ty Hyd = 0 F 2[;):ofui /ti] = z[@;] ; nil ; 0
Cii Tp; Tis Hyd > O F 2] :ofpi /i) = 25 [(2 = z[g])] 5 0

Tp; Ty T Hydberion =€l 5 Hi 5 Fy H' =[(z = At;.LET(Hy, \*Fy.€}))]
Ly Tps Difz = (Vticon, F1); H || H';d b ex:o0 = €y ; Ho; Fo
Lp;Tp; T3 H;d > 0F let @ = Atj.er inesiop = eh; H' || Hy 5 Fo

TpiTp T H;d=0ker:00 =€} ; Hi; Fi H' = [(z = At;.€})]
Lp;Tp; D[z = (VEion,nil)]; H || H';d=0F exiop = e ; Ha; F
Lp;Tp; T H;d =0F let @ = Alj.e; inex:op = let & = Al;.el iney; Hi || Ha; F1 U F

TpiTplz = oI Hyd=0Fe:o' =€’ H ; F
Tp;Tp Ty HydE A 2:0e:0 — o' = Az:0e’ ; H'; F

Tmlz = T(u);Tp;Tis Hyd+1Fe:T(W) = ¢ 5 H ; F
Tp;Tps T Hyd =0 Az T(p).e: T(u — p') = LET(H', Xz: T(p).e') 5 nil ; F\{z: T(p)}
T TpsTis Hyd > 0 Moo T(u).e: T(p — p') = XNz T(p).e' ; H ; F\{z: T(p)}

Figure 12: The Lifting Algorithm For FLINT

28



The variable environment is split up into 3 environments — I';,, which binds the monomorphic variables, I,
which binds the variables introduced by functor abstractions, and I'; which binds the variables introduced by
polymorphic let expressions.

Lemma 17

Suppose I'yy; Tp;Iy; HydFe:o = €' ;5 H' 5 F. If ¢ occurs free in e/, and # € ')y, then z € F.

Proof The proof is by induction on the structure of e. Most of the cases follow directly from the inductive
hypothesis; the only cases of interest being tapp and tfn.

case tapp For (d > 0), the only variables occuring free in e’ are z and the variables in L. The variable z is
newly introduced and hence cannot occur in I'y,, while L is returned. For (d = 0), the only variables occuring
free in e’ are x and the variables in L. The variable z occurs in I';, while L is returned.

case tapp2 For (d > 0), the only variable occuring free in e’ is z which is a newly introduced variable; hence
does not occur in I'y,. For (d = 0), z is the only free variable but z occurs in T',,.

case tfn By the inductive hypothesis, if z € T, and & occurs free in e}, then z € F;. And similarly, if y € T,
and y occurs free in e}, then y € F5. The free variables of the translated term are the free variables of e}, and
therefore the lemma is satisfied.

case tfn2 By the inductive hypothesis, if z € T',, and z occurs free in e}, then z € F;. And similarly, if
y € Ty, and y occurs free in e}, then y € F;. The free variables of the translated term are the free variables
of €}, plus the free variables of e} which is F; U Fj.

O
Lemma 18
Suppose T'yy;Tp; Ty H;d Fe:o = €' ; H' 5 F. Then if d = 0, the header H' = nil.
Proof The proof is a straightforward induction over the structure of e.

O

Lemma 19

Suppose I'py; Tp;Iy; H;dFe:o = €' ; H'; F. Then if ¢ € Ty, then 2 does not occur free in H'.

Proof The proof is by induction on the structure of e. We will only consider the cases that donot follow
directly from the inductive assumption.

case tapp The header is non-null only for d > 0. The only free variable in the header is  which occurs in I';.

case tapp2 The header is non-null only for d > 0. The only free variable in the header is  which occurs in
Tp.

case tfn By Lemma 17, we know that \*F}.e| is closed with respect to variables in I';;,. By induction on
e1, we know that H; is closed with respect to variables in T',,. This implies that H' is closed with respect to
variables in I';,,. By induction on ez, we know that H is closed with respect to variables in T';,, which proves
the lemma.

case tfn2 By Lemma 18, the header H; || H is nil and so the lemma holds trivially.

29



Lemma 20

The variables bound in I';,, I', and I'; are mutually disjoint; and the variables bound in I'y,, I'y, and I'y are

mutually disjoint.

Proof The proof is again a straightforward induction over the translation rules. In each rule, only one of the
environments is augmented with a variable binding.

O
B.1 Type Preservation
In this section, we prove that the transformation preserves the type of the original expression.
(const/var) I'lF i:Int Pk z:T(z)
. Pw{o: T(u)} b e: T(u)
T F Xx:T(py)e: T(puy — p2)
TW{z:01} F e:oy
(fet) —
' \™z:01.€:01 — 02
'tzi:0' =50 TF zy:0
(app) T+ Qzzs:0
(a, 2) TF AT T(p/l —)/J,g) '+ Zg : T(/.Ll)
PP '+ @$1$2 H T(/,Lg)
. T'kFey:o1 TW{z:Vio1} F e:02 t; not free in T
(tfn) I' F let 2 = At;.e, ine: oy
(tapp) I' - z:Vt.o k=1—7
app — —
I' b 2[@,] : Vi [u;/tjlo
et T'Fe :0p Fw{z:01} F ex: 09
(let) 'k letz=e; ines: 09
Figure 13: Static Semantics
Definition 6 (LET(H,e))
If H ::= [h1,..., hy], and each h; ::= (y; = e;), then LET(H, e) is shorthand for let y; = e; in ...inlety, =

ey in e.

30



Definition 7 (I'y Header Type Environment)

Suppose I'yy; Tp;Tis H;d Fe:o = € 5 H ; F. If H = [hy,...,hy], then Ty = Tp, W... Wy, . If

n

hi = (y; = €;), and T'py; Tp; Ty piy F €5:0y; then Ty, == y; > oy.
Definition 8 (H is well formed with respect to I';)

H is well formed iff I';(z) = (Vi;.0, F') implies that 'y (z) = V. Ty(F) — o.

The static semantics is shown in Figure 13. The environment I' is a generic environment which means
that for the source terms, I' is substituted with I',; I'p; I, and for the target terms, I' is substituted with
Pm;Ip;Ta.

Lemma 21

Suppose I',;Tp; Ty F let ¢ = LET(Hy,e') in LET(Hy,e") : 0 and z does not occur free in either H; or Hs.
Then I',,;T; Ty F LET(H; || Ha,let . =€’ ine):0o

Proof From the typing rules, I',,,; ;g F LET(Hy,€'): T(u) (for some T'(u)) and T'yp[z — T(w)];Tp T F
LET(H>,e"): 0. This implies that I'yy;Tp; Ty W Ty, F €': (). Since variables bound in H; do not occur in
LET(H>,e"), we get that T'yy[x — T(1));Tp; T W'y, b LET(Hs,e""):0. Therefore I'yyy;Tp; Ty Wy, Flet z =
e’ in LET(H,€e"):0.

The header Hs ::= [h1, ..., hy] where each h; ::= y; = e;. Therefore write LET(H2,¢e") as let y; = e; ine
where e = LET([ha,..., hy],e"”). When we consider the typing rules for this expression, we get that I'y,[z —
T(w);Tp;TaWly, Fe1:01 and Tfz = T(w)];Tp; T Wla, Wy — o1] b e: o for some type o1. We
know that = does not occur in e;, therefore we can remove it from the environment while typing e;. Further
y1 does not occur in e’ and can therefore be introduced into the environment while typing e¢’. So we get the
following typing equations — I'y; Tp; Tg W, F er o1 and Ty;Tps T W g, Wy — o1] F €' T(p) and
Tz = T(w));Tp; Ty W, Wys — o1] F e:o. This implies that T'yy; Tp; Ty Wy, H1let y; = €1 in let z =
e’ in e:o. By continuing this process of breaking H> into its components, in the end, we get the following
typing equations — I'yp; Tp; Ty Wy, g, F e : T(u) and Tz = T(w)];Tp; Ty Wy, Wy, e :0 which
proves the lemma.

O

Lemma 22

Suppose that T'y,; Tp; Ty - Az: T(w).LET(H',e): T(u) — o. Suppose further that « does not occur free in H'.
Then I'yy; T'p; Ty F LET(H', Ax: T'(p).€): T'(p) — o'

Proof The header H' ::= [hq, ..., hy,] with each h; ::= y; = e;. Therefore write LET(H', e) as let y; = e; ine’
where €' ::= LET([h2,...,hn],€)- The typing rule for the expression Az : T(u).LET(H',e) can be written as
Tplz = T(w)];Tp;Ta b er:01 and Typ[z — T(w);Tp;Talyr — o01] F €' : o', Since = does not occur free
in e;, we may remove it from the environment while typing e;. Therefore, the typing equations now become
T;TpiTa b er:or and Tz = T(w)];Tp; Talyr = o1] b € :o’. This implies that I'yy; Tp; T F let y1 =
e in Az : T(w).e': T(u) — o'. Continuing to break H' like this, we finally reach I'y,; T'p; Ty - LET(H', Az :
T(p).e): T(u) — o'

O

31



Theorem 23 (Type Preservation)

Suppose I',,; Tp; T H;d b e:o = €' ; H' ; F and H is well formed with respect to I';. If T')y; Tp; I F e o,
then I',; T'p; Ty F LET(H', €'):0.

Proof The proof is by induction on the structure of e.
case int Both the source and target terms have type Int.

case var z occurs in I';, and a variable does not occur in more than one environment(Lemma 20). Therefore
both the source and the target terms have type Ty, (z).

case var z occurs in I', and a variable does not occur in more than one environment. Therefore both the
source and target terms have type I'p(z).

case app By an argument similar to the (varl) case, we can deduce that I'yy;Tps Ty b 210 T(pa — p2) and
Ty;Tp; T b @a: T(pq). This implies that T'yy; Tp; T F Qzza: T (po).

case app2 By an argument similar to the (var2) case, we can deduce that I',,;;Tp; Ty F 21 :01 — 02 and
I';Tp; T - 22:0,. This implies that I'yy; T'p; Ty - Q2125 :09.

case let By the inductive hypothesis, I';;Tp; Ty b LET(Hy,e}) @ T(u1) and Tifz = T(p1)];Tp; T F
LET(Hz,¢eh) : 05. Since Hs and H; are closed with respect to variables in T, (Lemma 19), z does not oc-
cur free in Hs or Hy. Applying Lemma 21 leads to the preservation theorem.

case let2 By the inductive hypothesis, I';,; T'p; Ty F LET(Hy,€) 01 and IT',,; Tp[z — 01]; Ty F LET(Ha, €5): 0.
Since the variables bound in H; do not occur in LET(H,,e)), we can introduce the variables in H; in the
environment while typing LET(H2,e5). Therefore we have that I'\;Tp; T W g, F ef 01 and T'py;Tplz —
01]; Ty Wy, F LET(H2,eh):02. The type preservation theorem follows from this.

case tapp From the antecedent we know that I';(z) = (Vi;.0, L). By the well formedness of H, we know that
Tu(z) = Vt;.Ty(L) — o. Therefore I'yy;Tp; Ty - z[f;] : Vix. Ty(L) — olu;/t;]. Since L consists of the free
variables of z, the type T'y(L) cannot contain any of the ¢; as a free type variable.

For the (d = 0) case, therefore I'yy; Tp; T = 2[g;][t's] : Ty(L) — o[, /t;][t}, /tr]- Therefore the translated
term has type Vt';.o[u;/t;] which is alpha equivalent to the source term.

For the (d > 0) case, I'y; Tp; T F 2: V8, Ty(L) — ofu;j/t;]. This leads to Tyy; Tps T F 2[t%]: Ty(L) —
olu;/t;][t), /tr] from where the preservation theorem follows directly.

case tapp2 We know that I',(z) = o and a variable does not occur in more than one environment(Lemma 20).
Therefore in both the source and target terms, x has type o. For the (d = 0) case, the type preservation follows
immediately. For the (d > 0) case, we get that I',,,;;T',; Ty F 2:0[u;/t;] which means that the translated term
has the same type as the source term.

case tfn We need to prove that I',,;T',; Ty & LET(H' || Ha,eh) : 02 which implies that T',,; Tp; Ty W Ty F
LET(H>, e}) : 02 must be true. By definition, 'y := & — o' where I'y;T; Ty b At; LET(Hy, \*Fy.e}) : o'
By the inductive hypothesis, we know that I';;;T'p; 'y F LET(Hq,€}) : 01. This implies that I'y;Tp; Ty F
A*Fy LET(Hq,e}) : Ty(Fi) — o1 where F; is the set of free variables of €] bound in T',,. By generalising
Lemma 22, we get that I'yy; T'p; Ty F LET(Hi, \*Fi.e}) : Ty(F1) — o1 since none of the F; occur free in
H;(Lemma 19). By the inductive assumption, we know that H was well formed with respect to I';; we now
showed that H || H' is well formed with respect to I';[z — (V¢;.01, F1)]. Applying the inductive hypothesis
now to the translation of e2 leads to the type preservation theorem.

32



case tfn2 We know that H; = H, = nil(Lemma 18). Therefore we need to prove that ['y,; I'p; Ty - let 2 =
At;.€} in e :0,. By induction on the translation of e1, (H; = nil), we know that I';;,; Tp; Ty F €} :01. Therefore
Lp;Tp; T b Ati.€} : V.01, This implies that H || H' is well formed with respect to I'j[z — (Vt;.01,nil)].
Applying the inductive hypothesis now to the translation of es leads to the type preservation theorem.

case fct By the inductive assumption, I'y,; Tp[z — o]; T'w F LET(H',€e'):0'. By Lemma 18, H' is nil. Therefore
we get that I'yy;Tp[2 — o]; T €' :0’. The type preservation theorem follows from here.

case fn By the inductive assumption, I'p[z — T(p)];Tp;Tw F LET(H',e') : T(y'). This implies that
I;Tp; Ty B Ao s T(w).LET(H',€e') : T(p — p'). By Lemma 19, z does not occur free in H'. Applying
Lemma 22, we get I',,,; T Ty F LET(H', A2 : T'().€'): T(u — p'). In both the (d = 0) and (d > 0) cases, we
need to prove the above typing equation.

0

B.2 Semantic Soundness

There are only three kinds of values - integers, function closures and type function closures.
(values) v == | Clos(z%,e,E) | Clost(t;,e, E)

Type of a Value e I'i:int
e if'F Az:0.e:0 = ¢, then T F Clos(z?,e,a): 0 — o'
o if '+ At;.e, : Vi;.0 , then T - Clost(t;, e,,a) : V.0
Notation F respects I’
If E respects I then E(z) = v and I'(z) = ¢ implies that I' F v : o.

Notation E:T'Fe— v

Implies that in a value environment FE respecting I, e evaluates to v.

Henceforth in this section, we will assume that the value environment E respects the type
environment ' . To avoid clutter in the presentation, we will not state this explicitly. This also implies that
if a variable z is bound to a value v, and '+ z:0, then ' F v: 0.

Equivalence of Values Two values, v and v', are equivalent (v &~ v') under the following conditions

e i~iiffTFi:Intand T4 : Int and i =7’
e Clos{z?,e, E) ~ Clos{z? ¢, E') iff

—T'kFX:ige:o—>c and T+ Az:0.¢’ : 0 — o', and

— E[z — v1] F e = v and v, ~ v] implies that E'[z — v]]F e — v’ and v = v’
o Clost(t;,e, E) ~ Clost(t;,¢e', E') iff

—TFke:Vt.ocand T F e :Vt.0, and

— EF e[u;/t;] — v implies that E' F e'[u;/t;] — v', and v = v'.

Compatible Environments Two environments E and E’ are compatible iff dom(E) = dom(E') and Vz €
E,E(z) = E'(z),

33



(const/var) Etri—»i Ebrz— E(z)

(fn) EFXg:T(u).e = Clos(zTW e, E)

(fn) EF A"z:0.e = Clos(z%,¢, E)

Et zy — Clos(z?,e,E'Y Ebxzy—v E+4+z—vFe—vw

(app) EtF Qrizy — v
(tfn) E - At;.e, — Clost(t;, e,, E)
] Elre —un E4+zxzvibey—w
(let) EFrletz=¢e; iney > v

Et z v Clost(ti e, E'Y  E'Feyuj/ti] = v
(tapp)

Etzp)]—wv

Figure 14: Operational Semantics

Definition 9 (Ey Header Value Environment)

Suppose I'y;Tps T3 Hyd Fe:o = € 3 H 3 F. If H == [h,...,hy], then Eg = Ep, W... W E, . If
hi = (y; = €;), and E; Ep; Epg . hy | e~ v;, then Ey, :=y; — v;.

Definition 10 (H is well founded)

Suppose I'y;Tp; T Hid F e:o = € ; H' ; F' and T'y(z) = (V¢.0,F). Suppose further that E,, is
compatible to E;,, and E, is compatible to E,. We say that H is well founded iff, Vz € Iy, Ey,; Ep; Ey
z[fi;] ~ v implies that F; ; E,; Eg - Q*z[@;,]F ~ v’ and v & v'.

In the above definition, note that the environments E,,, E;, respect I',; the environments Fi,, F,, respect
I'p; the environment Ey respects I'y and the environment E; respects I';. As we said above, we shall leave
this implicit to help the presentation, but it should be kept in mind that the value environment respects the
type environment.

The operational semantics is shown in Figure 14. The environment F is a generic environment which means
that for the source terms, F is substituted with FE,,; F,; E; and for the target terms, F is substituted with
E, ;E,; Ex.

Lemma 24

Suppose Ep; Ep; Enx b let 2 = LET(Hy,€e') in LET(Hs,e") ~ v and = does not occur free in either Hy or Hs.
Then E,; Ep; Eg b LET(Hy || Ho,let z =€’ ine') ~ v

34



Proof The proof is exactly similar to the proof for Lemma 21. We only need to replace the type environments
(Tm; Tp; L) with the corresponding value environments (Ey,; Ep; Ex).
O

Theorem 25 (Semantic Soundness)

Suppose I'ny; Ty; Ty; Hy;d Fe:0 = €' ; H'; F'. Suppose further that E,,, E;, are compatible and E,, E,,
are compatible. If H is well founded and E; Ey; E; - e ~ v, then E] ; E s Eg = LET(H',€') ~ v with v =~ v'.

Proof The proof is by induction on the structure of e.
case int Both the source and the target terms evaluate to 1.

case var The source term evaluates to E,,(z); the target term to E; (z). The equivalence follows since E,,
and E;, are compatible.

case var The source term evaluates to Ej(z); the target term to Ej,(z). The equivalence follows since E, and
E,, are compatible.

case app In the source term, z; evaluates to a closure, E,,(z1), say vi. =2 evaluates to E,,(z2), say vs. In
the target term, z; evaluates to a closure, E!, (z1), say v}. z, evaluates to E! (z2), say vh. Since E,, and E/,
are compatible, v; ~ v] and ve ~ v,. The required equivalence follows from the definition of the equivalence
of closures.

case app2 The proof is exactly similar to the proof for (app). We only need to replace the environment E,,
with the environment E, and the environment E;, with the environment E,,.

case let By the inductive assumption, if E,,; Ep; E - e1 ~ w1, then E| ;E; Eg & LET(Hi,e1) ~ v; and
v = v;. Similarly, by induction on ez, if Ey[z — vi]; Ep; B = e2 ~ vz, then E| [z = vi|;E;Ex F
LET(Hz,e5) ~ vy and v2 ~ vy This implies that E ; E,; Eg - let = LET(Hi,e}) in LET(Ha,e5) ~ 5.
By Lemma 19, z does not occur free in either H; or Hy. But by Lemma 24, this implies that E, ; E,; Eg F
LET(H; || Ha,let z = €] in e}) ~» vh. The required equivalence follows from this.

case let2 By the inductive assumption, if E,,; E; E; - €1 ~ vy, then E} ; E; Ey = LET(Hy, e1) ~ vy and vy =
v;. Similarly, by induction on ez, if Ep,; Ep[z — v1]; Ej - €2 ~» v2, then E ; B[z = v;]; Eg - LET(Hz, €5) ~ vy
and vy & v). Since the variables bound in H; do not occur in LET(Hs,e}), we can introduce the variables in
H; in the environment while typing LET(Hz,e5). Therefore we have that E, ; E; Eg & Eg, - e ~ vy and
E,; Ej [z = vi]; En & En, F LET(Ha, e5) ~+ vy. The required equivalence follows from here.

case tapp Consider first the case of (d = 0). We need to prove that if E;Ep; E F ;] ~ v, then
E,.; Ey; En = At',.@*2[[;][t'x] L ~ o' and that v = v'. From the type of z[f;], we know that v evaluates to
a type closure. The target value v’ is obviously a type closure. In order to prove the equivalence of the two
type closures, we need to prove that if E,; Ep; Ey F v[fiy] ~ v1, then E}; E ;s Eg = o'[I;] ~ v1, and v; & v].
This implies we must prove that if E,,; Ey; E; & o[f;][fi,] ~ v1, then E} ; E ;s Ey & @*z[f,][G,]L ~ vi, and
v =~ v;. But this follows from the definition of well foundedness of the header environment Epy.

Consider now the case of (d > 0). We need to prove that if E,,; Ep; E; F x[ﬁj] ~+ v, then E;n;EI’,; Eg +
LET(z = z[g,], At'.@*2[t's]L) ~» v" and v ~ v'. Since our calculus obeys the value restriction for polymorphic
definitions, we can substitute for z in the body of the LET. Therefore we need to prove that E; ; E,; Ey -
At'y.@*z[f;][t'k]L ~ v' and v ~ v'. This can be proved in an exactly similar way to the proof of soundness
for (d = 0).

35



case tapp2 In the source term, z evaluates to E,(z) = v(say). In the target term, z evaluates to E,(z) =
v'(say). Since the environments are compatible, v & v'. The required equivalence of the source and target
terms follows from this.

case tfn We need to prove that if E,,; Ep; E; F let £ = At;.e; in e2 ~ va, then E;n;E;;EH F LET(H' ||
H,,eh) ~ v and ve = vy. We will first prove that the augmented environment H || H' is well founded during
the translation of e;. By definition, Eg: ::= ¢ — Clos'(t;, LET(H1, \*Fy.€}), E},, E,, Exr)

Now for any compatible pairs of environments; E,, and E], ,

we need to prove that if F,, ;E, ; E, F z[g;] ~ v then E| ;E ;Eg, F Q*z[g]F ~ v and v = ¢'.

m1’ T p1?
This implies we need to prove that if E,,; Ep; E; & e1[u;/t;] ~ v then Ej, ;E, ; Eg, F @Q*z[@;]F1 ~ v' and
v ~ v'. We will simplify the evaluation of the target term. FEj, ;E, ; Ey F z[f;] reduces to E,,; E,; Eg F

m1) " p1?

LET(Hq, \*Fi.€})[ui/t;]. This in turn reduces to C’los(FlTy(Fl),e’l[pi/ti],Ejn,E;,EH W Em,[u;/t:))- There-
fore, the evaluation of the target term reduces to E;, ; E, ; Ey @"‘C’los(FlTy(Fl),e'1 [wi/ti], By By Eg W
Eg,[u;/¢;7)F1- This in turn reduces to E;, W E;, (F1); E,; Eg W Eg, [, /4,1 - €1[pi/ti]. Since variables are bound
only once, E], (F1) = E] (Fy). Therefore E| (F1)W E], = E/,. And so the evaluation of the target term can
be reduced finally to E; ; E}; En ¥ Eg,[,, /¢, F €}[pi/t:] ~ v'. But by induction on the translation of e, we
get that v ~ v'. Hence H || H' is well founded with respect to E;[z — v]. And so we can apply the inductive
hypothesis to the translation of e2 which leads directly to the semantic soundness result.

E,, and E}, and environments F;,, Ey ,

case tfn2 We know by Lemma 18 that H; = Hy = nil. Therefore we need to prove that if E,; E,; E; F
let z = Af;.e; in e3 ~» v then E;n;EI’);EH F let z = Al;.e] in e) ~ v' and v = v'. We will first prove
that the header H || H' is well founded. By definition, Ep ::= z + Clos*(t;, e}, Ey,, E,,, Ex). Now for any
compatible pairs of environments; E,,, and E;

m1?
that if B, ; Ep,; By, - z[@;] ~ v then E!, ;E! ; Eg, F z[f;] ~ ¢’ and v ~ v’. This in turn implies that we

m1r p1
need to prove that if E,; Ey; E; &= eq[pi/ti] ~ v then E} s E s Eg = e[u;/t;] ~ v' and v ~ v'. But this follows
from the inductive assumption on the translation of e; (since H; is nil). We can now apply the inductive

hypothesis to the translation of e; which leads directly to the semantic soundness result.

! H !
E,, and E;, and environments Ej,, Ey , we need to prove

case fct By induction, if E,; Eplz — v2]; By - e ~ v, then E| ; E [z — vy]; Eg = LET(H',e') ~ v’ and
v =~ v'. By Lemma 18, H' is nil. Therefore we need to prove that if E,,; E,; E; - A™z : 0.e ~ v, then
E,;Ey;Eg - AN"z:0.€' ~ v and v; & v;. By the definition of equivalence of closures, this follows directly
from the inductive hypothesis.

case fn For both (d = 0) and (d > 0) cases, we need to prove that if E,;Ey,E F Az : T(u).e ~ v,
then E; ; E,; Eg = LET(H',A°z: T(pn).€') ~ v' and v = v'. By the inductive hypothesis, we know that if
Em[z = v1]; Ep; Ei b e ~ vy, then Ej [z — vi|; E; Eg - LET(H',€’') ~ vy and vy = vy. By Lemma 19,
does not occur free in H'. The header H' actually consists of [h1, ..., h,] and each h; ::= y; = e;. Consider
the expression LET(H',€') as let y; = e; in €' where ¢’ = LET([hs, ..., hy],€'). From the evaluation rules we
can deduce that E; [z — vi]; E); Eg = e1 ~ uy (for some u;) and Ej [z = v1]; E,; Eglyy = ui] F e’ ~ 5.
But since z does not occur in e;, we can remove the binding of z from the environment while evaluating e;.
Therefore we get that E, ; E,; Eg - e1 ~ uy and Ey [z = v1]; E); Enlys = w] F " ~ v3. By continuing this
process of splitting H', we can prove the required equivalence.

O

36



