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Abstract. Modern compilers for ML-like polymorphic languages have
used explicit run-time type passing to support advanced optimizations
such as intensional type analysis, representation analysis and tagless
garbage collection. Unfortunately, maintaining type information at run
time can incur a large overhead to the time and space usage of a pro-
gram. In this paper, we present an optimal type-lifting algorithm that
lifts all type applications in a program to the top level. Our algorithm
eliminates all run-time type constructions within any core-language func-
tions. In fact, it guarantees that the number of types built at run time is
strictly a static constant. We present our algorithm as a type-preserving
source-to-source transformation and show how to extend it to handle the
entire SML’97 with higher-order modules.

1 Introduction

Modern compilers for ML-like polymorphic languages [16,17] usually use vari-
ants of the Girard-Reynolds polymorphic A-calculus [5,26] as their intermediate
language (IL). Implementation of these ILs often involves passing types explic-
itly as parameters [32, 31, 28] at runtime: each polymorphic type variable gets
instantiated to the actual type through run-time type application. Maintaining
type information in this manner helps to ensure the correctness of a compiler.
More importantly, it also enables many interesting optimizations and applica-
tions. For example, both pretty-printing and debugging on polymorphic values
require complete type information at runtime. Intensional type analysis [7, 31,
27], which is used by some compilers [31, 28] to support efficient data representa-
tion, also requires the propagation of type information into the target code. Run-
time type information is also crucial to the implementation of tag-less garbage
collection [32], pickling, and type dynamic [15].
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However, the advantages of runtime type passing do not come for free. De-
pending on the sophistication of the type representation, run-time type passing
can add a significant overhead to the time and space usage of a program. For
example, Tolmach [32] implemented a tag-free garbage collector via explicit type
passing; he reported that the memory allocated for type information sometimes
exceeded the memory saved by the tag-free approach. Clearly, it is desirable
to optimize the run-time type passing in polymorphic code [18]. In fact, a bet-
ter goal would be to guarantee that explicit type passing never blows up the
execution cost of a program.

Consider the sample code below — we took some liberties with the syntax
by using an explicitly typed variant of the Core-ML. Here A denotes type ab-
straction, A denotes value abstraction, z[a] denotes type application and z(e)
denotes term application.

pair = As.Ax:s*s.
let £ = At. Ay:t. ... (x , y)
in ... fls*s](x) ...

main = Aa.da:a.
let doit = Ai:Int.
let elem = Array.sublaxa](a,i)
in ... pair[al(elem)

loop = Ani:Int.Anz:Int.Ag:Int—Unit.
if n; <= no
(g(ni1);
loop(ni+1,n3,g))
else ()
in loop(1l,n,doit)

Here, f is a polymorphic function defined inside function pair; it refers to the
parameter x of pair so f cannot be easily lifted outside pair. Function main
executes a loop: in each iteration, it selects an element elem of the array a and
then performs some computation (i.e, pair) on it. Executing the function doit
results in three type applications arising from the Array. sub function, pair, and
f. In each iteration, sub and pair are applied to types a *x o and « respectively.
A clever compiler may do a loop-invariant removal [1] to avoid the repeated
type construction (e.g., o * a) and application (e.g., pair[a]). But optimizing
type applications such as f[sx*s] is less obvious; f is nested inside pair, and
its repeated type applications are not apparent in the doit function. We may
type-specialize f to get rid of the type application but in general this may lead
to substantial code duplication. Every time doit is called, pair[a] gets executed
and then every time pair is called, f[s*s] will be executed. Since loop calls
doit repeatedly and each such call generates type applications of pair and £, we
are forced to incur the overhead of repeated type construction and application.
If the type representation is complicated, this is clearly expensive.



In this paper, we present an algorithm that minimizes the cost of run-time
type passing. More specifically, the optimization eliminates all type application
inside any core-language function - it guarantees that the amount of type infor-
mation constructed at runtime is a static constant. This guarantee is important
because it allows us to use more sophisticated representations for run-time types
without having to worry about the run-time cost of doing so.

The basic idea is as follows. We lift all polymorphic function definitions and
type applications in a program to the “top” level. By top level, we mean “outside
any core-language function.” Intuitively, no type application is nested inside
any function abstraction (\); they are nested only inside type abstractions (A).
All type applications are now performed once and for all at the beginning of
execution of each compilation unit. In essence, the code after our type lifting
would perform all of its type applications at “link” time.! In fact, the number
of type applications performed and the amount of type information constructed
can be determined statically.

This leads us to a natural question. Why do we restrict the transformation to
type applications alone? Obviously the transformation could be carried out on
value computations as well but what makes type computations more amenable
to this transformation is the guarantee that all type applications can be lifted
to the top level. Moreover, while the transformation is also intended to increase
the runtime efficiency, a more important goal is to ensure that type passing in
itself is not costly. This in turn will allow us to use a more sophisticated runtime
type representation and make greater use of type information at runtime.

We describe the algorithm in later sections and also prove that it is both type-
preserving and semantically sound. We have implemented it in the FLINT /ML
compiler [28] and tested it on a few benchmarks. We provide the implementation
results at the end of this paper.

2 The Lifting Algorithm For Core-ML

This section presents our optimal type lifting algorithm. We use an explicitly
typed variant of the Core-ML calculus [6] (Figure 1) as the source and target
languages. The type lifting algorithm (Figure. 2) is expressed as a type-directed
program transformation that lifts all type applications to the top-level.

2.1 The language

We use an explicitly typed variant of the Core-ML calculus [6] as our source
and target languages. The syntax is shown in Figure 1. The static and dynamic
semantics are standard, and are given in the Appendix (Section 7).

Here, terms e consist of identifiers (z), integer constants (¢), function ab-
stractions, function applications, and let expressions. We differentiate between

! We are not referring to “link time” in the traditional sense. Rather, we are referring
to the run time spent on module initialization and module linkage (e.g., functor
application) in a ML-style module language.



(con’s) p w=1t|Int| g1 — p2

(types) o u=p|Vi.p B

(terms) e u==i| x| Az:p.e| Qriza |let z =eine' | let £ = At;.e, in e | z[mi]
(vterms) ey :=1i |z | Az:p.e |let z=e, in e, | let z = At;. e, in €}, | z[m]

Fig. 1. An explicit Core-ML calculus

monomorphic and polymorphic let expressions in our language. We use t; (and
Ti7) to denote a sequence of type variables t1, ..., t, (and types) so Vi;. u is equiv-
alent to Vit ...Vt,.u. The vterms (e,) denote values — terms that are free of
side-effects.

There are several aspects of this calculus that are worth noting. First, we re-
strict polymorphic definitions to value expressions (e,) only, so that moving type
applications and polymorphic definitions is semantically sound [33]. Variables
introduced by normal A-abstraction are always monomorphic, and polymorphic
functions are introduced only by the let construct. In our calculus, type applica-
tions of polymorphic functions are never curried and therefore in the algorithm in
Figure 2, the exp rule assumes that the variable is monomorphic. The tapp rule
also assumes that the type application is not curried and therefore the newly
introduced variable v (bound to the lifted type application) is monomorphic
and is not applied further to types. Finally, following SML [17, 16], polymorphic
functions are not recursive. 2 This restriction is crucial to proving that all type
applications can be lifted to the top level.

Throughout the paper we take a few liberties with the syntax: we allow our-
selves infix operators, multiple definitions in a single 1let expression to abbreviate
a sequence of nested let expressions, and term applications that are at times
not in A-Normal form [4]. We also use indentation to indicate the nesting.

2.2 Informal description

Before we move on to the formal description of the algorithm, we will present
the basic ideas informally.

Define the depth of a term in a program as the number of \(value) abstrac-
tions within which it is nested. Consider the terms outside all value abstractions
to be at depth zero. Obviously, terms at depth zero occur outside all loops in the
program. In a strict language like ML, all these terms are evaluated once and for
all at the beginning of program execution. To avoid repeated type applications,
the algorithm therefore tries to lift all of them to depth zero. But since we want
to lift type applications, we must also lift the polymorphic functions to depth
zero. The algorithm scans the input program and collects all the type applica-
tions and polymorphic functions occuring at depths greater than zero and adds
them to a list H. (In the algorithm given in Figure 2, the depth is implicitly

2 Qur current calculus does not support recursive functions but they can be easily
added. As in SML, recursive functions are always monomorphic.



assumed to be greater than zero). When the algorithm returns to the top level
of the program, it dumps the expressions contained in the list.

We will illustrate the algorithm on the sample code given in Section 1. In the
example code, f [sxs] is at depth 1 since it occurs inside the Az, Array. sub [axal
and pair[a] are at depth 2 since they occur inside the Aa and \i. We want to lift
all of these type applications to depth zero. Translating main first, the resulting
code becomes —

pair = As.Ax:sxs.
let £ = At.Ay:t. ... (x, y)
in ... flsxs](x) ...

main = Aa.

let vi = Array.sublaxal
ve = pairl[al
in Ja:a.
let
doit = Ai:Int.
let elem = vi(a,i)
in ... va(elem)
loop = Anji:Int.Anz:Int.Ag:Int—Unit.
if n; <= no
(g(n1);
loop(ni+1,n3,g))
else ()

in loop(1l,n,doit)

We then lift the type application of £ (inside pair). This requires us to lift £’s
definition by abstracting over its free variables. In the resulting code, all type
applications occur at depth zero. Therefore when main is called at the beginning
of execution, vy, vy and v3 get evaluated. During execution, when the function
loop runs through the array and repeatedly calls function doit, none of the type
applications need to be performed — the type specialised functions vy, v2 and
v3 can be used instead.



pair = As.

let £ = At. Ax:sxs. Ay:t. ... (x , y)
vy = f[sxs]
in Ax:s*s. ... (v3(x))(x) ...

main = Aa.
let vi = Array.subla*al

vz = pair[a]
in Ja:a.
let doit =
Ai:Int.
let elem = vi(a,i)
in ... vs(elem) ...
loop =

An;:Int.Ans:Int.Ag:Int—Unit.
if n; <= no
(g(n1);
loop(ni+1,n3,g))
else ()
in loop(1l,n,doit)

2.3 Formalization

Figure 2 shows the type-directed lifting algorithm. The translation is defined
as a relation of the form I' F e : u = ¢€'; H; F, that carries the meaning that
I' F e : pis a derivable typing in the input program, the translation of the
input term e is the term ¢, and F is the set of free variables of ¢’. (The set F' is
restricted to the monorphically typed free variables of ') The header H contains
the polymorphic functions and type applications occuring in e at depths greater
than zero. The final result of lifting a closed term e of type pis LET(H,e') where
the algorithm infers § - e : u = €'; H; (). The function LET (H,e) expands a list
of bindings H = [(z1,€e1),-..,(Zn,€n)] and a term e into the resulting term
let 2y = e; in ...in let z,, = e, in e.

The environment I" maps a variable to its type and to a list of the free vari-
ables in its definition. In the algorithm, we use standard notation for lists and op-
erations on lists; in addition, the functions List and Set convert between lists and
sets of variables using a canonical ordering. The functions \* and @* are defined
so that A*L. e and @*v L reduce to Ay :p1.... A\Tp: pin-e and Q(... (Quzy) ... )2y,
respectively, where L = [z1: 01, ,Zn  fin]-

Rules (ezp) and (app) are just the identity transformations. Rule (fn) deals
with abstractions. We translate the body of the abstraction and return a header
H containing all the type applications and type functions in the term e.

The translation of monomorphic 1let expressions is similar. We translate each
of the subexpressions replacing the old terms with the translated terms and re-
turn this as the result of the translation. The header H of the translation is the
concatenation of the headers H; and H; from the translation of the subexpres-
sions.



I(z) = (g )

I'kFq4:1 5 0;
(exp) TFre pooli@ ] i:Int = 4;0;0
(ap) I(z1) = (p1 = p2, ) I(z2) = (pa, -)

't Qzizo: po = Qzyz2; 05 {z1 : p1 —> p2, T2 p1}
() Iz {(u,)]Fe:p =e;H;F
F'bXz:ipe:p—p = Az pe;HyF\{z: u}

(let) I'bei:p = e HiyyFr Iz (u1, Y Fex: po = e Hoy Fo
e

Ihlet z =e1in ez : o = let x = e} in ey; Hy||Ho; Fi U (Fa\{z : pu1})

I'key:p = ey Hy Py L = List(Fy)
Iz — (Vt;.p1,L)] & e2 : p2 = eh; Ha; Fo

t — —
( fn) I'kFlet z = At,—.el in €2 ! U2 = 8’2; (x,/lt,-, LET(Hl,/\*L.e'l)) b4 H2;F2
H,
I'(z) = (Vt;.p, L) v a fresh variable
(tapp) I'b @] « [pi/tilp = @*vL; [(v, z[ki])]; Set(L)
N—_——
H;

Fig. 2. The Lifting Translation

The real work is done in the last two rules which deal with type expressions.
In rule (¢fn), we first translate the body of the polymorphic function definition.
H, now contains all the type expressions that were in e; and Fj is the free
variables of e]. We then translate the body of the 1let expression(ez). The result
of the translation is only e}; the polymorphic function introduced by the let is
added to the result header H,. so that it is lifted to the top level. The polymorphic
function body (in H,) is closed by abstracting over its free variables F; while
the header H; is dumped right after the type abstractions. Note that since H,.
will be lifted to the top level, the expressions in H; will also get lifted to the top
level.

The (tapp) rule replaces the type application by an application of the newly
introduced variable (v) to the free variables(L) of the corresponding function
definition. The type application is added to the header and lifted to the top
level where it gets bound to v. Note that the free variables of the translated
term do not include the newly introduced variable v. This is because when the
header is written out at the top level, the translated expression remains in the
scope of the dumped header.



Proposition 1. Suppose I'+e: u = ¢e'; H; F. Then in the expression LET(H,e'),
the term €' does not contain any type application and H does not contain any
type application nested inside a value()) abstraction.

This propostion can be proved by a simple structural induction on the structure
of the source term e.

Theorem 1 (Full Lifting). Suppose ' - e : u = €'; H; F. Then the expression
LET(H,e'), does not have any type application nested inside a value abstraction.

The theorem follows from Proposition 1.
In the Appendix, we prove the type preservation and the semantic soundness
theorems.

2.4 A closer look

There are two transformations taking place simultaneously. One is the lifting of
type applications and the other is the lifting of polymorphic function definitions.
At first glance, the lifting of function definitions may seem similar to lambda
lifting [10]. However the lifting in the two cases is different. Lambda lifting
converts a program with local function definitions into a program with global
function definitions whereas the lifting shown here preserves the nesting structure
of the program.

The lifting of type applications is similar in spirit to the hoisting of loop
invariant expressions outside a loop. It could be considered as a special case of a
fully lazy transformation [9,24] with the maximal free subexpressions restricted
to be type applications. However, the fully-lazy transformation as described in
Peyton Jones [24] will not lift all type applications to the top level. Specifically,
type applications of a polymorphic function that is defined inside other functions
will not be lifted to the top level.

Minamide [18] uses a different approach to solve this problem. He lifts the
construction of type parameters from within a polymorphic function to the call
sites of the function. This lifting is recursively propagated to the call sites at
the top level. At runtime, type construction is replaced by projection from type
parameters.

His method eliminates the runtime construction of types and replaces it by
projection from type records. The transformation also does not rely on the value
restriction for polymorphic definitions. However, he requires a more sophisticated
type system to type-check his transformation; he uses a type system based on
the qualified type system of Jones [12] and the implementation calculus for the
compilation of polymorphic records of Ohori [21]. Our algorithm on the other
hand is a source-to-source transformation. Moreover, Minamide’s algorithm deals
only with the Core-ML calculus whereas we have implemented our algorithm on
the entire SML’97 language with higher-order modules.

Jones [11] has also worked on a similar problem related to dictionary passing
in Haskell and Gofer. Type classes in these languages are implemented by passing



dictionaries at runtime. Dictionaries are tuples of functions that implement the
methods defined in a type class.
Consider the following Haskell [8] example

f :: EQ a=>a->a->Bool
fxy= ([x] == [yl) && ([y]l == [xI)

The actual type of £ is Egla] = a — a — Bool. Context reduction leads
to the type specified in the example. Here [a] means a list of elements of type
a. Eq a means that the type a must be an instance of the equality class. In
a naive implementation, this function would be passed a dictionary for Fq a
and the dictionary for Eq [a] would be constructed inside the function. Jones
optimises this by constructing a dictionary for Eq [a] at the call site of £ and
passing it in as a parameter. This is repeated for all overloaded functions so that
all dictionaries are constructed statically. But this approach does not work with
separately compiled modules since f£’s type in other modules does not specify
the dictionaries that are constructed inside it.

In Gofer [11], instance declarations are not used to simplify the context.
Therefore the type of f in the above example would be Eq[a] = a — a — Bool.
Jones’ optimisation of dictionary passing can now be performed in the presence of
separately compiled modules. However, we now require a more complicated type
system to typecheck the code. Assume two functions £ and g have the same type
(u — u'). Both £ and g can be passed as a parameter to hin (h = A\z:pu — p'.e).
However, £ and g could, in general, be using different dictionaries (dy and d).
This implies that after the transformation, the two functions will have different
types — dy = p — p' and dy = p — p'. Therefore, we can no longer use f and
g interchangeably.

3 The Lifting Algorithm for FLINT

Till now, we have considered only the Core-ML calculus while discussing the
algorithm. But what happens when we take into account the module language
as well?

To handle the Full-ML langauge, we compile the source code into the FLINT
intermediate language. The details of the translation are given in [29]. FLINT
is based upon a predicative variant of the Girard-Reynolds polymorphic A-
calculus [5, 26], with the term language written in A-normal form [4]. It contains
the following four syntactic classes: kinds (), constructors (u), types (o) and
terms (e), as shown in Figure 3. Here, kinds classify constructors, and types
classify terms. Constructors of kind {2 name monotypes. The monotypes are
generated from variables, from Int, and through the — constructor. The appli-
cation and abstraction constructors correspond to the function kind k; — k.
Types in Core-FLINT include the monotypes, and are closed under function
spaces and polymorphic quantification. We use T(u) to denote the type corre-
sponding to the constructor u (when p is of kind 2). The terms are an explicitly



typed A-calculus (but in A-normal form) with explicit constructor abstraction
and application.

(kinds) k = 02| kK1 — K2

(cons) p ==t |Int | p1 — po | Mk | p1pe]

(types) o == T(u) | o1 = o2 | VEuko

(terms) e ==1i|z|let z=e1in ez | Qrizs
| Xz: T(p).e | \"z:0.€
| let x = At; :: ki.ey in ez | z[wi

(values) ey n=i |z |let T =€y in €, | Xz:T(u).e | \"z:0.€
let © = At; = ki.ey in e, | z[pi

Fig. 3. Syntax of the Core-FLINT calculus

In ML, structures are the basic module unit and functors abstract over struc-
tures. Polymorphic functions may now escape as part of structures and get ini-
tialized later at a functor application site. In the FLINT translation [29], func-
tors are represented as a polymorphic definition combined with a polymorphic
abstraction (fct = Af; :: k;.A™z : 0.e). The variable z in the functor defini-
tion is polymorphic since the parameterised structure may contain polymorphic
components. In the functor body e, the polymorphic components of z are in-
stantiated by type application. Functor applications are a combination of a type
application and a term application. with the type application instantiating the
type parameters (t;s). Though abstractions model both functors and functions,
the translation allows us to distinguish between them. In the FLINT calculus,
Az : T(u).e denotes functions, whereas Az : g.e denotes functors. The rest of
the term calculus is standard.

This calculus complicates the lifting since type applications arising from an
abstracted variable (the variable z in fct above) can not be lifted to the top
level. This also differs from the Core-ML calculus in that type applications may
now be curried to model escaping polymorphic functions.

However, the module calculus obeys some nice properties. Functors in a pro-
gram always occur outside any Core-ML functions. Type applications arising
out of functor parameters (when the input structure contains a polymorphic
component) can therefore be lifted outside all functions. Escaping polymorphic
functions occur outside Core-ML functions. Therefore the corresponding curried
type application is not nested inside Core-ML functions.

Therefore a FLINT source program can be converted into a well-formed pro-
gram satisfying the following constraints —

— All functor abstractions (A™) occur outside function abstractions (A¢).
— No partial type application occurs inside a function abstraction.

We now redefine the depth of a term in a program as the number of function
abstractions within which it is nested with depth 0 terms occuring outside all



function abstractions only. Note that depth 0 terms may not occur outside all
abstractions since they may be nested inside functor abstractions. We then per-
form type lifting as in Figure 2 for terms at depth greater than zero and lift the
polymorphic definitions and type applications to depth 0. For terms already at
depth zero, the translation is just the identity function and the header returned
is empty.

We illustrate the algorithm on the example code in Figure 4. The syntax is
not totally faithful to the FLINT syntax in Figure 3 but it makes the code easier
to understand. In the code in Figure 4, F' is a functor which takes the structure

F = Ato.\™X:S.
f = .
let id = At1.Ax2.x2
vi = ... id[Int]1(3) ....
in wvi
vy = (#1(X)) [to]

Fig. 4. Example FLINT code

X as a parameter. The type S denotes a structure type. Assume the first com-
ponent of X (#1(X)) is a polymorphic function which gets instantiated in the
functor body(vs). f is a locally defined function in the functor body. Accord-
ing to the definition of depth above, f and v, are at depth 0 even though they
are nested inside the functor abstraction(AX). Moreover, the type application
(#1(X))[to] is also at depth 0 and will therefore not be lifted. It is only inside
the function f that the depth increases which implies that the type application
id[Int] occurs at d > 0. The algorithm will lift the type application to just out-
side the function abstraction (\v), it is not lifted outside the functor abstraction
(AX). The resulting code is shown in Figure 5.

Is the reformulation merely an artifice to get around the problems posed
by FLINT ? No, the main aim of the type lifting transformation is to per-
form all the type applications during “link” time—when the top level code is
being executed—and eliminate runtime type construction inside functions. Func-
tors are top level code and are applied at “link” time. Moreover they are non-
recursive. Therefore having type applications nested only inside functors results
in the type applications being performed once and for all at the beginning of
program execution. As a result, we still eliminate runtime type passing inside
functions.

To summarize, we note that depth 0 in Core-ML (according to the definition
above) coincides with the top level of the program since Core-ML does not



F = Ato.\™X:S.

f = let
id = Atl.)\cx2.x2
z1 = id[Int]
. (Other type expressions in f’s body)..
in  A%v.
let ..... (type lifted body of f)
vi = ... 21(3) ....

in V1

vy = (#1(X)) [to]

Fig. 5. FLINT code after type lifting

have functors; therefore the Core-ML translation is merely a special case of the
translation for FLINT.

4 Implementation

We have implemented the type-lifting algorithm in the FLINT/ML compiler
version 1.0 and the experimental version of SML/NJ v109.32. All the tests were
performed on a Pentium Pro 200 Linux workstation with 64M physical RAM.
Figure 6 shows CPU times for executing the Standard ML benchmark suite with
type lifting turned on and turned off. The third column (New Time) indicates the
execution time with lifting turned on and the next column (Old Time) indicates
the execution time with lifting turned off. The last column gives the ratio of the
new time to the old time.

Benchmark Description New Time|Old Time Ratio
Simple A fluid-dynamics program 7.04 9.78 0.72
Viiw A VLIW instruction scheduler 4.22 4.31 0.98
lexgen lexical-analyzer generator 2.38 2.36 1.01
ML-Yacc The ML-yacc 1.05 1.11 0.95
Mandelbrot|Mandelbrot curve construction 4.62 4.62 1.0
Kb-comp Knuth-Bendix Algorithm 2.98 3.11 0.96
Ray A ray-tracer 10.68 10.66 1.01
Life The Life Simulation 2.80 2.80 1.0
Boyer A simple theorem prover 0.49 0.52 0.96

Fig. 6. Type Lifting Results

The current FLINT /ML and SML/NJ compilers maintain a very minimal set
of type information. Types are represented by integers since the compiler only



needs to distinguish primitive types (e.g., int, real) and special record types. As
a result, runtime type construction and type application are not expensive. The
test results therefore yield a moderate speedup for most of the benchmarks and a
good speedup for one benchmark—an average of about 5% for the polymorphic
benchmarks. Simple has a lot of polymorphic function calls occuring inside
loops and therefore benefits greatly from lifting. Boyer and mandelbrot are
monomorphic benchmarks (involving large lists) and predictably do not benefit
from the optimization.

Our algorithm makes the simultaneous uncurrying of both value and type
applications difficult. Therefore at runtime, a type application will result in the
formation of a closure. However, these closures are created only once at linktime
and do not represent a significant penalty.

We also need to consider the closure size of the lifted functions. The (tapp)
rule in Figure 2 introduces new variables (the set L) which may increase the
number of free variables of a function. Moreover after type applications are
lifted, the type specialised functions become free variables of the function body.
On the other hand, since all type applications are lifted, we no longer need to
include the free type variables in the closure which decreases the closure size.
We believe therefore that the increase in closure size, if any, does not incur a
significant penalty. This is borne out by the results on the benchmark suite —
none of the benchmarks slows down significantly.

The creation of closures makes function application more expensive since it
involves the extraction of the environment and the code. However, in most cases,
the selection of the code and the environment will be a loop invariant and can
therefore be optimised.

The algorithm is implemented in a single pass by a bottom up traversal of
the syntax tree. The (¢fn) rule shown in Figure 2 simplifies the implementation
considerably by reducing the type information to be adjusted. In the given rule,
all the expressions in H; are dumped right in front of the type abstraction. Note
however that we require to dump only those terms (in H;) which contain any of
the tis as free type variables. The advantage of dumping all the expressions is
that the de Bruijn depth of the terms in H; remains the same even after lifting.
The algorithm needs to adjust the type information only while abstracting the
free variables of a polymorphic definition. (The types of the abstracted variables
have to be adjusted.) The implementation also optimises the number of variables
abstracted while lifting a definition — it remembers the depth at which a variable
is defined so that variables that will still remain in scope after the lifting are not
abstracted.

5 Related Work and Conclusions

Tolmach [32] has worked on a similar problem and proposed a method based on
the lazy substitution on types. He used the method in the implementation of the
tag-free garbage collector. Minamide [18] proposes a refinement of Tolmach’s
method to eliminate runtime construction of type parameters. The speedups



obtained in our method are comparable to the ones reported in his paper. Mark
P. Jones [11] has worked on the related problem of optimising dictionary passing
in the implementation of type classes.

In their study of the type theory of Standard ML, Harper and Mitchell [6]
argued that an explicitly typed interpretation of ML polymorphism has better
semantic properties and scales more easily to cover the full language. The idea
of passing types to polymorphic functions is exploited by Morrison et al. [19]
in the implementation of Napier. The work of Ohori on compiling record op-
erations [21] is similarly based on a type passing interpretation of polymor-
phism. Jones [12] has proposed evidence passing—a general framework for pass-
ing data derived from types to “qualified” polymorphic operations. Harper and
Morisett [7] proposed an alternative approach for compiling polymorphism where
types are passed as arguments to polymorphic routines in order to determine the
representation of an object. The boxing interpretation of polymorphism which
applies the appropriate coercions based on the type of an object was studied
by Leroy [14] and Shao [27]. Many modern compilers like the FLINT /ML com-
piler [28], TIL [31] and the Glasgow Haskell compiler [22] use an explicitly typed
language as the intermediate language for the compilation.

Lambda lifting and full laziness are part of the folklore of functional pro-
gramming. Hughes [9] showed that by doing lambda lifting in a particular way,
full laziness can be preserved. Johnsson [10] describes different forms of lambda
lifting and the pros and cons of each. Peyton Jones [25,23,24] also described
a number of optimizations which are similar in spirit but have totally different
aims. Appel [2] describes let hoisting in the context of ML. In general, using
correctness preserving transformations as a compiler optimization [1, 2] is a well
established technique and has received quite a bit of attention in the functional
programming area.

We have proposed a method for minimizing the cost of runtime type passing.
Our algorithm lifts all type applications out of functions and therefore elimi-
nates the runtime construction of types inside functions. The amount of type
information constructed at run time is a static constant. We can guarantee that
in Core-ML programs, all type applications will be lifted to the top level. We are
now working on making the type representation in FLINT more comprehensive
so that we can maintain complete type information at runtime.
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Appendix

In this section, we give the proofs of the type preservation theorem and the
semantic-soundness theorem. Figure 7 gives the typing rules. Figure 8 gives a
slightly modified version of the translation algorithm. The type environment

I,

binds monomorphic variables while the environment I, binds polymorphic

variables.

Notation 1 (\*F.e and @*2F) We use \*F.e and @*zF to denote repeated
abstractions and applications respectively. If F = {z1, ..., £, }, then A* F.e reduces
to Az1 : p1-(..(Azp, : pp-€)..) where py, ...y are the types of T1,...,Tpn i L.
Similarly @*zF' reduces to Q(..(Qzz1)..)x,-



(const/var) I' - 4:Int I' v z:I'(z)

Twi{z:pi} F e:po

(fr) ' Az :pie:pr — pe
(app) 'rzi:p»p T axo:yd
app I' v Qzizo: p
Pkteyipr TW{z: Vi) Fe:po

(tfn) —

I' - let x = Ats.ey ine: pa

b z:Vt.u

(tapp)

I' & o]« [p/tilp

I'tFei:m rw{z:pi} F ex:p2
'k letz=e;1ines: po

(let)

Fig. 7. Static Semantics

Notation 2 (T'(L)) If L is a set of variables, then T(L) refers to the types
of the variables in L in the environment I'y,. If L = {z1,22,...,zn} and the
types of the variables are respectively py, ..., in, then T(L) — Tis shorthand for

p1 = (cor = (n = 7)-)-

Throughout this section, we assume unique variable bindings — variables are
never redefined in the program.
7.1 Type Preservation

Before we prove the type soundness of the translation, we will define a couple of
predicates on the header — I'y and well-typedness of H. Intuitively, I'y denotes
the type that we annotate with each expression in H during the translation and
well-typedness ensures that the type we annotate is the correct type. Together
these two ensure that the header formed is well typed.

Definition 1 (The header type environment — I'y).
IftH =(hg...hyp),then I'y =Ipy ... Iy, . Ifh;i= (z =e,7),then I}, ==z — 7.
Definition 2 (Let H in e).

If H=hg...h,, then Let H in e is shorthand for let hg in ... let h, in e. The
typing rule is as follows — I, F Let H ine: piff I';; Ty Fe: p.



In(z) = p

I Ipy HE i Int = 45 0;
(eap) I Ty HE 2 p = 23 0; {z} v i:Int =3 0;0
(app) To(21) = p1 = po Dn(%2) =
app Iy Ip; HE Qrizs @ p2 = Qraizs; 0; {z1, 22}

Iplz = pi Iy HbEe:p' = €' Hy F
(fr)

LTy HE Az s pe:p— p' = Az :pe's Hiy F\{z : u}

s Tp;HEer:pr = ey Hiy Fir Dip[z = pa]; Tpy H - eo t puo = e Hoy Fo
Ty HElet £ = e in ea @ ua2 = let £ = €} in eh; Hy + Ho; Fy U (Fy\{z})

(let)

Im;Ip; HE €1t pn = €y Hy Fy
Hy = {(z = At;.Let Hy in \*F1.e1,V4,. T(F1) — p1)
(tfn) Do Doz — (Vipun, F)); H + Hy b ea : pa = eb; Ha; Fa

Iy Tpy H Elet £ = Atj.er in es : p2 = eh; Hi + Ho; Fo

Ipy(z) = (Vtip, F) Tu(z) =V, T(F) > p =z a fresh variable
(tapp)  Tm; Ips H & a[s] « [pi/tilp = @ 2F; (2 = a[p], T(F) — [pi/tilp); F

~ v
-~

Hy

Fig. 8. The Lifting Translation

Definition 3 (H is well typed).

H is well typed if hg...h, are well typed. h; is well typed if hg...h;_;1 are well
typed and —

— h; == (2 = At;.Let Hy in e, Vi;.p), then Iy p,_, F Let Hy ine: p.

= hi u= (2 = 2], [ui/ti]p), then Thy n, b 2 [ui/tilp
Lemma 1. Suppose I'y; I HE e = €' H'; F. If ¢ € Iy, and x does not occur
free in H, then x does not occur free in H + H'.
Proof. This is proved by induction on the structure of e.
Theorem 2 (Type Preservation). Suppose I'y,; [p; HE e : = €' Hy; F.
If H is well typed then H + H; is well typed and if I'y; I, e : p then
Iy I'g - Let Hyine' :p

Proof. The proof is by induction on the structure of e. We will consider only
tfn and tapp.



H'

A

Vet ~

Case tapp. To prove that if H is well-typed, H + (z = z[@;], T (F) — [p:/ti]p)
is also well-typed and I',; I'y + Let H' in @*2F : [u;/t;|p

Since we assume H is well typed, we need to prove H' is well typed. By
the precondition on the translation I'y + z : V¢;,.T'(F') — u. Since F consists of
the free variables of z, T(F) cannot have any of the t;s as a free type variable.
Therefore I'yy g 2 : T(F') — [pi/ti]p which proves that H' is well-typed. This
also leads to I'yy; I'mym F @Q*2F : [p;/t]p.

Case tfn = To prove - given H is well-typed, H + H; + H; is also well-typed
and I',; 'y - Let Hy + Hs in €} : po.

By the inductive assumption on the translation of e;, H + H; is well-typed
and I,; 'y & Let H| in €} : p;. Since the variables in Fy are bound in I,
(and not in Hj), this implies that I7,,; 'y - Let H| in \*Fy.e} : T(F1) — 1.
Since A\*Fj.e} is closed with respect to monomorphic variables, we no longer
require the environment I,,. Therefore I'y - Let H; in \*Fi.e} : T(F1) — 1.
This implies H; is well-typed.

Again by induction, if H + H; is well-typed, then H + H; + H; is well-typed
and I',; Ty, b Let Ho in eh : po. This implies that Iy gy gy +m, Foeb: pa
which leads to the type preservation theorem.

O

7.2 Semantic Soundness

The operational semantics is shown in Figure 9.
There are only three kinds of values - integers, function closures and type
function closures.

(values) v ::= 1 | Clos(z*,e,a) | Clost(t;,e,a)
Definition 4 (Type of a Value).

—I'ki:int
—if 't Az:pe:p— u , then I'- Clos(z#,e,a) : u — u'
— if I' - Af;.e, : VE;.u , then I' - Clost(t;, ey, a) : V. u

Notation 3 The notation a : I' F e — v means that in a value environment
a respecting I', e evaluates to v. If a respects I', then a(z) = v and I'(z) = p
implies I' F v : p.

Notation 4 The notation a(z — v) means that in the environment a, = has the
value v. Whereas a[z — v] means that the environment a is augmented with the
given binding.



(const/var) atki—1 atz— a(z)
(fn) a b Az:p.e — Clos(z*, e, a)

atz1 — Clos(zt e,a') akFze—v o +z—=vFe—sw

(app) alk Qrizes > v
(tfn) a F At;.e, — Clost(t;,eqy,a)
let alker—un at+zr—vike—w
(let) abletz=e€e;ines —v
(tapp) ab x Clost(ti,ey,a')  a'Feyfpi/ti] = v
app

abtz[pil — v

Fig. 9. Operational Semantics

We need to define the notion of equivalence of values before we can prove
that two terms are semantically equivalent.

Definition 5 (Equivalence of Values).

— Equivalence of Int i ~ 7' iff
e I'ti:intand I F ¢ :4nt and 1 =7’
— Equivalence of Closures Clos(z*, e, a) ~ Clos(z*,¢€',a') iff
o I't Clos(z*,e,a) : p — p' and I+ Clos{(z",e',a'y : p — p'.
e Vuy,v] such that 't wvy : pand I+ o] : g and v; ~ v].
eag:I'tz—vibe—svanda : I"+z—vike - v and v
— Equivalence of Type Closures Clos'(t;,e,,a) &~ Clos*(t;, el ,a') iff
o '+ Clost(t;,ey,a) : Vt;.u and I'" + Clost(t;, €, a') : VE;.u and
e a:I'Feyfui/ti] > vanda : I'"F el fui/ti]] = v and v & 0.

Definition 6 (Equivalence of terms).
Suppose a : I' - e — v and o' : I" + € — v'. Then the terms e and €' are
semantically equivalent iff v ~ v'. We denote thisasa: 'Fe~xa' : T'"Fé€'.

Before we get into the proof, we want to define a couple of predicates on the
header - ag and well-formedness of H. Intuitively ay represents the addition of
new bindings in the environment as the header gets evaluated. Well-formedness of
the header ensures that the lifting of polymorphic functions and type applications
is semantically sound.

Definition 7 (The header value environment — ag).



ag is equal to ap, ...an, and ap; is -

— if hj == (z = Atj.e,7) then ay, := z +— Clos*(ti, e, ang...n;_,)
— if hy, := (2 = z[@3], 7) then ap, := z — v where
h; ::= z — Clos*(t;,e,ap) for some j < k and ap, : I', b e[u; /t;] = v

Definition 8 (Let H in e).

Suppose H = hj...h,. Then Let H in e is shorthand for let h; ... in let h, in e.
If hj ::= (z = e, 7), then let h; is shorthand for let x = e. From the operational
semantics we get a,, : [}, - Let H ine ~ ay, : I'yysag : Iy Fe.

Definition 9 (H is well-formed w.r.t a,, : I'n;a, : Ip).

H is well-formed w.r.t. anm : I'm;ap: I, if ho,..., hy are well-formed. A header
entry h; is well-formed if all its predecessors hy, ..., h;j_1 are well-formed and -
— If hj = (z = At;.e,7), and I, (z) = (Vi;.pu, F) then
am Ty ap:Ip b 2] & @ D ahg.hy : Thg.ony - let 2 = z[[5] in @*2F
— If hj = (2 = z[@;], 7), then h; is well-formed.

H is well-formed w.r.t. an, : I'ym;ap: I, will be abbreviated in this section to
H is well-formed.

Theorem 3 (Semantic Soundness). Suppose I',; Iy H e p = ¢e';Hy; F.
If am:Tmsap:lpFe—=v and H is well-formed w.r.t ap:Ipy;ap:1),
then G :Ip;ag: Tyt Let Hy in e —v' and v~

Proof. The proof is by induction on the structure of e. We will consider the
tapp and tfn cases here.

Case tapp = To prove — If H is well-formed then
am:Im;ap:Ip b oG] & am:Lm;an:Ta b Let Hy in @Q*zF

Substituting Let H; in the above equation leads to
am:Tmyap:Ip b 2[lG] = am: Dy ap:Ta Flet 2 = z[i] in Q*zF

By the precondition on the translation rule I',(z) = (Vi;.u, F') and there ex-
ists some h; € H such that h; ::= (z = At;.e, 7). Since H is well-formed, h; is
well-formed as well and therefore by definition

A Isap:Ip b o[l & am D Qpg..ohy The.ny Flet 2 = x[@] in @*2F

But since we assume unique variable bindings, no h; for k > j rebinds z.
This leads to —

am:Im;ap:Ip b 2[G] & am:Im;ap:Ta b let z = 2z[m] in @*zF

which is what we want to prove.



Case tfn = To prove - given H is well-formed
am:Tmsap:Ip Flet z = Atjer in ex & ap:Iysap:I'u b Let Hy + H in el

which means we must prove that if

A Dy ap[z = Clost (ti, e1, am + ap)): Tp[z = (VEip, F)] Fea = v
and  am:Ip;agym, :Taym, b Let Hy in ey — o'
then v = .

Assume for the time being that H + H; is well-formed. Then the inductive
hypothesis on the translation of e; leads to the above condition.

We are therefore left with proving that H + H; is well-formed. By assumption,
H is well-formed, therefore we must prove that H; is well-formed. According to
the definition we need to prove that

A Ly Ty - z[mg) = ay, I ey m, : Tayw, Flet 2 =[] in @*2F

In the above equation ag, := x +— Clost(t;, Let H| in \*F.€},an), therefore
the operational semantics leads to z + Clos(FT(F) el [u;/t;], am + QH, (i /t:])

This implies that we must prove —
aIm:FT'n;a;):FII) - .’E[m] N alm(F):FTln;aH:FH + QR i /t:] :FH{[ui/ti] F 6'1[/,L,'/tz']
In the source term z — Clost(t;, e1,am + ap) which implies that
ay, I a0 2[f5] & @i D ap: I F e /t]
Therefore we need to prove that —
am:Fm;ap:Fp F el[,ui/ti] ~ a';n(F):FrIn;aH:FH+a’H{[pi/ti] :FH{[ui/ti] F e'l[ui/ti]
(1)
But a.,(F) = an (F) since variables are bound only once. F' consists of all the
free variables of e that are bound in a, and therefore in a,,. Hence evaluating
e} in a;,(F) is equivalent to evaluating it in a,, . So proving Eqn 1 reduces to
proving

O Dmyap:Ip el[ﬂi/ti] & Qi Dmyag: Ty +am; i /t:) :FH{[m/ti] F e’l[,ui/ti]

which follows from the inductive assumption on the translation of e;.



