
6/22/2001 1

Type-Based Certifying 
Compilation

Zhong Shao   

Department of Computer Science
Yale University

PLDI Tutorial,  June 2001
Additional Info:    http://flint.cs.yale.edu



6/22/2001 2

Outline of this Talk

I. Introduction and motivation
II. A hacker’s guide to type theory
III. Certifying low-level features
IV. Certifying high-level features
V. Engineering type-based compilers
VI. Conclusions

Disclaimer:  this talk is intended strictly as a tutorial . Because of the time 
limit, I can only sample a very small set of the work done in the area.



6/22/2001 3

Part I.  Introduction and Motivation



6/22/2001 4

Problem and Motivation

How to develop a “good” common mobile-code  
infrastructure for the Next Generation 

Internet ?

Why ?
� The world is getting more and more net-centric

(Sun “the network is the computer”;   Microsoft .NET)

� Mobile code will define the platform 
(e.g.,  Java VM,   Microsoft  Common Language Runtime)



6/22/2001 5

Research Challenges

What makes a “good” common mobile-code infrastructure?

� Expressiveness & efficiency
Should be capable of
� … proving safety & security properties
� … reasoning about low-level machine code & data layout
� … supporting multiple programming languages

� Reliability & security
� formal semantics with rigor & smaller TCB

� Support for distributed computing
� “platform independence”
� small and extensible runtime system
� dynamic services (e.g., linking & loading, marshalling)



6/22/2001 6

Mobile Code Threats & Attacks

Mobile code can:
� Overwrite memory
� Read private memory
� Create machine code and 

jump to it
� Execute illegal instructions
� Obtain control
� Infinite-loop (in a system 

without interrupts)
� ……

Abuse of API calls:
� Read files on disk
� Write files on disk
� Obtain critical locks
� Denial of service
� Perform operations without 

holding required lock
� ……



6/22/2001 7

Examples of Advanced Security Policies
� Any packet sent must be a 

copy of some packet received

� Any message sent must be 
logged to a file

� Domain specific ones:  don’t 
withdraw more than $100 
from my bank account

Moral:  need something more 
powerful than JVM, SFI, 
sandboxing, … 

The traditional notion of “type 
safety” is not enough !  

� Execute no more than N 
instructions between API 
calls

� Hold at most N locks at once

� Read/write only from 
readable/writable locations

� Sequence API operations 
according to a security 
automaton



6/22/2001 8

Mobile Code System: A Closer Look

Code Producer Host Environment
load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
……

Compiler

OK

Code 
Verifier

Source
Program

JIT Compiler

native code

Bare HW (disk,net-acc,…)

Execute

Core 
Runtime
(e.g., garbage 

collector)

Core 
API

The “verifier” is not 
the whole story: the 

JIT, core runtime and 
core API must not 
break the “security 

policy” !

Trusted
Computing

Base

Bytecode



6/22/2001 9

The PCC Approach [Necula&Lee 1996]

Code Producer Host Environment

OK

PCC 
Checker

Source
Program

native code

Execute

Bare HW (disk,net-acc,…)

Core 
Runtime
(e.g., garbage 

collector)

Core 
API

Proof-
carrying 
codeCertifying

Compiler
∃-i(

∀-i(...
→-r ...

load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
……

We can directly 
certify machine code ! 
JIT is now out of TCB.

Use logic to formally 
specify “security 

policies”



6/22/2001 10

The FLINT/FPCC Approach [AFS 1999]

Code Producer Host Environment

OK

FPCC Checker

Source
Program

native code

Execute

Bare HW (disk,net-acc,…)

Core 
Runtime
(e.g., garbage 

collector)

Core 
API

Foundational 
PCC [Appel’01]Certifying

Compiler
∃-i(

∀-i(...
→-r ...

load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
……

We can construct our 
security policies and 
proofs from First 
Principles --- the 
standard “higher-

order predicate logic”



6/22/2001 11

Evolving the FLINT/FPCC Approach

Code Producer Host Environment

OK

Source
Program

native code

Execute

Bare HW (disk,net-acc,…)

Certified 
Library

tiny core runtime

Certified 
BinariesCertifying

Compiler
∃-i(

∀-i(...
→-r ...

CB Checker

load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
……

Low-level runtime 
services and APIs can 
be certified and moved 

into a library !

Bonus: the host VM is 
now lean & extensible !



6/22/2001 12

Certifying Compiler is the Key !

Code Producer
Source
Program

load r3, 4(r2)
add r2,r4,r1
store 1, 0(r7)
store r1, 4(r7)
……

Certified 
BinariesCertifying

Compiler
∃-i(

∀-i(...
→-r ...

How to build
a compiler
that can
produce 
certified 
binaries ?Solution: use “typed” 

intermediate and “typed” 
assembly languages !



6/22/2001 13

Phases of a Compiler
Traditional Certifying
compiler compiler
type-check type-checkSource Program

Parse, Semantic
High-level intermed.

lang (IL)
type-checkuntyped

Analysis,
Optimization

type-checkuntyped Medium-level IL
Code 

Generation
type-checkuntyped Low-level IL

Register 
Allocation

type-checkuntyped Machine Language



6/22/2001 14

Why Typed Compilation ?

� Types scale well in expressiveness
� as simple as representation specifications
� as fancy as propositions in logic (any prog. invariants)
� incredible amount of work on “type theory” already done

� Typed ILs can serve as secure interchange format

� Types are modular & user-friendly
� IDL for common component libraries

� Types are useful for other purposes
� type-based program analysis (see Palsberg’s talk at PASTE’01)
� new optimizations / debugging



6/22/2001 15

Main Challenges in Typed Compilation

� How to design simple,  general,  yet expressive type 
systems ? 

� How to support high-level features in existing 
programming languages (Java, ML) ?

� How to reason about low-level features (as in C or 
machine lang.) ?  How to reason about arbitrary 
program invariants ? 

� How to engineer type-based compilers --- do they 
scale ? are they practical ?  

Part II

Part IV

Part III

Part V



6/22/2001 16

The FLINT Certifying Infrastructure 
Source Program

High-level FLINT

Analysis & 
Optimization

Medium-level FLINT

Code Gen.

Low-level FLINT

type-check

type-check

type-check

Program for execution

Hints

Safe CML Java

Key ideas: 

� single typed IL  capable of supporting 
very different source  languages

� type info.  allows efficient data reps. 
and safe language interoperation

� lang. independent type sys. facilitates  
lang. independent safety policy 

Add new front-ends to build 
new certifying compilers !

Parse & 
semantic

Parse & 
semantic

Parse & 
semantic

Safety

Theorem
Prover & 

Checker



6/22/2001 17

The FLINT/FPCC Approach: A Summary

� Efficiency
� Go for low-level machine code & raw data layout

� Expressiveness
� Certify code w. propositions & proofs from higher order logic
� Represent props & proofs in a typed λ-calculus

(via Curry-Howard isomorphism)
� Use common typed ILs to compile multiple prog. languages

� Reliability & security
� Simple core language; JIT no longer in TCB

� Support for distributed computing
� Safe dynamic services via runtime type analysis

… moved to library for smaller & more extensible VM



6/22/2001 18

Part I Recap
� Mobile code will define the platform (e.g., JVM, .NET)

� Enforcing “advanced” security policies requires building “new 
infrastructure”:

� Certifying compiler for mainstream languages (Java, C)

� Efficient checker & prover
� Tools & libraries that  facilitate certified programming

But the payoff is huge !
� Highly extensible & secure common runtime (w. tiny kernel)

� Language- & platform-indep. certified code & proof libraries

� Making it practical is challenging but very promising
� Don’t have to deploy the whole thing in one day
� Technologies for compiler & theorem-proving are quite mature
� Most security policies are simple (not for “full correctness”)



6/22/2001 19

Part II.  A Compiler-Hacker’s Guide 
to Type Theory



6/22/2001 20

Theory or Practice ?

Type Theorist Compiler Hacker
� Types are sets, domains, 

invariants, or PERs

� Typed languages: lambda 
calculi,  PCF,  Fomega, ML

� Static semantics / typing 
rules/ decidable typechecking

� Dynamic semantics / 
interpreter

� Soundness / safety theorems 

� LICS / POPL / ICFP / …

� Types are representation 
specifications

� Intermediate languages, 
SSA,  machine instructions 

� Some typing rules / use 
“cast” if things break 

� Efficiency, efficiency, 
efficiency …

� Who cares ? We’ll debug !

� PLDI / CC / PACT / … 



6/22/2001 21

We Need Both ! 

� Rigorous formal semantics is mandatory if we want 
“real” safety guarantee .

� Certifying compilers should use the same efficient 
data representations as uncertified ones. 

� Bridging this gap is not easy!  Most of us were trained 
to do only one of the two … 

� More and more people are now doing both:
� CMU TILT, Cornell TAL, Yale FLINT,  Princeton FPCC, 

Berkeley/CMU  PCC,  Microsoft Research, … …  

The rest of this talk:  to show you that the gap is not as 
bad as you may think



6/22/2001 22

“Untyped” Intermediate Languages
� A fragment of a typical medium-level IR:

Program ::=   LETREC Fundec1, …, Fundecn IN Exp. 
Fundec   ::=   FUN f(x1 ,   …, xn )        =  Exp; 
Exp ::=   RETURN (Val) 

|   x = CALL (Val, Val1, …, Valn) ;    Exp
|   x = PrimOp(Val1, …, Valn);    Exp 
|   IF CmpOp (Val1, …, Valn) THEN Exp1 ELSE Exp2
|   SWITCH Val  OF (Exp1, …, Expn)

Val          ::=  f  | x  | n 
PrimOp   ::=   i32add | i32sub | … | r64add | … | alloc | upd | cast … 
CmpOp   ::=    ieq | ineq | ilt | igt | … 

The Term Lang.:  control structures + a bunch of primop-applications
(optional)  use function call to simulate loop   



6/22/2001 23

“Typed” Intermediate Languages
� Making it “typecheck” is pretty easy: 

Program ::=   LETREC Fundec1, …, Fundecn IN Exp. 
Fundec   ::=   FUN f(x1 : Ty1, …, xn : Tyn)  : Ty =  Exp; 
Exp ::=   RETURN (Val) 

|   x = CALL (Val, Val1, …, Valn) ;    Exp
|   x = PrimOp(Val1, …, Valn);    Exp 
|   IF CmpOp (Val1, …, Valn) THEN Exp1 ELSE Exp2
|   SWITCH Val  OF (Exp1, …, Expn)

Val          ::=  f  | x  | n 
PrimOp   ::=   i32add | i32sub | … | r64add | … | alloc | upd | cast … 
CmpOp   ::=    ieq | ineq | ilt | igt | … 

Ty          ::=   Int32 | Real64 | … | Code(Ty1,…,Tyn) : Ty

The Type Lang.:   a set of representation specifications
To type-check: all primops must be given a type   (what about “cast” ?)



6/22/2001 24

“Typed” Intermediate Languages (cont’d)
� Some use Continuation-Passing Style (a variant of SSA):

Program ::=   LETREC Fundec1, …, Fundecn IN Exp. 
Fundec   ::=   FUN f(x1 : Ty1, …, xn : Tyn)  : Ty =  Exp; 
Exp ::=   RETURN (Val) 

|   x = CALL (Val, Val1, …, Valn) ;    Exp
|   x = PrimOp(Val1, …, Valn);    Exp 
|   IF CmpOp (Val1, …, Valn) THEN Exp1 ELSE Exp2
|   SWITCH Val  OF (Exp1, …, Expn)

Val          ::=  f  | x  | n 
PrimOp   ::=   i32add | i32sub | … | r64add | … | alloc | upd | cast … 
CmpOp   ::=    ieq | ineq | ilt | igt | … 

Ty          ::=   Int32 | Real64 | … | Code(Ty1,…,Tyn) : Ty

Type-checking can be done in the same way. 



6/22/2001 25

Several Observations

� “Types” and “terms” live in different worlds
� Types are strictly compile-time entities
� Types are not dependent on terms in any way
� After type-checking is done, types can be erased
� Types don’t affect the runtime behavior  

� Must reflect “types” as terms (“tags”) if we want to 
use them at runtime.    

� Often perform CPS- & closure-conversion if  compiling 
functional languages (e.g., ML)

� Must preserve “typing” during transformations; see [MMH’96, 
MWCG’98] for details

“Type theory” is to assign a precise type to various 
“cast” primops. 



6/22/2001 26

Types as Representation Specifications
� Primitive types

� Int32, Word32, Real32, Real64, …
� Subrange type (enumerate)      Rng(1,10)    --- all numbers from 1 to 10
� Primops :  basic arithmetics, comparisions, …  

� Records / tuples / arrays / vectors
� Mutability
� Initialized?
� Regular or packed 
� Primops:   alloc, initialize, update, select 

� Code pointers / functions
� Multiple arguments (passed in registers or on stack)
� Multiple return results ? 

� Objects (and classes) --- see Part IV 



6/22/2001 27

The Type Language: A Closer Look

� To be more rigorous, we have to define the set of 
“valid” type expressions.

� For simplicity, I am listing a small set  here only:
(covering more of the previous rep. specs is easy)

T  ::= Int
|  Real 
|  Rng(N1, N2)
|  Code(T1, …, Tn)
|  Tup(T1, …, Tn)

But what is “N1” and “N2” ?

32-bit integer

64-bit real
int btw N1 & N2

codeptr (w. CPS)
n-element tuple



6/22/2001 28

The Type Language (cont’d)

� Types shoud not be dependent upon terms, so “N” 
here is different from those term-level constants 

(type)   T  ::= Int
|  Real  
|  Rng(N1, N2)
|  Code(T1, …, Tn)  
|  Tup(T1, …, Tn)

(num)    N  ::= 0 | 1 | 2 | …



6/22/2001 29

The Type Language (cont’d)

� Let’s also formalize the type sequence (T1, …, Tn) : 

(type)   T  ::= Int
|  Real  
|  Rng(N1, N2)
|  Code(R)  
|  Tup(R)

(num)    N  ::= 0 | 1 | 2 | …

(row)     R  ::= ∅
|  T ; R 

empty sequence
add one more



6/22/2001 30

The Type Language (cont’d)
� Having too many syntactic categories is a pain, let’s merge them

into a single one --- “type constructors”:

(tycon)   T  ::= Int |  Real  |  Rng(T, T’)  |  Code(T)  |  Tup(T)
| 0 | 1 | 2 | …  | ∅ |  T ; T’ 

� Each tycon now must be “kinded” --- to prevent bad forms

(kind)     K  ::=  Tp | Num | Row |  K -> K’

Examples: Int : Tp                            ∅ : Row
Real : Tp                            ; : Tp -> Row -> Row 
Rng : Num -> Num -> Tp
Code : Row -> Tp                 0 : Num
Tup : Row -> Tp                 1 : Num



6/22/2001 31

The Type Language (cont’d)
� Let’s make it more extensible: 

(kind)     K  ::= C | K -> K’
(primknd)    C  ::= Tp | Num | Row 

(tycon)     T  ::=  P  |  T(T’)  
(primtyc)     P  ::=  Int |  Real  |  Rng |  Code |  Tup

|  0 |  1 | … | ∅ |  ;

primtyc signature:

Int : Tp                               ∅ : Row
Real : Tp                               ; : Tp -> Row -> Row 
Rng : Num -> Num -> Tp
Code : Row -> Tp                    0 : Num
Tup : Row -> Tp                    1 : Num



6/22/2001 32

The Type Language: A Summary

� A type constructor “T” is well-formed (or valid) if it 
can be shown to have kind “K”. 

� The usual notion of “types” are tycons with kind “Tp”.  

� Extending our type language is easy:  
� Add your primitive kinds (the green stuff) if necessary
� Add your primitive tycons (the red stuff), each with a 

properly assigned kind

� For every new “type” (of kind Tp) ,  we add a few 
term-level primops (which manipulate values of the 
new type).  



6/22/2001 33

Singleton Integer Type 

� New primtyc: 
Sint : Num -> Tp

� Typing rules for the term-level integer constant: 

1  : Sint(1)         2  : Sint(2)       …          n  : Sint(n)

� If a value “v” has type Sint(n),  it must be equal to “n”. 

� Term-level cast: no-op from Sint(n) to Int ; the 
reverse requires dynamic check. 

� Sint can certify array-bounds checking or “tagged 
record”        

Tup(Sint(1);  Int;  Real) 1    40    3.14  



6/22/2001 34

Sum Type (a.k.a. Tagged Union) 
� New primtyc: 

Sum : Row -> Tp

� Example (ML) datatype t = A of  int  
|  B of  real * real

Sum( Tup(Sint(0); Int) ;                               
Tup(Sint(1); Real; Real))

� Term-level primops: 

The “inj” primop casts tagged record into a sum type

Must check the tag at runtime to cast back to tagged record. 

� The C  pointer type to T can be coded as  Sum(Sint(0), Ref(T))
(assuming  “0”  for  NULL  ptr,   Ref for non-null ptr)

0      12

1      7.3 5.1



6/22/2001 35

Recursive Type

� How to represent recursive types ?  

struct  tree  {  tree   *left;
tree   *right;
int      val;

};

Most compilers use a “cyclic” data structure:

� But it is difficult to reason about cycles in our “type 
language”. 

Solution:   use  function to represent it !

.      .  Int

* .   



6/22/2001 36

Recursive Type (cont’d)
� New primtyc: 

µ : (Tp -> Tp)  -> Tp

� Type language now has to support type variable & function:

(kind)     K  ::=  C | K -> K’
(primknd)    C  ::= Tp | Num | Row 

(tycon)     T  ::=  P  |  T(T’)  | t   |   λt : K. T 
(primtyc)     P  ::=   … | µ

� An example “type function”:  

F = λt : Tp .  Sum ( Sint(0) ;  Tup(t, t, int)  ) 

The tree type is now just µ(F)



6/22/2001 37

Recursive Type (cont’d)
� Need two new primops to manipulate recursive values: 

The “fold” primop casts  a  value of type  F(µ(F)) into µ(F)

The “unfold” primop  casts  a  value of type  µ(F) into F(µ(F))

For example,  let    

Tree = µ ( λt : Tp .  Sum ( Sint(0) ;  Tup(t, t, int)  ) )

Unfolding a value of type Tree results in a value of type

Sum (Sint(0) ;  Tup (Tree, Tree, int) ) 

which we know how to manipulate. 



6/22/2001 38

Polymorphic Type
� Functions can take variable-typed arguments 
� Polymorphic type is a safe alternative for “ void * ” 

� We revise the kind of Code into:

Code : (Tp -> Row) -> Tp

� The term language has to be extended as well: 

Fundec   ::=   FUN f [ t : Tp ] (x1 : T1, …, xn : Tn)  =  Exp; 
Exp        ::=   …………

|   CALL (Val, T, Val1, …, Valn) 

� Replace “Tp” above with “K”, we get polymorphism over arbitrary 
kinds. 



6/22/2001 39

Polymorphic Type (cont’d)

� A polymorphic identify function (in CPS): 

FUN f [t : Tp] (x : t,  c : Code[](t))   
=  CALL (c, [], x)

� Even monomorphc functions are polymorphic over 
“stack” and “callee-save registers” (at low level)

FUN f [ t : Tp ] (r1 : t,  r3 : Code[](r1 : t))  =  …

� Types still don’t have any effect on “terms” --- all 
“red” stuff can be erased  …  



6/22/2001 40

Existential Type

� Motivation: how to handle values of different types in 
a uniform way ? 

� Abstract datatypes             signature IntSet = 
sig   type t

val isElem  :  int -> t -> bool
val add      : int -> t -> t

end

� Closures:       all ML functions of type “int -> int”
have form    “env * (env *  int -> int)”
where “env” is abstract

� Type dynamic



6/22/2001 41

Existential Type (cont’d)
� New primtyc: 

∃ : (Tp -> Tp)  -> Tp

Or if over arbitrary kinds: 

∃ : (K -> Tp)  -> Tp

� Intset is ∃(F) where

F = λt : Tp . Tup( Int->t->Bool;   Int->t->t)

� Closure for “int->int” has type ∃(F) where

F = λt : Tp . Tup( t; Tup(t; Int)->Int)

� Type-dynamic has type ∃(F) where

F = λt : Tp . t



6/22/2001 42

Existential Type (cont’d)

� Two new forms of “cast” for handling existentials:

Exp        ::=   …
|   x = PACK (t=T, Val : T') ;    Exp
|   (t, x) = OPEN (Val) ;    Exp

PACK casts  a  value of type  F(T) into ∃(F)

OPEN casts  a  value of type ∃(F) into F(t)

The old information about “t” is lost. You may get it back if 
you maintain runtime “type tag”.  



6/22/2001 43

The Type Lang.: How Far Can We Go?  
� Our current type lang.  is itself a “simply typed lambda caluclus”

(kind)     K  ::= C | K -> K’
(primknd)    C  ::= Tp | Num | Row 

(tycon)     T  ::=  P  |  t  |  λt:K.T  | T(T’)  
(primtyc)     P  ::=  Int |  Real  |  Rng |  Code |  Tup

|  0 |  1 | … | ∅ |  ; 
|  Sint |  Sum | ∃ | µ

� It can be extended as much as you like as long as we make sure 
all computation in it is terminating (for decidable typechecking)

� The newest version of FLINT uses  “Calculus of Inductive 
Construction”  (can express all propositions in higher-order logic)  



6/22/2001 44

Part II Recap
� Types are terms live in different world. Types should never be 

dependent upon terms. 

� Type language is usually some kind of “lambda calculus”  --- but 
types are compile-time entities, so we don’t need compile them. 

� Typechecking involes testing if two  types are equal (this may 
require symbolic reduction of type expressions) 

� All reductions done inside the type language must terminate ---
otherwise typechecking won’t be decidable. 

� The term language remains pretty much the same  --- other than 
a few new safe “cast” primops. 



6/22/2001 45

Part III.  Certifying Low-Level
Features



6/22/2001 46

Sample Low-Level Features

� Array-bounds checking

� Memory management
� Malloc/free
� Garbage collection / stack allocation
� Pointer data structures

� Dynamic type dispatch
� Tagging and heap-tracing during GC
� Pickling,  persistence, type dynamic

� Advanced program invariants
� General resource management



6/22/2001 47

Array-Bounds Checking  [XP 1999]

� New primtyc (for integer array): 

Array : Num -> Tp

� A integer array of length “10”  has type

Array(10)

� Array creation is polymorphic over “length”:
mkArray   :   ∀n : Num. (Sint(n) -> Array(n))

� Need to reflect all integer arith and cmp operations into the 
type language.  Also need dependent kinds !

sub   : ∀n : Num. ∀i : [0, n-1] . (Array(n) -> Sint(i) -> Int)

� Array update can be handled in the same way.  



6/22/2001 48

Memory Management 

� This area is still wide open ……

� Most existing schemes (regions, capabilities) are 
based on “linearity principle” :

� It is safe to free an object if we’re holding the only pointer
� But this is too strong for most heap data

� In practice, people also do reference counting and 
allow harmless “dangling pointers” 

� GC and malloc-free don’t interact well --- the 
connection is a black art,  badly in need of formalism



6/22/2001 49

Regions and Capabilities [TT’94 CWM’99]

� Region and capabilities are new primknd:

(kind)     K  ::=  C | K -> K’
(primknd)    C  ::= Tp | Num | Row | Reg | Cap 

� Every heap data lives in a region: 

Tup : Reg -> Row -> Tp         

� Use capabilities to track which region is accesible and which is 
safe to be freed 

� Every function has a capability precondition

� Can build type-safe copying GC above the region calculus



6/22/2001 50

Runtime Tag Dispatch

Use special tags to represent runtime type information

datatype rttag  =  RT_INT
|  RT_PAIR of rttag * rttag
|  ………

fun sub (x : rttag) =
case x 
of RT_INT => intsub
|  RT_PAIR (t1, t2)  =>

(fn ((x,y), i) => (sub t1 (x, i), sub t2 (y, i)))
| _  => boxedsub 

Problem:    what is the type of “sub” ?



6/22/2001 51

Intensional Type Analysis [HM 1995]

� Extension to the type language:
� Need to perform case analysis on all types of kind Tp
� Require recursive transformation (only ok if it is primitive recursive)
� Tp should be defined as an inductive definition  [TSS’00]

Example: mutator view collector view (see our type-safe GC paper in 
this PLDI)

� Extension to the term language: 
� Need to reflect types as “runtime tags”  [CWM’98] 
� Programmer can’t forge wrong “tags” 

� Applications:  data representation selection;  ad-hoc polymorphic 
services



6/22/2001 52

Propositions as Types

a.k.a. “Curry-Howard” isomorphism
� Extend the type lang. w. full-blown dependent kinds;

(the term language remains separate --- no dependent type)

� A proof of an implication “A=>B”  is a function from 
proof of A to proof of B. 

� A proof of conjuction “A and B”  is a pair of (p, q) 
where p is proof of A and q is proof of B.

� A proof of disjuction “A or B” is a tagged union of 
“proof of A” and “proof of B” 

� See [Barendregt & Geuvers 2000] for good intro.



6/22/2001 53

Part IV.  Certifying High-Level
Features



6/22/2001 54

Sample High-Level Features

region & alias types
singleton types  

� explicit memory management
� efficient array access“Safe” C

prim/record/code
∃∀µ row-kind

???

� classes; interfaces; objects
� access control & privacy
� name-based subtyping
� dynamic linking & loading 
� reflections; concurrency 

Java & 
JVML

prim/record/code 
∃∀µ ref   exn

� module system (functor)
� closures & polymorphism
� recursive data type

ML

ApproachesChallengesLanguages



6/22/2001 55

Why Compiling Them Away ?

� To have a simpler type system for our ILs.

� To show these high-level features are just “derived 
constructs” 

� To get better interoperability. 

� To have a language-independent IDL or runtime 
system.

� Examples:  ML modules and Java classes are very 
complex constructs --- making them live together is 
just impossible  (see ML2000) 



6/22/2001 56

Case Study:  Java Classes

Compare with other class-based lang.,  Java has: 

� Inheritance from a single superclass
� Multiple interfaces are possible
� No instance fields in interfaces

� “Pseudo” binary methods
� Method parameters, results, and instance field of “twin” type 

have access to private fields

� Name-based subtyping hierarchy



6/22/2001 57

Typed Compilation of Java [LST 1999]

� Efficient Java object encoding:
� casts to superclass for free 
� low-cost invokevirtual and invokeinterface

self-application semantics of method invocation:  recursive types
row polymorphism instead of subtyping 

� Name-based class hierarchy
� use existential types

Fω type system features used:
� polymorphism for code reuse (inheritance)
� existential types for privacy



6/22/2001 58

Sample Java Program

private mutable fields
public methods

dynamic binding

interface methods

inheritance & 
interface implementation

overriding
super calls

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s); }

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 59

Sample Object Layout
class Pt {                                          

private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 60

Sample Object Layout:  Vtable

move 
bump

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 61

Sample Object Layout:  Vtable

move 
bump

move
bump

Zoomable
zoom

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 62

Sample Object Layout:  Pt  p
Pt p;

vtab move 
Pt                         bump

x=3

move
bump

Zoomable
zoom

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 63

Sample Object Layout:  Spt  sp
Pt p;

vtab move 
Pt                         bump

x=3

Spt sp; move
vtab                       bump
Pt                     Zoomable
Spt                        zoom

x=5

scale=16

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 64

Sample Object Layout: Itable
Pt p;

vtab move 
Pt                         bump

x=3

Spt sp; move
vtab                       bump
Pt                     Zoomable
Spt                        zoom

x=5                        zoom

scale=16           
(Zoomable) sp;

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 65

Sample Object Layout:  (Zoomable) sp
Pt p;

vtab move 
Pt                         bump

x=3

Spt sp; move
vtab                       bump
Pt                     Zoomable
Spt                        zoom

x=5                        zoom

scale=16           (Zoomable) sp;
cobj
itab

class Pt {                                          
private int x = 0;                       
public void move (int dx) 

{ this.x = this.x + dx;  }
public void bump ()

{ this.move(1); } }

interface Zoomable {
public void zoom (int s);}

class SPt extends Pt
implements Zoomable {

private int scale = 1;                   
public void move (int dx) 

{super.move (this.scale * dx); }
public void zoom (int s) 

{ this.scale = this.scale * s; } }



6/22/2001 66

The Mini-FLINT Calculus (1999)

Kinds K ::= Ω | K1 -> K2

Types T ::= t | T1 -> T2 |  λt:K.T  | T1T2  | ∀t:K.T 

|  Ref T | µt.T 

Terms e ::= x |  λx:T.e | x1x2 | let x = e1 in e2

| Λt:K.e  |  x[T]  
| ref e  |  !e  | e1:=e2 | fold(e,T) | unfold e

|  RL

| ∅L |   l :T;T’   | { T } 

|  {l1=e1 … ln=en}  |  e.l

| <t:K=T, e:T’> | Val(x)

|  ∃t:K.T  | Typ(x)

Tp



6/22/2001 67

Extensible Records in Mini-FLINT

Type context A ::= ε |  A, x : T  |  A, t : K

Type formation

Term formation

A | T : Ω A | T’ : RL∪{ l }

A | l:T;T’ : RL

A | ok
A | ∅L : RL

A | T : R∅

A | { T } : Ω

A | ei : Ti where i=1,…,n

A | {l1=e1 … ln=en} : {l1:T1 … ln:Tn; ∅{l1,…,ln} }



6/22/2001 68

Using Extensible Records: An Example

Pt’s vtable :  { move :  t -> int -> void ;
bump :  t -> unit -> void ;
∅{move,bump} :  R{move,bump} }

SPt’s  vtable :  { move :  t -> int -> void ;
bump :  t -> unit -> void ;
subVtab :  R{move,bump} }

subVtab : R{move,bump}

= Zoomable :   … {zoom : …} … ;  
zoom :  t -> int -> void ;
∅{move,bump,Zoomable,zoom}



6/22/2001 69

Recursive Types in Mini-FLINT

Type context A ::= ε |  A, x : T  |  A, t : K

Type formation

Term formation

A, t:Ω | T : Ω
A | µt.T : Ω

A | e : T[µt.T/t]
A | fold(e,  µt.T) :   µt.T

A | e :  µt.T
A | unfold e : T[µt.T/t]



6/22/2001 70

Using Recursive Types: An Example

Object Pt : µt. { vtab  : { move :  t -> int -> void ;
bump :  t -> unit -> void ;
∅{move,bump} :  R{move,bump} };

PtFld :  { x : Ref int ; ∅{x} };
∅{vtab,PtFld} :  R{vtab,PtFld} }

“fold” and “unfold” operators are no-ops.

Must “unfold” before invoking a method.

Must “fold” when building an object.  



6/22/2001 71

Using Recursive Types: An Example
Object Pt : µt. { vtab  : { move :  t -> int -> void ;

bump :  t -> unit -> void ;
∅{move,bump} :  R{move,bump} };

PtFld :  { x : Ref int ; ∅{x} };
∅{vtab,PtFld} :  R{vtab,PtFld} }

Object SPt :   µt. { vtab  :  { move :  t -> int -> void ;
bump :  t -> unit -> void ;
subVtab[t] :  R{move,bump} };

PtFld :  { x : Ref int ; ∅{x} };
subFlds :  R{vtab,PtFld} };

subVtab :   Ω R{move,bump}

= λt: Ω. Zoomable :   … {zoom : …} … ;  
zoom :  t -> int -> void ;
∅{move,bump,Zoomable,zoom}



6/22/2001 72

Existential Types in Mini-FLINT

Type context A ::= ε |  A, x : T  |  A, t : K

Type formation

Term formation (both are “no-ops”)

A | x : ∃t:K.T
A | Typ(x) : K

A, t:K | T : Ω
A | ∃t:K.T : Ω

A | T’ : K     A | e : T[T’/t]
A | <t:K=T’, e:T> :  ∃t:K.T

A | x : ∃t:K.T 
A | Val(x) : T[Typ(x)/t]



6/22/2001 73

Using Existential Types: An Example

Object Pt :    ∃ subFlds :  R{vtab,PtFld} .
∃ subVtab :   Ω R{move,bump} . 
µt. { vtab  : { move :  t -> int -> void ;

bump :  t -> unit -> void ;
subVtab[t] :  R{move,bump} }

PtFld :  { x : Ref int ; ∅{x} };
subFlds :  R{vtab,PtFld} };

Pt subVtab = λt: Ω.  ∅{move,bump}

Spt subVtab = λt: Ω. Zoomable :   … {zoom : …} … ;  
zoom :  t -> int -> void ;
∅{move,bump,Zoomable,zoom}



6/22/2001 74

Encoding Java Objects in FLINT

Class List {
private List next;
public List tail() 
…

}

“Twin” object:

µ twin.
∃ subFlds.
∃ subVtab.
µ self.

{vtab: {tail: self-> twin; …; 
subVtab self};

ListFld:  {next: Ref twin};
subFlds}



6/22/2001 75

Encoding Java Objects in FLINT

Class List {
private List next;
public List tail() 
…

}

Internal view:

µ twin. 
∃ subFlds.
∃ subVtab.
µ self.

{vtab: {tail: self-> twin; …; 
subVtab self};

ListFld:  {next: Ref twin};
subFlds}



6/22/2001 76

Encoding Java Objects in FLINT

External view:

µ twin. 
∃ subFlds.
∃ subVtab.
µ self.

{vtab: {tail: self-> twin; …; 
subVtab self};

ListFld: Typ(ListC);
subFlds}

Class code: ListC = <private = …, …>Class List {
private List next;
public List tail() 
…

}



6/22/2001 77

Encoding Java Classes and Methods

Class Pt { …
public void bump() { this.move(1); }
… }

Class code (untyped version)

Pt = <private = {x : Ref Int},

let dict = ΛsubFlds . ΛsubVtab . let …

in  { bump = λself . λ_. 
self.vtab.move self 1
…

}
new = …

in …



6/22/2001 78

Encoding Java Classes and Methods

Class Pt { …
public void bump() { this.move(1); }
… }

Class code (typed version)
Pt = <private = …

let dict = ΛsubFlds . ΛsubVtab . let …

in  { bump = λself . λ_.
let this = PackObj (self)

o = Val(Val(unfold this)))  
in (unfold o).vtab.move self 1 } …

in …

µt. { vtab  :  { move :  t -> int -> void ;
bump :  t -> unit -> void ; 
subVtab t }

PtFld :  { x : Ref int ; ∅{x} };
subFlds};

µ twin. ∃ subFlds . ∃ subVtab . µ t . ……



6/22/2001 79

Part IV Recap

� Complex high-level constructs can be certified using 
rather simple type system 

� Going through a language-independent type system 
dramatically simplifies the certifying compiler

� Language interoperation through a common type 
system is possible. 

� There are still open problems:  
� Fine-grain access control and security 
� Reflection, binary compatibility, dynamic linking, … 



6/22/2001 80

Part V.  Engineering Type-Based
Compilers



6/22/2001 81

Implementation Issues

� How to represent and manipulate “types” efficiently ?
� It could easily blow up your compilation time
� Run time is also an issue if “types” are reflected as “tags”. 

� Each type-based compiler has its own bag of tricks: 
� FLINT
� TILT
� Popcorn

� Other certifying compilers have similar issues:
� Touchstone
� SpecialJ



6/22/2001 82

Exponential Blowup

� Source of “sharing”:  module interfaces, polymorphic
functions, … 

� Example: 

T1 = int -> t
T2 = T1 -> T1
……
Tn = Tn-1 -> Tn-1

without sharing:   O(2n) with sharing:  O(n)

Even with sharing, how to traverse the dag and 
perform substitution in linear time ?      



6/22/2001 83

Implementation Criteria [SLM 1998]

� Compact space usage
� Good news:  large types are highly redundant

� Linear-time traversal of types
� Key: avoid traversing isomorphic subgraphs multiple times

� Fast type-equality operation

� Simple “user” interface
� How easy to program with these “new” representations?

� Compact runtime “type tag” --- see work on optimal 
type lifting [SS 1998]



6/22/2001 84

The FLINT Approach [SLM 1998]

� Use deBruijn indices
� All bound variables are represented as integers
� No need for alpha-renaming

� Use suspension-based representation [Nadathur 1994]
� Lazy reduction (will do one only if really necessary)

� Use hash-consing
� Alpha-equivalent tycons have unique representations

� Aggressive memoization
� “free tyvars” for faster substitution
� “result of each reduction”   so don’t have to do it again and 

again for future ones. 



6/22/2001 85

The FLINT Approach (cont’d)
� Typechecking also requires memoization

� To check if   “T->T” is well kinded,  don’t check “T” twice
� What about “T -> ∃ t. (… T …) ” ?

Solution: must take consideration of the current environment.

� Each little trick pays off --- otherwise the compilation time goes 
order-of-maganitude worse on certain programs

� The technique scales well and is also applicable to new FLINT 
(which uses calculus of construction). 

The bottom line:  each compilation stage must preserve the 
asymptotic time & space usage in representing and manipulating 
types. 



6/22/2001 86

Part VI.  Conclusions



6/22/2001 87

Conclusions 

� Mobile code will define the platform

� But how to build a high-quality system that can certify 
advanced security policies? 

� Open question: do we really need to enforce these policies? 
what are the killer apps?

� What would be the APIs  for these libraries of 
certified binaries ? 

� Can the same also serve as a “multi-language and 
runtime infrastructure” ?



6/22/2001 88

Conclusions --- What We Believe
� Any property (e.g., safety, security, resource usage) that Joe Hacker can 

understand can be specified,  formalized,  and reasoned about in
a formal logic.

� A variant of low-level IL with a rich type system can form the 
world’s most compact & expressive mobile-code language.

� Propositions & proofs are represented using a typed λ-calculus

� Types & proofs can be used to certify various runtime services 
which can then be moved into a certified library---making the 
VM smaller & more extensible.

� Common typed ILs allow multiple prog. languages to share the 
same runtime system. Types serve as a glue to achieve 
principled language interoperation. 


	Type-Based Certifying Compilation
	Outline of this Talk
	Part I.  Introduction and Motivation
	Problem and Motivation
	Research Challenges
	Mobile Code Threats & Attacks
	Examples of Advanced Security Policies
	Mobile Code System: A Closer Look
	The PCC Approach [Necula&Lee 1996]
	The FLINT/FPCC Approach [AFS 1999]
	Evolving the FLINT/FPCC Approach
	Certifying Compiler is the Key !
	Phases of a Compiler
	Why Typed Compilation ?
	Main Challenges in Typed Compilation
	The FLINT Certifying Infrastructure
	The FLINT/FPCC Approach: A Summary
	Part I Recap
	Part II.  A Compiler-Hacker’s Guide                 to Type Theory
	Theory or Practice ?
	We Need Both !
	“Untyped” Intermediate Languages
	“Typed” Intermediate Languages
	“Typed” Intermediate Languages (cont’d)
	Several Observations
	Types as Representation Specifications
	The Type Language: A Closer Look
	The Type Language (cont’d)
	The Type Language (cont’d)
	The Type Language (cont’d)
	The Type Language (cont’d)
	The Type Language: A Summary
	Singleton Integer Type
	Sum Type (a.k.a. Tagged Union)
	Recursive Type
	Recursive Type (cont’d)
	Recursive Type (cont’d)
	Polymorphic Type
	Polymorphic Type (cont’d)
	Existential Type
	Existential Type (cont’d)
	Existential Type (cont’d)
	The Type Lang.: How Far Can We Go?
	Part II Recap
	Part III.  Certifying Low-Level                 Features
	Sample Low-Level Features
	Array-Bounds Checking  [XP 1999]
	Memory Management
	Regions and Capabilities [TT’94 CWM’99]
	Runtime Tag Dispatch
	Intensional Type Analysis [HM 1995]
	Propositions as Types
	Part IV.  Certifying High-Level                    Features
	Sample High-Level Features
	Why Compiling Them Away ?
	Case Study:  Java Classes
	Typed Compilation of Java [LST 1999]
	Sample Java Program
	Sample Object Layout
	Sample Object Layout:  Vtable
	Sample Object Layout:  Vtable
	Sample Object Layout:  Pt  p
	Sample Object Layout:  Spt  sp
	Sample Object Layout:   Itable
	Sample Object Layout:  (Zoomable) sp
	The Mini-FLINT Calculus (1999)
	Extensible Records in Mini-FLINT
	Using Extensible Records: An Example
	Recursive Types in Mini-FLINT
	Using Recursive Types: An Example
	Using Recursive Types: An Example
	Existential Types in Mini-FLINT
	Using Existential Types: An Example
	Encoding Java Objects in FLINT
	Encoding Java Objects in FLINT
	Encoding Java Objects in FLINT
	Encoding Java Classes and Methods
	Encoding Java Classes and Methods
	Part IV Recap
	Part V.  Engineering Type-Based                 Compilers
	Implementation Issues
	Exponential Blowup
	Implementation Criteria [SLM 1998]
	The FLINT Approach [SLM 1998]
	The FLINT Approach (cont’d)
	Part VI.  Conclusions
	Conclusions
	Conclusions --- What We Believe

