
Fully Reflexive Intensional Type Analysis∗

Bratin Saha Valery Trifonov Zhong Shao
Department of Computer Science

Yale University
New Haven, CT 06520-8285

{saha,trifonov,shao}@cs.yale.edu

Technical Report YALEU/DCS/TR-1194

Abstract

Compilers for polymorphic languages can use runtime type in-
spection to support advanced implementation techniques such as
tagless garbage collection, polymorphic marshalling, and flattened
data structures. Intensional type analysis is a type-theoretic frame-
work for expressing and certifying such type-analyzing computa-
tions. Unfortunately, existing approaches to intensional analysis
do not work well on types with universal, existential, or fixpoint
quantifiers. This makes it impossible to code applications such as
garbage collection, persistency, or marshalling which must be able
to examine the type of any runtime value.

We present a typed intermediate language that supportsfully
reflexiveintensional type analysis. By fully reflexive, we mean that
type-analyzing operations are applicable to the type of any runtime
value in the language. In particular, we provide both type-level and
term-level constructs for analyzing quantified types. Our system
supports structural induction on quantified types yet type checking
remains decidable. We show how to use reflexive type analysis to
support type-safe marshalling and how to generate certified type-
analyzing object code.
Keywords: certified code, runtime type dispatch, typed intermedi-
ate language.

1 Introduction

Runtime type analysis is used extensively in various applications
and programming situations. Runtime services such as garbage col-
lection and dynamic linking, applications such as marshalling and
pickling, type-safe persistent programming, and unboxing imple-
mentations of polymorphic languages all analyze types to various
degrees at runtime. Most existing compilers use untyped intermedi-
ate languages for compilation; therefore, they support runtime type
inspection in a type-unsafe manner. In this paper, we present a stat-
ically typed intermediate language that allows runtime type analy-
sis to be coded within the language. This allows us to leverage the
power of dynamically typed languages, yet retain the advantages of
static type checking.

Supporting runtime type analysis in a type-safe manner has
been an active area of research. This paper builds on existing
work [8] but makes the following new contributions:
∗This research was sponsored in part by the Defense Advanced Research Projects

Agency ISO under the title “Scaling Proof-Carrying Code to Production Compilers
and Security Policies,” ARPA Order No. H559, issued under Contract No. F30602-
99-1-0519, and in part by NSF Grants CCR-9633390 and CCR-9901011. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

• We support fully reflexive type analysis at the term level.
Consequently, programs can analyze any runtime value such
as function closures and polymorphic data structures.

• We support fully reflexive type analysis at the type level.
Therefore, type transformations operating on arbitrary types
can be encoded in our language.

• We prove that the language is sound and that type reduction
is strongly normalizing and confluent.

• We show a translation into a type erasure semantics. In a
type preserving compiler this provides an approach to typed
closure conversion which allows generation of certified object
code.

2 Motivation

The core issue that we address in this paper is the design of a stati-
cally typed intermediate language that supports runtime type anal-
ysis. Why is this important? Modern programming paradigms are
increasingly giving rise to applications that rely critically on type
information at runtime, for example:

• Java adopts dynamic linking as a key feature, and to ensure
safe linking, an external module must be dynamically verified
to satisfy the expected interface type.

• A garbage collector must keep track of all live heap objects,
and for that type information must be kept at runtime to allow
traversal of data structures.

• In a distributed computing environment, code and data on one
machine may need to be pickled for transmission to a different
machine, where the unpickler reconstructs the data structures
from the bit stream. If the type of the data is not statically
known at the destination (as is the case for the environment
components of function closures), the unpickler must use type
information, encoded in the bit stream, to correctly interpret
the encoded value.

• Type-safe persistent programming requires language support
for dynamic typing: the program must ensure that data read
from a persistent store is of the expected type.

• Finally, in polymorphic languages like ML, the type of a value
may not be known statically; therefore, compilers have tradi-
tionally used inefficient, uniformly boxed data representation.
To avoid this, several modern compilers [24, 20, 26] use run-
time type information to support unboxed data representation.

When compiling code which uses runtime type inspections,
most existing compilers use untyped intermediate languages, and
reify runtime types into values at some early stage. However, dis-
carding type information during compilation puts this approach
at a serious disadvantage when it comes to generating certified
code [14].

Code certification is appealing for a number of reasons. One
need not trust the correctness of a compiler generating certified
code; instead, one can verify the correctness of the generated code.
Checking the correctness of a compiler-generated proof (of a pro-
gram property) is much easier than proving the correctness of the
compiler. Secondly, with the growth of web-based computing, pro-
grams are increasingly being developed at remote sites and shipped
to clients for execution. Client programs may also download mod-
ules dynamically as they need them. For such a system to be prac-
tical, a client should be able to accept code from untrusted sources,
but have a means of verifying it before execution. This again re-
quires compilers that generate certified code.

A necessary step in building a certifying compiler is to have the
compiler generate code that can be type-checked before execution.
The type system ensures that the code accesses only the provided
resources, makes legal function calls,etc. A certifying compiler
can support runtime type analysis only in a typed framework.

The safety of such a system depends not only on the down-
loaded code, but also on the correctness of all the code that is ex-
ecuted by the system after type checking. This typically includes
the runtime services like garbage collection, linking,etc. This code
constitutes the trusted computing base of the system. Reducing the
trusted computing base makes the system more reliable; for this,
we must independently verify the correctness of this code. This
implies that as many of the runtime services as possible should be
written in a type-safe language, which requires support for runtime
type analysis in a typed framework.

Finally, why is it important to have fully reflexive type anal-
ysis? Why do we want to analyze quantified types? Many type-
analyzing applications mentioned above must handle arbitrary run-
time values. For example, a pickler must be able to pickle any
value, including closures (which have existential types), polymor-
phic functions, or recursive data structures. A garbage collector has
to be able to traverse all data structures in the heap to track live ob-
jects. Therefore the language must support type analysis over any
runtime value in the language.

2.1 Background

Harper and Morrisett [8] proposed intensional type analysis and
presented a type-theoretic framework for expressing computations
that analyze types at runtime. They introduced two explicit type-
analysis operators: one at the term level (typecase) and another
at the type level (Typerec); both use induction over the structure
of types. Type-dependent primitive functions use these operators
to analyze types and select the appropriate code. For example, a
polymorphic subscript function for arrays might be written as the
following pseudo-code:

sub = Λα. typecase α of
int ⇒ intsub
real⇒ realsub
β ⇒ boxedsub [β]

Heresub analyzes the typeα of the array elements and returns the
appropriate subscript function. We assume that arrays of typeint
and real have specialized representations (defined by types, say,
intarray andrealarray), and therefore special subscript functions,
while all other arrays use the default boxed representation.

(kinds) κ ::= Ω | κ→ κ′

(cons) τ ::= int | τ → τ ′ | α | λα :κ. τ | τ τ ′
| Typerec τ of (τint; τ→)

(types) σ ::= τ | ∀α :κ. σ

Figure 1: The type language of Harper and Morrisett

Typing this subscript function is more interesting, because it
must have all of the typesintarray → int → int, realarray →
int → real, and∀α. boxedarray (α)→ int→ α. To assign a type
to the subscript function, we need a construct at the type level that
parallels thetypecase analysis at the term level. In general, this
facility is crucial since many type-analyzing operations like flatten-
ing and marshalling transform types in a non-uniform way. The
subscript operation would then be typed as

sub : ∀α.Array (α)→ int→ α
where Array = λα.Typecase α of

int ⇒ intarray
real⇒ realarray
β ⇒ boxedarrayβ

The Typecase construct in the above example is a special case of
the Typerec construct in [8], which also supports primitive recur-
sion over types.

2.2 The problem

The language of Harper and Morrisett only allows the analysis of
monotypes; it does not support analysis of types with binding struc-
ture (e.g.,polymorphic, existential or recursive types). Therefore,
type analyzing primitives that handle polymorphic code blocks,
closures (since closures are represented as existentials [12]), or re-
cursive structures, cannot be written in their language. The types
in their language (in essence shown in Figure 1) are separated into
two universes,constructorsandtypes. The constructor calculus is
a simply typed lambda calculus, with no polymorphic types. The
Typerec operator analyzes only constructors of base kindΩ:

int : Ω
→ : Ω→ Ω→ Ω

The kinds of these constructors’ arguments do not contain any neg-
ative occurence of the kindΩ, so int and→ can be used to define
Ω inductively. TheTyperec operator is essentially an iterator over
this inductive definition; its reduction rules can be written as:

Typerec int of (τint; τ→) ; τint

Typerec (τ1 → τ2) of (τint; τ→) ;

τ→ τ1 τ2 (Typerec τ1 of (τint; τ→)) (Typerec τ2 of (τint; τ→))

Here theTyperec operator examines the head constructor of the
type being analyzed and chooses a branch accordingly. If the type is
int, it reduces to theτint branch. If the type isτ1 → τ2, the analysis
proceeds recursively on the subtypesτ1 andτ2. TheTyperec op-
erator then applies theτ→ branch to the original component types,
and to the result of analyzing the components; thus providing a
form of primitive recursion.

Types with binding structure can be constructed using higher-
order abstract syntax. For example, the polymorphic type construc-
tor ∀∀ can be given the kind(Ω → Ω) → Ω, so that the type

2

∀α : Ω. α → α is represented as∀∀ (λα : Ω. α → α). It would
seem plausible to define an iterator with the reduction rule:

Typerec (∀∀ τ) of (τint; τ→; τ∀)
; τ∀ τ (λα :Ω.Typerec τ α of (τint; τ→; τ∀))

However the negative occurence ofΩ in the kind of the argument
of ∀∀ poses a problem: this iterator may fail to terminate! Consider
the following example, assumingτ = λα :Ω. α and

τ∀ = λβ1 :Ω→ Ω. λβ2 :Ω→ Ω. β2 (∀∀β1)

the following reduction sequence will go on indefinitely:

Typerec (∀∀τ) of (τint; τ→→; τ∀)
; τ∀ τ (λα :Ω.Typerec τ α of (τint; τ→; τ∀))
; Typerec (τ (∀∀ τ)) of (τint; τ→; τ∀)
; Typerec (∀∀τ) of (τint; τ→→; τ∀)
; . . .

Clearly this makes typecheckingTyperec undecidable.
Another serious problem in analyzing quantified types involves

both the type-level and the term-level operators. Typed interme-
diate languages like FLINT [21] and TIL [25] are based on the
calculusFω [5, 19], which has higher order type constructors. In a
quantified type, say∃α :κ. τ , the quantified variableα is no longer
restricted to a base kindΩ, but can have an arbitrary kindκ. Con-
sider the term-leveltypecase in such a scenario:

sub = Λα. typecase α of
int ⇒ eint

. . .
∃α :κ. τ⇒ e∃

To do anything useful in thee∃ branch, even to open a package of
this type, we need to know the kindκ. We can get around this by
having an infinite number of branches in thetypecase, one for each
kind; or by restricting type analysis to a finite set of kinds. Both of
these approaches are clearly impractical. Recent work on typed
compilation of ML and Java has shown that both would require an
Fω-like calculus with arbitrarily complex kinds [22, 23, 10].

2.3 Requirements for a solution

Before we discuss our solution, let us look at the properties we want
it to have.

First, our language must support type analysis in the manner of
Harper/Morrisett. That is, we want to include type analysis prim-
itives that will analyze the entire syntax tree representing a type.
Second, we want the analysis to continue inside the body of a quan-
tified type; handling quantified types parametrically, or in a uniform
way by providing a default case, is insufficient. As we will see later,
many interesting type-directed operations require these two prop-
erties. Third, we do not want to restrict the kind of the (quantified)
type variable in a quantified type; we want to analyze types where
the quantification is over a variable of arbitrary kind.

Consider a type-directed pickler that converts a value of ar-
bitrary type into an external representation. Suppose we want to
pickle a closure. With a type-preserving compiler, the type of a
closure would be represented as an existential with the environment
held abstract. Even if the code is handled uniformly, the function
must inspect the type of the environment (which is also the witness
type of the existential package) to pickle it. This shows that at the
term level, the analysis must proceed inside a quantified type. In
Section 3.2, we show the encoding of a polymorphic equality func-
tion in our calculus; the comparison of existential values requires a
similar technique.

The reason for not restricting the quantified type variable to a
finite set of kinds is twofold. Restricting type analysis to a finite
number of kinds would bead hocand there is no way of satisfacto-
rily predetermining this finite set (this is even more the case when
we compile Java into a typed intermediate language [10]). More
importantly, if the kind of the bound variable is a known constant
in the corresponding branch of theTyperec construct, it is easy to
generalize the non-termination example of the previous section and
break the decidability of the type system.

2.4 Our solution

The key problem in analyzing quantified types such as the poly-
morphic type∀α : Ω. α→ α is to determine what happens when
the iteration reaches the quantified type variableα, or (in the gen-
eral case of type variables of higher kinds) a normal form which is
an application with a type variable in the head.

One approach would be to leave the type variable untouched
while analyzing the body of the quantified type. The equational
theory of the type language then includes a reduction of the form
(Typerec α of . . .) ; α so that the iterator vanishes when it
reaches a type variable. However this would break the confluence
of the type language—the application ofλα : Ω.Typerec α of . . .
to τ would reduce in general to different types if we perform the
β-reduction step first or eliminate the iterator first.

Crary and Weirich [1] propose another method for solving this
problem. Their language LX allows the representation of terms
with bound variables using deBruijn notation and an encoding of
natural numbers as types. To analyze quantified types, the iterator
carries an environment mapping indices to types; when the iterator
reaches a type variable, it returns the corresponding type from the
environment. This method has several disadvantages.

• It is not fully reflexive, since it does not allow analysis of
all quantified types—their analysis is restricted to types with
quantification only over variables of kindΩ.

• The technique is “limited toparametrically polymorphic
functions, and cannot account for functions that perform in-
tensional type analysis” [1, Section 4.1]. For example poly-
morphic types such as∀α : Ω.Typerec α of . . . are not ana-
lyzable in their framework.

• The correctness of the structure of a type encoded using de-
Bruijn notation cannot be verified by the kind language (in-
dices not corresponding to bound variables go undetected, so
the environment must provide a default type for them), which
does not break the type soundness but opens the door for pro-
grammer mistakes.

To account for non-parametrically polymorphic functions, we
must analyze the quantified type variable. Moreover, we want
to have confluence of the type language, soβ-reduction should be
transparent to the iterator. This is possible only if the analysis gets
suspended when it reaches a type variable, or its application, of
kind Ω, and resumes when the variable gets substituted. Therefore,
we consider(Typerec α of . . .) to be a normal form. For example,
the result of analyzing the body (α→ int) of the polymorphic type
∀α :κ. α→ int is

Typerec (α→ int) of (τint; τ→; τ∀) ;

τ→ α int (Typerec α of (τint; τ→; τ∀)) (τint)

We formalize the analysis of quantified types when we present the
type reduction rules of theTyperec construct (Figure 5).

The other problem is to analyze quantified types when the quan-
tified variable can be of an arbitrary kind. In our language the so-
lution is similar at both the type and the term levels: we use kind

3

polymorphism! We introduce kind abstractions at the type level

(Λχ. τ) and at the term level (Λ
+
χ. e) to bind the kind of the quan-

tified variable. (See Section 3 for details.)
Kind polymorphism also ensures the termination of the

Typerec constructor. Consider again the analysis of the polymor-
phic type:

Typerec (∀∀ τ) of (τint; τ→; τ∀)
; τ∀ τ (λα :Ω.Typerec τ α of (τint; τ→; τ∀))

Informally, we must ensure that the type being analyzed decreases
in size at every iteration. That isτα is smaller than∀∀τ . (Note that
the previous non-terminating example violates this requirement).
This will be true if we can ensure thatα is always substituted by a
single variable. Therefore, we make the kind ofα abstract by using
kind polymorphism;α now has the kind bound in theτ∀ branch.
The only way to construct another type of this kind is to bind a
type variable of the same kind in theτ∀ branch. This ensures that
α can only be substituted by another type variable.

It is important to note that our language provides no facilities
for kind analysis. Analyzing the kindκ of the bound variableα
in the type∀∀ (λα : κ. τ) would let us synthesize a type argument
of the same kind, for every kindκ. The synthesized type can then
be used in the style of the non-termination example of the previous
section. Intuitively, we would not be able to guarantee that the type
being analyzed decreases at every step.

The rest of the paper is organized as follows. Section 3 de-
scribes the languageλPi supporting analysis of polymorphic and
existential types. Section 4 presents the languageλQi that also in-
cludes support for analysis of recursive types. Section 5 shows a
translation into a language with type erasure semantics.

3 Analyzing polymorphic types

In the impredicativeFω calculus, the polymorphic types∀α : κ. τ
can be viewed as generated by an infinite set of type constructors
∀κ of kind (κ→ Ω)→ Ω, one for each kindκ. The type∀α :κ. τ
is then represented as∀κ (λα :κ. τ). The kinds of constructors that
can generate types of kindΩ then would be

int : Ω
→→ : Ω→ Ω→ Ω
∀Ω : (Ω→ Ω)→ Ω
. . .
∀κ : (κ→ Ω)→ Ω
. . .

We can avoid the infinite number of∀κ constructors by defining a
single constructor∀∀ of polymorphic kind∀χ. (χ→ Ω)→ Ω and
then instantiating it to a specific kind before forming polymorphic
types. More importantly, this technique also removes the negative
occurrence ofΩ from the kind of the argument of the constructor
∀Ω. Hence in ourλPi calculus we extendFω with polymorphic
kinds and add a type constant∀∀ of kind ∀χ. (χ → Ω) → Ω to the
type language. The polymorphic type∀α :κ. τ is now represented
as∀∀ [κ] (λα :κ. τ).

We define the syntax of theλPi calculus in Figure 2, and some
derived forms of types in Figure 3. The static semantics ofλPi is
shown in Figures 4 and 5 as a set of rules for judgements using the
following environments:

kind environment E ::= ε | E , χ
type environment ∆ ::= ε | ∆, α :κ
term environment Γ ::= ε | Γ, x :τ

(kinds) κ ::= Ω | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+

| α | Λχ. τ | λα :κ. τ | τ [κ] | τ τ ′
| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

(values) v ::= i | Λ
+
χ. e | Λα :κ. e | λx :τ. e | fixx :τ. v

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| typecase[τ] τ ′ of (eint; e→; e∀; e∀+)

Figure 2: Syntax of theλPi language

τ → τ ′ ≡ ((→→) τ) τ ′

∀α :κ. τ ≡ (∀∀ [κ]) (λα :κ. τ)

∀
+
χ. τ ≡ ∀∀

+
(Λχ. τ)

Figure 3: Syntactic sugar forλPi types

TheTyperec operator analyzes polymorphic types with bound vari-
ables of arbitrary kind. The corresponding branch of the operator
must bind the kind of the quantified type variable; for that purpose
the language provides kind abstraction (Λχ. τ) and kind application
(τ [κ]) at the type level. The formation rules for these constructs,
excerpted from Figure 4, are

E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

Similarly, while analyzing a polymorphic type, the term-level con-
structtypecase must bind the kind of the quantified type variable.

Therefore, we introduce kind abstraction (Λ
+
χ. e) and kind appli-

cation (e [κ]
+
) at the term level. To type the term-level kind abstrac-

tion, we need a type construct∀
+
χ. τ that binds the kind variableχ

in the typeτ . The formation rules are shown below.

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆; Γ ` e : ∀
+
χ. τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ{κ/χ}

However, since our goal is fully reflexive type analysis, we need
to analyze kind-polymorphic types as well. As with polymorphic

types, we can represent the type∀
+
χ. τ as the application of a type

constructor∀∀
+

of kind (∀χ.Ω) → Ω to a kind abstractionΛχ. τ .
Thus the kinds of the constructors for types of kindΩ are

int : Ω
→→ : Ω→ Ω→ Ω
∀∀ : ∀χ. (χ→ Ω)→ Ω

∀∀
+

: (∀χ.Ω)→ Ω

None of these constructors’ arguments have the kindΩ in a negative
position; hence the kindΩ can now be defined inductively in terms
of these constructors. TheTyperec construct is then the iterator
over this kind. The formation rule forTyperec follows naturally
from the type reduction rules (Figure 5). Depending on the head
constructor of the type being analyzed,Typerec chooses one of the
branches. At theint type, it returns theτint branch. At the function
typeτ → τ ′, it applies theτ→ branch to the componentsτ andτ ′

and to the result of the iteration overτ andτ ′.

4

Kind formation E ` κ

E ` Ω

χ ∈ E
E ` χ

E ` κ E ` κ′

E ` κ→ κ′
E , χ ` κ
E ` ∀χ. κ

Type environment formation E ` ∆

E ` ε
E ` ∆ E ` κ
E ` ∆, α :κ

Type formation E ; ∆ ` τ : κ

E ` ∆

E ; ∆ ` int : Ω
E ; ∆ ` (→→) : Ω→ Ω→ Ω
E ; ∆ ` ∀∀ : ∀χ. (χ→ Ω)→ Ω

E ; ∆ ` ∀∀
+

: (∀χ.Ω)→ Ω

E ` ∆ α :κ in ∆

E ; ∆ ` α : κ

E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

E ; ∆, α :κ ` τ : κ′

E ; ∆ ` λα :κ. τ : κ→ κ′
E ; ∆ ` τ : κ′ → κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` τ τ ′ : κ

E ; ∆ ` τ : Ω
E ; ∆ ` τint : κ
E ; ∆ ` τ→ : Ω→ Ω→ κ→ κ→ κ
E ; ∆ ` τ∀ : ∀χ. (χ→ Ω)→ (χ→ κ)→ κ
E ; ∆ ` τ∀+ : (∀χ.Ω)→ (∀χ. κ)→ κ

E ; ∆ ` Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) : κ

Term environment formation E ; ∆ ` Γ

E ` ∆

E ; ∆ ` ε
E ; ∆ ` Γ E ; ∆ ` τ : Ω

E ; ∆ ` Γ, x :τ

Term formation E ; ∆; Γ ` e : τ

E ; ∆; Γ ` e : τ E ; ∆ ` τ ; τ ′ : Ω

E ; ∆; Γ ` e : τ ′
E ; ∆ ` Γ

E ; ∆; Γ ` i : int

E ; ∆ ` Γ x :τ in Γ

E ; ∆; Γ ` x : τ

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆, α :κ; Γ ` v : τ

E ; ∆; Γ ` Λα :κ. v : ∀α :κ. τ

E ; ∆; Γ, x :τ ` e : τ ′

E ; ∆; Γ ` λx :τ. e : τ → τ ′

E ; ∆; Γ, x :τ ` v : τ

τ = ∀
+
χ1 . . . χn.∀α1 :κ1 . . . αm :κm :τ1 → τ2.

n ≥ 0,m ≥ 0

E ; ∆; Γ ` fixx :τ. v : τ

E ; ∆; Γ ` e : ∀∀
+
τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ [κ]

E ; ∆; Γ ` e : ∀∀ [κ] τ E ; ∆ ` τ ′ : κ

E ; ∆; Γ ` e [τ ′] : τ τ ′

E ; ∆; Γ ` e : τ ′ → τ E ; ∆; Γ ` e′ : τ ′

E ; ∆; Γ ` e e′ : τ

E ; ∆ ` τ : Ω→ Ω
E ; ∆ ` τ ′ : Ω
E ; ∆; Γ ` eint : τ int
E ; ∆; Γ ` e→ : ∀α :Ω.∀α′ :Ω. τ (α→ α′)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀α :χ→ Ω. τ (∀∀ [χ]α)

E ; ∆; Γ ` e∀+ : ∀α : (∀χ.Ω). τ (∀∀
+
α)

E ; ∆; Γ ` typecase[τ] τ ′ of (eint; e→; e∀; e∀+) : τ τ ′

Figure 4: Formation rules ofλPi

Type reduction E ; ∆ ` τ1 ; τ2 : κ

E ; ∆, α :κ′ ` τ : κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` (λα :κ′. τ) τ ′ ; τ{τ ′/α} : κ

E , χ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` (Λχ. τ) [κ′] ; τ{κ′/χ} : κ{κ′/χ}

E ; ∆ ` τ : κ→ κ′ α /∈ ftv(τ)

E ; ∆ ` λα :κ. τ α ; τ : κ→ κ′

E ; ∆ ` τ : ∀χ′. κ χ /∈ fkv(τ)

E ; ∆ ` Λχ. τ [χ] ; τ : ∀χ′. κ

E ; ∆ ` Typerec[κ] int of (τint; τ→; τ∀; τ∀+) : κ

E ; ∆ ` Typerec[κ] int of (τint; τ→; τ∀; τ∀+) ; τint : κ

E ; ∆ ` Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+) ; τ ′1 : κ
E ; ∆ ` Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+) ; τ ′2 : κ

E ; ∆ ` Typerec[κ] ((→→) τ1 τ2) of (τint; τ→; τ∀; τ∀+) ; τ→ τ1 τ2 τ
′
1 τ
′
2 : κ

E ; ∆, α :κ′ ` Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (∀∀ [κ′] τ) of (τint; τ→; τ∀; τ∀+)
; τ∀ [κ′] τ (λα :κ′. τ ′) : κ

E , χ; ∆ ` Typerec[κ] (τ [χ]) of (τint; τ→; τ∀; τ∀+) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (∀∀
+
τ) of (τint; τ→; τ∀; τ∀+) ; τ∀+ τ (Λχ. τ ′) : κ

Figure 5: SelectedλPi type reduction rules

5

When analyzing a polymorphic type, the reduction rule is

Typerec[κ] (∀α :κ′. τ) of (τint; τ→; τ∀; τ∀+) ;

τ∀ [κ′] (λα :κ′. τ) (λα :κ′.Typerec[κ] τ of (τint; τ→; τ∀; τ∀+))

Thus the∀-branch ofTyperec receives as arguments the kind of
the bound variable, the abstraction representing the quantified type,
and a type function encapsulating the result of the iteration on the
body of the quantified type. Sinceτ∀ must be parametric in the kind
κ′ (there are no facilities for kind analysis in the language), it can
only apply its second and third arguments to locally introduced type
variables of kindκ′. We believe this restriction, which is crucial
for preserving strong normalization of the type language, is quite
reasonable in practice. For instanceτ∀ can yield a quantified type
based on the result of the iteration.

The reduction rule for analyzing a kind-polymorphic type is

Typerec[κ] (∀
+
χ. τ) of (τint; τ→; τ∀; τ∀+) ;

τ∀+ (Λχ. τ) (Λχ.Typerec[κ] τ of (τint; τ→; τ∀; τ∀+))

The arguments of theτ∀+ are the kind abstraction underlying the
kind-polymorphic type and a kind abstraction encapsulating the re-
sult of the iteration on the body of the quantified type.

For ease of presentation, we will use ML-style pattern matching
syntax to define a type involvingTyperec. Instead of

τ = λα :Ω.Typerec[κ] α of (τint; τ→; τ∀; τ∀+)
where τ→ = λα1 :Ω. λα2 :Ω. λα′1 :κ. λα′2 :κ. τ ′→

τ∀ = Λχ. λα :χ→ Ω. λα′ :χ→ κ. τ ′∀
τ∀+ = λα : (∀χ.Ω). λα′ : (∀χ. κ). τ ′

∀+

we will write

τ (int) = τint

τ (α1 → α2) = τ ′→{τ (α1), τ (α2)/α′1, α
′
2}

τ (∀∀ [χ]α1) = τ ′∀{λα :χ. τ (α1 α)/α′}
τ (∀∀

+
α1) = τ ′

∀+
{Λχ. τ (α1 [χ])/α′}

To illustrate the type-level analysis we will use theTyperec opera-
tor to define the class of types admitting equality comparisons. To
make the example non-trivial we extend the language with a prod-
uct type constructor×× of the same kind as→→, and with existential
types with type constructor∃∃ of kind identical to that of∀∀, writing
∃α :κ. τ for ∃∃ [κ] (λα :κ. τ). Correspondingly we extendTyperec
with a product branchτ× and an existential branchτ∃ which be-
have in exactly the same way as theτ→ branch and theτ∀ branch
respectively. We will useBool instead ofint.

A polymorphic functioneq comparing two objects for equality
is not defined on values of function or polymorphic types. We can
enforce this restriction statically if we define a type operatorEq of
kind Ω → Ω, which maps function and polymorphic types to the
type Void ≡ ∀α : Ω. α (a type with no values), and require the
arguments ofeq to be of typeEq τ for some typeτ . Thus, given
any typeτ , the functionEq serves to verify that a non-equality type
does not occur insideτ .

Eq (Bool) = Bool
Eq (α1 → α2) = Void
Eq (α1×α2) = Eq (α1)×Eq (α2)
Eq (∀∀ [χ]α) = Void

Eq (∀∀
+
α) = Void

Eq (∃∃ [χ]α) = ∃∃ [χ] (λα1 :χ.Eq (αα1))

The property is enforced even on hidden types in an existentially
typed package by the reduction rule forTyperec which suspends

(λx :τ. e) v; e{v/x}

(Λα :κ. v)[τ] ; v{τ/α}

(Λ
+
χ. v)[κ]

+
; v{κ/χ}

(fixx :τ. v) v′; (v{fixx :τ. v/x}) v′

(fixx :τ. v)[τ] ; (v{fixx :τ. v/x})[τ]

(fixx :τ. v)[κ]
+

; (v{fixx :τ. v/x})[κ]
+

e ; e′

e e1 ; e′ e1

e ; e′

v e ; v e′
e ; e′

e[τ] ; e′[τ]

e ; e′

e[κ]
+

; e′[κ]
+

typecase[τ] int of (eint; e→; e∀; e∀+) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e∀+) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ) of (eint; e→; e∀; e∀+) ; e∀ [κ]
+

[τ]

typecase[τ] (∀∀
+
τ) of (eint; e→; e∀; e∀+) ; e∀+ [τ]

ε; ε ` τ ′ ;∗ ν′ :Ω ν′ is a normal form

typecase[τ] τ ′ of (eint; e→; e∀; e∀+) ;

typecase[τ] ν′ of (eint; e→; e∀; e∀+)

Figure 6: Operational semantics ofλPi

its action on normal forms with variable head. For instance a term
e can only be given type

Eq (∃α :Ω. α× α) = ∃α :Ω.Eqα× Eqα

if it can be shown thate is a pair of terms of typeEq τ for some
τ , i.e., terms of equality type. Note thatEq ((Bool → Bool)×
(Bool → Bool)) reduces to(Void×Void); a more complicated
definition is necessary to map this type toVoid.

At the term level type analysis is carried out by thetypecase
construct; however, it is not iterative since the term language has a
recursion primitive,fix. Thee∀ branch oftypecase binds the kind
and the type abstraction carried by the type constructor∀∀, while the

e∀+ branch binds the kind abstraction carried by∀∀
+
.

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+) ; e∀ [κ]
+

[τ ′]

typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+) ; e∀+ [τ ′]

The operational semantics of the term language ofλPi is presented
in Figure 6.

The languageλPi has the following important properties (for
detailed proofs, see Appendix B).

Theorem 3.1 Reduction of well-formed types is strongly normal-
izing.

We prove strong normalization of the type language following
Girard’s method of candidates [6], using his definition of a candi-
date. The standard set of neutral types is extended to include types
constructed byTyperec. We defineRΩ as the set of typesτ of
kind Ω such that the typeTyperec[κ] τ of (τint; τ→; τ∀; τ∀+) be-
longs to a candidate for kindκ whenever the branches belong to
candidates of the corresponding kinds from theTyperec formation
rule. We then prove that this set is a candidate. Next we define
the setSκ[C/χ] of types of kindκ (for given candidatesC corre-
sponding to the free kind variablesχ of κ), equal toRΩ for kind
Ω, and defined inductively as in [6] for function, polymorphic, and
variable kinds. We show thatSκ[C/χ] is a candidate. Finally we
prove thatS•[C/χ] is closed under substitution of types for free
type variables; strong normalization is an immediate corollary.

6

Theorem 3.2 Reduction of well-formed types is confluent.

Confluence of type reduction is a corollary of local confluence,
which we prove by case analysis of the type reduction relation (;).
We consider type contexts with two holes and show that the reduc-
tion is locally confluent in each case.

We say that a terme is stuck ife is not a value ande ; e′ for
no terme′.

Theorem 3.3 (Soundness ofλPi for Type Safety)
If ε; ε; ε ` e :τ ande ;∗ e′ in λPi , thene′ is not stuck.

We prove soundness of the system using a contextual semantics
in Wright/Felleisen style [27] using the standard progress, subject
reduction, and substitution lemmas as well as the confluence and
strong normalization properties of theλPi type system.

3.1 Example: Marshalling

One of the examples that Harper and Morrisett [8] use to illustrate
the power of intensional type analysis is based on the extension of
ML for distributed computing proposed by Ohori and Kato [15].
The idea is to convert values into a form which can be used for
transmission over a network. An integer value may be transmitted
directly, but a function may not; instead, a globally unique identi-
fier is transmitted that serves as a proxy at the remote site. These
identifiers are associated with their functions by a name server that
may be contacted through a primitive addressing scheme. The re-
mote sites use the identifiers to make remote calls to the function.
Harper and Morrisett show how to define types of transmissible val-
ues as well as functions for marshalling to and unmarshalling from
these types using intensional type analysis. However, the predica-
tivity of their calculus prevents them from handling the full calculus
of Ohori and Kato, which also includes the remote representation
of polymorphic functions and remote type application.

In λPi marshalling of polymorphic values is straightforward; in
fact it offers more flexibility than the calculus of Ohori and Kato
needs, since polymorphic functions become first-class values, and
polymorphic types can be used in remote type applications. Adapt-
ing the constructs of [8] toλPi , we introduce a type constructor
Id : Ω → Ω. A value of typeτ has a global identifier of typeId τ .
The Typerec and typecase operators are extended in an obvious
way. For example, the following type reduction relation is added:

Typerec[κ] (Id τ) of (τint; τ→; τ∀∀; τ∀+; τId) ;

τId τ (Typerec[κ] τ of (τint; τ→; τ∀∀; τ∀+; τId))

The type of the remote representation of values of typeτ is Tran τ ,
defined in [8] using intensional analysis ofτ . Values of typeTran τ
do not contain any abstractions; all the abstractions are wrapped
inside anId constructor. We can extend the Harper/Morrisett defi-
nition of Tran to handle the quantified types ofλPi as follows:

Tran (int) = int
Tran (α1 → α2) = Id (Tranα1 → Tranα2)
Tran (∀∀ [χ]α) = Id (∀α′ :χ. (λα1 :χ.Tran (αα1))α′)

Tran (∀∀
+
α) = Id (∀

+
χ′. (Λχ.Tran (α [χ])) [χ′])

Tran (Idα) = Idα

At the term level the system provides primitives for creating global
identifiers and performing remote invocations:1

newid : ∀α1 :Ω.∀α2 :Ω. (Tranα1→Tranα2)→Tran (α1→α2)
rapp : ∀α1 :Ω.∀α2 :Ω.Tran (α1→α2)→Tranα1→Tranα2

newpid : ∀
+
χ.∀α :χ→Ω. (∀α′ :χ.Tran (αα′))→Tran (∀∀ [χ]α)

rtapp : ∀
+
χ.∀α :χ→ Ω.Tran (∀∀ [χ]α)→ ∀α′ :χ.Tran (αα′)

1Ohori and Kato [15] define one primitive for creating identifiers for both term and
type abstraction.

For completeness in our system we also need to handle kind poly-
morphism and remote kind applications:

newkid : ∀α : (∀χ.Ω). (∀
+
χ.Tran (α [χ]))→ Tran (∀∀

+
α)

rkapp : ∀α : (∀χ.Ω).Tran (∀∀
+
α)→ ∀

+
χ.Tran (α [χ])

Operationally, thenewid’s take a function between transmissible
values and generate a new, globally unique identifier and tell the
name server to associate that identifier with the function on the lo-
cal machine. The remote applications take a proxy identifier of
a remote function and a transmissible argument value. The name
server is contacted to get the site where the remote value exists;
the argument is sent to this machine, and the result of the function
transmitted back as the result of the operation.

Marshalling and unmarshalling of values from transmissible
representations are performed by the mutually recursive functions
M : ∀α : Ω. α → Tranα andU : ∀α : Ω.Tranα → α. They are
defined below by a pattern-matching syntax and implicit recursion
instead oftypecase andfix. We assume that a type or a kind does
not need to be transformed in order to be transmitted.

M [int] = λx : int. x
M [α1 → α2] = λx :α1 → α2.

newid [α1] [α2]
(λx′ :Tranα1.M [α2] (x (U [α1]x′)))

M [∀∀ [χ]α] = λx :∀∀ [χ]α.

newpid [χ]
+

[α] (Λα′ :χ.M [αα′] (x [α′]))

M [∀∀
+
α] = λx :∀∀

+
α. newkid [α] (Λ

+
χ.M [α [χ]] (x [χ]

+
))

M [Idα] = λx : Idα. x

U [int] = λx :Tran (int). x
U [α1 → α2] = λx :Tran (α1 → α2). λx′ :α1.

U [α2] (rapp [α1] [α2]x (M [α1]x′))
U [∀∀ [χ]α] = λx :Tran (∀∀ [χ]α).Λα′ :χ.

U [αα′] (rtapp [χ]
+

[α]x [α′])

U [∀∀
+
α] = λx :Tran (∀∀

+
α).Λ

+
χ.U [α [χ]] (rkapp [α]x [χ]

+
)

U [Idα] = λx :Tran (Idα). x

3.2 Example: Polymorphic equality

Another view at the term-level analysis of quantified types is pro-
vided by an example involving the comparison of values of exis-
tential type. The term constructs for introduction and elimination
of existential types have the following formation rules.

E ; ∆; Γ ` e : (λα :κ. τ) τ ′

E ; ∆; Γ ` 〈α :κ = τ ′, e :τ〉 : ∃α :κ. τ

E ; ∆; Γ ` e : ∃∃ [κ] τ E ; ∆ ` τ ′ : Ω
E ; ∆, α :κ; Γ, x :τ α ` e′ : τ ′

E ; ∆; Γ ` open e as 〈α :κ, x :τ α〉 in e′ : τ ′

The polymorphic equality functioneq is defined in Figure 7 (we
use aletrec construct derived from ourfix). The domain type of
the function is restricted to types of the formEq τ to ensure that
only values of types admitting equality are compared.

Consider the two packagesv = 〈α : Ω = Bool, false :α〉 and
v′ = 〈α : Ω = Bool×Bool, 〈true, true〉 : α〉. Both are of type
∃α :Ω. α, which makes the invocationeq [∃α :Ω. α] v v′ legal. But
when the packages are open, the types of the packaged values may
(as in this example) turn out to be different. Therefore we need the
auxiliary functionheq to compare values of possibly different types
by comparing their types first. The function corresponds to a ma-
trix on the types of the two arguments, where the diagonal elements

7

letrec
heq :∀α :Ω.∀α′ :Ω.Eqα→ Eqα′ → Bool
= Λα :Ω.Λα′ :Ω.

typecase[λγ :Ω.Eq γ → Eqα′ → Bool] α of
Bool ⇒ λx :Bool.

typecase[λγ :Ω.Eq γ → Bool] α′ of
Bool ⇒ λy :Bool. primEqBool x y
. . . ⇒ . . . false

β1×β2⇒ λx :Eqβ1×Eqβ2.
typecase[λγ :Ω.Eq γ → Bool] α′ of
β′1×β′2 ⇒ λy :Eqβ′1×Eqβ′2.

heq [β1] [β′1] (x.1) (y.1) and
heq [β2] [β′2] (x.2) (y.2)

. . . ⇒ . . . false
∃∃ [χ]β ⇒ λx : (∃β1 :χ.Eq (β β1)).

typecase[λγ :Ω.Eq γ → Bool] α′ of
∃∃ [χ′]β′⇒ λy : (∃β′1 :χ′.Eq (β′ β′1)).

open x as 〈β1 :χ, xc :Eq (β β1)〉 in
open y as 〈β′1 :χ′, yc :Eq (β′ β′1)〉 in

heq [β β1] [β′ β′1] xc yc
. . . ⇒ . . . false

. . .
in let eq = Λα :Ω. λx :Eqα. λy :Eqα. heq [α] [α] x y
in . . .

Figure 7: Polymorphic equality inλPi

compare recursively the constituent values, while off-diagonal ele-
ments returnfalse and are abbreviated in the figure.

The only interesting case is that of values of an existential type.
Opening the packages provides access to the witness typesβ1 and
β′1 of the argumentsx andy. As shown in the typing rules, the ac-
tual types of the packaged values,x andy, are obtained by applying
the corresponding type functionsβ andβ′ to the respective wit-
ness types. This yields a perhaps unexpected semantics of equality.
Consider this invocation of theeq function which evaluates totrue:

eq [∃α :Ω. α]
〈α :Ω = ∃β :Ω. β, 〈β :Ω = Bool, true :Eqβ〉 :Eqα〉
〈α :Ω = ∃β :Ω→ Ω. β Bool,
〈β :Ω→ Ω = λγ :Ω. γ, true :Eq (β Bool)〉 :Eqα〉

At runtime, after the two packages are opened, the call toheq is

heq [∃β :Ω. β] [∃β :Ω→ Ω. β Bool]
〈β :Ω = Bool, true :Eqβ〉
〈β :Ω→ Ω = λγ :Ω. γ, true :Eq (β Bool)〉

This term evaluates totrue even though the type arguments are
different. The reason is that what is being compared are the actual
types of the values before hiding their witness types. Tracing the
reduction of this term to the recursive callheq [β β1] [β′ β′1] xc yc
we find out it is instantiated to

heq [(λβ :Ω. β) Bool] [(λβ :Ω→ Ω. β Bool) (λγ :Ω. γ)] true true

which reduces toheq [Bool] [Bool] true true and thus totrue.
However this result is justified, since the above two packages

of type ∃α : Ω. α will indeed behave identically in all contexts.
An informal argument in support of this claim is that the most any
context could do with such a package is open it and inspect the type
of its value usingtypecase, but this will only provide access to a
type functionτ representing the inner existential type. Since the
kindκ of the domain ofτ is unknown statically, the only non-trivial

operation onτ is its application to the witness type of the package,
which is the only available type of kindκ. As we saw above, this
operation will produce the same result (namelyBool) in both cases.
Thus, since the two arguments toeq are indistinguishable byλPi
contexts, the above result is perfectly sensible.

3.3 Discussion

Before we move on, it would be worthwhile to analyze theλPi lan-
guage. Specifically, what is the price in terms of complexity of
the type theory that can be attributed to the requirements that we
imposed?

In Section 2.3 we saw that an iterative type operator is essen-
tial to typechecking many type-directed operations. Even when re-
stricted to compiling ML we still have to consider analysis of poly-
morphic types of the form∀α : Ω. τ , and theirad hocinclusion in
kind Ω makes the latter non-inductive. Therefore, even for this sim-
ple case, we need kind polymorphism in an essential way to handle
the negative occurrence ofΩ in the domain of∀∀. In turn, kind
polymorphism allows us to analyze at the type level types quanti-
fied over any kind; hence the extra expressiveness comes for free.
Moreover, adding kind polymorphism does not entail any heavy
type-theoretic machinery—the kind and type language ofλPi is a
minor extension (with primitive recursion) of the well-studied cal-
culusF2; we use the basic techniques developed forF2 [6] to prove
properties of our type language.

The kind polymorphism ofλPi is parametric,i.e.,kind analysis
is not possible. This property prevents in particular the construction
of non-terminating types based on variants of Girard’sJ operator
using a kind-comparing operator [7].

For analysis of quantified types at the term level we have the

new constructΛ
+
χ. e. This does not result in any additional com-

plexity at the type level—although we introduce a new type con-

structor∀∀
+
, the kind of this construct is defined completely by the

original kind calculus, and the kind and type calculus is still es-
sentiallyF2. The term calculus becomes an extension of Girard’s
λU calculus [5], hence it is not normalizing; however it already
includes the general recursion constructfix, necessary in a realistic
programming language.

Restricting the type analysis at the term level to a finite set of
kinds would help avoid the term-level kind abstraction. However,
even in this case, we would still need kind abstraction to implement
a type erasure semantics, which can simplify certain phases of the
compiler (Section 5). On the other hand, having kind abstraction at
the term level ofλPi adds no complications to the transition to type
erasure semantics.

4 Analyzing recursive types

Next we turn our attention to the problem of analyzing recursive
types. Following the general scheme described in the previous sec-
tion, we need to introduce a type constructorlu yielding a type iso-
morphic to the least fixpoint of a given type function. Since the
types we analyze are of kindΩ, the kind oflu of interest is

lu : (Ω→ Ω)→ Ω

Unfortunately there is a negative occurrence ofΩ in the domain
of this kind, which—as it was with universally-quantified types in
Section 3—prevents defining an iterator over this kind while main-
taining strong normalization of the type language. In the case of
quantified types we were able to resolve this problem by general-
izing the negative occurrence ofΩ to an arbitrary kind; however
such an approach is doomed in the case of recursive types since the
argument oflu must have identical domain and range.

8

One possibility is to follow the approach outlined by Crary and
Weirich in [1] for quantified types; since type variables bound by
the fixpoint operator must be of kindΩ, an environment can be
used to map them to types of kindΩ without kind mismatches.
While plausible and perhaps efficient, this approach (as pointed out
in Section 2.4) gives no protection against some programming er-
rors, and it is unclear how to combine it withλPi .

4.1 A restricted Typerec

To handle recursive types, we introduce a new constructorPlace
that acts as the right inverse of theTyperec. We will first give an
informal explanation of how thePlace constructor is used in our
solution by considering a restricted form of theTyperec. This ap-
proach does not guarantee termination; we use it to ease the pre-
sentation of theλQi calculus.

Consider the iterationTyperec[Ω] τ of (τint; τ→; τ∀; τ∀+; τµ)
in the case whenτ is a recursive type, saylu (λα : Ω. int→ α). In
many cases, the desired result will be another recursive type, say
lu (λα : Ω. τ ′) whereτ ′ is the result of analyzing the body. If we
followed the approach we used in the case of polymorphic types
(i.e., if the iterator’s action on the type variable is suspended until
the variable is replaced by a type upon unfolding the fixpoint), then
the result would be:

lu (λα :Ω. τ→ intα τint (Typerec[Ω] α of . . .))

In this case, the iterator ends up being appliedn times to thenth
unfolding of the fixpoint, which does not correspond to the de-
sired fixpoint. Instead the iterator must be applied to the body of
the type function, but—in contrast with the behavior in the case
of a quantified type—the iterator shoulddisappearwhen applied
to the type variableα. Since the fixpoint notation represents a
type isomorphic to an infinite unfolding of the body, the traver-
sal of the entire infinite tree is complete with one iteration over
the body. In other words the iterator must satisfy an equation like
Typerec[Ω] α of . . . = α so that the result of analyzing the body
is λα :Ω. τ→ intα τint α.

Therefore, we need to distinguish between type variables bound
by a polymorphic or existential quantifier and those bound in a re-
cursive type. This reasoning leads us to a solution based on the
work of Fegaras and Sheard on catamorphisms over non-inductive
datatypes [4]. The main idea is to introduce an auxiliary type con-
structorPlace of kind Ω → Ω which is the right inverse of the
iterator,i.e., it holds that

Typerec[Ω] (Place τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ

The iterator processes the body of a recursive type with thelu-bound
type variable protected underPlace. While processing the body, the
iterator eventually reduces to instances of the form

Typerec[Ω] (Placeα) of . . . ,

which reduce toα. The reduction rule for the iterator over a recur-
sive type is

Typerec[Ω] (lu τ
′) of (τint; τ→; τ∀; τ∀+; τµ) ;

τµ τ
′

(λα :Ω.Typerec[Ω] (τ ′ (Placeα)) of (τint; τ→; τ∀; τ∀+; τµ))

4.2 The general case

The previous approach does not generalize to the case when the
result of theTyperec may be of an arbitrary kind. In the general

(kinds) κ ::= χ | \κ | κ→ κ′ | ∀χ. κ

(types) τ ::= α | int | →̊→ | ∀̊∀ | ∀̊∀
+
| l̊u | Place

| λα :κ. τ | τ τ ′ | Λχ. τ | τ [κ]
| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ)

(values) v ::= i | Λ
+
χ. v | Λα :κ. v | λx :τ. e | fixx :τ. v

| fold v as τ

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| fold e as τ | unfold e as τ
| typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ)

Figure 8: TheλQi language

Ω≡ ∀χ. \χ
τ$τ ′ ≡ Λχ. τ [χ] (τ ′ [χ]) for χ /∈ fkv(τ) ∪ fkv(τ ′)

τ → τ ′ ≡ (→→) τ τ ′

∀α :κ. τ ≡ ∀∀ [κ] (λα :κ. τ)

∀
+
χ. τ ≡ ∀∀

+
(Λχ. τ)

(→→) :Ω→ Ω→ Ω = λα :Ω. λα′ :Ω. ((→̊→)$α)$α′

∀∀ :∀χ. (χ→ Ω)→ Ω = Λχ. λα :χ→ Ω.Λχ′.

∀̊∀ [χ′] [χ] (λα′ :χ. αα′ [χ′])

∀∀
+

: (∀χ.Ω)→ Ω = λα : (∀χ.Ω).Λχ′.

∀̊∀
+
[χ′] (Λχ. α [χ] [χ′])

lu : (∀χ. \χ→ \χ)→ Ω = λα : (∀χ. \χ→ \χ). l̊u$α

Figure 9: Syntactic sugar forλQi

case, the type reductions are:

Typerec[κ] (Place τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ
Typerec[κ] (lu τ

′) of (τint; τ→; τ∀; τ∀+; τµ) ;

τµ τ
′

(λα :κ.Typerec[κ] (τ ′ (Placeα)) of (τint; τ→; τ∀; τ∀+; τµ))

The constructorPlace can now be applied to a type of arbitrary
kind, but its return result must beΩ. This implies thatPlace has
the kind∀χ. χ→ Ω. But this is unsound since we can not constrain
the kind ofτ above (the argument ofPlace) to match the result kind
κ of theTyperec.

Adopting the solution given by Fegaras and Sheard, we modify
the domain of intensional analysis: in place ofΩ we introduce a
parameterized kind\, and require that the typeτ being analyzed
in Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) is of kind \κ. The con-
structorPlace must then have the polymorphic kind∀χ. χ → \χ,
and the fix-point constructor̊lu the kind∀χ. (\χ→ \χ)→ \χ.

We define theλQi calculus in Figures 8 and 9. Figures 10, 11,
and 12 show the static semantics. Figure 13 shows the dynamic
semantics.

Types which had kindΩ in λPi could be analyzed by aTyperec
with an arbitrary result kindκ′. In our new languageλQi , a type
that can be analyzed by an arbitraryTyperec construct must have
the kind\κ for all possibleκ. Thus the kindΩ of λPi is represented
by the kind∀χ. \χ in λQi .

To be able to analyze function and polymorphic types, we now
have to modify their kinds as well; to avoid confusion with the
constructors based onΩ, we denote the new constructors bẙ→→, ∀̊∀,
and∀̊∀

+
(Figure 8). The kind rules for these constructors are shown

9

Kind formation E ` κ
χ ∈ E
E ` χ

E ` κ
E ` \κ

E ` κ1 E ` κ2

E ` κ1 → κ2

E , χ ` κ
E ` ∀χ. κ

Type environment formation E ` ∆

E ` ε
E ` ∆ E ` κ
E ` ∆, α :κ

Type formation E ; ∆ ` τ : κ

E ` ∆ α :κ in ∆

E ; ∆ ` α : κ

E ` ∆

E ; ∆ ` int : ∀χ. \χ
E ; ∆ ` (→̊→) : ∀χ. \χ→ \χ→ \χ

E ; ∆ ` ∀̊∀ : ∀χ.∀χ′. (χ′ → \χ)→ \χ

E ; ∆ ` ∀̊∀
+

: ∀χ. (∀χ′. \χ)→ \χ
E ; ∆ ` l̊u : ∀χ. (\χ→ \χ)→ \χ
E ; ∆ ` Place : ∀χ. χ→ \χ

E ; ∆, α :κ ` τ : κ′

E ; ∆ ` λα :κ. τ : κ→κ′
E ; ∆ ` τ : κ′→κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` τ τ ′ : κ

E , χ; ∆ ` τ : κ

E ; ∆ ` Λχ. τ : ∀χ. κ
E ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` τ [κ′] : κ{κ′/χ}

E ; ∆ ` τ : \κ
E ; ∆ ` τint : κ
E ; ∆ ` τ→ : \κ→ \κ→ κ→ κ→ κ
E ; ∆ ` τ∀ : ∀χ. (χ→ \κ)→ (χ→ κ)→ κ
E ; ∆ ` τ∀+ : (∀χ. \κ)→ (∀χ. κ)→ κ
E ; ∆ ` τµ : (\κ→ \κ)→ (κ→ κ)→ κ

E ; ∆ ` Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) : κ

Figure 10:λQi type formation rules

in Figure 10. We can define equivalents of theλPi types(→→), ∀∀,
and∀∀

+
starting from→̊→, ∀̊∀, and∀̊∀

+
respectively. The key intuition

in the definition (Figure 9) is that we thread the same kind through
all components of kindΩ. For example, expanding the definition
of τ → τ ′ we obtain its equivalent,Λχ. →̊→ [χ] (τ [χ])(τ ′ [χ]). Ex-
pressed in terms of these derived types, the typing rules for most
λQi terms (Figure 11) are identical to those ofλPi . Compared with
λPi , the term language ofλQi has two new constructs –fold e as τ
andunfold e as τ – to implement the isomorphism between a re-
cursive type and its unfolding.

Each of these constructors must first be applied to kindκ before
being analyzed, whereκ is the kind of the result of the analysis. In
all other aspects the type-level analysis proceeds as inλPi by iter-
ating over the components of the type and then passing the results
of the iteration and the original components to the corresponding
branch of the iterator. For example, consider the analysis of theint

and∀̊∀ constructors (Figure 12):

Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τint

Typerec[κ] (̊∀∀ [κ] [κ′] τ) of (τint; τ→; τ∀; τ∀+; τµ) ;

τ∀ [κ′] τ (λα :κ′.Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+; τµ))

The reduction rules fortypecase are similar to those inλPi , with
the recursive type handled in an obvious way (Figure 13). How-
ever, there is one subtlety in thetypecase reduction rules. Since

Term environment formation E ; ∆ ` Γ

E ` ∆

E ; ∆ ` ε
E ; ∆ ` Γ E ; ∆ ` τ : Ω

E ; ∆ ` Γ, x :τ

Term formation E ; ∆; Γ ` e : τ

E ; ∆ ` Γ x :τ in Γ

E ; ∆; Γ ` x : τ

E ; ∆ ` Γ

E ; ∆; Γ ` i : int

E ; ∆; Γ ` e : τ E ; ∆ ` τ ; τ ′ : Ω

E ; ∆; Γ ` e : τ ′

E ; ∆ ` τ : ∀χ. \χ→ \χ E ; ∆; Γ ` e : luτ

E ; ∆; Γ ` unfold e as τ : τ$(luτ)

E ; ∆ ` τ : ∀χ. \χ→ \χ E ; ∆; Γ ` e : τ$(luτ)

E ; ∆; Γ ` fold e as τ : luτ

E , χ; ∆; Γ ` v : τ

E ; ∆; Γ ` Λ
+
χ. v : ∀

+
χ. τ

E ; ∆; Γ ` e : ∀∀
+
τ E ` κ

E ; ∆; Γ ` e [κ]
+

: τ [κ]

E ; ∆, α :κ; Γ ` e : τ

E ; ∆; Γ ` Λα :κ. e : ∀α :κ. τ

E ; ∆; Γ, x :τ ` e : τ ′

E ; ∆; Γ ` λx :τ. e : τ → τ ′

E ; ∆; Γ ` e : ∀∀ [κ] τ E ; ∆ ` τ ′ : κ

E ; ∆; Γ ` e [τ ′] : τ τ ′

E ; ∆; Γ ` e1 : τ2 → τ1 E ; ∆; Γ ` e2 : τ2

E ; ∆; Γ ` e1 e2 : τ1

E ; ∆; Γ, x :τ ` v : τ

τ = ∀
+
χ1 . . . χn.∀α1 :κ1 . . . αm :κm :τ1 → τ2.

n ≥ 0,m ≥ 0

E ; ∆; Γ ` fixx :τ. v : τ

E ; ∆ ` τ : Ω→ Ω
E ; ∆ ` τ ′ : Ω
E ; ∆; Γ ` eint : τ int
E ; ∆; Γ ` e→ : ∀α :Ω.∀α′ :Ω. τ (α1 → α2)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀α :χ→ Ω. τ (∀∀ [χ]α)

E ; ∆; Γ ` e∀+ : ∀α : (∀χ.Ω). τ (∀∀
+
α)

E ; ∆; Γ ` eµ : ∀α : (∀χ. \χ→ \χ). τ (luα)

E ; ∆; Γ ` typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ) : τ τ ′

Figure 11:λQi term formation rules

typecase does not iterate over the structure of a type, its reductions
do not introduce thePlace constructor; thus the type analyzed by
Typerec[κ] must be of kind\κ, but atypecase can only analyze
types of kindΩ, i.e., ∀χ. \χ. It is easy to see that there are no
closed types of this kind constructed usingPlace. Thus there are
no reduction rules fortypecase analyzing thePlace constructor.
We show this (in Section C.1) when proving the soundness ofλQi .

The languageλQi enjoys the properties ofλPi listed in Section 3
(for detailed proofs, see Appendix C). For instance, we prove
strong normalization using Girard’s method of candidates [6] as

10

Type reduction E ; ∆ ` τ1 ; τ2 : κ

E ; ∆ ` τ : κ

E ; ∆ ` τ ; τ : κ

E ; ∆ ` τ1 ; τ2 : κ

E ; ∆ ` τ2 ; τ1 : κ

E ; ∆ ` τ1 ; τ2 : κ E ; ∆ ` τ2 ; τ3 : κ

E ; ∆ ` τ1 ; τ3 : κ

E , χ; ∆ ` τ ; τ ′ : κ

E ; ∆ ` Λχ. τ ; Λχ. τ ′ : ∀χ. κ

E ; ∆ ` τ1 ; τ2 : ∀χ. κ E ` κ′

E ; ∆ ` τ1 [κ′] ; τ2 [κ′] : κ{κ′/χ}

E ; ∆, α :κ′ ` τ : κ E ; ∆ ` τ ′ : κ′

E ; ∆ ` (λα :κ′. τ) τ ′ ; τ{τ ′/α} : κ

E , χ; ∆ ` τ : ∀χ. κ E ` κ′

E ; ∆ ` (Λχ. τ) [κ′] ; τ{κ′/χ} : κ{κ′/χ}

E ; ∆ ` τ : κ→ κ′ α /∈ ftv(τ)

E ; ∆ ` λα :κ. τ α ; τ : κ→ κ′

E ; ∆ ` τ : ∀χ′. κ χ /∈ fkv(τ)

E ; ∆ ` Λχ. τ [χ] ; τ : ∀χ′. κ

E ; ∆, α :κ ` τ1 ; τ2 : κ′

E ; ∆ ` λα :κ. τ1 ; λα :κ. τ2 : κ→ κ′

E ; ∆ ` τ1 ; τ2 : κ′ → κ E ; ∆ ` τ ′1 ; τ ′2 : κ′

E ; ∆ ` τ1 τ ′1 ; τ2 τ
′
2 : κ

E ; ∆ ` Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) : κ

E ; ∆ ` Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τint : κ

E ; ∆ ` Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′1 : κ
E ; ∆ ` Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′2 : κ

E ; ∆ ` Typerec[κ] ((→̊→) [κ] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τµ) ; τ→ τ1 τ2 τ
′
1 τ
′
2 : κ

E ; ∆, α :κ′ ` Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (̊∀∀ [κ] [κ′] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ∀ [κ′] τ (λα :κ′. τ ′) : κ

E , χ; ∆ ` Typerec[κ] (τ [χ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (̊∀∀
+
[κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ∀+ τ (Λχ. τ ′) : κ

E ; ∆, α :κ ` Typerec[κ] (τ (Place [κ]α)) of (τint; τ→; τ∀; τ∀+; τµ) ; τ ′ : κ

E ; ∆ ` Typerec[κ] (̊lu [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τµ τ (λα :κ. τ ′) : κ

E ; ∆ ` Typerec[κ] (Place [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) : κ

E ; ∆ ` Typerec[κ] (Place [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ; τ : κ

Figure 12: SelectedλQi type reduction rules

unfold (fold v as τ) as τ ; v

e ; e′

fold e as τ ; fold e′ as τ

e ; e′

unfold e as τ ; unfold e′ as τ

typecase[τ] int of (eint; e→; e∀; e∀+; eµ) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e∀+; eµ) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀ [κ]
+

[τ ′]

typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀+ [τ ′]

typecase[τ] (luτ
′) of (eint; e→; e∀; e∀+; eµ) ; eµ [τ ′]

ε; ε ` τ ′ ;∗ ν′ :Ω ν′ is a normal form

typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ) ;

typecase[τ] ν′ of (eint; e→; e∀; e∀+; eµ)

Figure 13: SelectedλQi term reduction rules

for λPi , with a few adjustments: Since our “base” kind\ is para-
metric, we defineR\Cκ as the set of typesτ of kind \κ for which
Typerec[κ] τ . . . belongs to a candidateCκ of kind κ whenever the
branches belong to candidates of the respective kinds, and the set
S\κ[C/χ] is defined asR\(Sκ[C/χ]).

(value) v ::= i | λx :τ. e | fold v as τ | unfold v as τ

| Λα :κ. v | Λ
+
χ. v | fixx :τ. v

(context) E ::= [] | E e | v E | E [τ] | E [κ]
+

| fold E as τ | unfold E as τ

(redex) r ::= (λx :τ. e) v | (Λα :κ. v) [τ] | (Λ
+
χ. v) [κ]

+

| (fixx :τ. v) v′ | (fixx :τ. v) [τ ′]

| (fixx :τ. v) [κ]
+

| unfold (fold v as τ) as τ
| typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ)
| typecase[τ] int of (eint; e→; e∀; e∀+; eµ)
| typecase[τ] (τ ′ → τ ′′) of (eint; e→; e∀; e∀+; eµ)
| typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+; eµ)

| typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+; eµ)

| typecase[τ] (luτ
′) of (eint; e→; e∀; e∀+; eµ)

Figure 14: Term contexts

4.3 Limitations

The approach outlined in this section allows the analysis of recur-
sive types within the term language and the type language, but im-
poses severe limitations on combining these analyses. While one
can write a polymorphic equality function of type∀α : Ω. α →

11

(kinds) κ ::= Ω | T | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+
| R

| Tint | T→ | T∀ | T∀+ | TR
| α | Λχ. τ | τ [κ] | λα :κ. τ | τ τ ′
| Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τR)

(fixtype) σ ::= →→ τ τ ′ | ∀∀ [κ] (λα :κ. σ) | ∀∀
+
(Λχ. σ)

(values) v ::= i | Λ
+
χ. v | Λα :κ. v | λx :τ. e | fixx :σ. v

| v [τ] | v [κ]
+

| Rint | R→ (τ, τ ′, v, v′) | R∀ (κ, τ, τ ′, v′)
| R∀+ (τ, v) | RR (τ, v)

(terms) e ::= v | x | e [κ]
+
| e [τ] | e e′

| repcase[τ] e of (eint; e→; e∀; e∀+; eR)
| Rint | R→ (τ, τ ′, e, e′) | R∀ (κ, τ, τ ′, e′)
| R∀+ (τ, e) | RR (τ, e)

Figure 15: Syntax of theλPR language

α → Bool, and one can write a type operatorEq as in Sec-
tion 3, it is not possible to write polymorphic equality of type
∀α :Ω.Eqα→ Eqα→ Bool. The reason is that althoughEq (lu τ)
reduces to a recursive type, its unfolding is notEq (τ$(lu τ)), the
type needed for the recursive invocation of the equality function.
Indeed the typesτ ′ (lu τ) andτ ′ (τ$(lu τ)) are not bisimilar in gen-
eral, sinceτ ′ may analyze its argument and produce different re-
sults depending on whether it is a recursive type or not. Thus the
problem can be traced back to our decision to definel̊u as a “con-
structor” for kind\, which makes recursive types observably dis-
tinct from their unfoldings. Alternatives are to limit the result kind
of Typerec to Ω, or to regain transparency of̊lu by eliminating the
τµ branch ofTyperec and providing a reduction rule which always
maps recursive types to recursive types; since the analogous trans-
formation at the term level in the latter case will require combining
typecase with recursion, the resulting language exceeds the scope
of the current paper.

5 Type-erasure semantics

We give a type erasure semantics for our calculi following Crary
et al. [2]. This embedding simplifies certain stages of the com-
piler, most notably typed closure conversion. The basic idea is to
construct term-level representations of types and pass these rep-
resentations at runtime. The term-level type analysis operator is
modified to analyse these representations.

5.1 Type-erasure for λPi

Since only types of kindΩ are analysed, we provide representation
constants for types of kindΩ; the representations for other kinds
will be constructed inductively. Thus theλPR language (Figure 15)
has the constantRint corresponding to the typeint, and representa-
tion constants likeR→ corresponding to eachλPi type constructor.

Consider the problem of typing these representations. We intro-
duce the type constructorR to type the representation for types of
kind Ω. Types of higher kind are translated as functions from rep-
resentations to representations. However, the kind polymorphism
in λPi complicates this. For example, consider the typeλα : χ. α.
To get the type of the runtime representation ofα, we must know

E ` ∆

E ; ∆ ` RΩ ≡ R : T→ Ω

E ; ∆ ` αχ : χ→ Ω

E ; ∆ ` Rχ ≡ αχ : χ→ Ω

E ; ∆ ` Rκ ≡ τ : |κ| → Ω E ; ∆ ` Rκ′ ≡ τ ′ : |κ′| → Ω

E ; ∆ ` Rκ→κ′ ≡ λα : |κ→ κ′|.∀β : |κ|. τ β → τ ′ (αβ)
: |κ→ κ′| → Ω

E , χ; ∆, αχ :χ→ Ω ` Rκ ≡ τ : |κ| → Ω

E ; ∆ ` R∀χ. κ ≡ λα : |∀χ. κ|.∀
+
χ.∀αχ :χ→ Ω. τ (α [χ]Rχ)

: |∀χ. κ| → Ω

Figure 16: Types of representations at higher kinds

the kindχ. Therefore, we use a dictionary passing style at the type
level. For every kind argumentκ at a kind application, we supply
the type functionRκ (bound by the variableαχ) mapping types
of kind κ to the types of their representation terms. We show the
mapping in Figure 16.

In λPi , the∀∀ and the∀∀
+

constructor bind a kind. But the lan-
guageλPR requires that every construct binding a kind should also
bind the corresponding type dictionary. We therefore introduce tags
at the type level corresponding to every type constructor inλPi and
a corresponding kindT. The type-level analysis operator (Tagrec)
now operates on tags. Therefore, we get the following translation
of λPi kinds toλPR kinds.

|Ω| = T |κ→ κ′| = |κ| → |κ′|
|χ| = χ |∀χ. κ| = ∀χ. (χ→ Ω)→ |κ|

The formation rule for the tags (Figure 17) follows directly
from the kind translation and theλPi kind of the corresponding
type constructor. The mapping ofλPi types toλPR tags (Figure 20)
is also straightforward. The only interesting case is that of a kind
functionΛχ. τ ; theλPR translation also binds a type dictionaryαχ.
Since we do not have theR constructor inλPi , we only need to fill
in a type of the appropriate kind for theTR branch of theTagrec.

The Tagrec construct provides primitive recursion at the type
level. Its reduction rule (Figure 18) is similar to that of theTyperec
in λPi . Consider the reduction for the(T∀ [κ′] τ1 τ2) constructor.
Hereτ1 is the type dictionary for the kindκ′ andτ2 corresponds
to the body of the∀∀ constructor ofλPi . TheTagrec applies theτ∀
branch to the kindκ′, the dictionaryτ1, the bodyτ2, and the result
of the iteration over the body.

E ; ∆, α :κ′ ` Tagrec[κ] (τ2 α) of (τint; τ→; τ∀; τ∀+; τR)
7→ τ ′ : κ

E ; ∆ ` Tagrec[κ] (T∀ [κ′] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR)
7→ τ∀ [κ′] τ1 τ2 (λα :κ′. τ ′) : κ

The term level inλPR contains term-level tags corresponding
to the type constructors ofλPi . We introduce the constructorR
at the type level to type the term-level tags. Figure 17 shows the
formation rules for the term-level tags. Given aλPi typeτ of kind
Ω, its term tag has the typeR (|τ |) where|τ | is the type tag ofτ .
Intuitively, it makes sense since therepcase analyzes the term tag
and theTagrec analyzes|τ |. Therepcase has the obvious reduction
rule (Figure 19); every branch is applied to the components of the
corresponding term tag.

In Figure 21, we show the representation ofλPi types asλPR
terms. The key point is to maintain the invariant that every kind
abstraction introduces the corresponding type tag and every type
abstraction introduces the corresponding term tag. Therefore, the

12

kind and type abstractions are translated as:

<(Λχ. τ) = Λ
+
χ.Λαχ :χ→ Ω.<(τ)

<(λα :κ. τ) = Λα : |κ|. λxα :Rκ α.<(τ)

The kind application and the type application must supply the cor-
responding tags. The type tag isRκ (Figure 16) and the term tag is
the translation itself. Therefore, the kind and type applications are
translated as:

<(τ [κ]) = <(τ) [|κ|]
+

[Rκ]

<(τ τ ′) = <(τ) [|τ ′|] (<(τ ′))

The translation of type constructors follows from their kind. Con-
sider the translation of the∀∀ constructor. This constructor binds a
kind κ and a typeτ . Therefore, the translation introduces a kind
and the corresponding type tag (χ andαχ) and a type and the cor-
responding term tag (α andxα). The R∀ denotes that this is the
term tag for the∀∀ constructor.

<(∀∀) = Λ
+
χ.Λαχ :χ→ Ω.Λα :χ→ T. λxα :Rχ→Ω (α).
R∀ (χ,Rχ, α, xα)

TheTyperec translation uses arepcase, and a fixpoint to simulate
the recursion.

We show the translation ofλPi terms toλPR terms in Figure 22.
The interesting part of the translation is the use of theTagrec con-
struct to define the type of the translated term. This is possible
only because our system is fully reflexive, but this is crucial for
the term translation. In particular, to prove that the translation of a
type application and a kind application are of the correct type, the
type reduction relation must commute with respect to type and kind
substitution which is enforced by the definition of our type analysis
operators.

In Appendix B, we give the detailed semantics ofλPR and the
translation fromλPi to λPR.

We can prove the following propositions about the translation
of λPi to λPR. The propositions always extend the originalλPi type
environment∆ with a type environment∆(E) which binds a type
variableαχ of kind χ → Ω for eachχ ∈ E . Similarly the term-
level translations extend the term environmentΓ with Γ(∆), bind-
ing a variablexα of typeRκα for each type variableα bound in∆
with kind κ.

Proposition 5.1 If E ; ∆ ` τ : κ holds in λPi , then
|E|; |∆|, ∆(E) ` |τ | : |κ| holds inλPR.

The runtime representation<(τ) of aλPi typeτ in λPR is computed
as shown in Figure 21.

Proposition 5.2 If E ; ∆ ` τ : κ andE ; ∆ ` Γ hold inλPi , then
|E|; |∆|, ∆(E); |Γ|, Γ(∆) ` <(τ) : Rκ |τ | holds inλPR.

Figure 22 gives the translation|e| of λPi terms toλPR terms. The
operational semantics ofλPR is summarized in Figure 19.

Proposition 5.3 If E ; ∆; Γ ` e : τ holds in λPi , then
|E|; |∆|, ∆(E); |Γ|, Γ(∆) ` |e| : Type |τ | holds inλPR.

5.2 Type erasure for λQi

We saw in Section 4.1 that by restricting the result of theTyperec
to kind Ω, we can handle the analysis of recursive types with aλPi

like calculus (with the addition of alu constructor of kindΩ →
Ω → Ω). In practice, this is sufficient. ATyperec is used only for
typing a term-leveltypecase. Since the type of every branch of the
typecase must be of kindΩ, the result of theTyperec must also be
of kind Ω. The method in Section 5.1 can then be used to define a
type erasure calculus forλQi .

6 Related work

The work of Harper and Morrisett [8] introduced intensional type
analysis and pointed out the necessity for type-level type analysis
operators which inductively traverse the structure of types. The do-
main of their analysis is restricted to a predicative subset of the type
language, which prevents its use in programs which must support
all types of values, including polymorphic functions, closures, and
objects. This paper builds on their work by extending type analysis
to include the full type language. Craryet al. [1] propose a very
powerful type analysis framework. They define a rich kind calcu-
lus that includes sum kinds and inductive kinds. They also provide
primitive recursion at the type level. Therefore, they can define new
kinds within their calculus and directly encode type analysis oper-
ators within their language. They also include a novel refinement
operation at the term level. However, their type analysis is “limited
to parametrically polymorphic functions, and cannot account for
functions that perform intensional type analysis” [1, Section 4.1].
Our type analysis can also handle polymorphic functions that an-
alyze the quantified type variable. Moreover, their type analysis
is not fully reflexive since they can not handle arbitrary quantified
types; quantification must be restricted to type variables of kindΩ.
Duggan [3] proposes another framework for intensional type anal-
ysis; however, he allows the analysis of types only at the term level
and not at the type level. Yang [28] presents some approaches to
enable type-safe programming of type-indexed values in ML which
is similar to term-level analysis of types. Our solution for recursive
types is based on the idea proposed by Fegaras and Sheard [4] for
extending thefold operation to non-inductive datatypes. Meijer and
Hutton [11] also propose a method for extending catamorphisms
to datatypes with embedded functions; however, their method re-
quires the definition of an anamorphism for every such catamor-
phism. The type erasure semantics follows the idea proposed in [2]
of constructing term-level representation of types and passing them
at runtime. This idea is similar to dictionary passing used in the
implementation of type classes [16, 9].

Necula [14] proposed the ideas of a certifying compiler and im-
plemented a certifying compiler for a type-safe subset of C. Mor-
risettet al. [13] showed that a fully type-preserving compiler gen-
erating type-safe assembly code is a practical basis for a certifying
compiler.

The idea of programming with iterators is explained in Pierce’s
notes [18]. Pfenning and Mohring [17] show how inductively de-
fined types can be represented by closed types. They also construct
representations of all primitive recursive functions over inductively
defined types.

7 Conclusions

We presented a type-theoretic framework for fully reflexive inten-
sional analysis of types which includes analysis of polymorphic,
existential, and recursive types. We can analyze arbitrary types
both at the type level and at the term level. Moreover, we are not
restricted to analyzing only parametrically polymorphic functions;
we can also handle polymorphic functions that analyze the quan-
tified type variable. We proved the calculus sound and showed
that type checking still remains decidable. We gave an encoding

13

of our calculus into a type erasure semantics. Since we can ana-
lyze arbitrary types, we can now use these constructs to write type-
dependent runtime services that can operate on values of any type;
as an example we showed how to use reflexive type analysis to sup-
port type-safe marshalling.

Acknowledgments

We are grateful to the anonymous referees of ICFP 2000 for their
insightful comments and suggestions on improving the presenta-
tion.

References

[1] K. Crary and S. Weirich. Flexible type analysis. InProc. 1999 ACM
SIGPLAN International Conf. on Functional Programming, pages
233–248. ACM Press, Sept. 1999.

[2] K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type-erasure semantics. InProc. 1998 ACM SIGPLAN International
Conf. on Functional Programming, pages 301–312. ACM Press, Sept.
1998.

[3] D. Duggan. A type-based semantics for user-defined marshalling in
polymorphic languages. In X. Leroy and A. Ohori, editors,Proc.
1998 International Workshop on Types in Compilation, volume 1473
of LNCS, pages 273–298, Kyoto, Japan, Mar. 1998. Springer-Verlag.

[4] L. Fegaras and T. Sheard. Revisiting catamorphism over datatypes
with embedded functions. In23rd Annual ACM Symp. on Principles
of Programming Languages, pages 284–294. ACM Press, Jan. 1996.

[5] J. Y. Girard.Interprétation Fonctionnelle et́Elimination des Coupures
dans l’Arithḿetique d’Ordre Suṕerieur. PhD thesis, University of
Paris VII, 1972.

[6] J.-Y. Girard, Y. Lafont, and P. Taylor.Proofs and Types. Cambridge
University Press, 1989.

[7] R. Harper and J. C. Mitchell. Parametricity and variants of Girard’sJ
operator.Information Processing Letters, 70(1):1–5, April 1999.

[8] R. Harper and G. Morrisett. Compiling polymorphism using inten-
sional type analysis. InProc. 22nd Annual ACM Symp. on Principles
of Programming Languages, pages 130–141. ACM Press, Jan. 1995.

[9] M. P. Jones.Qualified Types: Theory and Practice. PhD thesis, Ox-
ford University Computing Laboratory, Oxford, July 1992. Technical
Monograph PRG-106.

[10] C. League, Z. Shao, and V. Trifonov. Representing Java classes in a
typed intermediate language. InProc. 1999 ACM SIGPLAN Interna-
tional Conf. on Functional Programming (ICFP’99), pages 183–196.
ACM Press, September 1999.

[11] E. Meijer and G. Hutton. Bananas in space: Extending fold and un-
fold to exponential types. InFunctional Programming and Computer
Architecture, 1995.

[12] Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In Proc. 23rd Annual ACM Symp. on Principles of Programming Lan-
guages, pages 271–283. ACM Press, 1996.

[13] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. InProc. 25th Annual ACM Symp. on Prin-
ciples of Programming Languages, pages 85–97. ACM Press, Jan.
1998.

[14] G. C. Necula.Compiling with Proofs. PhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Sept. 1998.

[15] A. Ohori and K. Kato. Semantics for communication primitives in
a polymorphic language. InProc. 20th Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, pages 99–
112. ACM Press, 1993.

[16] J. Peterson and M. Jones. Implementing type classes. InProc. ACM
SIGPLAN Conf. on Programming Language Design and Implementa-
tion, pages 227–236. ACM Press, June 1993.

[17] F. Pfenning and C. Paulin-Mohring. Inductively defined types in the
calculus of constructions. InProc. Fifth Conf. on the Mathematical
Foundations of Programming Semantics, pages 209–228, New Or-
leans, Louisiana, Mar. 1989. Springer-Verlag.

[18] B. Pierce, S. Dietzen, and S. Michaylov. Programming in higher-order
typed lambda-calculi. Technical Report CMU-CS-89-111, Carnegie
Mellon University, 1989.

[19] J. C. Reynolds. Towards a theory of type structure. InProceedings,
Colloque sur la Programmation, Lecture Notes in Computer Science,
volume 19, pages 408–425. Springer-Verlag, Berlin, 1974.

[20] Z. Shao. Flexible representation analysis. InProc. 1997 ACM SIG-
PLAN International Conf. on Functional Programming, pages 85–98.
ACM Press, June 1997.

[21] Z. Shao. An overview of the FLINT/ML compiler. InProc. 1997
ACM SIGPLAN Workshop on Types in Compilation, June 1997.

[22] Z. Shao. Typed cross-module compilation. InProc. 1998 ACM SIG-
PLAN International Conf. on Functional Programming. ACM Press,
1998.

[23] Z. Shao. Transparent modules with fully syntactic signatures. In
Proc. 1999 ACM SIGPLAN International Conf. on Functional Pro-
gramming (ICFP’99), pages 220–232. ACM Press, September 1999.

[24] Z. Shao and A. W. Appel. A type-based compiler for Standard ML.
In Proc. ACM SIGPLAN ’95 Conf. on Programming Language Design
and Implementation, pages 116–129, New York, 1995. ACM Press.

[25] D. Tarditi. Design and Implementation of Code Optimizations for
a Type-Directed Compiler for Standard ML. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, Dec.
1996. Tech Report CMU-CS-97-108.

[26] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. InProc. ACM
SIGPLAN ’96 Conf. on Programming Language Design and Imple-
mentation, pages 181–192. ACM Press, 1996.

[27] A. Wright and M. Felleisen. A syntactic approach to type soundness.
Technical report, Dept. of Computer Science, Rice University, June
1992.

[28] Z. Yang. Encoding types in ML-like languages. InProc. 1998 ACM
SIGPLAN International Conf. on Functional Programming, pages
289–300. ACM Press, 1998.

14

A Semantics of λPR and Translation from λPi

Kind formation E ` κ

E ` T

Type formation E ; ∆ ` τ : κ

E ` ∆

E ; ∆ ` R : T→ Ω
E ; ∆ ` Tint : T
E ; ∆ ` T→ : T→ T→ T
E ; ∆ ` T∀ : ∀χ. (χ→ Ω)→ (χ→ T)→ T
E ; ∆ ` T∀+ : (∀χ. (χ→ Ω)→ T)→ T
E ; ∆ ` TR : T→ T

E ; ∆ ` τ : T
E ; ∆ ` τint : κ
E ; ∆ ` τ→ : T→ T→ κ→ κ→ κ
E ; ∆ ` τ∀ : ∀χ. (χ→ Ω)→ (χ→ T)→ (χ→ κ)→ κ
E ; ∆ ` τ∀+ : (∀χ. (χ→ Ω)→ T)→ (∀χ. (χ→ Ω)→ κ)→ κ
E ; ∆ ` τR : T→ κ→ κ

E ; ∆ ` Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τR) : κ

Term formation E ; ∆; Γ ` e : τ

E ; ∆ ` Γ

E ; ∆; Γ ` Rint : RTint

E ; ∆; Γ ` e : Rτ E ; ∆; Γ ` e′ : Rτ ′

E ; ∆; Γ ` R→ (τ, τ ′, e, e′) : R (T→ τ τ
′)

E ; ∆ ` τ : |κ| → Ω E ; ∆; Γ ` e′ : Rκ→Ω (τ ′)

E ; ∆; Γ ` R∀ (|κ|, τ, τ ′, e′) : R (T∀ [|κ|] τ τ ′)

E ; ∆; Γ ` e : R∀χ.Ω (τ)

E ; ∆; Γ ` R∀+ (τ, e) : R (∀∀
+
τ)

E ; ∆; Γ ` e : Rτ

E ; ∆; Γ ` RR (τ, e) : R (Rτ)

E ; ∆ ` τ : T→ Ω
E ; ∆; Γ ` e : Rτ ′

E ; ∆; Γ ` eint : τ Tint

E ; ∆; Γ ` e→ : ∀α1 :T. Rα1 → ∀α2 :T. Rα2 → τ (T→ α1 α2)

E ; ∆; Γ ` e∀ : ∀
+
χ.∀αχ :χ→ Ω.
∀α :χ→ T. Rχ→Ω (α)→ τ (T∀ [χ]αχ α)

E ; ∆; Γ ` e∀+ : ∀α :∀χ. (χ→ Ω)→ T. R∀χ.Ω (α)→ τ (T∀+α)
E ; ∆; Γ ` eR : ∀α :T. Rα→ τ (TR α)

E ; ∆; Γ ` repcase[τ] e of (eint; e→; e∀; e∀+; eR) : τ τ ′

Figure 17: Formation rules for the new constructs inλPR

Type reduction E ; ∆ ` τ 7→ τ ′ : κ

E ; ∆ ` Tagrec[κ] Tint of (τint; τ→; τ∀; τ∀+; τR) : κ

E ; ∆ ` Tagrec[κ] Tint of (τint; τ→; τ∀; τ∀+; τR) 7→ τint : κ

E ; ∆ ` Tagrec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τR) 7→ τ ′1 : κ
E ; ∆ ` Tagrec[κ] τ2 of (τint; τ→; τ∀; τ∀+; τR) 7→ τ ′2 : κ

E ; ∆ ` Tagrec[κ] (T→ τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR)
7→ τ→ τ1 τ2 τ

′
1 τ
′
2 : κ

E ; ∆, α :κ′ ` Tagrec[κ] (τ2 α) of (τint; τ→; τ∀; τ∀+; τR)
7→ τ ′ : κ

E ; ∆ ` Tagrec[κ] (T∀ [κ′] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τR)
7→ τ∀ [κ′] τ1 τ2 (λα :κ′. τ ′) : κ

E , χ; ∆, αχ :χ→ Ω `
Tagrec[κ] (τ [χ]αχ) of (τint; τ→; τ∀; τ∀+; τR) 7→ τ ′ : κ

E ; ∆ ` Tagrec[κ] (T∀+ τ) of (τint; τ→; τ∀; τ∀+; τR)
7→ τ∀+ τ (Λχ. λαχ :χ→ Ω. τ ′) : κ

E ; ∆ ` Tagrec[κ] τ of (τint; τ→; τ∀; τ∀+; τR) 7→ τ ′ : κ

E ; ∆ ` Tagrec[κ] (TRτ) of (τint; τ→; τ∀; τ∀+; τR) 7→ τR τ τ
′ : κ

Figure 18: Non-standard reduction rules forλPR types

repcase[τ] Rint of (eint; e→; e∀; e∀+; eR) ; eint

repcase[τ] R→ (τ, τ ′, e, e′) of (eint; e→; e∀; e∀+; eR) ;

e→ [τ] [τ ′] e e′

repcase[τ] R∀ (κ, τ, τ ′, e′) of (eint; e→; e∀; e∀+; eR) ;

e∀ [κ]
+

[τ] [τ ′] e′

repcase[τ] R∀+ (τ, e) of (eint; e→; e∀; e∀+; eR) ; e∀+ [τ] e

repcase[τ] RR (τ, e) of (eint; e→; e∀; e∀+; eR) ; eR [τ] e

e ; e′

repcase[τ] e of (eint; e→; e∀; e∀+; eR) ;

repcase[τ] e′ of (eint; e→; e∀; e∀+; eR)

Figure 19: New term reduction rules ofλPR

|α| = α

|int|= Tint |Λχ. τ |= Λχ. λαχ :χ→ Ω. |τ |
|→→|= T→ |τ [κ]|= |τ | [|κ|]Rκ
|∀∀| = T∀ |λα :κ. τ |=λα : |κ|. |τ |

|∀∀
+
| =T∀+ |τ τ ′|= |τ | |τ ′|

|Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)|
= Tagrec[|κ|] |τ | of

(|τint|; |τ→|; |τ∀|; |τ∀+|; λ :T. λ : |κ|. |τint|)

Figure 20: Mapping ofλPi types toλPR tags

15

<(int) = Rint

<(→→) = Λα :T. λxα :Rα.Λβ :T. λxβ :Rβ.
R→ (α, β, xα, xβ)

<(∀∀) = Λ
+
χ.Λαχ :χ→ Ω.Λα :χ→ T. λxα :Rχ→Ω (α).
R∀ (χ,Rχ, α, xα)

<(∀∀
+
) = Λα : (∀χ. (χ→ Ω)→ T). λxα :R∀χ.Ω α.

R∀+ (α, xα)
<(α) = xα

<(Λχ. τ) = Λ
+
χ.Λαχ :χ→ Ω.<(τ)

<(τ [κ]) = <(τ) [|κ|]
+

[Rκ]
<(λα :κ. τ) = Λα : |κ|. λxα :Rκ α.<(τ)

<(τ τ ′) = <(τ) [|τ ′|] (<(τ ′))

<(Typerec[κ] τ of (τint; τ→; τ∀; τ∀+))
= (fix f :∀α :T. Rα→ Rκ (τ∗ α).

Λα :T. λxα :Rα.
repcase[λα :T. Rκ (τ∗ α)] xα of

Rint ⇒<(τint)
R→⇒Λα :T. λxα :Rα.Λβ :T. λxβ :Rβ.

<(τ→) [α]xα [β]xβ
[τ∗ α] (f [α]xα) [τ∗ β] (f [β]xβ)

R∀ ⇒Λ
+
χ.Λαχ :χ→ Ω.Λα :χ→ T. λxα :Rχ→Ω (α).

<(τ∀) [χ]
+

[Rχ] [α]xα [λβ :χ. τ∗ (αβ)]
(Λβ :χ. λxβ :Rχ β. f [αβ] (xα [β]xβ))

R∀+⇒Λα : (∀χ. (χ→ Ω)→ T). λxα :R∀χ.Ω α.
<(τ∀+) [α]xα
[Λχ. λαχ :χ→ Ω. τ∗ (α [χ]Rχ)]

(Λ
+
χ.Λαχ :χ→ Ω. f [α [χ]Rχ] (xα [χ]

+
[Rχ]))

RR ⇒Λα :T. λxα :Rα.<(τint))
[|τ |]
<(τ)
where
τ∗ = |λα :Ω.Typerec[κ] α of (τint; τ→; τ∀; τ∀+)|

Figure 21: Representation ofλPi types asλPR terms

B Properties of λPi

B.1 Soundness of λPi

The operational semantics forλPi are in Figure 6. The reduction
rules are standard except for thetypecase construct. Thetypecase
chooses a branch depending on the head constructor of the type
being analyzed and passes the corresponding subtypes as argu-
ments. For example, while analyzing the polymorphic type∀∀ [κ] τ ,
it chooses thee∀ branch and applies it to the kindκ and the type
function τ . If the type being analyzed is not in normal form, the
typecase reduces the type to its unique normal form.

We prove soundness of the system by using contextual seman-
tics in Wright/Felleisen style [27]. The evaluation contextsE are
shown in Figure 23. The reduction rules for the redexesr are shown
in Figure 6. We assume unique variable names and our environ-
ments are sets of variables. The notation` e :τ is used a shorthand
for ε; ε; ε ` e :τ .

Lemma B.1 If ε; ε ` ν : Ω, thenν is one ofint, ν1 → ν2,

∀∀ [κ] ν1, or ∀∀
+
ν1.

Proof Sinceν is well-formed in an empty environment, it does
not contain any free type or kind variables. Thereforeν can not
be aν0 since the head of aν0 is a type variable. The lemma now
follows by inspecting the remaining possibilities forν. 2

|i| = i
|x| = x

|Λ
+
χ. v| = Λ

+
χ.Λαχ :χ→ Ω. |v|

|e [κ]
+
| = |e| [|κ|]

+
[Rκ]

|Λα :κ. v| = Λα : |κ|. λxα :Rκ α. |v|
|e [τ]| = |e| [|τ |]<(τ)

|λx :τ. e| = λx :Type |τ |. |e|
|e e′| = |e| |e′|

|typecase[τ] τ ′ of (eint; e→; e∀; e∀+)|
= repcase[λα :T.Type (|τ |α)] <(τ ′) of

Rint ⇒|eint|
R→⇒|e→|
R∀ ⇒|e∀|
R∀+⇒|e∀+|
RR ⇒Λα :T. λx :Rα. |eint|

where
Type = λα :T.Tagrec[Ω] α of

Tint ⇒ int
T→⇒λ :T. λ :T. λα1 :Ω. λα2 :Ω.

α1 → α2

T∀ ⇒Λχ. λαχ :χ→ Ω. λ :χ→ T.
λα′ :χ→ Ω.∀α :χ.Rχ α→ α′ α

T∀+⇒λ : (∀χ. (χ→ Ω)→ T).
λα : (∀χ. (χ→ Ω)→ Ω).

∀
+
χ.∀αχ :χ→ Ω. α [χ]Rχ

TR ⇒ int

Figure 22: Translation ofλPi terms toλPR

(value) v ::= i | λx :τ. e | fixx :τ. v | Λα :κ. v | Λ
+
χ. v

(context) E ::= [] | E e | v E | E [τ] | E [κ]
+

(redex) r ::= (λx :τ. e) v | (Λα :κ. v) [τ] | (Λ
+
χ. e) [κ]

+

| (fixx :τ. v) v′ | (fixx :τ. v) [τ ′]

| (fixx :τ. v) [κ]
+

| typecase[τ] τ ′ of (eint; e→; e∀; e∀+)
| typecase[τ] int of (eint; e→; e∀; e∀+)
| typecase[τ] τ → τ ′ of (eint; e→; e∀; e∀+)
| typecase[τ] ∀∀ [κ] τ of (eint; e→; e∀; e∀+)

| typecase[τ] ∀∀
+
τ of (eint; e→; e∀; e∀+)

Figure 23: Term contexts

Lemma B.2 (Decomposition of terms)If ` e : τ , then eithere is
a value or it can be decomposed into uniqueE and r such that
e = E [r].

This is proved by induction over the derivation of` e :τ , using
Lemma B.1 in the case of thetypecase construct.

Corollary B.3 (Progress) If ` e : τ , then eithere is a value or
there exists ane′ such thate 7→ e′.

Proof By Lemma B.2, we know that if̀ e : τ and e is not a
value, then there exist someE and redexe1 such thate = E [e1].
Sincee1 is a redex, there exists a contractione2 such thate1 ; e2.
Thereforee 7→ e′ for e′ = E [e2]. 2

Lemma B.4 If ` E [e] :τ , then there exists aτ ′ such that` e :τ ′,
and for alle′ such that` e′ :τ ′ we have` E [e′] :τ .

16

ν0 ::= α | ν0 ν | ν0 [κ]
| Typerec[κ] ν0 of (νint; ν→; ν∀; ν∀+)

ν ::= ν0 | int | →→ | (→→) ν | (→→) ν ν′

| ∀∀ | ∀∀ [κ] | ∀∀ [κ] ν | ∀∀
+
| ∀∀

+
ν

| λα :κ. ν, where∀ν0. ν 6= ν0 α orα ∈ ftv(ν0)
| Λχ. ν, where∀ν0. ν 6= ν0 [χ] or χ ∈ fkv(ν0)

Figure 24: Normal forms in theλPi type language

Proof The proof is by induction on the derivation of` E [e] : τ .
The different forms ofE are handled similarly; we will show only
one case here.

• caseE = E1 e1: We have that̀ (E1 [e]) e1 : τ . By the
typing rules, this implies that̀ E1 [e] :τ1 → τ , for someτ1.
By induction, there exists aτ ′ such that̀ e :τ ′ and for alle′

such that̀ e′ :τ ′, we have that̀ E1 [e′] :τ1 → τ . Therefore
` (E1 [e′]) e1 :τ . 2

As usual, the proof of soundness depends on several substitu-
tion lemmas; these are shown below. The proofs are fairly straight-
forward and proceed by induction on the derivation of the judg-
ments. The notion of substitution is extended to environments in
the usual way.

Lemma B.5 If E , χ ` κ andE ` κ′, thenE ` κ{κ′/χ}.

Lemma B.6 If E , χ; ∆ ` τ : κ andE ` κ′, thenE ; ∆{κ′/χ} `
τ{κ′/χ} : κ{κ′/χ}.

Lemma B.7 If E , χ; ∆; Γ ` e : τ and E ` κ, then
E ; ∆{κ/χ}; Γ{κ/χ} ` e{κ/χ} : τ{κ/χ}.

Lemma B.8 If E ; ∆, α : κ′ ` τ : κ and E ; ∆ ` τ ′ : κ′, then
E ; ∆ ` τ{τ ′/α} : κ.

Lemma B.9 If E ; ∆, α : κ; Γ ` e : τ andE ; ∆ ` τ ′ : κ, then
E ; ∆; Γ{τ ′/α} ` e{τ ′/α} : τ{τ ′/α}.

Proof We prove this by induction on the structure ofe. We
demonstrate the proof here only for a few cases; the rest follow
analogously.

• casee = e1 [τ1]: We have thatE ; ∆ ` τ ′ : κ. and also that
E ; ∆, α : κ; Γ ` e1 [τ1] : τ . By the typing rule for a type
application we get that

E ; ∆, α :κ; Γ ` e1 : ∀β :κ1. τ2 and
E ; ∆, α :κ ` τ1 : κ1 and
τ = τ2{τ1/β}

By induction one1,

E ; ∆; Γ{τ ′/α} ` e1{τ ′/α} : ∀β :κ1. τ2{τ ′/α}
By Lemma B.8,E ; ∆ ` τ1{τ ′/α} : κ1. Therefore

E ; ∆; Γ{τ ′/α} ` (e1{τ ′/α}) [τ1{τ ′/α}] :
(τ2{τ ′/α}){τ1{τ ′/α}/β}

But this is equivalent to

E ; ∆; Γ{τ ′/α} ` (e1{τ ′/α}) [τ1{τ ′/α}] :
(τ2{τ1/β}){τ ′/α}

• casee = e1 [κ1]
+
: We have thatE ; ∆, α :κ; Γ ` e1 [κ1]

+
: τ

andE ; ∆ ` τ ′ : κ. By the typing rule for kind application,

E ; ∆, α :κ; Γ ` e1 : ∀χ. τ1 and
τ = τ1{κ1/χ} and
E ` κ1

By induction one1,

E ; ∆; Γ ` e1{τ ′/α} : ∀χ. τ1{τ ′/α}
Therefore

E ; ∆; Γ ` (e1{τ ′/α}) [κ1]
+

: (τ1{τ ′/α}){κ1/χ}
Sinceχ does not occur free inτ ′,

(τ1{τ ′/α}){κ1/χ} = (τ1{κ1/χ}){τ ′/α}

• case e = typecase[τ0] τ1 of (eint; e→; e∀; e∀+): We
have that E ; ∆ ` τ ′ : κ and E ; ∆, α : κ; Γ `
typecase[τ0] τ1 of (eint; e→; e∀; e∀+) : τ0 τ1. Using
Lemma B.8 on the kind derivation ofτ0 andτ1, and the in-
ductive assumption on the typing rules for the subterms we
get,

E ; ∆ ` τ0{τ ′/α} : Ω→ Ω and
E ; ∆ ` τ1{τ ′/α} : Ω and
E ; ∆; Γ{τ ′/α} ` eint{τ ′/α} : (τ0 int){τ ′/α} and
E ; ∆; Γ{τ ′/α} ` e→{τ ′/α} :

(∀α1 :Ω.∀α2 :Ω. τ0 (α1 → α2)){τ ′/α} and
E ; ∆; Γ{τ ′/α} ` e∀{τ ′/α} :

(∀
+
χ.∀α :χ→ Ω. τ0 (∀∀ [χ]α)){τ ′/α} and

E ; ∆; Γ{τ ′/α} ` e∀+{τ
′/α} :

(∀α :∀χ.Ω. τ0 (∀∀
+
α)){τ ′/α}

The above typing judgments are equivalent to

E ; ∆ ` τ0{τ ′/α} : Ω→ Ω and
E ; ∆ ` τ1{τ ′/α} : Ω and
E ; ∆; Γ{τ ′/α} ` eint{τ ′/α} : (τ0{τ ′/α}) int and
E ; ∆; Γ{τ ′/α} ` e→{τ ′/α} :

∀α1 :Ω.∀α2 :Ω. (τ0{τ ′/α}) (α1 → α2) and
E ; ∆; Γ{τ ′/α} ` e∀{τ ′/α} :

∀
+
χ.∀α :χ→ Ω. (τ0{τ ′/α}) (∀∀ [χ]α) and

E ; ∆; Γ{τ ′/α} ` e∀+{τ
′/α} :

∀α :∀χ.Ω. (τ0{τ ′/α}) (∀∀
+
α)

from which the statement of the lemma follows directly.2

Lemma B.10 If E ; ∆; Γ, x : τ ′ ` e : τ andE ; ∆; Γ ` e′ : τ ′,
thenE ; ∆; Γ ` e{e′/x} : τ .

Proof Proved by induction over the structure ofe. The different
cases are proved similarly. We will show only two cases here.

• casee = Λα :κ. v: We have that
E ; ∆; Γ, x :τ ′ ` Λα :κ. v : ∀α :κ. τ and
E ; ∆; Γ ` e′ : τ ′

Sincee can always be alpha-converted, we assume thatα is
not previously defined in∆. This impliesE ; ∆, α : κ; Γ, x :
τ ′ ` v : τ . Sinceα is not free ine′, we haveE ; ∆, α :κ; Γ `
e′ : τ ′. By induction,E ; ∆, α :κ; Γ ` v{e′/x} : τ . Hence
E ; ∆; Γ ` Λα :κ. v{e′/x} : ∀α :κ. τ .

• casee = typecase[τ0] τ1 of (eint; e→; e∀; e∀+): We have
that
E ; ∆; Γ ` e′ : τ ′ and
E ; ∆; Γ, x :τ ′ ` typecase[τ0] τ1 of (eint; e→; e∀; e∀+) :

τ0 τ1

By thetypecase typing rule we get

17

(kinds) κ ::= Ω | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →→ | ∀∀ | ∀∀
+

| α | Λχ. τ | λα :κ. τ | τ [κ] | τ τ ′
| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

Figure 25: TheλPi type language

E ; ∆ ` τ0 : Ω→ Ω and
E ; ∆ ` τ1 : Ω and
E ; ∆; Γ, x :τ ′ ` eint : τ0 int and
E ; ∆; Γ, x :τ ′ ` e→ : ∀α1 :Ω.∀α2 :Ω. τ0 (α1 → α2) and

E ; ∆; Γ, x :τ ′ ` e∀ : ∀
+
χ.∀α :χ→ Ω. τ0 (∀∀ [χ]α) and

E ; ∆; Γ, x :τ ′ ` e∀+ : ∀α :∀χ.Ω. τ0 (∀∀
+
α)

Applying the inductive hypothesis to each of the subterms
eint, e→, e∀, e∀+ yields directly the claim. 2

Definition B.11 e evaluates toe′ (writtene 7→ e′) if there existE,
e1, ande2 such thate = E [e1] ande′ = E [e2] ande1 ; e2.

Theorem B.12 (Subject reduction) If ` e : τ and e 7→ e′, then
` e′ :τ .

Proof By Lemma B.2,e can be decomposed into uniqueE and
unique redexe1 such thate = E [e1]. By definition,e′ = E [e2]
ande1 ; e2. By Lemma B.4, there exists aτ ′ such that` e1 :τ ′.
By the same lemma, all we need to prove is that` e2 : τ ′ holds.
This is proved by considering each possible redex in turn. We will
show only two cases, the rest follow similarly.

• casee1 = (fixx :τ1. v) v′: Thene2 = (v{fixx :τ1. v/x}) v′.
We have that̀ (fixx : τ1. v) v′ : τ ′. By the typing rules for
term application we get that for someτ2,

` fixx :τ1. v :τ2 → τ ′ and
` v′ :τ2

By the typing rule forfix we get that,

` τ1 = τ2 → τ ′ and
ε; ε; ε, x :τ2 → τ ′ ` v : τ2 → τ ′

Using Lemma B.10 and the typing rule for application, we
obtain the desired judgment

` (v{fixx :τ1. v/x}) v′ :τ ′

• case e1 = typecase[τ0] τ1 of (eint; e→; e∀; e∀+): If
τ1 is not in normal form, the reduction is toe2 =
typecase[τ0] ν1 of (eint; e→; e∀; e∀+), whereε; ε ` τ1 7→∗
ν1 : Ω. The latter impliesε; ε ` τ0 τ1 = τ0 ν1 : Ω, hence
` e2 :τ ′ follows directly from` e1 :τ ′.

If τ1 is in normal formν1, by the second premise of the typ-
ing rule fortypecase and Lemma B.1 we have four cases for
ν1. In each case the contraction has the desired typeτ0 ν1, ac-
cording to the corresponding premises of thetypecase typing
rule and the rules for type and kind applications. 2

B.2 Strong normalization

The type language is shown in Figure 25. The single step reduction
relation (τ ; τ ′) is shown in Figure 27.

Lemma B.13 If E ; ∆ ` τ : κ andτ ; τ ′, thenE ; ∆ ` τ ′ : κ.

Proof (Sketch) The proof follows from a case analysis of the re-
duction relation (;). 2

Lemma B.14 If τ1 ; τ2, thenτ1{τ/α}; τ2{τ/α}.

Proof The proof is by enumerating each possible reduction from
τ1 to τ2.

caseβ1: In this case,τ1 = (λβ :κ. τ ′) τ ′′ andτ2 = τ ′{τ ′′/β}.
This implies that

τ1{τ/α} = (λβ :κ. τ ′{τ/α}) τ ′′{τ/α}

This beta reduces to

(τ ′{τ/α}){τ ′′{τ/α}/β}

Sinceβ does not occur free inτ , this is equivalent to

(τ ′{τ ′′/β}){τ/α}

caseβ2: In this case,τ1 = (Λχ. τ ′) [κ] andτ2 = τ ′{κ/χ}.
We get that

τ1{τ/α} = (Λχ. τ ′{τ/α}) [κ]

This beta reduces to
τ ′{τ/α}{κ/χ}

Sinceχ is not free inτ , this is equivalent to

(τ ′{κ/χ}){τ/α}

caseη1: In this case,τ1 = λβ :κ. τ ′ β andτ2 = τ ′ andβ does
not occur free inτ ′. We get that

τ1{τ/α} = λβ :κ. (τ ′{τ/α})β

Since this is a capture avoiding substitution,β still does not occur
free inτ ′{τ/α}. Therefore this eta reduces toτ ′{τ/α}.

caseη2: In this case,τ1 = Λχ. τ ′ [χ] andτ2 = τ ′ andχ does
not occur free inτ ′. We get that

τ1{τ/α} = Λχ. (τ ′{τ/α}) [χ]

Since this is a capture avoiding substitution,χ still does not occur
free inτ ′{τ/α}. Therefore, this eta reduces toτ ′{τ/α}.

case t1: τ1 = Typerec[κ] int of (τint; τ→; τ∀; τ∀+) and
τ2 = τint. We get that

τ1{τ/α} =
Typerec[κ] int of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α})

But this reduces by thet1 reduction toτint{τ/α}.
caset2: τ1 = Typerec[κ] (τ ′ → τ ′′) of (τint; τ→; τ∀; τ∀+)

and

τ2 = τ→ τ
′ τ ′′ (Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+))

(Typerec[κ] τ ′′ of (τint; τ→; τ∀; τ∀+))

We get that

τ1{τ/α} =
Typerec[κ] (τ ′{τ/α} → τ ′′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α})

This reduces byt2 to

τ→{τ/α} (τ ′{τ/α}) (τ ′′{τ/α})
(Typerec[κ] (τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}))
(Typerec[κ] (τ ′′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}))

18

But this is syntactically equal toτ2{τ/α}.
caset3: τ1 = Typerec[κ] (∀∀ [κ′] τ ′) of (τint; τ→; τ∀; τ∀+) and

τ2 = τ∀ [κ′] τ ′ (λβ :κ′.Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ∀+))

We get that

τ1{τ/α} =
Typerec[κ] (∀∀ [κ′] τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α})

This reduces byt3 to

τ∀{τ/α} [κ′] (τ ′{τ/α})
(λβ :κ′.Typerec[κ] ((τ ′{τ/α})β) of
(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}))

But this is syntactically equivalent toτ2{τ/α}.
caset4: τ1 = Typerec[κ] (∀∀

+
τ ′) of (τint; τ→; τ∀; τ∀+) and

τ2 = τ∀+ τ
′ (Λχ.Typerec[κ] (τ ′ [χ]) of (τint; τ→; τ∀; τ∀+))

We get that

τ1{τ/α} =

Typerec[κ] (∀∀
+
τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α})

This reduces byt4 to

τ∀+{τ/α} (τ ′{τ/α})
(Λχ.Typerec[κ] ((τ ′{τ/α}) [χ]) of
(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}))

But this is syntactically equal toτ2{τ/α}. 2

Lemma B.15 If τ1 ; τ2, thenτ1{κ′/χ′}; τ2{κ′/χ′}.

Proof This is proved by case analysis of the type reduction rela-
tion.

caseβ1: In this case,τ1 = (λβ :κ. τ ′) τ ′′ andτ2 = τ ′{τ ′′/β}.
This implies that

τ1{κ′/χ′} = (λβ :κ{κ′/χ′}. τ ′{κ′/χ′}) τ ′′{κ′/χ′}

This beta reduces to

(τ ′{κ′/χ′}){τ ′′{κ′/χ′}/β}

But this is equivalent to

(τ ′{τ ′′/β}){κ′/χ′}

caseβ2: In this case,τ1 = (Λχ. τ ′) [κ] andτ2 = τ ′{κ/χ}.
We get that

τ1{κ′/χ′} = (Λχ. τ ′{κ′/χ′}) [κ{κ′/χ′}]

This beta reduces to

τ ′{κ′/χ′}{κ{κ′/χ′}/χ}

Sinceχ is not free inκ′, this is equivalent to

(τ ′{κ/χ}){κ′/χ′}

caseη1: In this case,τ1 = λβ :κ. τ ′ β andτ2 = τ ′ andβ does
not occur free inτ ′. We get that

τ1{κ′/χ′} = λβ :κ{κ′/χ′}. (τ ′{κ′/χ′})β

Again β does not occur free inτ ′{κ′/χ′}. Therefore this eta re-
duces toτ ′{κ′/χ′}.

caseη2: In this case,τ1 = Λχ. τ ′ [χ] andτ2 = τ ′ andχ does
not occur free inτ ′. We get that

τ1{κ′/χ′} = Λχ. (τ ′{κ′/χ′}) [χ]

Since this is a capture avoiding substitution,χ still does not occur
free inτ ′{κ′/χ′}. Therefore, this eta reduces toτ ′{κ′/χ′}.

case t1: τ1 = Typerec[κ] int of (τint; τ→; τ∀; τ∀+) and
τ2 = τint. We get that

τ1{κ′/χ′} =
Typerec[κ{κ′/χ′}] int of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′})

But this reduces by thet1 reduction toτint{κ′/χ′}.
caset2: τ1 = Typerec[κ] (τ ′ → τ ′′) of (τint; τ→; τ∀; τ∀+)

and

τ2 = τ→ τ
′ τ ′′ (Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+))

(Typerec[κ] τ ′′ of (τint; τ→; τ∀; τ∀+))

We get that

τ1{κ′/χ′} = Typerec[κ{κ′/χ′}] (τ ′{κ′/χ′} → τ ′′{κ′/χ′}) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′})

This reduces byt2 to

τ→{κ′/χ′} (τ ′{κ′/χ′}) (τ ′′{κ′/χ′})
(Typerec[κ{κ′/χ′}] (τ ′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′}))

(Typerec[κ{κ′/χ′}] (τ ′′{κ′/χ′}) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}))

But this is syntactically equal toτ2{κ′/χ′}.
caset3: τ1 = Typerec[κ] (∀∀ [κ1] τ ′) of (τint; τ→; τ∀; τ∀+)

and

τ2 = τ∀ [κ1] τ ′ (λβ :κ1.Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ∀+))

We get that

τ1{κ′/χ′} =
Typerec[κ{κ′/χ′}] (∀∀ [κ1{κ′/χ′}] τ ′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′})

This reduces byt3 to

τ∀{κ′/χ′} [κ1{κ′/χ′}] (τ ′{κ′/χ′})
(λβ :κ1{κ′/χ′}.Typerec[κ{κ′/χ′}] ((τ ′{κ′/χ′})β) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}))

But this is syntactically equivalent toτ2{κ′/χ′}.
caset4: τ1 = Typerec[κ] (∀∀

+
τ ′) of (τint; τ→; τ∀; τ∀+) and

τ2 = τ∀+ τ
′ (Λχ.Typerec[κ] (τ ′ [χ]) of (τint; τ→; τ∀; τ∀+))

We get that

τ1{κ′/χ′} =

Typerec[κ{κ′/χ′}] (∀∀
+
τ ′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′})

19

This reduces byt4 to

τ∀+{κ
′/χ′} (τ ′{κ′/χ′})

(Λχ.Typerec[κ{κ′/χ′}] ((τ ′{κ′/χ′}) [χ]) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}))

But this is syntactically equal toτ2{κ′/χ′}. 2

Definition B.16 A typeτ is strongly normalizable if every reduc-
tion sequence fromτ terminates into a normal form (with no re-
dexes). We useν(τ) to denote the length of the largest reduction
sequence fromτ to a normal form.

Definition B.17 We define neutral types,n, as
n0 ::= Λχ. τ | λα :κ. τ
n ::= α | n0 τ | n τ | n0 [κ] | n [κ]

| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

Definition B.18 A reducibility candidate (also referred to as a
candidate) of kindκ is a setC of types of kindκ such that

1. if τ ∈ C, thenτ is strongly normalizable.

2. if τ ∈ C andτ ; τ ′, thenτ ′ ∈ C.

3. if τ is neutral and if for allτ ′ such thatτ ; τ ′, we have that
τ ′ ∈ C, thenτ ∈ C.

This implies that the candidates are never empty since ifα has
kind κ, thenα belongs to candidates of kindκ.

Definition B.19 Let κ be an arbitrary kind. LetCκ be a candi-
date of kindκ. Let CΩ→Ω→κ→κ→κ be a candidate of kindΩ →
Ω→ κ→ κ→ κ. Let C∀χ. (χ→Ω)→(χ→κ)→κ be a candidate of
kind∀χ. (χ→ Ω)→ (χ→ κ)→ κ. LetC(∀χ.Ω)→(∀χ. κ)→κ be a
candidate of kind(∀χ.Ω) → (∀χ. κ) → κ. We then define the set
RΩ of types of kindΩ as

τ ∈ RΩ iff
∀∀τint ∈ Cκ
∀∀τ→ ∈ CΩ→Ω→κ→κ→κ,
∀∀τ∀ ∈ C∀χ. (χ→Ω)→(χ→κ)→κ,
∀∀τ∀+ ∈ C(∀χ.Ω)→(∀χ. κ)→κ
⇒ Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) ∈ Cκ

Lemma B.20 RΩ is a candidate of kindΩ.

Proof Supposeτ ∈ RΩ. Supposeτint, τ→, τ∀, andτ∀+ belong to
Cκ, CΩ→Ω→κ→κ→κ, C∀χ. (χ→Ω)→(χ→κ)→κ, C(∀χ.Ω)→(∀χ. κ)→κ
respectively, where the candidates are of the appropriate kinds (see
definition B.19).

Considerτ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+). By defi-
nition this belongs toCκ. By property 1 of definition B.18,τ ′ is
strongly normalizable and thereforeτ must be strongly normaliz-
able.

Considerτ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+). Suppose
τ ; τ1. Thenτ ′ ; Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+). Since
τ ′ ∈ Cκ, Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+) belongs toCκ by
property 2 of definition B.18. Therefore, by definition,τ1 belongs
toRΩ.

Supposeτ is neutral and for allτ1 such thatτ ; τ1, τ1 ∈
RΩ. Considerτ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+). Since
we know thatτint, τ→, τ∀, andτ∀+ are strongly normalizable, we
can induct overlen = ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+). We will
prove that for all values oflen, Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)
always reduces to a type that belongs toCκ; given thatτint, τ→, τ∀,
andτ∀+ belong toCκ, CΩ→Ω→κ→κ→κ, C∀χ. (χ→Ω)→(χ→κ)→κ, and
C(∀χ.Ω)→(∀χ. κ)→κ respectively (see definition B.19).

• len = 0 Thenτ ′ ; Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+) is
the only possible reduction sinceτ is neutral. By the assump-
tion onτ1, this belongs toCκ.

• len = k + 1 For the inductive case, assume that the
hypothesis is true forlen = k. That is, for len = k,
Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) always reduces to a
type that belongs toCκ; given that τint, τ→, τ∀, and
τ∀+ belong toCκ, CΩ→Ω→κ→κ→κ, C∀χ. (χ→Ω)→(χ→κ)→κ,
and C(∀χ.Ω)→(∀χ. κ)→κ respectively. This implies that for
len = k, Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) belongs to
Cκ (by property 3 of definition B.18). Forlen = k + 1,
consider τ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+).
This can reduce toTyperec[κ] τ1 of (τint; τ→; τ∀; τ∀+)
which belongs toCκ. The other possible reductions are
Typerec[κ] τ of (τ ′int; τ→; τ∀; τ∀+) whereτint ; τ ′int, or
Typerec[κ] τ of (τint; τ

′
→; τ∀; τ∀+) whereτ→ ; τ ′→, or

Typerec[κ] τ of (τint; τ→; τ ′∀; τ∀+) where τ∀ ; τ ′∀, or
Typerec[κ] τ of (τint; τ→; τ∀; τ

′
∀+

) whereτ∀+ ; τ ′
∀+

. By
property 2 of definition B.18, each ofτ ′int, τ

′
→, τ ′∀, andτ ′

∀+

belongs to the required candidate andlen = k for each of the
reducts. Therefore, by the inductive hypothesis, each of the
reducts belongs toCκ.

ThereforeTyperec[κ] τ of (τint; τ→; τ∀; τ∀+) always reduces
to a type that belongs toCκ. By property 3 of definition B.18,
Typerec[κ] τ of (τint; τ→; τ∀; τ∀+) also belongs toCκ. Therefore,
τ ∈ RΩ 2

Definition B.21 Let C1 andC2 be two candidates of kindsκ1 and
κ2. We then define the setC1 → C2, of types of kindκ1 → κ2, as

τ ∈ C1 → C2 iff ∀∀τ ′(τ ′ ∈ C1 ⇒ τ τ ′ ∈ C2)

Lemma B.22 If C1 andC2 are candidates of kindsκ1 andκ2, then
C1 → C2 is a candidate of kindκ1 → κ2.

Proof Supposeτ of kind κ1 → κ2 belongs toC1 → C2. By def-
inition, if τ ′ ∈ C1, thenτ τ ′ ∈ C2. SinceC2 is a candidate,τ τ ′ is
strongly normalizable. Therefore,τ must be strongly normalizable
since for every sequence of reductionsτ ; τ1 . . . τk . . ., there is a
corresponding sequence of reductionsτ τ ′ ; τ1 τ

′ . . . τk τ
′

Supposeτ of kind κ1 → κ2 belongs toC1 → C2 andτ ; τ ′.
Supposeτ1 ∈ C1. By definition,τ τ1 ∈ C2. But τ τ1 ; τ ′ τ1. By
using property 2 of definition B.18 onC2, τ ′ τ1 ∈ C2; therefore,
τ ′ ∈ C1 → C2.

Consider a neutralτ of kind κ1 → κ2. Suppose that for allτ ′

such thatτ ; τ ′, τ ′ ∈ C1 → C2. Considerτ τ1 whereτ1 ∈ C1.
Sinceτ1 is strongly normalizable, we can induct overν(τ1). If
ν(τ1) = 0, thenτ τ1 ; τ ′ τ1. But τ ′ τ1 ∈ C2 (by assumption
on τ ′), and sinceτ is neutral, no other reduction is possible. If
ν(τ1) 6= 0, thenτ1 ; τ ′1. In this case,τ τ1 may reduce to either
τ ′ τ1 or to τ τ ′1. We saw that the first reduct belongs toC2. By
property 2 of definition B.18,τ ′1 ∈ C1 andν(τ ′1) < ν(τ1). By
the inductive assumption overν(τ1), we get thatτ τ ′1 belongs to
C2. By property 3 of definition B.18,τ τ1 ∈ C2. This implies that
τ ∈ C1 → C2. 2

Definition B.23 We useχ to denote the setχ1, . . . , χn of χ. We
use a similar syntax to denote a set of other constructs.

Definition B.24 Let κ[χ] be a kind whereχ contains all the free
kind variables ofκ. Let κ be a sequence of closed kinds of the
same length andC be a sequence of candidates of the correspond-
ing kind. We now define the setSκ[C/χ] of types of kindκ{κ/χ}
as

20

1. if κ = Ω, thenSκ[C/χ] = RΩ.

2. if κ = χi, thenSκ[C/χ] = Ci.

3. if κ = κ1 → κ2, thenSκ[C/χ] = Sκ1 [C/χ]→ Sκ2 [C/χ].

4. if κ = ∀χ. κ′, thenSκ[C/χ] = the set of typesτ of kind
κ{κ/χ} such that for every kindκ′′ and reducibility candi-
dateC′′ of this kind,τ [κ′′] ∈ Sκ′ [C, C′′/χ, χ].

Lemma B.25 Sκ[C/χ] is a reducibility candidate of kindκ{κ/χ}.

Proof For κ = Ω, the lemma follows from lemma B.20. For
κ = χ, the lemma follows by definition. Ifκ = κ1 → κ2, then
the lemma follows from the inductive hypothesis onκ1 andκ2 and
lemma B.22. We only need to prove the case forκ = ∀χ′. κ′. We
will induct over the size ofκ with theχ containing all the free kind
variables ofκ.

Consider aτ ∈ S∀χ′. κ′ [C/χ]. By definition, for any kindκ1

and corresponding candidateC′, τ [κ1] ∈ Sκ′ [C, C′/χ, χ′]. Ap-
plying the inductive hypothesis onκ′, we get thatSκ′ [C, C′/χ, χ′]
is a candidate. Therefore,τ [κ1] is strongly normalizable which
implies thatτ is strongly normalizable.

Consider aτ ∈ S∀χ′. κ′ [C/χ] and τ ; τ1. For any
kind κ1 and corresponding candidateC′, by definition,τ [κ1] ∈
Sκ′ [C, C′/χ, χ′]. But τ [κ1] ; τ1 [κ1]. By the inductive hypoth-
esis onκ′, we get thatSκ′ [C, C′/χ, χ′] is a candidate. By prop-
erty 2 of definition B.18,τ1 [κ1] ∈ Sκ′ [C, C′/χ, χ′]. Therefore,
τ1 ∈ S∀χ′. κ′ [C/χ].

Consider a neutralτ so that for allτ1, such thatτ ; τ1,
τ1 ∈ S∀χ′. κ′ [C/χ]. Considerτ [κ1] for an arbitrary kindκ1 and
corresponding candidateC′. We have thatτ [κ1] ; τ1 [κ1]. This is
the only possible reduction sinceτ is neutral. By the assumption on
τ1 τ1 [κ1] ∈ Sκ′ [C, C′/χ, χ′]. By the inductive hypothesis onκ′,
we get thatSκ′ [C, C′/χ, χ′] is a candidate. By property 3 of defini-
tion B.18,τ [κ1] ∈ Sκ′ [C, C′/χ, χ′]. Thereforeτ ∈ S∀χ′. κ′ [C/χ].
2

Lemma B.26 Sκ{κ′/χ′}[C/χ] = Sκ[C,Sκ′ [C/χ]/χ, χ′]

Proof The proof is by induction over the structure ofκ. We
will show only the case for polymorphic kinds, the others fol-
low directly by induction. Supposeκ = ∀χ′′. κ′′. Then
the LHS is the set of typesτ of kind (∀χ′′. κ′′{κ′/χ′}){κ/χ}
such that for every kindκ′′′ and corresponding candi-
date C′′′, τ [κ′′′] belongs toSκ′′{κ′/χ′}[C, C′′′/χ, χ′′]. Ap-
plying the inductive hypothesis toκ′′, this is equal to
Sκ′′ [C, C′′′,Sκ′ [C, C′′′/χ, χ′′]/χ, χ′′, χ′]. But χ′′ does not occur
free in κ′ (variables inκ′ can always be renamed). Therefore,
τ [κ′′′] belongs toSκ′′ [C, C′′′,Sκ′ [C/χ]/χ, χ′′, χ′]. The RHS con-
sists of typesτ ′ of kind (∀χ′′. κ′′){κ, κ′{κ/χ}/χ, χ′} such that
for every kindκ′′′ and corresponding candidateC′′′, τ ′ [κ′′′] be-
longs toSκ′′ [C,Sκ′ [C/χ], C′′′/χ, χ′, χ′′]. Also, the kind ofτ ′ is
equivalent to(∀χ′′. κ′′{κ′/χ′}){κ/χ}. 2

Proposition B.27 From lemma B.25, we know thatSκ[C/χ]

is a candidate of kindκ{κ/χ}, that SΩ→Ω→κ→κ→κ[C/χ]
is a candidate of kind(Ω → Ω → κ → κ →
κ){κ/χ}, that S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ] is a can-
didate of kind (∀χ. (χ→ Ω)→ (χ→ κ)→ κ){κ/χ},
and S(∀χ.Ω)→(∀χ. κ)→κ[C/χ] is a candidate of kind
((∀χ.Ω) → (∀χ. κ) → κ){κ/χ}. In the rest of the sec-
tion, we will assume that the typesτint, τ→, τ∀, andτ∀+ belong to
the above candidates respectively.

Lemma B.28 int ∈ RΩ = SΩ[C/χ]

Proof Considerτ = Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+).
The lemma holds ifTyperec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+)

belongs to Sκ[C/κ] is true; given that
τint ∈ Sκ[C/χ], and τ→ ∈ SΩ→Ω→κ→κ→κ[C/χ],
and τ∀ ∈ S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ], and
τ∀+ ∈ S(∀χ.Ω)→(∀χ. κ)→κ[C/χ].

Since τint, τ→, τ∀, and τ∀+ are strongly normaliz-
able, we will induct over len = ν(τint) + ν(τ→) +
ν(τ∀) + ν(τ∀+). We will prove that for all values oflen,
Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+) always reduces to a
type that belongs toCκ; given that the branches belong to the can-
didates as in proposition B.27.

• len = 0 ThenTyperec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+)
can reduce only toτint which by assumption belongs to
Sκ[C/κ].

• len = k + 1 For the inductive case, assume that
the hypothesis holds true forlen = k. That is, for
len = k, Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+)

always reduces to a type that belongs toSκ[C/χ];
given that τint, τ→, τ∀, and τ∀+ belong to Sκ[C/χ],

SΩ→Ω→κ→κ→κ[C/χ], S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ], and to
S(∀χ.Ω)→(∀χ. κ)→κ[C/χ]. This implies that forlen = k,
the type Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+)

belongs toSκ[C/χ] (by property 3 of definition B.18).
For len = k + 1, τ can reduce to τint which be-
longs to Sκ[C/χ]. The other possible reductions are
to Typerec[κ{κ/χ}] int of (τ ′int; τ→; τ∀; τ∀+) where
τint ; τ ′int, or toTyperec[κ{κ/χ}] int of (τint; τ

′
→; τ∀; τ∀+)

where τ→ ; τ ′→, or to
Typerec[κ{κ/χ}] int of (τint; τ→; τ ′∀; τ∀+) whereτ∀ ; τ ′∀,
or to Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ

′
∀+

) where
τ∀+ ; τ ′

∀+
. By property 2 of definition B.18, each ofτ ′int,

τ ′→, τ ′∀, τ
′
∀+

belongs to the same candidate. Moreover,
len = k for each of the reducts. Therefore, by the inductive
hypothesis, each of the reducts belongs toSκ[C/χ].

Therefore,Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+) always re-

duces to a type that belongs toSκ[C/χ]. By property 3 of defi-
nition B.18,Typerec[κ{κ/χ}] int of (τint; τ→; τ∀; τ∀+) also be-

longs toSκ[C/χ]. Therefore,int ∈ RΩ. 2

Lemma B.29 →→ ∈ RΩ → RΩ → RΩ = SΩ→Ω→Ω[C/χ].

Proof →→ ∈ RΩ → RΩ → RΩ if for all τ1 ∈ RΩ,
we get that(→→)τ1 ∈ RΩ → RΩ. This is true if for all
τ2 ∈ RΩ, we get that(→→)τ1 τ2 ∈ RΩ. This is true if
Typerec[κ{κ/χ}] (→→)τ1 τ2 of (τint; τ→; τ∀; τ∀+) belongs to

Sκ[C/χ] is true with the conditions in proposition B.27. Sinceτ1,
τ2, τint, τ→, τ∀, andτ∀+ are strongly normalizable, we will induct
over len = ν(τ1) + ν(τ2) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+).
We will prove that for all values of len, the type
Typerec[κ{κ/χ}] ((→→)τ1τ2) of (τint; τ→; τ∀; τ∀+) always

reduces to a type that belongs toSκ[C/χ]; given thatτ1 ∈ RΩ, and
τ2 ∈ RΩ, and τint ∈ Sκ[C/χ], and τ→ ∈ SΩ→Ω→κ→κ→κ[C/χ],
and τ∀ ∈ S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ], and
τ∀+ ∈ S(∀χ.Ω)→(∀χ. κ)→κ[C/χ]. Consider
τ = Typerec[κ{κ/χ}] ((→→)τ1 τ2) of (τint; τ→; τ∀; τ∀+).

21

• len = 0 The only reduction ofτ is

τ ′ = τ→ τ1 τ2 (Typerec[κ{κ/χ}] τ1 of (τint; τ→; τ∀; τ∀+))
(Typerec[κ{κ/χ}] τ2 of (τint; τ→; τ∀; τ∀+))

Since both τ1 and τ2 belong to RΩ,
Typerec[κ{κ/χ}] τ1 of (τint; τ→; τ∀; τ∀+) and
Typerec[κ{κ/χ}] τ2 of (τint; τ→; τ∀; τ∀+) belong to

Sκ[C/χ]. This implies thatτ ′ also belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ1, τ2, τint, τ→, τ∀,
andτ∀+. The proof in this case is similar to the proof of the
corresponding case in lemma B.28.

Sinceτ is neutral, by property 3 of definition B.18,τ belongs to
Sκ[C/χ]. 2

Lemma B.30 If for all τ1 ∈ Sκ1 [C/χ], τ{τ1/α} ∈ Sκ2 [C/χ],
thenλα :κ1{κ/χ}. τ ∈ Sκ1→κ2 [C/χ].

Proof Consider the neutral typeτ ′ = (λα : κ1{κ/χ}. τ) τ1.
We have thatτ1 is strongly normalizable andτ{α′/α} is strongly
normalizable. Therefore,τ is also strongly normalizable. We
will induct over len = ν(τ) + ν(τ1). We will prove that for
all values oflen, the type(λα :κ1{κ/χ}. τ) τ1 always reduces
to a type that belongs toSκ2 [C/χ]; given thatτ1 ∈ Sκ1 [C/χ] and
τ{τ1/α} ∈ Sκ2 [C/χ].

• len = 0 There are two possible reductions. A beta reduction
yields τ{τ1/α} which by assumption belongs toSκ2 [C/χ].
If τ = τ0 α andα does not occur free inτ0, then we have an
eta reduction toτ0 τ1. But in this caseτ{τ1/α} = τ0 τ1.

• len = k + 1 For the inductive case, assume that the hypoth-
esis is true forlen = k. There are two additional reduc-
tions. The typeτ ′ can reduce to(λα :κ1{κ/χ}. τ) τ ′′1 where
τ1 ; τ ′′1 . By property 2 of definition B.18,τ ′′1 belongs to
Sκ1 [C/χ]. Therefore,τ{τ ′′1 /α} belongs toSκ2 [C/χ]. More-
over, len = k. By the inductive hypothesis,(λα :κ1. τ) τ ′′1
always reduces to a type that belongs toSκ2 [C/χ]. By prop-
erty 3 of definition B.18,(λα :κ1. τ) τ ′′1 belongs toSκ2 [C/χ].

The other reduction ofτ ′ is to (λα : κ1{κ/χ}. τ ′′) τ1 where
τ ; τ ′′. By lemma B.14,τ{τ1/α}; τ ′′{τ1/α}. By
property 2 of definition B.18,τ ′′{τ1/α} ∈ Sκ2 [C/χ]. More-
over, len = k for the typeτ ′. Therefore, by the inductive
hypothesis,(λα :κ1{κ/χ}. τ ′′) τ1 always reduces to a type
that belongs toSκ2 [C/χ]. By property 3 of definition B.18,
(λα :κ1{κ/χ}. τ ′′) τ1 belongs toSκ2 [C/χ].

Therefore, the neutral typeτ ′ always reduces to a type that belongs
to Sκ2 [C/χ]. By property 3 of definition B.18,τ ′ ∈ Sκ2 [C/χ].
Therefore,λα : κ1{κ/χ}. τ belongs toSκ1 [C/χ] → Sκ2 [C/χ].
This implies thatλα :κ1{κ/χ}. τ belongs toSκ1→κ2 [C/χ]. 2

Lemma B.31 ∀∀ ∈ S∀χ. (χ→Ω)→Ω[C/χ].

Proof This is true if for any kind κ1{κ/χ},
∀∀ [κ1{κ/χ}] ∈ S(χ→Ω)→Ω[C, Cκ1/χ, χ]. This implies that

∀∀ [κ1{κ/χ}] ∈ Sχ→Ω[C, Cκ1/χ, χ]→ SΩ[C, Cκ1/χ, χ]

This is true if for all τ ∈ Sχ→Ω[C, Cκ1/χ, χ], it
is true that ∀∀ [κ1{κ/χ}] τ ∈ SΩ[C, Cκ1/χ, χ]. This

implies that ∀∀ [κ1{κ/χ}] τ ∈ RΩ. This is true if
Typerec[κ{κ/χ}] (∀∀ [κ1{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+)

belongs toSκ[C/χ] is true with the conditions in proposition B.27.
Since each of the typesτ , τint, τ→, τ∀, and τ∀+ belongs to
a candidate, they are strongly normalizable. We will induct
over len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+).
We will prove that for all values of len, the type
Typerec[κ{κ/χ}] (∀∀ [κ1{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+)
always reduces to a type that belongs to
Sκ[C/χ]; given that τ ∈ Sχ→Ω[C, Cκ1/χ, χ], and
τint ∈ Sκ[C/χ], and τ→ ∈ SΩ→Ω→κ→κ→κ[C/χ],
and τ∀ ∈ S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ], and
τ∀+ ∈ S(∀χ.Ω)→(∀χ. κ)→κ[C/χ]. Consider
τ ′ = Typerec[κ{κ/χ}] (∀∀ [κ1{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+)

• len = 0 Then the only possible reduction ofτ ′ is

τ ′1 = τ∀ [κ1{κ/χ}] τ
(λα :κ1{κ/χ}.Typerec[κ{κ/χ}] τ α of (τint; τ→; τ∀; τ∀+))

Considerτ ′′ = Typerec[κ{κ/χ}] τ α of (τint; τ→; τ∀; τ∀+).
For all τ1 ∈ Cκ1 , the type τ ′′{τ1/α} reduces to
Typerec[κ{κ/χ}] τ τ1 of (τint; τ→; τ∀; τ∀+). By as-

sumption,τ belongs toSχ[C, Cκ1/χ, χ]→ SΩ[C, Cκ1/χ, χ].
Therefore,τ belongs toCκ1 → RΩ which implies thatτ τ1 ∈
RΩ. ThereforeTyperec[κ{κ/χ}] τ τ1 of (τint; τ→; τ∀; τ∀+)

belongs to Sκ[C/χ]. Therefore, by lemma B.30,
(replacing Sκ1 [C/χ] with Cκ1 in the lemma),
λα :κ1{κ/χ}.Typerec[κ{κ/χ}] τ α of (τint; τ→; τ∀; τ∀+)

belongs toCκ1 → Sκ[C/χ].

By assumption,τ∀ belongs toS∀χ. (χ→Ω)→(χ→κ)→κ[C/χ].
Therefore, τ∀ [κ1{κ/χ}] belongs to
S(χ→Ω)→(χ→κ)→κ[C, Cκ1/χ, χ]. This implies that
τ∀ [κ1{κ/χ}] τ belongs toS(χ→κ)→κ[C, Cκ1/χ, χ].

ConsiderC = S(χ→κ)→κ[C, Cκ1/χ, χ]. ThenC is equal to
Sχ→κ[C, Cκ1/χ, χ] → Sκ[C, Cκ1/χ, χ]. This is equivalent
to (Cκ1 → Sκ[C, Cκ1/χ, χ]) → Sκ[C, Cκ1/χ, χ]. But χ
does not occur free inκ. So the above can be written as
(Cκ1 → Sκ[C/χ])→ Sκ[C/χ]. This implies thatτ ′1 belongs
to Sκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ , τint, τ→, τ∀, and
τ∀+. The proof in this case is similar to the proof of the corre-
sponding case in lemma B.28.

Sinceτ ′ is neutral, by property 3 of definition B.18,τ ′ belongs to
Sκ[C/χ]. 2

Lemma B.32 If for every kind κ′ and reducibility candidate
C′ of this kind, τ{κ′/χ′} ∈ Sκ[C, C′/χ, χ′], then Λχ′. τ ∈
S∀χ′. κ[C/χ].

Proof Consider the neutral typeτ ′ = (Λχ′. τ) [κ′] for an ar-
bitrary kind κ′. Sinceτ{χ′′/χ′} is strongly normalizable,τ is
strongly normalizable. We will induct overlen = ν(τ). We will
prove that for all values oflen, the neutral type(Λχ′. τ) [κ′] al-
ways reduces to a type that belongs toSκ[C, C′/χ, χ′]; given that
τ{κ′/χ′} ∈ Sκ[C, C′/χ, χ′].

• len = 0 There are two possible reductions. A beta re-
duction yieldsτ{κ′/χ′} which by assumption belongs to

22

Sκ[C, C′/χ, χ′]. If τ = τ0 [χ′] andχ′ does not occur free in
τ0, then we have an eta reduction toτ0 [κ′]. But in this case
τ{κ′/χ′} = τ0 [κ′].

• len = k + 1 For the inductive case, assume that the hy-
pothesis is true forlen = k. There is one additional re-
duction, (Λχ′. τ) [κ′] ; (Λχ′. τ1) [κ′] whereτ ; τ1. By
lemma B.15, we know thatτ{κ′/χ′}; τ1{κ′/χ′}. By
property 2 of definition B.18,τ1{κ′/χ′} ∈ Sκ[C, C′/χ, χ′].
Moreover,len = k for this reduct. Therefore, by the induc-
tive hypothesis,(Λχ′. τ1) [κ′] always reduces to a type that
belongs toSκ[C, C′/χ, χ′]. By property 3 of definition B.18,
(Λχ′. τ1) [κ′] belongs toSκ[C, C′/χ, χ′].

Therefore, the neutral typeτ ′ always reduces to a type that
belongs toSκ[C, C′/χ, χ′]. By property 3 of definition B.18,
τ ′ ∈ Sκ[C, C′/χ, χ′]. Therefore,Λχ′. τ belongs toS∀χ′. κ[C/χ].
2

Lemma B.33 If τ ∈ S∀χ. κ[C/χ], then for every kindκ′{κ/χ}
τ [κ′{κ/χ}] ∈ Sκ{κ′/χ}[C/χ].

Proof By definition,τ [κ′{κ/χ}] belongs toSκ[C, C′/χ, χ], for
every kindκ′{κ/χ} and reducibility candidateC′ of this kind. Set
C′ = Sκ′ [C/χ]. Applying lemma B.26 leads to the result. 2

Lemma B.34 ∀∀
+
∈ S(∀χ.Ω)→Ω[C/χ].

Proof This is true if for allτ ∈ S∀χ.Ω[C/χ], we have∀∀
+
τ ∈ RΩ.

This is true if Typerec[κ{κ/χ}] (∀∀
+
τ) of (τint; τ→; τ∀; τ∀+)

belongs toSκ[C/χ] with the conditions in proposition B.27.
Since all the types are strongly normalizable, we will induct
over len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+).
We will prove that for all values of len, the type

Typerec[κ{κ/χ}] (∀∀
+
τ) of (τint; τ→; τ∀; τ∀+) always reduces to

a type that belongs toSκ[C/χ]; given that τ ∈ S∀χ.Ω[C/χ],
and τint ∈ Sκ[C/χ], and τ→ ∈ SΩ→Ω→κ→κ→κ[C/χ],
and τ∀ ∈ S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ], and
τ∀+ ∈ S(∀χ.Ω)→(∀χ. κ)→κ[C/χ]. Consider

τ ′ = Typerec[κ{κ/χ}] (∀∀
+
τ) of (τint; τ→; τ∀; τ∀+)

• len = 0 Then the only possible reduction ofτ ′ is

τ∀+ τ (Λχ.Typerec[κ{κ/χ}] (τ [χ]) of (τint; τ→; τ∀; τ∀+))

Considerτ ′′ = Typerec[κ{κ/χ}] (τ [χ]) of (τint; τ→; τ∀; τ∀+).
For an arbitrary kind κ′, τ ′′{κ′/χ} is equal to
Typerec[κ{κ/χ}] τ [κ′] of (τint; τ→; τ∀; τ∀+). By the
assumption onτ , we get thatτ [κ′] ∈ RΩ. Therefore, by def-
inition, τ ′′{κ′/χ} ∈ Sκ[C/χ]. Sinceχ does not occur free
in κ, we can write this asτ ′′{κ′/χ} ∈ Sκ[C, C′/χ, χ]
for a candidate C′ of kind κ′. By lemma B.32
Λχ.Typerec[κ{κ/χ}] (τ [χ]) of (τint; τ→; τ∀; τ∀+) be-

longs to S∀χ. κ[C/χ]. By the assumptions onτ∀+ and
τ , τ∀+ τ (Λχ.Typerec[κ] (τ [χ]) of (τint; τ→; τ∀; τ∀+))

belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ , τint, τ→, τ∀, and
τ∀+. The proof in this case is similar to the proof of the corre-
sponding case in lemma B.28.

Sinceτ ′ is neutral, by property 3 of definition B.18,τ ′ belongs to
Sκ[C/χ]. 2

We now come to the main result of this section.

Theorem B.35 (Candidacy) Let τ be a type of kindκ. Sup-
pose all the free type variables ofτ are in α1 . . . αn of kinds
κ1 . . . κn and all the free kind variables ofκ, κ1 . . . κn are among
χ1 . . . χm. If C1 . . . Cm are candidates of kindsκ′1 . . . κ

′
m and

τ1 . . . τn are types of kindκ1{κ′/χ} . . . κn{κ′/χ} which are in
Sκ1 [C/χ] . . .Sκn [C/χ], thenτ{κ′/χ}{τ/α} belongs toSκ[C/χ].

Proof The proof is by induction over the structure ofτ .

The cases ofint,→→, ∀∀, ∀∀
+

are covered by lemmas B.28 B.29
B.31 B.34.

Supposeτ = αi andκ = κi. Thenτ{κ′/χ}{τ/α} = τi. By
assumption, this belongs toSκi [C/χ].

Supposeτ = τ ′1 τ
′
2. Thenτ ′1 : κ′ → κ for some kindκ′ and

τ ′2 : κ′. By the inductive hypothesis,τ ′1{κ′/χ}{τ/α} belongs to
Sκ′→κ[C/χ] andτ ′2{κ′/χ}{τ/α} belongs toSκ′ [C/χ]. Therefore,
(τ ′1{κ′/χ}{τ/α}) (τ ′2{κ′/χ}{τ/α}) belongs toSκ[C/χ].

Supposeτ = τ ′ [κ′]. Then τ ′ : ∀χ1. κ1 and κ =
κ1{κ′/χ1}. By the inductive hypothesis,τ ′{κ′/χ}{τ/α} belongs
toS∀χ1. κ1 [C/χ]. By lemma B.33τ ′{κ′/χ}{τ/α} [κ′{κ′/χ}] be-
longs toSκ1{κ′/χ1}[C/χ] which is equivalent toSκ[C/χ].

Suppose τ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+).
Then τ ′ : Ω, and τint : κ, and τ→ :Ω→ Ω→ κ→ κ→ κ,
and τ∀ :∀χ. (χ→ Ω)→ (χ→ κ)→ κ, and
τ∀+ : (∀χ.Ω)→ (∀χ. κ)→ κ. By the inductive hypothesis
τ ′{κ′/χ}{τ/α} belongs toRΩ, andτint{κ′/χ}{τ/α} belongs to
Sκ[C/χ], andτ→{κ′/χ}{τ/α} belongs toSΩ→Ω→κ→κ→κ[C/χ],
and τ∀{κ′/χ}{τ/α} belongs to S∀χ. (χ→Ω)→(χ→κ)→κ[C/χ],
and τ∀+{κ′/χ}{τ/α} belongs toS(∀χ.Ω)→(∀χ. κ)→κ[C/χ]. By
definition ofRΩ,

Typerec[κ{κ′/χ}] τ ′{κ′/χ}{τ/α} of
(τint{κ′/χ}{τ/α}; τ→{κ′/χ}{τ/α};
τ∀{κ′/χ}{τ/α}; τ∀+{κ′/χ}{τ/α})

belongs toSκ[C/χ].
Supposeτ = λα′ : κ′. τ1. Then τ1 : κ′′ where the free

type variables ofτ1 are in α1, . . . , αn, α
′ and κ = κ′ →

κ′′. By the inductive hypothesis,τ1{κ′/χ}{τ , τ ′/α, α′} be-
longs toSκ′′ [C/χ] whereτ ′ is of kind κ′{κ′/χ} and belongs to
Sκ′ [C/χ]. This implies that(τ1{κ′/χ}{τ/α}){τ ′/α′} (sinceα′

occurs free only inτ1) belongs toSκ′′ [C/χ]. By lemma B.30,
λα′ :κ′{κ′/χ}. (τ1{κ′/χ}{τ/α}) belongs toSκ′→κ′′ [C/χ].

Suppose τ = Λχ′. τ ′. Then τ ′ : κ′′ and κ =
∀χ′. κ′′. By the inductive hypothesis,τ ′{κ′, κ′/χ, χ′}{τ/α}
belongs toSκ′′ [C, C′/χ, χ′] for an arbitrary kindκ′ and candi-
date C′ of kind κ′. Sinceχ′ occurs free only inτ ′, we get
that (τ ′{κ′/χ}{τ/α}){κ′/χ′} belongs toSκ′′ [C, C′/χ, χ′]. By
lemma B.32,Λχ′. (τ ′{κ′/χ}{τ/α}) belongs toS∀χ′. κ′′ [C/χ]. 2

SupposeSNi is the set of strongly normalizable types of kind
κi.

Corollary B.36 All types are strongly normalizable.

Proof Follows from theorem B.35 by puttingCi = SNi and
τi = αi. 2

23

(context) C ::= [] | →→C | →→(C, τ) | →→(τ, C)

| ∀∀ [κ]C | ∀∀
+
C | Λχ.C | C [κ]

| λα :κ.C | C τ | τ C
| Typerec[κ] C of (τint; τ→; τ∀; τ∀+)
| Typerec[κ] τ of (C; τ→; τ∀; τ∀+)
| Typerec[κ] τ of (τint; C; τ∀; τ∀+)
| Typerec[κ] τ of (τint; τ→; C; τ∀+)
| Typerec[κ] τ of (τint; τ→; τ∀; C)

Figure 26: Type contexts

(β1) ::= (λα :κ. τ) τ ′ ; τ{τ ′/α}
(β2) ::= (Λχ. τ) [κ] ; τ{κ/χ}
(η1) ::= λα :κ. τ α ; τ α /∈ ftv(τ)
(η2) ::= Λχ. τ [χ] ; τ χ /∈ fkv(τ)
(t1) ::= Typerec[κ] int of (τint; τ→; τ∀; τ∀+) ; τint

(t2) ::= Typerec[κ] (τ1 → τ2) of (τint; τ→; τ∀; τ∀+) ;

τ→ τ1 τ2
(Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+))
(Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+))

(t3) ::= Typerec[κ] (∀∀ [κ1] τ1) of (τint; τ→; τ∀; τ∀+) ;

τ∀ [κ1] τ1
(λα :κ1.Typerec[κ] (τ1 α) of (τint; τ→; τ∀; τ∀+))

(t4) ::= Typerec[κ] (∀∀
+
τ1) of (τint; τ→; τ∀; τ∀+) ;

τ∀+ τ1
(Λχ.Typerec[κ] (τ1 [χ]) of (τint; τ→; τ∀; τ∀+))

Figure 27: Type reductions

B.3 Confluence

The type contextsC are shown in Figure 26. The reduction rules
are shown in Figure 27.

Definition B.37 τ1 7→ τ2 iff there exists aτ ′1 and τ ′2 andC such
that τ1 = C [τ ′1] andτ2 = C [τ ′2] andτ ′1 ; τ ′2.

Lemma B.38 If τ1 7→ τ2, thenτ1{τ/α} 7→ τ2{τ/α}.

Proof This requires us to prove that ifτ ′ ; τ ′′, then
τ ′{τ/α}; τ ′′{τ/α}. This follows from lemma B.14. 2

Lemma B.39 If τ1 7→ τ2, thenτ1{κ/χ} 7→ τ2{κ/χ}.

Proof This requires us to prove that ifτ ′ ; τ ′′, then
τ ′{κ/χ}; τ ′′{κ/χ}. This follows from lemma B.15. 2

Lemma B.40 If τ1 7→ τ2, thenτ{τ1/α} 7→ τ{τ2/α}.

Proof This is proved by induction over the structure ofτ and
then defining an appropriate type contextC.

Supposeτ = Λχ. τ ′. Thenτ{τ1/α} = Λχ. τ ′{τ1/α}. By
induction assume thatτ ′{τ1/α} 7→ τ ′{τ2/α}. This implies that
for some contextC, τ ′{τ1/α} = C [τ ′1] and τ ′{τ2/α} = C [τ ′2]
andτ ′1 ; τ ′2. Consider the contextC0 = Λχ.C. Then we get that
Λχ. τ ′{τ1/α} = C0 [τ ′1] andΛχ. τ ′{τ2/α} = C0 [τ ′2].

Supposeτ = λβ : κ. τ ′. Thenτ{τ1/α} = λβ :κ. τ ′{τ1/α}.
By induction assume thatτ ′{τ1/α} 7→ τ ′{τ2/α}. This
implies that for some contextC, τ ′{τ1/α} = C [τ ′1] and

τ ′{τ2/α} = C [τ ′2] and τ ′1 ; τ ′2. Consider the context
C0 = λβ :κ.C. Then we get thatλβ :κ. τ ′{τ1/α} = C0 [τ ′1] and
λβ :κ. τ ′{τ2/α} = C0 [τ ′2].

Supposeτ = τ ′ [κ]. Then τ{τ1/α} = (τ ′{τ1/α}) [κ]. By
induction assume thatτ ′{τ1/α} 7→ τ ′{τ2/α}. This implies that
for some contextC, τ ′{τ1/α} = C [τ ′1] and τ ′{τ2/α} = C [τ ′2]
andτ ′1 ; τ ′2. Consider the contextC0 = C [κ]. Then we get that
(τ ′{τ1/α}) [κ] = C0 [τ ′1] and(τ ′{τ2/α}) [κ] = C0 [τ ′2].

Suppose τ = τ ′ τ ′′. Then
τ{τ1/α} = (τ ′{τ1/α}) (τ ′′{τ1/α}). By induc-
tion assume that τ ′{τ1/α} 7→ τ ′{τ2/α} and
τ ′′{τ1/α} 7→ τ ′′{τ2/α}. This implies that for some con-
text C, τ ′{τ1/α} = C [τ ′1] and τ ′{τ2/α} = C [τ ′2] and
τ ′1 ; τ ′2. Consider the context C0 = C (τ ′′{τ1/α}).
Then we get that (τ ′{τ1/α}) (τ ′′{τ1/α}) = C0 [τ ′1] and
(τ ′{τ2/α}) (τ ′′{τ1/α}) = C0 [τ ′2]. Repeating the same process,
but this time starting with(τ ′{τ2/α}) (τ ′′{τ1/α}) leads to the
lemma.

Supposeτ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+). Then

τ{τ1/α} =
Typerec[κ] (τ ′{τ1/α}) of

(τint{τ1/α}; τ→{τ1/α}; τ∀{τ1/α}; τ∀+{τ1/α})

By induction assume that τ ′{τ1/α} 7→ τ ′{τ2/α} and
τint{τ1/α} 7→ τint{τ2/α} and τ→{τ1/α} 7→ τ→{τ2/α} and
τ∀{τ1/α} 7→ τ∀{τ2/α} and τ∀+{τ1/α} 7→ τ∀+{τ2/α}. This
implies that for some contextC, τ ′{τ1/α} = C [τ ′1] and
τ ′{τ2/α} = C [τ ′2] andτ ′1 ; τ ′2. Consider the context

C0 =
Typerec[κ] C of

(τint{τ1/α}; τ→{τ1/α}; τ∀{τ1/α}; τ∀+{τ1/α})

Then we get that

C0 [τ ′1] =
Typerec[κ] (τ ′{τ1/α}) of

(τint{τ1/α}; τ→{τ1/α}; τ∀{τ1/α}; τ∀+{τ1/α})

and

C0 [τ ′2] =
Typerec[κ] (τ ′{τ2/α}) of

(τint{τ1/α}; τ→{τ1/α}; τ∀{τ1/α}; τ∀+{τ1/α})

Repeating this process with the other subtypes leads to the lemma.
2

Theorem B.41 If τ is strongly normalizing and locally confluent,
thenτ is confluent.

Proof This is proved by induction overν(τ). 2

To prove local confluence, we consider types with two holes.
The contexts are specified in Figure 28. Given a typeτ ′, we may
write it asC1 [τ1] or asC2 [τ2]. The two holes,τ1 andτ2 are said
to overlap if one is a subterm of the other. If the two holes do not
overlap, thenτ ′ may be written asD [τ ′′, τ ′′′] and it is obvious that
the reduction is locally confluent.

We therefore need to consider only overlapping holes, that is
τ ′ = C1 [τ] andτ = C2 [τ1]. Without loss of generality, we may
discard the outer contextC1.

The local confluence is now proved by considering each pos-
sible reduction ofτ according to the reduction rules and for each
case, showing that there exists another set of reductions that guar-
antees local confluence.

24

(context) D ::= →→(C1, C2) | C1 C2

| Typerec[κ] C1 of (C2; τ→; τ∀; τ∀+)
| Typerec[κ] C1 of (τint; C2; τ∀; τ∀+)
| Typerec[κ] C1 of (τint; τ→; C2; τ∀+)
| Typerec[κ] C1 of (τint; τ→; τ∀; C2)
| Typerec[κ] τ of (C1; C2; τ∀; τ∀+)
| Typerec[κ] τ of (C1; τ→; C2; τ∀+)
| Typerec[κ] τ of (C1; τ→; τ∀; C2)
| Typerec[κ] τ of (τint; C1; C2; τ∀+)
| Typerec[κ] τ of (τint; C1; τ∀; C2)
| Typerec[κ] τ of (τint; τ→; C1; C2)
| C [D]

Figure 28: Type contexts with two holes

We show that ifτ ; τ ′′, then for each rule such thatτ1 ; τ ′1,
there exists aτ ′′′ and a sequence of reductions that takeτ ′′ to τ ′′′

andC2 [τ ′1] to τ ′′′. We use a diagram to prove this. The left arrow
represents the reduction fromτ to τ ′′ and the right arrow shows the
reduction fromC2 [τ1] toC2 [τ ′1]. The dashed arrows are then used
to show the reductions that complete local confluence.

The set of reductions is shown in Figure 27. We useT to denote
the complete set of reductions.

caseβ1: Supposeτ is a beta redex(λα : κ. τ1) τ2. Suppose
further thatτ1 ; τ ′1 through any reduction inT apart from an
eta-redex.

(λα :κ. τ1) τ2

β1

xxppppppppppp
T−η1

''OOOOOOOOOOOO

τ1{τ2/α}

Lemma B.38 &&NNNNNN (λα :κ. τ ′1) τ2

β1wwo o o o o o

τ ′1{τ2/α}

Suppose thatτ1 ; τ ′1 through an eta-redex. Assumeτ1 = τ ′1 α.

(λα :κ. τ1) τ2

β1

**

η1

tt
τ ′1 τ2

Suppose thatτ2 ; τ ′2 through any reduction inT .

(λα :κ. τ1) τ2

β1

xxppppppppppp
T

''OOOOOOOOOOOO

τ1{τ2/α}

Lemma B.40 &&NNNNNN (λα :κ. τ1) τ ′2

β1wwo o o o o o

τ1{τ ′2/α}

caseβ2: This is similar to theβ1 case. Whenτ reduces by
(η2), assume thatτ = τ ′ [χ].

(Λχ. τ) [κ]

β2

yyrrrrrrrrrr
T−η2

&&NNNNNNNNNN

τ{κ/χ}

Lemma B.39 &&L
L

L
L

L (Λχ. τ ′) [κ]

β2xxp
p

p
p

p

τ{κ/χ}
(Λχ. τ) [κ]

β2

((
η2

vv
τ{κ/χ} = τ ′ [κ]

caseη1: When the right arrow denotes a beta-reduction, assume
thatτ = λβ :κ. τ1

λα :κ. (τ α)

η1

xxqqqqqqqqqqq
T−β1

''OOOOOOOOOOO

τ

T−β1 &&MMMMMM λα :κ. (τ ′ α)

η1
wwo o o o o o

τ ′

λα :κ. (τ α)

η1

((
β1

vv
λβ :κ. τ1 =α λα :κ. τ1{α/β}

caseη2: This is similar to theη1 case. When the right arrow
denotes a beta-reduction, assume thatτ = Λχ1. τ1.

Λχ. (τ [χ])

η2

xxrrrrrrrrrrr
T−β2

&&NNNNNNNNNNN

τ

T−β2 &&MMMMMM Λχ. (τ ′ [χ])

η2
wwp p p p p p

τ ′

Λχ. (τ [χ])

η2

((
β2

vv
Λχ′. τ1 =α Λχ. τ1{χ/χ′}

caset1: We consider only the case ofτint ; τ ′int. The other
possible reductions are locally confluent in an obvious way.

Typerec[κ] int of (τint; τ→; τ∀; τ∀+)

t1

zztttttttttt
T

%%JJJJJJJJJ

τint

T %%J
J

J
J

J Typerec[κ] int of (τ ′int; τ→; τ∀; τ∀+)

t1yyt t
t

t
t

τ ′int

25

caset2: There are six possible subcases from the reduction
of either τ1, τ2, τint, τ→, τ∀, or τ∀+. The case for reduction
of τ1 and τ2 are similar; we will show only the case for the re-
duction of τ1. We useTyperec[κ] τ ′ of τ as a shorthand for
Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+).

Typerec[κ] (τ1 → τ2) of τ

t2

||yyyyyyyyy
T

""EEEEEEEEEEE

τ→ τ1 τ2
(Typerec[κ] τ1 of τ)

(Typerec[κ] τ2 of τ)

T∗ ��@
@

@
@

Typerec[κ] (τ ′1 → τ2) of τ

t2��~
~

~
~

~

τ→ τ
′
1 τ2

(Typerec[κ] τ ′1 of τ)
(Typerec[κ] τ2 of τ)

We will only show the reduction ofτ→, in which τ ′ stands for
(τint; τ

′
→; τ∀; τ∀+).

Typerec[κ] (τ1 → τ2) of τ

t2

||yyyyyyyyy
T

""EEEEEEEEEEE

τ→ τ1 τ2
(Typerec[κ] τ1 of τ)

(Typerec[κ] τ2 of τ)

T∗ ��?
?

?
?

Typerec[κ] (τ1 → τ2) of τ ′

t2���
�

�
�

�

τ ′→ τ1 τ2
(Typerec[κ] τ1 of τ ′)

(Typerec[κ] τ2 of τ ′)

caset3: There are five possible subcases from the reduction of
eitherτ1, τint, τ→, τ∀, or τ∀+. We first show the reduction ofτ1.

Typerec[κ] (∀∀ [κ1] τ1) of τ

t3

{{vvvvvvvvv
T

##HHHHHHHHHH

τ∀ [κ1] τ1
(λα :κ1.Typerec[κ] (τ1 α) of τ)

T∗ ""E
E

E
E

Typerec[κ] (∀∀ [κ1] τ ′1) of τ

t3||y
y

y
y

y

τ∀ [κ1] τ ′1
(λα :κ1.Typerec[κ] (τ ′1 α) of τ)

We will only show the reduction ofτ∀, in which τ ′ stands for
(τint; τ→; τ ′∀; τ∀+).

Typerec[κ] (∀∀ [κ1] τ1) of τ

t3

{{vvvvvvvvv
T

##HHHHHHHHHH

τ∀ [κ1] τ1
(λα :κ1.Typerec[κ] (τ1 α) of τ)

T∗ ""E
E

E
E

Typerec[κ] (∀∀ [κ1] τ1) of τ ′

t3||y
y

y
y

y

τ ′∀ [κ1] τ1
(λα :κ1.Typerec[κ] (τ1 α) of τ ′)

caset4: There are five possible subcases from the reduction of
eitherτ , τint, τ→, τ∀, or τ∀+. First, the reduction ofτ1.

Typerec[κ] (∀∀
+
τ1) of τ

t4

{{wwwwwwww
T

##GGGGGGGGGG

τ∀+ τ1
(Λχ.Typerec[κ] (τ1 [χ]) of τ)

T∗ ""E
E

E
E

Typerec[κ] (∀∀
+
τ ′1) of τ

t4||y
y

y
y

y

τ∀+ τ
′
1

(Λχ.Typerec[κ] (τ ′1 [χ]) of τ)

We will only show the reduction ofτ∀+, in whichτ ′ stands for
(τint; τ→; τ∀; τ

′
∀+

).

Typerec[κ] (∀∀
+
τ1) of τ

t4

{{wwwwwwww
T

##GGGGGGGGGG

τ∀+ τ1
(Λχ.Typerec[κ] (τ1 [χ]) of τ)

T∗ ""D
D

D
D

Typerec[κ] (∀∀
+
τ1) of τ ′

t4||z
z

z
z

z

τ ′
∀+
τ1

(Λχ.Typerec[κ] (τ1 [χ]) of τ ′)

C Properties of λQi

C.1 Soundness of λQi

Lemma C.1 (Normal form of types) If ε; ε ` ν : Ω, thenν is

one ofint, ν′ → ν′′, ∀∀ [κ] ν′, ∀∀
+
ν′, or luν

′.

Proof Sinceν is kind checked in an empty environment,ν can
not be aν0 since the head of aν0 is a type variable. From the kind,
ν must be aint or of the formΛχ. ν1 andε, χ; ε ` ν1 : \χ. From
the kind, it is obvious that the only possible forms forν1 areint [χ],

(→̊→) [χ] ν′1 ν
′
2, ∀̊∀ [χ] [κ] ν′1, ∀̊∀

+
[χ] ν′1, l̊u [χ] ν′1. It can not have a

Place constructor because of the following reason. The only way it
can have aPlace constructor is if it is of the formPlace [χ] ν′1. But
this requiresν′1 to have the kindχ. This is not possible since none
of the ν normal forms can have this kind andν′1 can not have an
occurence ofν0 since the kinding is in an empty type environment.

The normal formΛχ. (int [χ]) is equivalent toint by eta
reduction. The normal formΛχ. ((→̊→) [χ] ν′1 ν

′
2) is equivalent

to (Λχ. ν′1) → (Λχ. ν′2). The normal formΛχ. (̊∀∀ [χ] [κ] ν′1)
is equivalent to∀∀ [κ] (λα : κ.Λχ. ν′1 α). The normal form

Λχ. (̊∀∀
+
[χ] ν′1) is equivalent to∀∀

+
(Λχ1.Λχ. ν

′
1 [χ1]). The normal

form Λχ. (̊lu [χ] ν′1) is equivalent tolu(Λχ. ν′1). (See the rules at the
bottom of Figure 11). 2

Lemma C.2 (Decomposition of terms)If ` e : τ , thene is either
a value or can be decomposed into a uniqueE and a unique redex
e′ such thate = E [e′].

Proof Proved by induction over the structure ofe. Each of the
cases follows similarly. We will consider only the interesting cases.

26

(λx :τ. e) v ; e{v/x} (fixx :τ. v) v′ ; (v{fixx :τ. v/x}) v′

(Λα :κ. v) [τ] ; v{τ/α} (fixx :τ. v) [τ] ; (v{fixx :τ. v/x}) [τ]

(Λ
+
χ. v) [κ]

+
; v{κ/χ} (fixx :τ. v) [κ]

+
; (v{fixx :τ. v/x}) [κ]

+

unfold (fold v as τ) as τ ; v

typecase[τ] int of (eint; e→; e∀; e∀+; eµ) ; eint

typecase[τ] (τ1 → τ2) of (eint; e→; e∀; e∀+; eµ) ; e→ [τ1] [τ2]

typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀ [κ]
+

[τ ′]

typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+; eµ) ; e∀+ [τ ′]

typecase[τ] (luτ
′) of (eint; e→; e∀; e∀+; eµ) ; eµ [τ ′]

e ; e1

e e′ ; e1 e
′

e ; e1

v e ; v e1

e ; e1

e [τ] ; e1 [τ]

e ; e1

e [κ]
+

; e1 [κ]
+

e ; e1

fold e as τ ; fold e1 as τ

e ; e1

unfold e as τ ; unfold e1 as τ

ε; ε ` τ ′ ;∗ ν′ :Ω ν′ is normal form

typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ) ;

typecase[τ] ν′ of (eint; e→; e∀; e∀+; eµ)

Figure 29: Operational semantics ofλQi

(value) v ::= i | λx :τ. e | fold v as τ | unfold v as τ

| Λα :κ. v | Λ
+
χ. v | fixx :τ. v

(context) E ::= [] | E e | v E | E [τ] | E [κ]
+

| fold E as τ | unfold E as τ

(redex) r ::= (λx :τ. e) v | (Λα :κ. v) [τ] | (Λ
+
χ. v) [κ]

+

| (fixx :τ. v) v′ | (fixx :τ. v) [τ ′]

| (fixx :τ. v) [κ]
+

| unfold (fold v as τ) as τ
| typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ)
| typecase[τ] int of (eint; e→; e∀; e∀+; eµ)
| typecase[τ] (τ ′ → τ ′′) of (eint; e→; e∀; e∀+; eµ)
| typecase[τ] (∀∀ [κ] τ ′) of (eint; e→; e∀; e∀+; eµ)

| typecase[τ] (∀∀
+
τ ′) of (eint; e→; e∀; e∀+; eµ)

| typecase[τ] (luτ
′) of (eint; e→; e∀; e∀+; eµ)

Figure 30: Term contexts

Supposee = e1 e2. By assumption,̀ e1 e2 : τ . Therefore
` e1 : τ1 → τ and` e2 : τ1 for some typeτ1. Apply the inductive
hypothesis now toe1 ande2. If both e1 ande2 are valuesv1 and
v2, then the only possible reduction is[] [v1 v2]. If e2 = E2 [e′2],
then setE to bev1 E2 ande′ to bee′2. If e1 = E1 [e′1], then setE
to beE1 e2 ande′ to bee′1.

Supposee = typecase[τ] τ ′ of (eint; e→; e∀; e∀+; eµ). If τ ′ is
not a normal form, thenE is the empty context ande is the redex.
If τ ′ is a normal form, then by lemma C.1e is still a redex andE
is therefore the empty context. 2

ν0 ::= α | ν0 ν | ν0 [κ]
| Typerec[κ] ν0 of (νint; ν→; ν∀; ν∀+)

ν ::= ν0 | int | int [κ] | →̊→ | →̊→ [κ] | (→̊→) [κ] ν

| (→̊→) [κ] ν ν′ | ∀̊∀ | ∀̊∀ [κ] | ∀̊∀ [κ] [κ′] | ∀̊∀ [κ] [κ′] ν

| ∀̊∀
+
| ∀̊∀

+
[κ] | ∀̊∀

+
[κ] ν | l̊u | l̊u [κ] | l̊u [κ] ν

| Place | Place [κ] | Place [κ] ν
| λα :κ. ν, where∀ν0. ν 6= ν0 α orα ∈ ftv(ν0)
| Λχ. ν, where∀ν0. ν 6= ν0 [χ] or χ ∈ fkv(ν0)

Figure 31: Normal forms in theλQi type language

Lemma C.3 If ` E [e] :τ , then there exists aτ ′ such that` e :τ ′,
and for alle′ such that` e′ :τ ′ we have` E [e′] :τ .

Proof The proof is by induction over the derivation of̀ E [e] :
τ . All the cases are proved similarly. We will consider only one of
the new cases.

SupposeE = fold E1 as τ . Then we have that̀ E1 [e] :τ1 for
some typeτ1. Applying the inductive hypothesis toE1, we get that
there exists aτ ′ such that̀ e : τ ′ and and for alle′ of typeτ ′, we
have that̀ E1 [e′] :τ1. 2

Corollary C.4 (Progress) If ` e : τ , then eithere is a value or
there exists ane1 such thate 7→ e1.

Proof By lemma C.2, we know that if̀ e : τ , then eithere is a
value or there exists anE and a redexe′ such thate = E [e′]. Since
e′ is a redex, there exists a reducte′′ such thate′ ; e′′. Therefore,
e 7→ e1 for e1 = E [e′′].

We now prove a bunch of substitution lemmas.

Lemma C.5 If E , χ ` κ andE ` κ′, thenE ` κ{κ′/χ}.

Lemma C.6 If E , χ; ∆ ` τ : κ andE ` κ′, thenE ; ∆{κ′/χ} `
τ{κ′/χ} : κ{κ′/χ}.

Proof The proof is by induction over the structure ofτ . All the
cases follow in a straightforward manner by applying the inductive
hypothesis to the subtypes. 2

Lemma C.7 If E ; ∆, α : κ′ ` τ : κ and E ; ∆ ` τ ′ : κ′, then
E ; ∆ ` τ{τ ′/α} : κ.

Proof The proof follows in a straightforward way by induction
over the structure ofτ . 2

Lemma C.8 If E ; ∆, α : κ; Γ ` e : τ andE ; ∆ ` τ ′ : κ, then
E ; ∆; Γ{τ ′/α} ` e{τ ′/α} : τ{τ ′/α}.

Proof The proof is by induction over the structure ofe and is
similar to the proof of this lemma forλPi . 2

Lemma C.9 If E ; ∆; Γ, x :τ ′ ` e : τ andE ; ∆; Γ ` e′ : τ ′, then
E ; ∆; Γ ` e{e′/x} : τ .

Proof The proof is by induction over the structure ofe and is
similar to the proof of this lemma forλPi . 2

Lemma C.10 If E , χ; ∆; Γ ` e : τ and E ` κ, then
E ; ∆{κ/χ}; Γ{κ/χ} ` e{κ/χ} : τ{κ/χ}.

27

(kinds) κ ::= \κ | κ→ κ′ | χ | ∀χ. κ

(types) τ ::= int | →̊→ | ∀̊∀ | ∀̊∀
+
| l̊u | Place

| α | Λχ. τ | λα :κ. τ | τ [κ] | τ τ ′
| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ)

Figure 32: TheλQi type language

Proof The proof follows in a straightforward way by induction
over the structure ofe and is similar to the proof of the other sub-
stitution lemmas. 2

Definition C.11 e evaluates toe′ (writtene 7→ e′) if there existE,
e1, ande2 such thate = E [e1] ande′ = E [e2] ande1 ; e2.

Theorem C.12 (Subject reduction) If ` e : τ and e 7→ e′, then
` e′ :τ .

Proof By lemma C.2, we know that there exists a uniqueE and
a unique redexe1 such thate = E [e1]. Sincee 7→ e′, there exists
an e′1 such thate′ = E [e′1] and e1 ; e′1. By lemma C.3, we
know that for someτ1 we have that̀ e1 : τ1. By the same lemma,
we only need to prove that̀ e′1 : τ1. We prove the theorem by
considering each possible redex.

Supposee1 = (λx : τ. e) v. Thene′1 = e{v/x}. We know
that ε; ε; ε, x : τ ` e : τ ′ for some typeτ ′ andε; ε; ε ` v : τ .
Applying lemma C.9 leads to the result.

Supposee1 = (Λα : κ. v) [τ]. Thene′1 = v{τ/α}. We know
that ε; ε, α : κ; ε ` v : τ ′ for some typeτ ′ andε; ε ` τ : κ.
Applying lemma C.8 leads to the result.

The case ofe1 = (Λ
+
χ. e) [κ]

+
is similar to the previous two

cases and requires lemma C.10.
All of the fix reduction cases are proved similarly. We will

consider only one case here. Supposee1 = (fixx : τ. v) v′. Then
e′1 = (v{fixx : τ. v/x}) v′. We have that̀ (fixx : τ. v) v′ : τ1. By
the typing rules for term application we get that for someτ2,
` fixx :τ. v :τ2 → τ1 and
` v′ :τ2

By the typing rule forfix we get that,
` τ = τ2 → τ1 and
ε; ε; ε, x :τ2 → τ1 ` v : τ2 → τ1

Using Lemma C.9 and the typing rule for application, we obtain
the desired judgment
` (v{fixx :τ. v/x}) v′ :τ1

Theunfold case follows trivially from the typing rules.
Supposee1 = typecase[τ] τ1 of (eint; e→; e∀; e∀+; eµ). If

τ1 is in normal formν1, by the second premise of the typing rule
for typecase and Lemma C.1 we have five cases forν1. In each
case the contraction has the desired typeτ ν1, according to the cor-
responding premises of thetypecase typing rule and the rules for
type and kind applications. Ifτ1 is not in normal form, thene1

reduces totypecase[τ] ν1 of (eint; e→; e∀; e∀+; eµ) whereν1 is
the corresponding normal form. Since the type system is strongly
normalizing, this reduction always terminates and since the type
system is confluent,τ τ1 = τ ν1. 2

C.2 Strong Normalization of λQi

The type language is shown in Figure 32. The single step reduction
relation (τ ; τ ′) is shown in Figure 33.

(β1) ::= (λα :κ. τ) τ ′ ; τ{τ ′/α}
(β2) ::= (Λχ. τ) [κ] ; τ{κ/χ}
(η1) ::= λα :κ. τ α ; τ α /∈ ftv(τ)
(η2) ::= Λχ. τ [χ] ; τ χ /∈ fkv(τ)
(t1) ::= Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ) ; τint

(t2) ::= Typerec[κ] (→̊→ [κ]τ1τ2) of (τint; τ→; τ∀; τ∀+; τµ) ;

τ→ τ1 τ2
(Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ))
(Typerec[κ] τ2 of (τint; τ→; τ∀; τ∀+; τµ))

(t3) ::= Typerec[κ] (̊∀∀ [κ] [κ′] τ) of (τint; τ→; τ∀; τ∀+; τµ) ;

τ∀ [κ′] τ
(λα :κ′.

Typerec[κ] (τ α) of (τint; τ→; τ∀; τ∀+; τµ))

(t4) ::= Typerec[κ] (̊∀∀
+
[κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ;

τ∀+ τ
(Λχ.Typerec[κ] τ [χ] of (τint; τ→; τ∀; τ∀+; τµ))

(t5) ::= Typerec[κ] (̊lu [κ]τ) of (τint; τ→; τ∀; τ∀+; τµ) ;

τµ τ
(λα :κ.Typerec[κ] (τ (Place [κ]α)) of

(τint; τ→; τ∀; τ∀+; τµ))

(t6) ::= Typerec[κ] (Place [κ] τ) of (τint; τ→; τ∀; τ∀+; τµ) ;

τ

Figure 33: Type reductions

Lemma C.13 If E ; ∆ ` τ : κ andτ ; τ ′, thenE ; ∆ ` τ ′ : κ.

Proof (Sketch) The proof follows from a case analysis of the re-
duction relation (;). 2

Lemma C.14 If τ1 ; τ2, thenτ1{τ/α}; τ2{τ/α}.

Proof The proof is by enumerating each possible reduction from
τ1 to τ2. We will only show the cases that are different fromλPi .

caset1: τ1 = Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ)
andτ2 = τint. We get that

τ1{τ/α} =
Typerec[κ] (int [κ]) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α})

But this reduces by thet1 reduction toτint{τ/α}.
caset2: τ1 = Typerec[κ] ((→̊→) [κ]τ ′τ ′′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τ→ τ
′ τ ′′ (Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+; τµ))

(Typerec[κ] τ ′′ of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{τ/α} =
Typerec[κ] ((→̊→) [κ](τ ′{τ/α})(τ ′′{τ/α})) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α})

This reduces byt2 to

τ→{τ/α} (τ ′{τ/α}) (τ ′′{τ/α})
(Typerec[κ] (τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α}))
(Typerec[κ] (τ ′′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α}))

28

But this is syntactically equal toτ2{τ/α}.
caset3: τ1 = Typerec[κ] (̊∀∀ [κ] [κ′] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τ∀ [κ′] τ ′ (λβ :κ′.Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{τ/α} =

Typerec[κ] (̊∀∀ [κ] [κ′] τ ′{τ/α}) of
(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α})

This reduces byt3 to

τ∀{τ/α} [κ′] (τ ′{τ/α})
(λβ :κ′.Typerec[κ] ((τ ′{τ/α})β) of
(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α}))

But this is syntactically equivalent toτ2{τ/α}.
caset4: τ1 = Typerec[κ] (̊∀∀

+
[κ] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τ∀+ τ
′ (Λχ.Typerec[κ] (τ ′ [χ]) of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{τ/α} =

Typerec[κ] (̊∀∀
+
[κ] τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α})

This reduces byt4 to

τ∀+{τ/α} (τ ′{τ/α})
(Λχ.Typerec[κ] ((τ ′{τ/α}) [χ]) of
(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α}))

But this is syntactically equal toτ2{τ/α}.
caset5: τ1 = Typerec[κ] (̊lu [κ] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τµ τ
′

(λβ :κ.Typerec[κ] (τ ′ (Place [κ]β)) of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{τ/α} =
Typerec[κ] (̊lu [κ] τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α})

This reduces byt5 to

τµ{τ/α} (τ ′{τ/α})
(λβ :κ.Typerec[κ] ((τ ′{τ/α}) (Place [κ]β)) of
(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α}))

But this is syntactically equal toτ2{τ/α}.
caset6: τ1 = Typerec[κ] (Place [κ] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

andτ2 = τ ′. We get that

τ1{τ/α} =
Typerec[κ] (Place [κ] τ ′{τ/α}) of

(τint{τ/α}; τ→{τ/α}; τ∀{τ/α}; τ∀+{τ/α}; τµ{τ/α})

This reduces byt6 to τ ′{τ/α}. 2

Lemma C.15 If τ1 ; τ2, thenτ1{κ′/χ′}; τ2{κ′/χ′}.

Proof This is proved by case analysis of the type reduction rela-
tion. We will only show the cases that are different fromλPi .

caset1: τ1 = Typerec[κ] (int [κ]) of (τint; τ→; τ∀; τ∀+; τµ)
andτ2 = τint. We get that

τ1{κ′/χ′} =
Typerec[κ{κ′/χ′}] (int [κ{κ′/χ′}]) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′}; τµ{κ′/χ′})

But this reduces by thet1 reduction toτint{κ′/χ′}.
caset2: τ1 = Typerec[κ] ((→̊→) [κ]τ ′τ ′′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τ→ τ
′ τ ′′ (Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+; τµ))

(Typerec[κ] τ ′′ of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{κ′/χ′} =
Typerec[κ{κ′/χ′}] ((→̊→) [κ{κ′/χ′}]τ ′{κ′/χ′}τ ′′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′}; τµ{κ′/χ′})

This reduces byt2 to

τ→{κ′/χ′} (τ ′{κ′/χ′}) (τ ′′{κ′/χ′})
(Typerec[κ{κ′/χ′}] (τ ′{κ′/χ′}) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}; τµ{κ′/χ′}))
(Typerec[κ{κ′/χ′}] (τ ′′{κ′/χ′}) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}; τµ{κ′/χ′}))

But this is syntactically equal toτ2{κ′/χ′}.
caset3: τ1 = Typerec[κ] (̊∀∀ [κ] [κ1] τ ′) of (τint; τ→; τ∀; τ∀+)

and

τ2 = τ∀ [κ1] τ ′

(λβ :κ1.Typerec[κ] (τ ′ β) of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{κ′/χ′} =

Typerec[κ{κ′/χ′}] (̊∀∀ [κ{κ′/χ′}] [κ1{κ′/χ′}] τ ′{κ′/χ′}) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}; τµ{κ′/χ′})

This reduces byt3 to

τ∀{κ′/χ′} [κ1{κ′/χ′}] (τ ′{κ′/χ′})
(λβ :κ1{κ′/χ′}.Typerec[κ{κ′/χ′}] ((τ ′{κ′/χ′})β) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}; τµ{κ′/χ′}))

But this is syntactically equivalent toτ2{κ′/χ′}.
caset4: τ1 = Typerec[κ] (̊∀∀

+
[κ] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τ∀+ τ
′ (Λχ.Typerec[κ] (τ ′ [χ]) of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{κ′/χ′} =

Typerec[κ{κ′/χ′}] (̊∀∀
+
[κ{κ′/χ′}] τ ′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′}; τµ{κ′/χ′})

This reduces byt4 to

τ∀+{κ
′/χ′} (τ ′{κ′/χ′})

(Λχ.Typerec[κ{κ′/χ′}] ((τ ′{κ′/χ′}) [χ]) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}; τµ{κ′/χ′}))

29

But this is syntactically equal toτ2{κ′/χ′}.
caset5: τ1 = Typerec[κ] (̊lu [κ] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

and

τ2 = τµ τ
′

(λα :κ.Typerec[κ] (τ ′ (Place [κ]α)) of (τint; τ→; τ∀; τ∀+; τµ))

We get that

τ1{κ′/χ′} =
Typerec[κ{κ′/χ′}] (̊lu [κ{κ′/χ′}] τ ′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′}; τµ{κ′/χ′})

This reduces byt5 to

τµ{κ′/χ′} (τ ′{κ′/χ′})
(λα :κ{κ′/χ′}.

Typerec[κ{κ′/χ′}] ((τ ′{κ′/χ′}) (Place [κ{κ′/χ′}]α)) of
(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ

′/χ′}; τµ{κ′/χ′}))

But this is syntactically equal toτ2{κ′/χ′}.
caset6: τ1 = Typerec[κ] (Place [κ] τ ′) of (τint; τ→; τ∀; τ∀+; τµ)

andτ2 = τ ′. We get that

τ1{κ′/χ′} =
Typerec[κ{κ′/χ′}] (Place [κ{κ′/χ′}] τ ′{κ′/χ′}) of

(τint{κ′/χ′}; τ→{κ′/χ′}; τ∀{κ′/χ′}; τ∀+{κ
′/χ′}; τµ{κ′/χ′})

This reduces byt6 to τ ′{κ′/χ′}. 2

Definition C.16 A typeτ is strongly normalizable if every reduc-
tion sequence fromτ terminates. We useν(τ) to denote the length
of the largest reduction sequence fromτ to a normal form.

Definition C.17 We define neutral types,n, as
n0 ::= Λχ. τ | λα :κ. τ
n ::= α | n0 τ | n τ | n0 [κ] | n [κ]

| Typerec[κ] τ of (τint; τ→; τ∀; τ∀+)

Definition C.18 A reducibility candidate (also referred to as a
candidate) of kindκ is a setC of types of kindκ such that

1. if τ ∈ C, thenτ is strongly normalizable.

2. if τ ∈ C andτ ; τ ′, thenτ ′ ∈ C.

3. if τ is neutral and if for allτ ′ such thatτ ; τ ′, we have that
τ ′ ∈ C, thenτ ∈ C.

This implies that the candidates are never empty since ifα has
kind κ, thenα belongs to candidates of kindκ.

Definition C.19 Let κ be an arbitrary kind. LetCκ be a candi-
date of kindκ. LetC\κ→\κ→κ→κ→κ be a candidate of kind\κ →
\κ→ κ→ κ→ κ. Let C∀χ. (χ→\κ)→(χ→κ)→κ be a candidate
of kind∀χ. (χ→ \κ)→ (χ→ κ)→ κ. Let C(∀χ. \κ)→(∀χ. κ)→κ
be a candidate of kind(∀χ. \κ) → (∀χ. κ) → κ. Let
C(\κ→\κ)→(κ→κ)→κ be a candidate of kind(\κ → \κ) →
(κ→ κ) → κ. We then define the setR\Cκ of types of kind\κ
as

τ ∈ R\Cκ iff
∀∀τint ∈ Cκ,
∀∀τ→ ∈ C\κ→\κ→κ→κ→κ,
∀∀τ∀ ∈ C∀χ. (χ→\κ)→(χ→κ)→κ,
∀∀τ∀+ ∈ C(∀χ. \κ)→(∀χ. κ)→κ
∀∀τµ ∈ C(\κ→\κ)→(κ→κ)→κ
⇒ Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) ∈ Cκ

Lemma C.20 If Cκ is a candidate of kindκ, thenR\Cκ is a candi-
date of kind\κ.

Proof Supposeτ ∈ R\Cκ. Supposeτint, τ→, τ∀, τ∀+,
and τµ belong toCκ, C\κ→\κ→κ→κ→κ, C∀χ. (χ→\κ)→(χ→κ)→κ,
C(∀χ. \κ)→(∀χ. κ)→κ, andC(\κ→\κ)→(κ→κ)→κ respectively, where
the candidates are of the appropriate kinds (see definition C.19).

Considerτ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ). By
definition this belongs toCκ. By property 1 of definition C.18,τ ′

is strongly normalizable and thereforeτ must be strongly normal-
izable.

Considerτ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ). Sup-
poseτ ; τ1. Thenτ ′ ; Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ).
Sinceτ ′ ∈ Cκ, Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ) belongs
to Cκ by property 2 of definition C.18. Therefore, by definition,τ1
belongs toR\Cκ.

Supposeτ is neutral and for allτ1 such thatτ ; τ1, τ1 ∈
R\Cκ. Considerτ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ).
Since we know thatτint, τ→, τ∀, τ∀+, and τµ are strongly
normalizable, we can induct overlen = ν(τint) + ν(τ→) +
ν(τ∀) + ν(τ∀+) + ν(τµ). We will prove that for all values of
len, the typeTyperec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) always re-
duces to a type that belongs toCκ; given that τint ∈ Cκ, and
τ→ ∈ C\κ→\κ→κ→κ→κ, and τ∀ ∈ C∀χ. (χ→\χ)→(χ→κ)→κ, and
τ∀+ ∈ C(∀χ. \κ)→(∀χ. κ)→κ, andτµ ∈ C(\κ→\κ)→(κ→κ)→κ.

• len = 0 Thenτ ′ ; Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ)
is the only possible reduction sinceτ is neutral. By the as-
sumption onτ1, this belongs toCκ.

• len = k + 1 For the inductive case, assume that the
hypothesis is true forlen = k. That is, for len = k,
the type Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) always
reduces to a type that belongs toCκ; given that τint,
τ→, τ∀, τ∀+, and τµ belong to Cκ, C\κ→\κ→κ→κ→κ,
C∀χ. (χ→\χ)→(χ→κ)→κ, C(\κ→\κ)→(κ→κ)→κ, and
C(\κ→\κ)→(κ→κ)→κ respectively. By property 3 of
definition C.18, Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ)
belongs to Cκ for len = k. Consider
τ ′ = Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ)
for len = k + 1. This can reduce to
Typerec[κ] τ1 of (τint; τ→; τ∀; τ∀+; τµ) which be-
longs to Cκ. The other possible reductions are to
Typerec[κ] τ of (τ ′int; τ→; τ∀; τ∀+; τµ) whereτint ; τ ′int, or
to Typerec[κ] τ of (τint; τ

′
→; τ∀; τ∀+; τµ) whereτ→ ; τ ′→,

or to Typerec[κ] τ of (τint; τ→; τ ′∀; τ∀+; τµ) where
τ∀ ; τ ′∀, or to Typerec[κ] τ of (τint; τ→; τ∀; τ

′
∀+

; τµ)

where τ∀+ ; τ ′
∀+

, or to
Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τ ′µ) where τµ ; τ ′µ.
By property 2 of definition C.18, each ofτ ′int, τ

′
→, τ ′∀, τ

′
∀+

,
and τ ′µ belong to the same candidate as before. Moreover,
len = k for each of the reducts. By the inductive hypothesis,
each of the reducts belongs toCκ.

Therefore, by property 3 of definition C.18,
Typerec[κ] τ of (τint; τ→; τ∀; τ∀+; τµ) belongs toCκ. Therefore,
τ ∈ R\Cκ. 2

Definition C.21 LetC1 andC2 be two candidates of kindsκ1 and
κ2. We then define the setC1 → C2, of types of kindκ1 → κ2, as

τ ∈ C1 → C2 iff ∀∀τ ′(τ ′ ∈ C1 ⇒ τ τ ′ ∈ C2)

Lemma C.22 If C1 andC2 are candidates of kindsκ1 andκ2, then
C1 → C2 is a candidate of kindκ1 → κ2.

30

Proof Same as lemma B.22 forλPi . 2

Definition C.23 We useχ to denote the setχ1, . . . , χn of χ. We
use a similar syntax to denote a set of other constructs.

Definition C.24 Let κ[χ] be a kind whereχ contains all the free
kind variables ofκ. Let κ be a sequence of closed kinds of the
same length andC be a sequence of candidates of the correspond-
ing kind. We now define the setSκ[C/χ] of types of kindκ{κ/χ}
as

1. if κ = \κ′, thenSκ[C/χ] = R\Sκ′ [C/χ].

2. if κ = χi, thenSκ[C/χ] = Ci.

3. if κ = κ1 → κ2, thenSκ[C/χ] = Sκ1 [C/χ]→ Sκ2 [C/χ].

4. if κ = ∀χ. κ′, thenSκ[C/χ] = the set of typesτ of kind
κ{κ/χ} such that for every kindκ′′ and reducibility candi-
dateC′′ of this kind,τ [κ′′] ∈ Sκ′ [C, C′′/χ, χ].

Lemma C.25 Sκ[C/χ] is a reducibility candidate of kind
κ{κ/χ}.

Proof For κ = \κ′, the lemma follows from the inductive hy-
pothesis onκ′ and lemma C.20. The rest of the proof is the same
as lemma B.25 forλPi . 2

Lemma C.26 Sκ{κ′/χ′}[C/χ] = Sκ[C,Sκ′ [C/χ]/χ, χ′]

Proof The proof is by induction over the structure of
κ. Supposeκ = \κ1. Then the LHS is equal to
R\Sκ1{κ′/χ′}[C/χ]. By the inductive hypothesis onκ1, this is
equal toR\Sκ1 [C,Sκ′ [C/χ]/χ, χ′]. By definition, the RHS is
equal toR\Sκ1 [C,Sκ′ [C/χ]/χ, χ′].

The other cases are the same as lemma B.26 forλPi . 2

Proposition C.27 From lemma C.25, we know that
S\κ→\κ→κ→κ→κ[C/χ] is a candidate of kind(\κ → \κ →
κ → κ → κ){κ/χ}, that S∀χ. (χ→\κ)→(χ→κ)→κ[C/χ] is a
candidate of kind(∀χ. (χ→ \κ)→ (χ→ κ)→ κ){κ/χ}, that
S(∀χ. \κ)→(∀χ. κ)→κ[C/χ] is a candidate of kind((∀χ. \κ) →
(∀χ. κ) → κ){κ/χ}, andS(\κ→\κ)→(κ→κ)→κ[C/χ] is a candi-
date of kind((\κ → \κ) → (κ→ κ) → κ){κ/χ}. In the rest
of the section, we will refer to the above candidates asS→[C/χ],
S∀∀[C/χ], S∀+[C/χ], andSµ[C/χ] respectively.

Lemma C.28 int ∈ S∀χ. \χ[C/χ]

Proof This is true if for all kinds κ{κ/χ} and the
corresponding candidateSκ[C/χ], int [κ{κ/χ}] belongs
to S\χ[C,Sκ[C/χ]/χ, χ]. This is true if int [κ{κ/χ}]
belongs to R\Sχ[C,Sκ[C/χ]/χ, χ]. This implies that
int [κ{κ/χ}] belongs to R\Sκ[C/χ]. This is true if
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ∀+; τµ) belongs

to Sκ[C/χ]; given thatτint ∈ Sκ[C/χ], andτ→ ∈ S→[C/χ], and
τ∀ ∈ S∀∀[C/χ], andτ∀+ ∈ S∀+[C/χ], andτµ ∈ Sµ[C/χ].

Sinceτint, τ→, τ∀, τ∀+, andτµ are strongly normalizable, we
will induct over len = ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) +
ν(τµ). We will prove that for all values oflen, the type
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ∀+; τµ) always

reduces to a type that belongs toSκ[C/χ]. The conditions for

the hypothesis are thatτint ∈ Sκ[C/χ], andτ→ ∈ S→[C/χ], and
τ∀ ∈ S∀∀[C/χ], andτ∀+ ∈ S∀+[C/χ], andτµ ∈ Sµ[C/χ]. Consider
the neutral type

τ = Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ∀+; τµ)

• len = 0 The only reduction ofτ is to τint which by assump-
tion belongs toSκ[C/χ].

• len = k + 1 Assume that the inductive hypothesis
is true for len = k. That is, for len = k, the type
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ∀+; τµ)

always reduces to a type that belongs toSκ[C/χ];
given that τint ∈ Sκ[C/χ], and τ→ ∈ S→[C/χ], and
τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ], and τµ ∈ Sµ[C/χ].
By property 3 of definition B.18, forlen = k, the type
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ∀+; τµ)

belongs toSκ[C/χ]. Consider the case forlen = k + 1.
Apart from thet1 reduction, the other possible reductions are
to Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τ ′int; τ→; τ∀; τ∀+; τµ)

where τint ; τ ′int, or to
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ

′
→; τ∀; τ∀+; τµ)

where τ→ ; τ ′→, or to
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ ′∀; τ∀+; τµ)

where τ∀ ; τ ′∀, or to
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ

′
∀+

; τµ)

where τ∀+ ; τ ′
∀+

, or to
Typerec[κ{κ/χ}] int [κ{κ/χ}] of (τint; τ→; τ∀; τ∀+; τ ′µ)

where τµ ; τ ′µ. By property 2 of definition C.18, each
of τ ′int, τ

′
→, τ ′∀, τ

′
∀+

, and τ ′µ belong to the same candidate
as before. Moreover,len = k for each of the reducts.
Therefore, from the inductive hypothesis, each of the reducts
belongs toSκ[C/χ].

Therefore, the neutral typeτ always reduces to a type that be-
longs toSκ[C/χ]. By property 3 of definition C.18,τ ∈ Sκ[C/χ].
2

Lemma C.29 →̊→ ∈ S∀χ. \χ→\χ→\χ[C/χ]

Proof This is true if for all kinds κ{κ/χ} and the cor-
responding candidateSκ[C/χ], we have that →̊→ [κ{κ/χ}]
belongs to S\χ→\χ→\χ[C,Sκ[C/χ]/χ, χ]. This is
true if given τ1 ∈ S\χ[C,Sκ[C/χ]/χ, χ] and given
τ2 ∈ S\χ[C,Sκ[C/χ]/χ, χ], we have that→̊→ [κ{κ/χ}] τ1 τ2
belongs to S\χ[C,Sκ[C/χ]/χ, χ]. This is true if
Typerec[κ{κ/χ}] (→̊→ [κ{κ/χ}] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τµ)

belongs to Sκ[C/χ]; given that τint ∈ Sκ[C/χ], and
τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ],

and τµ ∈ Sµ[C/χ]. Since the typesτ1, τ2, τint, τ→, τ∀,
τ∀+, and τµ are strongly normalizable, we will induct over
len = ν(τ1)+ν(τ2)+ν(τint)+ν(τ→)+ν(τ∀)+ν(τ∀+)+ν(τµ).
We will prove that for all values of len, the type
Typerec[κ{κ/χ}] (→̊→ [κ{κ/χ}] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τµ)

always reduces to a type that belongs toSκ[C/χ]. The conditions
for the hypothesis are thatτ1 ∈ R\Sκ[C/χ], andτ2 ∈ R\Sκ[C/χ],
andτint ∈ Sκ[C/χ], andτ→ ∈ S→[C/χ], andτ∀ ∈ S∀∀[C/χ], and
τ∀+ ∈ S∀+[C/χ], andτµ ∈ Sµ[C/χ]. Consider the neutral type

τ = Typerec[κ{κ/χ}] (→̊→ [κ{κ/χ}] τ1 τ2) of (τint; τ→; τ∀; τ∀+; τµ)

31

• len = 0 Then the only possible reduction is
τ ′ = τ→ τ1 τ2

(Typerec[κ{κ/χ}] τ1 of (τint; τ→; τ∀; τ∀+; τµ))
(Typerec[κ{κ/χ}] τ2 of (τint; τ→; τ∀; τ∀+; τµ))

By the assumption on τ1 and τ2, both
Typerec[κ{κ/χ}] τ1 of (τint; τ→; τ∀; τ∀+; τµ)
and Typerec[κ{κ/χ}] τ2 of (τint; τ→; τ∀; τ∀+; τµ)

belong to Sκ[C/χ]. We also know that
S→[C/χ] = S\κ→\κ→κ→κ→κ[C/χ]. Therefore, we get
thatτ ′ belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ1, τ2, τint, τ→, τ∀,
τ∀+, andτµ. The proof in this case is similar to the proof of
the corresponding case for lemma C.28.

Therefore, the neutral typeτ always reduces to a type that be-
longs toSκ[C/χ]. By property 3 of definition C.18,τ ∈ Sκ[C/χ].
2

Lemma C.30 If for all τ1 ∈ Sκ1 [C/χ], τ{τ1/α} ∈ Sκ2 [C/χ],
thenλα :κ1{κ/χ}. τ ∈ Sκ1→κ2 [C/χ].

Proof Same as lemma B.30 forλPi . 2

Lemma C.31 ∀̊∀ ∈ S∀χ. ∀χ′. (χ′→\χ)→\χ[C/χ].

Proof This is true if for all kindsκ{κ/χ} andκ1{κ/χ} and
the corresponding candidatesSκ[C/χ] and Sκ1 [C/χ], and a
type τ belonging to Sχ′→\χ[C,Sκ[C/χ],Sκ1 [C/χ]/χ, χ, χ′],
we have that ∀̊∀ [κ{κ/χ}] [κ1{κ/χ}] τ belongs to
S\χ[C,Sκ[C/χ],Sκ1 [C/χ]/χ, χ, χ′]. This implies that
∀̊∀ [κ{κ/χ}] [κ1{κ/χ}] τ must belong toR\Sκ[C/χ]. This
is true if

Typerec[κ{κ/χ}] (̊∀∀ [κ{κ/χ}] [κ1{κ/χ}] τ) of
(τint; τ→; τ∀; τ∀+; τµ)

belongs to Sκ[C/χ]; given that τint ∈ Sκ[C/χ], and
τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ],

and τµ ∈ Sµ[C/χ]. Since the typesτ , τint, τ→, τ∀, τ∀+,
and τµ are strongly normalizable, we will induct over
len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) + ν(τµ).
We will prove that for all values oflen, the type

Typerec[κ{κ/χ}] (̊∀∀ [κ{κ/χ}] [κ1{κ/χ}] τ) of
(τint; τ→; τ∀; τ∀+; τµ)

always reduces to a type that belongs toSκ[C/χ]. The con-
ditions for the hypothesis are thatτ ∈ Sκ1 [C/χ]→ R\Sκ[C/χ],
andτint ∈ Sκ[C/χ], andτ→ ∈ S→[C/χ], andτ∀ ∈ S∀∀[C/χ], and
τ∀+ ∈ S∀+[C/χ], and τµ ∈ Sµ[C/χ]. Consider the neutral type

τ ′ = Typerec[κ{κ/χ}] (̊∀∀ [κ{κ/χ}] [κ1{κ/χ}] τ) of
(τint; τ→; τ∀; τ∀+; τµ)

• len = 0 The only possible reduction ofτ ′ is to

τ ′1 = τ∀ [κ1{κ/χ}] τ
(λα :κ1{κ/χ}.Typerec[κ{κ/χ}] (τ α) of

(τint; τ→; τ∀; τ∀+; τµ))

Considerτ ′′ = Typerec[κ{κ/χ}] (τ α) of (τint; τ→; τ∀; τ∀+; τµ).

For all τ1 ∈ Sκ1 [C/χ], we get that

τ ′′{τ1/α} = Typerec[κ{κ/χ}] (τ τ1) of (τint; τ→; τ∀; τ∀+; τµ).
By definition, τ τ1 belongs to
S\χ[C,Sκ[C/χ],Sκ1 [C/χ]/χ, χ, χ′] which is
equivalent to R\Sκ[C/χ]. By definition then,
Typerec[κ{κ/χ}] (τ τ1) of (τint; τ→; τ∀; τ∀+; τµ) be-

longs to Sκ[C/χ]. By lemma C.30,λα : κ1{κ/χ}. τ ′′
belongs to Sκ1→κ[C/χ]. We also know that
S∀∀[C/χ] = S∀χ. (χ→\κ)→(χ→κ)→κ[C/χ]. Therefore,
we get thatτ ′1 belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ , τint, τ→, τ∀, τ∀+,
andτµ. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral typeτ ′ always reduces to a type that be-
longs toSκ[C/χ]. By property 3 of definition C.18,τ ′ ∈ Sκ[C/χ].
2

Lemma C.32 Place ∈ S∀χ. χ→\χ[C/χ]

Proof This is true if for all kindsκ{κ/χ} and the corresponding
candidateSκ[C/χ], and a typeτ belonging toSκ[C/χ], we have
thatPlace [κ{κ/χ}] τ belongs toS\χ[C,Sκ[C/χ]/χ, χ]. This im-
plies thatPlace [κ{κ/χ}] τ belongs toR\Sκ[C/χ]. This is true if
Typerec[κ{κ/χ}] (Place [κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

belongs to Sκ[C/χ]; given that τint ∈ Sκ[C/χ], and
τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ],

and τµ ∈ Sµ[C/χ]. Since the typesτ , τint, τ→, τ∀, τ∀+,
and τµ are strongly normalizable, we will induct over
len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) + ν(τµ).
We will prove that for all values of len, the type
Typerec[κ{κ/χ}] (Place [κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

always reduces to a type that belongs toSκ[C/χ]. The conditions
for the hypothesis are thatτ ∈ Sκ[C/χ], andτint ∈ Sκ[C/χ], and
τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ], and

τµ ∈ Sµ[C/χ]. Consider the neutral type

τ ′ =
Typerec[κ{κ/χ}] (Place [κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

• len = 0 The only possible reduction ofτ ′ is to τ . By as-
sumption, this belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ , τint, τ→, τ∀, τ∀+,
andτµ. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral typeτ ′ always reduces to a type that be-
longs toSκ[C/χ]. By property 3 of definition C.18,τ ′ ∈ Sκ[C/χ].
2

Lemma C.33 l̊u ∈ S∀χ. (\χ→\χ)→\χ[C/χ]

Proof This is true if for all kinds κ{κ/χ} and the cor-
responding candidateSκ[C/χ], and a type τ belonging
to S\χ→\χ[C,Sκ[C/χ]/χ, χ], we have that l̊u [κ{κ/χ}] τ
belongs to S\χ[C,Sκ[C/χ]/χ, χ]. This implies that

l̊u [κ{κ/χ}] τ belongs to R\Sκ[C/χ]. This is true if
Typerec[κ{κ/χ}] (̊lu [κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

belongs to Sκ[C/χ]; given that τint ∈ Sκ[C/χ], and

32

τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ],

and τµ ∈ Sµ[C/χ]. Since the typesτ , τint, τ→, τ∀, τ∀+,
and τµ are strongly normalizable, we will induct over
len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) + ν(τµ).
We will prove that for all values of len, the type
Typerec[κ{κ/χ}] (̊lu [κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

always reduces to a type that belongs toSκ[C/χ]. The conditions
for the hypothesis are thatτ ∈ S\χ→\χ[C,Sκ[C/χ]/χ, χ], and
τint ∈ Sκ[C/χ], and τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and
τ∀+ ∈ S∀+[C/χ], and τµ ∈ Sµ[C/χ]. Consider the neutral type
τ ′ = Typerec[κ{κ/χ}] (̊lu [κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

• len = 0 The only possible reduction is to
τ ′1 = τµ τ (λα :κ{κ/χ}.

Typerec[κ{κ/χ}] (τ (Place [κ{κ/χ}]α)) of
(τint; τ→; τ∀; τ∀+; τµ))

Consider
τ ′′ = Typerec[κ{κ/χ}] (τ (Place [κ{κ/χ}]α)) of

(τint; τ→; τ∀; τ∀+; τµ)

For any type τ1 belonging to the
candidate Sκ[C/χ], we get that

τ ′′{τ1/α} = Typerec[κ{κ/χ}] (τ (Place [κ{κ/χ}] τ1)) of
(τint; τ→; τ∀; τ∀+; τµ)

By lemma C.32,Place ∈ S∀χ. χ→\χ[C/χ]. Therefore,
Place [κ{κ/χ}] τ1 belongs to R\Sκ[C/χ]. Therefore,
τ (Place [κ{κ/χ}] τ1) also belongs toR\Sκ[C/χ]. There-
fore, by definition, τ ′′{τ1/α} belongs toSκ[C/χ]. By
lemma C.30,λα :κ{κ/χ}. τ ′′ belongs toSκ→κ[C/χ]. We
also know thatSµ[C/χ] = S(\κ→\κ)→(κ→κ)→κ[C/χ]. This
implies thatτ ′1 belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ , τint, τ→, τ∀, τ∀+,
andτµ. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral typeτ ′ always reduces to a type that be-
longs toSκ[C/χ]. By property 3 of definition C.18,τ ′ ∈ Sκ[C/χ].
2

Lemma C.34 If for every kind κ′ and reducibility candidate
C′ of this kind, τ{κ′/χ′} ∈ Sκ[C, C′/χ, χ′], then Λχ′. τ ∈
S∀χ′. κ[C/χ].

Proof Same as lemma B.32 forλPi . 2

Lemma C.35 If τ ∈ S∀χ. κ[C/χ], then τ [κ′{κ/χ}] ∈
Sκ{κ′/χ}[C/χ] for every kindκ′{κ/χ}.

Proof By definition,τ [κ′{κ/χ}] belongs toSκ[C, C′/χ, χ], for
every kindκ′{κ/χ} and reducibility candidateC′ of this kind. Set
C′ = Sκ′ [C/χ]. Applying lemma C.26 leads to the result. 2

Lemma C.36 ∀̊∀
+
∈ S∀χ. (∀χ1. \χ)→\χ[C/χ].

Proof This is true if for all kinds κ{κ/χ}, and the cor-
responding candidateSκ[C/χ], and a type τ belonging

to S∀χ1. \χ[C,Sκ[C/χ]/χ, χ], we have that ∀̊∀
+
[κ{κ/χ}] τ

belongs to S\χ[C,Sκ[C/χ]/χ, χ]. This implies that

∀̊∀
+
[κ{κ/χ}] τ belongs to R\Sκ[C/χ]. This is true if

Typerec[κ{κ/χ}] (̊∀∀
+
[κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

belongs to Sκ[C/χ]; given that τint ∈ Sκ[C/χ], and
τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and τ∀+ ∈ S∀+[C/χ],

and τµ ∈ Sµ[C/χ]. Since the typesτ , τint, τ→, τ∀, τ∀+,
and τµ are strongly normalizable, we will induct over
len = ν(τ) + ν(τint) + ν(τ→) + ν(τ∀) + ν(τ∀+) + ν(τµ).
We will prove that for all values of len, the type

Typerec[κ{κ/χ}] (̊∀∀
+
[κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

always reduces to a type that belongs toSκ[C/χ]. The conditions
for the hypothesis are thatτ ∈ S∀χ1. \χ[C,Sκ[C/χ]/χ, χ], and
τint ∈ Sκ[C/χ], and τ→ ∈ S→[C/χ], and τ∀ ∈ S∀∀[C/χ], and
τ∀+ ∈ S∀+[C/χ], and τµ ∈ Sµ[C/χ]. Consider the neutral type

τ ′ = Typerec[κ{κ/χ}] (̊∀∀
+
[κ{κ/χ}] τ) of (τint; τ→; τ∀; τ∀+; τµ)

• len = 0 The only possible reduction ofτ ′ is to
τ∀+ τ (Λχ.Typerec[κ{κ/χ}] (τ [χ]) of (τint; τ→; τ∀; τ∀+; τµ))
Consider

τ ′′ = Typerec[κ{κ/χ}] (τ [χ]) of (τint; τ→; τ∀; τ∀+; τµ)

For an arbitrary kindκ′ and corresponding candidateC′, we
get that

τ ′′{κ′/χ} = Typerec[κ{κ/χ}] (τ [κ′]) of (τint; τ→; τ∀; τ∀+; τµ)

By the assumption on τ , we get that τ [κ′]

belongs to R\Sκ[C/χ]. By definition,
Typerec[κ{κ/χ}] (τ [κ′]) of (τint; τ→; τ∀; τ∀+; τµ)

belongs toSκ[C/χ]. Sinceχ does not occur free inκ, we
may also write thatτ ′′{κ′/χ} belongs toSκ[C, C′/χ, χ]. By
lemma C.34, this implies thatΛχ. τ ′′ belongs toS∀χ. κ[C/χ].
We also know thatτ∀+ ∈ S(∀χ. \κ)→(∀χ. κ)→κ[C/χ]. Also,
χ does not occur free inκ. Therefore, we get that
τ∀+ τ (Λχ. τ ′′) belongs toSκ[C/χ].

• len = k + 1 The other possible reductions come from the
reduction of one of the individual typesτ , τint, τ→, τ∀, τ∀+,
andτµ. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral typeτ ′ always reduces to a type that be-
longs toSκ[C/χ]. By property 3 of definition C.18,τ ′ ∈ Sκ[C/χ].
2

We now come to the main result of this section.

Theorem C.37 (Candidacy) Let τ be a type of kindκ. Sup-
pose all the free type variables ofτ are in α1 . . . αn of kinds
κ1 . . . κn and all the free kind variables ofκ, κ1 . . . κn are among
χ1 . . . χm. If C1 . . . Cm are candidates of kindsκ′1 . . . κ

′
m and

τ1 . . . τn are types of kindκ1{κ′/χ} . . . κn{κ′/χ} which are in
Sκ1 [C/χ] . . .Sκn [C/χ], thenτ{κ′/χ}{τ/α} belongs toSκ[C/χ].

Proof The proof is by induction over the structure ofτ .

The cases ofint, →̊→, ∀̊∀, ∀̊∀
+
, l̊u, andPlace are covered by lem-

mas C.28 C.29 C.31 C.36 C.33 C.32.
Supposeτ = αi andκ = κi. Thenτ{κ′/χ}{τ/α} = τi. By

assumption, this belongs toSκi [C/χ].
Supposeτ = τ ′1 τ

′
2. Thenτ ′1 : κ′ → κ for some kindκ′ and

τ ′2 : κ′. By the inductive hypothesis,τ ′1{κ′/χ}{τ/α} belongs to
Sκ′→κ[C/χ] andτ ′2{κ′/χ}{τ/α} belongs toSκ′ [C/χ]. Therefore,
(τ ′1{κ′/χ}{τ/α}) (τ ′2{κ′/χ}{τ/α}) belongs toSκ[C/χ].

Supposeτ = τ ′ [κ′]. Then τ ′ : ∀χ1. κ1 and κ =
κ1{κ′/χ1}. By the inductive hypothesis,τ ′{κ′/χ}{τ/α} belongs

33

toS∀χ1. κ1 [C/χ]. By lemma C.35τ ′{κ′/χ}{τ/α} [κ′{κ′/χ}] be-
longs toSκ1{κ′/χ1}[C/χ] which is equivalent toSκ[C/χ].

Supposeτ = Typerec[κ] τ ′ of (τint; τ→; τ∀; τ∀+; τµ). Then
τ ′ : \κ, and τint : κ, and τ→ : \κ → \κ → κ → κ → κ,
and τ∀ : ∀χ. (χ→ \κ)→ (χ→ κ)→ κ, andτ∀+ : (∀χ. \κ) →
(∀χ. κ) → κ and τµ : (\κ → \κ) → (κ→ κ) → κ. By
the inductive hypothesisτ ′{κ′/χ}{τ/α} belongs toS\κ[C/χ],
andτint{κ′/χ}{τ/α} belongs toSκ[C/χ], andτ→{κ′/χ}{τ/α}
belongs toS\κ→\κ→κ→κ→κ[C/χ], andτ∀{κ′/χ}{τ/α} belongs
to S∀χ. (χ→\κ)→(χ→κ)→κ[C/χ], and τ∀+{κ′/χ}{τ/α} belongs

to S(∀χ. \κ)→(∀χ. κ)→κ[C/χ], and τµ{κ′/χ}{τ/α} belongs to
S(\κ→\κ)→(κ→κ)→κ[C/χ]. By definition ofS\κ[C/χ],

Typerec[κ{κ′/χ}] τ ′{κ′/χ}{τ/α} of
(τint{κ′/χ}{τ/α}; τ→{κ′/χ}{τ/α};
τ∀{κ′/χ}{τ/α}; τ∀+{κ′/χ}{τ/α};
τµ{κ′/χ}{τ/α})

belongs toSκ[C/χ].
Supposeτ = λα′ : κ′. τ1. Then τ1 : κ′′ where the free

type variables ofτ1 are in α1, . . . , αn, α
′ and κ = κ′ →

κ′′. By the inductive hypothesis,τ1{κ′/χ}{τ , τ ′/α, α′} be-
longs toSκ′′ [C/χ] whereτ ′ is of kind κ′{κ′/χ} and belongs to
Sκ′ [C/χ]. This implies that(τ1{κ′/χ}{τ/α}){τ ′/α′} (sinceα′

occurs free only inτ1) belongs toSκ′′ [C/χ]. By lemma C.30,
λα′ :κ′{κ′/χ}. (τ1{κ′/χ}{τ/α}) belongs toSκ′→κ′′ [C/χ].

Suppose τ = Λχ′. τ ′. Then τ ′ : κ′′ and κ =
∀χ′. κ′′. By the inductive hypothesis,τ ′{κ′, κ′/χ, χ′}{τ/α}
belongs toSκ′′ [C, C′/χ, χ′] for an arbitrary kindκ′ and candi-
date C′ of kind κ′. Sinceχ′ occurs free only inτ ′, we get
that (τ ′{κ′/χ}{τ/α}){κ′/χ′} belongs toSκ′′ [C, C′/χ, χ′]. By
lemma C.34,Λχ′. (τ ′{κ′/χ}{τ/α}) belongs toS∀χ′. κ′′ [C/χ]. 2

SupposeSNi is the set of strongly normalizable types of kind
κi.

Corollary C.38 All types are strongly normalizable.

Proof Follows from theorem C.37 by puttingCi = SNi and
τi = αi. 2

C.3 Confluence

Confluence for theλQi type reduction relation is proved in the same
way as theλPi type reduction confluence. The additional cases
follow in a straightforward manner.

34

