
Monads for functional programming

Philip Wadler� University of Glasgow�

Department of Computing Science� University of Glasgow� G�� �QQ� Scotland
�wadler�dcs�glasgow�ac�uk�

Abstract� The use of monads to structure functional programs is de�
scribed� Monads provide a convenient framework for simulating e�ects
found in other languages� such as global state� exception handling� out�
put� or non�determinism� Three case studies are looked at in detail	 how
monads ease the modi
cation of a simple evaluator� how monads act as
the basis of a datatype of arrays subject to in�place update� and how
monads can be used to build parsers�

� Introduction

Shall I be pure or impure�
The functional programming community divides into two camps� Pure lan�

guages� such as Miranda� and Haskell� are lambda calculus pure and simple�
Impure languages� such as Scheme and Standard ML� augment lambda calculus
with a number of possible e�ects� such as assignment� exceptions� or continu�
ations� Pure languages are easier to reason about and may bene�t from lazy
evaluation� while impure languages o�er e�ciency bene�ts and sometimes make
possible a more compact mode of expression�

Recent advances in theoretical computing science� notably in the areas of type
theory and category theory� have suggested new approaches that may integrate
the bene�ts of the pure and impure schools� These notes describe one� the use
of monads to integrate impure e�ects into pure functional languages�

The concept of a monad� which arises from category theory� has been applied
by Moggi to structure the denotational semantics of programming languages ��	�
�
�� The same technique can be applied to structure functional programs ����
�	��

The applications of monads will be illustrated with three case studies� Sec�
tion � introduces monads by showing how they can be used to structure a simple
evaluator so that it is easy to modify� Section 	 describes the laws satis�ed by

� Appears in	 J� Jeuring and E� Meijer� editors� Advanced Functional Programming�
Proceedings of the B�astad Spring School� May �

�� Springer Verlag Lecture Notes
in Computer Science
��� A previous version of this note appeared in	 M� Broy�
editor� Program Design Calculi� Proceedings of the Marktoberdorf Summer School�
�� July�� August �

�� Some errata
xed August ����� thanks to Dan Friedman for
pointing these out�

� Miranda is a trademark of Research Software Limited�

monads� Section
 shows how monads provide a new solution to the old prob�
lem of providing updatable state in pure functional languages� Section
 applies
monads to the problem of building recursive descent parsers� this is of interest in
its own right� and because it provides a paradigm for sequencing and alternation�
two of the central concepts of computing�

It is doubtful that the structuring methods presented here would have been
discovered without the insight a�orded by category theory� But once discov�
ered they are easily expressed without any reference to things categorical� No
knowledge of category theory is required to read these notes�

The examples will be given in Haskell� but no knowledge of that is required
either� What is required is a passing familiarity with the basics of pure and im�
pure functional programming� for general background see �	� ���� The languages
refered to are Haskell �
�� Miranda ����� Standard ML ����� and Scheme �����

� Evaluating monads

Pure functional languages have this advantage� all �ow of data is made explicit�
And this disadvantage� sometimes it is painfully explicit�

A program in a pure functional language is written as a set of equations�
Explicit data �ow ensures that the value of an expression depends only on its
free variables� Hence substitution of equals for equals is always valid� making
such programs especially easy to reason about� Explicit data �ow also ensures
that the order of computation is irrelevant� making such programs susceptible
to lazy evaluation�

It is with regard to modularity that explicit data �ow becomes both a blessing
and a curse� On the one hand� it is the ultimate in modularity� All data in
and all data out are rendered manifest and accessible� providing a maximum of
�exibility� On the other hand� it is the nadir of modularity� The essence of an
algorithm can become buried under the plumbing required to carry data from
its point of creation to its point of use�

Say I write an evaluator in a pure functional language�

� To add error handling to it� I need to modify each recursive call to check
for and handle errors appropriately� Had I used an impure language with
exceptions� no such restructuring would be needed�

� To add a count of operations performed to it� I need to modify each recursive
call to pass around such counts appropriately� Had I used an impure language
with a global variable that could be incremented� no such restructuring would
be needed�

� To add an execution trace to it� I need to modify each recursive call to
pass around such traces appropriately� Had I used an impure language that
performed output as a side e�ect� no such restructuring would be needed�

Or I could use a monad�
These notes show how to use monads to structure an evaluator so that the

changes mentioned above are simple to make� In each case� all that is required
is to rede�ne the monad and to make a few local changes�

This programming style regains some of the �exibility provided by various
features of impure languages� It also may apply when there is no corresponding
impure feature� It does not eliminate the tension between the �exibility a�orded
by explicit data and the brevity a�orded by implicit plumbing� but it does ame�
liorate it to some extent�

The technique applies not just to evaluators� but to a wide range of functional
programs� For a number of years� Glasgow has been involved in constructing a
compiler for the functional language Haskell� The compiler is itself written in
Haskell� and uses the structuring technique described here� Though this paper
describes the use of monads in a program tens of lines long� we have experience
of using them in a program three orders of magnitude larger�

We begin with the basic evaluator for simple terms� then consider variations
that mimic exceptions� state� and output� We analyse these for commonalities�
and abstract from these the concept of a monad� We then show how each of the
variations �ts into the monadic framework�

��� Variation zero� The basic evaluator

The evaluator acts on terms� which for purposes of illustration have been taken
to be excessively simple�

data Term � Con Int j Div Term Term

A term is either a constant Con a� where a is an integer� or a quotient� Div t u�
where t and u are terms�

The basic evaluator is simplicity itself�

eval �� Term � Int

eval �Con a� � a

eval �Div t u� � eval t � eval u

The function eval takes a term to an integer� If the term is a constant� the
constant is returned� If the term is a quotient� its subterms are evaluated and
the quotient computed� We use ��� to denote integer division�

The following will provide running examples�

answer � error �� Term
answer � �Div �Div �Con ���� � �Con � �� �Con �� ��
error � �Div �Con � � �Con � ��

Computing eval answer yields the value of ������ � � �� �� �� which is �� � The
basic evaluator does not incorporate error handling� so the result of eval error
is unde�ned�

��� Variation one� Exceptions

Say it is desired to add error checking� so that the second example above returns
a sensible error message� In an impure language� this is easily achieved with the
use of exceptions�

In a pure language� exception handling may be mimicked by introducing a
type to represent computations that may raise an exception�

data M a � Raise Exception j Return a
type Exception � String

A value of type M a either has the form Raise e� where e is an exception� or
Return a� where a is a value of type a� By convention� a will be used both as a
type variable� as in M a� and as a variable ranging over values of that type� as
in Return a�

�A word on the di�erence between �data� and �type� declarations� A �data�
declaration introduces a new data type� in this case M � and new constructors for
values of that type� in this caseRaise and Return� A �type� declaration introduces
a new name for an existing type� in this case Exception becomes another name
for String ��

It is straightforward� but tedious� to adapt the evaluator to this representa�
tion�

eval �� Term � M Int

eval �Con a� � Return a

eval �Div t u� � case eval t of

Raise e � Raise e

Return a �
case eval u of

Raise e � Raise e

Return b �
if b �� �

then Raise �divide by zero	

else Return �a � b�

At each call of the evaluator� the form of the result must be checked� if an
exception was raised it is re�raised� and if a value was returned it is processed�
Applying the new evaluator to answer yields �Return �� �� while applying it to
error yields �Raise �divide by zero	��

��� Variation two� State

Forgetting errors for the moment� say it is desired to count the number of divi�
sions performed during evaluation� In an impure language� this is easily achieved
by the use of state� Set a given variable to zero initially� and increment it by one
each time a division occurs�

In a pure language� state may be mimicked by introducing a type to represent
computations that act on state�

type M a � State � �a�State�
type State � Int

Now a value of type M a is a function that accepts the initial state� and returns
the computed value paired with the �nal state�

Again� it is straightforward but tedious to adapt the evaluator to this repre�
sentation�

eval �� Term � M Int

eval �Con a� x � �a� x �
eval �Div t u� x � let �a� y� � eval t x in

let �b� z � � eval u y in

�a � b� z � � �

At each call of the evaluator� the old state must be passed in� and the new state
extracted from the result and passed on appropriately� Computing eval answer �
yields ��� � � �� so with initial state � the answer is �� and the �nal state is � �
indicating that two divisions were performed�

��� Variation three� Output

Finally� say it is desired to display a trace of execution� In an impure language�
this is easily done by inserting output commands at appropriate points�

In a pure language� output may be mimicked by introducing a type to rep�
resent computations that generate output�

type M a � �Output � a�
type Output � String

Now a value of type M a consists of the output generated paired with the value
computed�

Yet again� it is straightforward but tedious to adapt the evaluator to this
representation�

eval �� Term � M Int

eval �Con a� � �line �Con a� a� a�
eval �Div t u� � let �x � a� � eval t in

let �y � b� � eval u in

�x �� y �� line �Div t u� �a � b�� a � b�

line �� Term � Int � Output

line t a � �eval �	�� showterm t �� ��� 	�� showint a �� ���	

At each call of the evaluator� the outputs must be collected and assembled to
form the output of the enclosing call� The function line generates one line of the
output� Here showterm and showint convert terms and integers to strings� ��
concatenates strings� and ���� represents the string consisting of a newline�

Computing eval answer returns the pair �x � �� �� where x is the string

eval �Con ���� � � ����

eval �Con � �� �

eval �Div �Con ���� � �Con � ��� �
�

eval �Con �� �� ��

eval �Div �Div �Con ���� � �Con � �� �Con �� ��� � ��

which represents a trace of the computation�
From the discussion so far� it may appear that programs in impure languages

are easier to modify than those in pure languages� But sometimes the reverse
is true� Say that it was desired to modify the previous program to display the
execution trace in the reverse order�

eval �Div �Div �Con ���� � �Con � �� �Con �� ��� � ��

eval �Con �� �� ��

eval �Div �Con ���� � �Con � ��� �
�

eval �Con � �� �

eval �Con ���� � � ����

This is simplicity itself to achieve with the pure program� just replace the term

x �� y �� line �Div t u� �a � b�

with the term
line �Div t u� �a � b� �� y �� x �

It is not so easy to modify the impure program to achieve this e�ect� The problem
is that output occurs as a side�e�ect of computation� but one now desires to
display the result of computing a term before displaying the output generated
by that computation� This can be achieved in a variety of ways� but all require
substantial modi�cation to the impure program�

��� A monadic evaluator

Each of the variations on the interpreter has a similar structure� which may be
abstracted to yield the notion of a monad�

In each variation� we introduced a type of computations� Respectively� M
represented computations that could raise exceptions� act on state� and generate
output� By now the reader will have guessed that M stands for monad�

The original evaluator has the type Term � Int � while in each variation its
type took the form Term � M Int � In general� a function of type a � b is
replaced by a function of type a � M b� This can be read as a function that
accepts an argument of type a and returns a result of type b� with a possible
additional e�ect captured by M � This e�ect may be to act on state� generate
output� raise an exception� or what have you�

What sort of operations are required on the type M � Examination of the
examples reveals two� First� we need a way to turn a value into the computation
that returns that value and does nothing else�

unit �� a � M a

Second� we need a way to apply a function of type a � M b to a computation of
type M a� It is convenient to write these in an order where the argument comes
before the function�

��� �� M a � �a � M b�� M b

A monad is a triple �M � unit � �� consisting of a type constructor M and two
operations of the given polymorphic types� These operations must satisfy three
laws given in Section 	�

We will often write expressions in the form

m � �a�n

where m and n are expressions� and a is a variable� The form �a�n is a lambda
expression� with the scope of the bound variable a being the expression n� The
above can be read as follows� perform computation m� bind a to the resulting
value� and then perform computation n� Types provide a useful guide� From the
type of ���� we can see that expression m has type M a� variable a has type a�
expression n has type M b� lambda expression �a�n has type a � M b� and the
whole expression has type M b�

The above is analogous to the expression

let a � m in n�

In an impure language� this has the same reading� perform computation m� bind
a to the resulting value� then perform computation n and return its value� Here
the types say nothing to distinguish values from computations� expression m has
type a� variable a has type a� expression n has type b� and the whole expression
has type b� The analogy with �let� explains the choice of the order of arguments
to �� It is convenient for argument m to appear before the function �a�n� since
computation m is performed before computation n�

The evaluator is easily rewritten in terms of these abstractions�

eval �� Term � M Int

eval �Con a� � unit a

eval �Div t u� � eval t � �a� eval u � �b� unit �a � b�

A word on precedence� lambda abstraction binds least tightly and application
binds most tightly� so the last equation is equivalent to the following�

eval �Div t u� � ��eval t� � ��a� ��eval u� � ��b� �unit �a � b������

The type Term � M Int indicates that the evaluator takes a term and performs a
computation yielding an integer� To compute �Con a�� just return a� To compute
�Div t u�� �rst compute t � bind a to the result� then compute u� bind b to the
result� and then return a � b�

The new evaluator is a little more complex than the original basic evaluator�
but it is much more �exible� Each of the variations given above may be achieved
by simply changing the de�nitions of M � unit � and �� and by making one or two
local modi�cations� It is no longer necessary to re�write the entire evaluator to
achieve these simple changes�

��� Variation zero	 revisited� The basic evaluator

In the simplest monad� a computation is no di�erent from a value�

type M a � a

unit �� a � I a

unit a � a

��� �� M a � �a � M b�� M b

a � k � k a

This is called the identity monad� M is the identity function on types� unit is
the identity function� and � is just application�

Taking M � unit � and � as above in the monadic evaluator of Section ��
 and
simplifying yields the basic evaluator of Section ���

��
 Variation one	 revisited� Exceptions

In the exception monad� a computation may either raise an exception or return
a value�

data M a � Raise Exception j Return a
type Exception � String

unit �� a � M a

unit a � Return a

��� �� M a � �a � M b�� M b

m � k � case m of

Raise e � Raise e

Return a � k a

raise �� Exception � M a

raise e � Raise e

The call unit a simply returns the value a� The call m � k examines the result
of the computation m� if it is an exception it is re�raised� otherwise the function
k is applied to the value returned� Just as � in the identity monad is function
application� � in the exception monad may be considered as a form of strict
function application� Finally� the call raise e raises the exception e�

To add error handling to the monadic evaluator� take the monad as above�
Then just replace unit �a � b� by

if b �� �

then raise �divide by zero	

else unit �a � b�

This is commensurate with change required in an impure language�
As one might expect� this evaluator is equivalent to the evaluator with ex�

ceptions of Section ���� In particular� unfolding the de�nitions of unit and � in
this section and simplifying yields the evaluator of that section�

��� Variation two	 revisited� State

In the state monad� a computation accepts an initial state and returns a value
paired with the �nal state�

type M a � State � �a�State�
type State � Int

unit �� a � M a

unit a � �x � �a� x �

��� �� M a � �a � M b�� M b

m � k � �x � let �a� y� � m x in

let �b� z � � k a y in

�b� z �

tick �� M ��
tick � �x � ���� x � � �

The call unit a returns the computation that accept initial state x and returns
value a and �nal state x � that is� it returns a and leaves the state unchanged�
The call m � k performs computation m in the initial state x � yielding value a

and intermediate state y � then performs computation k a in state y � yielding
value b and �nal state z � The call tick increments the state� and returns the
empty value ��� whose type is also written ���

In an impure language� an operation like tick would be represented by a
function of type ��� ��� The spurious argument �� is required to delay the e�ect
until the function is applied� and since the output type is �� one may guess that
the function�s purpose lies in a side e�ect� In contrast� here tick has type M ���
no spurious argument is needed� and the appearance of M explicitly indicates
what sort of e�ect may occur�

To add execution counts to the monadic evaluator� take the monad as above�
Then just replace unit �a � b� by

tick � ���� unit �a � b�

�Here � � e is equivalent to �x � e where x �� �� is some fresh variable that does not
appear in e� it indicates that the value bound by the lambda expression must be
���� Again� this is commensurate with change required in an impure language�
Simplifying yields the evaluator with state of Section ��	�

��� Variation three	 revisited� Output

In the output monad� a computation consists of the output generated paired
with the value returned�

type M a � �Output � a�
type Output � String

unit �� a � M a

unit a � �� 	� a�

��� �� M a � �a � M b�� M b

m � k � let �x � a� � m in

let �y � b� � k a in

�x �� y � b�

out �� Output � M ��
out x � �x � ���

The call unit a returns no output paired with a� The call m � k extracts output
x and value a from computation m� then extracts output y and value b from
computation k a� and returns the output formed by concatenating x and y paired
with the value b� The call out x returns the computation with output x and
empty value ���

To add execution traces to the monadic evaluator� take the monad as above�
Then in the clause for Con a replace unit a by

out �line �Con a� a� � ���� unit a

and in the clause for Div t u replace unit �a � b� by

out �line �Div t u� �a � b�� � ���� unit �a � b�

Yet again� this is commensurate with change required in an impure language�
Simplifying yields the evaluator with output of Section ��
�

To get the output in the reverse order� all that is required is to change the
de�nition of �� replacing x ��y by y�� x � This is commensurate with the change
required in the pure program� and rather simpler than the change required in
an impure program�

You might think that one di�erence between the pure and impure versions is
that the impure version displays output as it computes� while the pure version
will display nothing until the entire computation completes� In fact� if the pure
language is lazy then output will be displayed in an incremental fashion as the
computation occurs� Furthermore� this will also happen if the order of output is
reversed� which is much more di�cult to arrange in an impure language� Indeed�
the easiest way to arrange it may be to simulate lazy evaluation�

� Monad laws

The operations of a monad satisfy three laws�

� Left unit� Compute the value a� bind b to the result� and compute n� The
result is the same as n with value a substituted for variable b�

unit a � �b�n � n�a�b��

� Right unit� Compute m� bind the result to a� and return a� The result is the
same as m�

m � �a� unit a � m�

� Associative� Compute m� bind the result to a� compute n� bind the result to
b� compute o� The order of parentheses in such a computation is irrelevant�

m � ��a�n � �b� o� � �m � �a�n� � �b� o�

The scope of the variable a includes o on the left but excludes o on the right�
so this law is valid only when a does not appear free in o�

A binary operation with left and right unit that is associative is called a monoid�
A monad di�ers from a monoid in that the right operand involves a binding
operation�

To demonstrate the utility of these laws� we prove that addition is associative�
Consider a variant of the evaluator based on addition rather than division�

data Term � Con Int j Add Term Term

eval �� Term � M Int

eval �Con a� � unit a

eval �Add t u� � eval t � �a� eval u � �b� unit �a � b�

We show that evaluation of

Add t �Add u v� and Add �Add t u� v �

both compute the same result� Simplify the left term�

eval �Add t �Add u v��
� f def�n eval g
eval t � �a� eval �Add u v� � �x � unit �a � x �

� f def�n eval g
eval t � �a� �eval u � �b� eval v � �c� unit �b � c�� � �x � unit �a � x �

� f associative g
eval t � �a� eval u � �b� eval v � �c� unit �b � c� � �x � unit �a � x �

� f left unit g
eval t � �a� eval u � �b� eval v � �c� unit �a � �b � c��

Simplify the right term similarly�

eval �Add �Add t u� v�
� f as before g
eval t � �a� eval u � �b� eval v � �c� unit ��a � b� � c�

The result follows by the associativity of addition� This proof is trivial� without
the monad laws� it would be impossible�

The proof works in any monad� exception� state� output� This assumes that
the code is as above� if it is modi�ed then the proof also must be modi�ed� Sec�
tion ��	 modi�ed the program by adding calls to tick � In this case� associativity
still holds� as can be demonstrated using the law

tick � ����m � m � ���� tick

which holds so long at tick is the only action on state within m� Section ��

modi�ed the program by adding calls to line� In this case� the addition is no
longer associative� in the sense that changing parentheses will change the trace�
though the computations will still yield the same value�

As another example� note that for each monad we can de�ne the following
operations�

map �� �a � b�� �M a � M b�
map f m � m � �a� unit �f a�

join �� M �M a�� M a

join z � z � �m�m

The map operation simply applies a function to the result yielded by a compu�
tation� To compute map f m� �rst compute m� bind a to the result� and then
return f a� The join operation is trickier� Let z be a computation that itself

yields a computation� To compute join z � �rst compute z � binds m to the result�
and then behaves as computation m� Thus� join �attens a mind�boggling double
layer of computation into a run�of�the�mill single layer of computation� As we
will see in Section
��� lists form a monad� and for this monad map applies a
function to each element of a list� and join concatenates a list of lists�

Using id for the identity function �id x � x �� and ��� for function composition
��f � g� x � f �g x ��� one can then formulate a number of laws�

map id � id

map �f � g� � map f �map g

map f � unit � unit � f
map f � join � join �map �map f �

join � unit � id

join �map unit � id

join �map join � join � join

m � k � join �map k m�

The proof of each is a simple consequence of the de�nitions of map and join and
the three monad laws�

Often� monads are de�ned not in terms of unit and �� but rather in terms
of unit � join� and map ���� �	�� The three monad laws are replaced by the �rst
seven of the eight laws above� If one de�nes � by the eighth law� then the three
monad laws follow� Hence the two de�nitions are equivalent�

� State

Arrays play a central role in computing because they closely match current
architectures� Programs are littered with array lookups such as x �i � and array
updates such as x �i � �� v � These operations are popular because array lookup is
implemented by a single indexed fetch instruction� and array update by a single
indexed store�

It is easy to add arrays to a functional language� and easy to provide e�cient
array lookup� How to provide e�cient array update� on the other hand� is a
question with a long history� Monads provide a new answer to this old question�

Another question with a long history is whether it is desirable to base pro�
grams on array update� Since so much e�ort has gone into developing algorithms
and architectures based on arrays� we will sidestep this debate and simply assume
the answer is yes�

There is an important di�erence between the way monads are used in the
previous section and the way monads are used here� The previous section showed
monads help to use existing language features more e�ectively� this section shows
how monads can help de�ne new language features� No change to the program�
ming language is required� but the implementation must provide a new abstract
data type� perhaps as part of the standard prelude�

Here monads are used to manipulate state internal to the program� but
the same techniques can be use to manipulate extenal state� to perform in�
put�output� or to communicate with other programming languages� The Glas�
gow implementation of Haskell uses a design based on monads to provide in�
put�output and interlanguage working with the imperative programming lan�
guage C ��
�� This design has been adopted for version ��	 of the Haskell stan�
dard�

��� Arrays

Let Arr be the type of arrays taking indexes of type Ix and yielding values of
type Val � The key operations on this type are

newarray �� Val � Arr �
index �� Ix � Arr � Val �
update �� Ix � Val � Arr � Arr �

The call newarray v returns an array with all entries set to v � the call index i x
returns the value at index i in array x � and the call update i v x returns an array
where index i has value v and the remainder is identical to x � The behaviour of
these operations is speci�ed by the laws

index i �newarray v� � v �
index i �update i v x � � v �
index i �update j v x � � index i x � if i �� j �

In practice� these operations would be more complex� one needs a way to specify
the index bounds� for instance� But the above su�ces to explicate the main
points�

The e�cient way to implement the update operation is to overwrite the
speci�ed entry of the array� but in a pure functional language this is only safe
if there are no other pointers to the array extant when the update operation is
performed� An array satisfying this property is called single threaded� following
Schmidt �����

Consider building an interpreter for a simple imperative language� The ab�
stract syntax for this language is represented by the following data types�

data Term � Var Id j Con Int j Add Term Term

data Comm � Asgn Id Term j Seq Comm Comm j If Term Comm Comm

data Prog � Prog Comm Term

Here Id � baastad �tex � v� �� �� �������������� � �� � ��wadlerExp is an unspeci�
�ed type of identi�ers� A term is a variable� a constant� or the sum of two terms�
a command is an assignment� a sequence of two commands� or a conditional�
and a program consists of a command followed by a term�

The current state of execution will be modelled by an array where the indexes
are identi�ers and the corresponding values are integers�

type State � Arr

type Ix � Id

type Val � Int

Here is the interpreter�

eval �� Term � State � Int

eval �Var i� x � index i x

eval �Con a� x � a

eval �Add t u� x � eval t x � eval u x

exec �� Comm � State � State

exec �Asgn i t� x � update i �eval t x � x
exec �Seq c d� x � exec d �exec c x �
exec �If t c d� x � if eval t x �� � then exec c x else exec d x

elab �� Prog � Int

elab �Prog c t� � eval t �exec c �newarray � ��

This closely resembles a denotational semantics� The evaluator for terms takes a
term and a state and returns an integer� Evaluation of a variable is implemented
by indexing the state� The executor for commands takes a command and the
initial state and returns the �nal state� Assignment is implemented by updating
the state� The elaborator for programs takes a program and returns an integer�
It executes the command in an initial state where all identi�ers map to � � then
evaluates the given expression in the resulting state and returns its value�

The state in this interpreter is single threaded� at any moment of execution
there is only one pointer to the state� so it is safe to update the state in place�
In order for this to work� the update operation must evaluate the new value
before placing it in the array� Otherwise� the array may contain a closure that
itself contains a pointer to the array� violating the single threading property� In
semantic terms� one says that update is strict in all three of its arguments�

A number of researchers have proposed analyses that determine whether a
given functional program uses an array in a single threaded manner� with the
intent of incorporating such an analysis into an optimising compiler� Most of
these analyses are based on abstract interpretation ���� Although there has been
some success in this area� the analyses tend to be so expensive as to be intractable
��� ���

Even if such analyses were practicable� their use may be unwise� Optimising
update can a�ect a program�s time and space usage by an order of magnitude or
more� The programmer must be assured that such an optimisation will occur in
order to know that the program will run adequately fast and within the available
space� It may be better for the programmer to indicate explicitly that an array
should be single threaded� rather than leave it to the vagaries of an optimising
compiler�

Again� a number of researchers have proposed techniques for indicating that
an array is single threaded� Most of these techniques are based on type systems
��� ��� ���� This area seems promising� although the complexities of these type
systems remain formidable�

The following section presents another way of indicating explicitly the in�
tention that an array be single threaded� Naturally� it is based on monads� The
advantage of this method is that it works with existing type systems� using only
the idea of an abstract data type�

��� Array transformers

The monad of array transformers is simply the monad of state transformers�
with the state taken to be an array� The de�nitions of M � unit � � are as before�

type M a � State � �a�State�
type State � Arr

unit �� a � M a

unit a � �x � �a� x �

��� �� M a � �a � M b�� M b

m � k � �x � let �a� y� � m x in

let �b� z � � k a y in

�b� z �

Previously� our state was an integer and we had an additional operation tick act�
ing upon the state� Now our state is an array� and we have additional operations

corresponding to array creation� indexing� and update�

block �� Val � M a � a

block v m � let �a� x � � m �newarray v� in a

fetch �� Ix � M Val

fetch i � �x � �index i x � x �

assign �� Ix � Val � M ��
assign i v � �x � ���� update i v x �

The call block v m creates a new array with all locations initialised to v � applies
monad m to this initial state to yield value a and �nal state x � deallocates the
array� and returns a� The call fetch i returns the value at index i in the current
state� and leaves the state unchanged� The call assign i v returns the empty value
��� and updates the state so that index i contains value v �

A little thought shows that these operations are indeed single threaded� The
only operation that could duplicate the array is fetch� but this may be imple�
mented as follows� �rst fetch the entry at the given index in the array� and then
return the pair consisting of this value and the pointer to the array� In semantic
terms� fetch is strict in the array and the index� but not in the value located
at the index� and assign is strict in the array and the index� but not the value
assigned�

�This di�ers from the previous section� where in order for the interpreter to
be single threaded it was necessary for update to be strict in the given value� In
this section� as we shall see� this strictness is removed but a spurious sequenc�
ing is introduced for evaluation of terms� In the following section� the spurious
sequencing is removed� but the strictness will be reintroduced��

We may nowmakeM into an abstract data type supporting the �ve operations
unit � �� block � fetch� and assign� The operation block plays a central role� as it is
the only one that does not have M in its result type� Without block there would
be no way to write a program using M that did not have M in its output type�

Making M into an abstract data type guarantees that single threading is
preserved� and hence it is safe to implement assignment with an in�place update�
The use of data abstraction is essential for this purpose� Otherwise� one could
write programs such as

�x � �assign i v x � assign i w x �

that violate the single threading property�

The interpreter may now be rewritten as follows�

eval �� Term � M Int

eval �Var i� � fetch i

eval �Con a� � unit a

eval �Add t u� � eval t � �a� eval u � �b� unit �a � b�

exec �� Comm � M ��
exec �Asgn i t� � eval t � �a� assign i a

exec �Seq c d� � exec c � ���� exec d � ���� unit ��
exec �If t c d� � eval t � �a�

if a �� � then exec c else exec d

elab �� Prog � Int

elab �Prog c t� � block � �exec c � ���� eval t � �a� unit a�

The types show that evaluation of a term returns an integer and may access or
modify the state� and that execution of a term returns nothing and may access
or modify the state� In fact� evaluation only accesses the state and never alters
it � we will consider shortly a more re�ned system that allows us to indicate
this�

The abstract data type for M guarantees that it is safe to perform updates
in place no special analysis technique is required� It is easy to see how the
monad interpreter can be derived from the original� and �using the de�nitions
given earlier� the proof of their equivalence is straightforward�

The rewritten interpreter is slightly longer than the previous version� but
perhaps slightly easier to read� For instance� execution of �Seq c d� can be read�
compute the execution of c� then compute the execution of d � then return noth�
ing� Compare this with the previous version� which has the unnerving property
that exec d appears to the left of exec c�

One drawback of this program is that it introduces too much sequencing�
Evaluation of �Add t u� can be read� compute the evaluation of t � bind a to the
result� then compute the evaluation of u� bind b to the result� then return a � b�
This is unfortunate� in that it imposes a spurious ordering on the evaluation of t
and u that was not present in the original program� The order does not matter
because although eval depends on the state� it does not change it� To remedy
this we will augment the monad of state transformers M with a second monad
M � of state readers�

��� Array readers

Recall that the monad of array transformers takes an initial array and returns
a value and a �nal array�

type M a � State � �a�State�
type State � Arr

The corresponding monad of array readers takes an array and returns a value�
No array is returned because it is assumed identical to the original array�

type M � a � State � a

unit � �� a � M � a

unit � a � �x � a

���� �� M � a � �a � M � b�� M � b

m �� k � �x � let a � m x in k a x

fetch � �� Ix � M � Val

fetch � i � �x � index i x

The call unit � a ignores the given state x and returns a� The call m �� k performs
computation m in the given state x � yielding value a� then performs computation
k a in the same state x � Thus� unit � discards the state and �� duplicates it� The
call fetch � i returns the value in the given state x at index i �

Clearly� computations that only read the state are a subset of the computa�
tions that may read and write the state� Hence there should be a way to coerce
a computation in monad M � into one in monad M �

coerce �� M � a � M a

coerce m � �x � let a � m x in �a� x �

The call coerce m performs computation m in the initial state x � yielding a�
and returns a paired with state x � The function coerce enjoys a number of
mathematical properties to be discussed shortly�

Again� these operations maintain single threading if suitably implemented�
The de�nitions of �� and coerce must both be strict in the intermediate value
a� This guarantees that when coerce m is performed in state x � the computation
of m x will reduce to a form a that contains no extant pointers to the state x

before the pair �a� x � is returned� Hence there will be only one pointer extant to
the state whenever it is updated�

A monad is commutative if it satis�es the law

m � �a�n � �b� o � n � �b�m � �a� o�

The scope of a includes n on the right and not on the left� so this law is valid
only when a does not appear free in n� Similarly� b must not appear free in m�
In a commutative monad the order of computation does not matter�

The state reader monad is commutative� while the state transfomer monad
is not� So no spurious order is imposed on computations in the state reader
monad� In particular� the call m �� k may safely be implemented so that m and
k a are computed in parallel� However� the �nal result must still be strict in
a� For instance� with the annotations used in the GRIP processor� �� could be
de�ned as follows�

m �� k � �x � let a � m x in

let b � k a x in

par a �par b �seq a b��

The two calls to par spark parallel computations of a and b� and the call to seq

waits for a to reduce to a non�bottom value before returning b�
These operations may be packaged into two abstract data types� M and M ��

supporting the eight operations unit � �� unit �� ��� block � assign� fetch �� and coerce�
The abstraction guarantees single threading� so assign may be implemented by
an in�place update�

The interpreter may be rewritten again�

eval �� Term � M � Int

eval �Var i� � fetch � i

eval �Con a� � unit � a

eval �Add t u� � eval t �� �a� eval u �� �b� unit � �a � b�

exec �� Comm � M ��
exec �Asgn i t� � coerce �eval t� � �a� assign i a

exec �Seq c d� � exec c � ���� exec d � ���� unit ��
exec �If t c d� � coerce �eval t� � �a�

if a �� � then exec c else exec d

elab �� Prog � Int

elab �Prog c t� � block � �exec c � ���� coerce �eval t� � �a� unit a�

This di�ers from the previous version in that eval is written in terms of M �

rather than M � and calls to coerce surround the calls of eval in the other two
functions� The new types make it clear that eval depends upon the state but
does not alter it� while exec may both depend upon and alter the state�

The excessive sequencing of the previous version has been eliminated� In the
evaluation of �Add t u� the two subexpressions may be evaluated in either order
or concurrently�

A monad morphism from a monad M � to a monad M is a function h ��
M � a � M a that preserves the monad structure�

h �unit � a� � unit a�
h �m �� �a�n� � �h m� � �a� �h n��

It often happens that one wishes to use a combination of monads to achieve a
purpose� and monad morphisms play the key role of converting from one monad
to another ����

In particular� coerce is a monad morphism� and it follows immediately from
this that the two versions of the interpreter are equivalent�

��� Conclusion

How a functional language may provide in�place array update is an old problem�
This section has presented a new solution� consisting of two abstract data types
with eight operations between them� No change to the programming language
is required� other than to provide an implementation of these types� perhaps as
part of the standard prelude� The discovery of such a simple solution comes as

a surpise� considering the plethora of more elaborate solutions that have been
proposed�

A di�erent way of expressing the same solution� based on continuation passing
style� has subsequently been proposed by Hudak ���� But Hudak�s solution was
inspired by the monad solution� and the monad solution still appears to have
some small advantages ��
��

Why was this solution not discovered twenty years ago� One possible reason is
that the data types involve higher�order functions in an essential way� The usual
axiomatisation of arrays involves only �rst�order functions� and so perhaps it did
not occur to anyone to search for an abstract data type based on higher�order
functions� That monads led to the discovery of the solution must count as a
point in their favour�

� Parsers

Parsers are the great success story of theoretical computing� The BNF formalism
provides a concise and precise way to describe the syntax of a programming
language� Mathematical tests can determine if a BNF grammar is ambiguous or
vacuous� Transformations can produce an equivalent grammar that is easier to
parse� Compiler�compilers can turn a high�level speci�cation of a grammar into
an e�cient program�

This section shows how monads provide a simple framework for constructing
recursive descent parsers� This is of interest in its own right� and also because
the basic structures of parsing sequencing and alternation are fundamental
to all of computing� It also provides a demonstration of how monads can model
backtracking �or angelic non�determinism��

��� Lists

Our representation of parsers depends upon lists� Lists are ubiquitous in func�
tional programming� and it is surprising that we have managed to get by so
far while barely mentioning them� Actually� they have appeared in disguise� as
strings are simply lists of characters�

We review some notation� We write �a� for the type of a list with elements
all of type a� and � for �cons�� Thus �� � � � � � � � � � � � � � �� and both have type
�Int �� Strings are lists of characters� so String and �Char � are equivalent� and
�monad	 is just an abbreviation for �
m��
o��
n��
a��
d���

It is perhaps not suprising that lists form a monad�

unit �� a � �a�
unit a � �a�

��� �� �a�� �a � �b��� �b�
� � � k � � �
�a � x � � k � k a �� �x � k�

The call unit a simply forms the unit list containing a� The call m � k applies k
to each element of the list m� and appends together the resulting lists�

If monads encapsulate e�ects and lists form a monad� do lists correspond to
some e�ect� Indeed they do� and the e�ect they correspond to is choice� One
can think of a computation of type �a� as o�ering a choice of values� one for each
element of the list� The monadic equivalent of a function of type a � b is a
function of type a � �b�� This o�ers a choice of results for each argument� and
hence corresponds to a relation� The operation unit corresponds to the identity
relation� which associates each argument only with itself� If k �� a � �b� and
h �� b � �c�� then

�a� k a � �b� h b �� a � �c�

corresponds to the relational composition of k and h�
The list comprehension notation provides a convenient way of manipulating

lists� The behaviour is analogous to set comprehensions� except the order is
signi�cant� For example�

� sqr a j a � �� � � � � � � � �� � � � � �
� �a� b� j a � �� � � �� b � �list	 � � ��� �
l��� �� �
i��� �� �
s��� �� �
t���

�� �
l��� �� �
i��� �� �
s��� �� �
t���

The list comprehension notation translates neatly into monad operations�

� t j x � u � � u � �x � unit t
� t j x � u� y � v � � u � �x � v � �y � unit t

Here t is an expression� x and y are variables �or more generally patterns�� and u

and v are expressions that evaluate to lists� Connections between comprehensions
and monads have been described at length elsewhere �����

��� Representing parsers

Parsers are represented in a way similar to state transformers�

type M a � State � ��a�State��
type State � String

That is� the parser for type a takes a state representing a string to be parsed�
and returns a list of containing the value of type a parsed from the string� and
a state representing the remaining string yet to be parsed� The list represents
all the alternative possible parses of the input state� it will be empty if there is
no parse� have one element if there is one parse� have two elements if there are
two di�erent possible parses� and so on�

Consider a simple parser for arithmetic expressions� which returns a tree of
the type considered previously�

data Term � Con Int j Div Term Term

Say we have a parser for such terms�

term �� M Term

Here are some examples of its use�

term ���	 � ��Con �� � � 	��
term ��� and more	 � ��Con �� � � and more	��
term �not a term	 � � �
term ������� � � � � �� �	 � ��Div �Div �Con ���� � �Con � �� �Con �� ��� � 	��

A parser m is unambiguous if for every input x the list of possible parses m x

is either empty or has exactly one item� For instance� term is unambiguous� An
ambiguous parser may return a list with two or more alternative parsings�

��� Parsing an item

The basic parser returns the �rst item of the input� and fails if the input is
exhausted�

item �� M Char

item � � � � �
item �a � x � � ��a� x ��

Here are two examples�

item �	 � � �
item �monad	 � ��
m�� �onad	��

Clearly� item is unambiguous�

��� Sequencing

To form parsers into a monad� we require operations unit and ��

unit �� a � M a

unit a x � ��a� x ��

��� �� M a � �a � M b�� M b

�m � k� x � ��b� z � j �a� y� � m x � �b� z � � k a y �

The parser unit a accepts input x and yields one parse with value a paired with
remaining input x � The parser m � k takes input x � parser m is applied to input
x yielding for each parse a value a paired with remaining input y � then parser
k a is applied to input y � yielding for each parse a value b paired with �nal
remaining output z �

Thus� unit corresponds to the empty parser� which consumes no input� and
� corresponds to sequencing of parsers�

Two items may be parsed as follows�

twoItems �� M �Char �Char�
twoItems � item � �a� item � �b� unit �a� b�

Here are two examples�

twoItems �m	 � � �
twoItems �monad	 � ���
m��
o��� �nad	��

The parse succeeds only if there are at least two items in the list�
The three monad laws express that the empty parser is an identity for se�

quencing� and that sequencing is associative�

unit a � �b�n � n�a�b�
m � �a� unit a � m

m � ��a�n � �b� o� � �m � �a�n� � �b� o

If m is unambiguous and k a is unambiguous for every a� then m � k is also
unambiguous�

��� Alternation

Parsers may also be combined by alternation�

zero �� M a

zero x � � �

��� �� M a � M a � M a

�m � n� x � m x �� n x

The parser zero takes input x and always fails� The parser m � n takes input x
and yields all parses of m applied to input x and all parses of n applied to the
same input x �

Here is a parser that parses one or two items from the input�

oneOrTwoItems �� M String

oneOrTwoItems � �item � �a� unit �a��
� �item � �a� item � �b� unit �a� b��

Here are three examples�

oneOrTwoItems � 	 � � �
oneOrTwoItems �m	 � ���m	� � 	��
oneOrTwoItems �monad	 � ���m	� �onad	�� ��mo	� �nad	��

The last yields two alternative parses� showing that alternation can yield am�
biguous parsers�

The parser that always fails is the identity for alternation� and alternation is
associative�

zero � n � n

m � zero � m

m � �n � o� � �m � n�� o

Furthermore� zero is indeed a zero of �� and � distributes through ��

zero � k � zero

m � �a� zero � zero

�m � n� � k � �m � k�� �n � k�

It is not the case that � distributes rightward through � only because we are
representing alternative parses by an ordered list� if we used an unordered bag�
then m � �a� �k a � h a� � �m � k� � �m � h� would also hold� An unambiguous
parser yields a list of length at most one� so the order is irrelevant� and hence
this law also holds whenever either side is unambiguous �which implies that both
sides are��

��� Filtering

A parser may be �ltered by combining it with a predicate�

��� �� M a � �a � Bool� � M a

m � p � m � �a� if p a then unit a else zero

Given a parser m and a predicate on values p� the parser m�p applies parser m
to yield a value a� if p a holds it succeeds with value a� otherwise it fails� Note
that �ltering is written in terms of previously de�ned operators� and need not
refer directly to the state�

Let isLetter and isDigit be the obvious predicates� Here are two parsers�

letter �� M Char

letter � item � isLetter

digit �� M Int

digit � �item � isDigit� � �a� unit �ord a � ord
���

The �rst succeeds only if the next input item is a letter� and the second succeeds
only if it is a digit� The second also converts the digit to its corresponding value�
using ord �� Char � Int to convert a character to its ASCII code� Assuming that
� has higher precedence than � would allow some parentheses to be dropped
from the second de�nition�

A parser for a literal recognises a single speci�ed character�

lit �� Char � M Char

lit c � item � ��a� a �� c�

The parser lit c succeeds if the input begins with character c� and fails otherwise�

lit
m� �monad	 � ��
m�� �onad	��
lit
m� �parse	 � � �

From the previous laws� it follows that �ltering preserves zero and distributes
through alternation�

zero � p � zero

�m � n�� p � �m � p�� �n � p�

If m is an unambiguous parser� so is m � p�

��
 Iteration

A single parser may be iterated� yielding a list of parsed values�

iterate �� M a � M �a�
iterate m � �m � �a� iterate m � �x � unit �a � x ��

� unit � �

Given a parser m� the parser iterate m applies parser m in sequence zero or more
times� returning a list of all the values parsed� In the list of alternative parses�
the longest parse is returned �rst�

Here is an example�

iterate digit ��� and more	 � ���� � � �� � and more	��
��� �� �� and more	��
�� �� ��� and more	��

Here is one way to parse a number�

number �� M Int

number � digit � �a� iterate digit � �x � unit �asNumber �a � x ��

Here asNumber takes a list of one or more digits and returns the corresponding
number� Here is an example�

number ��� and more	 � ���� � � and more	��
�� � �� and more	��

This supplies two possible parses� one which parses both digits� and one which
parses only a single digit� A number is de�ned to contain at least one digit� so
there is no parse with zero digits�

As this last example shows� often it is more natural to design an iterator to
yield only the longest possible parse� The next section describes a way to achieve
this�

��� Biased choice

Alternation� written m � n� yields all parses yielded by m followed by all parses
yielded by n� For some purposes� it is more sensible to choose one or the other�
all parses by m if there are any� and all parses by n otherwise� This is called
biased choice�

��� �� M a � M a � M a

�m � n� x � if m x ��� � � then m x else n x

Biased choice� written m�n� yields the same parses as m� unless m fails to yield
any parse� in which case it yields the same parses as n�

Here is iteration� rewritten with biased choice�

reiterate �� M a � M �a�
reiterate m � �m � �a� reiterate m � �x � unit �a � x ��

� unit � �

The only di�erence is to replace � with �� Instead of yielding a list of all possible
parses with the longest �rst� this yields only the longest possible parse�

Here is the previous example revisited�

reiterate digit ��� and more	 � ���� � � �� � and more	��

In what follows� number is taken to be rewritten with reiterate�

number �� M Int

number � digit � �a� reiterate digit � �x � unit �asNumber �a � x ��

Here is an example that reveals a little of how ambiguous parsers may be
used to search a space of possibilities� We use reiterate to �nd all ways of taking
one or two items from a string� zero or more times�

reiterate oneOrTwoItems �many	 � ����m	� �a	� �n	� �y	�� � 	��
���m	� �a	� �ny	�� � 	��
���m	� �an	� �y	�� � 	��
���ma	� �n	� �y	�� � 	��
���ma	� �ny	�� � 	��

This combines alternation �in oneOrTwoItems� with biased choice �in reiterate��
There are several possible parses� but for each parse oneOrTwoItems has been
applied until the entire input has been consumed� Although this example is
somewhat fanciful� a similar technique could be used to �nd all ways of breaking
a dollar into nickels� dimes� and quarters�

If m and n are unambiguous� then m � n and reiterate m are also unam�
biguous� For unambiguous parsers� sequencing distributes right through biased
choice�

�m � k�� �m � h� � m � �a� k a � h a

whenever m is unambiguous� Unlike with alternation� sequencing does not dis�
tribute left through biased choice� even for unambiguous parsers�

��� A parser for terms

It is now possible to write the parser for terms alluded to at the beginning� Here
is a grammar for fully parenthesised terms� expressed in BNF�

term ��� number j
�� term
�� term
��

This translates directly into our notation as follows� Note that our notation�
unlike BNF� speci�es exactly how to construct the returned value�

term �� M Term

term � �number � �a�
unit �Con a��

� �lit
�� � � �
term � �t �
lit
�� � � �
term � �u�
lit
�� � � �
unit �Div t u��

�Here � � e is equivalent to �x � e where x is some fresh variable that does not
appear in e� it indicates that the value bound by the lambda expression is not
of interest�� Examples of the use of this parser appeared earlier�

The above parser is written with alternation� but as it is unambiguous� it
could just as well have been written with biased choice� The same is true for all
the parsers in the next section�

���
 Left recursion

The above parser works only for fully parenthesised terms� If we allow unparen�
thesised terms� then the operator � should associate to the left� The usual way
to express such a grammar in BNF is as follows�

term ��� term
�� factor j factor
factor ��� number j
�� term
��

This translates into our notation as follows�

term �� M Term

term � �term � �t �
lit
�� � � �
factor � �u�
unit �Div t u��

� factor

factor �� M Term

factor � �number � �a�
unit �Con a��

� �lit
�� � � �
term � �t �
lit
�� � � �
unit t�

There is no problem with factor � but any attempt to apply term results in an
in�nite loop� The problem is that the �rst step of term is to apply term� leading

to an in�nite regress� This is called the left recursion problem� It is a di�culty
for all recursive descent parsers� functional or otherwise�

The solution is to rewrite the grammar for term in the following equivalent
form�

term ��� factor term �

term � ���
�� factor term � j unit

where as usual unit denotes the empty parser� This then translates directly into
our notation�

term �� M Term

term � factor � �t � term � t

term � �� Term � M Term

term � t � �lit
�� � � �
factor � �u�
term � �Div t u��

� unit t

Here term � parses the remainder of a term� it takes an argument corresponding
to the term parsed so far�

This has the desired e�ect�

term ����� � � � ��	 � ���Div �Div �Con ���� � �Con � �� �Con �� ��� � 	��
term ����� � �� � �� �	 � ���Div �Con ���� � �Div �Con � � �Con �� ���� � 	��

In general� the left�recursive de�nition

m � �m � k�� n

can be rewritten as
m � n � �closure k�

where
closure �� �a � M a� � �a � M a�
closure k a � �k a � closure k�� unit a

Here m �� M a� n �� M a� and k �� a � M a�

���� Improving laziness

Typically� a program might be represented as a function from a list of characters
 the input to another list of characters the output� Under lazy evaluation�
usually only some of the input need be read before the �rst part of the output
list is produced� This �on line� behavior is essential for some purposes�

In general� it is unreasonable to expect such behaviour from a parser� since
in general it cannot be known that the input will be successfully parsed until all
of it is read� However� in certain special cases one may hope to do better�

Consider applying reiterate m to a string beginning with an instance of m�
In this case� the parse cannot fail� regardless of the remainder of the string� one
would expect the parse yielded to be a list beginning with the parsed value� Under

lazy evaluation� one might expect to be able to generate output corresponding
to the �rst digit before the remaining input has been read�

But this is not what happens� the parser reads the entire input before any
output is generated� What is necessary is some way to encode that the parser
reiterate m always succeeds� �Even if the beginning of the input does not match
m� it will yield as a value the empty list�� This is provided by the function
guarantee�

guarantee �� M a � M a

guarantee m x � let u � m x in �fst �head u�� snd �head u�� � tail u

Here fst �a� b� � a� snd �a� b� � b� head �a � x � � a� and tail �a � x � � x �
Here is reiterate with the guarantee added�

reiterate �� M a � M �a�
reiterate m � guarantee � �m � �a� reiterate m � �x � unit �a � x ��

� unit � ��

This ensures that reiterate m and all of its recursive calls return a list with
at least one answer� As a result� the behaviour under lazy evaluation is much
improved�

The preceding explanation is highly operational� and it is worth noting that
denotational semantics provides a useful alternative approach� Let 	 denote a
program that does not terminate� One can verify that with the old de�nition

reiterate digit �
�� � 	� � 	

while with the new de�nition

reiterate digit �
�� � 	� � ��
�� � 	��	� � 	

Thus� given that the input begins with the character
�� but that the remainder
of the input is unknown� with the old de�nition nothing is known about the
output� while with the new de�nition it is known that the output yields at least
one parse� the value of which is a list which begins with the character
���

Other parsers can also bene�t from a judicious use of guarantee� and in
particular iterate can be modi�ed like reiterate�

���� Conclusion

We have seen that monads provide a useful framework for structuring recursive
descent parsers� The empty parser and sequencing correspond directly to unit

and �� and the monads laws re�ect that sequencing is associative and has the
empty parser as a unit� The failing parser and alternation correspond to zero

and �� which satisfy laws re�ecting that alternation is associative and has the
failing parser as a unit� and that sequencing distributes through alternation�

Sequencing and alternation are fundamental not just to parsers but to much
of computing� If monads capture sequencing� then it is reasonable to ask� what

captures both sequencing and alternation� It may be that unit � �� zero� and ��
together with the laws above� provide such a structure� Further experiments are
needed� One hopeful indication is that a slight variation of the parser monad
yields a plausible model of Dijkstra�s guarded command language�

References

�� S� Abramsky and C� Hankin� Abstract Interpretation of Declarative Languages�
Ellis Horwood� �
���

�� A� Bloss� Update analysis and the e�cient implementation of functional aggre�
gates� In ��th Symposium on Functional Programming Languages and Computer
Architecture� ACM� London� September �
�
�

�� R� Bird and P� Wadler� Introduction to Functional Programming� Prentice Hall�
�
���

�� P� Hudak� S� Peyton Jones and P� Wadler� editors� Report on the Programming
Language Haskell� Version ���� Technical report� Yale University and Glasgow
University� August �

��

�� J��Y� Girard� Linear logic� Theoretical Computer Science� ��	������ �
���

�� J� Guzm�an and P� Hudak� Single�threaded polymorphic lambda calculus� In IEEE
Symposium on Logic in Computer Science� Philadelphia� June �

��

�� P� Hudak� A semantic model of reference counting and its abstraction �detailed
summary�� In ACM Conference on Lisp and Functional Programming� pp� ����
���� Cambridge� Massachusetts� August �
���

�� P� Hudak� Continuation�based mutable abstract data types� or how to have your
state and munge it too� Technical report YALEU�DCS�RR�
��� Department of
Computer Science� Yale University� July �

��

� D� King and P� Wadler� Combining monads� In Glasgow Workshop on Functional
Programming� Ayr� July �

�� Workshops in Computing Series� Springer Verlag�
to appear�

��� S� Mac Lane� Categories for the Working Mathematician� Springer�Verlag� �
���

��� R� Milner� M� Tofte� and R� Harper� The de�nition of Standard ML� MIT Press�
�

��

��� L� C� Paulson� ML for the Working Programmer� Cambridge University Press�
�

��

��� E� Moggi� Computational lambda�calculus and monads� In Symposium on Logic
in Computer Science� Asilomar� California� IEEE� June �
�
� �A longer version is
available as a technical report from the University of Edinburgh��

��� E� Moggi� An abstract view of programming languges� Course notes� University of
Edinburgh�

��� S� L� Peyton Jones and P� Wadler� Imperative functional programming� In ���th
Symposium on Principles of Programming Languages� Charleston� South Carolina�
ACM� January �

��

��� G� Plotkin� Call�by�name� call�by�value� and the ��calculus� Theoretical Computer
Science� �	������
� �
���

��� J� Rees and W� Clinger �eds��� The revised� report on the algorithmic language
Scheme� ACM SIGPLAN Notices� ������	����
� �
���

��� D� Schmidt� Detecting global variables in denotational speci
cations� ACM Trans�
on Programming Languages and Systems� �	�

����� �
���

�
� V� Swarup� U� S� Reddy� and E� Ireland� Assignments for applicative languages�
In Conference on Functional Programming Languages and Computer Architecture�
Cambridge� Massachusetts� LNCS ���� Springer Verlag� August �

��

��� D� A� Turner� An overview of Miranda� In D� A� Turner� editor� Research Topics
in Functional Programming� Addison Wesley� �

��

��� P� Wadler� Comprehending monads� In Conference on Lisp and Functional Pro�
gramming� Nice� France� ACM� June �

��

��� Is there a use for linear logic� Conference on Partial Evaluation and Semantics�
Based Program Manipulation 	PEPM
� New Haven� Connecticut� ACM� June �

��

��� P� Wadler� The essence of functional programming �invited talk�� In ���th Sympo�
sium on Principles of Programming Languages� Albuquerque� New Mexico� ACM�
January �

��

