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Abstract. Proof-carrying code (PCC) is a general framework for verifying the safety properties
of machine-language programs. PCC proofs are usually written in a logic extended with language-
specific typing rules; they certify safety but only if there is no bug in the typing rules. In foundational
proof-carrying code (FPCC), on the other hand, proofs are constructed and verified by using strictly
the foundations of mathematical logic, with no type-specific axioms. FPCC is more flexible and
secure because it is not tied to any particular type system and it has a smaller trusted base. Founda-
tional proofs, however, are much harder to construct. Previous efforts on FPCC all required building
sophisticated semantic models for types. Furthermore, none of them can be easily extended to support
mutable fields and recursive types. In this article, we present a syntactic approach to FPCC that
avoids all of these difficulties. Under our new scheme, the foundational proof for a typed machine
program simply consists of the typing derivation plus the formalized syntactic soundness proof for
the underlying type system. The former can be readily obtained from a type-checker, while the latter
is known to be much easier to construct than the semantic soundness proofs. We give a translation
from a typed assembly language into FPCC and demonstrate the advantages of our new system
through an implementation in the Coq proof assistant.
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1. Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [18, 16], allows a code
producer to provide a machine-language program to a host along with a formal
proof of its safety. The proof can be mechanically checked by the host, and the
producer need not be trusted because a valid proof is a dependable certificate of
safety.

The proofs in Necula’s PCC systems [17, 7] are written in a logic extended with
many language-specific typing rules. They can guarantee safety only if there are
no bugs in the verification-condition generator (VCgen), the typing rules, and the

� An extended abstract of this paper appeared in the Seventeenth Annual IEEE Symposium on
Logic in Computer Science (LICS’02), July 2002. This research is based on work supported in part
by DARPA OASIS grant F30602-99-1-0519, NSF grant CCR-9901011, and NSF ITR grant CCR-
0081590. Any opinions, findings, and conclusions contained in this document are those of the authors
and do not reflect the views of these agencies.
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proof checker. The VCgen is a fairly large program, so establishing its full cor-
rectness is a daunting task. The typing rules are also error-prone: League et al. [12]
recently discovered a serious bug in the Special J typing rules that would undermine
the integrity of the entire PCC-based system.

Foundational proof-carrying code (FPCC) [5, 3] tackles these problems by con-
structing and verifying its proofs using strictly the foundations of mathematical
logic, with no type-specific axioms. FPCC is more flexible and secure because it is
not tied to any particular type system and has a smaller trusted base.

Foundational proofs, however, are much harder to construct. Previous efforts
on FPCC [5, 9, 1, 6] all required constructing sophisticated semantic models to
reason about types. For example, to support contravariant recursive types, Appel
and Felty [9] initially decided to model each type as a partial equivalence relation
but later found that building the actual foundational proofs would “require years
of effort implementing machine-checked proofs of basic results in computability
theory” [6, page 2]. Appel and McAllester [6] later proposed an indexed model
that significantly simplified the proofs but still involves tedious reasoning of com-
putation steps with each type being defined as a complex set of indexed values.
More serious, none of these approaches can be easily extended to support mutable
fields. In fact, the only known solution to mutable fields was proposed only very
recently by Ahmed et al. [2] – the proposal involves building a hierarchy of Gödel
numberings and making extensive changes to semantic models used in existing
FPCC systems [5, 6].

In this article, we present a syntactic approach to FPCC that avoids all of these
difficulties. Under our new scheme, the foundational proof for a typed machine
program consists simply of the typing derivation plus the formalized syntactic
soundness proof (of the underlying type system). Here the typing derivation can
be readily obtained from a type-checker, while the syntactic soundness proof is
known to be much easier to construct than the semantic soundness proof [26].�

Our article makes the following new contributions:

– Foundational proofs are widely perceived as extremely hard and tedious to
construct, partly because existing efforts [5, 9, 1, 6, 2, 22] on FPCC have all
adopted the semantic approach (which requires building sophisticated mod-
els from first principles). We show that this perception is not true: with a
syntactic approach, constructing a framework for foundational proofs is not
necessarily an overly complex process. Our approach can support recursive
types, mutable fields, and first-class code pointers in a straightforward way.
With other recent results on certified binaries [21] and inductive definitions of
quantified types [24], the syntactic approach offers a more scalable alternative
for compiling high-level richly typed programs into FPCC.

� That is, when done with “paper and pencil.” We anticipate that a similar result will hold when
it comes to formalizing the proofs.
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– As far as we know, our work is the first comprehensive study on how to use
a syntactic approach to generate FPCC. The idea that attaching the sound-
ness proof (for the underlying type system) can reduce the trusted base is
not new [17, 3]; however, none of the existing work has shown how to use
the syntactic proof to build the foundational proof. In addition, we show in
Sections 3 and 4 that naïvely combining existing typed assembly languages
(TAL) [15, 14, 27] with their soundness proofs do not necessarily produce
valid FPCC. To make the syntactic approach work, we need to ensure that a
close correspondence can be established between the TAL and the underlying
FPCC machine. This involves developing a type-system for TAL that not only
is sound but also enforces the invariants needed for the FPCC safety proofs.

– The relationship between TAL [15] and PCC [18] has never been made pre-
cise, even though the two are considered as related approaches for certifying
low-level code. In Section 5 we show how to translate each well-typed pro-
gram in a nontrivial TAL into FPCC. The translation is interesting because it
not only shows the connection between the two but also gives new insights
into the possibility of linking the expressive invariants in PCC to rich typing
constructs in TAL.

– Independent of our results on FPCC, the typed assembly language presented
in Section 4 is interesting on its own. Here our main contribution is a simple
technique for type-checking memory allocation and for maintaining invari-
ants about the allocation state. Along with this, we have produced a fully
formalized proof of soundness for the type system of the language.

In the rest of this artcile, we first give a formal definition of FPCC (following [3])
in Section 2 and present an overview of the requirements for constructing foun-
dational proofs in Section 3. We then formally define our sample typed assembly
language (called FTAL) in Section 4. In Sections 5 and 6 we give the detailed
translation from FTAL programs into FPCC and show how to turn FTAL typing
derivations and the (syntactic) soundness proof of FTAL into foundational proofs.
We thus have a prototype compilation framework, which starts with a typed as-
sembly language program and compiles it into an FPCC package, consisting of an
initial raw machine state and a proof of safety. In Sections 7–9, respectively, we
compare our approach with the semantic approach, present other related work, and
conclude.

2. Foundational Proof-Carrying Code

Unlike type-specialized PCC, foundational PCC avoids any commitment to a par-
ticular type system. The operational semantics of machine code as well as the
concept of safety are defined in a suitably expressive logic. The code producer
must provide both the executable code and a proof in the foundational logic that the
code satisfies the safety condition. Both the machine description and the proof must
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explicitly define, down to the foundations of mathematics, all required concepts
and must prove any needed properties of these concepts.

2.1. THE LOGIC

To encode our safety policies and proofs, we use the calculus of inductive construc-
tions (CiC) [23, 20]. CiC is an extension of the calculus of constructions (CC) [8],
which is a higher-order typed lambda calculus. CC corresponds to higher-order
predicate logic through the formulae-as-types principle (Curry–Howard correspon-
dence [11]). The syntax of CC is

A,B ::= Set | Type | X | λX :A.B | AB | �X :A.B.
The λ term corresponds to the abstraction of the lambda calculus, and the

� term is a dependent product type. When the bound variable does not occur in
the body, the product type is usually abbreviated as A → B. In the terminology of
pure type systems, Set and Type are the sorts.

CiC, as its name implies, extends the calculus of constructions with inductive
definitions. An inductive definition can be written in a syntax similar to that of ML
datatypes. For example, the following introduces an inductive definition of natural
numbers of kind schema Set with two constructors of the specified kinds.

Inductive Nat : Set := zero : Nat | succ : Nat→Nat

Inductive definitions may also be parameterized, as in the following definition
of polymorphic lists.

Inductive List [t :Set] : Set := nil : List t
| cons : t→List t→List t

The logic also provides elimination constructs for inductive definitions, which
combine case analysis with a fix-point operation. Objects of an inductive type can
thus be iterated over by using these constructs.

In order for the induction to be well-founded and for iterators to terminate, a
few constraints are imposed on the shape of inductive definitions; most important,
the defined type can occur only positively in the arguments of its constructors.
Mutually inductive types are also supported.

The calculus of inductive constructions has been shown to be strongly normal-
izing [25]; hence, the corresponding logic is consistent. It is supported by the Coq
proof assistant [23], which we use to implement a prototype system of the results
presented in this artcile.

In the remainder of this artcile, we will use more familiar mathematical notation
to present the statement of propositions, rather than the strict definition of CiC
syntax given in this section. For example, the application of two terms will be
written as A(B), and inductive definitions will be presented in BNF format. We



A SYNTACTIC APPROACH TO FOUNDATIONAL PROOF-CARRYING CODE 195

will, however, retain the � notation, which can generally be read as a universal
quantifier.

2.2. THE MACHINE

The machine is defined by a machine state and a step function describing the
(deterministic) transition from one machine state to the next. Figure 1 defines the
set of machine states. To simplify the presentation, we use an idealized 32-register
word-addressed machine with an unbounded memory of words of unlimited size.
A machine state is defined as a tuple of a memory, a register set, and a program
counter. The figure shows also the instruction set, Instr. Informally, the instructions
have the following effects:

add rd, rs, rt set register rd to the sum of the contents of rs and rt ;

addi rd, rs, w set rd to the sum of w and the contents of rs ;

movi rd, w move an immediate value w into rd ;

bgt rs, r t , w branch to location w if rs > rt ;

jd w unconditional jump to location w;

jmp r indirect jump to the address in register r ;

ld rd, rs(w) load the contents of location rs + w into rd ;

st rd(w), rs store the contents of rs into location rd + w;

illegal put the machine in an infinite loop.

Of course, these instructions are actually encoded as words (integers) in the
machine state. We define Instr as an inductive type for reasons of convenience
because its constructors are much easier to manipulate than encoded instruction
words. Thus, the step function is decomposed into a decoding function and the
specification of the machine’s operational semantics. The decoding function Dc, of

r ∈ Regnum = { r0, r1, . . . r31 }
w, pc ∈ Word = { 0, 1, . . . }

M ∈ Mem = Word → Word

R ∈ Regfile = Regnum → Word

S ∈ State = Mem × Regfile × Word

Instr ι ::= add rd, rs, r t | addi rd, rs, w | movi rd, w
| bgt rs, r t , w | jd w | jmp r
| ld rd, rs(w) | st rd(w), rs | illegal

Figure 1. Memory, registers, state, and instruction.
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if Dc(M(pc)) = then Step(M,R, pc) =
add rd, rs, rt (M,R{rd �→ R(rs)+ R(rt)}, pc+1)

addi rd, rs, w (M,R{rd �→ R(rs)+ w}, pc+1)

movi rd, w (M,R{rd �→ w}, pc+1)

bgt rs, r t , w
(M,R, pc+1), when R(rs) ≤ R(rt)

(M,R,w), when R(rs) > R(rt )

jd w (M,R,w)

jmp r (M,R,R(r))

ld rd, rs(w) (M,R{rd �→ M(R(rs)+w)}, pc+1)

st rd(w), rs (M{R(rd)+w �→ R(rs)}, R, pc+1)

illegal (M,R, pc)

Figure 2. Machine semantics.

type Word → Instr, decodes a word into the appropriate element of Instr (non-
decodable words will result in an illegal instruction); we will omit its exact
definition, since it is verbose and not interesting. The semantics of instructions
is described by the function Step shown in Figure 2. This function is easily defined
formally in CiC as an iterator on the Instr type.

2.3. THE SAFETY CONDITION

The safety condition is a predicate expressing the fact that code will not “go wrong.”
We say that a machine state S is safe if every state it can ever reach satisfies the
safety policy SP:

Safe (S) = �n :Nat.SP (Stepn (S)).

For this presentation, we will define a very basic and simple safety policy that states
that the machine is not stuck on an illegal instruction.

SP (M,R, pc) = (Dc (M (pc)) �= illegal)

In practice, the safety policy may also include more complex constraints, such as
access control on memory regions.

An FPCC code producer must thus supply an initial state S0 (which includes
the machine code of the program), and a proof A that this state satisfies the safety
condition. Via the formulae-as-types correspondence, A can be represented by a
term of type Safe (S0). Thus, the FPCC package is a pair:

F = (S0 : State, A : Safe (S0)).
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3. Generating Proofs

The actual proof of safety is organized following the approach used by Appel
et al. [5, 6]. We construct an induction hypothesis Inv, also known as the global
invariant, which holds for all states reachable from the initial state and is strong
enough to imply safety. Then, to show that our initial state S0 is safe, we provide
proofs for the propositions:

Initial Condition: Inv (S0)

Preservation: �S :State. Inv (S)→ Inv (Step (S))

Progress: �S :State. Inv (S)→SP (S)

These propositions intuitively state that our invariant holds for the initial state and
for every subsequent state during the execution. The proposition Progress estab-
lishes that whenever the invariant holds, the safety policy of the machine is also
satisfied. Together, these imply that during the execution of the program the safety
policy will never be violated. To prove the initial state is safe, first we use the Initial
Condition and Preservation and show by induction that

�n :Nat. Inv (Stepn (S0)).

Then Safe (S0) follows directly by Progress.
Unlike Appel et al., who construct the invariant by means of a semantic model

of types at the machine level, our approach is based on the use of type sound-
ness [26]: We define Inv (S) to mean that S is “well-formed” syntactically. The
well-formedness property must be preserved by the step function and must imply
safety; the proofs of these properties are encoded in the FPCC logic as proof terms
for Preservation and Progress.

In the following sections we show how to derive the notion of well-formedness
for a machine state by relating the state to a type-correct program in a typed as-
sembly language. The type system of the language defines a set of inference rules
for judgments of the form �P , meaning that the program P is well-formed (type-
correct). The dynamic semantics of the language specifies an evaluation relation
�−→ on programs; we use here the term “program” to denote not only code but a
more general configuration fully representing a stage of the evaluation. The syntac-
tic approach to proving soundness of a type system involves proving progress (if
�P , then P is not stuck, i.e., there exists P ′ such that P �−→ P ′) and preservation
(if �P and P �−→ P ′, then �P ′).

The central idea of our approach to FPCC is to find a typed assembly language
and a translation relation ⇒ between its programs and machine states such that
type-correct programs are mapped to well-formed states and the evaluation re-
lation is related to the step function – that is, if P ⇒ S and P �−→ P ′, then
P ′ ⇒ Step (S). If these properties hold, we can define the invariant Inv (S) as
simply stating that there exists a type-correct program P such that P ⇒ S. Then
the proofs of progress and preservation for the type system (encoded in the FPCC
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logic) can be used to construct straightforward proofs of the corresponding propo-
sitions needed for the safety proof for S0. Further details of the construction of
proof terms are provided in Section 5.

This method imposes requirements on the design of the typed assembly lan-
guage other than just having a sound type system. For the approach we follow in
this artcile, if the assembly language has “macro” instructions (e.g., malloc [15,
14] and newarray [27], which “expand” into sequences of several machine instruc-
tions), the well-formedness of the assembly program alone will be insufficient for
the construction of the global invariant. The reason is that Inv must hold for all
machine states reachable from S0. For the intermediate states of the execution of
a macro instruction there are no corresponding well-formed assembly programs.
Hence, each one of the assembly instructions must correspond to exactly one ma-
chine instruction. Note, however, that this exact correspondence of instructions is
not necessary in general for the syntactic approach to work, but it facilitates the
definition of the invariant and allows for a simpler presentation.

4. Featherweight Typed Assembly Language

The source language that we will be compiling to FPCC is a version of the typed
assembly language (TAL) by Morrisett et al. [15]. The approach developed in this
article can be applied to a TAL-like language extended with higher-order kinds
and recursive types. For simplicity, we introduce here only a subset of such a
language, which we call Featherweight Typed Assembly Language (FTAL). It
does not include polymorphism or existential types, which can be easily added
but would complicate the presentation. However, it does support recursive types,
memory allocation, and mutable records (tuples).

The syntactic approach to FPCC as we present it here requires that for each
machine state and each state transition, there be a corresponding FTAL program
and transition. For most FTAL instructions it is easy to see there is a one-to-one
mapping to the machine instructions of Section 2.2. However, having a malloc
“macro instruction” in FTAL (as in TAL) will not work because it cannot be
mapped to a single machine instruction and will not satisfy our requirements for
generating FPCC proofs, as discussed previously. (See Section 4.6 for details on
this issue.) Our approach is to make the memory allocation model explicit and split
the malloc instruction into, in this case, two individual instructions.

4.1. SYNTAX

We present the syntax of FTAL in Figure 3. As in TAL, the abstract machine
state (which we will call a program to distinguish from the machine state of Sec-
tion 2.2) consists of a heap H , a register file R, and a sequence of instructions
I . The heap maps labels l to heap values h, and the register file maps registers
r̂ to word values v. We use {} for an empty heap. The notation H {l �→ h} rep-
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(type) τ ::= α | int | ∀[�] | 〈τϕ1
1 , . . . , τ ϕnn 〉 | µα.τ

(init flag) ϕ ::= 0 | 1
(heap ty) " ::= {0 :τ0, . . . ,n :τn}
(alloc pt ty) ρ ::= fresh | used(n)
(regfile ty) � ::= {r0 :τ0, . . . , rn :τn, r31 :ρ}
(label) l ::= 0 | 1 | . . .
(user reg) r ::= r0 | r1 | . . . | r30
(all reg) r̂ ::= r | r31
(word val) v ::= l | i | ?τ | fold v as τ
(heap val) h ::= 〈v1, . . . , vn〉 | code[�].I
(heap) H ::= {0 �→ h0, . . . ,n �→ hn}
(regfile) R ::= {r0 �→ v0, . . . , r31 �→ v31}
(instr) ι ::= add rd, rs, rt | addi rd, rs, i | alloc rd [�τ ]

| bgt rs, rt , l | bump i | fold rd[τ ], rs | ld rd, rs(i)
| mov rd, rs | movi rd, i | movl rd, l | st rd(i), rs
| unfold rd, rs

(instr seq) I ::= ι; I | jd l | jmp r
(program) P ::= (H,R, I )

Figure 3. Syntax of FTAL.

resents a heap that extends H with a label l mapped to h. Similar notation is
used for heap types, register files, and register file types (except that for the latter
two, we also use the same notation to indicate an update to the mapping). In the
register file type (�) not all user registers need appear in the type. The notation
|H | and |"| is used to represent the number of labels in the heap and heap type,
respectively.

Only tuples and code blocks are stored in the heap, and thus these are the heap
values. Word values include labels (of heap values), integers, recursive data, and
junk values (?τ ), which are used by the operational semantics to represent unini-
tialized tuple elements annotated with a type. The distinction between word values
and small values in TAL is eliminated in FTAL by expanding the instruction set.
Thus, for example, there are now two instructions for addition, one (add) taking a
register and the other (addi) using an immediate value as the third operand.

Our memory model is a simple linear unbounded heap with an allocation pointer
pointing to the heap top, initially set to the bottom of the heap space. Memory
allocation consists of copying the current allocation pointer to a register using alloc
and then adjusting the allocation pointer with bump. In Section 5.2 we will see how
these two instructions can be directly translated into one FPCC machine instruction
each. One of the general registers, r31, is reserved as the allocation pointer register,
tracking the amount of allocated memory. FTAL instructions will explicitly refer
only to the first 31 “user” registers (r). After an alloc instruction, a corresponding



200 NADEEM A. HAMID ET AL.

bump must be executed, to adjust the allocation pointer, before alloc can be used
again. To statically enforce this, we give the allocation pointer register a special
allocation status type, ρ, rather than a normal type. The possible types for this
register, fresh and used(n), reflect the two states of allocation. To meaningfully
implement linear allocation, we need an ordering on memory labels, so we define
labels as natural numbers. To determine whether a label has been allocated, it is
compared with |H |.

The types of FTAL are integers, code, tuple types annotated with initialization
flags (ϕ), and recursive types. The initialization flags indicate whether there is
valid data at each position of the tuple (when a tuple is first allocated, all the
flags are 0). Other than fold and unfold, the remaining instructions (add, addi,
bgt, mov, movi, movl, ld, and st) are equivalent or similar to those in the origi-
nal TAL. A code block is a sequence of instructions annotated with a register file
type (essentially specifying the preconditions on the data expected in the registers
when the code block begins executing). Code blocks always end with a jmp or jd
instruction.

Operations on recursive types in FTAL are supported by the fold and unfold
instructions. Dynamically, these are no different from a simple mov. Statically,
however, their purpose is to “cast” the type of a word, by either “rolling up” or
“unrolling” the recursive type. (See the relevant rules of the static semantics in
Section 4.3.)

4.2. DYNAMIC SEMANTICS

The operational semantics of FTAL is presented in Figure 4. Most of the instruc-
tions have an intuitively clear meaning. The ld and st instructions load from and
store to a tuple in the heap using the specified index. The instruction bgt rs, rt , l
tests whether the value in rs is larger than that in rt and, if so, transfers control to
the code block at l.

In order to allocate a tuple in the heap, first the alloc instruction is used to
copy the current heap allocation pointer to rd and allocate the desired size in the
heap. Before the next allocation, the allocation pointer needs to be adjusted. This
adjustment is achieved using the bump instruction, which sets the allocation pointer
to the next unused region of the heap, as described earlier. (The i argument is not
used by the operational semantics.) Since we assume a linear allocation method,
unused regions of the heap are simply all those beyond the currently allocated
data.

The fold instruction annotates the value of rs with the recursive type and moves
it into rd , while unfold extracts the value from the recursive package in rs into rd .
Note that the fold and unfold instructions of FTAL (as well as TAL) are not no-ops
but copy a value from one register to another.
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(H,R, I ) �−→ P where

if I = then P =
add rd, rs, rt ; I ′ (H,R{rd �→ R(rs)+ R(rt)}, I ′)
addi rd, rs, i; I ′ (H,R{rd �→ R(rs)+ i}, I ′)
alloc rd [�τ ]; I ′ (H ′, R{rd �→ l}, I ′)

where �τ = τ1, . . . , τn, R(r31) = l,

and H ′ = H {l �→ 〈?τ1, . . . , ?τn〉}
bgt rs, rt , l; I ′ (H,R, I ′) when R(rs) ≤ R(rt); and

(H,R, I ′′) when R(rs) > R(rt )

where H(l) = code[�].I ′′

bump i; I ′ (H,R{r31 �→ |H |}, I ′)
fold rd [τ ], rs; I ′ (H,R{rd �→ fold R(rs) as τ }, I ′)
jd l (H,R, I ′) where H(l) = code[�].I ′

jmp r (H,R, I ′) where H(R(r)) = code[�].I ′

ld rd, rs(i); I ′ (H,R{rd �→ vi}, I ′) where 0 ≤ i < n

H(R(rs)) = 〈v0, . . . , vn−1〉
mov rd, rs; I ′ (H,R{rd �→ R(rs)}, I ′)
movi rd, i; I ′ (H,R{rd �→ i}, I ′)
movl rd, l; I ′ (H,R{rd �→ l}, I ′)
st rd(i), rs; I ′ (H {l �→ h}, R, I ′) where 0 ≤ i < n

R(rd) = l, H(l) = 〈v0, . . . , vn−1〉, and

h=〈v0, . . . , vi−1, R(rs), vi+1, . . . , vn−1〉
unfold rd, rs; I ′ (H,R{rd �→ v}, I ′)

where R(rs) = fold v as τ

Figure 4. Operational semantics of FTAL.

4.3. STATIC SEMANTICS

The primary judgment of the static semantics is that of the well-formedness of a
program. That in turn depends on judgments of the well-formedness of the heap,
heap type, register file, register file type, and instruction sequence. The various
typing judgments are summarized in Figure 5.

The complete rules of the FTAL static semantics are given in Figures 6 to 8.
The top-level well-formedness rules are shown in Figure 8. In order to have a

well-formed program, the heap and register file must be well-formed in some ap-
propriate environments, as must be the current instruction sequence. Additionally,
the current instruction sequence must be present in the heap. The notation I ⊆ I ′
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Judgment Meaning

�τ τ is a well-formed type

�" " is a well-formed heap type

�� � is a well-formed regfile type

�τ1 ≤τ2 τ1 is a subtype of τ2

��1 ⊆�2 �1 is a regfile subtype of �2

�P P is a well-formed program

�H :" H is a well-formed heap of type "

" �R :� R is a well-formed regfile of type �

" � l :ρ l is a label of allocation status ρ

" �h :τ hval h is a well-formed heap value of type τ

" �v :τ v is a well-formed word value of type τ

" �v :τϕ v is a well-formed word value of type τϕ

";� �I I is a well-formed instruction sequence

Figure 5. Static judgments.

means that I is a suffix of I ′. For a heap to be well-formed the domain of the
heap type must be the same as that of the heap, and each heap value must be well-
formed. However, the type of a well-formed register file need specify only a subset
of the registers in its domain.

Subtyping is used for two purposes: to allow a code block to be called when the
current register file type is more detailed than needed, and to be able to type-check
the initialization of an uninitialized tuple element as described below.

To type-check heap allocation and the load and store operations, we follow
TAL by introducing initialization flags in the type of tuples. When a tuple is newly
allocated on the heap, all the elements are flagged with 0. A store operation will
set the flag of the appropriate element to 1. Thus, a load operation is well-formed
only if the flagged type of the element being accessed is set to 1. Because the
type system only approximately tracks the initialization of tuple elements, we
use subtyping to allow initialized tuple elements to be treated as if they were not
initialized.

The special allocation register is typed using a new judgment of allocation
status.

l=|"|
" � l : fresh

(FRESH)

l=|"|−1 " � l : 〈τϕ1
1 , . . . , τ ϕnn 〉

" � l :used(n)
(USED)
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�τ �" �� �τ1 ≤τ2 ��1 ⊆�2

FT V (τ) = ∅
�τ (TYPE)

�τi (1≤ i≤n)

�{0 :τ0, . . . ,n :τn} (HTYPE)

�τi (0≤ i≤n)

�{r0 :τ0, . . . , rn :τn, r31 :ρ} (RFTYPE)

�τ
�τ ≤τ

(REFLEX)
�τ1 ≤τ2 �τ2 ≤τ3

�τ1 ≤τ3
(TRANS)

�τi (1≤ i≤n)

�〈τϕ1
1 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn
n 〉≤〈τϕ1

1 , . . . , τ
ϕi−1
i−1 , τ0

i , τ
ϕi+1
i+1 , . . . , τ

ϕn
n 〉

(0-1)

�τi (0≤ i≤m) (m≥n)

�{r0 :τ0, . . . , rm :τm, r31 :ρ}⊆{r0 :τ0, . . . , rn :τn, r31 :ρ} (WEAKEN)

" �h :τ hval " �v :τ " � l :ρ " �v :τϕ

" �vi :τϕii (1≤ i≤n)

" �〈v1, . . . , vn〉 : 〈τϕ1
1 , . . . , τ

ϕn
n 〉 hval

(TUPLE)
�� ";� �I

" �code[�].I :∀[�] hval
(CODE)

" � i : int
(INT) " �v :τ [µα.τ/α]

" � fold v as µα.τ :µα.τ (FOLD)
�"(l)≤τ

" � l :τ (LABEL)

l=|"|
" � l : fresh

(FRESH)
l=|"|−1 " � l : 〈τϕ1

1 , . . . , τ
ϕn
n 〉

" � l :used(n)
(USED)

" �v :τ
" �v :τϕ (INIT)

�τ
" �?τ :τ0

(UNINIT)

Figure 6. Well-formedness of FTAL types, heap, and word values.

In the first typing rule, a label whose value is equivalent to the size of the heap
type must necessarily be unallocated, that is, fresh. When allocation takes place,
then the allocation register temporarily points to the newly allocated memory, and
thus will have allocation status used(n) where n is the length of the allocated tuple.
The assignment of allocation status interacts with the two novel FTAL instructions,
alloc and bump, as shown in their typing rules:

�τi ";�{rd : 〈τ0
1 , . . . , τ

0
n 〉}{r31 :used(n)} �I

";�{r31 : fresh} �alloc rd[τ1, . . . , τn]; I (ALLOC)

";�{r31 : fresh} �I
";�{r31 :used(n)} �bump n; I (BUMP)
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";� �I

�(rs)= int �(rt )= int ";�{rd : int} �I
";� �add rd , rs , rt ; I (ADD)

�(rs )= int ";�{rd : int} �I
";� �addi rd , rs , i; I (ADDI)

�τi ";�{rd : 〈τ0
1 , . . . , τ

0
n 〉}{r31 :used(n)} �I

";�{r31 : fresh} �alloc rd [τ1, . . . , τn]; I (ALLOC)

";�{r31 : fresh} �I
";�{r31 :used(n)} �bump n; I (BUMP)

�(rs)= int �(rt )= int "(l)=∀[�′] ��⊆�′ ";� �I
";� �bgt rs , rt , l; I (BGT)

";�{rd :�(rs )} �I
";� �mov rd, rs; I (MOV)

";�{rd : int} �I
";� �movi rd , i; I (MOVI)

";�{rd :τ } �I �"(l)≤τ

";� �movl rd , l; I (MOVL)

�(rs ) = 〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉

";�{rd :τi} �I (0 ≤ i < n)

";� � ld rd , rs(i); I (LD)

�(rs)=τi �(rd)=〈τϕ0
0 , . . . , τ

ϕn−1
n−1 〉

";�{rd : 〈τϕ0
0 , . . . , τ

ϕi−1
i−1 , τ1

i , τ
ϕi+1
i+1 , . . . , τ

ϕn−1
n−1 〉} �I

(0≤ i<n)

";� �st rd(i), rs; I (ST)

�(rs ) = τ [µα.τ/α] ";�{rd :µα.τ } �I
";� � fold rd [µα.τ ], rs; I (FOLD-I)

�(rs ) = µα.τ ";�{rd :τ [µα.τ/α]} �I
";� �unfold rd , rs; I (UNFOLD)

"(l)=∀[�′] ��⊆�′
";� � jd l

(JD)
�(r)=∀[�′] ��⊆�′

";� � jmp r
(JMP)

Figure 7. Well-formedness of FTAL instruction sequences.
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�P �H :" " �R :�

�H :" " �R :� ";� �I
∃l ∈ Dom(H).H(l)=code[�′].I ′ and I ⊆ I ′

�(H,R, I)
(PROG)

�" |"|=|H| " �H(l) :"(l) hval (0≤ l< |H|)
�H :" (HEAP)

" �R(ri) :τi (0≤ i≤n) " �R(r31) :ρ∀r ∈ Dom(R)−{r31}.if R(r) = l then l < |"|
" �R : {r0 :τ0, . . . , rn :τn, r31 :ρ} (REG)

Figure 8. Well-formedness of FTAL programs, heaps, and register files.

For an alloc instruction to be well-typed, the allocation register, r31, must be in
the fresh status; otherwise, as can be seen from the operational semantics, the pre-
viously allocated data will be overwritten. After the alloc instruction, the remainder
of the instruction sequence is checked with the status of r31 changed to used(n).
No further allocation can take place until a bump instruction is encountered, which
resets the status to fresh, corresponding again to the update in the operational
semantics.

4.4. EXAMPLES

In this section, we give a few examples of FTAL programs to demonstrate that such
a language (eventually extended with polymorphism and existentials) provides fea-
tures that make it suitable for compiling high-level languages such as Java, ML, or
Safe C.

Our first example is the calculation of a Fibonacci number in Figure 9. The
C-like program at the top of the figure can be compiled to the FTAL code be-
low it. The code segments fib, fib_loop and fib_return form a function, written
in continuation passing style (CPS), which calculates the Fibonacci number with
index given in r1, and then passes control to the continuation function given in
r30. The main block calls fib to calculate F10 and passes the address of the halt
block as its continuation. fib initializes the loop variables and then jumps into
the loop code segment fib_loop, which jumps to fib_return when the calculation
is done.

The second example, in Figure 10, demonstrates how to use recursive types and
memory allocation to handle classes and objects. Class c has no data fields and
only one method f, which takes an object of class c and invokes its method f. In
the main program, an object of class c is created and its method f is called with the
object itself as argument. The program will end up in an infinite recursive call to
c.f. In FTAL, an object of class c is represented as a recursive tuple type whose
only element is a code block with an only argument of the object type c. The code
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void fib (n:int) { // "Safe C" code
int a=1, b=1;
for (int i=2; i++; i<=n)
{ int c = a + b; a = b; b = c; }

return a;
}
int main () {
return fib(10)

}

P = (H , {}, I ) // FTAL code

H = fib: code[{ r1:int, r30:∀[{r1:int}] }].
mov r3, r1;
movi r1, 1;
movi r2, 1;
movi r4, 2;
jd fib_loop

fib_loop: code[{ r1:int, r2:int, r3:int, r4:int,
r30:∀[{r1:int}] }].

bgt r4, r3, fib_return;
add r5, r1, r2;
mov r1, r2;
mov r2, r5;
addi r4, r4, 1;
jd fib_loop

fib_return: code[{ r1:int, r30:∀[{r1:int}] }].
jmp r30

halt: code[{r1:int}].
jd halt

main: code[{}].
I

I = movi r1, 10;
movl r30, halt;
jd fib

Figure 9. FTAL example: Fibonacci numbers.

block at label c_f uses the unfold and ld instructions to extract the argument object’s
own method f, and then jumps to it. The constructor for c, inlined in the main code
block, uses the alloc and bump instructions to allocate heap space for a tuple, then
initializes its method f with the label c_f, and folds the tuple into an object using
the fold instruction. Similarly to c_f, the main code block then extracts method f
from the newly created object and jumps to it.
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class c { // "Safe C++" code
void f (c x) { x.f(x) }

}
void main () {
c x = new c;
x.f(x)

}

P = (H , {}, I ) // FTAL code

c = µα.<∀[{r1:α}]>
H = c_f: code[{r1:c}].

unfold r2, r1;
ld r2, r2(0);
jmp r2

main: code[{}].
I

I = alloc r1 [∀[{r1:c}]];
bump 1;
movl r2, c_f;
st r1(0), r2;
fold r1[c], r1;
unfold r2, r1;
ld r2, r2(0);
jmp r2

Figure 10. FTAL example: mini-object.

4.5. SOUNDNESS

To produce the necessary FPCC proofs as described in Section 3, we must encode
the complete semantics of FTAL in CiC along with its proof of soundness, which
will be used in defining and proving the FPCC propositions. The critical theorems
for the soundness of FTAL are the usual progress and preservation lemmas.

THEOREM 1 (Progress). If �P , then there exists P ′ such that P �−→ P ′.

THEOREM 2 (Preservation). If �P and P �−→ P ′, then �P ′.

As usual, several intermediate lemmas are used to prove these two theorems, all
of which can be formally encoded and proved in the Coq proof assistant. The most
important of these lemmas are given below. Their encoding in Coq is described in
Section 6.

LEMMA 1 (Register File Update). (1) If " �R :� and " �v :τ then
" �R{r �→ v} :�{r :τ }.

(2) If " �R :� and " � l :ρ then " �R{r31 �→ l} :�{r31 :ρ}.
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LEMMA 2 (Canonical Word Forms). If �H :" and " �v :τ , then

(1) if τ = int then v= i;
(2) if τ =∀[�] then v= l and H(l)=code[�].I ;
(3) if τ =〈τϕ1

1 , . . . , τ ϕnn 〉 then v= l;
(4) if τ =µα.τ ′ then v= fold v′ as τ .

LEMMA 3 (Canonical Register Word Forms). If " �R :� and �(r)=τ , then

(1) R(r)=v;
(2) if τ = int then R(r)= i;
(3) if τ =〈τϕ1

1 , . . . , τ ϕnn 〉 then R(r)= l.

LEMMA 4 (Canonical Heap Forms). If " �h :τ hval, then

(1) if τ =∀[�] then h=code[�].I and ";� �I ;
(2) if τ =〈τϕ1

1 , . . . , τ ϕnn 〉 then h=〈v1, . . . , vn〉 and " �vi :τiϕi .
LEMMA 5 (Register File Weakening). If ��1 ⊆�2 and " �R :�1, then
" �R :�2.

LEMMA 6 (Heap Extension). If �H :", l = |H | (thus, l �∈ Dom(H)), and �τ ,
then

(1) �"{l :τ };
(2) if " �v :τ ′ then "{l :τ } �v :τ ′;
(3) if " �v :τϕ then "{l :τ } �v :τϕ;
(4) if ";� �I then "{l :τ };� �I ;
(5) if " �R :�{r31 : fresh} then "{l :τ } �R :�{r31 :used(n)};
(6) if " �h :τ ′ hval then "{l :τ } �h :τ ′ hval;
(7) if "{l :τ } �h :τ hval then �H {l �→ h} :"{l :τ }.

LEMMA 7 (Heap Update). If �H :" and �τ ≤"(l), then

(1) �"{l :τ };
(2) if " �v :τ ′ then "{l :τ } �v :τ ′;
(3) if " �v :τϕ then "{l :τ } �v :τϕ;
(4) if ";� �I then "{l :τ };� �I ;
(5) if " �R :� then "{l :τ } �R :�;
(6) if " �h :τ ′ hval then "{l :τ } �h :τ ′ hval;
(7) if "{l :τ } �h :τ hval then �H {l �→ h} :"{l :τ }.

Now that we have an assembly language with a sound type system, we are ready
to show how to generate proof-carrying code from a well-typed FTAL program.
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4.6. DESIGNING TAL FOR FPCC

For our presentation in this article, we have designed a novel FTAL language,
that corresponds closely to the underlying machine defined in Section 2.2. As will
become clear in the next section, every well-formed FTAL state can be mapped
to a safe machine state, and this property is used to produce a safety proof for the
machine state.

For safety policies that need to enforce complex constraints on every machine
state or step, such a one-to-one mapping can be very important. In general, how-
ever, this strict correspondence is not necessary for the syntactic approach to work.
For example, if we wished to retain “macro” instructions in the FTAL language,
our FPCC Preservation might be modified to

�S :State. Inv (S)→∃n :Nat. Inv (Step(n+1) (S)),

stating that starting from a state satisfying the global invariant, the machine will
eventually (after one or more steps) reach another state satisfying the invariant.

Also, when introducing polymorphism or existentials into the FTAL language,
there will be certain FTAL operations (e.g., type application) that do not corre-
spond to any run-time machine instructions at all. In this case, the FTAL operation
would correspond to a “cast” in the FPCC proof for the machine state.

Another reason why naïvely using existing typed assembly languages will not
necessarily help in producing FPCC is that the type system must be designed to
enforce appropriate invariants. There are requirements in the typing rules of FTAL
that are not critical for FTAL soundness but are necessary when translating FTAL
to FPCC as described in the next section. An example of this is the requirement
in the (REG) rule (Figure 8) that all labels in registers be within the domain of the
heap (including those registers that are not specified in the type of the register file
and hence not accessible by well-formed code anyway). This condition is crucial
in proving the properties discussed in Section 5.3.

5. Translating FTAL to FPCC

As outlined in Section 2.3, an FPCC package provides an initial state, S0, and a
proof that the state satisfies the safety policy. In the next few subsections, we show
how to translate an FTAL program into a machine state and how to use the FTAL
type system to generate proofs of the FPCC Preservation and Progress propositions,
which imply safety.

5.1. FROM FTAL TO MACHINE STATE

FTAL programs are compiled to machine code by (1) defining a layout for the
memory that maps heap values of the program to memory addresses, (2) translating
FTAL instructions to machine instructions, and (3) choosing the appropriate pro-
gram counter and register values. The layout must ensure that there are no overlaps
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between the images of tuples and code sequences in the memory. Our choice of
the FTAL instruction set allows us to translate every FTAL instruction into one
machine instruction word.

We will express the correspondence between an FTAL program and a machine
state by a family of translation relations upon the various syntactic categories. The
forms of these relations are as follows.

Relation Correspondence

(H,R, I ) ⇒ (M,R, pc) FTAL program to machine state

L � H ⇒ M FTAL heap to memory

L � R ⇒ R register files

L � I ⇒s M[i..j ] sequence of instructions to
memory layout

L � ι ⇒i w instruction translation

L � h ⇒h M[i..j ] heap value to memory layout

L � v ⇒w w word value to machine word

Recall that the machine memory is modeled as a function, Word → Word, so
M(w) denotes the memory word at address w. The judgments L � I ⇒s M[i..j ]
and L � h ⇒h M[i..j ] state that a sequence of instructions and a heap value (either
a tuple or a code block), respectively, translate to a series of consecutive words in
memory M from address i to address j .

An important step in the translation is flattening the FTAL heap into the ma-
chine memory. To achieve this, we define a Layout function of type Heap →
Label → Word that, given an FTAL heap, returns a mapping from labels to
memory addresses. (In the relations above, L is this Layout function applied to
the heap.) For our current purpose, we define

Layout ({}) (l′) = 0,

Layout (H {l �→ h}) (l′) =
{
w + size (h), if l < l′
w, otherwise,

where w = Layout (H) (l′),

where size (h) is the size of the heap value h (n for an n-tuple, and the length
of the instruction sequence for a code block). This Layout function maps labels
to addresses starting at 0 and forces the translation ⇒ to lay out FTAL heap
values compactly, consecutively, and with no overlapping (due to the implicit con-
straint that the labels in the heap appear in descending order). Additionally, the
first unused label (whose value equals the size of the heap) is mapped to the first
unused address. These properties of the Layout function are useful later in proving
Preservation and Progress.

The translation relations are defined by a set of inference rules, given in Fig-
ure 11. The rules are straightforward and operate purely on the syntax of FTAL
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WORD VALUES

L � l ⇒w L(l) L � i ⇒w i
for any w

L �?τ ⇒w w

L � v ⇒w w

L � fold v as τ ⇒w w

INSTRUCTIONS

L � add rd , rs , rt ⇒i add rd , rs , rt
L � addi rd, rs , i ⇒i addi rd, rs, i

L � alloc rd [�τ ] ⇒i addi rd, r31, 0

L � bump i ⇒i addi r31, r31, i

L � fold rd [τ ], rs ⇒i addi rd, rs, 0

L � unfold rd, rs ⇒i addi rd, rs, 0

L � ld rd , rs(i) ⇒i ld rd, rs(i)

L � st rd (i), rs ⇒i st rd(i), rs
L � mov rd , rs ⇒i addi rd, rs, 0

L � movi rd , i ⇒i movi rd, i

L � movl rd , l′ ⇒i movi rd, L(l
′)

L � bgt rs , rt , l ⇒i bgt rs , rt , L(l)

INSTRUCTION SEQUENCES

L � ι ⇒i Dc(M(i)) L � I ⇒s M[(i + 1)..j ]
L � ι; I ⇒s M[i..j ]

Dc(M(i)) = jd (L(l′))
L � jd l′ ⇒s M[i..i]

Dc(M(i)) = jmp r
L � jmp r ⇒s M[i..i]

HEAP VALUES

L � vi ⇒w M(j + i) for 0 ≤ i ≤ n

L � 〈vo, . . . , vn〉 ⇒h M[j..(j + n)]
L � I ⇒s M[i..j ]

L � code [�].I ⇒h M[i..j ]

HEAP, REGISTER FILE, PROGRAM

L � H(l) ⇒h M[L(l)..L(l+1)−1] 0 ≤ l < |H |
L � H ⇒ M

L � R(r̂i ) ⇒w R(ri) 0 ≤ i ≤ 31

L � R ⇒ R

Layout(H) � H ⇒ M
Layout(H) � R ⇒ R

Layout(H) � I ⇒s M[pc..pc + |I | − 1],
where ∃l ∈ domH.(H(l) = code [�].I ′, I ⊆ I ′, and

pc = Layout(H)(l)+ |I ′| − |I |)
(H,R, I) ⇒ (M,R, pc)

Figure 11. Relating FTAL programs to machine states.
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programs. Note that FTAL type annotations are discarded in the translation (for
example, in the fold instruction) and the label word values are mapped to memory
words by using the layout function. Each FTAL heap value corresponds to a se-
quence of words in memory. A heap translates to a memory if every heap value
in the heap translates to the appropriate sequence of memory words. Registers
translate directly between FTAL and the machine (r̂ is defined in Figure 3 and
r in Figure 1). An FTAL program corresponds to a machine state if the trans-
lation relation holds on the heap and register file, and if the current instruction
sequence is at some location in the memory. Since in a well-typed FTAL program
the current instruction sequence must also be present in the heap, we can always
translate it to a known program counter. Notice that the FTAL alloc and bump
instructions correspond to machine move and addition instructions, respectively,
using the register reserved for allocation, r31. (It is for this purpose that bump has
an i argument.)

The translation relation as presented in Figure 11 is not deterministic with re-
spect to the unused and uninitialized parts of the memory and to the positioning of
the program counter. However, it is straightforward on the basis of its definition to
develop a deterministic function that translates an FTAL program into a machine
state for which the translation relation described above holds. In the next section,
we will show how this initial translation is used to provide the Initial Condition
FPCC proof.

5.2. THE GLOBAL INVARIANT

As discussed in Section 3, in addition to translating the FTAL program to an
initial machine state S0, we must define the invariant Inv, which holds during the
execution of a machine program, and provide proofs of

Initial Condition: Inv (S0)

Preservation: �S :State. Inv (S)→ Inv (Step (S))

Progress: �S :State. Inv (S)→SP (S)

The invariant simply has to ensure that the machine state at each step corre-
sponds to a well-typed FTAL program, which will allow us to use the formalized
versions of the proofs of the progress and preservation lemmas for FTAL to gen-
erate formal proofs of the corresponding properties of the invariant. Since the
definition of Inv requires us to state that an FTAL program is well-typed, it must
be expressed not just in terms of FTAL programs but also in terms of their typing
derivations.

Inv(S) = ∃P : program. ((�P) ∧ (P ⇒ S))

Hence, the invariant holds on a state if there exists an FTAL program that is well-
typed and translates to the state.
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The proof of the initial condition can now be obtained directly in the process of
translating an initial well-formed FTAL program to machine state as described in
Section 5.1. It remains, therefore, to prove the two lemmas.

5.3. THE PRESERVATION AND PROGRESS PROPERTIES

Progress in our case is easy to prove: since the invariant states that there exists
a well-typed FTAL program that translates to the current state, it is obvious by
examination of the translation rules that such an FTAL program will never translate
to a state in which the program counter points to an illegal instruction.

The remaining proof term, for Preservation, is thus the most involved of the
generated FPCC proofs. It is obtained in the following way.

Given a program P and a typing derivation for �P , we know by FTAL progress
that there exists a program P ′ such that P �−→ P ′. Furthermore, by FTAL preser-
vation, we know that �P ′. Now, the premise of our FPCC Preservation theorem
provides us with a machine state S such that P ⇒ S, and we need to show that
there exists another well-typed program that translates to Step (S). The semantics
of FTAL has been set up so that this well-typed program is exactly P ′. It remains
now for us to prove that indeed P ′ ⇒ Step (S), as diagrammed in Figure 12.

Essentially, we need to show that the FTAL evaluation relation corresponds to
the machine’s step function. This is proved by induction on the typing derivation
of �P . For each possible case, we use inversion� on the structure of P , the FTAL
evaluation relation, the translation relation, and the machine Step function to gain
the necessary information about the structure of P ′, S, and Step (S). Many of the
cases of this proof are fairly straightforward.

�P (translate)

(evaluate)

S

(Step)

�P ′
translate ?

Step (S)

Figure 12. Relationship between FTAL evaluation and machine semantics.

� “Inversion” is simply a process of backwards reasoning – given a premise, one infers what
judgment rule must have been used to prove it and then adds the assumptions of that rule to one’s list
of available facts. For example, if we know an FTAL program is well-typed, then by inversion the
only possible rule that would allow one to prove such a judgment is (PROG) on page 205; hence, we
can infer, for instance, that there must also exist a proof that the heap component of the program is
well-typed.
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Let us briefly consider one of the interesting cases of the Preservation proof,
which is when the current instruction is alloc. Corresponding to the diagram in
Figure 12, we have the following setup:

P = (H,R, alloc rd [τ1, . . . , τn]; I )
P ′ = (H ′, R′, I )
S = (M,R, pc)

Step (S) = (M,R
′
, (pc + 1))

where H ′, R′, and R
′
can be determined by the operational semantics of FTAL and

the definition of the Step function (Figure 2).
We now need to prove that P ′ is related to Step (S) by the translation. First,

we know by the properties of the layout function that applying it to an extended
heap maintains the mapping of all the existing labels in the old heap. Now, the
FTAL heap is updated after evaluation but the memory stays the same after the
step. However, since the update to the heap is only with uninitialized values that
can be translated to any word, the translation will still hold on the unchanged mem-
ory. Thus, we can show that the updated heap translates to the unaltered memory.
Then, relating the two updated register files is not difficult, nor is showing that the
residual instruction sequence corresponds to the next program counter value. Well-
formedness of P (i.e., �P ) is used in various steps of this proof, for instance, to
reason that any labels in the registers are within the domain of the heap; hence, the
layout function on the updated heap, H ′, preserves the mappings of existing labels.

This completes the translation, or compilation, of a well-typed FTAL pro-
gram to an FPCC code package. The FTAL program can be shown to corre-
spond to an initial machine state and that state can be shown safe (as described
in Sections 2.3 and 3) using the proofs of Preservation and Progress developed
here.

6. Implementation

An implementation of the syntactic approach presented in this article consists of
an FTAL compiler that generates FPCC packages. An FPCC package consists of
two parts: the initial machine state and the proof of safety. The proof of safety
can be further divided into two pieces: one is the proof of the Preservation and
Progress theorems, and the other is the proof that the initial machine state satisfies
the Initial Condition property. Note that the proofs of Preservation and Progress
(which are built semi-automatically) do not change for any machine state that has
been generated by compiling an FTAL program. Thus, these properties need be
proven only once and can then be reused for all FPCC packages produced by this
compiler.

In the following sections, we first describe our Coq representation of the ma-
chine and the encoding of FTAL syntax and semantics and soundness theorems.
Next we discuss implementation of the formal proofs of FPCC Preservation and
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Progress, which were done interactively by using the Coq proof assistant. Then, we
describe a compiler that parses an FTAL program, performs type-checking, and au-
tomatically produces the Coq term representing the typing derivation. This typing
derivation is then used to construct the proof of the Initial Condition property.

Coq is a proof assistant tool for the calculus of inductive constructions (Sec-
tion 2.1). It provides an interactive interface for constructing formal proofs in the
logic. The Coq syntax for λ-abstraction, λX : A.B, is [X:A]B. The syntax for
dependent products, �X : A.B, is (X:A)B and Coq allows for the normal arrow
abbreviation of this when the bound variable does not occur in the body, e.g.,
A->B. Coq syntax for inductive definitions is exactly that described in Section 2.1.
Coq uses the sort Prop for logical propositions and the sort Set for the type of
specifications (Booleans, natural numbers, lists, programs, etc.).

6.1. ENCODING MACHINE SEMANTICS

The Coq encoding of the machine to which FTAL programs are translated is very
similar to the presentation in Section 2.2. For example, having defined the registers
as an inductive set with 32 constructors, we then define the memory and register
file as being functions and the state as a triple of memory, register file, and program
counter.

Definition Word := nat.
Inductive _Reg : Set := _r0 : _Reg | _r1 : _Reg | ...
Definition Mem := Word -> Word.
Definition _RegFile := _Reg -> Word.
Definition State := (Mem * (_RegFile * Word)).

The instruction set is then defined as an inductive definition with appropriate
constructors.

Inductive _Instr : Set
:= _add : _Reg -> _Reg -> _Reg -> _Instr
| _addi : _Reg -> _Reg -> Word -> _Instr
| _movi : _Reg -> Word -> _Instr
| _bgt : _Reg -> _Reg -> Word -> _Instr
| _jd : Word -> _Instr
| _jmp : _Reg -> _Instr
| _ld : _Reg -> _Reg -> Word -> _Instr
| _st : _Reg -> Word -> _Reg -> _Instr
| _ill : _Instr.

We next decide on how to encode the instructions above as natural numbers and
write a Coq function that uses the appropriate arithmetic operations to decode a
natural number into an _Instr.

Definition Dc : Word -> _Instr := ...
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We are now ready to encode the semantics of the machine as given in Sec-
tion 2.2. For updating the register file and memory, we define auxiliary functions,
as in the code below (beq_reg compares equality of two register names and returns
a Boolean).

Definition updateregfile
: _RegFile -> _Reg -> Word -> _RegFile
:= [R:_RegFile; rd:_Reg; v:Word]

([r:_Reg] if (beq_reg r rd) then v else (R r)).

Definition Step : State -> State
:= [St:State] Cases St of (M, (R, pc)) =>

Cases (Dc (M pc)) of
(_add rd rs rs’)

=> (M, ((updateregfile R rd
(plus (R rs) (R rs’))),

(S pc)))
| (_jd l)

=> (M, (R, l))
| ...
| _ill => St

end
end.

Finally, we can state the safety policy we wish to enforce and define what a safe
machine state is. The MultiStep function simply applies the Step function to the
given state n times.

Definition SP [S:State]
:= (let (M,T’)=S in

(let (R,PC)=T’ in
~(Dc (M PC))=_ill)).

Definition Safe [S:State]
:= (n:nat)(SP (MultiStep n S)).

6.2. ENCODING FTAL SYNTAX

Encoding the FTAL language is a more involved process. We start by defining each
syntactic category as an inductive type. For example, the FTAL types are encoded
as follows.

Definition initflag := bool.

Inductive Omega : Set
:= intty : Omega
| codety : (Map Reg Omega) -> APTy -> Omega
| tupty : (list Omega) -> (list initflag) -> Omega
| recty : (OmegaL (S O)) -> Omega.
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The list in the tuple type constructor is the usual definition of a list, found in
the Coq library. Hence, the tuple type constructor takes as arguments a list of types
and a list of initialization flags, encoded as Booleans. (Alternatively, we could have
used a list of pairs instead of two lists, but in practice this encoding seemed easier
to work with.) Map is defined as a list of pairs. The type of a register file (used
by codety) is a map from registers (definition presented below) to types. We also
define a “well-formed Map,” used later, as being a list of pairs in which the first
element of every pair in the list is distinct from all others.

A well-formed type in the FTAL language will never have free type variables,
but variables may appear in a recursive type. Hence, we represent the type under the
recursive type constructor by a “lifted” version of Omega that uses deBruijn indices
to represent variables. The parameter of the OmegaL type below tracks the number
of free type variables in the term to ensure the correctness of our substitution and
unfolding functions for recursive types.

Inductive OmegaL : nat -> Set
:= inttyL : (OmegaL O)
| codetyL : (i:nat) (Map Reg (OmegaL i)) ->

APTy -> (OmegaL i)
| tuptyL : (i:nat) (list (OmegaL i)) ->

(list initflag) -> (OmegaL i)
| rectyL : (i:nat) (OmegaL (S i)) -> (OmegaL i)
| varL : (i:nat) (OmegaL (S i))
| liftL : (i:nat) (OmegaL i) -> (OmegaL (S i)).

Registers are defined as in the machine above. Unlike the presentation in the
preceding sections, we carry the special allocation pointer separately from the rest
of of the register file; hence, there are only 31 registers defined for FTAL. The r31
register, or AP below, is simply a label (which is defined to be a natural number).
The special allocation pointer types are encoded as an inductive definition, and the
types of register files and heaps are maps from registers or labels, respectively, to
Omega (the heap type also requires that the map be well-formed, as defined above).

Inductive Reg : Set := r0 : Reg | r1 : Reg | ...
Definition label := nat.
Definition AP := label. (* alloc. ptr. (r31) *)
Inductive APTy : Set
:= fresh : APTy
| used : nat -> APTy.

Definition RegFileTy := (Map Reg Omega).
Definition HeapTy := (WFMap label Omega).

The remainder of the definitions for FTAL syntax are fairly intuitive and match
closely the presentation in Figure 3, except that r31 and its type are carried sepa-
rately as AP and APTy.
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Inductive Instr : Set
:= add : Reg -> Reg -> Reg -> Instr
| addi : Reg -> Reg -> int -> Instr
| alloc : Reg -> (list Omega) -> Instr
| bgt : Reg -> Reg -> label -> Instr
| bump : int -> Instr
| fold : Reg -> Omega -> Reg -> Instr
| ld : Reg -> Reg -> int -> Instr
| mov : Reg -> Reg -> Instr
| movi : Reg -> int -> Instr
| movl : Reg -> label -> Instr
| st : Reg -> int -> Reg -> Instr
| unfold : Reg -> Reg -> Instr.

Inductive InstrSeq : Set
:= iseq : Instr -> InstrSeq -> InstrSeq
| jd : label -> InstrSeq
| jmp : Reg -> InstrSeq.

Inductive WordVal : Set
:= wl : label -> WordVal
| wi : int -> WordVal
| wuninit : Omega -> WordVal
| wfold : WordVal -> Omega -> WordVal.

Inductive HeapVal : Set
:= tuple : (list WordVal) -> HeapVal
| code : RegFileTy -> APTy -> InstrSeq -> HeapVal.

Definition Heap := (WFMap label HeapVal).
Definition RegFile := (Map Reg WordVal).

Definition Program := (Heap * (RegFile * (AP * InstrSeq))).

6.3. ENCODING FTAL SEMANTICS AND SOUNDNESS

Each judgment form of the dynamic and static semantics can be viewed as a rela-
tion and is also encoded as an inductive definition. For every evaluation or typing
rule, there is an associated constructor of the appropriate inductive definition. (This
allows us to use Coq’s inductive elimination constructs to perform inversion and
induction on typing derivations.) We show the encoding of several evaluation rules
in Figure 13.

The reglookup and regupdext are to be read as propositions stating that look-
ing up the value of a given register in a register file (which is defined to be a
Map) yields the given word value and that updating or extending the mapping of a
register in a register file results in a new register file, respectively. For the heap (and
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Inductive Eval : Program -> Program -> Prop
:= ev_add

: (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(rd,rs,rs’:Reg; rsval,rsval’:int)
(reglookup R rs (wi rsval)) ->
(reglookup R rs’ (wi rsval’)) ->
(regupdext R rd (wi (plus rsval rsval’)) R’) ->
(Eval (H,(R,(r31,(iseq (add rd rs rs’) I’))))

(H,(R’,(r31,I’))))
| ev_alloc

: (H,H’:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(rd:Reg; V:(list Omega))
(regupdext R rd (wl r31) R’) ->
(hextend H r31 (tuple (makeUninitTup V)) H’) ->
(Eval (H, (R, (r31, (iseq (alloc rd V) I’))))

(H’, (R’, (r31, I’))))
| ev_bump

: (H:Heap; R:RegFile; r31:AP; I’:InstrSeq)
(i:int; l:nat)
(hsize H l) ->
(Eval (H, (R, (r31, (iseq (bump i) I’))))

(H, (R, (l, I’))))
| ev_jd

: (H:Heap; R:RegFile; r31:AP)
(l:label; G:RegFileTy; T:APTy; I’:InstrSeq)
(hlookup H l (code G T I’)) ->
(Eval (H, (R, (r31, (jd l))))

(H, (R, (r31, I’))))
| ev_movl

: (H:Heap; R,R’:RegFile; r31:AP; I’:InstrSeq)
(rd:Reg; l:label)
(regupdext R rd (wl l) R’) ->
(Eval (H, (R, (r31, (iseq (movl rd l) I’))))

(H, (R’,(r31, I’))))
| ev_store

: (H,H’:Heap; R:RegFile; r31:AP; I’:InstrSeq)
(rd,rs:Reg; i:int; l:label;
V,V’:(list WordVal); w:WordVal)
(reglookup R rd (wl l)) ->
(reglookup R rs w) ->
(hlookup H l (tuple V)) ->
(updatetuple V i w V’) ->
(hupdate H l (tuple V’) H’) ->
(Eval (H, (R, (r31, (iseq (st rd i rs) I’))))

(H’,(R, (r31, I’))))
| ...

Figure 13. Coq encoding of FTAL dynamic semantics.

similarly heap type, which like heap is defined as a well-formed Map) the hextend
proposition requires that the label being added to the domain of the heap is not
already being mapped in the heap. The hupdate proposition holds true only when
the label is in fact present in the heap mapping. These propositions are defined
inductively as relations on Maps.

The encodings of the main static judgments are given in Figures 14 and 15.
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To formally prove the soundness of FTAL as encoded above, we proceed by
first proving the same lemmas that are listed in Section 4.5. The statements of
these lemmas in Coq, while slightly verbose, are essentially the same as those
listed in that section. We generate the proofs of these lemmas interactively using
Coq proof “tactics.” The tactics of the proof assistant correspond much to the steps
that would be used in a hand proof, for example, induction, inversion, rewriting,
and application of rules (constructors). We present the statements of a few of these
lemmas in Coq below (Register File Update, the second case of Canonical Word
Forms, and several cases of the Heap Extension lemma).

Lemma regfile_update
: (HT:HeapTy; R,R’:RegFile; G,G’:(Map Reg Omega))

(rd:Reg; v:WordVal; t:Omega)
(WFRegFile HT R G) ->
(WFWordVal HT v t) ->
(regupdext R rd v R’) ->
(regupdext G rd t G’) ->
(WFRegFile HT R’ G’).

Lemma can_word_forms_code
: (H:Heap; HT:HeapTy; v:WordVal; G:RegFileTy; T:APTy)

(WFHeap H HT) ->
(WFWordVal HT v (codety G T)) ->
(EX l | v=(wl l) /\ (EX I | (hlookup H l (code G T I)))).

Lemma heap_ext_2
: (H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(v:WordVal; t’:Omega)
(WFHeap H HT) ->
(hsize H l) ->
(htextend HT l t HT’) ->
(WFWordVal HT v t’) ->
(WFWordVal HT’ v t’).

Lemma heap_ext_4
: (I:InstrSeq)

(H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)
(R:RegFileTy; A:APTy)
(WFHeap H HT) ->
(hsize H l) ->
(htextend HT l t HT’) ->
(WFInstrSeq HT R A I) ->
(WFInstrSeq HT’ R A I).

Lemma heap_ext_7
: (H,H’:Heap; HT,HT’:HeapTy; t:Omega; l:label)

(h:HeapVal)
(WFHeap H HT) ->
(hsize H l) ->
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Inductive RegFileSubtype (* register file subtyping: G <= G’ *)
: RegFileTy -> RegFileTy -> Prop
:= weaken

: (G,G’:RegFileTy)
((r:Reg; t:Omega) (reglookup G’ r t) -> (reglookup G r t)) ->
(RegFileSubtype G G’).

Inductive WFWordVal (* well-formed word values: HT |- w : t wval *)
: HeapTy -> WordVal -> Omega -> Prop
:= int_wval : (HT:HeapTy; i:int)(WFWordVal HT (wi i) intty)
| label_wval

: (HT:HeapTy; l:label; t,t’:Omega)
(htlookup HT l t’) ->
(Subtype t’ t) ->
(WFWordVal HT (wl l) t)

| fold_word_wval
: (HT:HeapTy; w:WordVal; t:OmegaR; t’:Omega)
(RUnlift (RUnfold t))=t’ ->
(WFWordVal HT w t’) ->
(WFWordVal HT (wfold w (recty t)) (recty t)).

Inductive WFInstrSeq (* well-formed instruction sequences: HT; G |- I *)
: HeapTy -> RegFileTy -> APTy -> InstrSeq -> Prop
:= s_add

: (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs,rs’:Reg)
(reglookup G rs intty) ->
(reglookup G rs’ intty) ->
(regupdext G rd intty G’) ->
(WFInstrSeq HT G’ T I) ->
(WFInstrSeq HT G T (iseq (add rd rs rs’) I))

| s_alloc
: (HT:HeapTy; G,G’:RegFileTy; I:InstrSeq)
(rd:Reg; n:nat; V:(list Omega))
n=(length V) ->
(regupdext G rd (tupty V (makeUninitTupty V)) G’)->
(WFInstrSeq HT G’ (used n) I) ->
(WFInstrSeq HT G fresh (iseq (alloc rd V) I))

| s_jd
: (HT:HeapTy; G,G’:RegFileTy; T:APTy)
(l:label)
(htlookup HT l (codety G’ T)) ->
(RegFileSubtype G G’) ->
(WFInstrSeq HT G T (jd l))

| s_st
: (HT:HeapTy; G,G’:RegFileTy; T:APTy; I:InstrSeq)
(rd,rs:Reg; i:int;
V,V’:(list initflag); Ts:(list Omega); t:Omega)
(reglookup G rd (tupty Ts V)) ->
(reglookup G rs t) ->
(ListNth ? Ts i t) ->
(updatetupty V i V’) ->
(regupdate G rd (tupty Ts V’) G’) ->
(WFInstrSeq HT G’ T I) ->
(WFInstrSeq HT G T (iseq (st rd i rs) I))

| ...

Figure 14. Coq encoding of FTAL static semantics: main definitions (1 of 2).
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Inductive WFHeapVal (* well-formed heap values: HT |- h : t hval *)
: HeapTy -> HeapVal -> Omega -> Prop
:= tuple_wf

: (HT:HeapTy; wl:(list WordVal); tl:(list Omega); il:(list initflag))
(WFWordValinitList HT wl tl il) ->
(WFHeapVal HT (tuple wl) (tupty tl il))

| code_wf
: (HT:HeapTy; G:RegFileTy; I:InstrSeq; T:APTy)
(WFInstrSeq HT G T I) ->
(WFHeapVal HT (code G T I) (codety G T)).

Inductive WFHeap (* well-formed heap *)
: Heap -> HeapTy -> Prop
:= heap_wf

: (H:Heap; HT:HeapTy)
(EX s | (hsize H s) /\

(htsize HT s) /\
((n:label; h:HeapVal) (hlookup H n h) -> (lt n s)) /\
((n:label; t:Omega) (htlookup HT n t) -> (lt n s)) /\
((n:label) (lt n s) -> (EX h | (hlookup H n h))) /\
((n:label) (lt n s) -> (EX t | (htlookup HT n t))) /\
((n:label; h:HeapVal; t:Omega)
(hlookup H n h)->(htlookup HT n t)->(WFHeapVal HT h t)) /\

(OrdHeap H)
) ->
(WFHeap H HT).

Inductive WFRegFile (* well-formed register file *)
: HeapTy -> RegFile -> RegFileTy -> Prop
:= regfile_wf

: (HT:HeapTy; R:RegFile; G:RegFileTy)
((r:Reg; t:Omega)

(reglookup G r t) ->
(EX w | (reglookup R r w) /\ (WFWordVal HT w t))) ->

((r:Reg; v:WordVal; l:label; n:nat)
(reglookup R r v) ->
(stripWV v)=(wl l) ->
(htsize HT n) ->
(lt l n)) ->

(WFRegFile HT R G).

Inductive WFProgram (* well-formed program *)
: Program -> Prop
:= program_wf

: (H:Heap; HT:HeapTy; R:RegFile; G:RegFileTy;
l:AP; t:APTy; I:InstrSeq)

(WFHeap H HT) ->
(WFRegFile HT R G) ->
(WFap HT l t) ->
(WFInstrSeq HT G t I) ->
(EX l | (EX G’ | (EX T’ | (EX I’ | (EX n |

(hlookup H l (code G’ T’ I’)) /\
(ISubDepth I I’ n)))))) ->

(WFProgram (H, (R, (l, I)))).

Figure 15. Coq encoding of FTAL static semantics: main definitions (2 of 2).
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(htextend HT l t HT’) ->
(hextend H l h H’) ->
(WFHeapVal HT’ h t) ->
(WFHeap H’ HT’).

The main theorems for the soundness of FTAL, preservation and progress,
follow from the various lemmas:

Theorem ftal_preserv
: (P,P’:Program) (WFProgram P) -> (Eval P P’) -> (WFProgram P’).

Theorem ftal_progress
: (P:Program) (WFProgram P) -> (EX P’ | (Eval P P’)).

We have now completely formalized the syntactic soundness proof of FTAL.
In the next section, we discuss the encoding of the translation relations between
FTAL and the machine, and how FTAL soundness is used to produce the proofs
of the FPCC Preservation and Progress theorems.

6.4. ENCODING FPCC PRESERVATION AND PROGRESS

The translation relations (not shown here) are represented as a set of inductive
definitions that follow precisely the presentation in Figure 5.1, for example,

Inductive TrProgram
: Program -> State -> Prop := ....

The global invariant for FPCC can be defined in terms of the translation between
a well-formed FTAL program and the machine state:

Definition Inv [S:State]
:= (EX P:Program | (WFProgram P) /\ (TrProgram P S)).

Now we proceed to prove the FPCC Progress theorem:

Theorem Progress : (S:State) (Inv S) -> (SP S).

As mentioned in Section 5.3, the Progress theorem is straightforward. Using
several Coq “Inversion” tactics, we determine that there exists a well-formed in-
struction sequence that translates to the program counter of the state. Then we
perform case analysis on the well-formed instruction sequence judgment and show
that in every possible case, the program counter of the state must be pointing to a
non-illegal instruction.

Next is the FPCC Preservation theorem, which is more involved to prove but
which follows the discussion in Section 5.3.

Theorem Preservation : (S:State) (Inv S) -> (Inv (Step S)).

With these two theorems, we can now prove that a machine state will be safe if the
FPCC Initial Condition property is satisfied.

Theorem Safety : (S:State) (Inv S) -> (Safe S).
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6.5. GENERATING THE INITIAL CONDITION

To generate the Initial Condition, we use a compiler that takes an FTAL program
and compiles it to a machine state, producing the necessary proofs in the process.
The structure of this compiler is fairly straightforward: After parsing an FTAL
source file, type-checking is performed. The algorithm for type-checking follows
closely the structure of the inductively defined static semantics in Coq. (Similarly,
the compiler structures for FTAL abstract syntax mirror the Coq encoding.) Thus,
the type-checker, as it analyzes the FTAL program, simultaneously builds a Coq
term representing the proof of well-formedness of the program. In particular, if
P:Program, then the type-checking phase produces a term, D:(WFProgram P).

Once type-checking is successfully completed, the compiler then translates the
FTAL program into a machine state. Again, this is done in such a manner that a
Coq term representing the machine state and the proof of the relation between the
FTAL program and the machine state can be generated. That is, for some S:State,
a term, T:(TrProgram P S), is constructed. Along with the typing derivation term
of P produced above, we can now construct a proof that the global invariant holds
on S. This can then be composed with the Safety theorem of the preceding section
to produce a complete proof of the safety of the machine state S, as specified by
our safety policy.

6.6. THE COMPLETE SYSTEM

We now have a complete system that starts with a typed assembly language pro-
gram and compiles it into an FPCC package, consisting of an initial machine
state and a proof of safety. Although our current implementation is not so realistic
as [7, 5], the advantages of the syntactic FPCC approach are still clear. We compare
the syntactic and semantic approaches to FPCC in detail in Section 7.

With respect to PCC implementations in general, the two most practical con-
siderations are the extent of the trusted computing base (TCB) and the size of the
proofs that are shipped with code. As for the former, the TCB of our syntactic
FPCC implementation would consist of the following: (1) a parser, which converts
the state of the raw machine into the encoding in the logic; (2) the encoding of the
machine step function in the logic, which must accurately capture the semantics
of the real machine (that is, it must be adequate); and (3) the proof-checker of the
logic. The first two will necessarily exist in any PCC system. For syntactic FPCC
(and FPCC in general), the proof-checker is smaller and more reliable than that
of existing PCC systems because the logic used is much simpler.� In addition, the
VCgen is completely eliminated from the system.

� That is, taking into consideration the type-related axioms that need to be added to the base logic
of those systems. Furthermore, although our prototype uses the Coq proof assistant, which integrates
the proving and checking processes, it would not be at all difficult to separate the proof-checker out
into a very small, simple program, as has been done in previous FPCC approaches.
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Regarding the proofs that are shipped with syntactic FPCC packages, note that a
large portion of the safety proof is static – the Progress and Preservation theorems
hold regardless of the particular FTAL program from which the machine state
was compiled. Hence, this part of the proof does not need to be resupplied (or
even rechecked) with every individual FPCC package. Furthermore, the remaining
portion of the proof simply consists of the initial FTAL program and its typing
derivation. The typing derivation can be easily and quickly generated by either the
code producer or the consumer. Thus, if proof size is especially critical, the only
additional information that needs to be supplied with the initial machine state is the
FTAL program itself.

7. Syntactic vs. Semantic FPCC

We have found that the choice between the syntactic and semantic approaches to
generating FPCC involves some trade-offs, which we briefly outline in this section.

In previous work on FPCC [5, 3], type judgments were assigned a meaning (a
semantic truth value). In other words, each type of the typed assembly language
is viewed as a predicate to be applied to memory (of the real machine), a value,
and perhaps more arguments. The TAL typing rules then become lemmas to be
proved in this semantic model. In contrast, the syntactic approach does not attempt
to give any meaning to types or typing rules. The entire typing derivation of a TAL
(or FTAL) program is formalized and directly encoded in the logic. The FPCC
safety proof is generated based on the similarly formalized soundness proof for
TAL. Unlike the original PCC systems, however, the typing rules are not part of
the trusted base of our system – they must be encoded and their soundness proved
by using only the foundations of the logic.

The difference discussed in the preceding paragraph is clearly exhibited in the
nature of the invariants that are generated for the two approaches. In the semantic
approach, the global invariant used to prove safety, although it may be derived from
the type system of a typed assembly language, actually states properties directly
about the machine state – the contents of registers, memory addresses, and so on.
This approach is very general, and the invariant can be used to express arbitrary
properties about the machine. On the other hand, the invariant used for the syntactic
approach does not prove properties directly about the machine state. Instead, it
simply requires that there exist a correspondence between the machine state and an
assembly program. The safety and soundness of the assembly language is used to
ensure safety of the machine code.

The most obvious feature of the syntactic approach to FPCC is the resulting
simplicity of the overall system. The complexities evident in [3, 6, 1, 2] do not
arise in our system. For example, in order to support contravariant recursive types,
an “indexed” semantic model is necessary [6], which complicates the definition of
types. A more serious limitation of current semantic approaches to FPCC is the
difficulty to model mutable record fields. This is a consequence of circularity in
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the definition of a “type” as a predicate on a state that is a pair of memory and a set
of allocated addresses [2, 3]. These, and various other difficulties in the semantic
approach, result from attempting to give a meaning to types.

The reason our approach does not suffer from the same complexity is that it
needs to give a meaning to types only one step at a time. For example, in a seman-
tic approach, when trying to show that two mutually recursive functions f and g

satisfy the predicates for their function types, we have the problem that the proof
for f needs the proof for g and vice versa. Resolving this circularity requires a
coinduction principle or forces the use of an “indexed” semantic model. On the
other hand, a syntactic approach will simply provide a typing rule for mutually
recursive functions. Of course, the soundness proof still needs to show that the
typing rule is meaningful, but it needs to do it only one step at a time, in which
case the circularity is gone: we do not need to assume anything about g in order
to show that the first instruction of f can be executed safely. Only when we reach
the call to g need we pay attention to it, but at that point we do not need to assume
anything about f any more. Another way to look at it is that the “indexing” is done
implicitly, for free, when we combine the progress and preservation lemmas to get
the actual safety proof.

Despite the overall simplicity of the approach to FPCC given in this article, it is
not without potential technical intricacies. One of the most critical of these is the
encoding of the syntactic typing rules and the soundness proof. In our prototype
Coq “implementation” we have indeed been able to completely formalize and en-
code the static and operational semantics of FTAL, as well as prove the progress
and preservation theorems. Although the encoding is not entirely trivial, it was
achieved with reasonable effort. (In particular, the current implementation of the
proofs of FTAL soundness and the FPCC Preservation and Progress theorems was
completed within several months by a single graduate student with no previous
experience in Coq or CiC.) The ability in CiC to perform eliminations on induc-
tive definitions means that most proofs are quite straightforward and are proven
by using an intuitive sequence of steps. The fact that these proofs are generated
interactively (i.e., manually) is not an issue because it needs to be done only once.
Hence, in terms of implementation effort, a syntactic approach does not seem to be
any harder, at the worst, than a semantic one.

Moreover, our approach relies on the availability of a typed assembly language
that is similar to the machine for which proofs will be generated. It is also nec-
essary that the type system capture all the invariants needed to prove soundness
of the machine code. In this article, we took the interesting step of splitting the
conventional malloc instruction of TAL into two separate instructions (alloc and
bump), each of which is directly translated into a single machine instruction. We
thus needed to refine the type system so that the information about the allocation
state is correctly maintained in the invariant during translation. In general, whatever
criteria are specified by the safety policy (i.e., in the definition of SP (S)) will need
to be reflected in the type system. For example, supporting fine-grained access
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control could be achieved by using a more refined type system such as that in [10].
Designing a type system that can be used with the syntactic approach to FPCC to
prove complex safety invariants is future work.

8. Related Work

The original PCC system was designed by Necula and Lee [18, 16, 17], as dis-
cussed in our introduction. In addition to the general framework laid out in their
work, implementation effort on building a certifying compiler has also been carried
out [19, 7]. As also mentioned, however, these existing certifying compilers and
clients are very language specific and incorporate “built-in” understanding of a
particular type-system into the logic.

Our source language, FTAL, is derived from the typed assembly language
framework designed by Morrisett et al. [15]. Although, in contrast with PCC, typed
assembly language does not deal with code at the lowest level of the machine, it is
a critical tool that makes automatic generation of PCC proofs possible – following
either the syntactic or the semantic approach.

Appel and Felty were the first to propose the notion of foundational PCC [5, 3].
Work on the semantic approach to FPCC has been carried out by Appel, Felty, and
others [5, 6, 1, 13, 4].

In a recent paper, Shao et al. [21] showed how to incorporate a logic such as
CiC into a typed intermediate language. Together with the work described in this
article, we can now build an end-to-end compiler that compiles high-level richly
typed programs into FPCC.

We note that the syntactic approach to proving type soundness, an idea that we
take advantage of in this article, was introduced by Wright and Felleisen [26].

9. Conclusion

This article presents an approach for producing foundational proof-carrying code
based on syntactic soundness proofs. Starting with a type system for a typed as-
sembly language, we formally encode its soundness proof and show a precise
correspondence between TAL and the language of the actual machine. We use this
(syntactic) correspondence, along with the proof that the type system enforces the
invariants or constraints of the safety policy, to generate a package consisting of
machine code and its proof of safety. By avoiding semantic modeling of types,
extending and scaling our compilation framework to construct foundational proofs
for realistic languages are likely to be easier than previously published approaches.
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