Subtyping Constrained Types

Valery Trifonov- ** and Scott Smith

Department of Computer Science, Johns Hopkins University
Baltimore, MD 21218, USA
http://www.cs.jhu.edu/hog/

Abstract. A constrained typés a type that comes with a set of subtyping con-
straints on variables occurring in the type. Constrained type inference systems
are a natural generalization of Hindley/Milner type inference to languages with
subtyping. This paper develops several subtyping relations on polymorphic con-
strained types of a general form that allows recursive constraints and multiple
bounds on type variables. Subtyping constrained types has applications to signa-
ture matching and to constrained type simplification.

1 Introduction

A constrained type intuitively is a simple type together with a set of subtyping con-
straints on its type variables. An exampleis~ int \ {¢ < int}, a type of functions
whose argument types constrained to be a subtypenf. It is possible to perform let-
polymorphic type inference for constrained types, producing polymorphic types (“type
schemes”) of the formvty, ..., t,. 7\ C, which generalize the type schemes produced
by the Hindley/Milner unification algorithm; constrained type inference is strictly more
general than unification-based type inference. The idea of including subtyping con-
straints as part of typing judgements was first developed by Mitchell [17, 18]. His
constraint sets were restricted to be atomic, allowing coercions between type variables
only; numerous other systems with restricted forms of constraint inference have been
introduced since, including [16, 12, 14, 4].

A type inference algorithm for polymorphic constrained types of the form studied
here was first discovered by Curtis [8], and later independently discovered in somewhat
different form, and first proven sound, by Aiken and Wimmers[1]. These constraint
systems are less restrictive than the previously cited formulations: they allow recursive
constraints such as< ¢ —int, and thus subsume recursive types. Additionally, both
upper- and lower-bound constraints on variables are legal, and multiple bounds may be
placed on a single variable (multiple bounds sucHas. 71,t < 7o} are expressed
equivalently ag < 7 N 7, wheren is the type intersection operator of [1]). This extra
flexibility allowed in the constraint sets gives a more powerful, but computationally
more complex, inference algorithm.

Constrained types are particularly appropriate for object-oriented programming lan-
guages[10, 9]: these types incorporate subtyping and recursive dependence, both critical

* Partially supported by NSF grant CCR-9301340
** Partially supported by AFOSR grant F49620-93-1-0169

in an object-oriented setting, and their greater flexibility gives a reasonable solution to
the binary methods problem [5].

The objective of this paper is to address the problem of subtyping between polymor-
phic constrained types:

Vi1, .ot \C <Y Vi, ... t,. 7'\ C’

Considering the generality of these types, the relati®rshould be expected to subsume
both the “more general than” relation between type schemes in the Hindley/Milner
system, and the subtyping relation on recursive types of Amadio/Cardelli[3].

This relation, which has not received the deserved attention in the literature, has
at least two important applications. The first is separate compilation via modules and
functors, and the subsequent need for signature matching. To a first approximation, in a
module system based on Hindley/Milner style of type inference the program specifies
a polymorphic type (signaturey for the parameter of a functdr to allow uses of
the parameter at different types (which is not possible for parameters of functions);
the polymorphic signature’ inferred for the actual argument/ is then matched
againsts at the point of applicatiof’(1/). In a constrained type settin§yand S’ are
polymorphic constrained types; “matching the signature” thus requires verifying that
the S’ <V S. Another application is the justification of simplification operations on
constrained polymorphic types. In this case a proof is required that the simplified type
is equivalent to the original.g. both a subtype and a supertype).

In this paper we define several variants<of. The “optimal” form <7, - may be
characterized observationally by analogy with Morris/Plotkin contextual expression
equivalence, replacing expression contexts with proof contexts. We then define a se-
mantic form<Y__ based on a regular tree interpretation, and prove it is a good model

—sem

by showing it is exactly<Y, , afull type abstractiorproperty. The ideal model [15]
may also be used as a basis of a constrained type ordefipg, [2], but it is not fully
abstract. The relation?,, , is surprisingly complex: we leave open the question whether
itis decidable, and develop a powerful decidable approximatipn.

In the process of defining these subtyping relations, other results of independent
interest are derived. First, an entailment relatont = < 7’ over simple types
is axiomatized. The set' is a system of arbitrary type constraints, thus generalizing
the system of [3] which only allows one upper, non-recursive bound of each variable
in C. We define two reduced forms of constraint setsstraint mapgkernely and
canonicalmaps, which are also of use as more compact representations of constraint sets
in algorithms such as type inference. Next, the subtyping relations on constrained types
are defined, and their relationship is established. Finally, soundness of a system of typing
rules with constrained types is proved by a simple method of reduction to soundness of
a system without constrained types. A principal typing property is established for our
type inference algorithm.

In this paper we work over a simple language with only function, top, and bottom
types to reduce clutter. However, previous work[10, 9] shows how state, records,
variants, classes, and objects all may be incorporated in a constrained type framework,
and we explicitly avoid semantic tools (such as the ideal model of types[15]) which
lack a strong potential to generalize to such constructs.

2 Simple and Constrained Types

We illustrate our ideas by studying an extension of the call-by-naroalculus with
constants antet-binding. The abstract syntax of the expressions in the language is

e n=x|dr.e|lee’ | X |let X=eine

To simplify the presentation we assume that tHegound andet-bound variables are in
different syntactic classes, thatbound variables are not re-bound, and that constants
are a special case tdt-variables, bound in the initial environment. We wrke. e for
Az. e wherez is not free ine, and(e; €’) for (A_.¢€) e.

Thesimple typesre

Typs7 u=t| L|T|r—1"]...

wheret ranges over the séfyVar of type variables,l. and T are “minimal” and
“maximal” types. In addition to the function types there may be a set of basic types
which we leave unspecified. We call, T, —, etc.type constructorsand all simple
types inTyp— TyVar constructed

A constrained type: has the formvt. A = 7\ C, where thecontextA is a finite
map from variables to simple types, writtén; : 7;), theroot typer is a simple type,
and theconstraint setC' is a set of subtyping constraint®n simple types, each of
the form 7’ < 7.2 We use this new notion for constrained types in order to more
appropriately present the binding structure of type variables. The caategresents
the assumptions about the types)ebound variables free in the term, addis the
set of subtyping constraints (a.k.a. coercions) under which the term is typable; they are
both part of the type itself instead of the environment. Thus all constrained types in a
type sequent are closed, so we can compare constrained types with different sets of type
variables, and avoid giving meaning to constrained types with constrained but free type
variables.

Definition 1. A constraint set” is closedif it is closed under transitivityie. {7 <
7,17 < 71"} C Centailst < 7" € C) and decomposition{ -7 < s —15 € C
entails{r, <7, 11 <75} CC).

We denote byCI(C') the least closed superset ©f Thus, for example, it” = {t —
t<(L—=t)=T—=ThthenCl(C)=CU{lL—t<t,t < T—T,1—=t<T—
T, T<1,t<T,1ot<Th

A constraint set izonsistenif for each constraint < 7’ in it at least one of the
following is true:7 = L, 7 = T, both sides have the same outermost type constructor,
or one of them is a type variable.

2 We only consider closed constrained types, for wHith 2 FTV(A) U FTV(7) U FTV(O),
where FTV(7) as usual denotes the set of type variables free.i€onstrained types are
considered identical underrenaming of bound type variables.

3 Primitive Subtyping

In order to define notions af ", a theory of primitive subtyping under a set of subtyping
constraints(C' = 7 < 7/, and its decidable axiomatization are developed. Due to space
limitations most of the proofs have been elided; currently they can be found on the
World Wide Web at URLhttp://www.cs.jhu.edu/hog/subcon.ps.gz

3.1 Regular Tree Semantics of Constraints

Sequents” = 7 < 7/ may be defined as valid if they hold for all instantiations of type
variables inC, 7, and7’. There are many possibilities for the notion of “instance.” The
simplest is to allow instances to range over the variable-free types constructed from

1, and—. However, for our purposes this does not give enough points in the space of
instancesg.g.when typing binary methods [5] we have to work with recursive constraint
sets such a§t —t < t, ¢ < t— T}, which have no solutions in this space. This is an
example where differences arise when recursive constraint sets are allowed—if recursive
constraint sets were not allowed, the simple type basis would have been appropriate.
Another candidate is the ideal model[15] used in[2], but conversely it has too many
points, allowing polymorphic types suchést—t to be substituted for type variables;
since our system is “shallow” these points are superfluous in our framework. It turns out
that the addition of the solutions of recursive type equations to the ground types gives
just enough points to define an appropriate semantics. In the next section a theorem
will be proven which rigorously demonstrates this fact. We use the convenient notion
of regular trees [7, 3] to model solutions of recursive type equations.

We present the semantics of constraint sets in terms of regular trees over a ranked
alphabet. Let us review some definitions and results from [7, 3]. Given a ranked alphabet
L, atree is a partial function from finite sequences of natural numb&r§athg to L
such thaDom(y) is prefix-closed and for eache N* we have{k | 7k € Dom(¢)} =
{0, ...rankg (¢(m)) — 1}. Thesubtree atr € Dom(¢p) is the functiom\n’.o(77’); | 7|
is thelevelof that subtree. A tree iegularif the set of its subtrees is finite.

DefineT as the set of regular trees over the ranked alph&beff type constructors
in our language, the nullary andT and the binary—; we reuse the syntax of types
as a notation for trees. fegular systemin this context is a set of equations of the
form ¢t; = 7; between type variableg € TyVarand simple types; (i.e. finite trees
over L, U TyVarwhere the type variables are nullary); a regular systecofgractive
if it has no subset of the forffity = ¢4, ..., th—1 = tn, tn = to}. An assignmenp
onV C TyVaris a total map in — T; it is homomorphically extended on simple
typest with FTV(7) C V:p(L) = L, p(T) = T, andp(r—7') = p(7)—p(7’). An
assignmenp ont; is asolutionof the regular systemy = 7; if pt; = pr;.

Proposition 2. Each contractive regular system has a unique solution, and each regular
tree is the image of some variable in a solution of a contractive regular system.

A level cut ¢, of ¢ € T for k € N is defined as the (finite) tree obtained by
replacing all subtrees at levelof ¢ (if any) by T.

A partial order overL, in which L is the minimal element and is the maximal,
together with variance specifications for the arguments of non-nullary constructors (in
this case, contravariance in the domain and covariance in the rangg ofduce a
partial order<;,.. overT as follows: | <;... ¢ andy <;... T for each finite treep,
and(ﬁl - 90/1 <tree P2 — 90/2 if 02 <tree P1 andﬂﬁll <tree 9012, fina”y, © <tree 90/ if
|k <tree |k for eachk € N.

Returning to our type system, within a set of constraints we model simple types by
regular trees satisfying these constraints:

Definition 3. (i) An assignmenp k-satisfiesa constraint- < 7/, writtenp g 7 < 7/,
if p(T)|/€ <tree p(T/)|k'

(i) p satisfiesr < 7’ (p> 7 < 7/, alsop is asolutionof 7 < ') if pi, 7 < 7/ for each
keN.

(iii) The above properties are extended over a set of constr@iiftthey hold for each
constraint in the set.

Regular trees may now be used to define the thébky + < 7'.

Definition4. (i) C = 7 < 7' if for every assignmenp on FTV(C U {7 < 7'}), if
p>C, thenp> 7 < 7/,

(i) C = Cif FTV(C") C FTV(C) and for each solutiop of C there is a solutiop’
of C”" which agrees withh on FTV(C").

(i) C andC’ areequivalenif C' = C" andC’ = C.

Lemmab5. C and C[C) are equivalent. Thus, &' is satisfiable, then CC') is consis-
tent.

We leave open the decidability ¢f = = < 7/, and in the sequel we develop
decidable approximations to it.

3.2 Constraint Map Representation

We now defineconstraint map&s an equivalent form for representing consistent closed
constraint sets. Closed constraint sets may contain significant redundant information.
To a constraint sefr; — 7 < 72— 75} the closure addér, < 71, 71 < 75}, and the
original constraint between functions is completely captured by the additions and can be
removed. Constraint maps in fact do not allow constraints between two constructed types,
since they can always be expressed by an equivalent family of constraints, provided the
constraint set was consistent to begin with. We reuse some of the notation previously
defined for constraint sets on constraint maps.

Definition 6. A constraint maps a finite mapk’ € TyVar— (2Typ)2’ assigning sets of
upper and lower bounds to each type variable in its domain; we use the more intuitive
notationt < 7 € K andt > 7’ € K forr € m1 (K (t)) andr’ € mo(K (t)), respectively,

and (K, t < 7), (K, t >) for the maps extending the sets(K (t)), respectively

2 (K (t)), to containr. We writet > 7 instead ofr < ¢ sinceK is not required to be
antisymmetricj.e.t’ € 71 (K (t)) does notimplyt € 7o (K (¢')); we usel = 7 € K for
thepait <re K,t >7€ K.

(L) K+ L1L<7 (T) K+7<T

KFr<n KFmn<Ttn
KFrn—n<m—T

(=) KFt<t, teDomkK) (=)

M (K7t§77t§T')FT§7/ 0 (K7t27',t27'/)#7"§7'
(K, t<1) Ft< 1 (K, t>1) F 7' <t
if (K, t<,t<7")is contractive if(K, t > 7, t > 7') is contractive

Fig. 1. Rules for primitive subtyping

Definition 7. Thekernel KefC') of a constraint set’ is the constraint map defined by
the set of constraintsr < 7' € CI(C) | {r, 7'} N TyVar= 0}; a constraint of the form
t < t’ sets the appropriate bounds on both variables.

For example, since the closure of the constraintset {(T —t)—t < t—t— L1}
isCI(C) ={(Tot)—t <t—t—1,t<T—t t <t— L} the kernel ofC is
Ker(C) = (t <T—tt< t—>J_).

Proposition 8. For consistent constraint sét, Ker(C') andC are equivalent.

The kernel form of a constraint set has significant advantages from an implementation
perspective: a type inference algorithm may maintain constraint sets in their equivalent
kernel form, which is considerably more compact than the closure.

3.3 Rules for Primitive Subtyping

We take advantage of the equivalent constraint map representatidm constraint set
C, and with the rules in Fig. 1 define a decidable sound approximéfioh = < 7’ of
the theoryC' =7 < 7.
An implicit requirement fork’ F 7 < 7/ is FTV(7) UFTV(7') C Dom(K). As is
usually the case in the presence of recursive types, a notion of contractiveness plays an
important role in detecting ill-defined constraint maps.

Definition 9. A constraint magk is contractivef w0 K andryo K as relations oftyVar
have no cyclesi.e. if there do not exist variable§y, ..., ¢t,} € Dom(K) such that
t, = t; andt; < t;y1 € K (respectivelyt; > ¢;,1 € K) foreachi € {1, ..., n—1}.

Forinstance, neithér < ¢) nor (¢t > ¢/, ¢ > t)is contractive, whilét > ¢/, t < t/)
is (recall a constraint map is not necessarily symmetric on type variables). However note
that contractiveness of constraint maps, as opposed to regular systems, does not entalil
satisfiability,e.g.(t < L, ¢t > T)isacontractive map with no solutions. Contractiveness
is required in order to ensure soundness by disallowing proofs in vehich constraint
introduced taK" by one rule(1) is used in anothe(f) with no intervening uses df-).
Rules(L), (T), (—), and(=) for reflexivity of the relation on type variables are
standard. The novel rulgg) and(]) provide the only access to constraintsAn in
fact, were the constraint map in its premise identical to the one in its conclusion, rule
(1) would have been just the standard rule for proving an upper bound on a type variable

in a system of rules with eliminated transitivity. With the extra assumption these are
induction rules, similar to ther(x) rule of [11].

Some standard subtyping rules [3] are derivable from those given in Fig. 1 and thus
omited, for instance general reflexivitk(- 7 < 7 is always provable foFTV(7) C
Dom K),and(K, t < 1) t < Tisprovable by 1) and general reflexivity. In contrast,
transitivity only holds for consistent constraint maps.

Definition 10. A constraint mapK is consistentf for eacht, 7, andr’, if t > 7 € K
andt <7’ € K,thenK + 7 <7/,

The following lemma shows that a kernel contains all of the information of a
consistent sef’, and that computing the closure ©fis equivalent to the construction
of a constraint mag such that’ - C.

Lemma 11. If CI(C) is a consistent constraint set, then K& is a consistent constraint
map, and KefC') - CI(C).

3.4 Soundness and Decidability of Primitive Subtyping

Next we establish soundness of the proof systewith respect to the relatiop-; the
main idea is to show that all assignments which approximate solutions of a constraint
map K also approximate solutions of all subtyping constraints provable fkom

Lemmal2. If K is contractive, K + 7 < 7/ has a proof, and the assignment
k-satisfiesk, then

(i) if the proof of K + 7 < 7/ has an instance of a rule other thdf) or () at its
root, thenp gy 7 < 7';

(ii) if there is an instance of7) or () at the root of the proof of{ + 7 < 7/, then
pop T < 7.

Theorem 13 (Soundness)If K is contractive and + 7 < 7/, thenK =7 < 7.

The systent- is incomplete with respect to the relatip# it is not even possible to
prove that(t < t—1,t < T—t) - ¢t < T— L since the bound we need is stronger
than each of the two given. Howeweris useful because of the following property.

Lemmal4. The relationK F 7 < 7’ is decidable.

3.5 Canonical Constraint Maps

We can obtain a stronger proof system if we place the constraints in an equivalent
canonical form that has pre-computed least upper and greatest lower bounds. In a
canonical constraint map each variable has exactly one constructed upper and one
constructed lower bound. For instance, a canonical equivaléntot— L, ¢t < T—t)

isK = (t> 1,t <T-—_1). The upper bounds— 1 and T —t ont have the lub

T — 1 computed for them. For this set we can indeed prAve- ¢ < T — 1. The
canonicalization process also has potential as an implementation technique.

Definition 15. A constraint magK is canonicalif

— K assigns exactly one upper and one lower constructed baamdigicalbounds)
to each type variable in its domain (with no restriction on the number of variable
bounds);

—ift<te Kandt’' <t’"ec K,thent<t'" ¢ K, and

—foreach(t < ¢,t < 7, t' < 7') C K, where{r, 7/} N TyVar =), we have
K + 7 <7/, and similarly for the lower bounds.

Clearly if K and K’ are equivalent of TV(7) U FTV(7') thenK = 7 < 7’ if and
only if K’ =7 < 7'. This allows us to upgrade our system by converting each lap
to an equivalent canonical m&an(K) and then provinganK) - 7 < 7’ instead of
the originalK + 7 < 7/. Here we provide an algorithm for computing an equivalent
canonical formCan(K) of a mapK.

Algorithm 16 Can(K) is computed as follows.

Start with K/ = K, and for somet € FTV(K') let V' be the least set satisfying
V ={u{t'|F" € V.t <t € K'}, i.e.the set of upper bounds anin the
reflexive transitive closure ak”’ on TyVar; the case of lower bounds is similar. Let
B = {r € Typ— TyVar|3t' € V.t' < 7 € K'}, the set of constructed upper bounds
ont. We compute the canonical upper boundf ¢ as the greatest lower bound of the
elements of3, as follows.

If B C {T}, thentr = T;if L € B, thent = L. Otherwise let{r;—7/}

be the set of all function types i, and letr = t; —t¥., whereT = {7},

T'" = {7/}, andt}. andty, are in general auxiliary type variables we associate
with the respective sets of type terms; in the cases Whina singleton set
{t'} we lett}: = ¢, = ¢/ to ensure termination. Add the bound$ > 7;) (and
similarly for t¥,) to K’.

Replace the constructed upper boundstof (¢ < 7); thus the new bounds @gnnamely

(t <7)and(t < t')foreacht’ € V, are in canonical form. Continue until all variables

in K’ are processed. (Adding also all bounds of the fatth < ¢7) and (¢, > t) if

T C S, when those auxiliary variables appear in the domain of the map, produces an
even stronger, with respect tq yet equivalent form.) The resulting’ is the value of
Can(K).

The following lemma proves the correctness of this algorithm.
Lemma17. For each constraint mag there exists a canonical equivalent Ga&d).

For example computing the canonical equivalenkot= (t < t— 1, t < T —t)
starts by introducing, = ty, +, andtz =t{, ,,, and transforming< into K" = (t >
Lit<ty—ty, t1 2T, 81 <T,t1 >t ta > L, ta < L, ts <t). Thismapis already
in canonical form, and it is possible to pro#& + ¢ < T — L. However, even when
F is used on to canonical equivalents it still does not provide proofs for some valid
relations; for instancdf > L, t <t—T)Et<(T—1)—-T.

In the general case, the algorithm implied by Lemma 14 may attempt comparing
T against each upper bound ercurrently in K in the process of searching for a
proof of K + t < 7. In this process, it may have to backtrack if it fails to find a
proof using a particular bound. However, in the case of canonical maps a more efficient
implementation is possible which has time complexitydf.?), wheren is the size
of K U {r < 7'}. This algorithm only compares new bounds on a variable against its
canonical bounds (which can be shown to suffice) and uses a form of memoisation to
detect looping; details are omited for lack of space.

A parallel can be drawn between our system of subtyping rules and the system
F4c of Amadio and Cardelli[3], which is based on a relation of equivalence between
recursive types, and on the inductive rule

() C,t<t FacT <7
a Cltac ut.TSNt/.T/

Since recursive types can be encoded as type variables with identical upper and lower
bounds, the corresponding rule for simple types with constraints is

Kt=rt=7,t<t' - 7<7
Kt=rt=17Ft<t

which is indeed derivable iR in a stronger version by successive application§of
and (]); furthermore, the steps of the proof &f, t = 7, ¢’ = 7/ F ¢ < t/ follow
closely the steps of the algorithm for computi6g- ¢ ut. 7 < ut’. 7’ presented in

[3], which also effectively constructs the type contexts necessary in order to establish
type equivalences. Amadio and Cardelli show that their system is complete with respect
to the regular tree model of recursive types under certain conditiord$, en andr’;

in particular the constraints i@ may not be recursive, and no variable may occur in
both7 andr’. An attempt to directly apply the system to prove sequents violating these
conditions shows that it is incomplete in the more general setting considered in this
papere.g.t < T —t Hac t < ut'. T —t'. Our system, while still incomplete with
respect to the model we present, is capable of proving the corresponding forms of all
sequents provable in [3], in addition allowing multiple recursive upper and lower bounds
ontype variable.g.t < T—t, t' = T—t F t <.

3.6 Satisfiability of Canonical Constraint Maps

A constrained type only has meaning if its constraints describe a non-empty set of
instances, and hence the satisfiability of a constraint map is an important property. In
this section we provide a connection between consistency and satisfiability of canoni-
cal constraint maps. This connection also plays a role in establishing the relationship
between various notions of subtyping on constrained types in Sect. 4.

Definition 18. The canonical magk” is asubmapof a canonical mag if K’ C K.
Note that constraints on variables Dom(K) — Dom(K’) may involve variables in
Dom(K'), butFTV(Codon{K"’)) C Dom(K").

Lemmal9. If K’ is a submap of<, and K is consistent and canonical, then every
solution of K’ can be extended to a solution&f Thus, considering the special case of
K’ = 0, every consistent canonical constraint m&gs satisfiable.

Combining these results with canonicalization and soundnelssadth respect to
=, we can reason about canonical maps instead of their equivalent constraint sets.

Definition20. C' + 7 < 7’ if Can(Ker(C)) F 7 < 7',

4 Subtyping Constrained Types

In this section we define three concreté relations of subtyping on constrained types:
<o <V, and<¥__, as promised in the introduction.

—obs! —=sem?

4.1 Operational Subtyping

For an initial definition of<¥ we rely on operational notions as a basis. The basic idea
is simple, but we could not find any precedent for it in the literature. Expressions of

constrained typ&'t. A = 7\ C are also of typert’. A’ = 7/\ C" if for all possible

uses of expressions of the latter type that are consistent, use of the former type is also
consistent. Relatior<?, . is defined by this means. The difficult issue is how a “use”

of a type should be defined. Informally, each use is a typing proof context, in analogy
with Morris/Plotkin expression contexts. We give a particular version of typing proof
context which is one of many reasonable and equivalent notions: a “use” is a set of
constraints of the form that could be added by the inference rules. The constraints added
by the inference rules may only introduce upper bounds on the root types, and dually
only lower bounds on the types in the context. As a consequence one may obtain a valid
typing derivation after replacing a subterm by another term whose constrained type
yields a consistent system when those bounds are added. This leads us to the following
observational definition of a subtyping relation on constrained types. (Wé tetA’
abbreviate the set of constraiftd(z) < A’(z) |z € Dom(A’)}, defined only when
Dom(A) 2 Dom(A’).?)

Definition 21. For closed constrained typag/. A’ = 7/\ ¢’ <Y, Vt"'. A" = 1\ ¢

iffor eachv?. A = 7\ C such tha{?} is disjoint from{t'} and{t" }, if Cl(CUC"U(A <
A"yu{r"” < 7}) is consistent, the@I(C UC' U (A < A")U {7’ < 7}) is consistent.

3 This “subtyping rule” for contexts is similar to standard record subtyping[6]; the clo-

sure conversioffz] = AE. E.x, [Ax.e] = AE. Ax. [e[{ @i = E.ail, cPvie) (o), T=2},
and[ee’] = XE.[e] E ([¢'] E) makes the environment explicit and maps terms of type

Vt. (z; - 7;) = 7\ C to closed terms of typet. () = { z; : 7;} —7\C.

4.2 Semantic Subtyping

Next, a semantic notior?,, . is defined, via the regular tree model: two polymorphic
constrained types are ordered if their sets of regular tree instances are ordered.
The context componem of a constrained type corresponds to a finite rdpom
variables to regular trees; the relatign,.. can be extended on such maps as follows:
D <iree @ if DOoM(P) O Dom(P') andd(z) <iree P'(x) for eachz € Dom(¢’). An
instanceof the constrained type = Vt. A = 7\ C is a pair writtend = ¢ where
® = po Aandyp = pr for some assignment on {¢} that satisfiesC. The set of
instances of: is Inst(x). As in the definition of<?, , the natural order on instances is

D= 0 <pree D = O if D <iree D andp <iree . We can now define a semantical
notion of subtyping on constrained types.

Definition 22. ' <Y k' if for each instance of” there is a smaller instance of.

—Ssem

We may now prove the equivalence<f,,, and<Y, , demonstrating the appropri-
ateness of the regular tree interpretation.

Theorem 23 (Full Type Abstraction). The relations<?, and<Y, agree.

=sem —obs

To contrast<?,,, with the ideal model ordering<Y,_;, consider the following
example, in which we omit contexts and quantifiers when empty. In the regular tree model
the only solutionolC' = {T—-1L <t,t < T—-T,t<1l—1l}lisp=[t— T—1],
which satisfies als6 < T — L; hence(T — 1) =T — 1\ <%, Vt.t—t\C.But
this fails for <Y,_., since in the ideal moded.g.[t — Vt'.¢' — '] is a solution ofC
which does not satisfiy < T— 1. As a consequence the ideal model ordering does not

offer full type abstraction with respect to the operational subtypifig .

4.3 Decidable Subtyping

The question of decidability of?,,, is open; we show how it may be approximated by
a powerful decidable relation. The material of the previous section is used to define this
decidable relation.

The informal idea leading to the decidable relation is simple: observe that adding
constraints to a set may only shrink the set of its solutions. For constrained«ypes

V. A= 7'\ C"andx” = Vt". A" = 7'\ C", Definition 22 states that' <Y« if

a certain relation holds faachinstance ok’ (thatis, for the unrestricted set of solutions
of C"") andsomecorresponding instance ef (that is, an element of a possibly restricted

subset of solutions af”). Thus, assumming th4t'} and{t"} are disjoint, we would
have a proof ok’ < «” if we could show that the relations < 7”7 and(A4” < A’)
hold underC” andC” together with some sét of constraints which do not “constrain
further” the type variableg’ (but possibly add constraints f).

Applying the machinery developed in Sect. 3, these ideas are formalized in the
following definition of a relation approximating?

Definition 24. r/ <% . &"if &' = Vt'. A’ = 7\ C’ andr” = Vi". A" = 7"\ C"

for some{t'} N {t"} = 0, and there exists a consistent canonical maguch that
K F C U <A)U{r <7"}andCanKer(C")) is a submap ofs.

Here the magk represents the union 6", C’, andC of our informal discussion:
it hasCan(Ker(C")) as a submap (meanirg’} are not further constrained), it entails

C’, and its constraints 0{1?} may be stronger that those @/ in order to ensure that
the relations between root types and contexts hold. The following theorem shows that
<7, isindeed an approximation to

=sem"

Theorem 25. If ' <Y . k", thenx’ <Y, K.

Although the incompleteness lefwith respect tg= implies incompleteness efy,_
with respect to<?,,,, the relation<y, . is still quite powerful: it subsumes the relation of
instantiation between type schemes in the Hindley/Milner system, the subtyping relation
between recursive types in the Amadio/Cardelli system, and their union on recursive

polymorphic types in shallow (prenex) form. Consider Hindley/Milner subtyping in
more detail. The type schem&”. 7" is an instance o¥'. 7’ if 7/ = or’, whereo

is a simple type substitution o{?} = FTV(7), and{?} = FTV(r"); then we have
Ve ()= 7\ 0 <% _Vt". () = 7"\ by Definition 24, as evidenced by the canonical

—dec
constraintmagd = (¢’ < o(t’), ¢ > o(t’)), which entails’ < o (') and is obviously
consistent. Closed recursive types can also be represented as constrained types, with
the constraint set effectively encoding a regular system; when restricted to these types,
<Y _is equivalent to the system of Amadio and Cardelli.

—dec

Furthermore<, _ is sufficiently strong to allow proving correctness of many useful
simplifications of types inferred by the system. For examglg,. can be used to show
the soundness of the constraint set simplification “garbage collection” of[9], which

allows the removal of “unreachable” constraints.

Definition 26. Given a constrained typé. A = 7\ K, whereK is a canonical con-
straint map, a type variableis positively reachablef ¢ occurs positively inr, or
negatively inA, or positively in the canonical lower bound i of some positively
reachablet’, or negatively in the constructed upper boundhinof some negatively
reachable’; negative reachabilitys defined symmetrically. (Recall that an occurrence
of avariable in a simple type [gositive(resp.negative if it occurs inside an even (odd)
number of type subterms in argument position-ef)

A constraintt < 7/ € K (resp.t > 7' € K) is reachableif ¢ is negatively
(positively) reachablet < ¢’ € K is reachable if is negatively and’ is positively
reachable.

This notion of reachability is motivated by the type rules (Sect. 5, Fig. 2), which
only set upper bounds on types of subterms. Thus for instance a type varialile
type « of a terme can only obtain new upper bounds (whefs used as a subterm)
if ¢ is positively reachable ir; in this case’s lower bounds may be the source of an
inconsistency (via transitivity). Conversely, howevet, i§ not reachable positively, its
lower bounds are not going to cause inconsistency in any use-tience they may
safely be ignored; for example,

Vi ()= t\{Tot<t, t<t—=T} <%, Vt.)=t\{T—t <t}

—dec

Proposition 27. If GC (k) is the constrained type obtained by removing the unreachable
constraints ins, thenGC (k) <Y, x andx <Y, GC(k).

Pottier [20] offers an alternative definition of reachability which ignores the polarity
ofthe occurences of type variables. Our experience with applications of constrained type
systems to object-oriented languages [10, 9] shows that keeping track of polarity makes
a significant difference when simplifying types inferred for new objects (which are fixed
points of classes). Type variables associated with objects have upper bounds inherited
from the class definition (before taking the fixed point); they are often unreachable
by our definition but not by Pottier’s. Additionally, removing more constraints often
enables other simplifications,g.unifying a type variable with its bound.

We present an outline of an algorithm for computw@. A = \C" <Y

—dec

VAT = 7\ C". The algorithm either fails, if the subtyping does not hold, or it
produces a set of constrair@swhich only put bounds on the type variableqi}; the
constraint magk required by Definition 24 can then be obtained by exten@ag C")
with Can(Ker(C’ U C')). The algorithm is very similar to the one for computing closure
of a constraint set; in fact it is a generalization of the latter.

Algorithm 28 V¢'. A’ = 1/ \C" <Y VA = 1 \ C" is computed as follows.

—dec
We start by computind(” = Can(C”) and with an initially empty se€, of new
constraints on variables ifit”’ } which are “pending proof,” and proceed as in computing
the closure o2’ U {7’ < 7"} U (A" < A’), namely, failing on inconsistent constraints,
and reducing consistent ones between constructed types to constraints on variables, of
the formt < 7 (or 7 < t). Whent € {t'}, if the constraint is already i’ U C, the
search succeeds; otherwise we add these constraidtsted continue as in the closure
computation by searching for a proof of < 7 (resp.m < 7y), wherer and 7y
represent the lower and upper bound(s)tan C’ U C' so far. However, whete {t"},
we instead attempt tprovethat this constraint is implied (by the rules for primitive
subtyping) by the constraints @rin K. The proof search goes much as described in
Sect. 3.4: ifr is already an upper (lower) bound ofn K" U Cy, it succeeds, otherwise
the new constraint is added g, and we search for a proof of the constraint < 7
(resp.T < 71), wherer; and 7, are the canonical upper and lower boundsidn K.

Thus, the algorithm treats variables(iti} and{¢"} differently, but symmetrically: it
compares new upper bounds ot with its old lower bounds, but new upper bounds on
at” with its old (canonical) upper bound. (The reader may have noticed that converting
C’ to a canonical constraint map is not necessary for this algorithm; however it may
improve its performance.)

Theorem 29. The relation<Y_ _ is decidable.

dec

5 Soundness of the Type System and Completeness of Inference

The typing rules shown in Fig. 2 infer sequents of the farm-" e¢ : k; the type
environmentl” only assigns constrained typeslét-bound variables, while the types

(VAR) " +" z : V. (i -1,z : T)=7\C, {Z} B UI FTV(7;, 7, C)
FHe:Vi(m ma:1)=7\C
I dzoe : Vi (z)y =77 \C
I }_T e, : VE.A:>TH—)T\C I }_T e” . VEA:>T”\C
I ee VA= T1\C
(LETVAR) I' T X : I'(X), X € Dom(I)

''Fe:x I'X:kF € :k«
I FlletX=eine : &

(ABS)

(APP)

(LeT)

't e:«x ngvm/
(Sus) 't e: &

Note: the closures of the constraint sets in all conclusions must be consistent.

Fig. 2. Typing rules.

of A\-bound variables are included in the context component.d&ach rule has the
implicit side condition that the closure of the constraint set in the constrained type in
its conclusion is consistent. Rule #&) requires the types of the subterms to share the
contextA, constraint se€, and set of bound variablgg}. Rule (LET) is sound with
respect to the call-by-name semanttaspnstraints on types of variables freecineed

not be reflected im’ unlessX occurs free ire’. Finally the subsumption rule (8)
replaces the constrained type of a term by a supertype; it is thus the only rule that may
allow the constraint set in the type of a term to be taken into account or modified. The
rules are parametric in the choicef, for which we considered a number of different
possibilities; the notation-" represents the rules with abstract, and ., for
instance represents’ with <V defined as the concrete relatigiy,,,.

Rules for type inference are preseriténl Fig. 3; there is no rule for subsumption,
and thelet-related rules are the same asth and hence omitted.

We may now establish soundness of the typing rules of Fig. 2. In our previous proofs
of soundness of constrained typing systems[10], a direct subject reduction argument
was used. Recent observations concerning the close relation between constrained type
systems and simple type systems [19] allow us to establish soundness based on soundness
of a simple type system. We believe this direct approach to type soundness of constrained
type systems should be applicable to other constrained type languages.

Amadio and Cardelli[3] present a type systethwith recursive types (modeled
by regular trees) and a subtyping relation on them equivalest.tg.. This system can
be applied to théet-free fragment of our language to produce sequents of the form
® H e 1 v, whered is a finite map from variables to regular trees whose role in our
type systemt" is played by a contexAl.

4 A version sound with respect to call-by-value can be obtained by defieingX =e in ¢’ as
let X =ein (X; €’) for type-checking purposes.

5 We write the inference rules with a top-down propagation of the contexts; a bottom-up presen-
tation with synthesized context components is also possible.

(VAR T F' 2 2 Vg, b (x : ti, @ 2 t) =>t\0

I H e : Vi, t.(z; : ti,z : t)=>7\C
I'H Azoe : Vi, t.{z; : t;) =>t—7\C

(ABS) , {zi} = FV(\z.e)

r+e :V?.A:>TI\C/ r+ e":VF.A:T"\C”
e v, t" t.A=i\C'uC"u{r <r"—t}
where{t'} — FTV(A), {t"} — FTV(A), FTV(A), and{t} are all disjoint

(APP)

Fig. 3. Typing rules modified for type inference.

We now establish that a typing derivation i,

L., can be viewed as a family of
derivations in-*.

Definition 30. The let-expansion LEe) of a terme is defined as the homomorphic
extension oL E(let X =¢’ in €”) = (LE(¢); LE(e”)[LE(¢’)/X]), where the postfif/]
denotes capture-free substituton.

Theorem31.If § Fi,, e : &, then() F* LE(e) : ¢ for eachyp € Inst(x). If

0 H+ LE(e) : ¢,thend) . e : xforsomex such thaty € Inst(x).

sem

Corollary 32. The type systeritl,,, is sound.

sem

Proof. Implied by the soundness & [3]: the typability of a terme under +7_,,
implies the typability ofLE(e) under#, which by soundness o¢f* implies that the
evaluation ofLE(e) will not cause a run-time error. Since thet-expansion ofe is
observationally equivalent tg this implies that the evaluation efis free of run-time
errors.

Corollary 33. The type systerit],_ is sound.

dec

Theorem 34. The inference system' is complete with respect tb,

sem *

6 Related Work

Pottier [20] has independently derived results that are related to some results of this paper.
He defines a syntactic and a semantic notions of entailment on constraint sets, shows they
are equivalent, and presents a type system with subsumption based on this entailment.
He also provides an algorithm for an approximation to the entailment relation, which
appears equivalent tf - 7 < 7/ for canonical; finally, the theory is used as a basis

for proving the soundness of a number of constrained type simplifications. However
the entailment relations do not take into account reachability of type variables, which
depends on the polarity of their occurrences and hence on the root type; in particular
his syntactic entailmertt’ - C” requiresC"” U C' to be consistent whenevél U C'is,

for any constraint seC’, including sets that put bounds on unreachable type variables,
which is not possible during type inference. As a consequence both the relation between

constrained types, implied by his subsumption rule, and its decidable approximation are
strictly less powerful than ours.
Jim[13] also defines a notion af¥ that relates fewer types than ours but is still
powerful enough to prove some principal typing properties for constrained type systems.
Previous researchers[21, 4] have addressed the problem of subtyping constrained
types in the context of a system where recursive constraints are not allowed. The choice
of whether to allow or disallow recursive constraints greatly changes the theory.

7 Conclusions

This paper establishes a foundation for constrained type theory, in particular via a
powerful characterization of subtyping on constrained types. We introduce two natu-
ral notions of subtyping, observationdl’, . and semantic<?,,,, and prove that they
are equivalent; we further give a decidable approximatigjp. to these relations. Both
results represent improvements over recent work on subtyping of constrained types with
recursive constraints [9, 20, 13]. We also introduce a novel closed form of constraint
types with contexts, which eliminates the problems associated with free type variables.
Finally, we present a type system with principal constrained types, and establish its
soundness via reduction to the system of Amadio and Cardelli.

The most generous relations,,,, and<Y, . may be undecidable, but we believe that

<7.. is powerful enough to be useful in practice for signature matching and constraint
simplification. Our confidence in the system stems from the facttjat subsumes

the Amadio/Cardelli subtyping of recursive types, the type scheme instantiation in the
Hindley/Milner system, and the subtyping relation of [20]. Additionally, it turns out that
the known simplifications of constraint sets do not test the limits of the system based
on<Y,.; we have shown in this paper thdf,, can be used to demonstrate the correct-
ness of simplifications not included in other systems. Similarly, functor signatures may
generally be produced by starting with an inferred constrained type and transforming
it in regular ways, thus avoiding constrained types whicf),. does not relate to the
inferred type. We have yet to find a realistic subtyping example which is semantically
sound but is not derivable usingy,.., but most convincing would be the performance

of a system that uses it for signature matching and simplifications in practice on real

code; we are in the process of constructing an implementation for this purpose.

Acknowledgements We wish to thank Simon Marlow, Francois Pottier, DidigsrRy,
Philip Wadler, and the anonymous referees for many helpful comments and suggestions.

References

1. A. Aiken and E. L. Wimmers. Type inclusion constraints and type inferenc®rdoeed-
ings of the International Conference on Functional Programming Languages and Computer
Architecture pages 31-41, 1993.

2. A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with conditional types<Cdn-
ference Record of the Twenty-First Annual ACM Symposium on Principles of Programming
Languagespages 163-173, 1994.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

. R. Amadio and L. Cardelli. Subtyping recursive typA&M Transactions on Programming

Languages and Systeym$(4):575-631, September 1993. Extended abstract in POPL 1991.

. Francois Bourdoncle and Stephan Merz. On the integration of functional program-

ming, class-based object-oriented programming, and multi-methods. Technical Report 26,
Centre des Ma#matiques Appligées, Ecole des Mines de Paris, 1996. Available at
http://www.ensmp.fr/"bourdonc/

. Kim Bruce, Luca Cardelli, Giuseppe Castagna The Hopkins Objects Group, Gary T. Leav-

ens, and Benjamin Pierce. On binary method$eory and Practice of Object Systems
1(3):217-238, 1995.

. L. Cardelli. A semantics of multiple inheritance. $®mantics of Data Typegolume 173

of Lecture notes in Computer Scienpages 51-67. Springer-Verlag, 1984.

. B. Courcelle. Fundamental properties of infinite treéBheoretical Computer Science

25:95-169, 1983.

. Pavel Curtis. Constrained quantification in polymorphic type analysis. Technical Report

CSL-90-1, XEROX Palo Alto Research CenteSLPubs.parc@xerox.com , 1990.

. J. Eifrig, S. Smith, and V. Trifonov. Sound polymorphic type inference for objects. In

OOPSLA '95 pages 169-184, 1995.

J. Eifrig, S. Smith, and V. Trifonov. Type inference for recursively constrained types and
its application to OOP. IProceedings of the 1995 Mathematical Foundations of Program-
ming Semantics Conferena@lume 1 ofElectronic Notes in Theoretical Computer Science
Elsevier, 1995http://www.elsevier.nl/locate/entcs/volumel.html

J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico. An interpretation of typed OOP in a
language with state.isp and Symbolic Computatip&(4):357—-397, 1995.

Y.-C. Fuh and P. Mishra. Type inference with subtypesEumpean Symposium on Pro-
gramming 1988.

Trevor Jim.Principal typings and type inferenc®hD thesis, MIT, 1996. (to appear).

S. Kaes. Type inference in the presence of overloading, subtyping and recursive types. In
ACM Conference on Lisp and Functional Programmipgges 193-204, 1992.

D. B. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types.
Information and Contrql71:95-130, 1986.

P. Mishra and U. Reddy. Declaration-free type checking.Comference Record of the
Twelfth Annual ACM Symposium on Principles of Programming Languameses 7-21,
1985.

John C. Mitchell. Coercion and type inference (summary)Cadmference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Langusg84.

John C. Mitchell. Type inference with simple subtypésurnal of Functional Programming
1:245-285, 1991.

Jens Palsberg and Scott Smith. Constrained types and their expressiVeisaS 18(5),
September 1996.

Francois Pottier. Simplifying subtyping constraints. FIrst International Conference on
Functional Programmingpages 122-133, 1996.

Geoffrey S. Smith. Principal type schemes for functional programs with overloading and
subtyping.Science of Computer Programmirgg, 1994.

