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Abstract

bly languages. We show how to integrate an entire proof system

(the calculus of inductive constructions [34, 10]) into an intermedi-
A certified binaryis a value together with a proof that the value ate language, and how to define complex transformations (CPS and
satisfies a given specification. Existing compilers that generate cer-closure conversion) of programs in this language so that they pre-
tified code have focused on simple memory and control-flow safety serve proofs represented in the type system. Our paper builds upon
rather than more advanced properties. In this paper, we presenia large body of previous work in the logic and theorem-proving
a general framework for explicitly representing complex proposi- community (see Barendregt al. [4, 3] for a good summary), and
tions and proofs in typed intermediate and assembly languages.makes the following new contributions:

The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking.
We show how to integrate an entire proof system (the calculus of
inductive constructions) into a compiler intermediate language and
how the intermediate language can undergo complex transforma-
tions (CPS and closure conversion) while preserving proofs rep-
resented in the type system. Our work provides a foundation for
the process of automatically generating certified binaries in a type-
theoretic framework.

1 Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [29,
28], allows a code producer to provide a machine-language pro-
gram to a host, along with a formal proof of its safety. The proof
can be mechanically checked by the host; the producer need not be
trusted because a valid proof is incontrovertible evidence of safety.

The PCC framework is general because it can be applied to cer-
tify arbitrary data objects with complex specifications [31, 1]. For
example, the Foundational PCC system [2] can certify any property
expressible in Church’s higher-order logic. Hargeral. [19, 6]
call all these proof-carrying constructs certified binaries (or deliv-
erables [6]). Acertified binaryis a value (which can be a function,

a data structure, or a combination of both) together with a proof
that the value satisfies a given specification.

Unfortunately, little is known on how to construct or generate
certified binaries. Existing certifying compilers [30, 8] have fo-
cused on simple memory and control-flow safety only. Typed inter-
mediate languages [21] and typed assembly languages [27] are ef-
fective techniques for automatically generating certified code; how-
ever, none of these type systems can rival the expressiveness of the
actual higher-order logic as used in some PCC systems [2].

In this paper, we present a type-theoretic framework for con-
structing, composing, and reasoning about certified binaries. Our
plan is to use thdormulae-as-typeprinciple [23] to represent
propositions and proofs in a general type system, and then to in-
vestigate their relationship with compiler intermediate and assem-

*This research is based on work supported in part by DARPA OASIS grant F30602-
99-1-0519, NSF grant CCR-9901011, and NSF ITR grant CCR-0081590. Any opin-
ions, findings, and conclusions contained in this document are those of the authors and
do not reflect the views of these agencies.

e We show how to design new typed intermediate languages

that are capable of representing and manipulating proposi-
tions and proofs. In particular, we show how to maintain
decidability of typechecking when reasoning about certified
programs that involve effects. This is different from the work
done in the logic community which focuses on strongly nor-
malizing (primitive recursive) programs.

We maintain a phase distinction between compile-time type-
checking and run-time evaluation. This property is often lost
in the presence of dependent types (which are necessary for
representing proofs in predicate logic). We achieve this by
never having the type language (see Section 3) dependent on
the computation language (see Section 4). Proofs are instead
always represented at the type level using dependent kinds.

We show how to use propositions to express program invari-
ants and how to use proofs to serve as static capabilities. Fol-
lowing Xi and Pfenning [44], we use singleton types [22]
to support the necessary interaction between the type and
computation languages. We can assign an accurate type to
unchecked vector (or array) access (see Section 4.2). Xi and
Pfenning [44] can achieve the same using constraint check-
ing, but their system does not support arbitrary propositions
and (explicit) proofs, so it is less general than ours.

We use a single type language to typecheck different com-
piler intermediate languages. This is crucial because it is im-
practical to have separate proof libraries for each intermedi-
ate language. We achieve this by using inductive definitions
to define all types used to classify computation terms. This in
turn nicely fits our work on (fully reflexive) intensional type
analysis [39] into a single system.

We show how to perform CPS and closure conversion on our
intermediate languages while still preserving proofs repre-
sented in the type system. Existing algorithms [27, 20, 25, 5]
all require that the transformation be performed on the entire
type language. This is impractical because proofs are large
in size; transforming them can alter their meanings and break
the sharing among different languages. We present new tech-
niques that completely solve these problems (Sections 5-6).



e Our type language is a variant of the calculus of inductive
constructions [34, 10]. Following Werner [41], we give rig-
orous proofs for its meta-theoretic properties (subject reduc- .
tion, strong normalization, confluence, and consistency of (kscm w = Kind|...
the underlying logic). We also give the soundness proof for  (kind) k ::= k1 —ko [ Q] ...
our sample computation language. See Sections 3—4, the ap-
pendix, and the companion technical report [37] for details.  (type) T o=t |A:k. 7| T T2 |Ti—T2 | VEik.T]. ..

THE TYPE LANGUAGE:

As far as we know, our work is the first comprehensive study on  THE COMPUTATION LANGUAGE:

how to incorporate higher-order predicate logic (with inductive

terms and predicates) into typed intermediate languages. Ourre- (exp e :u==x|Az:T.e|eiex|At:k.e|e[r]]...
sults are significant because they open up many new exciting pos-

sibilities in the area of type-based language design and compila- Figure 1: Typed\-calculi—a skeleton
tion. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at

the meta level can now be expressed inside the actual language it- e computation language contains just the lowest level which
self. For example, much of the past work on program verification ig yhere we write the actual program. This language will eventu-
using Hc_)are-llke _Ioglcs may now be captured and made explicit in ally be compiled into machine code. We often use names such as
a typed intermediate language. computation terms, computation values, and computation functions
From the standpoint of type-based language design, recenttg refer to various constructs at this level.
work [21, 44, 12, 14, 40, 39] has produced many specialized,
increasingly complex type systems, each with its own meta-
theoretical proofs, yet it is unclear how they will fit together. We
can hope to replace them with one very general type system whoserpe first step is to represent propositions and proofs for a particular
meta theory is proved once and for all, and that allows the definition logic in a type-theoretic setting. The most established technique
of specialized type operators via the general mechanism of induc-js 1, yse théormulae-as-typeprinciple (a.k.a. the Curry-Howard
tive definitions. For example, inductive definitions subsume and correspondence) [23] to map propositions and proofs into a typed
generalize earlier systems on intensional type analysis [21, 13, 39]. \ ca|culus. The essential idea, which is inspired by constructive
We have started implementing our new type system in the |ogic, is to use types (of kind2) to represent propositions, and
FLINT compiler [35, 36], but making the implementation realis-  expressions to represent proofs. A proof of an implicafn Q is
tic still involves solving many remaining problems.g, efficient a function object that yields a proof of propositiGnwhen applied
proof representations). Nevertheless, we believe our current contri-to g proof of proposition?. A proof of a conjunction? A Q is a
butions constitute a significant step toward the goal of providing a pajr (¢, e5) such that; is a proof of P ande; is a proof ofQ. A

2.1 Representing propositions and proofs

practical end-to-end compiler that generates certified binaries. proof of disjunctionP v Q is a pair(b, e)—a tagged union—where
b is either0 or 1 and ifb=0, thene is a proof of P; if b=1 thene
2 Approach is a proof ofQ. There is no proof for the false proposition. A proof

of a universally quantified propositioriz € B.P(z) is a function

Our main objectives are to design typed intermediate and low-level that maps every elemeatof the domainB into a proof of P(b)
languages that can directly manipulate propositions and proofs, and"Wn€re’ is a unary predicate on elements/@f Finally, a proof of
then to use them to certify realistic programs. We want our type a7 €xistentially quantified propositich:c B.P(z) is a pair(b, e)
system to be simple but general; we also want to support complex Whereb is an element of3 ande is a proof of P(b). o
transformations (CPS and closure conversion) that preserve proofs ~ Proof-checking in the logic now becomes typechecking in the
represented in the type system. In this section, we describe the mairforresponding typed-calculus. There has been a large body of
challenges involved in achieving these goals and give an high-level Work done along this line in the last 30 years; most type-based
overview of our main techniques. proof assistants are based on this fundamental principle. Baren-
Before diving into the details, we first establish a few naming dregtetal.[4, 3] give a good survey on previous work in this area.

conventions that we will use in the rest of this paper. Typed inter-

mediate languages are usually structured in the same way as type@®.2 Representing certified binaries

A-calculi. Figure 1 gives a fragment of a richly typ@ecalculus, ) . » o )
organized into four levels: kind schemies¢m) w, kind &, typer, Under the type.-theoretlc setting, a certified bin&rys just a pair
and expressiorep) e. If we ignore kind schema and other exten- (v, €) that consists of:

sions, this is just the polymorphiccalculusF,, [18].

We divide each typed intermediate language into a type sub-
language and a computation sub-language. The type language con-
tainS the tOp thl’ee IeVeIS. K|nd SChemaS ClaSSify klnd terms Wh||e ° and a proofe Of P(U) Wherep is a unary predicate on ele_
kinds classify type terms. We often say that a kind tarfvas kind ments of typer.
schemau, or a type termr has kindx. We assume all kinds used
to classify type terms have kind scheiiad, and all types usedto  Heree is just an expression with typB(v). The predicate” is a

e avaluev of typer wherev could be a function, a data struc-
ture, or any combination of both;

classify expressions have kisel Both the function type — 72 dependent type constructor with kimd— Q. The entire packagé
and the polymorphic typ®t : k.7 have kindQ2. Following the has a dependent strong-sum type: 7. P(z).

tradition, we sometimes say “a kind' to imply that x has kind For example, suppos¥at is the domain for natural numbers
schem&Kind, “a typer” to imply that 7 has kind(2, and “a type and Prime is a unary predicate that asserts an elemen¥af as
constructorr” to imply that7 has kind ' — - - - — €2.” Kind terms a prime number, we introduce a typet representingVat, and a
with other kind schemas, or type terms with other kinds are strictly type constructoprime (of kind nat — €2) representing’rime. We
referred as “kind terms” or “type terms.” can build a certified prime-number package by pairing a value



(a natural number) with a proof for the propositiprime(v); the To represent propositions and proofs, we lift everything one
resulting certified binary has typEz : nat. prime(x). level up: we use kinds to represent propositions, and type terms
Function values can be certified in the same way. Given a func- to represent proofs. The domalut is now represented by a kind

tion f that takes a natural number and returns another one as theNat; the predicaté’rime is represented by a dependent kind term

result {.e,, f has typenat — nat), in order to show thaf always Prime which maps a type term of kinNat into a proposition. A
maps a prime to another prime, we need a proof for the following proof for propositionPrime(n) certifies that the type term is a
proposition: prime number.
To maintain decidable typechecking, we insist that the type lan-
Vxz€Nat. Prime(z) D Prime(f(x)) guage is strongly normalizing and free of side effects. This is pos-

] ) ) -~ o sible because the type language no longer depends on any runtime
In a typed setting, this universally quantified proposition is repre- computation. Given a type-level functigrof kind Nat — Nat, we

sented as a dependent product type: can certify that it always maps a prime to another prime by build-
. . ing a proofr, for the following proposition, now represented as a
Ilz:nat. prime(z) — prime(f()) dependent product kind:
The resulting certified binary has type IT¢: Nat.Prime(t) — Prime(g(t)).
¥ f:nat — nat. Ilz:nat. prime(z) — prime(f(x)) Essentially, we circumvent the problems with dependent types by

replacing them with dependent kinds and by lifting everything (in
Here the type is not only dependent on values but also on function the proof language) one level up.

applications such ag(z), so verifying a certified binary involves To reason about actual programs, we still have to connect terms
typechecking the proof which in turn requires evaluating the under- i, the type language with those in the computation language. We
lying function application. follow Xi and Pfenning [44] and use singleton types [22] to relate

computation values to type terms. In the previous example, we in-
2.3 The problems with dependent types troduce a singleton type constructant of kind Nat — 2. Given a

type termn of kind Nat, if a computation value has typesnat(n),
The above scheme unfortunately fails to work in the context of thenv denotes the natural number represented by
typed intermediate (or assembly) languages. There are at least four A certified binary for a prime number now contains three parts:
problems with dependent types; the third and fourth are presenta type termn of kind Nat, a proof for the propositio®rime(n),
even in the general context. and a computation value of typ@at(n). We can pack it up into
First, real programs often involve effects such as assignment, an existential package and make it a first-class value with type:
I/O, or non-termination. Effects interact badly with dependent
types. In our previous example, suppose the funcfidoes not ter- In:Nat.3¢: Prime(n).snat(n).
minate on certain inputs; then clearly, typechecking—which could
involve applying f—would become undecidable. It is possible to
use the effect discipline [38] to force types to be dependent on pure
computation only, but this does not work in some typedalculi;
for example, a “pure” term in Girard’3U [18] could still diverge.
Even if applyingf does not involve any effects, we still have .
more serious problems. In a type-preserving compiler, the body 12Ve typenat(n) as long as we can construct a proof fofme ()
of the function/ has to be compiled down to typed low-level lan- ~ Pased on the information from the context. )
guages. A few compilers perform typed CPS conversion [27], but We can alsc_J build certified binaries for programs that involve
in the presence of dependent types, this is still an open problem [5]. €ffects. Returning to our example, assume again fhata func-
Also, typechecking in low-level languages would now require per- tion in the computation language which may not terminate on some
forming the equivalent of-reductions on the low-level (assembly) ~ iNPuts. Suppose we want to certify that if the inputftes a prime,
code; this is awkward and difficult to support cleanly. and_the ca_II t_qf does return, _then the result is also a prime. We can
Third, it is important to maintain a phase distinction between achle\_/e this in two steps. First, we construct a type-Ith_eI function
compile-time typechecking and run-time evaluation. Having de- 9 Of kind Nat — Nat to simulate the behavior of (on all inputs
pendent strong-sum and dependent product types makes it hardef'nere.f does terminate) and show thahas the following type:
to preserve this property. It is also difficult to support first-class
certified binaries.
Finally, it would be nice to support a notion of subset types [9, Here following Figure 1, we us¢ and— to denote the polymor-
32]. A certified binary of typ&iz : nat. prime(z) contains a natural phic and function types for the computation language. The type for
numberv and a proof thab is a prime. However, in some cases, we f says that if it takes an integer of typeat(n) as input and does

Here we used rather than® to emphasize that types and kinds
are no longer dependent on computation terms. Under the erasure
semantics [15], this certified binary is just an integer value of type
snat(n) at run time.

A valuew of the subset type (for prime numbers) would simply

Vn:Nat. snat(n) — snat(g(n))

just wantv to belong to a subset tyde: : nat | prime(z)},i.e, vis not loop forever, then it will return an integer of typeat(g(n)).
a prime number but the proof of this is not together wittnstead, Second, we construct a proef showing thatg always maps a
it can be constructed from the current context. prime to another prime. The certified binary fdmow also con-

tains three parts: the type-level functignthe proofr,, and the
computation functionf itself. We can pack it into an existential
package with type:

g :Nat— Nat. 3p: (IIt: Nat.Prime(t) — Prime(g(t))).
Vn:Nat. snat(n) — snat(g(n))

2.4 Separating the type and computation languages

We solve these problems by making sure that our type language is
never dependent on the computation language. Because the actual
program {.e., the computation term) would have to be compiled
down to assembly code in any case, it is a bad idea to treat it as
part of types. This strong separation immediately gives us back the
phase-distinction property.

Notice this type also contains function applications such(as,
but g is a type-level function which is always strongly normalizing,
so typechecking is still decidable.



2.5 Designing the type language same type language thus also the same proof library; this is possible
) . . ) _ because th@ kind (and the associated types) for each intermediate

We can incorporate propositions and proofs into typeq |nt§ermed|- language is just a regular inductive definition.

ate languages, but designing the actual type language is still a chal- Finally, a type-preserving program transformation often re-

lenge. For decidable typechecking, the type language should nthuires translating the source types (of the sotddnd) into the

depend on the computation language and it must satisfy the usualtarget types (of the targat kind). Existing CPS- and closure-

meta-theoretical properties.g.strong normalization). . conversion algorithms [27, 20, 25] all perform such translation at
But the type language also has to fulfill its usual responsibil-  the meta-level; they have to go through every type term (thus every

ities. First, it must provide a set of types (of kifig) to classify proof term in our setting) during the translation, because any type
the computation terms. A typical compiler intermediate language grm may contain a sub-term which has the sosidénd. In our
supports a large number of basic type constructas (nteger, ar-  framework, the fact that eadh kind is inductively defined means

ray, record, tagged union, and function). These types may changeihat we can internalize and write the type-translation function in-
their forms during compilation, so different intermediate languages gjge our type language itself. This leads to elegant algorithms that

may have different definitions d®; for example, a computation 4o not traverse any proof terms but still preserve typing and proofs
function at the source level may be turned into CPS-style, or later, (see Sections 5-6 for detalils).

to one whose arguments are machine registers [27]. We also want
to support intensional type analysis [21] which is crucial for type- o
checking runtime services [26]. 2.7 Putting it all together

Our solution is to provide a general mechanism of inductive A certifying compiler in our framework will have a series of in-
definitions in our type language and to define each S0@s an  termediate languages, each corresponding to a particular stage in
inductive kind. This was made possible only recently [39] and it the compilation process; all will share the same type language. An
relies on the use of polymorphic kinds. Taking the type language in jntermediate language is now just the type language plus the cor-
Figure 1 as an example, we add kind variatitesnd polymorphic responding computation terms, along with the inductive definition
kindsTIk : u. s, and replacé2 and its associated type constructors  fqr the correspondin@ kind. In the rest of this paper, we first give
with inductive definitions (not shown): a formal definition of our type language (which will be named as

. TL from now on) in Section 3; we then present a sample computa-
(kscm) w = Kind | ... tion language\x in Section 4; we show howy can be CPS- and
(kind) K u=rk1—ko | k| Tkiu k... closure-converted into low-level languages in Sections 5-6; finally,
we discuss related work and then conclude.
(type Tu=t|AX:ik.T| T2 | ARiu.T | T[R]| ...

At the type level, we add kind abstractio : u. 7 and kind appli- 3 The Type Language TL
cationt[]. The kindS2 is now inductively defined as follows (see ) )
Sections 3-4 for more details): Our type language TL resembles the calculus of inductive construc-
tions (Qc) implemented in th&€oq proof assistant [24]. This is a
Inductive Q : Kind :=—: Q—Q—Q great advantage becau€eq is a very mature system and it has
|V @ IIk:Kind. (k— Q) —Q a large set of proof libraries which we can potentially reuse. For

this paper, we decided not to directly usec@s our type language
for three reasons. First, 1€ contains some features designed for

Here—s andV are two of the constructors (6f). The polymorphic program extraction [33] which are not required in our case (where
type Vvt : k. 7 is now written asv[x] (At : . 7); the function type proofs are only used as specifications for the computation terms).
T1 — T2 IS jJUSt— 71 T2. Second, as far as we know, there are still no formal studies covering

Inductive definitions also greatly increase the programming the entire Gc language. Third, for theoretical purposes, we want
power of our type language. We can introduce new data objects t0 understand what are the most essential features for modeling cer-
(e.g, integers, lists) and define primitive recursive functions, all at tified binaries.
the type level; these in turn are used to help model the behaviors of
the computation terms. Motivations  Following the discussion in Section 2.5, we orga-

To have the type language double up as a proof language nize TL into the following three levels:
for higher-order predicate logic, we add dependent product kind

I1t : 1. k2, Which subsumes the arrow kind — 2; we also add (kscm) w =z |IMt:k.u | Tk:u;. uz | Kind
kind-level functions to represent predicates. Thus the type language . L ] )
naturally becomes the calculus of inductive constructions [34]. (Kind) =k | Atz k2 | £[7] [ Az s | K ke

| IIt: k1. ko | Tk u. & | IIz: Ksem. &
| Ind(k:Kind){<} | Elim[x', u](7){R}

(type Tu=t|A:k.T|T1iT2 | Akiu.T | T[R]

2.6 Proof-preserving compilation

Even with a proof system integrated into our intermediate lan- | \z:Ksem. 7 | 7[u] | Ctor (i, &)

guages, we still have to make sure that they can be CPS- and N ’

closure-converted down to low-level languages. These transforma- | Eliml’, 6](7"){7}

tions should preserve proofs represented in the type system,; in fact,qere kind schemaskgcn) classify kind terms while kinds classify

they should not traverse the proofs at all since doing so is impracti- type terms. There are variables at all three levels: kind-schema

cal with large proof libraries. variablesz, kind variablest, and type variables We have an ex-
These challenges are non-trivial but the way we set up our type ternal constankKscm classifying all the kind schemas; essentially,

system makes it easier to solve them. First, because our type lan-TL has an additional level abovescm of which Kscm is the sole

guage does not depend on the computation language, we do noimember.

have the difficulties involved in CPS-converting dependently typed A good way to comprehend TL is to look at its fi@ con-

A-calculi [5].  Second, all our intermediate languages share the strycts: there are three at the kind level and two at the kind-schema



level. We use a few examples to explain why each of them is neces-
sary. Following the tradition, we use arrow termagy, <1 — x2) as

a syntactic sugar for the non-dependdrterms €.9.,I1t: k1. k2 IS
non-dependent if does not occur free iR2).

e KindsIlt : x1.k2 and k1 — ko are used to typecheck the
type-level function)\t : . and its application form- 7».
Assuming$2 andNat are inductive kinds (defined later) and
Prime is a predicate with kind schemlidat — Kind, we
can write a type term such as : Q.t¢ which has kind
Q0 — Q, a type-level arithmetic function such gkis which
has kindNat — Nat — Nat, or the universally quantified
proposition in Section 2.2 which is represented as a kind
IT¢ : Nat.Prime(t) — Prime(g(t)).

Kinds ITk : u. x andu — k are used to typecheck the type-
level kind abstraction\k : . 7 and its application formr[x].

As mentioned in Section 2.5, this is needed to support inten-
sional analysis of quantified types [39]. It can also be used to
define logic connectives and constarets).

Kind
Kind

IIk:Kind. k— k
ITk : Kind. k

True :
False :

True has the polymorphic identity as a proof:

id : True = Mk:Kind. Mt:k.t

but False is not inhabited (this is essentially the consistency
property of TL which we will show later).

Kind IIz : Kscm. & is used to typecheck the type-level kind-
schema abstractionz : Kscm. 7 and its application form
7[u]. This is not in the core calculus of constructions [10].
We use it in the inductive definition o2 (see Section 4)
where both thé&/kscm and3kscm constructors have kinHz :
Ksem. (z— Q) —Q. These two constructors in turn allow
us to typecheck predicate-polymorphic computation terms,
which occur fairly often since the closure-conversion phase
turns all functions with free predicate variables (d2gime)

into predicate-polymorphic ones.

Kind schemadlt: x. u andx — u are used to typecheck the
kind-level type abstractioit: k1. k2 and its application form
k[r]. The predicatePrime has kind schemélat — Kind.

A predicate with kind schemH¢ : Nat. Prime(t) — Kind is
only applicable to prime numbers. We can also defirpa
binary relation:

LT Nat — Nat — Kind

so thatLT ¢; t2 is a proposition asserting that the natural
number represented by is less than that ofs.

Kind schemadlIk : u;.us andu; — us are used to type-
check the kind-level function\k : u.x and its application
form 1 k2. We use it to write higher-order predicates and
logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind — Kind Ak :Kind. (k— False)

The consistency of TL implies that a proposition and its nega-
tion cannot be both inhabited—otherwise applying the proof
of the second to that of the first would yield a proofrafise.

TL also provides a general mechanism of inductive defini-
tions [34]. The termind(k : Kind){<} introduces an inductive
kind k containing a list of constructors whose kinds are speci-
fied by €. Here k must only occur “positively” inside each;

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ: Nat— Nat
plus : Nat— Nat— Nat

At:Nat. ¢
At":Nat. succ ((plus t) ')

plus(zero)
plus(succ t)

ifez : Nat— (IIk:Kind. k — (Nat— k) — k)

ifez(zero) Mk Kind. M\t k. Ma:Nat— k. 1
ifez(succ t) Ak:Kind. At1:k. A2:Nat—k.ta t

le : Nat— Nat — Bool

At:Nat. true
At':Nat. ifez ¢’ Bool false (le t)

le(zero)
le(succ t)

It : Nat— Nat— Bool
It At:Nat. le (succ t)

Cond : Bool — Kind — Kind — Kind

Cond(true) Ak1:Kind. Mk2 :Kind. kq
Cond(false) k1 :Kind. M2 : Kind. ko

Figure 2: Examples of inductive definitions

(see Appendix A for the formal definition of positivity). The term
Ctor (i, ) refers to the-th constructor in an inductive kinel. For
presentation, we will use a more friendly syntax in the rest of this
paper. An inductive kind = Ind(k: Kind){&} will be written as:

Inductive I : Kind :=c¢y : [I/k]k1
‘ Co ¢ [I//C]ffz

I cn : [1/k]kn

We give an explicit name; to each constructor, sg is just an
abbreviation ofCtor (¢, I). For simplicity, the current version of
TL does not include parameterized inductive kinds, but supporting
them is quite straightforward [41, 34].

TL provides two iterators to support primitive recursion on in-
ductive kinds. The small eliminatioBlim[x’, x](7"){7} takes a
type term7’ of inductive kindx’, performs the iterative operation
specified byF (which contains a branch for each constructok9f
and returns a type term of king+'] as the result. The large elimi-
nationElim[x’, u](7){<} takes a type term of inductive kindx’,
performs the iterative operation specified #yyand returns a kind
term of kind schema as the result. These iterators generalize the
Typerec operator used in intensional type analysis [21, 13, 39].

Figure 2 gives a few examples of inductive definitions including
the inductive kindBool andNat and several type-level functions
which we will use in Section 4. The small elimination fiNiat
takes the following formElim[Nat, x](7'){r1;72}. Here,x is a
dependent kind with kind scheniat — Kind; 7’ is the argument
which has kindNat. The term in thezero branch,r;, has kind
k[7']. The term in thesucc branch,r», has kindNat — k[7'] —
k[7']. TL uses the-reduction to perform the iterator operation.
For example, the two-reduction rules foNat work as follows:

Elim[Nat, s](zero){71; 72} ~. 71
Elim[Nat, x](succ 7){r1; 72} ~, 72 7 (Elim[Nat, s](7){m1;=})

The generak-reduction rule is defined formally in Appendix A.
In our examples, we take the liberty of using the pattern-matching



(sort) s = Kind | Kscm | Ext
(var) X u=z|k|t
(ptm) A, B:u=s|X|AX:A. B|AB|IIX:A.B

| Ind(X:Kind){/T}LCtor (i, A)
| Elim[A’, B'|(A){B}

Figure 3: Syntax of the type language TL

syntax (as in ML) to express the iterator operations, but they can be

easily converted back to thgim form.

In Figure 2,plus is a function which calculates the sum of two
natural numbers. The functidfez behaves like a switch statement:
if its argument iszero, it returns a function that selects the first

branch; otherwise, the result takes the second branch and applies A F A: s;

it to the predecessor of the argument. The funcitéoevaluates to
true if its first argument is less than or equal to the second. The
functionlt performs the less-than comparison.

The definition of functionCond, which implements a condi-
tional with result at the kind level, uses large eliminationBwol.
It has the formElim[Bool, u](7){x1; k2 }, wherer is of kind Bool;
both the true and false branches @ndx:) have kind schema.

Formalization =~ We want to give a formal semantics to TL and
then reason about its meta-theoretical properties. But thelfive

constructs have many redundancies, so in the rest of this paper, we

will model TL as a pure type system (PTS) [3] extended with in-
ductive definitions. Intuitively, instead of having a separate syntac-
tical category for each level, we collapse all kind schemasnd
termsk, type termsr, and the external constalitcm into a single
set of pseudotermgptm), denoted asA or B. Similar constructs
can now share typing rules and reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. There is
now only onell construct [IX : A. B), one A-abstraction X :
A. B), and one application formA| B); two iterators for inductive
definitions are also merged into onélin[A’, B'](A){B}). We
useX andY to represent generic variables, but we will still use
k, andz if the class of a variable is clear from the context.

TL has the following PTS specification which we will use to
derive its typing rules:

S = Kind, Kscm, Ext
A = Kind:Kscm, Kscm: Ext
R = (Kind,Kind), (Kscm, Kind), (Ext, Kind)

(Kind, Kscm), (Kscm, Kscm)

HereS contains the set of sorts used to denote universes. We hav
to add the constarfixt to support quantification ovedfscm. Our
names for the sorts reflect the fact we lifted everything one level
up; they are related to other systems via the following table:

Systems Notations
TL Kind Kscm Ext
Werner [41] Set Type Ext

Coq/Cic [24] | Set,Prop Type(0) Type(1)
Barendregt [3] * m| A

The axioms in the setl denote the relationship between different
sorts; an axiom §; : s2” means thaftss classifiess;. The rules in
the setR are used to define well-formdd constructs, from which
we can deduce the set of well-formeddefinitions and applica-
tions. For example, the five rules for TL can be related to the five
IT constructs through the following table:

PTS rule§ptm | IIX:A.B AX:A.B | AB
(Kind, Kind) IIt: k1. Ko M:Kk. T T1 T2
(Kscm, Kind) k:u. Kk Ak:u. T T[K]

(Ext,Kind) | IIz:Ksecm.x | Az:Ksem. 7 | 7[u]
(Kind, Kscm) It k. u M:ik1.Kk2 | K[T]
(Ksem, Ksem) | TTk:ui.us M.k KK

We define a contexA as a list of bindings from variables to pseu-
doterms:

(ctxt)

The typing judgment for the PTS-style TL now takes the faknt-

A : A’ meaning that within contexf\, the pseudotermt is well-
formed and hasA’ as its classifier. We can now write a single
typing rule for all thell constructs:

AX:AF B:so
AFIIX:A B: s

Take the rulgKind, Kscm) as an example. To build a well-formed
term IIX : A. B, which will be a kind schema (because is
Kscm), we need to show that is a well-formed kind andB is

a well-formed kind schema assumitig has kindA. We can also
share the typing rules for all the-definitions and applications:

AX:AFB:B AFTX:A B :s
A+ AX:A.B:TIX:A. B

A=A X:A

(s1,80) ER (PROD)

(FUN)

AFA:TIX:B.A A+ B:B
A+ AB:[B/X]A

The reduction relations can also be shared. TL supports the stan-
dard - andn-reductions (denoted as 3 and~»,) plus the previ-
ously mentioned-reduction (denoted as»,) on inductive objects
(see Appendix A). We use g, >, and>>, to denote the relations
that correspond to the rewriting of subterms using the relatiops

~y, and~~, respectively. We use-» andp> for the unions of the
above relations. We also writeg,, for the reflexive-symmetric-
transitive closure of>.

The complete typing rules for TL and the definitions of all
the reduction relations are given in Appendix A. Following
Werner [41] and Geuvers [16], we have shown that TL satisfies
all the key meta-theoretic properties including subject reduction,
strong normalization, Church-Rosser (and confluence), and consis-
tency of the underlying logic. The detailed proofs for these proper-
ties are given in the companion technical report [37].

(APP)

4 The Computation Language Mgy

®rhe language of computationsy for our high-level certified in-

termediate format uses proofs, constructed in the type language, to
verify propositions which ensure the runtime safety of the program.
Furthermore, in comparison with other higher-order typed calculi,
the types assigned to programs can be more refined, since program
invariants expressible in higher-order predicate logic can be rep-
resented in our type language. These more precise types serve as
more complete specifications of the behavior of program compo-
nents, and thus allow the static verification of more programs.

One approach to presenting a language of computations is to
encode its syntax and semantics in a proof system, with the benefit
of obtaining machine-checkable proofs of its properteg, type
safety. This appears to be even more promising for a system with
a type language like K€, which is more expressive than higher-
order predicate logic: TheIC proofs of some program properties,
embedded as type terms in the program, may not be easily repre-
sentable in meta-logical terms, thus it may be simpler to perform



If[B,A](ff7 X1.€1, Xz.ez) — [A/Xz]ez (R-IF-F)

(exp e =z |n|tt|ff]f]|fixz:A flee |e[A]
[ (X=A, e:A") |openeas (X, x)ine An evaluation contexl encodes the call-by-value discipline:
| (€0, - .. en—1) | sel[A](e,€e’) | e aop e’

E:=e|Ec|vE|E[A|(X=A, E:A)

"1if[A, A Xi. Xo.
| e cope’ [if[4, A'Y(e, Xi.e1, Xa.e2) | open E as (X, x) ine |openvas (X, z)in E

wheren € N | (o, - vi, B, €isa, -, en1) | sel[A](E, )
(fun) f u=dz:Ae|AX:Af | sel[A](v,E) | Eaope|vaopE | Ecope
E|if[A, A'|(E, X1.e1, Xa.
(arith) aop =:=+]... | veop B JiflA, A)( €1, Xo.e2)
(cmp  cop =i=<|... The notationE{e} stands for the term obtained by replacing the
holee in E by e. The single step computation relatesE{e} to
Figure 4: Syntax of the computation language. E{e'} whene — €', and—* is its reflexive transitive closure.

As shown the semantics is standard except for some additional
passing of type terms in ReL and R4F-T/F. However an inspec-
all the reasoning in €. However our exposition of the language tion of the rules shows that types are irrelevant for the evaluation,
TL is focused on its use as a type language, and consequently ithence a type-erasure semantics, in which all type-related operations
does not include all features ofi € We therefore leave this possi- and parameters are erased, would be entirely standard.
bility for future work, and give a standard meta-logical presentation
instead; we address some of the issues related to adequacy in oUj 1  Static semantics
discussion of type safety.

In this section we often use the unqualified “term” to refer to a The static semantics dfy; shows the benefits of using a type lan-
computation term (expression) with syntax defined in Figure 4.  guage as expressive as TL. We can now define the type construc-
Most of the constructs are borrowed from standard higher-order tors of g as constructors of an inductive ki instead of having
typed calculi. To simplify the exposition we only consider con- them built intoAr. As we will show in Section 5, this property is
stants representing natural numbefsig the value representing  crucial for the conversion to CPS, since it makes possible trans-
n € N) and boolean valuest(andff). The term-level abstraction  forming direct-style types to CPS types within the type language.
and application are standard; type abstractions and fixed points are
restricted to function values, with the call-by-value semantics in

Inductive  : Kind :=snat :Nat—

mind and to simplify the CPS and closure conversions. The type | sbool : Bool —

variable bound by a type abstraction, as well as the one bound by |— Q2—-0-0

theopen construct for packages of existential type, can have either |tup  :Nat— (Nat—)—Q
a kind or a kind schema. Dually, the type argument in a type ap- | Vking : I1k:Kind. (k— ) —
plication, and the witness type termin the package construction | Fkina : 1Tk :Kind. (k— Q) —Q
(X =A, e: A’) can be either a type term or a kind term. | Vksem : [1z:Ksem. (z — Q) —Q

The constructs implementing tuple operations, arithmetic, and | ke : Tz :Ksem. (2 — Q) — Q

comparisons have nonstandard static semantics, on which we focu?nformally all well-formed computations have types of kifiglin-

in section 4.1, but their runtime behavior is standard. The branch- cluding singleton types of natural numbenst A and boolean val-
ing construct is parameterized at the type level with a proposition eqq,501 3, as well as function, tuple, polymorphic and existential
(which is dependent on the value of the test term) and its proof; the types. To improve readability we also define the syntactic sugar
proof is passed to the executed branch.

A—B=— AB
Dynamic semantics ~ We present a small step call-by-value op- Vs X:A.B=V, A (AX:A.DB) } wheres ¢ {Kind. K
erational semantics for; in the style of Wright and Felleisen [42]. 3 X:A.B= 3, A(MX:A.B) s € {Kind, Ksem}

The values are defined as . .
and often drop the sogwhens = Kind; e.g.the typevoid, con-

vo=T|tt || f|fixz: A f | (X=A, v:A) | (vo, ... Un_1) taining no values, is defined &#: . ¢ = Vking 2 (At:Q.1).
Using this syntactic sugar we can give a familiar look to many
The reduction relation— is specified by the rules of the formation rules fo\i; expressions and functional values.
(Az:A.e)v — [v/z]e (R-B) Figure 5 contains the inference rules for deriving judgments of the
form A; T' + e : A, which assign typed to the expression in a
(AX:B.f)[4] — [A/X]f (R-TY-5) contextA and a type environmeift defined by
sel[A]((vo, - .. vn—1), M) = v (m <n) (R-sEL) (typeeny TI':u:=-.|Tz:A
open (X'=A, v: A') as (X, x) ine (R-OPEN) We introduce some of the notation used in these rules in the course
— [v/z][A/X]e of the discussion.
(fixx:A. flv — ([fixx:A. f/z]f) v (R-FIX) Rules ENAT, E-TRUE, and EFALSE assign singleton types to
i i numeric and boolean constants. For instance the conshasttype
(fix z:A. f)[A] — ([fixz: A. f/z]f)[A'] (R-TYFIX) succ zero in any valid environment. In rule EAT we use the meta-
mMAn — mFn (R-ADD) function™ to map natural numbers € N to their representations
o as type terms. It is defined inductively By= zero andn+1 =
m<n — tt (m <mn) (R-LT-T) succ 7, SOA + 7 : Nat holds for all validA andn € N.
< < ff (m > n) (R-LT-F) Singleton types play a central role in reflecting properties of
. values in the type language, where we can reason about them con-
if[B, Al(tt, X1.e1, X2.e2) — [A/Xi]ex (R-IF-T) structively. For instance rules EpD and E4T use respectively the



A F Kind : Kscm AFT ok AFT ok

TE-MT = - . -
AF - ok ( ) ATF ol EVAR) AT F tt:sbooltrue  (ETRYE)
AFT ok AFA:Q AFT ok AT ok
TE-EXT el ok B} -
A Txz:A ok ( ) A; T F m:snatn (E-NAT) A; T' = ff: sbool false (E-FALSE)
AFA:Q A;Te:AFE f: A (E-Fix) A; T F e:snat A A; T F € :snat A (E-ADD)
AT E fixz:Af: A A; T F e+ée :snat (plus A A)
AFA:Q ATz AF fi DA (E-FUN) A;T F e:snat A A; T F € :isnat A (E-LT)
AT E Az:de: A— A A;T F e<é :sbool (It A A')
A;FF@liA%A’ A;lFFeQZA (E-APP) fo’r‘alli<n AT Foep: A
A;TEerer: A A;T F (e, ... en—1) (E-TUP)
stup 7 (nth (Ao:i...iAp_1nil))
AF B:s AX:B;TF f: A <X¢A) (E-TFUN)
A;THAX:B.f:VsX:B. A s # Ext A;T Fe:tupA” B A; T - e isnat A
A;THe:V.X:B.A A+ A:B A ATA A (E-se)
d e Vs 2 ——— (s#Ext) (E-TAPP) A; T+ sel[A](e,e') : B A’
A; T F e[4] : [A/X]A
A F B:Bool—Kind A;T I e:sbool A”
AFA:B AP B:s A+ A:BA" A, X1 :Btrue: T F e : A’
AT Fe:[4/X]A (B (EPACO  AFA:Q A Xy Bfalse; T k- ep: 4 (EIF)
AT E(X=4 eA):3.X:BA A; T+ if[B, A](e, X1.e1, Xo.€3): A’
A,F"@HSX/BA/ AF,AI,Q A,FF@A A:BnLA, A'*A/Q
AX:B; Tz [ X/X|AF e A X¢A (E-OPEN) ATFe A (E-conv)
; e:
A; T+ openeas (X, z)ine : A’ (5 # EXt)
Figure 5: Static semantics of the computation language
type termsplus andlt (defined in Section 3) to reflect the semantics on lists of types:
of the term operations into the type level via singleton types. _ ) ) _ )
However, if we could only assign singleton types to computa- Inductive List : Kind :=nil :List .
tion terms, in a decidable type system we would only be able to | cons : 2 — List — List
typecheck terminating programs. We regain expressiveness of the ]
computation language using existential types to hide some of the nth : List—Nat—
too detailed type information. Thus for example one can define the nth nil = At:Nat. void
usual types of all natural numbers and boolean values as nth (cons t1 t2) = At:Nat.ifez ¢ Q t1 (nth t2)
nat : € = Jt:Nat.snat t Thusnth L 7 reduces to the-th element of the list whenn is
bool : 2 = 3¢:Bool. sbool ¢ less than the length df, and tovoid otherwise. We also use the
infix form A::A” = cons A A’. The type of pairs is derivedd x
For any terme with singleton typesnat A the packaget = A, e: A’ = tup 2 (nth (A::A’:il)). Thus for instance;- = (42,7) :
snat t) has typenat. Since in a type-erasure semantics)of snat 42 x snat 7 is a valid judgment.

all types and operations on them are erased, there is no runtime
overhead for the packaging. For eagche N there is a value
of this type denoted b§ = (¢t =7, 7 : snat t). Operations on
terms of typenat are derived from operations on terms of singleton
types of the fornsnat A; for example an addition function of type
nat — nat — nat is defined as the expression

The rules for selection and testing for the less-than relation (the
only comparison we discuss for brevity) refer to the kind té&ffn
with kind schema\at — Nat — Kind. Intuitively, LT represents a
binary relation on kind\at, soLT m 7 is the kind of type terms
representing proofs of < n. LT can be thought of as the param-
eterized inductive kind of proofs constructed from instances of the

add = Ax; : nat. Axa: nat. axiomsvn € N.0 < nt+l andvm,n € N.m <n D m+l < ntl:

open xi as ({1, x1) in open x3 a5 (t2, xy) in Inductive LT : Nat— Nat— Kind
(t=plus t1 t2, Xi +x5:snat t) := ltzs : TIt: Nat. LT zero (succ t)
Rule E-TuP assigns to a tuple a type of the fotmp A B, in | Itss : TT¢: Nat. IT#' : Nat. LT ¢ ¢/ — LT (succ t) (succ t')

which thetup constructor is applied to a typé representing the o ] )
tuple size, and a functio? mapping offsets to the types of the To simplify the presentation of our type language, we allowed in-

tuple components. This function is defined in terms of operations ductive kinds of kind schemKind only. Thus to stay within the
scope of this paper we actually use a Church encodirigldfsee



Appendix C for details); this is sufficient since proof objects are
never analyzed iy, so the full power of elimination is not nec-
essary folLT.

In the component selection construet[A](e, ¢’) the type A
represents aroof that the value of the subscript is less than the
size of the tuplee. In rule ESEL this condition is expressed as
an application of the type terdl'. Due to the consistency of the

logic represented in the type language, only the existence and not

the structure of the proof objeet is important. Since its existence
is ensured statically in a well-formed expressidnyould be elim-
inated in a type-erasure semantics.

The branching construdf[B, A](e, X1.e1, X2.e2) takes a
type termA representing a proof of the proposition encoded as ei-
ther B true or B false, depending on the value ef The proof is
passed to the appropriate branch in its bound type varidbleot
X5). The correspondence between the value ahd the kind of
A is again established through a singleton type. Note that unlike
Xi and Harper [43] we allow imprecise information flow into the
branches by not restricting false to be the negation aB true. In
particular this makes possible the encoding of the usual oblivious
(in proof-passing sens#)using B = At: Bool. True.

4.2 Example: bound check elimination

A simple example of the generation, propagation, and use of proofs
in Ag is a function which computes the sum of the components of
any vector of naturals. Let us first introduce some auxiliary types

and functions. The type assigned to a homogeneous tuple (vector) 3.

of n terms of typeA is Bn-convertible to the fornvec n A for

vec : Nat—=Q—Q
vec = At:Nat. A\t': Q. tup ¢ (nth (repeat t t'))

where
repeat : Nat— 2 — List

repeat zero = A\t': Q. nil
repeat (succ t) = A\t':Q.#"::(repeat t) t

Then we can define a term which sums the elements of a vector

with a given length as follows:

sumVec: Vt:Nat.snat t — vec t nat — nat
= At¢:Nat. An:snat ¢. Av:vec ¢ nat.
(fix loop:nat — nat — nat.
Ai:nat. Asum:nat.
openias (t’,i')in
if[LTOrTrue t' ¢, ItPrf ¢’ ¢]
(i <n,
t1.loop (add i T)
(add sum (sel[t1](v,1"))),
ts.sum))00

where

LTOrTrue : Nat— Nat— Bool — Kind
LTOrTrue = At1:Nat. At2: Nat. At:Bool. Cond ¢ (LT ¢1 t2) True

andItPrf of kind T1¢’ : Nat. IT¢ : Nat. LTOrTrue ¢’ ¢ (It t' t) is a
type term defined in Appendix C.

The comparisoiif < n, used in this example as a loop termina-
tion test, checks whether the indéxs smaller than the vector size
n. Ifitis, the adequacy of the type terinwith respect to the less-
than relation ensures that the type tdtRrf ¢’ ¢ represents a proof
of the corresponding proposition at the type level, nandly’ ¢.
This proof is then bound te, in the first branch of théf, and the
sel construct uses it to verify that theth element ofs exists, thus
avoiding a second test. The type safety\gf (Theorem 1) guaran-

tees that implementations gfl need not check the subscript at run-
time. Since the proofs is ignored in the “else” branchtPrf ¢’ ¢
is defined to reduce to the trivial proof @tue when the value of
is not less than that of.

The usual vector type, which keeps the length packaged with
the content, is

vector : Q—Q = At:Q. 3t :Nat.snat ¢’ x vec t’ ¢.

Now we can write a wrapper function feumVec with the standard
typevector nat — nat; we leave the details to the reader.

4.3 Type safety

The type safety of\y is a corollary of its properties of progress
and subject reduction. A pivoting element in proving progress
(Lemma 4 in Appendix B) is the connection between the existence
of a proof (type) term of kind T m 7, provided by rule ESEL, and

the existence of a (meta-logical) proof of the side conditiof n,
required by rule RseL. Similarly, subject reduction (Lemma 5 in
Appendix B) in the cases of RpD and R+iT-T/F relies on the
adequate representation of addition and comparisgsidsyandlt.

Lemma 1 (Adequacy of the TL representation of arithmetic)
1

2.

Forallm,n € N, plus m 1 =g,,, m+n.
For allm,n € N, It m n =g, trueif and only if m < n.

For allm,n € N, m < n if and only if there exists a typd
suchthat - A: LT m n.

Proof sketch (3) For the forward direction it suffices to observe
that the structure of the meta-logical proofaf < n (in terms

of the above axioms of ordering) can be directly reflected in a type
term of kindLT m n. The inverse direction is shown by examining
the structure of closed type terms of this kind in normal fornil

Theorem 1 (Safety ofAy) If ;- e : A, then eithee —* v and
-+ v : A, orediverges e, for eache’, if e —* €', then there
existse” such that’ — e”).

Proof sketch Follows from Lemmas 4 and 5 (Appendix B).O

Since Gc is more expressive than higher-order predicate logic,
adequacy of the representations of meta-proofs does not hold in
general; in particular, the ability to eliminate inductive kinds irtC
allows analysis of proof derivations to be used in proof construc-
tion, a technique not employed in standard meta-reasoning. This
issue does not arise for first-order proof representationsLlike
(where no constructors have parameters of a function kind), and we
do not expect it to be a concern in practice. In cases when it does
arise, it could be resolved by using the underlying consistent logic
of Cic instead of the meta-logic; for instance in our presentation
the question of adequacy is raised because the operational seman-
tics of A7 is defined in meta-logical terms, but this question would
be moot if \rz and its semantics were defined acc@erms. To
eliminate the interaction with the meta-logic, this approach should
be applied all the way down to the hardware specification (as done
in some PCC system [2]); we plan to pursue this in the future.

5 CPS Conversion

In this section we show how to perform CPS conversion\en
while still preserving proofs represented in the type system. This
stage transforms all unconditional control transfers, including func-
tion invocation and return, to function calls and gives explicit
names to all intermediate computations. The basics of our ap-
proachj.e.the target language and the transformation of types, are



shown in this section. The static semantics of the target languageFor readability, we use the pattern-matching syntax, but it can be

and the transformation of terms are given in Appendix D.
We call the target calculus for this phakg, with syntax:

(val) vu=z|n|tt|ff| (X=A,v:A") ]| (vo, ... Vn_1)
| fix 2/ [X1: A1, ... Xn:An)(z: A). e
(exp e:u=wv[A1, ... A](¥) |letz=vine

| let (X, x) =openvine |let z=sel[A](v,v') ine
|letx=vaopv'ine|letz=vcopv’ ine
| i'F[AA,AAI](’U7 X1.€1, X2.62)

Expressions in\x consist of a series dét bindings followed by a

function application or a conditional branch. There is only one ab-

straction mechanisnfix, which combines type and value abstrac-

tion. Multiple arguments may be passed by packing them in a tuple.
Ak shares the TL type language with;. The types for\x

all have kindQx which, as in\g, is an inductive kind defined

in TL. The Qx kind has all the constructors 6f plus one more

(func). Since functions in CPS do not return values, the function

type constructor of2 x has a different kind:

O — Ok

—»

We use the more conventional syntdx— 1 for — A. The new
constructoffunc forms the types of function values:

func Qr —Qk

Every function value is implicitly associated with a closure envi-
ronment (for all the free variables), so thuc constructor is useful
in the closure-conversion phase (see Section 6).

Typed CPS conversion involves translating both types and com-

easily coded using thelim construct.

K (snat t) = snatt

K (sbool t) = sbool t

K (tl — tz) = func ((K(t1) X Kc(tg))—>J_)

K (tup t1 t2) = tupti (At:Nat.K(tz2 t))

K (VKind k t) = func (VKind k ()\tl k. Kc(t tl)—>J_))
K (Vksem 2t) = func (Vksem 2z (Ak: 2. Ke(t k) —1))
K (EHKind k t) = Ixing k ()\t1:]€. K(t tl))

K (Fksem 2t) = Fksem 2 (Ak:2. K(t k))

At: Q. func (K(t) —1)

The definition ofK is in the spirit of theinterp function of Crary
and Weirich [13]. Howeveinterp cannot be used in defining a sim-
ilar CPS conversion, because its domain does not cover (nor is there
an injection to it from) all types appearing in type annotations. In
Ax these types are in the inductive kifdand can be analyzed by
K. We can now prov& ([A/X]|B) =g, [A/X](K (B)) by first
reducing B to the normal formB’. Clearly,K ([A/X]B) =gy,

K ([A/X]B') and [A/X](K (B")) =an [A/X](K (B)). We
then proveK ([A/X]|B’) =g, [A/X](K (B")) by induction over
the structure of the normal ford’. The complete CPS-conversion
algorithm is given in Appendix D.

6 Closure Conversion

In this section we address the issue of how to make closures explicit
for all the CPS terms in . This stage rewrites all functions so that
they contain no free variables. Any variables that appear free in a
function value are packaged in anvironmentwhich together with

the closed code of the function forncbosure When a function is

putation terms. Existing algorithms [20, 27] require traversing and applied, the closed code and the environment are extracted from
transforming every term in the type language (which would include the closure and then the closed code is called with the environment
all the proofs in our setting). This is impractical because proofs are as an additional parameter. Again, the basics of our approach are

large in size, and transforming them can alter their meanings and
break the sharing among different intermediate languages.

To see the actual problem, let us convert the expression
(X = A, e: B) to CPS, assuming that it has tygél : A’. B. We
useCyp to denote the meta-level translation function for the type
language andCey, for the computation language. Under existing
algorithms, the translation also transforms the witnéss

Kep[(X=A, e:B)] =
Ak: Kyp[3X : A”. B].
Kexple] (Az:Kyp[[A/X]B].
k (X =Kuyp[A], : Cyp[ B]))

Here we CPS-convertand apply it to a continuation, which puts
the result of its evaluation in a package and handles it to the return
continuationk. With proper definition ofCy, and assuming that
Kyp[ X ] = X on all variablesX, we can show that the two types
Kuyp[[A/X]B] and[Kyp[ A]/ X](Kyp[ B]) are equivalent (under
=sn.). Thus the translation preserves typing.

But we do not want to touch the witness so the translation
function should be defined as follows:

Kep[(X=A, e:B)] =
Ak: Kyp[3X: A", B].
Kexple] (Az:Kyp[[A/X]B].
k(X=A4, fEi’Ctyp[[B]D)

To preserve typing, we have to make sure that the two types
Kuwp[[A/X]B] and[A/X](Kyp[ B]) are equivalent. This seems
impossible to achieve iy, is defined at the meta level.

Our solution is to internalize the definition dfy, in our type
language. We repladéy, by a type functiorK of kind 2 — Q.
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shown in this section and more details are given in Appendix E.
Our approach to closure conversion is based on Morrigett

al. [27], who adopt a type-erasure interpretation of polymorphism.

We use the same idea for existential types. The language that we

use for this phase is called- with syntax:

(val) vu=ax|m|tt|ff|fix2'[X1: A1, ... Xn:As](z:A). €
| v[A] | {vo, ... n—1) | (X =A, v: A")
(exp e:x=wvv |letz=vine|letz=sel[A](v,v")ine

|let (X, x)=openvine|letz=vaopv ine
|let z=v copv’ ine|if[B, Al(v, X1.e1, X2.e€2)

Ac is similar to Ak, the main difference being that type applica-
tion and value application are again separate. Type applications
are values in\¢ reflecting the fact that they have no runtime ef-
fect in a type-erasure interpretation. We use the same kind of types
Qx as in\x. We define the transformation of types as a function
Cl:Qx — Qx — Qk, the second argument of which represents the
type of the environment. As in CPS conversion, we wfiteas a

TL function so that the closure-conversion algorithm does not have
to traverse proofs represented in the type system.

Cl (snat t) = A':Qxk.snatt

Cl (sbool t) = M\ :Qgk.sbool t

Cl(t—L) = M:Qr. (' xCl(t) L)—L

Cl (func t) = )\t,IQK.HHZQK.((] (t) t1 ><t1)
Cl(tupti ta) = A :Qg.tupts (An:Nat.Cl (t2 n) t')
Cl (Veina kt) = X Q. Viina k (M1:k.Cl (1) )
Cl (Vksem 2 1) = M :Qk.Vkina 2 (Mk:2.Cl (k) t')
Cl Fkina kt) = X :Qk.Fina b M1:k.Cl (1) 1)
Cl (Fksem 2t) = A :Qk. Fksem 2 (Ak:2.Cl (E k) t)



7 Related Work ture for certified programming and certifying compilation.

Our type system is fairly concise and simple with respect to the

Our type language is a variant of the calculus of constructions [10] number of syntactic constructs, yet it is powerful enough to express
extended with inductive definitions (with both small and large elim-  all the propositions and proofs in the higher-order predicate logic
ination) [34, 41]. We omitted parameterized inductive kinds and (extended with induction principles). In the future, we would like
dependent large elimination to simplify our presentation, however, to use our type system to express advanced program invariants such
all our meta-theoretic proofs carry over to a language that includes as those involved in low-level mutable recursive data structures.
them. We support)-reduction in our language while the official Our type language is not designed around any particular pro-
Coq system does not. The proofs for the properties of TL are gramming language. We can use it to typecheck as many different
adapted from Werner [41] and Geuvers [16]; the main difference computation languages as we like; all we need is to define the cor-
is that our language has kind-schema variables and a new productesponding? kind as an inductive definitions. We hope to evolve
formation rule(Ext, Kind) which are not in Werner's system. our framework into a realistic typed common intermediate format.

The Coq proof assistant provides support for extracting pro-
grams from proofs [34]. It separates propositions and sets into
two distinct universe®rop and Set. We do not distinguish be-

tween them because we are not aiming to extract programs fromwe would like to thank Benjamin Werner for helping us understand
our proofs, instead, we are using proofs as specifications for our the intricacies in the strong normalization proof for the core calcu-

Acknowledgment

computation terms. In fact, the logic in our type language does not |ys of inductive constructions.

have to be constructive; there is no problem with adding classical
reasoning to our proof system.

Burstall and McKinna [6] proposed the notion of deliverables,
which is essentially the same as our notion of certified binaries. 1]
They use dependent strong sum to model each deliverable and give
its categorical semantics. Their work does not support programs
with effects and has all the problems mentioned in Section 2.3.

Xi and Pfenning’s DML [44] is the first language that nicely A
combines dependent types with programs that may involve effects.
Our ideas of using singleton types and lifting the level of the proof 3]
language are directly inspired by their work. Xi's system, however,
does not support arbitrary propositions and explicit proofs. It also
does not define th& kind as an inductive definition so it is un- [4]

clear how it interacts with intensional type analysis [39] and how it
preserves proofs during compilation.

We have discussed the relationship between our work and those
on PCC, typed assembly languages, and intensional type analysis
in Section 1. Inductive definitions subsume and generalize earlier
systems on intensional type analysis [21, 13, 39]; the type-analysis
construct in the computation language can be eliminated using the (6]
technique proposed by Craey al.[15].

Concurrent with our work, Crary and Vanderwaart [11] recently
proposed a system called LTT which also aims at adding explicit
proofs into typed intermediate languages. LTT uses Linear LF [7]
as its proof language. It shares some similarities with our system
in that both are using singleton types [44] to circumvent the prob-
lems of dependent types. However, since LF does not support the
Elim construct on inductive definitions, it is unclear how LTT can
support intensional type analysis and type-level primitive recursive
functions [14]. In fact, to defin€ as an inductive kind [39], LTT
would have to add proof-kind variables and proof-kind polymor-
phism, which could significantly complicate the meta-theory of its
proof language. LTT requires different type languages for different [11)
intermediate languages; it is unclear whether it can preserve proofs
during CPS and closure conversion. The power of linear reasoning
in LTT is desirable for tracking ephemeral properties that hold only [12]
for certain program states; we are working on adding such support
into our framework.

(5]

(7]

(8]

(9]

[10]

[13]
8 Conclusions

We presented a general framework for explicitly representing [14]
propositions and proofs in typed intermediate or assembly lan-
guages. We showed how to integrate an entire proof system into
our type language and how to perform CPS and closure conversion[15]
while still preserving proofs represented in the type system. Our
work is a first step toward the goal of building realistic infrastruc-
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A Formalization of TL (Details)

In this appendix we supply the rest of the details involved in the
formalization of our type language TL. Most of our notations and
definitions are directly borrowed from Werner [41]. In addition to
the symbols defined in the syntax, we will also Us€¢o denote
general termsy” and Z for variables, and for inductive defini-
tions.

In order to ensure that the interpretation of inductive definitions
remains consistent, and they can be interpreted as terms closed un-
der their introduction rules, we impogesitivity constraint®n the
constructors of an inductive definition. The positivity constraints
are defined in Definition 2 and 3.

Definition 2 A term A is strictly positive inX if A is eitherX or
IIY : B. A’, whereA' is strictly positive inX, X does not occur
freeinB,andX #Y.

Definition 3 A term C is a well-formed constructor kindor X
(written wfc . (C)) if it has one of the following forms:

1. X;

2. IIY : B.C’, whereY # X, X is not free inB, andC’ is a
well-formed constructor kind foX; or

3. A— C’, whereA is strictly positive inX andC’ is a well-
formed constructor kind foX .

Note that in the definition ofufc  (C'), the second clause covers
the case wher€' is of the formA — C’, and X does not occur
free in A. Therefore, we only allow the occurrence &fin the
non-dependent case.

In the rest of this paper we often write the well-formed con-

structor kind forX asH?q: B. X. We also denote terms that are
strictly positive inX by ITY : B. X, whereX is not free inB.

Definition 4 LetC be a well-formed constructor kind féf. Then
C'is of the formIlY : A. X. If all the Y's aret’s, that is,C is of

the formIIi: A. X, then we say thaf’ is a small constructor kind

(or just small constructor when there is no ambiguity) and denote it
assmall(C).

Our inductive definitions reside idind, whereas a small construc-
tor does not make universal quantification over objects of type
Kind. Therefore, an inductive definition with small constructors
is a predicative definition. While dealing with impredicative induc-
tive definitions, we must forbid projections on universes equal to
or bigger than the one inhabited by the definition [17]. In particu-
lar, we restrict large elimination to inductive definitions with only
small constructors.

Next, we define the set of reductions on our terms. The defi-
nition of 8- andn-reduction is standard. Thereduction defines
primitive recursion over inductive objects.



Definition 5 Let C' be a well-formed constructor kind foX and
let A’, B’, andI be pseudoterms. We defidey ; 5/ (C, A’) re-
cursively based on the structure@f

q)X,I,B’ X7 A,) déf

oAy

Al
AY:B.®x  p(C,AY)

Definition 6 The reduction relations on our terms are defined as:

(AMX:A.B) A’ ~pg [A'/X]B

MX:A (BX) ~, B, ifX¢FV(B)
Elim[I, A”](Ctor (i, I) A){B} ~. (®x.r1,5(Ci,Bs)) A

I = Ind(X :Kind){C}
here ~

W Ay L 1. (Elim[I, A”)(Y){B})
By >3, >, andr>, we denote the relations that correspond to the
rewriting of subterms using the relatiorsg, ~,, and~», respec-
tively. We use~» andr> for the unions of the above relations. We
also write=g,, for the reflexive-symmetric-transitive closurersf

Let us examine thereduction in detail. IfElim[I, A”](A){ B},

s

the termA of type I is being analyzed. The sequenBecontains
the set of branches fdtlim, one for each constructor @f In the
case wher; = X, which implies that4 is of the formCtor (4, I),

the Elim just selects thé3; branch:

Elim[I, A”](Ctor (i, 1)){B} ~», Bi
In the case whei; = IIY : B. X where X does not occur free

in B, thenA must be in the forn€Ctor (¢, I) A with A; of type B;.
None of the arguments are recursive. Therefore Bive should

just select theB; branch and pass the constructor arguments to it.

Accordingly, the reduction yields (by expanding thenacro):

Elim[1, A”](Ctor (i, I) A){B} ~», B; A

The recursive case is the most interesting. For simplicity assume

that thei-th constructor has the foriiiY : 5. X — IIY”: B”. X.
Therefore, A is of the formCtor (i, I) A with A; being the re-
cursive component of typEY : B’. X, andA, . .. A,, being non-
recursive. The reduction rule then yields:

Elim[I, A”](Ctor (i, I) A){B}
~, Bi A1 (\Y :B".Elim[I, A"](A1 Y){B}) As... A,

TheElim construct selects thB; branch and passes the arguments
Ai,..., Ay, and the result of recursively processidg. In the
general case, it would process each recursive argument.
Definition 7 defines th& macro which represents the type of
the largeElim branches. Definition 8 defines tijemacro which

represents the type of the small elimination branches. The different

cases follow from the-reduction rule in Definition 6.

Definition 7 Let C' be a well-formed constructor kind foX and
let A’ and I be two terms. We defin@ x ;(C, A’) recursively
based on the structure 6f:

def

\I’XJ(X,AI) = A
My :B.Ux (C', A

Ux (OY:B.C',A) =
EI/X]A—[A/X]A—Tx 1 (C", A)

Ux (A—C' A =

whereX is not free inB and A is strictly positive inX.
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Definition 8 Let C' be a well-formed constructor kind foX and
let A’, I, and B’ be terms. We definéx ;(C, A’, B') recursively
based on the structure 6f:

Cx1(X, A, B) 4B
Cxs(IY:B.C', A, B') Y :B.¢x(C',A',B'Y)
(x (MY:B.X - C',A,B) ¥

NZ:(IY:B.1).1IY : B. (A" (ZY)) — (x.1(C", A, B’ Z)

whereX is not free inB and 5.

Definition 9 We useA |, to denote that the environment does not
contain anyz variables.

Here are the complete typing rules for TL. The three weakening
rules make sure that all variables are bound to the right classes of
terms in the context. There are no separate context-formation rules;
a contextA is well-formed if we can derive the judgmerX +

Kind : Kscm (notice we can only add new variables to the context
via the weakening rules).

- F Kind : Kscm (Ax1)
- Ksem @ Ext (Ax2)
AFC:Kind AFA:B t¢D A
C : Kin ¢ Dom(A) (WEAK1)
At:CFHA:B
AF C:K AFA:B k¢D A
C : Kscm ¢ Dom(A) (WEAK2)
Ak:CFHA:B
AFC:Ext A+ A:B D A
C: Ex z ¢ Dom(A) (WEAK3)
Az:CFHA:B
A F Kind : Kscm X € Dom(A)
(VAR)
AF X:AX)
AX:AF B:B AFIIX:A.B :s (FUN)
AFMX:AB:IIX:A.B
AFA:TIX:B.A AFB:B (APP)
A+ AB:[B/X]A
AFA:s1 AJX:AF B:sy (s1,82)€ER (PROD)
AFIIX:A B: so
foralli A, X:Kind F C;: Kind  wfey (Ch) (IND)
= IND
A F Ind(X :Kind){C} : Kind
A+ I :Kind wherel = Ind(X :Kind){C'}
(con)
A+ Ctor(i,1) : [I/X]C;
AFA:T AF A :1— Kind
foralli A& B;:(x,1(Ci, A, Ctor (i, 1))
— (ELIM)
A + Elim[I, A'](A){B} :_‘A’ A
wherel = Ind(X :Kind){C'}
AR AT Al = A :Ksem
for alli small(C;) A+ B;:Ux (Ci,A) (L-ELIM)

A+ Elim[I, A')(A){B} : A’
wherel = Ind(X :Kind){C'}



A+ A:B
AF B:s

Ak A:B

Next we state the formal properties of TL. We omit the proofs
due to lack of space and refer the reader to the companion technica
report [37] for the details. Our proofs are mostly adapted from
Werner [41] and Geuvers [16], but we have to add support for kind-
schema variables which is not part of Werner’s system.

AFB:s B =g,, B’ (conv)

Theorem 10 (Subject reduction) If the judgmentA - A : Bis
derivable, and ifA > A’ andA > A’ then the following are
derivable:A - A’ : BandA’' - A: B.

Theorem 11 (Strong normalization) All well typed terms are
strongly normalizing.

Theorem 12 (Church-Rosser)Let A - A: BandA - A’ : B
be two derivable judgments. ¥ =g, A’, and if A and A’ are in
normal form, thetd = A’.

Theorem 13 (Consistency of the logic)There exists no term
for which- - A : False.

B Properties of Ay

The proof of the following lemma is by induction on the structure
of typing derivations.

Lemma2 If A, X:B;T F e: A’ andA - A: B, then
AT R [A/X]e: [A/ XA,

We also need a proposition guaranteeing that equivalence of con-
structor applications implies equivalence of their arguments; it is a
corollary of the confluence of TL (Theorem 12).

Lemma 3 If Ctor (i, I) A =g, Ctor (i',1') A, theni = ' and

I =B I andff =B A,

Lemma 4 (Progress) If -;-F e : A, then eithek is a value, or
there existg’ such thak — ¢'.

Proof sketch By standard techniques [42] using induction on
computation terms. Due to the transitivity-ef;,,, any derivation of

A; T' F e: A can be converted to a standard form in which there
is an application of rule EzONV at its root, whose first premise
ends with an instance of a rule other tharcBav, all of whose
term derivation premises are in standard form.

We omit the proofs for the cases of standard constructs and the
induction on the structure of evaluation contexts. The interesting
case is that of the dependently typetl

If e = sel[A’](v,v"), by inspection of the typing rules the
derivation of-;-+ e : A in standard form must have an instance of
rule E-SEL in the premise of its root. Hence the subderivatiorfor
must assign to it a tuple type, and the whole derivation has the form

D D’ £
sk vitup Ag A” R v isnat Ay - A LT Ay A,
sk osel[A'](v,0)) + A7 Ay
sk osel[A'](v,0") : A

where A =3,, A” A;. By inspection of the typing rules, rules
other than E€conv assign to all values types which are applications
of constructors of2. Since the derivatio® is in standard form, it
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ends with an EcoNv, in the premise of which another rule assigns
v atypeBni-equivalent taup 4> A”. Then by Lemma 3 this type
must be an application dfup, and again by inspection the only
rule which applies is Erup, which impliesv = (v, ... vn_1),
Iand the derivatior® must have the form

D;
e v 0

Vi<n e
12
ok {vo, ... vpo1) s tup B AY

Also by Lemma 342 =g, n. Similarly the only rule assigning
to a value a type convertible to that in the conclusiorDéfis E-
NAT, henceA; =g, m for somem € N, andv’ = m. Then,
by adequacy oET (Lemma 1(3)), the conclusion éfimplies that
m < n. Hence by rule RSEL e — v,. O

Lemma 5 (Subject Reduction) If -;-- e : A ande — ¢, then
kel Al

Proof sketch Since evaluation contexts bind no variables, it suf-
fices to prove subject reduction fer and a standard term substi-
tution lemma. We show only some cases of redexes involséhg
andif.

e The derivation fore = sel[A’]({vo, ... vn—1),m) in stan-
dard form has the shape
. Dy
vi<n b v AL D
5 (O) stupm AT - i snat m £
ook () rtup As A” R miisnat Ay - B AT LT Ay Ao
sk sel[A]({vo, .. vp—1),m) : A” Ay
-k sell[A']((vo, ... vn—1),m) : A
whereA =g,, A" A1, A =3, A", andA4; =g,, m. Since

e — ¢’ only by rule RsEL, we havem < n ande’ = v,,,, SO
from D,,, and AY m =g, A" M =g, A" A1 =, Awe
obtain a derivation of;-- e’ : A.

In the case off the standard derivatioP of
o if[B, A'|(tt, X1.e1, Xo.e2): A

ends with an instance of EoNv, preceded by an instance of
E-IF. Using the notation from Figure 5, from the premises
of this rule it follows that we have a derivatiah of - +

A" : B A", andA"” =g, true (since rule E¥RUE assigns
sbool true to tt), hence we have - A’ : B true by CONV.

By Lemma 2 from& and the derivation ofX; : B true; -

e1 : A (provided as another premise), sinke is not free in

A (ensured by the premise- A : ©2) we obtain a derivation
of -+ [A"/X1]er : A O

C Example of Proof Construction

Here we show the type teritPrf which generates the proof of the
propositionLTOrTrue ¢’ ¢ (It ¢’ t), needed in thaumVec exam-

ple in Section 4. We first present a Church encoding of the kind
termLT and its “constructorsltzs andltss.

LT : Nat— Nat—Kind
LT = At:Nat. \t': Nat.
IIR:Nat— Nat— Kind.
(T1t: Nat. R zero (succ t)) —
(TT¢:Nat. 1Tt :Nat. R t ' — R (succ t) (succ t')) —
Rtt



Itzs : IT¢: Nat. LT zero (succ t)

Itzs = At:Nat. AR:Nat — Nat— Kind.
Az: (IIt: Nat. R zero (succ t)).
As:(II¢:Nat. ITIt" : Nat. R ¢ t' — R (succ ¢) (succ t')).
zt

Itss : TT¢:Nat.TI¢': Nat. LT ¢ ' — LT (succ t) (succ t')

Itss = At:Nat. \t':Nat. A\p: LT ¢ '. A\R:Nat — Nat — Kind.
Az:(ITt: Nat. R zero (succ t)).
As:(ITt:Nat. IT1#' :Nat. R ¢t t' — R (succ t) (succ t')).
stt' (pRzs)

Next we define dependent conditionals on kihids andBool.

dep_ifez : IIt: Nat. ITk: Nat — Kind.
k zero— (11" :Nat. k (succ t')) —k ¢
= Ak:Nat— Kind. Aty : k zero.
Ato: (TT¢ :Nat. k (succ t')). 1
dep_ifez (succ t) = A\k:Nat—Kind. A\t : k zero.
Ato: (IT¢' :Nat. k (succ t')).ta t

dep_ifez zero

dep.if : IT¢t: Bool. I1k: Bool — Kind. k true—k false —k ¢
dep_if true = Ak:Bool— Kind. Aty : k true. Ato: k false. t1
dep_if false = Ak:Bool — Kind. Aty : k true. A2 : k false. t2

Finally, some abbreviations, and then the proof generator itself.

LTcond : Nat— Nat— Kind
LTcond = At':Nat. At:Nat. LTOrTrue ¢’ ¢ (It ¢’ ¢)

LTimp : Nat— Nat— Bool — Kind
LTimp = At’:Nat. A\t:Nat. A\t” : Bool.
LTOrTrue t' ¢t t" —LTOrTrue (succ t') (succ t) t”

[tPrf : II¢': Nat. IT¢: Nat. LTcond ¢ ¢
[tPrf = A’ :Nat. \t:Nat.
Elim[Nat, At} : Nat. IT¢1 : Nat. LTcond ¢} ¢1](¢'){
At1:Nat. dep_ifez t1 (LTcond zero) id ltzs;
Ath:Nat. Mt p: (TITt1 : Nat. LTcond ¢} t1). At1:Nat.

dep_ifez t;

(LTcond (succ t1))

id

(Mt1:Nat. dep_if (It ] t1)
(LTimp ¢t} ¢1)
(Itss th t1)
(id True)
(te t1))}

D CPS Conversion (Details)

Ak (herez’ is a fresh variable):

Ar:A.e=fixa'[|(z: A).e
vv' =v[](v')
AX1:A. ... AX,:A,. \x:A. e
=fix 2/ [X1: A1, ... Xn: Ay (z:A). e

In the static semantics ofx we use two forms of judgments.
As in Mg, the judgmentA; T' Fx v : Aindicates that the value
is well formed and of typel in the type and value contextsandI’
respectively. Moreover); ' - e indicates that the expression
e is well formed inA andT". In both forms of judgments, we omit
the subscript fronfr x when it can be deduced from the context.

The static semantics ofx is specified by the following forma-
tion rules (we omit the rules for environment formation, variables,
constants, tuples, packages, and type conversion on values, which
are the same as ing):

forallie{l...n} AF A :s;
A X1:A XA B ACQ
A XA XAy T’ A A F e

(K-FI1x)
AT F fixa' [ X Ar, . X Ap)(xA)er A
where
A" =func (Vs, X1:41.... Vs, Xp: Ap. A—1)
forallie{l...n} AF A :B;
A; TR func (Vs, X1:B1... . Vs, Xn:Brn. A—1)
AT F v [A/Xa]. .. [An/X,]A (K-APP)
A; T F v'[Ag, .. AR (v)
A;THo: A AT z:AF e (K-VAL)
A;T F letx=vine
A;T Fo:tup A” B A;T F o csnat A
AR A:LTA A A;T,z:BA e (K-SEL)
A; T F letx=sel[A](v,v") ine
A;THow:3,Y:B. A
A X:B;Tz:[X/Y]AF e <X¢A) (K-OPEN)
A;T F let (X, z)=openvine \$ 7 Ext
A;T - v:snat A A;T F v :snat A’
A; Tyz:snat (plus A A') e (K-ADD)

AT F letz=v+v ine

A;T F v:isnat A A;T F o :snat A
A; T, z:sbool (ItAA) F e (K-LT)

We start by defining a version ofy using type-annotated terms.

By f ande we denote the terms without annotations. Type annota-
tions allow us to present the CPS transformation based on syntactic
instead of typing derivations.

A;T F letz=v<vine

A + B : Bool—Kind AFA:BA
A; T F v:sbool A’

€o, ... en—1) | sel[A](e,€’) | e aop €’ count the presence @iinc, the static semantics forx is a natural

cop e’ | if[A, A'](e, X1.e1, Xa.€2) consequence of the static semanticsXar.

(fur) f = FA The definition of the CPS transformation for computation terms
) of Ay to computation terms ok is given in Figure 6, where we

use the abbreviations introduced in Section 5.

(exp) ¢ e gh A, X1:Btrue; T' F e A, Xo:B false; T' - es (K-1F)
e =z |m|tt|ff] f|fixz:A flee |e[4] A; T f[B, A](v, Xi.e1, Xa.e2)
[(X=A, e:A") |openeas (X, z)ine Except for the rules Krix and K-APp, which must take into ac-
|
|

o~

fo=dr:Ae| AX:A f
The target languaggx of the CPS conversion stage has been de-

fined in Section 5. We use the following syntactic sugar to de- FroPosition 14 (Type Correctn%is of CPS Conversion)
note non-recursive function definitions and value applications in If -i"Fr e : A, then- b Keg[e®] : func (Ke(A) —1).
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Knal[(Az: A. eP)A7B] = Mrarg : K(A) x Ke(B).
let x = seI[ItPrf6 5] (Targ, 0) in
let k= seI[ItPrfl 2] (zarg, 1) in
Kexp[e®] k
Knal(AX:A. fB)YX4-B] =
AX:A Mk:Ke(B). k (Kna[ f2])

Kexp[ 2] = Ak:Kq(A). k (€)
for 6 one 0f$A —snat 1 ttsbool true ffsbool false
Kexo f1] = Ak:Ke(A). k (’Cfval[[f )ﬂ

Kexpl (fix z: A. f4)4] =
Ak: Ko(A). k (fix z[] (k: Ke(A)). k (Kna[ f41))
2MB] = Ak:Ke(B).
Kepler* 2] (Az1:K(A — B).
Kexple2? ] (Az2:K(A).
z1 (22,k)))
= Ak:K¢(B A).
Kexp[e?s &' B] (Az:K(V,s A’ B).
z[A](k))
Kool (€, - €n21") "] = Mk Ke(A).
ICexp[[eO I (Azo:K(Ao).

Kexpl (277

’Cexp[[(evs A B[A])B A]]

ICexp[[e " ! (/\lin_l : K(An_l).
k<3;‘07 . a;n_1>))
Kexp[[sel[A](elt”p A" B7 62snat A/)B A/H —
Ak:Ke(B A'). Kexp[e1™ A" B] (Az1:K(tup A” B).
Kexp[e2™t 4] (Az2:K(snat A').
let " =sel[A](z1,z2) in k z))
’Cexp[ <X:A, €[A/X]B ZB>A/]] =
Mk:Ko(A). Kexp[ €A/ XIB] (Az:K([A/X]B).
k(X=A, z:K(B)))
Kexpl (open e 3 YA B 55 (X, z) inex™?] =
Mk:Ke(A). Kexple1 Y4 B (Az1:K(3,Y : A" B).
let (X, x)=open z1 in Kexp[e2] k)
’Cexp[[ (elsnat A +€25nat A/)snat (plus A A/)]] —

Xk:Kc(snat (plus A A%)). Kexp[e1*™™ 4] (Az1:K(snat A).
Kexpl €25 A/ﬂ (Ax2:K(snat A').
let z' =21+ 22 inkz'))

’Cexp[[ (elsnat A < ernat A/)sbool (It A A’)]] _
Ak: Ke(sbool (It A A')). Kex[er™™ AT (Az1 :K(snat A).
Kexp[ 2"t 4] (Az2:K(snat A’).
let ' =21 <z2ink 2'))
Kol f[B, A](e2° 4", X1. 1Y, Xo. 22 )] =
Ak:Ko(A'). Kexp[ €2 A" ] (Az:K(sbool A”).
if[B, A](z, X1. Kep[er™ ]k, Xa. Kexp[e2 ] k)

Figure 6: CPS conversion: froky to Ak

E Closure Conversion (Details)

Cval[v] v, for v one ofz, m, tt, ff
Cval[[<'UO; cee Un—l)ﬂ <Cval[[’U0ﬂ Cval[[Un—l]]>
Cual[(X=A, v:B)] = (X=A4, Cva|[[v]]:C| (B) L)
Cualfix '[X1: A1, ... Xn: Ap](z: A).e] =

(X'=Aenv, (Veode[Y1] .. [Yim], Venv) : Ax)

where
Ax = A/X x X
A/X = V51X1 Al VSTLX A (X x Cl (A) J_) — 1

{zg0, .. w?’al}:me{w,x’}

(P, vy =
FTV(fix 2'[X1: A1, ... Xpn: An](z: A). €)
Aeny = Cl (tup & (nth (A'gz:... A'x_qzmil))) L
Venv = <1‘0 .. .l'k71>
Veode = fix vax[Y1:B'1, ... Yo : B'r, X1: Ay, ..
(Zarg : Aenv X Cl (4) L1).
let Zeny = sel[ItPrf 0 2] (€arg, 0) in
let 2 =sel[ItPrf T 2](arg, 1) in
let ' = (X = Acnv,
(vax[Y1] ... [Yin], Tenv) : Ax) in
let zo = sel[ItPrf 0 k] (zenv, 0) in ...
let x;_1 =sel[ltPrf F—1 E] (xenv,m

CXn Ay

) in Cexpl €]

n](v2)] = let (Xenv, Targ) =open Cvav1] in
let Zeode = sel[ltPrf 0 2](Zarg, 0) in
let Teny = sel[ltPrf 1 5] (Targ, 1) in
Teode[A1] - - . [An] (Tenv, Cva v2])
Cexpllet z=vin €] = let z=Cual[v] in Cexp[ €]
Cexpl[let x =sel[A](v,v") ine] =
let z =sel[A](Cval[v], Cval[v']) in Cexpl€]
Cexpllet (X, z) =openvine] =
let (X, ) =open Cva[v] in Cexpl €]
= let z =Cval[v1] + Cvav2] in Cexp[ €]
Cexpllet z=vi<vaine] =letz=Cualfvi] <Cuafvz2] in Cexple]
Cexp[if[B, A](v, X1.€1, X2.e2)] =
if[B, A](Cva|[[1]]], X1. Cexp[[elﬂ, X2. Cexp[[€2]])

Cexp[[’U1 [A1, . A

Cexpllet z=v1 +v2 in €]

Figure 7: Closure conversion: froly to Ac.

value application in\c are standard.

foralli<n A s
S X1:AL XA E ACQ

-,X1:A1.,,,Xn:An; ~,x’:B,x:A e (C-FIX)
AT F fixa' [X1: Ay, o Xt Anl(z: A).e
whereB =V, X1:A41....Vs, Xpn: An. A—1
AT Fo:VsX:A B AFA:A
(C-TAPP)
A; T F w[A]: [A/X]B
AT FH v A—L AT v A (C-aPP)
A; I+ U1 V2

The definition of the closure transformation for the computation

terms of\ i is given in Figure 7.

The main difference in the static semantics betwegnand\¢ is

that in the latter the body of a function must not contain free type Proposition 15 (Type Correctness of Closure Conversion)
or term variables. This is formalized in the rulerCx below. The If -k v: A then ¢ Cuav] : ClI (4) L

rules C1aPP and CAPP corresponding to the separate type and
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