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Abstract

A certified binaryis a value together with a proof that the value
satisfies a given specification. Existing compilers that generate cer-
tified code have focused on simple memory and control-flow safety
rather than more advanced properties. In this paper, we present
a general framework for explicitly representing complex proposi-
tions and proofs in typed intermediate and assembly languages.
The new framework allows us to reason about certified programs
that involve effects while still maintaining decidable typechecking.
We show how to integrate an entire proof system (the calculus of
inductive constructions) into a compiler intermediate language and
how the intermediate language can undergo complex transforma-
tions (CPS and closure conversion) while preserving proofs rep-
resented in the type system. Our work provides a foundation for
the process of automatically generating certified binaries in a type-
theoretic framework.

1 Introduction

Proof-carrying code (PCC), as pioneered by Necula and Lee [29,
28], allows a code producer to provide a machine-language pro-
gram to a host, along with a formal proof of its safety. The proof
can be mechanically checked by the host; the producer need not be
trusted because a valid proof is incontrovertible evidence of safety.

The PCC framework is general because it can be applied to cer-
tify arbitrary data objects with complex specifications [31, 1]. For
example, the Foundational PCC system [2] can certify any property
expressible in Church’s higher-order logic. Harperet al. [19, 6]
call all these proof-carrying constructs certified binaries (or deliv-
erables [6]). Acertified binaryis a value (which can be a function,
a data structure, or a combination of both) together with a proof
that the value satisfies a given specification.

Unfortunately, little is known on how to construct or generate
certified binaries. Existing certifying compilers [30, 8] have fo-
cused on simple memory and control-flow safety only. Typed inter-
mediate languages [21] and typed assembly languages [27] are ef-
fective techniques for automatically generating certified code; how-
ever, none of these type systems can rival the expressiveness of the
actual higher-order logic as used in some PCC systems [2].

In this paper, we present a type-theoretic framework for con-
structing, composing, and reasoning about certified binaries. Our
plan is to use theformulae-as-typesprinciple [23] to represent
propositions and proofs in a general type system, and then to in-
vestigate their relationship with compiler intermediate and assem-
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bly languages. We show how to integrate an entire proof system
(the calculus of inductive constructions [34, 10]) into an intermedi-
ate language, and how to define complex transformations (CPS and
closure conversion) of programs in this language so that they pre-
serve proofs represented in the type system. Our paper builds upon
a large body of previous work in the logic and theorem-proving
community (see Barendregtet al. [4, 3] for a good summary), and
makes the following new contributions:

• We show how to design new typed intermediate languages
that are capable of representing and manipulating proposi-
tions and proofs. In particular, we show how to maintain
decidability of typechecking when reasoning about certified
programs that involve effects. This is different from the work
done in the logic community which focuses on strongly nor-
malizing (primitive recursive) programs.

• We maintain a phase distinction between compile-time type-
checking and run-time evaluation. This property is often lost
in the presence of dependent types (which are necessary for
representing proofs in predicate logic). We achieve this by
never having the type language (see Section 3) dependent on
the computation language (see Section 4). Proofs are instead
always represented at the type level using dependent kinds.

• We show how to use propositions to express program invari-
ants and how to use proofs to serve as static capabilities. Fol-
lowing Xi and Pfenning [44], we use singleton types [22]
to support the necessary interaction between the type and
computation languages. We can assign an accurate type to
unchecked vector (or array) access (see Section 4.2). Xi and
Pfenning [44] can achieve the same using constraint check-
ing, but their system does not support arbitrary propositions
and (explicit) proofs, so it is less general than ours.

• We use a single type language to typecheck different com-
piler intermediate languages. This is crucial because it is im-
practical to have separate proof libraries for each intermedi-
ate language. We achieve this by using inductive definitions
to define all types used to classify computation terms. This in
turn nicely fits our work on (fully reflexive) intensional type
analysis [39] into a single system.

• We show how to perform CPS and closure conversion on our
intermediate languages while still preserving proofs repre-
sented in the type system. Existing algorithms [27, 20, 25, 5]
all require that the transformation be performed on the entire
type language. This is impractical because proofs are large
in size; transforming them can alter their meanings and break
the sharing among different languages. We present new tech-
niques that completely solve these problems (Sections 5–6).



• Our type language is a variant of the calculus of inductive
constructions [34, 10]. Following Werner [41], we give rig-
orous proofs for its meta-theoretic properties (subject reduc-
tion, strong normalization, confluence, and consistency of
the underlying logic). We also give the soundness proof for
our sample computation language. See Sections 3–4, the ap-
pendix, and the companion technical report [37] for details.

As far as we know, our work is the first comprehensive study on
how to incorporate higher-order predicate logic (with inductive
terms and predicates) into typed intermediate languages. Our re-
sults are significant because they open up many new exciting pos-
sibilities in the area of type-based language design and compila-
tion. The fact that we can internalize a very expressive logic into
our type system means that formal reasoning traditionally done at
the meta level can now be expressed inside the actual language it-
self. For example, much of the past work on program verification
using Hoare-like logics may now be captured and made explicit in
a typed intermediate language.

From the standpoint of type-based language design, recent
work [21, 44, 12, 14, 40, 39] has produced many specialized,
increasingly complex type systems, each with its own meta-
theoretical proofs, yet it is unclear how they will fit together. We
can hope to replace them with one very general type system whose
meta theory is proved once and for all, and that allows the definition
of specialized type operators via the general mechanism of induc-
tive definitions. For example, inductive definitions subsume and
generalize earlier systems on intensional type analysis [21, 13, 39].

We have started implementing our new type system in the
FLINT compiler [35, 36], but making the implementation realis-
tic still involves solving many remaining problems (e.g., efficient
proof representations). Nevertheless, we believe our current contri-
butions constitute a significant step toward the goal of providing a
practical end-to-end compiler that generates certified binaries.

2 Approach

Our main objectives are to design typed intermediate and low-level
languages that can directly manipulate propositions and proofs, and
then to use them to certify realistic programs. We want our type
system to be simple but general; we also want to support complex
transformations (CPS and closure conversion) that preserve proofs
represented in the type system. In this section, we describe the main
challenges involved in achieving these goals and give an high-level
overview of our main techniques.

Before diving into the details, we first establish a few naming
conventions that we will use in the rest of this paper. Typed inter-
mediate languages are usually structured in the same way as typed
λ-calculi. Figure 1 gives a fragment of a richly typedλ-calculus,
organized into four levels: kind schema (kscm) u, kind κ, typeτ ,
and expression (exp) e. If we ignore kind schema and other exten-
sions, this is just the polymorphicλ-calculusFω [18].

We divide each typed intermediate language into a type sub-
language and a computation sub-language. The type language con-
tains the top three levels. Kind schemas classify kind terms while
kinds classify type terms. We often say that a kind termκ has kind
schemau, or a type termτ has kindκ. We assume all kinds used
to classify type terms have kind schemaKind, and all types used to
classify expressions have kindΩ. Both the function typeτ1→ τ2
and the polymorphic type∀t : κ. τ have kindΩ. Following the
tradition, we sometimes say “a kindκ” to imply that κ has kind
schemaKind, “a typeτ ” to imply that τ has kindΩ, and “a type
constructorτ ” to imply thatτ has kind “κ→ · · ·→Ω.” Kind terms
with other kind schemas, or type terms with other kinds are strictly
referred as “kind terms” or “type terms.”

THE TYPE LANGUAGE:

(kscm) u ::= Kind | . . .

(kind) κ ::= κ1→κ2 | Ω | . . .

(type) τ ::= t | λt :κ. τ | τ1 τ2 | τ1→τ2 | ∀t :κ. τ | . . .

THE COMPUTATION LANGUAGE:

(exp) e ::= x | λx :τ. e | e1 e2 | Λt :κ. e | e[τ ] | . . .

Figure 1: Typedλ-calculi—a skeleton

The computation language contains just the lowest level which
is where we write the actual program. This language will eventu-
ally be compiled into machine code. We often use names such as
computation terms, computation values, and computation functions
to refer to various constructs at this level.

2.1 Representing propositions and proofs

The first step is to represent propositions and proofs for a particular
logic in a type-theoretic setting. The most established technique
is to use theformulae-as-typesprinciple (a.k.a. the Curry-Howard
correspondence) [23] to map propositions and proofs into a typed
λ-calculus. The essential idea, which is inspired by constructive
logic, is to use types (of kindΩ) to represent propositions, and
expressions to represent proofs. A proof of an implicationP ⊃Q is
a function object that yields a proof of propositionQ when applied
to a proof of propositionP . A proof of a conjunctionP ∧ Q is a
pair (e1, e2) such thate1 is a proof ofP ande2 is a proof ofQ. A
proof of disjunctionP ∨Q is a pair(b, e)—a tagged union—where
b is either0 or 1 and if b=0, thene is a proof ofP ; if b=1 thene
is a proof ofQ. There is no proof for the false proposition. A proof
of a universally quantified proposition∀x∈B.P (x) is a function
that maps every elementb of the domainB into a proof ofP (b)
whereP is a unary predicate on elements ofB. Finally, a proof of
an existentially quantified proposition∃x∈B.P (x) is a pair(b, e)
whereb is an element ofB ande is a proof ofP (b).

Proof-checking in the logic now becomes typechecking in the
corresponding typedλ-calculus. There has been a large body of
work done along this line in the last 30 years; most type-based
proof assistants are based on this fundamental principle. Baren-
dregtet al. [4, 3] give a good survey on previous work in this area.

2.2 Representing certified binaries

Under the type-theoretic setting, a certified binaryS is just a pair
(v, e) that consists of:

• a valuev of typeτ wherev could be a function, a data struc-
ture, or any combination of both;

• and a proofe of P (v) whereP is a unary predicate on ele-
ments of typeτ .

Heree is just an expression with typeP (v). The predicateP is a
dependent type constructor with kindτ→Ω. The entire packageS
has a dependent strong-sum typeΣx :τ.P (x).

For example, supposeNat is the domain for natural numbers
andPrime is a unary predicate that asserts an element ofNat as
a prime number, we introduce a typenat representingNat , and a
type constructorprime (of kind nat→Ω) representingPrime. We
can build a certified prime-number package by pairing a valuev
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(a natural number) with a proof for the propositionprime(v); the
resulting certified binary has typeΣx :nat. prime(x).

Function values can be certified in the same way. Given a func-
tion f that takes a natural number and returns another one as the
result (i.e., f has typenat → nat), in order to show thatf always
maps a prime to another prime, we need a proof for the following
proposition:

∀x∈Nat . Prime(x) ⊃ Prime(f(x))

In a typed setting, this universally quantified proposition is repre-
sented as a dependent product type:

Πx :nat. prime(x)→ prime(f(x))

The resulting certified binary has type

Σf :nat→ nat. Πx :nat. prime(x)→ prime(f(x))

Here the type is not only dependent on values but also on function
applications such asf(x), so verifying a certified binary involves
typechecking the proof which in turn requires evaluating the under-
lying function application.

2.3 The problems with dependent types

The above scheme unfortunately fails to work in the context of
typed intermediate (or assembly) languages. There are at least four
problems with dependent types; the third and fourth are present
even in the general context.

First, real programs often involve effects such as assignment,
I/O, or non-termination. Effects interact badly with dependent
types. In our previous example, suppose the functionf does not ter-
minate on certain inputs; then clearly, typechecking—which could
involve applyingf—would become undecidable. It is possible to
use the effect discipline [38] to force types to be dependent on pure
computation only, but this does not work in some typedλ-calculi;
for example, a “pure” term in Girard’sλU [18] could still diverge.

Even if applyingf does not involve any effects, we still have
more serious problems. In a type-preserving compiler, the body
of the functionf has to be compiled down to typed low-level lan-
guages. A few compilers perform typed CPS conversion [27], but
in the presence of dependent types, this is still an open problem [5].
Also, typechecking in low-level languages would now require per-
forming the equivalent ofβ-reductions on the low-level (assembly)
code; this is awkward and difficult to support cleanly.

Third, it is important to maintain a phase distinction between
compile-time typechecking and run-time evaluation. Having de-
pendent strong-sum and dependent product types makes it harder
to preserve this property. It is also difficult to support first-class
certified binaries.

Finally, it would be nice to support a notion of subset types [9,
32]. A certified binary of typeΣx :nat. prime(x) contains a natural
numberv and a proof thatv is a prime. However, in some cases, we
just wantv to belong to a subset type{x :nat | prime(x)}, i.e., v is
a prime number but the proof of this is not together withv; instead,
it can be constructed from the current context.

2.4 Separating the type and computation languages

We solve these problems by making sure that our type language is
never dependent on the computation language. Because the actual
program (i.e., the computation term) would have to be compiled
down to assembly code in any case, it is a bad idea to treat it as
part of types. This strong separation immediately gives us back the
phase-distinction property.

To represent propositions and proofs, we lift everything one
level up: we use kinds to represent propositions, and type terms
to represent proofs. The domainNat is now represented by a kind
Nat; the predicatePrime is represented by a dependent kind term
Prime which maps a type term of kindNat into a proposition. A
proof for propositionPrime(n) certifies that the type termn is a
prime number.

To maintain decidable typechecking, we insist that the type lan-
guage is strongly normalizing and free of side effects. This is pos-
sible because the type language no longer depends on any runtime
computation. Given a type-level functiong of kind Nat→Nat, we
can certify that it always maps a prime to another prime by build-
ing a proofτp for the following proposition, now represented as a
dependent product kind:

Πt :Nat.Prime(t)→Prime(g(t)).

Essentially, we circumvent the problems with dependent types by
replacing them with dependent kinds and by lifting everything (in
the proof language) one level up.

To reason about actual programs, we still have to connect terms
in the type language with those in the computation language. We
follow Xi and Pfenning [44] and use singleton types [22] to relate
computation values to type terms. In the previous example, we in-
troduce a singleton type constructorsnat of kind Nat→Ω. Given a
type termn of kind Nat, if a computation valuev has typesnat(n),
thenv denotes the natural number represented byn.

A certified binary for a prime number now contains three parts:
a type termn of kind Nat, a proof for the propositionPrime(n),
and a computation value of typesnat(n). We can pack it up into
an existential package and make it a first-class value with type:

∃n :Nat.∃t :Prime(n).snat(n).

Here we use∃ rather thanΣ to emphasize that types and kinds
are no longer dependent on computation terms. Under the erasure
semantics [15], this certified binary is just an integer value of type
snat(n) at run time.

A valuev of the subset type (for prime numbers) would simply
have typesnat(n) as long as we can construct a proof forPrime(n)
based on the information from the context.

We can also build certified binaries for programs that involve
effects. Returning to our example, assume again thatf is a func-
tion in the computation language which may not terminate on some
inputs. Suppose we want to certify that if the input tof is a prime,
and the call tof does return, then the result is also a prime. We can
achieve this in two steps. First, we construct a type-level function
g of kind Nat→ Nat to simulate the behavior off (on all inputs
wheref does terminate) and show thatf has the following type:

∀n :Nat. snat(n)→ snat(g(n))

Here following Figure 1, we use∀ and→ to denote the polymor-
phic and function types for the computation language. The type for
f says that if it takes an integer of typesnat(n) as input and does
not loop forever, then it will return an integer of typesnat(g(n)).
Second, we construct a proofτp showing thatg always maps a
prime to another prime. The certified binary forf now also con-
tains three parts: the type-level functiong, the proofτp, and the
computation functionf itself. We can pack it into an existential
package with type:

∃g :Nat→Nat. ∃p : (Πt :Nat.Prime(t)→Prime(g(t))).
∀n :Nat. snat(n)→ snat(g(n))

Notice this type also contains function applications such asg(n),
butg is a type-level function which is always strongly normalizing,
so typechecking is still decidable.
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2.5 Designing the type language

We can incorporate propositions and proofs into typed intermedi-
ate languages, but designing the actual type language is still a chal-
lenge. For decidable typechecking, the type language should not
depend on the computation language and it must satisfy the usual
meta-theoretical properties (e.g.strong normalization).

But the type language also has to fulfill its usual responsibil-
ities. First, it must provide a set of types (of kindΩ) to classify
the computation terms. A typical compiler intermediate language
supports a large number of basic type constructors (e.g., integer, ar-
ray, record, tagged union, and function). These types may change
their forms during compilation, so different intermediate languages
may have different definitions ofΩ; for example, a computation
function at the source level may be turned into CPS-style, or later,
to one whose arguments are machine registers [27]. We also want
to support intensional type analysis [21] which is crucial for type-
checking runtime services [26].

Our solution is to provide a general mechanism of inductive
definitions in our type language and to define each suchΩ as an
inductive kind. This was made possible only recently [39] and it
relies on the use of polymorphic kinds. Taking the type language in
Figure 1 as an example, we add kind variablesk and polymorphic
kindsΠk :u. κ, and replaceΩ and its associated type constructors
with inductive definitions (not shown):

(kscm) u ::= Kind | . . .

(kind) κ ::= κ1→κ2 | k | Πk :u. κ | . . .

(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ] | . . .

At the type level, we add kind abstractionλk :u. τ and kind appli-
cationτ [κ]. The kindΩ is now inductively defined as follows (see
Sections 3–4 for more details):

Inductive Ω : Kind :=→→ : Ω→Ω→Ω
| ∀∀ : Πk :Kind. (k→Ω)→Ω
...

Here→→ and∀∀ are two of the constructors (ofΩ). The polymorphic
type∀t : κ. τ is now written as∀∀[κ] (λt : κ. τ); the function type
τ1→τ2 is just→→τ1τ2.

Inductive definitions also greatly increase the programming
power of our type language. We can introduce new data objects
(e.g., integers, lists) and define primitive recursive functions, all at
the type level; these in turn are used to help model the behaviors of
the computation terms.

To have the type language double up as a proof language
for higher-order predicate logic, we add dependent product kind
Πt :κ1. κ2, which subsumes the arrow kindκ1→κ2; we also add
kind-level functions to represent predicates. Thus the type language
naturally becomes the calculus of inductive constructions [34].

2.6 Proof-preserving compilation

Even with a proof system integrated into our intermediate lan-
guages, we still have to make sure that they can be CPS- and
closure-converted down to low-level languages. These transforma-
tions should preserve proofs represented in the type system; in fact,
they should not traverse the proofs at all since doing so is impracti-
cal with large proof libraries.

These challenges are non-trivial but the way we set up our type
system makes it easier to solve them. First, because our type lan-
guage does not depend on the computation language, we do not
have the difficulties involved in CPS-converting dependently typed
λ-calculi [5]. Second, all our intermediate languages share the

same type language thus also the same proof library; this is possible
because theΩ kind (and the associated types) for each intermediate
language is just a regular inductive definition.

Finally, a type-preserving program transformation often re-
quires translating the source types (of the sourceΩ kind) into the
target types (of the targetΩ kind). Existing CPS- and closure-
conversion algorithms [27, 20, 25] all perform such translation at
the meta-level; they have to go through every type term (thus every
proof term in our setting) during the translation, because any type
term may contain a sub-term which has the sourceΩ kind. In our
framework, the fact that eachΩ kind is inductively defined means
that we can internalize and write the type-translation function in-
side our type language itself. This leads to elegant algorithms that
do not traverse any proof terms but still preserve typing and proofs
(see Sections 5–6 for details).

2.7 Putting it all together

A certifying compiler in our framework will have a series of in-
termediate languages, each corresponding to a particular stage in
the compilation process; all will share the same type language. An
intermediate language is now just the type language plus the cor-
responding computation terms, along with the inductive definition
for the correspondingΩ kind. In the rest of this paper, we first give
a formal definition of our type language (which will be named as
TL from now on) in Section 3; we then present a sample computa-
tion languageλH in Section 4; we show howλH can be CPS- and
closure-converted into low-level languages in Sections 5–6; finally,
we discuss related work and then conclude.

3 The Type Language TL

Our type language TL resembles the calculus of inductive construc-
tions (CIC) implemented in theCoq proof assistant [24]. This is a
great advantage becauseCoq is a very mature system and it has
a large set of proof libraries which we can potentially reuse. For
this paper, we decided not to directly use CIC as our type language
for three reasons. First, CIC contains some features designed for
program extraction [33] which are not required in our case (where
proofs are only used as specifications for the computation terms).
Second, as far as we know, there are still no formal studies covering
the entire CIC language. Third, for theoretical purposes, we want
to understand what are the most essential features for modeling cer-
tified binaries.

Motivations Following the discussion in Section 2.5, we orga-
nize TL into the following three levels:

(kscm) u ::= z | Πt :κ. u | Πk :u1. u2 | Kind

(kind) κ ::= k | λt :κ1. κ2 | κ[τ ] | λk :u. κ | κ1 κ2

| Πt :κ1. κ2 | Πk :u. κ | Πz :Kscm. κ
| Ind(k :Kind){~κ} | Elim[κ′, u](τ){~κ}

(type) τ ::= t | λt :κ. τ | τ1 τ2 | λk :u. τ | τ [κ]

| λz :Kscm. τ | τ [u] | Ctor (i, κ)

| Elim[κ′, κ](τ ′){~τ}

Here kind schemas (kscm) classify kind terms while kinds classify
type terms. There are variables at all three levels: kind-schema
variablesz, kind variablesk, and type variablest. We have an ex-
ternal constantKscm classifying all the kind schemas; essentially,
TL has an additional level abovekscm, of which Kscm is the sole
member.

A good way to comprehend TL is to look at its fiveΠ con-
structs: there are three at the kind level and two at the kind-schema

4



level. We use a few examples to explain why each of them is neces-
sary. Following the tradition, we use arrow terms (e.g., κ1→κ2) as
a syntactic sugar for the non-dependentΠ terms (e.g.,Πt :κ1. κ2 is
non-dependent ift does not occur free inκ2).

• Kinds Πt : κ1. κ2 andκ1 → κ2 are used to typecheck the
type-level functionλt : κ. τ and its application formτ1 τ2.
AssumingΩ andNat are inductive kinds (defined later) and
Prime is a predicate with kind schemaNat → Kind, we
can write a type term such asλt : Ω. t which has kind
Ω→ Ω, a type-level arithmetic function such asplus which
has kindNat → Nat → Nat, or the universally quantified
proposition in Section 2.2 which is represented as a kind
Πt :Nat.Prime(t)→Prime(g(t)).

• Kinds Πk : u. κ andu→ κ are used to typecheck the type-
level kind abstractionλk :u. τ and its application formτ [κ].
As mentioned in Section 2.5, this is needed to support inten-
sional analysis of quantified types [39]. It can also be used to
define logic connectives and constants,e.g.

True : Kind = Πk :Kind. k→k
False : Kind = Πk :Kind. k

True has the polymorphic identity as a proof:

id : True = λk :Kind. λt :k. t

but False is not inhabited (this is essentially the consistency
property of TL which we will show later).

• Kind Πz : Kscm. κ is used to typecheck the type-level kind-
schema abstractionλz : Kscm. τ and its application form
τ [u]. This is not in the core calculus of constructions [10].
We use it in the inductive definition ofΩ (see Section 4)
where both the∀∀Kscm and∃∃Kscm constructors have kindΠz :
Kscm. (z→Ω)→Ω. These two constructors in turn allow
us to typecheck predicate-polymorphic computation terms,
which occur fairly often since the closure-conversion phase
turns all functions with free predicate variables (e.g,Prime)
into predicate-polymorphic ones.

• Kind schemasΠt :κ. u andκ→u are used to typecheck the
kind-level type abstractionλt :κ1. κ2 and its application form
κ[τ ]. The predicatePrime has kind schemaNat → Kind.
A predicate with kind schemaΠt : Nat.Prime(t)→Kind is
only applicable to prime numbers. We can also definee.g.a
binary relation:

LT : Nat→Nat→Kind

so thatLT t1 t2 is a proposition asserting that the natural
number represented byt1 is less than that oft2.

• Kind schemasΠk : u1. u2 andu1 → u2 are used to type-
check the kind-level functionλk : u. κ and its application
form κ1 κ2. We use it to write higher-order predicates and
logic connectives. For example, the logical negation operator
can be written as follows:

Not : Kind→ Kind = λk :Kind. (k→False)

The consistency of TL implies that a proposition and its nega-
tion cannot be both inhabited—otherwise applying the proof
of the second to that of the first would yield a proof ofFalse.

TL also provides a general mechanism of inductive defini-
tions [34]. The termInd(k : Kind){~κ} introduces an inductive
kind k containing a list of constructors whose kinds are speci-
fied by ~κ. Herek must only occur “positively” inside eachκi

Inductive Bool : Kind := true : Bool
| false : Bool

Inductive Nat : Kind := zero : Nat
| succ : Nat→Nat

plus : Nat→Nat→Nat

plus(zero) = λt :Nat. t
plus(succ t) = λt′ :Nat. succ ((plus t) t′)

ifez : Nat→(Πk :Kind. k→(Nat→k)→k)

ifez(zero) = λk :Kind. λt1 :k. λt2 :Nat→k. t1
ifez(succ t) = λk :Kind. λt1 :k. λt2 :Nat→k. t2 t

le : Nat→Nat→Bool

le(zero) = λt :Nat. true
le(succ t) = λt′ :Nat. ifez t′ Bool false (le t)

lt : Nat→Nat→Bool

lt = λt :Nat. le (succ t)

Cond : Bool→Kind→Kind→Kind

Cond(true) = λk1 :Kind. λk2 :Kind. k1

Cond(false) = λk1 :Kind. λk2 :Kind. k2

Figure 2: Examples of inductive definitions

(see Appendix A for the formal definition of positivity). The term
Ctor (i, κ) refers to thei-th constructor in an inductive kindκ. For
presentation, we will use a more friendly syntax in the rest of this
paper. An inductive kindI = Ind(k :Kind){~κ} will be written as:

Inductive I : Kind := c1 : [I/k]κ1

| c2 : [I/k]κ2
...
| cn : [I/k]κn

We give an explicit nameci to each constructor, soci is just an
abbreviation ofCtor (i, I). For simplicity, the current version of
TL does not include parameterized inductive kinds, but supporting
them is quite straightforward [41, 34].

TL provides two iterators to support primitive recursion on in-
ductive kinds. The small eliminationElim[κ′, κ](τ ′){~τ} takes a
type termτ ′ of inductive kindκ′, performs the iterative operation
specified by~τ (which contains a branch for each constructor ofκ′),
and returns a type term of kindκ[τ ′] as the result. The large elimi-
nationElim[κ′, u](τ){~κ} takes a type termτ of inductive kindκ′,
performs the iterative operation specified by~κ, and returns a kind
term of kind schemau as the result. These iterators generalize the
Typerec operator used in intensional type analysis [21, 13, 39].

Figure 2 gives a few examples of inductive definitions including
the inductive kindsBool andNat and several type-level functions
which we will use in Section 4. The small elimination forNat
takes the following formElim[Nat, κ](τ ′){τ1; τ2}. Here,κ is a
dependent kind with kind schemaNat→Kind; τ ′ is the argument
which has kindNat. The term in thezero branch,τ1, has kind
κ[τ ′]. The term in thesucc branch,τ2, has kindNat→ κ[τ ′]→
κ[τ ′]. TL uses theι-reduction to perform the iterator operation.
For example, the twoι-reduction rules forNat work as follows:

Elim[Nat, κ](zero){τ1; τ2};ι τ1
Elim[Nat, κ](succ τ){τ1; τ2};ι τ2 τ (Elim[Nat, κ](τ){τ1; τ2})

The generalι-reduction rule is defined formally in Appendix A.
In our examples, we take the liberty of using the pattern-matching
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(sort) s ::= Kind | Kscm | Ext

(var) X ::= z | k | t

(ptm) A,B ::= s |X | λX :A.B | A B | ΠX :A.B

| Ind(X :Kind){ ~A} | Ctor (i, A)

| Elim[A′, B′](A){ ~B}

Figure 3: Syntax of the type language TL

syntax (as in ML) to express the iterator operations, but they can be
easily converted back to theElim form.

In Figure 2,plus is a function which calculates the sum of two
natural numbers. The functionifez behaves like a switch statement:
if its argument iszero, it returns a function that selects the first
branch; otherwise, the result takes the second branch and applies
it to the predecessor of the argument. The functionle evaluates to
true if its first argument is less than or equal to the second. The
function lt performs the less-than comparison.

The definition of functionCond, which implements a condi-
tional with result at the kind level, uses large elimination onBool.
It has the formElim[Bool, u](τ){κ1;κ2}, whereτ is of kindBool;
both the true and false branches (κ1 andκ2) have kind schemau.

Formalization We want to give a formal semantics to TL and
then reason about its meta-theoretical properties. But the fiveΠ
constructs have many redundancies, so in the rest of this paper, we
will model TL as a pure type system (PTS) [3] extended with in-
ductive definitions. Intuitively, instead of having a separate syntac-
tical category for each level, we collapse all kind schemasu, kind
termsκ, type termsτ , and the external constantKscm into a single
set ofpseudoterms(ptm), denoted asA or B. Similar constructs
can now share typing rules and reduction relations.

Figure 3 gives the syntax of TL, written in PTS style. There is
now only oneΠ construct (ΠX : A.B), oneλ-abstraction (λX :
A.B), and one application form (A B); two iterators for inductive
definitions are also merged into one (Elim[A′, B′](A){ ~B}). We
useX andY to represent generic variables, but we will still uset,
k, andz if the class of a variable is clear from the context.

TL has the following PTS specification which we will use to
derive its typing rules:

S = Kind,Kscm,Ext
A = Kind :Kscm,Kscm :Ext
R = (Kind,Kind), (Kscm,Kind), (Ext,Kind)

(Kind,Kscm), (Kscm,Kscm)

HereS contains the set of sorts used to denote universes. We have
to add the constantExt to support quantification overKscm. Our
names for the sorts reflect the fact we lifted everything one level
up; they are related to other systems via the following table:

Systems Notations

TL Kind Kscm Ext
Werner [41] Set Type Ext

Coq/CIC [24] Set,Prop Type(0) Type(1)
Barendregt [3] ∗ 2 4

The axioms in the setA denote the relationship between different
sorts; an axiom “s1 : s2” means thats2 classifiess1. The rules in
the setR are used to define well-formedΠ constructs, from which
we can deduce the set of well-formedλ-definitions and applica-
tions. For example, the five rules for TL can be related to the five
Π constructs through the following table:

PTS rules\ptm ΠX :A.B λX :A.B A B

(Kind,Kind) Πt :κ1. κ2 λt :κ. τ τ1 τ2
(Kscm,Kind) Πk :u. κ λk :u. τ τ [κ]
(Ext,Kind) Πz :Kscm. κ λz :Kscm. τ τ [u]

(Kind,Kscm) Πt :κ. u λt :κ1. κ2 κ[τ ]

(Kscm,Kscm) Πk :u1. u2 λk :u. κ κ κ′

We define a context∆ as a list of bindings from variables to pseu-
doterms:

(ctxt) ∆ ::= · |∆, X :A

The typing judgment for the PTS-style TL now takes the form∆ `
A : A′ meaning that within context∆, the pseudotermA is well-
formed and hasA′ as its classifier. We can now write a single
typing rule for all theΠ constructs:

∆ ` A : s1 ∆, X :A ` B : s2 (s1, s2) ∈ R
∆ ` ΠX :A.B : s2

(PROD)

Take the rule(Kind,Kscm) as an example. To build a well-formed
term ΠX : A.B, which will be a kind schema (becauses2 is
Kscm), we need to show thatA is a well-formed kind andB is
a well-formed kind schema assumingX has kindA. We can also
share the typing rules for all theλ-definitions and applications:

∆, X :A ` B : B′ ∆ ` ΠX :A.B′ : s

∆ ` λX :A.B : ΠX :A.B′
(FUN)

∆ ` A : ΠX :B′. A′ ∆ ` B : B′

∆ ` A B : [B/X]A′
(APP)

The reduction relations can also be shared. TL supports the stan-
dardβ- andη-reductions (denoted as;β and;η) plus the previ-
ously mentionedι-reduction (denoted as;ι) on inductive objects
(see Appendix A). We use�β , �η, and�ι to denote the relations
that correspond to the rewriting of subterms using the relations;β ,
;η, and;ι respectively. We use; and� for the unions of the
above relations. We also write=βηι for the reflexive-symmetric-
transitive closure of�.

The complete typing rules for TL and the definitions of all
the reduction relations are given in Appendix A. Following
Werner [41] and Geuvers [16], we have shown that TL satisfies
all the key meta-theoretic properties including subject reduction,
strong normalization, Church-Rosser (and confluence), and consis-
tency of the underlying logic. The detailed proofs for these proper-
ties are given in the companion technical report [37].

4 The Computation Language λH

The language of computationsλH for our high-level certified in-
termediate format uses proofs, constructed in the type language, to
verify propositions which ensure the runtime safety of the program.
Furthermore, in comparison with other higher-order typed calculi,
the types assigned to programs can be more refined, since program
invariants expressible in higher-order predicate logic can be rep-
resented in our type language. These more precise types serve as
more complete specifications of the behavior of program compo-
nents, and thus allow the static verification of more programs.

One approach to presenting a language of computations is to
encode its syntax and semantics in a proof system, with the benefit
of obtaining machine-checkable proofs of its properties,e.g. type
safety. This appears to be even more promising for a system with
a type language like CIC, which is more expressive than higher-
order predicate logic: The CIC proofs of some program properties,
embedded as type terms in the program, may not be easily repre-
sentable in meta-logical terms, thus it may be simpler to perform

6



(exp) e ::= x | n | tt | ff | f | fix x :A. f | e e′ | e[A]

| 〈X=A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A,A′](e, X1. e1, X2. e2)

wheren ∈ N

(fun) f ::= λx :A. e | ΛX :A. f

(arith) aop ::= + | . . .
(cmp) cop ::= < | . . .

Figure 4: Syntax of the computation languageλH .

all the reasoning in CIC. However our exposition of the language
TL is focused on its use as a type language, and consequently it
does not include all features of CIC. We therefore leave this possi-
bility for future work, and give a standard meta-logical presentation
instead; we address some of the issues related to adequacy in our
discussion of type safety.

In this section we often use the unqualified “term” to refer to a
computation term (expression)e, with syntax defined in Figure 4.
Most of the constructs are borrowed from standard higher-order
typed calculi. To simplify the exposition we only consider con-
stants representing natural numbers (n is the value representing
n ∈ N) and boolean values (tt andff). The term-level abstraction
and application are standard; type abstractions and fixed points are
restricted to function values, with the call-by-value semantics in
mind and to simplify the CPS and closure conversions. The type
variable bound by a type abstraction, as well as the one bound by
theopen construct for packages of existential type, can have either
a kind or a kind schema. Dually, the type argument in a type ap-
plication, and the witness type termA in the package construction
〈X=A, e :A′〉 can be either a type term or a kind term.

The constructs implementing tuple operations, arithmetic, and
comparisons have nonstandard static semantics, on which we focus
in section 4.1, but their runtime behavior is standard. The branch-
ing construct is parameterized at the type level with a proposition
(which is dependent on the value of the test term) and its proof; the
proof is passed to the executed branch.

Dynamic semantics We present a small step call-by-value op-
erational semantics forλH in the style of Wright and Felleisen [42].
The values are defined as

v ::= n | tt | ff | f | fix x :A. f | 〈X=A, v :A′〉 | 〈v0, . . . vn−1〉

The reduction relation↪→ is specified by the rules

(λx :A. e) v ↪→ [v/x]e (R-β)

(ΛX :B. f)[A] ↪→ [A/X]f (R-TY-β)

sel[A](〈v0, . . . vn−1〉,m) ↪→ vm (m < n) (R-SEL)

open 〈X ′=A, v :A′〉 as 〈X, x〉 in e
↪→ [v/x][A/X]e

(R-OPEN)

(fix x :A. f) v ↪→ ([fix x :A. f/x]f) v (R-FIX)

(fix x :A. f)[A′] ↪→ ([fix x :A. f/x]f)[A′] (R-TYFIX )

m +n ↪→ m+ n (R-ADD)

m <n ↪→ tt (m < n) (R-LT-T)

m <n ↪→ ff (m ≥ n) (R-LT-F)

if[B,A](tt, X1. e1, X2. e2) ↪→ [A/X1]e1 (R-IF-T)

if[B,A](ff, X1. e1, X2. e2) ↪→ [A/X2]e2 (R-IF-F)

An evaluation contextE encodes the call-by-value discipline:

E ::= • | E e | v E | E[A] | 〈X=A, E :A′〉
| open E as 〈X, x〉 in e | open v as 〈X, x〉 in E
| 〈v0, . . . vi, E, ei+2, . . . , en−1〉 | sel[A](E, e)
| sel[A](v,E) | E aop e | v aop E | E cop e

| v cop E | if[A,A′](E, X1. e1, X2. e2)

The notationE{e} stands for the term obtained by replacing the
hole• in E by e. The single step computation7→ relatesE{e} to
E{e′} whene ↪→ e′, and7→∗ is its reflexive transitive closure.

As shown the semantics is standard except for some additional
passing of type terms in R-SEL and R-IF-T/F. However an inspec-
tion of the rules shows that types are irrelevant for the evaluation,
hence a type-erasure semantics, in which all type-related operations
and parameters are erased, would be entirely standard.

4.1 Static semantics

The static semantics ofλH shows the benefits of using a type lan-
guage as expressive as TL. We can now define the type construc-
tors ofλH as constructors of an inductive kindΩ, instead of having
them built intoλH . As we will show in Section 5, this property is
crucial for the conversion to CPS, since it makes possible trans-
forming direct-style types to CPS types within the type language.

Inductive Ω : Kind := snat : Nat→Ω
| sbool : Bool→Ω
| →→ : Ω→Ω→Ω
| tup : Nat→(Nat→Ω)→Ω
| ∀∀Kind : Πk :Kind. (k→Ω)→Ω
| ∃∃Kind : Πk :Kind. (k→Ω)→Ω
| ∀∀Kscm : Πz :Kscm. (z→Ω)→Ω
| ∃∃Kscm : Πz :Kscm. (z→Ω)→Ω

Informally, all well-formed computations have types of kindΩ, in-
cluding singleton types of natural numberssnat A and boolean val-
uessbool B, as well as function, tuple, polymorphic and existential
types. To improve readability we also define the syntactic sugar

A→ B ≡→→ A B
∀sX :A.B
∃sX :A.B

≡
≡
∀∀s A (λX :A.B)
∃∃s A (λX :A.B)

}
wheres ∈ {Kind,Kscm}

and often drop the sorts whens = Kind; e.g.the typevoid, con-
taining no values, is defined as∀t :Ω. t ≡ ∀∀Kind Ω (λt :Ω. t).

Using this syntactic sugar we can give a familiar look to many
of the formation rules forλH expressions and functional values.
Figure 5 contains the inference rules for deriving judgments of the
form ∆; Γ ` e : A, which assign typeA to the expressione in a
context∆ and a type environmentΓ defined by

(type env) Γ ::= · | Γ, x :A

We introduce some of the notation used in these rules in the course
of the discussion.

Rules E-NAT, E-TRUE, and E-FALSE assign singleton types to
numeric and boolean constants. For instance the constant1 has type
succ zero in any valid environment. In rule E-NAT we use the meta-
function ·̂ to map natural numbersn ∈ N to their representations
as type terms. It is defined inductively bŷ0 = zero andn̂+1 =
succ n̂, so∆ ` n̂ : Nat holds for all valid∆ andn ∈ N.

Singleton types play a central role in reflecting properties of
values in the type language, where we can reason about them con-
structively. For instance rules E-ADD and E-LT use respectively the
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∆ ` Kind : Kscm
∆ ` · ok

(TE-MT)

∆ ` Γ ok ∆ ` A : Ω

∆ ` Γ, x :A ok
(TE-EXT)

∆ ` Γ ok

∆; Γ ` x : Γ(x)
(E-VAR)

∆ ` Γ ok

∆; Γ ` n : snat n̂
(E-NAT)

∆ ` Γ ok

∆; Γ ` tt : sbool true
(E-TRUE)

∆ ` Γ ok

∆; Γ ` ff : sbool false
(E-FALSE)

∆ ` A : Ω ∆; Γ, x :A ` f : A

∆; Γ ` fix x :A. f : A
(E-FIX)

∆ ` A : Ω ∆; Γ, x :A ` e : A′

∆; Γ ` λx :A. e : A→ A′
(E-FUN)

∆; Γ ` e1 : A→ A′ ∆; Γ ` e2 : A

∆; Γ ` e1 e2 : A′
(E-APP)

∆ ` B : s ∆, X :B; Γ ` f : A

∆; Γ ` ΛX :B. f : ∀sX :B.A

(
X /∈ ∆
s 6= Ext

)
(E-TFUN)

∆; Γ ` e : ∀sX :B.A′ ∆ ` A : B

∆; Γ ` e[A] : [A/X]A′
(s 6= Ext) (E-TAPP)

∆ ` A : B ∆ ` B : s
∆; Γ ` e : [A/X]A′

∆; Γ ` 〈X=A, e :A′〉 : ∃sX :B.A′
(s 6= Ext)

(E-PACK)

∆; Γ ` e : ∃sX ′ :B.A ∆ ` A′ : Ω
∆, X :B; Γ, x : [X/X′]A ` e′ : A′

∆; Γ ` open e as 〈X, x〉 in e′ : A′

(
X /∈ ∆
s 6= Ext

)
(E-OPEN)

∆; Γ ` e : snat A ∆; Γ ` e′ : snat A′

∆; Γ ` e + e′ : snat (plus A A′)
(E-ADD)

∆; Γ ` e : snat A ∆; Γ ` e′ : snat A′

∆; Γ ` e < e′ : sbool (lt A A′)
(E-LT)

for all i < n ∆; Γ ` ei : Ai

∆; Γ ` 〈e0, . . . en−1〉
: tup n̂ (nth (A0:: . . . ::An−1::nil))

(E-TUP)

∆; Γ ` e : tup A′′ B ∆; Γ ` e′ : snat A′

∆ ` A : LT A′ A′′

∆; Γ ` sel[A](e, e′) : B A′
(E-SEL)

∆ ` B : Bool→Kind ∆; Γ ` e : sbool A′′

∆ ` A : B A′′ ∆, X1 :B true; Γ ` e1 : A′

∆ ` A′ : Ω ∆, X2 :B false; Γ ` e2 : A′

∆; Γ ` if[B,A](e, X1. e1, X2. e2) : A′

(E-IF)

∆; Γ ` e : A A =βηι A
′ ∆ ` A′ : Ω

∆; Γ ` e : A′
(E-CONV)

Figure 5: Static semantics of the computation languageλH .

type termsplus andlt (defined in Section 3) to reflect the semantics
of the term operations into the type level via singleton types.

However, if we could only assign singleton types to computa-
tion terms, in a decidable type system we would only be able to
typecheck terminating programs. We regain expressiveness of the
computation language using existential types to hide some of the
too detailed type information. Thus for example one can define the
usual types of all natural numbers and boolean values as

nat : Ω = ∃t :Nat. snat t
bool : Ω = ∃t :Bool. sbool t

For any terme with singleton typesnat A the package〈t=A, e :
snat t〉 has typenat. Since in a type-erasure semantics ofλH
all types and operations on them are erased, there is no runtime
overhead for the packaging. For eachn ∈ N there is a value
of this type denoted bŷn ≡ 〈t = n̂, n : snat t〉. Operations on
terms of typenat are derived from operations on terms of singleton
types of the formsnat A; for example an addition function of type
nat→ nat→ nat is defined as the expression

add = λx1 :nat. λx2 :nat.
open x1 as 〈t1, x′1〉 in open x2 as 〈t2, x′2〉 in
〈t=plus t1 t2, x′1 + x′2 :snat t〉

Rule E-TUP assigns to a tuple a type of the formtup A B, in
which thetup constructor is applied to a typeA representing the
tuple size, and a functionB mapping offsets to the types of the
tuple components. This function is defined in terms of operations

on lists of types:

Inductive List : Kind := nil : List
| cons : Ω→List→List

nth : List→Nat→Ω
nth nil = λt :Nat. void
nth (cons t1 t2) = λt :Nat. ifez t Ω t1 (nth t2)

Thusnth L n̂ reduces to then-th element of the listL whenn is
less than the length ofL, and tovoid otherwise. We also use the
infix form A::A′ ≡ cons A A′. The type of pairs is derived:A ×
A′ ≡ tup 2̂ (nth (A::A′::nil)). Thus for instance·;· ` 〈42, 7〉 :

snat 4̂2× snat 7̂ is a valid judgment.
The rules for selection and testing for the less-than relation (the

only comparison we discuss for brevity) refer to the kind termLT
with kind schemaNat→Nat→Kind. Intuitively, LT represents a
binary relation on kindNat, soLT m̂ n̂ is the kind of type terms
representing proofs ofm < n. LT can be thought of as the param-
eterized inductive kind of proofs constructed from instances of the
axioms∀n ∈ N. 0 < n+1 and∀m,n ∈ N.m < n ⊃ m+1 < n+1:

Inductive LT : Nat→Nat→Kind
:= ltzs : Πt :Nat. LT zero (succ t)
| ltss : Πt :Nat.Πt′ :Nat. LT t t′→LT (succ t) (succ t′)

To simplify the presentation of our type language, we allowed in-
ductive kinds of kind schemeKind only. Thus to stay within the
scope of this paper we actually use a Church encoding ofLT (see
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Appendix C for details); this is sufficient since proof objects are
never analyzed inλH , so the full power of elimination is not nec-
essary forLT.

In the component selection constructsel[A](e, e′) the typeA
represents aproof that the value of the subscripte′ is less than the
size of the tuplee. In rule E-SEL this condition is expressed as
an application of the type termLT. Due to the consistency of the
logic represented in the type language, only the existence and not
the structure of the proof objectA is important. Since its existence
is ensured statically in a well-formed expression,A would be elim-
inated in a type-erasure semantics.

The branching constructif[B,A](e, X1. e1, X2. e2) takes a
type termA representing a proof of the proposition encoded as ei-
therB true or B false, depending on the value ofe. The proof is
passed to the appropriate branch in its bound type variable (X1 or
X2). The correspondence between the value ofe and the kind of
A is again established through a singleton type. Note that unlike
Xi and Harper [43] we allow imprecise information flow into the
branches by not restrictingB false to be the negation ofB true. In
particular this makes possible the encoding of the usual oblivious
(in proof-passing sense)if usingB = λt :Bool.True.

4.2 Example: bound check elimination

A simple example of the generation, propagation, and use of proofs
in λH is a function which computes the sum of the components of
any vector of naturals. Let us first introduce some auxiliary types
and functions. The type assigned to a homogeneous tuple (vector)
of n terms of typeA is βηι-convertible to the formvec n̂ A for

vec : Nat→Ω→Ω

vec = λt :Nat. λt′ :Ω. tup t (nth (repeat t t′))

where
repeat : Nat→Ω→List

repeat zero = λt′ :Ω. nil
repeat (succ t) = λt′ :Ω. t′::(repeat t) t′

Then we can define a term which sums the elements of a vector
with a given length as follows:

sumVec : ∀t :Nat. snat t→ vec t nat→ nat
≡ Λt :Nat. λn :snat t. λv :vec t nat.

(fix loop :nat→ nat→ nat.
λi :nat. λsum :nat.

open i as 〈t′, i′〉 in
if[LTOrTrue t′ t, ltPrf t′ t]

(i′ < n,

t1. loop (add i 1̂)
(add sum (sel[t1](v, i′))),

t2 . sum)) 0̂ 0̂

where

LTOrTrue : Nat→Nat→Bool→Kind
LTOrTrue = λt1 :Nat. λt2 :Nat. λt :Bool.Cond t (LT t1 t2)True

and ltPrf of kind Πt′ : Nat.Πt : Nat. LTOrTrue t′ t (lt t′ t) is a
type term defined in Appendix C.

The comparisoni′ < n, used in this example as a loop termina-
tion test, checks whether the indexi′ is smaller than the vector size
n. If it is, the adequacy of the type termlt with respect to the less-
than relation ensures that the type termltPrf t′ t represents a proof
of the corresponding proposition at the type level, namelyLT t′ t.
This proof is then bound tot1 in the first branch of theif, and the
sel construct uses it to verify that thei′-th element ofv exists, thus
avoiding a second test. The type safety ofλH (Theorem 1) guaran-

tees that implementations ofsel need not check the subscript at run-
time. Since the prooft2 is ignored in the “else” branch,ltPrf t′ t
is defined to reduce to the trivial proof ofTrue when the value ofi′

is not less than that ofn.
The usual vector type, which keeps the length packaged with

the content, is

vector : Ω→Ω = λt :Ω.∃t′ :Nat. snat t′ × vec t′ t.

Now we can write a wrapper function forsumVec with the standard
typevector nat→ nat; we leave the details to the reader.

4.3 Type safety

The type safety ofλH is a corollary of its properties of progress
and subject reduction. A pivoting element in proving progress
(Lemma 4 in Appendix B) is the connection between the existence
of a proof (type) term of kindLT m̂ n̂, provided by rule E-SEL, and
the existence of a (meta-logical) proof of the side conditionm<n,
required by rule R-SEL. Similarly, subject reduction (Lemma 5 in
Appendix B) in the cases of R-ADD and R-LT-T/F relies on the
adequate representation of addition and comparison byplus andlt.

Lemma 1 (Adequacy of the TL representation of arithmetic)

1. For allm,n ∈ N, plus m̂ n̂ =βηι m̂+n.

2. For allm,n ∈ N, lt m̂ n̂ =βηι true if and only ifm < n.

3. For allm,n ∈ N,m < n if and only if there exists a typeA
such that· ` A : LT m̂ n̂.

Proof sketch (3) For the forward direction it suffices to observe
that the structure of the meta-logical proof ofm < n (in terms
of the above axioms of ordering) can be directly reflected in a type
term of kindLT m̂ n̂. The inverse direction is shown by examining
the structure of closed type terms of this kind in normal form.2

Theorem 1 (Safety ofλH ) If ·;·` e : A, then eithere 7→∗ v and
·;·` v : A, or e diverges (i.e., for eache′, if e 7→∗ e′, then there
existse′′ such thate′ 7→ e′′).
Proof sketch Follows from Lemmas 4 and 5 (Appendix B).2

Since CIC is more expressive than higher-order predicate logic,
adequacy of the representations of meta-proofs does not hold in
general; in particular, the ability to eliminate inductive kinds in CIC
allows analysis of proof derivations to be used in proof construc-
tion, a technique not employed in standard meta-reasoning. This
issue does not arise for first-order proof representations likeLT
(where no constructors have parameters of a function kind), and we
do not expect it to be a concern in practice. In cases when it does
arise, it could be resolved by using the underlying consistent logic
of CIC instead of the meta-logic; for instance in our presentation
the question of adequacy is raised because the operational seman-
tics ofλH is defined in meta-logical terms, but this question would
be moot ifλH and its semantics were defined as CIC terms. To
eliminate the interaction with the meta-logic, this approach should
be applied all the way down to the hardware specification (as done
in some PCC system [2]); we plan to pursue this in the future.

5 CPS Conversion

In this section we show how to perform CPS conversion onλH
while still preserving proofs represented in the type system. This
stage transforms all unconditional control transfers, including func-
tion invocation and return, to function calls and gives explicit
names to all intermediate computations. The basics of our ap-
proach,i.e. the target language and the transformation of types, are

9



shown in this section. The static semantics of the target language
and the transformation of terms are given in Appendix D.

We call the target calculus for this phaseλK , with syntax:

(val) v ::= x | n | tt | ff | 〈X=A, v :A′〉 | 〈v0, . . . vn−1〉
| fix x′[X1 :A1, . . .Xn :An](x :A). e

(exp) e ::= v[A1, . . . An](v′) | let x = v in e
| let 〈X, x〉 = open v in e | let x = sel[A](v, v′) in e
| let x = v aop v′ in e | let x = v cop v′ in e
| if[A,A′](v, X1. e1, X2. e2)

Expressions inλK consist of a series oflet bindings followed by a
function application or a conditional branch. There is only one ab-
straction mechanism,fix, which combines type and value abstrac-
tion. Multiple arguments may be passed by packing them in a tuple.

λK shares the TL type language withλH . The types forλK
all have kindΩK which, as inλH , is an inductive kind defined
in TL. The ΩK kind has all the constructors ofΩ plus one more
(func). Since functions in CPS do not return values, the function
type constructor ofΩK has a different kind:

→→ : ΩK→ΩK

We use the more conventional syntaxA→⊥ for→→ A. The new
constructorfunc forms the types of function values:

func : ΩK→ΩK

Every function value is implicitly associated with a closure envi-
ronment (for all the free variables), so thefunc constructor is useful
in the closure-conversion phase (see Section 6).

Typed CPS conversion involves translating both types and com-
putation terms. Existing algorithms [20, 27] require traversing and
transforming every term in the type language (which would include
all the proofs in our setting). This is impractical because proofs are
large in size, and transforming them can alter their meanings and
break the sharing among different intermediate languages.

To see the actual problem, let us convert theλH expression
〈X =A, e :B〉 to CPS, assuming that it has type∃X :A′. B. We
useKtyp to denote the meta-level translation function for the type
language andKexp for the computation language. Under existing
algorithms, the translation also transforms the witnessA:

Kexp[[〈X=A, e :B〉 ]] =
λk :Ktyp[[∃X :A′. B ]].

Kexp[[e ]] (λx :Ktyp[[ [A/X]B ]].
k 〈X=Ktyp[[A ]], x :Ktyp[[B ]]〉)

Here we CPS-converte and apply it to a continuation, which puts
the result of its evaluation in a package and handles it to the return
continuationk. With proper definition ofKtyp and assuming that
Ktyp[[X ]] = X on all variablesX, we can show that the two types
Ktyp[[ [A/X]B ]] and[Ktyp[[A ]]/X](Ktyp[[B ]]) are equivalent (under
=βηι). Thus the translation preserves typing.

But we do not want to touch the witnessA, so the translation
function should be defined as follows:

Kexp[[〈X=A, e :B〉 ]] =
λk :Ktyp[[∃X :A′. B ]].

Kexp[[e ]] (λx :Ktyp[[ [A/X]B ]].
k 〈X=A, x :Ktyp[[B ]]〉)

To preserve typing, we have to make sure that the two types
Ktyp[[ [A/X]B ]] and[A/X](Ktyp[[B ]]) are equivalent. This seems
impossible to achieve ifKtyp is defined at the meta level.

Our solution is to internalize the definition ofKtyp in our type
language. We replaceKtyp by a type functionK of kind Ω→ΩK .

For readability, we use the pattern-matching syntax, but it can be
easily coded using theElim construct.

K (snat t) = snat t
K (sbool t) = sbool t
K (t1 → t2) = func ((K(t1)× Kc(t2))→⊥)
K (tup t1 t2) = tup t1 (λt :Nat.K(t2 t))
K (∀∀Kind k t) = func (∀∀Kind k (λt1 :k.Kc(t t1)→⊥))
K (∀∀Kscm z t) = func (∀∀Kscm z (λk :z.Kc(t k)→⊥))
K (∃∃Kind k t) = ∃∃Kind k (λt1 :k.K(t t1))
K (∃∃Kscm z t) = ∃∃Kscm z (λk :z.K(t k))

Kc ≡ λt :Ω. func (K(t)→⊥)

The definition ofK is in the spirit of theinterp function of Crary
and Weirich [13]. Howeverinterp cannot be used in defining a sim-
ilar CPS conversion, because its domain does not cover (nor is there
an injection to it from) all types appearing in type annotations. In
λH these types are in the inductive kindΩ and can be analyzed by
K. We can now proveK ([A/X]B) =βηι [A/X](K (B)) by first
reducingB to the normal formB′. Clearly, K ([A/X]B) =βηι

K ([A/X]B′) and [A/X](K (B′)) =βηι [A/X](K (B)). We
then proveK ([A/X]B′) =βηι [A/X](K (B′)) by induction over
the structure of the normal formB′. The complete CPS-conversion
algorithm is given in Appendix D.

6 Closure Conversion

In this section we address the issue of how to make closures explicit
for all the CPS terms inλK . This stage rewrites all functions so that
they contain no free variables. Any variables that appear free in a
function value are packaged in anenvironment, which together with
the closed code of the function form aclosure. When a function is
applied, the closed code and the environment are extracted from
the closure and then the closed code is called with the environment
as an additional parameter. Again, the basics of our approach are
shown in this section and more details are given in Appendix E.

Our approach to closure conversion is based on Morrisettet
al. [27], who adopt a type-erasure interpretation of polymorphism.
We use the same idea for existential types. The language that we
use for this phase is calledλC with syntax:

(val) v ::= x | n | tt | ff | fix x′[X1 :A1, . . . Xn :An](x :A). e

| v[A] | 〈v0, . . . vn−1〉 | 〈X=A, v :A′〉

(exp) e ::= v v′ | let x = v in e | let x = sel[A](v, v′) in e
| let 〈X, x〉 = open v in e | let x = v aop v′ in e
| let x = v cop v′ in e | if[B,A](v, X1. e1, X2. e2)

λC is similar toλK , the main difference being that type applica-
tion and value application are again separate. Type applications
are values inλC reflecting the fact that they have no runtime ef-
fect in a type-erasure interpretation. We use the same kind of types
ΩK as inλK . We define the transformation of types as a function
Cl :ΩK→ΩK→ΩK , the second argument of which represents the
type of the environment. As in CPS conversion, we writeCl as a
TL function so that the closure-conversion algorithm does not have
to traverse proofs represented in the type system.

Cl (snat t) = λt′ :ΩK . snat t
Cl (sbool t) = λt′ :ΩK . sbool t
Cl (t→⊥) = λt′ :ΩK . (t

′ × Cl (t) ⊥)→⊥
Cl (func t) = λt′ :ΩK .∃t1 :ΩK . (Cl (t) t1 × t1)
Cl (tup t1 t2) = λt′ :ΩK . tup t1 (λn :Nat.Cl (t2 n) t′)
Cl (∀∀Kind k t) = λt′ :ΩK .∀∀Kind k (λt1 :k.Cl (t t1) t′)
Cl (∀∀Kscm z t) = λt′ :ΩK .∀∀Kind z (λk :z.Cl (t k) t′)
Cl (∃∃Kind k t) = λt′ :ΩK .∃∃Kind k (λt1 :k.Cl (t t1) t′)
Cl (∃∃Kscm z t) = λt′ :ΩK .∃∃Kscm z (λk :z.Cl (t k) t′)
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7 Related Work

Our type language is a variant of the calculus of constructions [10]
extended with inductive definitions (with both small and large elim-
ination) [34, 41]. We omitted parameterized inductive kinds and
dependent large elimination to simplify our presentation, however,
all our meta-theoretic proofs carry over to a language that includes
them. We supportη-reduction in our language while the official
Coq system does not. The proofs for the properties of TL are
adapted from Werner [41] and Geuvers [16]; the main difference
is that our language has kind-schema variables and a new product
formation rule(Ext,Kind) which are not in Werner’s system.

The Coq proof assistant provides support for extracting pro-
grams from proofs [34]. It separates propositions and sets into
two distinct universesProp and Set. We do not distinguish be-
tween them because we are not aiming to extract programs from
our proofs, instead, we are using proofs as specifications for our
computation terms. In fact, the logic in our type language does not
have to be constructive; there is no problem with adding classical
reasoning to our proof system.

Burstall and McKinna [6] proposed the notion of deliverables,
which is essentially the same as our notion of certified binaries.
They use dependent strong sum to model each deliverable and give
its categorical semantics. Their work does not support programs
with effects and has all the problems mentioned in Section 2.3.

Xi and Pfenning’s DML [44] is the first language that nicely
combines dependent types with programs that may involve effects.
Our ideas of using singleton types and lifting the level of the proof
language are directly inspired by their work. Xi’s system, however,
does not support arbitrary propositions and explicit proofs. It also
does not define theΩ kind as an inductive definition so it is un-
clear how it interacts with intensional type analysis [39] and how it
preserves proofs during compilation.

We have discussed the relationship between our work and those
on PCC, typed assembly languages, and intensional type analysis
in Section 1. Inductive definitions subsume and generalize earlier
systems on intensional type analysis [21, 13, 39]; the type-analysis
construct in the computation language can be eliminated using the
technique proposed by Craryet al. [15].

Concurrent with our work, Crary and Vanderwaart [11] recently
proposed a system called LTT which also aims at adding explicit
proofs into typed intermediate languages. LTT uses Linear LF [7]
as its proof language. It shares some similarities with our system
in that both are using singleton types [44] to circumvent the prob-
lems of dependent types. However, since LF does not support the
Elim construct on inductive definitions, it is unclear how LTT can
support intensional type analysis and type-level primitive recursive
functions [14]. In fact, to defineΩ as an inductive kind [39], LTT
would have to add proof-kind variables and proof-kind polymor-
phism, which could significantly complicate the meta-theory of its
proof language. LTT requires different type languages for different
intermediate languages; it is unclear whether it can preserve proofs
during CPS and closure conversion. The power of linear reasoning
in LTT is desirable for tracking ephemeral properties that hold only
for certain program states; we are working on adding such support
into our framework.

8 Conclusions

We presented a general framework for explicitly representing
propositions and proofs in typed intermediate or assembly lan-
guages. We showed how to integrate an entire proof system into
our type language and how to perform CPS and closure conversion
while still preserving proofs represented in the type system. Our
work is a first step toward the goal of building realistic infrastruc-

ture for certified programming and certifying compilation.
Our type system is fairly concise and simple with respect to the

number of syntactic constructs, yet it is powerful enough to express
all the propositions and proofs in the higher-order predicate logic
(extended with induction principles). In the future, we would like
to use our type system to express advanced program invariants such
as those involved in low-level mutable recursive data structures.

Our type language is not designed around any particular pro-
gramming language. We can use it to typecheck as many different
computation languages as we like; all we need is to define the cor-
respondingΩ kind as an inductive definitions. We hope to evolve
our framework into a realistic typed common intermediate format.
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A Formalization of TL (Details)

In this appendix we supply the rest of the details involved in the
formalization of our type language TL. Most of our notations and
definitions are directly borrowed from Werner [41]. In addition to
the symbols defined in the syntax, we will also useC to denote
general terms,Y andZ for variables, andI for inductive defini-
tions.

In order to ensure that the interpretation of inductive definitions
remains consistent, and they can be interpreted as terms closed un-
der their introduction rules, we imposepositivity constraintson the
constructors of an inductive definition. The positivity constraints
are defined in Definition 2 and 3.

Definition 2 A termA is strictly positive inX if A is eitherX or
ΠY :B.A′, whereA′ is strictly positive inX, X does not occur
free inB, andX 6= Y .

Definition 3 A term C is a well-formed constructor kindfor X
(written wfcX(C)) if it has one of the following forms:

1. X;

2. ΠY :B.C′, whereY 6= X, X is not free inB, andC′ is a
well-formed constructor kind forX; or

3. A→C′, whereA is strictly positive inX andC′ is a well-
formed constructor kind forX.

Note that in the definition ofwfcX(C), the second clause covers
the case whereC is of the formA → C′, andX does not occur
free inA. Therefore, we only allow the occurrence ofX in the
non-dependent case.

In the rest of this paper we often write the well-formed con-
structor kind forX asΠ~Y : ~B.X. We also denote terms that are
strictly positive inX by Π~Y : ~B.X, whereX is not free in~B.

Definition 4 LetC be a well-formed constructor kind forX. Then
C is of the formΠ~Y : ~A.X. If all the Y ’s aret’s, that is,C is of
the formΠ~t : ~A.X, then we say thatC is a small constructor kind
(or just small constructor when there is no ambiguity) and denote it
assmall(C).

Our inductive definitions reside inKind, whereas a small construc-
tor does not make universal quantification over objects of type
Kind. Therefore, an inductive definition with small constructors
is a predicative definition. While dealing with impredicative induc-
tive definitions, we must forbid projections on universes equal to
or bigger than the one inhabited by the definition [17]. In particu-
lar, we restrict large elimination to inductive definitions with only
small constructors.

Next, we define the set of reductions on our terms. The defi-
nition of β- andη-reduction is standard. Theι-reduction defines
primitive recursion over inductive objects.

12



Definition 5 Let C be a well-formed constructor kind forX and
let A′, B′, andI be pseudoterms. We defineΦX,I,B′(C,A

′) re-
cursively based on the structure ofC:

ΦX,I,B′(X,A
′)

def
= A′

ΦX,I,B′(ΠY :B.C′, A′)
def
= λY :B.ΦX,I,B′(C

′, A′ Y )

ΦX,I,B′((Π~Y : ~B.X)→C′, A′)
def
=

λZ : (Π~Y : ~B. I).ΦX,I,B′(C
′, A′ Z (λ~Y : ~B.B′ (Z ~Y )))

Definition 6 The reduction relations on our terms are defined as:

(λX :A.B) A′ ;β [A′/X]B
λX :A. (B X) ;η B, if X /∈ FV (B)

Elim[I,A′′](Ctor (i, I) ~A){ ~B} ;ι (ΦX,I,B′(Ci, Bi)) ~A

where
I = Ind(X :Kind){~C}
B′ = λY :I. (Elim[I,A′′](Y ){ ~B})

By �β , �η, and�ι we denote the relations that correspond to the
rewriting of subterms using the relations;β , ;η, and;ι respec-
tively. We use; and� for the unions of the above relations. We
also write=βηι for the reflexive-symmetric-transitive closure of�.

Let us examine theι-reduction in detail. InElim[I,A′′](A){ ~B},
the termA of typeI is being analyzed. The sequence~B contains
the set of branches forElim, one for each constructor ofI. In the
case whenCi = X, which implies thatA is of the formCtor (i, I),
theElim just selects theBi branch:

Elim[I,A′′](Ctor (i, I)){ ~B} ;ι Bi

In the case whenCi = Π~Y : ~B.X whereX does not occur free
in ~B, thenA must be in the formCtor (i, I) ~A with Ai of typeBi.
None of the arguments are recursive. Therefore, theElim should
just select theBi branch and pass the constructor arguments to it.
Accordingly, the reduction yields (by expanding theΦ macro):

Elim[I,A′′](Ctor (i, I) ~A){ ~B} ;ι Bi ~A

The recursive case is the most interesting. For simplicity assume
that thei-th constructor has the formΠ~Y : ~B′. X → Π ~Y ′ : ~B′′. X.
Therefore,A is of the formCtor (i, I) ~A with A1 being the re-
cursive component of typeΠ~Y : ~B′. X, andA2 . . . An being non-
recursive. The reduction rule then yields:

Elim[I,A′′](Ctor (i, I) ~A){ ~B}
;ι Bi A1 (λ~Y : ~B′.Elim[I,A′′](A1

~Y ){ ~B}) A2 . . . An

TheElim construct selects theBi branch and passes the arguments
A1,. . ., An, and the result of recursively processingA1. In the
general case, it would process each recursive argument.

Definition 7 defines theΨ macro which represents the type of
the largeElim branches. Definition 8 defines theζ macro which
represents the type of the small elimination branches. The different
cases follow from theι-reduction rule in Definition 6.

Definition 7 Let C be a well-formed constructor kind forX and
let A′ and I be two terms. We defineΨX,I(C,A

′) recursively
based on the structure ofC:

ΨX,I(X,A
′)

def
= A′

ΨX,I(ΠY :B.C′, A′)
def
= ΠY :B.ΨX,I(C

′, A′)

ΨX,I(A→C′, A′)
def
= [I/X]A→ [A′/X]A→ΨX,I(C

′, A′)

whereX is not free inB andA is strictly positive inX.

Definition 8 Let C be a well-formed constructor kind forX and
letA′, I, andB′ be terms. We defineζX,I(C,A′, B′) recursively
based on the structure ofC:

ζX,I(X,A
′, B′)

def
= A′ B′

ζX,I(ΠY :B.C′, A′, B′)
def
= ΠY :B. ζX,I(C

′, A′, B′ Y )

ζX,I(Π~Y : ~B.X → C′, A′, B′)
def
=

ΠZ : (Π~Y : ~B. I).Π~Y : ~B. (A′ (Z ~Y ))→ ζX,I(C
′, A′, B′ Z)

whereX is not free inB and ~B.

Definition 9 We use∆|t,k to denote that the environment does not
contain anyz variables.

Here are the complete typing rules for TL. The three weakening
rules make sure that all variables are bound to the right classes of
terms in the context. There are no separate context-formation rules;
a context∆ is well-formed if we can derive the judgment∆ `
Kind : Kscm (notice we can only add new variables to the context
via the weakening rules).

· ` Kind : Kscm (AX 1)

· ` Kscm : Ext (AX 2)

∆ ` C : Kind ∆ ` A : B t /∈ Dom(∆)

∆, t :C ` A : B
(WEAK1)

∆ ` C : Kscm ∆ ` A : B k /∈ Dom(∆)

∆, k :C ` A : B
(WEAK2)

∆ ` C : Ext ∆ ` A : B z /∈ Dom(∆)

∆, z :C ` A : B
(WEAK3)

∆ ` Kind : Kscm X ∈ Dom(∆)

∆ ` X : ∆(X)
(VAR)

∆, X :A ` B : B′ ∆ ` ΠX :A.B′ : s

∆ ` λX :A.B : ΠX :A.B′
(FUN)

∆ ` A : ΠX :B′. A′ ∆ ` B : B′

∆ ` A B : [B/X]A′
(APP)

∆ ` A : s1 ∆, X :A ` B : s2 (s1, s2) ∈ R
∆ ` ΠX :A.B : s2

(PROD)

for all i ∆, X :Kind ` Ci : Kind wfcX(Ci)

∆ ` Ind(X :Kind){~C} : Kind
(IND)

∆ ` I : Kind whereI = Ind(X :Kind){~C}
∆ ` Ctor (i, I) : [I/X]Ci

(CON)

∆ ` A : I ∆ ` A′ : I → Kind
for all i ∆ ` Bi : ζX,I(Ci, A

′,Ctor (i, I))

∆ ` Elim[I,A′](A){ ~B} : A′ A
whereI = Ind(X :Kind){~C}

(ELIM )

∆ ` A : I ∆|t,k ` A′ : Kscm

for all i small(Ci) ∆ ` Bi : ΨX,I(Ci, A
′)

∆ ` Elim[I,A′](A){ ~B} : A′

whereI = Ind(X :Kind){~C}

(L-ELIM )
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∆ ` A : B
∆ ` B′ : s ∆ ` B : s B =βηι B

′

∆ ` A : B′
(CONV)

Next we state the formal properties of TL. We omit the proofs
due to lack of space and refer the reader to the companion technical
report [37] for the details. Our proofs are mostly adapted from
Werner [41] and Geuvers [16], but we have to add support for kind-
schema variables which is not part of Werner’s system.

Theorem 10 (Subject reduction) If the judgment∆ ` A : B is
derivable, and ifA�A′ and∆ � ∆′, then the following are
derivable:∆ ` A′ : B and∆′ ` A : B.

Theorem 11 (Strong normalization) All well typed terms are
strongly normalizing.

Theorem 12 (Church-Rosser)Let ∆ ` A : B and∆ ` A′ : B
be two derivable judgments. IfA =βηι A

′, and ifA andA′ are in
normal form, thenA = A′.

Theorem 13 (Consistency of the logic)There exists no termA
for which · ` A : False.

B Properties of λH

The proof of the following lemma is by induction on the structure
of typing derivations.

Lemma 2 If ∆, X :B; Γ ` e : A′ and∆ ` A : B, then
∆; Γ ` [A/X]e : [A/X]A′.

We also need a proposition guaranteeing that equivalence of con-
structor applications implies equivalence of their arguments; it is a
corollary of the confluence of TL (Theorem 12).

Lemma 3 If Ctor (i, I) ~A =βηι Ctor (i′, I ′) ~A′, theni = i′ and
I =βηι I

′ and ~A =βηι
~A′.

Lemma 4 (Progress) If ·;·` e : A, then eithere is a value, or
there existse′ such thate 7→ e′.

Proof sketch By standard techniques [42] using induction on
computation terms. Due to the transitivity of=βηι any derivation of
∆; Γ ` e : A can be converted to a standard form in which there
is an application of rule E-CONV at its root, whose first premise
ends with an instance of a rule other than E-CONV, all of whose
term derivation premises are in standard form.

We omit the proofs for the cases of standard constructs and the
induction on the structure of evaluation contexts. The interesting
case is that of the dependently typedsel.

If e = sel[A′](v, v′), by inspection of the typing rules the
derivation of·;·` e : A in standard form must have an instance of
rule E-SEL in the premise of its root. Hence the subderivation forv
must assign to it a tuple type, and the whole derivation has the form

D
·;·` v : tup A2 A

′′
D′

·;·` v′ : snat A1

E
· ` A′ : LT A1 A2

·;·` sel[A′](v, v′) : A′′ A1

·;·` sel[A′](v, v′) : A

whereA =βηι A
′′ A1. By inspection of the typing rules, rules

other than E-CONV assign to all values types which are applications
of constructors ofΩ. Since the derivationD is in standard form, it

ends with an E-CONV, in the premise of which another rule assigns
v a typeβηι-equivalent totup A2 A

′′. Then by Lemma 3 this type
must be an application oftup, and again by inspection the only
rule which applies is E-TUP, which impliesv = 〈v0, . . . vn−1〉,
and the derivationD must have the form

∀i < n
Di

·;·` vi : A′′1 î

·;·` 〈v0, . . . vn−1〉 : tup n̂ A′′1

Also by Lemma 3A2 =βηι n̂. Similarly the only rule assigning
to a value a type convertible to that in the conclusion ofD′ is E-
NAT, henceA1 =βηι m̂ for somem ∈ N, andv′ = m. Then,
by adequacy ofLT (Lemma 1(3)), the conclusion ofE implies that
m < n. Hence by rule R-SEL e 7→ vm. 2

Lemma 5 (Subject Reduction) If ·;·` e : A ande 7→ e′, then
·;·` e′ : A.

Proof sketch Since evaluation contexts bind no variables, it suf-
fices to prove subject reduction for↪→ and a standard term substi-
tution lemma. We show only some cases of redexes involvingsel
andif.

• The derivation fore = sel[A′](〈v0, . . . vn−1〉,m) in stan-
dard form has the shape

∀i < n
Di

·;·` vi : A′′1 î

·;·` 〈~v〉 : tup n̂ A′′1

·;·` 〈~v〉 : tup A2 A
′′

D′
·;·` m : snat m̂

·;·` m : snat A1

E
· ` A′ : LT A1 A2

·;·` sel[A′](〈v0, . . . vn−1〉,m) : A′′ A1

·;·` sel[A′](〈v0, . . . vn−1〉,m) : A

whereA =βηι A
′′ A1,A′′1 =βηι A

′′, andA1 =βηι m̂. Since
e 7→ e′ only by rule R-SEL, we havem < n ande′ = vm, so
fromDm andA′′1 m̂ =βηι A

′′ m̂ =βηι A
′′ A1 =βηι A we

obtain a derivation of·;·` e′ : A.

• In the case ofif the standard derivationD of

·;·` if[B,A′](tt, X1. e1, X2. e2) : A

ends with an instance of E-CONV, preceded by an instance of
E-IF. Using the notation from Figure 5, from the premises
of this rule it follows that we have a derivationE of · `
A′ : B A′′, andA′′ =βηι true (since rule E-TRUE assigns
sbool true to tt), hence we have· ` A′ : B true by CONV.
By Lemma 2 fromE and the derivation ofX1 :B true; · `
e1 : A (provided as another premise), sinceX1 is not free in
A (ensured by the premise· ` A : Ω) we obtain a derivation
of ·;·` [A′/X1]e1 : A. 2

C Example of Proof Construction

Here we show the type termltPrf which generates the proof of the
propositionLTOrTrue t′ t (lt t′ t), needed in thesumVec exam-
ple in Section 4. We first present a Church encoding of the kind
termLT and its “constructors”ltzs andltss.

LT : Nat→Nat→Kind

LT = λt :Nat. λt′ :Nat.
ΠR :Nat→Nat→Kind.
(Πt :Nat. R zero (succ t))→
(Πt :Nat.Πt′ :Nat. R t t′→R (succ t) (succ t′))→
R t t′
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ltzs : Πt :Nat. LT zero (succ t)
ltzs = λt :Nat. λR :Nat→Nat→Kind.

λz : (Πt :Nat. R zero (succ t)).
λs : (Πt :Nat.Πt′ :Nat. R t t′→R (succ t) (succ t′)).
z t

ltss : Πt :Nat.Πt′ :Nat. LT t t′→LT (succ t) (succ t′)

ltss = λt :Nat. λt′ :Nat. λp :LT t t′. λR :Nat→Nat→Kind.
λz : (Πt :Nat. R zero (succ t)).
λs : (Πt :Nat.Πt′ :Nat. R t t′→R (succ t) (succ t′)).
s t t′ (p R z s)

Next we define dependent conditionals on kindsNat andBool.

dep ifez : Πt :Nat.Πk :Nat→Kind.
k zero→(Πt′ :Nat. k (succ t′))→k t

dep ifez zero = λk :Nat→Kind. λt1 :k zero.
λt2 : (Πt′ :Nat. k (succ t′)). t1

dep ifez (succ t) = λk :Nat→Kind. λt1 :k zero.
λt2 : (Πt′ :Nat. k (succ t′)). t2 t

dep if : Πt :Bool.Πk :Bool→Kind. k true→k false→k t
dep if true = λk :Bool→Kind. λt1 :k true. λt2 :k false. t1
dep if false = λk :Bool→Kind. λt1 :k true. λt2 :k false. t2

Finally, some abbreviations, and then the proof generator itself.

LTcond : Nat→Nat→Kind

LTcond = λt′ :Nat. λt :Nat. LTOrTrue t′ t (lt t′ t)

LTimp : Nat→Nat→Bool→Kind

LTimp = λt′ :Nat. λt :Nat. λt′′ :Bool.
LTOrTrue t′ t t′′→LTOrTrue (succ t′) (succ t) t′′

ltPrf : Πt′ :Nat.Πt :Nat. LTcond t′ t

ltPrf = λt′ :Nat. λt :Nat.
Elim[Nat, λt′1 :Nat.Πt1 :Nat. LTcond t′1 t1](t′){
λt1 :Nat. dep ifez t1 (LTcond zero) id ltzs;
λt′1 :Nat. λtP : (Πt1 :Nat. LTcond t′1 t1). λt1 :Nat.

dep ifez t1
(LTcond (succ t′1))
id
(λt1 :Nat. dep if (lt t′1 t1)

(LTimp t′1 t1)
(ltss t′1 t1)
(id True)
(tP t1))}

D CPS Conversion (Details)

We start by defining a version ofλH using type-annotated terms.
By f̄ andē we denote the terms without annotations. Type annota-
tions allow us to present the CPS transformation based on syntactic
instead of typing derivations.

(exp) e ::= ēA

ē ::= x | n | tt | ff | f | fix x :A. f | e e′ | e[A]

| 〈X=A, e :A′〉 | open e as 〈X, x〉 in e′

| 〈e0, . . . en−1〉 | sel[A](e, e′) | e aop e′

| e cop e′ | if[A,A′](e, X1. e1, X2. e2)

(fun) f ::= f̄A

f̄ ::= λx :A. e | ΛX :A. f

The target languageλK of the CPS conversion stage has been de-
fined in Section 5. We use the following syntactic sugar to de-
note non-recursive function definitions and value applications in

λK (herex′ is a fresh variable):

λx :A. e≡ fix x′[](x :A). e
v v′≡ v[](v′)

ΛX1 :A1. . . .ΛXn :An. λx :A. e
≡ fix x′[X1 :A1, . . . Xn :An](x :A). e

In the static semantics ofλK we use two forms of judgments.
As in λH , the judgment∆; Γ `K v : A indicates that the valuev
is well formed and of typeA in the type and value contexts∆ andΓ
respectively. Moreover,∆; Γ `K e indicates that the expression
e is well formed in∆ andΓ. In both forms of judgments, we omit
the subscript from̀ K when it can be deduced from the context.

The static semantics ofλK is specified by the following forma-
tion rules (we omit the rules for environment formation, variables,
constants, tuples, packages, and type conversion on values, which
are the same as inλH ):

for all i ∈ {1 . . . n} ∆ ` Ai : si
∆, X1 :A1 . . . , Xn :An ` A : Ω

∆, X1 :A1 . . . , Xn :An; Γ, x′ :A′, x :A ` e

∆; Γ ` fix x′[X1 :A1, . . . Xn :An](x :A). e : A′

where
A′ = func (∀s1X1 :A1. . . .∀snXn :An. A→⊥)

(K-FIX)

for all i ∈ {1 . . . n} ∆ ` Ai : Bi
∆; Γ ` v′ : func (∀s1X1 :B1. . . .∀snXn :Bn. A→⊥)

∆; Γ ` v : [A1/X1] . . . [An/Xn]A

∆; Γ ` v′[A1, . . . An](v)

(K-APP)

∆; Γ ` v : A ∆; Γ, x :A ` e

∆; Γ ` let x = v in e
(K-VAL )

∆; Γ ` v : tup A′′ B ∆; Γ ` v′ : snat A′

∆ ` A : LT A′ A′′ ∆; Γ, x :B A′ ` e

∆; Γ ` let x = sel[A](v, v′) in e

(K-SEL)

∆; Γ ` v : ∃sY :B.A
∆, X :B; Γ, x : [X/Y ]A ` e

∆; Γ ` let 〈X, x〉 = open v in e

(
X /∈ ∆
s 6= Ext

)
(K-OPEN)

∆; Γ ` v : snat A ∆; Γ ` v′ : snat A′

∆; Γ, x :snat (plus A A′) ` e

∆; Γ ` let x = v + v′ in e

(K-ADD)

∆; Γ ` v : snat A ∆; Γ ` v′ : snat A′

∆; Γ, x :sbool (lt A A′) ` e

∆; Γ ` let x = v < v′ in e

(K-LT)

∆ ` B : Bool→Kind ∆ ` A : B A′

∆; Γ ` v : sbool A′

∆, X1 :B true; Γ ` e1 ∆, X2 :B false; Γ ` e2

∆; Γ ` if[B,A](v, X1. e1, X2. e2)

(K- IF)

Except for the rules K-FIX and K-APP, which must take into ac-
count the presence offunc, the static semantics forλK is a natural
consequence of the static semantics forλH .

The definition of the CPS transformation for computation terms
of λH to computation terms ofλK is given in Figure 6, where we
use the abbreviations introduced in Section 5.

Proposition 14 (Type Correctness of CPS Conversion)
If ·;·`H e : A, then·;·`K Kexp[[ ē

A ]] : func (Kc(A)→⊥).
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Kfval[[(λx :A. eB)A→B ]] = λxarg :K(A)× Kc(B).

let x = sel[ltPrf 0̂ 2̂](xarg, 0) in

let k = sel[ltPrf 1̂ 2̂](xarg, 1) in
Kexp[[e

B ]] k
Kfval[[(ΛX :A. fB)∀sX:A.B ]] =

ΛX :A. λk :Kc(B). k (Kfval[[f
B ]])

Kexp[[ ē
A ]] = λk :Kc(A). k (ē)

for ēA one ofxA, nsnat n̂, ttsbool true, ffsbool false

Kexp[[f
A ]] = λk :Kc(A). k (Kfval[[f

A)]]

Kexp[[(fix x :A. fA)A ]] =

λk :Kc(A). k (fix x[](k :Kc(A)). k (Kfval[[f
A ]]))

Kexp[[(e1
A→B e2

A)B ]] = λk :Kc(B).

Kexp[[e1
A→B ]] (λx1 :K(A→ B).

Kexp[[e2
A ]] (λx2 :K(A).

x1 〈x2, k〉))
Kexp[[(e

∀∀s A′ B [A])B A ]] = λk :Kc(B A).

Kexp[[e
∀∀s A′ B ]] (λx :K(∀∀s A′ B).

x[A](k))

Kexp[[〈eA0
0 , . . . e

An−1
n−1 〉A ]] = λk :Kc(A).

Kexp[[e
A0
0 ]] (λx0 :K(A0).

...
Kexp[[e

An−1
n−1 ]] (λxn−1 :K(An−1).

k 〈x0, . . . xn−1〉) . . .)
Kexp[[sel[A](e1

tup A′′ B , e2
snat A′)B A′ ]] =

λk :Kc(B A′).Kexp[[e1
tup A′′ B ]] (λx1 :K(tup A′′ B).

Kexp[[e2
snat A′ ]] (λx2 :K(snat A′).

let x′ = sel[A](x1, x2) in k x′))

Kexp[[〈X=A, e[A/X]B :B〉A
′
]] =

λk :Kc(A
′).Kexp[[e

[A/X]B ]] (λx :K([A/X]B).
k 〈X=A, x :K(B)〉)

Kexp[[(open e1
∃sY:A′. B as 〈X, x〉 in e2

A)A ]] =

λk :Kc(A).Kexp[[e1
∃sY:A′. B ]] (λx1 :K(∃sY :A′. B).

let 〈X, x〉 = open x1 in Kexp[[e2
A ]] k)

Kexp[[(e1
snat A + e2

snat A′)snat (plus A A′) ]] =

λk :Kc(snat (plus A A′)).Kexp[[e1
snat A ]] (λx1 :K(snat A).

Kexp[[e2
snat A′ ]] (λx2 :K(snat A′).

let x′ =x1 +x2 in k x′))

Kexp[[(e1
snat A < e2

snat A′)sbool (lt A A′) ]] =

λk :Kc(sbool (lt A A′)).Kexp[[e1
snat A ]] (λx1 :K(snat A).

Kexp[[e2
snat A′ ]] (λx2 :K(snat A′).

let x′ =x1 <x2 in k x′))

Kexp[[(if[B,A](esbool A′′ , X1. e1
A′ , X2. e2

A′))A
′
]] =

λk :Kc(A
′).Kexp[[e

sbool A′′ ]] (λx :K(sbool A′′).

if[B,A](x, X1.Kexp[[e1
A′ ]] k, X2.Kexp[[e2

A′ ]] k))

Figure 6: CPS conversion: fromλH to λK .

E Closure Conversion (Details)

The main difference in the static semantics betweenλK andλC is
that in the latter the body of a function must not contain free type
or term variables. This is formalized in the rule C-FIX below. The
rules C-TAPP and C-APP corresponding to the separate type and

Cval[[v ]] = v, for v one ofx, n, tt, ff

Cval[[〈v0, . . . vn−1〉 ]] = 〈Cval[[v0 ]], . . . Cval[[vn−1 ]]〉
Cval[[〈X=A, v :B〉 ]] = 〈X=A, Cval[[v ]] :Cl (B) ⊥〉
Cval[[fix x′[X1 :A1, . . .Xn :An](x :A). e ]] =

〈X=Aenv, 〈vcode[Y1] . . . [Ym], venv〉 :AX〉
where
AX = A′X ×X
A′X = ∀s1X1 :A1. . . .∀snXn :An. (X × Cl (A) ⊥)→⊥
{xA

′
0

0 , . . . x
A′k−1
k−1 } = FV (e)− {x, x′}

{Y B
′
1

1 , . . . Y B
′
m

m } =
FTV (fix x′[X1 :A1, . . . Xn :An](x :A). e)

Aenv = Cl (tup k̂ (nth (A′0:: . . . A′k−1::nil))) ⊥
venv = 〈x0 . . . xk−1〉
vcode = fix vfix[Y1 :B′1, . . . Ym :B′m, X1 :A1, . . . Xn :An]

(xarg :Aenv × Cl (A) ⊥).

let xenv = sel[ltPrf 0̂ 2̂](xarg, 0) in

let x = sel[ltPrf 1̂ 2̂](xarg, 1) in
let x′ = 〈X=Aenv,

〈vfix[Y1] . . . [Ym], xenv〉 :AX〉 in

let x0 = sel[ltPrf 0̂ k̂](xenv, 0) in . . .

let xk−1 = sel[ltPrf k̂ − 1 k̂](xenv, k − 1) in Cexp[[e ]]

Cexp[[v1[A1, . . . An](v2)]] = let 〈Xenv, xarg〉 = open Cval[[v1 ]] in

let xcode = sel[ltPrf 0̂ 2̂](xarg, 0) in

let xenv = sel[ltPrf 1̂ 2̂](xarg, 1) in
xcode[A1] . . . [An] 〈xenv, Cval[[v2 ]]〉

Cexp[[ let x = v in e ]] = let x = Cval[[v ]] in Cexp[[e ]]

Cexp[[ let x = sel[A](v, v′) in e ]] =
let x = sel[A](Cval[[v ]], Cval[[v

′ ]]) in Cexp[[e ]]

Cexp[[ let 〈X, x〉 = open v in e ]] =
let 〈X, x〉 = open Cval[[v ]] in Cexp[[e ]]

Cexp[[ let x = v1 + v2 in e ]] = let x = Cval[[v1 ]] + Cval[[v2 ]] in Cexp[[e ]]

Cexp[[ let x = v1 < v2 in e ]] = let x = Cval[[v1 ]] < Cval[[v2 ]] in Cexp[[e ]]

Cexp[[ if[B,A](v, X1. e1, X2. e2) ]] =
if[B,A](Cval[[v ]], X1. Cexp[[e1 ]], X2. Cexp[[e2 ]])

Figure 7: Closure conversion: fromλK to λC .

value application inλC are standard.

for all i < n · ` Ai : si
·, X1 :A1 . . . , Xn :An ` A : Ω

·, X1 :A1 . . . , Xn :An; ·, x′ :B, x :A ` e

∆; Γ ` fix x′[X1 :A1, . . .Xn :An](x :A). e : B
whereB = ∀s1X1 :A1. . . .∀snXn :An. A→⊥

(C-FIX)

∆; Γ ` v : ∀sX :A′. B ∆ ` A : A′

∆; Γ ` v[A] : [A/X]B
(C-TAPP)

∆; Γ ` v1 : A→⊥ ∆; Γ ` v2 : A

∆; Γ ` v1 v2
(C-APP)

The definition of the closure transformation for the computation
terms ofλK is given in Figure 7.

Proposition 15 (Type Correctness of Closure Conversion)
If ·;·`K v : A, then·;·`C Cval[[v ]] : Cl (A) ⊥.
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