Lexical Analysis

- Read source program and produce a list of tokens ("linear" analysis)

- The lexical structure is specified using regular expressions

- Other secondary tasks:
 1. get rid of white spaces (e.g., \t, \n, \sp) and comments
 2. line numbering

Example: Source Code

A Sample Toy Program:

(* define valid mutually recursive procedures *)

let

function do_nothing1(a: int, b: string)=
do_nothing2(a+1)

function do_nothing2(d: int) =
do_nothing1(d, "str")
in

do_nothing1(0, "str2")
end

What do we really care here?

The Lexical Structure

Output after the Lexical Analysis ---- token + associated value

<table>
<thead>
<tr>
<th>Token</th>
<th>Sample Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LET</td>
<td>let</td>
<td>keyword</td>
</tr>
<tr>
<td>END</td>
<td>end</td>
<td>keyword</td>
</tr>
<tr>
<td>PLUS</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LPAREN</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>RPAREN</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>(int)</td>
<td></td>
</tr>
<tr>
<td>COMMA</td>
<td>,</td>
<td></td>
</tr>
<tr>
<td>COLON</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>letter</td>
<td></td>
</tr>
<tr>
<td>EQ</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>EOF</td>
<td></td>
<td>end of file</td>
</tr>
</tbody>
</table>

Tokens

- Tokens are the atomic unit of a language, and are usually specific strings or instances of classes of strings.

<table>
<thead>
<tr>
<th>Tokens</th>
<th>Sample Values</th>
<th>Informal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LET</td>
<td>let</td>
<td>keyword LET</td>
</tr>
<tr>
<td>END</td>
<td>end</td>
<td>keyword END</td>
</tr>
<tr>
<td>PLUS</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>LPAREN</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>COLON</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>STRING</td>
<td>"str"</td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>49, 48</td>
<td>integer constants</td>
</tr>
<tr>
<td>ID</td>
<td>do_nothing1, a, int, string</td>
<td>letter followed by letters, digits, and underscores</td>
</tr>
<tr>
<td>EQ</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>EOF</td>
<td></td>
<td>end of file</td>
</tr>
</tbody>
</table>
Lexical Analysis, How?

- First, write down the **lexical specification** (how each token is defined?)
 - Using **regular expression** to specify the lexical structure:

 \[
 \text{identifier} = \text{letter} \ (\text{letter} \ | \ \text{digit} \ | \ \text{underscore})^* \\
 \text{letter} = a \ | \ldots \ | z \ | A \ | \ldots \ | Z \\
 \text{digit} = 0 \ | \ 1 \ | \ldots \ | 9
 \]

- Second, based on the above **lexical specification**, build the lexical analyzer (to recognize tokens) by hand,

 Regular Expression Spec \(\rightarrow\) NFA \(\rightarrow\) DFA \(\rightarrow\) Transition Table \(\rightarrow\) Lexical Analyzer

- Or just by using **lex** --- the lexical analyzer generator

 Regular Expression Spec (in **lex** format) \(\rightarrow\) feed to **lex** \(\rightarrow\) Lexical Analyzer

Regular Expressions

- **Regular expressions** are concise, linguistic characterization of regular languages (regular sets)

\[
\text{identifier} = \text{letter} \ (\text{letter} \ | \ \text{digit} \ | \ \text{underscore})^*
\]

- Each regular expression define a regular language --- a set of strings over some alphabet, such as ASCII characters; each member of this set is called a sentence, or a word

- We use regular expressions to define each category of tokens

 For example, the above **identifier** specifies a set of strings that are a sequence of letters, digits, and underscores, starting with a letter.

Regular Expressions and Regular Languages

- Given an alphabet \(\Sigma\), the **regular expressions** over \(\Sigma\) and their corresponding regular languages are:

 a) \(\emptyset\) denotes \(\{\varepsilon\}\), the empty string, denotes the language \(\{\varepsilon\}\).

 b) For each \(a\) in \(\Sigma\), \(a\) denotes \(\{a\}\) --- a language with one string.

 c) If \(R\) denotes \(L_R\) and \(S\) denotes \(L_S\) then \(R \cup S\) denotes the language \(L_R \cup L_S\), i.e. \(\{x \mid x \in L_R \text{ or } x \in L_S\}\).

 d) If \(R\) denotes \(L_R\) and \(S\) denotes \(L_S\) then \(RS\) denotes the language \(L_R \cdot L_S\), that is, \(\{xy \mid x \in L_R \text{ and } y \in L_S\}\).

 e) If \(R\) denotes \(L_R\) then \(R^*\) denotes the language \(L_R^*\) where \(L^*\) is the union of all \(L^j\) \((i=0,\ldots,\infty)\) and \(L^1\) is just \(\{x_1x_2\ldots x_i \mid x_i \in L, \ldots, x_i \in L\}\).

 f) If \(R\) denotes \(L_R\) then \(R^\dagger\) denotes the same language \(L_R\)

<table>
<thead>
<tr>
<th>Regular Expression</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^+)</td>
<td>1 or more a's</td>
</tr>
<tr>
<td>(a^*)</td>
<td>0 or more a's</td>
</tr>
<tr>
<td>((a</td>
<td>b)^*)</td>
</tr>
<tr>
<td>((aa</td>
<td>ab</td>
</tr>
<tr>
<td>([a-zA-Z]^*)</td>
<td>shorthand for "a</td>
</tr>
<tr>
<td>([0-9]^*)</td>
<td>shorthand for "0</td>
</tr>
<tr>
<td>(0([0-9])^*)</td>
<td>numbers that start and end with 0</td>
</tr>
<tr>
<td>((ab</td>
<td>aa</td>
</tr>
</tbody>
</table>

- The following is not a regular expression: \(a^n b^n (n > 0)\)
Lexical Specification

- Using regular expressions to specify tokens

  ```
  keyword = begin | end | if | then | else
  identifier = letter (letter | digit | underscore)*
  integer = digit+
  relop = < | <= | = | <> | > | >=
  letter = a | b | ... | z | A | B | ... | Z
  digit = 0 | 1 | 2 | ... | 9
  ```

- Ambiguity: is “begin” a keyword or an identifier?

- Next step: to construct a token recognizer for languages given by regular expressions --- by using finite automata!

 given a string x, the token recognizer says “yes” if x is a sentence of the specified language and says “no” otherwise

Transition Diagrams

- Flowchart with states and edges; each edge is labelled with characters; certain subset of states are marked as “final states”

- Transition from state to state proceeds along edges according to the next input character

- Every string that ends up at a final state is accepted

- If get “stuck”, there is no transition for a given character, it is an error

- Transition diagrams can be easily translated to programs using case statements (in C).

Transition Diagrams (cont’d)

The token recognizer (for identifiers) based on transition diagrams:

```c
state0: c = getchar();
        if (isalpha(c)) goto state1;
        error();
        ...

state1: c = getchar();
        if (isalpha(c) || isdigit(c) ||
            isunderscore(c)) goto state1;
        if (c == ',' || ... || c == ')') goto state2;
        error();
        ...

state2: ungetc(c,stdin); /* retract current char */
        return(ID, ... the current identifier ...);
```

Finite Automata

- Finite Automata are similar to transition diagrams; they have states and labelled edges; there are one unique start state and one or more than one final states

- Nondeterministic Finite Automata (NFA):
 a) ε can label edges (these edges are called ε-transitions)
 b) some character can label 2 or more edges out of the same state

- Deterministic Finite Automata (DFA):
 a) no edges are labelled with ε
 b) each character can label at most one edge out of the same state

- NFA and DFA accepts string x if there exists a path from the start state to a final state labeled with characters in x

 NFA: multiple paths
 DFA: one unique path
Example: NFA

An NFA accepts \((a | b)^* abb\)

There are many possible moves \(\ldots\) to accept a string, we only need one sequence of moves that lead to a final state.

input string: \(aabb\)

One successful sequence:

Another unsuccessful sequence:

Example: DFA

A DFA accepts \((a | b)^* abb\)

There is only one possible sequence of moves \(\ldots\) either lead to a final state and accept or the input string is rejected

input string: \(aabb\)

The successful sequence:

Transition Table

- Finite Automata can also be represented using transition tables

For NFA, each entry is a set of states:

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{0,1}</td>
<td>{0}</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>{2}</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>{3}</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

For DFA, each entry is a unique state:

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NFA with \(\varepsilon\)-transitions

1. NFA can have \(\varepsilon\)-transitions \(\ldots\) edges labelled with \(\varepsilon\)

\(\varepsilon\)-transitions accept the regular language denoted by \((aa^* | bb^*)\)
Regular Expressions -> NFA

- How to construct NFA (with ε-transitions) from a regular expression?
- **Algorithm**: apply the following construction rules, use unique names for all the states. (important invariant: always one final state!)

1. **Basic Construction**
 - ε
 - $a \in \Sigma$

2. **Inductive Construction**

 - $R_1 \mid R_2$
 - $R_1 R_2$

 \[\text{initial state for } N_1 \text{ and } N_2 \]
 \[\text{final state for } N_1 \text{ and } N_2 \]
 \[\text{merge: final state of } N_1 \text{ and initial state of } N_2 \]

Example: RE -> NFA

Converting the regular expression: $(a \mid b)^* abb$

ε (in $a \mid b) \implies a$

ε (in $a \mid b) \implies b$

ε (in $a \mid b) \implies a | b$

a (in $a \mid b) \implies 2 \rightarrow 3$

b (in $a \mid b) \implies 4 \rightarrow 5$

$a \mid b \implies 1 \rightarrow 6$
Example: RE -> NFA (cont’d)

Converting the regular expression:

\[(a|b)^*abb\]

\[(a|b)^* \rightarrow \epsilon\]

\[\varepsilon\]

\[0\]

\[\varepsilon\]

\[1\]

\[2\]

\[a\]

\[3\]

\[\varepsilon\]

\[4\]

\[b\]

\[5\]

\[\varepsilon\]

\[6\]

\[\varepsilon\]

\[7\]

\[\varepsilon\]

\[abb \rightarrow (several \ steps \ are \ omitted)\]

\[0\]

\[0\]

\[0\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

\[1\]

NFA -> DFA

- **NFA are non-deterministic:** need DFA in order to write a deterministic program!
- **There exists an algorithm ("subset construction") to convert any NFA to a DFA that accepts the same language**
- **States in DFA are sets of states** from NFA; DFA simulates "in parallel" all possible moves of NFA on given input.
- **Definition:** for each state \(s\) in NFA,

 \[\varepsilon\text{-CLOSURE}(s) = \{ s \} \cup \{ t \mid s \text{ can reach } t \text{ via } \varepsilon\text{-transitions} \}\]
- **Definition:** for each set of states \(S\) in NFA,

 \[\varepsilon\text{-CLOSURE}(S) = \bigcup \{ \varepsilon\text{-CLOSURE}(s) \text{ for all } s_i \text{ in } S \}\]

NFA -> DFA (cont’d)

- Each DFA-state is a set of NFA-states
- Supposed the start state of the NFA is \(s\), then the start state for its DFA is \(\varepsilon\text{-CLOSURE}(s)\); the final states of the DFA are those that include a NFA-final-state
- **Algorithm:** converting an NFA \(N\) into a DFA \(D\)

\[\begin{align*}
\text{Dstates} &= \{ \varepsilon\text{-CLOSURE}(s_0) \text{, } s_0 \text{ is } N\text{'s start state} \} \\
\text{Dstates} \text{ are initially } \text{"unmarked"} \\
\text{while} \text{ there is an unmarked D-state } X \text{ do} \{ \\
\text{mark } X \\
\text{for each } a \text{ in } S \text{ do} \{ \\
\text{T} = \text{states reached from any } s_i \text{ in } X \text{ via } a \\
Y = \varepsilon\text{-CLOSURE}(T) \\
\text{if } Y \text{ not in Dstates then add Y to Dstates } \text{"unmarked"} \\
\text{add transition from } X \text{ to } Y \text{, labeled with a } \\
\} \}
\end{align*}\]
Example : NFA -> DFA

- converting NFA for \((a | b)^*abb\) to a DFA -----------

The start state \(A = \varepsilon\text{-CLOSURE}(0) = \{0, 1, 2, 4, 7\}; \text{Dstates} = \{A\}

1st iteration: A is unmarked; mark A now;
- a-transitions: \(T = \{3, 8\}\)
 a new state \(B = \varepsilon\text{-CLOSURE}(3) \cup \varepsilon\text{-CLOSURE}(8) = \{3, 6, 1, 2, 4, 7\} \cup \{8\} = \{1, 2, 3, 4, 6, 7, 8\}\)
 add a transition from A to B labelled with a
- b-transitions: \(T = \{5\}\)
 a new state \(C = \varepsilon\text{-CLOSURE}(5) = \{1, 2, 4, 5, 6, 7\}\)
 add a transition from A to C labelled with b

\(\text{Dstates} = \{A, B, C\}\)

2nd iteration: B, C are unmarked; we pick B and mark B first;
- \(B = \{1, 2, 3, 4, 6, 7, 8\}\)
- B's a-transitions: \(T = \{3, 8\}\); T's \(\varepsilon\text{-CLOSURE}\) is B itself.
 add a transition from B to B labelled with a
- B's b-transitions: \(T = \{5\}\)
 add a transition from B to D labelled with b

\(\text{Dstates} = \{A, B, C, D\}\)

Example : NFA -> DFA (cont’d)

- C's b-transitions: \(T = \{3, 8\}\); its \(\varepsilon\text{-CLOSURE}\) is B.
 add a transition from C to B labelled with b
 \(\text{Dstates} = \{A, B, C, D\}\)

next we pick D, and mark D
- D's a-transitions: \(T = \{3, 8\}\); its \(\varepsilon\text{-CLOSURE}\) is B.
 add a transition from D to B labelled with a
 \(\text{Dstates} = \{A, B, C, D, E\}\); E is a final state since it has 10;

next we pick E, and mark E

Example : NFA -> DFA (cont’d)

- E's a-transitions: \(T = \{3, 8\}\); its \(\varepsilon\text{-CLOSURE}\) is B.
 add a transition from E to B labelled with a
- E's b-transitions: \(T = \{5\}\); its \(\varepsilon\text{-CLOSURE}\) is C itself.
 add a transition from E to C labelled with b

all states in \(\text{Dstates}\) are marked, the DFA is constructed !
Lex

- *Lex* is a program generator -------- it takes *lexical specification* as input, and produces a *lexical processor* written in C.

![Lex](image)

- Implementation of *Lex*:
 Lex Spec -> NFA -> DFA -> Transition Tables + Actions -> yylex()

ML-Lex

- *ML-Lex* is like *Lex* --------- it takes *lexical specification* as input, and produces a *lexical processor* written in Standard ML.

![ML-Lex](image)

- Implementation of *ML-Lex* is similar to implementation of *Lex*
What does ML-Lex generate?

```
ML-Lex

sample foo.lex.sml:
structure Mlex =
    struct
    structure UserDeclarations = struct ... end
    ......
    fun makeLexer yyinput = ....
    end

To use the generated lexical processor:
val lexer = Mlex.makeLexer(fn _ => input (openIn "toy"));
val nextToken = lexer()
```

to input a filename!

everything in part 1 of foo.lex

ML-Lex Definitions

- Things you can write inside the “ml-lex definitions” section (2nd part):

 - `%s COMMENT STRING` define new start states
 - `%reject REJECT()` to reject a match
 - `%count` count the line number
 - `%structure {identifier}` the resulting structure name
 (the default is Mlex)

 (hint: you probably don’t need use %reject, %count, or %structure
 for assignment 2.)

- Definition of named regular expressions:

 `identifier = regular expression`

 `SPACE=[\t\n\012]`

 `IDCHAR=[_a-zA-Z0-9]`

ML-Lex Translation Rules

- Each translation rule (3rd part) are in the form

 `<start-state-list> regular expression => (action);`

- Valid ML-Lex regular expressions: (see ML-Lex-manual pp 4-6)

 a character stands for itself except for the reserved chars:
 `? * | { } ^ $ / ; . = < > \[{ "
 to use these chars, use backslash! for example, \" represents
 the string ""

 using square brackets to enclose a set of characters
 (\ - ^ are reserved)

 `[abc]` char a, or b, or c
 `[^abc]` all chars except a, b, c
 `[a-z]` all chars from a to z
 `[\n\t\b]` new line, tab, or backspace
 `[-abc]` char or a or b or c

ML-Lex Translation Rules (cont’d)

- Valid ML-Lex regular expressions: (cont’d)

 escape sequences: (can be used inside or outside square brackets)

 `\b` backspace
 `\n` newline
 `\t` tab
 `\ddd` any ascii char (ddd is 3 digit decimal)

 `\^\n` any char except newline (equivalent to `{\^\n}\`)

 `\^x` match string x exactly even if it contains reserved chars

 `x?` an optional x
 `x*` 0 or more x’s
 `x+` 1 or more x’s
 `xy` x or y

 `^x` if at the beginning, match at the beginning of a line only

 `x(n)` substitute definition x (defined in the lex definition section)
 `(x)` same as regular expression x
 `x{m-n}` repeating x for n times
 `x{m-n}` repeating x from m to n times
ML-Lex Translation Rules (cont’d)

what are valid actions?

- Actions are basically ML code (with the following extensions)
- All actions in a lex file must return values of the same type
- Use `yytext` to refer to the current string
 - `[a-z]+ => (print yytext);`
 - `[0-9]{3} => (print (Char.ord(sub(yytext,0))));`
- Can refer to anything defined in the ML-Declaration section (1st part)
 - `YYBEGIN start-state` ---- enter into another start state
 - `lex()` and `continue()` to reinvoking the lexing function
 - `yypos` --- refer to the current position

Ambiguity

- what if more than one translation rules matches?
 - A. *longest* match is preferred
 - B. among rules which matched the same number of characters, the rule given first is preferred

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>while</code></td>
</tr>
<tr>
<td>2</td>
<td><code>[a-zA-Z][a-zA-Z0-9_]</code></td>
</tr>
<tr>
<td>3</td>
<td><code><</code></td>
</tr>
<tr>
<td>4</td>
<td><code><=</code></td>
</tr>
</tbody>
</table>

input “while” matches rule 1 according B above
input “<=” matches rule 4 according A above

Start States (or Start Conditions)

- start states permit multiple lexical analyzers to run together.
- each translation rule can be prefixed with `<start-state>`
- the lexer is initially in a predefined start state called `INITIAL`
- define new start states (in `ml-lex-declarations`): `%s COMMENT STRING`
- to switch to another start states (in `action`): `YYBEGIN COMMENT`
- example: multi-line comments in C
  ```
  %
  %s COMMENT
  %
  <INITIAL>"/*"    => (YYBEGIN COMMENT; continue());
  <COMMENT>"/*"    => (YYBEGIN INITIAL; continue());
  <COMMENT>"\n"      => (continue());
  <INITIAL> .......
  ```

Implementation of Lex

- construct NFA for sum of Lex translation rules (regexp/action);
- convert NFA to DFA, then minimize the DFA
- to recognize the input, simulate DFA to termination: find the last DFA state that includes NFA final state, execute associated action (this picks *longest* match). If the last DFA state has >1 NFA final states, pick one for rule that appears *first*
- how to represent DFA, the transition table:
 - 2D array indexed by state and input-character too big!
 - each state has a linked list of (char, next-state) pairs too slow!
 - hybrid scheme is the best -------- see Dragon Book page 144-146