Code Optimizations

- The intermediate code (e.g., IR tree) generated by the front-end is often not efficient.
- The code optimizer reads IR, emits better IR; almost all optimizations done here are machine-independent. Machine-dependent optimizations are done in the back-end.
- Main techniques used: graph algorithms, control- and data-flow analysis.

Code Optimizations (cont’d)

- A code optimizer is often organized as follows:
 - Control-Flow Analysis --- divide the IR into basic blocks, build the control-flow graph (CFG)
 - Data-Flow Analysis --- gather data-flow information (e.g., the set of live variables).
 - Code Transformations --- the actual optimizations

Examples: Source Code

- C code for quicksort (also in ASU page 588):

```c
void quicksort(int n);

int i, j, v, x;
if (n <= m) return;

i = m-1; j = n; v = a[n];
while (1) {
  do i = i+1; while ( a[i] < v);
  do j = j-1; while ( a[j] > v);
  if (i >= j) break;
  x = a[i]; a[i] = a[j]; a[j] = x;
}

x = a[i]; a[i] = a[n]; a[n] = x;
quicksort(m,j); quicksort(i+1,n);
```
Example: Intermediate Code

- Intermediate code for the shaded fragments of previous example:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(01)</td>
<td>i := n - 1</td>
<td>(06)</td>
<td>t2 := 4 * i</td>
<td>(16)</td>
<td>t7 := 4 * i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(02)</td>
<td>j := n</td>
<td>(07)</td>
<td>t3 := a[c3]</td>
<td>(17)</td>
<td>t8 := 4 * j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(03)</td>
<td>t1 := 4 * n</td>
<td>(08)</td>
<td>if t3 < v goto (5)</td>
<td>(18)</td>
<td>t9 := a[t8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(05)</td>
<td>i := i + 1</td>
<td>(10)</td>
<td>t4 := 4 * j</td>
<td>(20)</td>
<td>t10 := 4 * j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(06)</td>
<td>t2 := 4 * i</td>
<td>(11)</td>
<td>t5 := a[t4]</td>
<td>(21)</td>
<td>a[c10] := x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(07)</td>
<td>c3 := a[c2]</td>
<td>(12)</td>
<td>if t5 > v goto (9)</td>
<td>(22)</td>
<td>goto (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(08)</td>
<td>if t3 < v goto (5)</td>
<td>(13)</td>
<td>if i >= j goto (23)</td>
<td>(23)</td>
<td>t11 := 4 * i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(09)</td>
<td>j := j - 1</td>
<td>(14)</td>
<td>c6 := 4 * i</td>
<td>(24)</td>
<td>x := a[t11]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10)</td>
<td>t4 := 4 * j</td>
<td>(15)</td>
<td>x := a[c6]</td>
<td>(25)</td>
<td>t12 := 4 * i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11)</td>
<td>t5 := a[t4]</td>
<td>(16)</td>
<td>t7 := 4 * i</td>
<td>(26)</td>
<td>t13 := 4 * n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12)</td>
<td>if t5 > v goto (9)</td>
<td>(17)</td>
<td>t8 := 4 * j</td>
<td>(27)</td>
<td>t14 := a[t13]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>if i >= j goto (23)</td>
<td>(18)</td>
<td>a[c12] := t14</td>
<td>(28)</td>
<td>a[c12] := t14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>t6 := 4 * i</td>
<td>(19)</td>
<td>t15 := 4 * n</td>
<td>(29)</td>
<td>t16 := 4 * n</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Control-Flow Analysis

- How to build the Control-Flow Graph (CFG)?
 - each basic block as node, each jump statement as edge.
 - there is always a root --- the “initial” node or the entry point.

- How to identify loops? and how to identify nested loops?
 1. build the dominator tree from the CFG
 2. find all the back edges; each back edge defines a natural loop
 3. keep finding the innermost loop and reduce it to a single node.

 - Given a CFG G with the initial node (root) r, we say node d dominates node n, if every path from root r to n goes through d.

 - Dominator tree is used to characterize the “dominate” relation: r as the root, the parent of a node is its immediate dominator. (see ASU page 602--608 for more details)

Data-Flow Analysis

- Data-Flow Analysis refers to a process in which the optimizer collects data-flow information at all the program points.

- Examples of interesting data-flow information:
 - reaching definitions: the set of definitions reaching a program point
 - available expressions: the set of expressions available at a point
 - live variables: the set of variables that are live at a point

- Program points: with each basic block, the point between two adjacent statements, or the point before the first statement and after the last. A path from point \(p_1 \) to \(p_n \) is a sequence of points \(p_1, ..., p_n \) such that \(p_i \) and \(p_{i+1} \) are “adjacent” for all \(i = 1, ..., n-1 \).

- For each statement \(S \), we associate it with four sets:
 - \(in[S] \): the set of data-flow info. associated with the point before \(S \)
 - \(out[S] \): the set of data-flow info. associated with the point after \(S \)
 - \(gen[S] \): the set of data-flow info. generated by \(S \)
 - \(kill[S] \): the set of data-flow info. destroyed by \(S \)

 Naturally, if \(S_1 \) and \(S_2 \) are two “adjacent” statements within a basic block, say, \(S_2 \) immediately follows \(S_1 \), then \(in[S_2] = out[S_1] \).

- We can define these four sets for each basic block \(B \) in the same way. The \(gen \) and \(kill \) sets of a basic block can be calculated from the corresponding values for each statement of that basic block.

- Forward-DataFlowProblem: the data-flow info. is calculated along the direction of control flow; Backward-DataFlowProblem: the data-flow info. is calculated opposite to the direction of control flow.
Example: Reaching Definitions

- A definition \(d \) reaches a point \(p \) if there is a path from the point immediately following \(d \) to \(p \), such that \(d \) is not "killed" along that path.
- A definition of a variable \(v \) is "killed" between two points if there is a read of \(v \) or an assignment to \(v \) in between.
- Goal: given a program point \(p \), find out the set of definitions that might reach point \(p \). This is a forward data-flow problem:

```c
/* initialize out[B] assuming in[B] = Ø for all B */
change := true;
while change do begin
  change := false;
  for each block \( B \) do begin
    in[B] := union of out[P] for all predecessor \( P \) of \( B \);
    oldout := out[B];
    out[B] := gen[B] \union in[B] \ subtract kill[B];
    if out[B] <> oldout then change := true
  end
end
```

Other Data-Flow Problems

- Use-Definition Chains: for each use of a variable \(v \), find out all the definitions that reach that use. (directly from reaching definitions info.)
- Available Expressions: an expression \(x + y \) is available at a point \(p \) if every path from the initial node to \(p \) evaluates \(x + y \), and after the last such evaluation prior to reaching \(p \), there are no subsequent assignments to \(x \) or \(y \). (this is a forward data-flow problem)
- Live-Variable Analysis: a variable \(x \) is live at point \(p \) if the value of \(x \) at \(p \) may be used along some path starting at \(p \). (this is a backward data-flow problem)
- Definition-Use Chains: for each program point \(p \), compute the set of uses \(s \) of a variable \(x \) such that there is a path from \(p \) to \(s \) that does not redefine \(x \). (backward data-flow problem)

Using Data-Flow Info.

- Common Subexpression Eliminations: a flow graph with available expression information. (ASU page 634)
 For every statement \(s \) of the form \(x := y + z \) such that \(y + z \) is available at the beginning of \(s \)'s block, neither \(y \) nor \(z \) is defined prior to \(s \) in that block.
 1. discover all the last evaluations of \(y + z \) that reach \(s \)'s block
 2. create a new variable \(u \).
 3. replace each statement \(w := y + z \) found in (1) by
 \[
 u := y + z \\
 w := u
 \]
 4. replace statement \(s \) by \(x := u \)

Using Data-Flow Info. (cont’d)

- Copy Propagations: a flow graph plus the ud-chains and du-chains information, and also some copy-statement info. (see ASU page 638)
 for each copy \(s : x := y \), determine all the uses of \(x \) that reached by this definition of \(x \), then for each use of \(x \), determine \(s \) is the only definitions that reaches this use, if so, replace the use of \(x \) with \(y \).
- Loop Invariants: a flow graph plus the ud-chains information
 a statement is a loop invariant if its operands are all constants, or its reaching definitions are loop invariants or from outside the loop.
- For more examples, see the ASU section 10.7.
- Challenges: what if there are procedure calls, pointer dereferencing ...? also, how to make these algorithms more efficient?
Static-Single Assignment

• **Motivation**: how to make data-flow analysis more efficient & powerful?

• **Static-Single Assignment (SSA) form** --- an extension of CFG:

  ```
  v := 4
  z := v + 5
  v := 6
  y := v + 7
  if P then v := 4
  else v := 6
  u = v + y
  ```

 SSA transformation:

  ```
  v1 := 4
  z := v1 + 5
  v2 := 6
  y := v2 + 7
  if P then v3 := 4
  else v4 := 6
  v5 = \phi(v3, v4)
  u = v5 + y
  ```

• **Main idea #1**: each assignment to a variable is given a unique name, and all of the uses reached by that assignment are renamed to match the assignment's new name.

Static-Single Assignment (cont’d)

• **Main idea #2**: after each branch-join node, a special form of assignment called a ϕ-function is inserted. \(\phi(v_1, v_2, ..., v_n) \) means that if the runtime execution comes from the \(i \)-th predecessor, then the above ϕ-function returns the value of \(v_i \).

• **Why SSA is good**? SSA significantly simplifies the representation of many kinds of dataflow information; data flow algorithms built on def-use chains, etc. gain asymptotic efficiency.

 In SSA, each use is reached by a unique def, so the size of def-use chains is linear to the number of edges in the CFG.

 In non-SSA, the def-use chains are much bigger.

SSA Construction [Cytron91]

• Turn every "preserving" def into a "killing" def, by copying potentially unmodified values (at subscripted defs, call sites, aliased defs, etc.)

• Every ordinary definition of \(v \) defines a new name.

• At each node in the flow graph where multiple definitions of \(v \) meets, a ϕ-function is introduced to represent yet another new name of \(v \).

• Uses are renamed by their dominating definitions (where uses at a ϕ-function are regarded as belonging to the appropriate predecessor node of the ϕ-function).

• **Code Size**: the f-function inserted in SSA can increase the code size, but only linearly; in practice, the ratio of SSA over OLD is 0.6 - 2.4.