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It is a long-standing open problem to support verified compilation of multi-threaded programs compositionally
when sharing of stack data between threads is allowed. Although certain solutions exist on paper, none of

them is completely formalized because of the difficulty in simultaneously enabling sharing and forbidding

modification of stack memory in presence of arbitrary memory operations (e.g., pointer arithmetic). We present

a compiler verification framework that solves this open problem in the setting of cooperative multi-threading.
To address the challenges of sharing stack data, we introduce threaded Kripke memory relations (TKMR) to

support both protection and sharing of stacks in a multi-stack memory model. We further introduce threaded
forward simulations parameterized by TKMR to capture semantics preservation for compiling programmodules

in multi-threaded contexts. We show that threaded forward simulations are both horizontally composable—
thereby enabling the compositional verification of open threads and heterogeneous modules—and vertically
composable—thereby enabling composition of compiler correctness for multiple compiler passes. Furthermore,

threaded forward simulations can be converted into backward simulations. We apply this framework to 18

passes of CompCert to get CompCertOC, the first optimizing verified compiler that supports compositional

verification of cooperative multi-threaded programs with shared stacks.

CCS Concepts: • Theory of computation→ Program verification; Concurrency; • Software and its
engineering→ Correctness; Formal software verification; Compilers.

Additional Key Words and Phrases: Verified Compositional Compilation, CompCert, Cooperative Multithread-

ing, Stack Sharing

ACM Reference Format:
Ling Zhang, Yuting Wang, Yalun Liang, and Zhong Shao. 2025. CompCertOC: Verified Compositional Compila-

tion of Multi-threaded Programs with Shared Stacks. Proc. ACM Program. Lang. 9, PLDI, Article 173 (June 2025),
27 pages. https://doi.org/10.1145/3729276

1 Introduction
Software often consists of modules written in different languages (i.e., heterogeneous modules). To

ensure the verified properties hold for their compiled binary code, it is essential to support verified
compositional compilation (VCC), i.e., separate verification of the compilers for heterogeneous

modules and composition of compiler correctness theorems. The past decade has witnessed great
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1 void *thread(void *p) { (*(int *)p)++; }

2 int main() { int i = 0; pthread_t tid;

3 pthread_create (&tid ,NULL ,thread ,(void *)&i);

4 pthread_join(tid ,NULL); printf("%d\n", i); }

Fig. 1. A Concurrent Program not Supported by VCC

progress towards achieving this goal [Gu et al. 2015; Koenig and Shao 2021; Song et al. 2020; Stewart

et al. 2015; Wang et al. 2019; Zhang et al. 2024]. These projects target realistic optimizing compilers

and are built upon CompCert, the state-of-the-art verified compiler [Leroy 2023].

It has been long believed that VCC can support concurrent programs. For cooperative multitasking,
when a single concurrent thread (or process) is under focus, it behaves like an open module

interacting with other threads through external function calls because context switches behave

like function calls in this case. Therefore, compiler correctness for individual threads and processes

can be proved separately and composed into that for the complete program with cooperative

concurrent semantics. To apply such compiler correctness to concurrent program verification

with preemptive semantics, the equivalence between cooperative and preemptive semantics is

then proved by exploiting the well-behavedness of source and target programs. For example, in

CASCompCert [Jiang et al. 2019a], this is done by exploiting a DRF-SC (i.e., data-race free programs

are sequentially consistent) theorem to shuffle context switches to call sites to thread primitives.

Since this proof is more about program verification rather than compiler verification, we shall focus

on cooperative concurrency in the remaining discussion.

Although the existing works have realized the above vision to a certain extent [Gu et al. 2018;

Jiang et al. 2019a; Zha et al. 2022], they are unable to support a common practice in multi-threaded

programming, i.e., sharing of stack-allocated data among threads.
1
A simple example for illustrating

this problem is depicted in Fig. 1. It is representative of concurrent programs that delegate tasks

to child threads by sharing stack data. The main thread creates a child thread for increasing its

stack variable i by passing its address, which effectively results in sharing of i. After the task is

completed, the main thread prints the result. In essence, the two threads behave like two modules

sharing the same code but with different entry points (main and thread). More importantly, their

executions are interleaved because of concurrency. A context switch starting from one thread

and ending with switching back behaves like an external call of that thread. Therefore, compiler

correctness for the two threads should simply be those for modules focusing on different entry

functions, which are then composed to form the correctness for compiling the whole program.

Unfortunately, none of the existing approaches to VCC supports this seemingly trivial example,

because there are fundamental conflicts between supporting shared stack-data and the critical

compositionality properties for compiler correctness, i.e., horizontal and vertical compositionality:

Vertical Compositionality: 𝐿1 ⩽ 𝐿2 ⇒ 𝐿2 ⩽ 𝐿3 ⇒ 𝐿1 ⩽ 𝐿3

Horizontal Compositionality: 𝐿1 ⩽ 𝐿
′
1
⇒ 𝐿2 ⩽ 𝐿

′
2
⇒ 𝐿1 ⊕ 𝐿2 ⩽ 𝐿′1 ⊕ 𝐿′2

Here, a refinement relation 𝐿1 ⩽ 𝐿2 (usually a forward simulation) encodes the compiler correctness

between cooperative semantics of open modules before (𝐿1) and after (𝐿2) compilation. Vertical

compositionality ensures that the refinements for two adjacent compiler passes can be combined into

a single refinement. It is critical for supporting multi-pass compilers. Horizontal compositionality

ensures that the parallel refinements for different open modules can be combined together where

𝐿1 ⊕ 𝐿2 denotes the semantic composition of 𝐿1 and 𝐿2. It is critical for compiling heterogeneous

1
A solution exists on paper [Jiang et al. 2019b] which is not formalized due to excessive complexity. See §7 for details.
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modules where 𝐿1 and 𝐿2 may denote semantics of modules written in different languages with

complicated interactions (e.g., mutual calls). Both compositionalities require appropriate description

of the rely conditions the open modules depend upon and the guarantee conditions they ensure.

A great amount of work has been devoted to ensuring both compositionalities with or without

concurrency [Gu et al. 2015; Hur et al. 2012; Koenig and Shao 2021; Neis et al. 2015; Patterson and

Ahmed 2019; Song et al. 2020; Stewart et al. 2015; Zhang et al. 2024].

Continue with the example in Fig. 1. The child thread should be able to modify the publicly

accessible stack variable i of its parent. On the other hand, it should not modify any private stack

variable of its parent (e.g., tid). The requirement for sharing public stack data while protecting

private stack data imposes additional rely-guarantee conditions. Because it is unclear how to

formalize these rely-guarantee conditions so that they are preserved under horizontal and vertical

composition, existing works on VCC for concurrency (among them the most well-known are

Thread-safe CompCertX [Gu et al. 2018] and CASCompCert [Jiang et al. 2019a]) simply forbid stack

memory of one thread (i for the main thread in Fig. 1) to be leaked to and modified by another

thread. This solution deviates from the common assumption that stack memory should be treated

no differently from other memory such as heap or global memory (e.g., POSIX thread APIs), and

cannot support common programming idioms like in Fig. 1 or scoped threads in Rust [Library 2024].

In this paper, we present a formalized solution to the open problem of sharing stack-data in VCC

for cooperative multi-threaded programs. Our contributions are summarized as follows:

• We introduce threaded Kripke memory relations (TKMR), a formalization of rely-guarantee

conditions for multi-threaded programs that simultaneously supports sharing of public

stack data and protection of private data. On top of that, we introduce threaded forward
simulations, a notion of compiler correctness as forward simulations for cooperative concurrent
semantics that supports shared stacks, open threads written in heterogeneous modules, and

both horizontal and vertical compositionality. Moreover, they can be flipped into backward

simulations in the end by following the same idea of CompCert.

• We verify that 18 of CompCert’s total 20 passes satisfy threaded forward simulations
2
. By

vertical compositionality we get CompCertOC, the first verified optimizing compiler that

supports multi-threaded open programs with stack sharing. The formal development is

based on two existing extensions of CompCert: Nominal CompCert [Wang et al. 2022] for

supporting thread-local stacks and CompCertO [Koenig and Shao 2021; Zhang et al. 2024]

for supporting VCC. It is fully formalized in Coq based on CompCert v3.13.

• To demonstrate the effectiveness of the above framework, we apply it to verify non-trivial

multi-threaded programs that combine heterogeneity (modules written in different languages

such as C and assembly) and stack sharing (sharing stack data between parent and child

threads using POSIX thread APIs). For this, we develop semantics for describing programs

using POSIX thread APIs and the techniques for composing compiler correctness to derive

both forward and backward simulations between complete multi-threaded programs.

Note that our compiler correctness theorems include both forward and backward simulation of

cooperative semantics. As mentioned above, following the existing approaches [Gu et al. 2018; Jiang

et al. 2019a], the connection with preemptive semantics should be handled in program verification

frameworks and left for future work (see the discussion in §7 for more details). In the rest of the

paper, we first introduce the key ideas for enabling stack sharing in VCC in §2. We then discuss the

technical background and challenges in §3. We elaborate on our ideas and contributions in §4, §5

and §6. Finally, we discuss the related work in §7.

2
The two missing passes are SimplExpr and Unusedglob. We explain why they are omitted in §5.
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1 /* client.c */

2 #define N 5

3 typedef struct {

4 int *input , *result , size; } Arg;

5 void* server(void *a);

6

7 int main() {

8 pthread_t a;

9 int input[N]={1,2,3,4,5}, result[N];

10 int mask = 0, i;

11 Arg arg = {input ,result ,N};

12

13 pthread_create (&a,0,server ,&arg);

14 for (i = 0;i < N;i++)

15 { mask += input[i]; yield(); }

16 pthread_join(a, NULL);

17 for (i = 0;i < N;i++) {

18 result[i] = result[i] & mask;

19 printf("%d; ", result[i]); }

20 }

(a) Client running on the main thread

1 /* server.c */

2 void encrypt (int i, int *r);

3 void* server(void *a) {

4 int *i = ((Arg *)a)->input;

5 int *r = ((Arg *)a)->result;

6 int size = ((Arg *)a)->size;

7 for (int j = 0;j < size;j++) {

8 encrypt(i[j], r+j);

9 yield(); }

10 return NULL;

11 }

12 /* encrypt.s */

13 key: .long 42

14 encrypt:

15 Pallocframe 16 8 0 // allocate frame

16 Pmov key RAX

17 Pxor RAX RDI // result = i XOR key

18 Pmov RDI (RSI) // stores to (RSI)

19 Pfreeframe 16 8 0 // free frame

20 Pret

(b) Server running on the child thread

Fig. 2. An Example of Multi-Threaded Program with Stack Sharing

2 Key Ideas

2.1 A Running Example
To illustrate the key ideas, we introduce a running example of multi-threaded program composed

of open modules in Fig. 2. It consists of a client written in C (Fig. 2a) which runs on the main thread

and a server written in C and assembly (Fig. 2b) which runs on the child thread. We use POSIX

primitives pthread_create and pthread_join to implement thread creation and waiting. As we

work with cooperative concurrency, we use a yield primitive to encode explicit context switches.

This example encrypts N input integers, where the encryption happens both at the server

side (XORing inputs with a fixed encryption key 42) and at the client side (encoding the results

of the server with a mask calculated from the inputs). The main function uses variables input
and result as its buffers. The addresses and sizes of these buffers are passed to server through
pthread_create. Concurrent to the execution of server, the client calculates amask from the input

values which is used to encode the results after the pthread_join. The function encrypt is written
in assembly. It receives input value 𝑖 and the pointer to result 𝑟 in RDI and RSI respectively, does
the encryption using XOR and stores the result. The function server simply calls the encryption

function written in assembly for each input value. We assume that context switches happen at

the end of each iteration by calling yield. As we can see, although the input and result arrays
reside in the client stack, they are shared and modified by the server thread.

Despite being small, our running example contains all the features we care about in this work,

including heterogeneous modules, dynamic thread creation, stack sharing, and context switches

between threads. Therefore, it is non-trivial and none of the existing approaches can support its

VCC. We shall use this example to illustrate the feasibility of our approach in VCC of concurrency

with stack-sharing. We leave the application to larger-scale program verification for future work.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 173. Publication date: June 2025.
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[[client.c]]

[[client.s]]
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[[server.c]]

[[server.s]]
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r
t

⩽
C

⊕

⊕ [[encrypt.s]]

𝐿E

⩽
C

⊕

⊕ 𝑇mt

𝑆mt
⩽
closed

Fig. 3. Verification of the Running Example

2.2 Motivations
Following the standard practice of VCC, the schema for verifying the running example is depicted

in Fig. 3. We first verify the correctness for compiling individual modules which is denoted by

a refinement relation ⩽C between source and target semantics ([[𝑀]] denotes the semantics of

module𝑀). We then compose individual refinements into ⩽closed for the whole program. In the first

step, we treat all thread primitives such as yield, thread_create and thread_join as external
calls, which are turned into internal executions like other external calls in the second step.

Unfortunately, existing techniques for VCC of sequential programs do not work for thread

primitives. To see that, we first review the most recent approach to VCC developed by Zhang et al.

[2024]. In this approach, semantics of open modules are implemented as open labeled transition
systems. Refinements between them are defined as forward simulations (which may be flipped into

backward simulations) using rely-guarantee conditions which have been widely studied [Koenig

and Shao 2021; Liang et al. 2012; Song et al. 2020; Stewart et al. 2015; Zhang et al. 2024].

𝑞1𝐿1 : 𝑟1

𝑞2 𝑟2

Guarantee

𝑞′
2

𝐿2 :

𝑟 ′
2

𝑞′
1

𝑟 ′
1

Rely

⩽

Fig. 4. Rely-Guarantee Simulation

Fig. 4 depicts a simulation between two open semantics 𝐿1
and 𝐿2. The source semantics 𝐿1 is invoked by a query (i.e.,

function call) 𝑞1 and may issue external call 𝑞′
1
after internal

execution. When the external function returns with a reply 𝑟 ′
1
,

𝐿1 continues to execute. After several external calls, it finally

returns a reply 𝑟1 to the initial query. The target semantics 𝐿2
shares the same structure. Its queries and replies are related

to the source via simulation invariants denoted by the vertical

double arrows. Certain rely conditions for external calls are
assumed so that the invariant between 𝑟 ′

1
and 𝑟 ′

2
still holds

when they return. In turn, guarantee conditions from 𝑞1 and

𝑞2 to 𝑟1 and 𝑟2 need to be proved so that 𝐿1 and 𝐿2 satisfy the rely conditions for their callers. It is

exactly those rely-guarantee conditions that enable the composition of refinements in Fig. 3.

Themost important job of the rely-guarantee conditions is to distinguish between privatememory

local to modules or threads and public memory shared between them, and to protect the former

from modification by the environment. For example, the rely condition for calling encrypt in

[[server.c]] requires that the local variable j is unchanged during the call because j could be

optimized into a callee-saved register. The simulation no longer holds if j is changed by encrypt.
For this, Kripke memory relations, or KMRs are proposed by CompCertO [Koenig and Shao 2021].

In a KMR, a world type𝑊 is given s.t. each world𝑤 = ( 𝑗,𝑚1,𝑚2) ∈𝑊 contains a pair of source and

target memory states𝑚1 and𝑚2 related by a memory injection function 𝑗 (a structure-preserving

embedding of source memory states into target [Leroy et al. 2012]). The evolution of memory across

external calls is then defined as the accessibility relation between worlds (written as𝑤 { 𝑤 ′) which
enforces necessary memory protection. The most general KMR is called injp. Its key idea is to

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 173. Publication date: June 2025.
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𝑤1

𝑤2 𝑤3 𝑤4

C :

S :

𝑤5

j++

entire yield sequence

encrypt

(𝑤𝑖 denote Kripke worlds)

(a) A call to yield

input result arg a mask i

𝑏main

i r a size j

𝑏server

𝑏′main 𝑏′server
𝑗

(b) Memory injection at the beginning of yield

Fig. 6. An Example Showing Inadequacy of injp for Multithreading

define the private and public regions for the source memory𝑚1 and the target𝑚2 w.r.t. the domain

and range of injection 𝑗 for any given world ( 𝑗,𝑚1,𝑚2). For example, in Fig. 5,𝑚1 and𝑚2 contain

memory regions to the left of the dashed vertical line. They are related by 𝑗 before an external call.

The regions in the domain and range of 𝑗 (white areas) are public because they represent memory

reachable from source and target function arguments. The regions in𝑚1 unmapped by 𝑗 (shaded

areas in𝑚1) and those out-of-reach from 𝑗 in𝑚2 (shaded areas in𝑚2) are private memory of the

caller because they are either removed from the source memory or inserted into the target memory

to store private data (e.g., spilled registers) by the compiler. During the external call, new memory

blocks may be allocated, resulting in updated memories𝑚′
1
and𝑚′

2
and injection 𝑗 ′. The accessibility

( 𝑗,𝑚1,𝑚2) { ( 𝑗 ′,𝑚′1,𝑚′2) ensures that the private regions in𝑚1 and𝑚2 are unchanged in𝑚′
1
and

𝑚′
2
, i.e., they cannot be modified by the external call (callee).

𝑚1

𝑚2

𝑗

𝑚′
1

𝑚′
2

𝑗 ′

Fig. 5. Kripke Worlds Related by injp

Although injp works well for sequential pro-

grams, it does not correctly describe the rely-

guarantee conditions for context switcheswhen they

are treated as external calls. For example, assume

the execution of our running example has reached

the following state: the server thread has previously

switched to the client by calling yield at line 9

in Fig. 2b, and the client thread is about to switch

back to the server at line 15 in Fig. 2a. The subsequent call to yield executes j++, calls encrypt in

the server thread, and returns to the client by another yield, as shown in Fig. 6a where the vertical

arrows stand for context switches.

A snapshot of the memory state right before yield is given in Fig. 6b where 𝑏main and 𝑏server
depict the client and server stack frames at the source, respectively; 𝑏′main and 𝑏

′
server are target

frames after compilation. Note that for simplicity we omit the stack frame for encrypt. Because
input, result and arg are leaked public memory, they are preserved by compilation and reside in

the domain of injection 𝑗 . By definition, injp already enables sharing of those public stack regions

across threads. Therefore, encrypt is allowed to modify their contents. However, except for input,
result and arg, all the remaining memory regions are private: source private variables including j
are turned into register values and target ones are newly added private stack regions. Therefore, j++
is illegal by injp. Since yield as an external call violates the rely condition that private memory

cannot be modified, we fail to prove the compiler correctness.

2.3 Key Idea 1: Threaded Kripke Memory Relations
It is easy to observe that calling yield is actually not the same as calling a regular function. The

yield sequence in Fig. 6a begins and ends in the middle of a function call. Such internal execution

of a function call should be allowed to modify the private variables on its own stack frame (e.g.,

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 173. Publication date: June 2025.
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A:
𝑤𝑞1 𝑤𝑞2 𝑤𝑟2 𝑤𝑞3 𝑤𝑟3 𝑤𝑟1{𝑖 {𝑒 {𝑖 {𝑒 {𝑖

{𝑒

(a) Accessibilities for function calls

A:
𝑤𝑞2

𝑤𝑞4B:
𝑤𝑟4

𝑤𝑞5C:
𝑤𝑟5

𝑤𝑟2

{𝑖

{𝑖

{𝑒

(b) Verifying context switches

Fig. 7. Rely-Guarantee Reasoning for Function Calls and Context Switches

j). The problem is that injp only captures the rely-guarantee of an entire function call, not its

internal steps, which is too strong for context switches.

Our solution is to revise KMR and the memory model so that they capture the desired rely-

guarantee memory protection for both regular function calls and context switches (caused by

yield, thread_create, thread_join, etc.). The enhanced KMR is called threaded Kripke memory
relations (TKMR). In TKMR, a new accessibility relation called internal accessibility (denoted by{𝑖 )

is introduced whose only purpose is to describe the guarantees provided by internal executions.

That is, internal steps in the current thread can modify its own private stack, but never modify

the private stack of the other threads. For example, the server can perform j++ internally, but

it can never modify mask. Now, as a rely condition for yield, the original accessibility { is in

conflict with{𝑖 as it does not allow modification to any private memory. To solve this problem,

TKMR relaxes{ to only protect the private memory of the current thread, resulting in external
accessibility (denoted by {𝑒 ). This relaxation is possible because simulation invariants for the

current thread can be preserved by context switches or external function calls if its own private

state is not modified by them; modification of the private stacks of the other threads is harmless

(e.g., j++ in Fig. 6a). In summary, the new accessibility relations are defined as follows:

(1) 𝑤 {𝑒 𝑤
′
holds if the private memory of the current thread in𝑤 is unchanged in𝑤 ′;

(2) 𝑤 {𝑖 𝑤
′
holds if the private memory of the other threads in𝑤 is unchanged in𝑤 ′.

To formalize the above definitions, we need to distinguish stack memory blocks allocated for

different threads. This is difficult in the original CompCert where memory blocks are assigned

positive numbers sequentially as their identifiers. We adopt a Nominal Memory Model [Wang et al.

2022] to divide the memory space into global memory and individual stack memory for each thread.

Each stack block is named additionally using the thread id of its owner. The memory state also

includes a current thread id to distinguish thread local blocks from the other stack blocks.

With the devices of TKMR in place, we first show what the rely-guarantee conditions for regular

function calls look like. An example of memory evolution is depicted in Fig. 7a, which describes

a function call by thread 𝐴. 𝑤𝑞1 represents the world from initial calls (e.g., 𝑞1 and 𝑞2 in Fig. 4).

There are two external calls 𝑞2 and 𝑞3 during the function execution. Assume 𝑞2 is a yield and 𝑞3
is a regular function call (e.g., encrypt). We use{𝑒 to uniformly describe their rely conditions,

fulfilling our purpose to treat context switches as regular calls.{𝑖 captures the internal guarantee
which defines legal memory evolution of internal execution starting from either the initial call (𝑞1)

to an external call (𝑞2), or a function reply (𝑟2) to another external call (𝑞3), or from a function reply

(𝑟3) to the final return (𝑟1). Finally, the external guarantee 𝑤𝑞1 {𝑒 𝑤𝑟1 for the entire function call is

proved by reasoning about its behavior like in CompCertO.

We then illustrate how rely conditions for context switches are verified using internal accessibility.

Fig. 7b shows a possible execution sequence for the yield from 𝑞2 to 𝑟2 in Fig. 7a. Context switches

between different threads are denoted by vertical arrows. For example, 𝑤𝑞2 and 𝑤𝑞4 contain the

same memory states except that the current thread is changed from 𝐴 to 𝐵. Between the initial call

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 173. Publication date: June 2025.
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𝐶 : 𝑤𝐶
0

𝑤𝑆
0

𝑆 : 𝑤𝑆
1

𝑤𝑆
2

𝑤𝐶
2

𝑤𝐶
3

𝑤𝑆
3

. . .

. . .
j++;

{𝑖

i++; mask+=input[i];

{𝑖

yield

{𝑒

yield

{𝑒

encrypt

{𝑖 ∧{𝑒

Fig. 9. TKMR Accessibility Relations for the Running Example

to yield by thread 𝐴 and the return to 𝐴, the rely condition{𝑒 requires the private and local stack

memory of thread 𝐴 unchanged. This condition is satisfied by the internal guarantee of thread 𝐵

and 𝐶 as follows. By definition,𝑤𝑞4 {𝑖 𝑤𝑟4 ensures the private stacks of threads 𝐴 and 𝐶 are not

modified by 𝐵. Similarly,𝑤𝑞5 {𝑖 𝑤𝑟5 ensures the private stacks of threads𝐴 and 𝐵 are not modified

by 𝐶 . Therefore, the private stack of 𝐴 is not modified throughout the entire yield sequence. Note

that we assume context switches will not further trigger external calls. This is ensured by first

performing linking of modules and then linking of threads, as we shall discuss below.

2.4 Key Idea 2: Threaded Forward Simulations

𝑞1𝐿1 :

𝑞2𝐿2 :

𝑞′
1

𝑞′
2

𝑟 ′
1

𝑟 ′
2

𝑟1

𝑟2

⩽

RelyI.G. I.G.

External Guarantee

Fig. 8. Threaded Forward Simulation

To formalize the correctness for compiling individual

threads where thread primitives are treated as external

functions, we introduce an enhancement to the rely-

guarantee simulation in Fig. 4 called threaded forward
simulations. As depicted in Fig. 8, it is a forward simula-

tion of cooperative concurrent semantics that relates the
source semantics 𝐿1 and target semantics 𝐿2 through

a TKMR. Its rely condition embeds external accessi-

bility {𝑒 to uniformly describe the requirement for

sharing and protecting stack memory for both function

calls and context switches. The internal guarantee (I.G.)

embeds internal accessibility {𝑖 for memory protection by internal steps. Finally, the external

guarantee embeds{𝑒 to capture the guarantee for regular function calls.

Threaded forward simulations satisfy the vertical compositionality as described in the introduc-

tion. It means that the correctness of individual compiler passes can be composed into a single

threaded forward simulation (e.g., ⩽C in Fig. 3). Moreover, threaded forward simulations are also

horizontally composable, thereby enabling the compiler correctness of individual threads or mod-

ules to be composed into correctness for compiling whole programs. Technically speaking, this

composition has two steps: module linking and thread linking. The first step links regular function

calls, resulting in refinements for source and target semantics whose only external interaction

is calling thread primitives. The second step links thread primitives: by exploiting the internal

guarantee and external rely conditions of TKMR, a forward simulation for closed multi-threaded
semantics which concretely defines program loading and thread primitives is generated. Threaded

forward simulations can also be flipped into backward simulations and composed into closed

backward simulation by exploiting the determinacy of target semantics and receptiveness of source
semantics like in CompCert.

2.5 Verification of the Running Example
We illustrate how to verify our running example with the above key ideas by following the pattern

in Fig. 3. First, we need a verified compiler for compiling client.c and server.c into assembly

code. For this, we have developed CompCertOC which consists of 18 passes of CompCert’s 20
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verified passes. We prove each pass correct w.r.t a TKMR. By vertical compositionality, we get

CompCertOC’s compiler correctness as the threaded forward simulation ⩽C. Second, we verify
that the assembly module encrypt.s is related to a specification 𝐿E through the same ⩽C. Finally,
we perform module linking to link the three modules into a complete program, and thread linking

to give closed semantics to pthread_create, pthread_join and yield and to derive the closed

forward simulation ⩽closed. A closed backward simulation ⩾closed can also be obtained by first

flipping ⩽C and then performing horizontal composition.

The most critical part of the verification is to prove that each open module running on a single

thread satisfies the rely-guarantee conditions of TKMR (i.e., internal and external accessibilities). To

see how it works, let us revisit our failed example of proving compilation of yield at the end of §2.2.

A complete loop of context switches between the two threads is depicted in Fig. 9. The execution

follows the solid arrows where the vertical ones stand for context switches and horizontal ones

stand for internal execution. The private and public memory are determined by injection as depicted

in Fig. 6b. Now, consider proving the correctness for compiling server.c which treats encrypt as

an external function. We first need to prove𝑤𝑆
0
{𝑖 𝑤

𝑆
1
holds for internal execution, i.e., j++ does

not modify any private variables a, mask and i in 𝑏main of the main thread. This is obviously true.

Similarly, we can prove that encrypt also satisfies the internal accessibility𝑤𝑆
1
{𝑖 𝑤

𝑆
2
. By linking

with the module encrypt.s, we expose this internal accessibility. Then, we derive the external
accessibility𝑤𝐶

0
{𝑒 𝑤

𝐶
2
for the entire yield sequence from𝑤𝑆

0
{𝑖 𝑤

𝑆
1
and𝑤𝑆

1
{𝑖 𝑤

𝑆
2
because they

guarantee the internal steps of the server do not modify any private stack variable of the client.

Note that𝑤𝐶
0
{𝑒 𝑤

𝐶
2
holds because, unlike the original accessibility,{𝑒 does not require j to be

unchanged. Symmetrically,𝑤𝑆
2
{𝑒 𝑤

𝑆
3
is satisfied by the internal guarantees of the main thread.

The changes from KMR to TKMR may look simple at first. However, their formal development is

quite challenging and requires substantial efforts, which we elaborate in the following sections.

3 Background and Challenges
3.1 Background
3.1.1 Memory Models. The block-based memory model of CompCert [Leroy et al. 2012] defines

a memory state𝑚 (of type mem) as a disjoint set of memory blocks. A pointer (𝑏, 𝑜) points to the

𝑜-th byte from block 𝑏 where 𝑏 has type block and 𝑜 ∈ 𝑍 is an integer. Values of type val are

either 32- or 64-bit integers or floats, pointers (Vptr(𝑏, 𝑜)) or undefined values (Vundef). During the
compilation, source and target memories are related via injection functions 𝑗 : block→ ⌊block×Z⌋
where ⌊ ⌋ is overloaded for the Option type and its Some constructor. 𝑗 (𝑏) = ∅ stands for 𝑏 being
removed by compilation and 𝑗 (𝑏) = ⌊(𝑏′, 𝑜)⌋ if the source block 𝑏 is embedded at (𝑏′, 𝑜) in the target
memory. The type of 𝑗 is given the name meminj. The values 𝑣1 and 𝑣2 are related by 𝑗 (denoted

as 𝑣1 ↩→𝑗
𝑣 𝑣2) if either 𝑣1 = Vundef, 𝑣1 = 𝑣2 for scalar values, or 𝑣1 = Vptr(𝑏1, 𝑜1), 𝑣2 = Vptr(𝑏2, 𝑜2)

and 𝑗 (𝑏1) = ⌊(𝑏2, 𝑜2 − 𝑜1)⌋, i.e., pointers are related by injection. Two memory states𝑚1 and𝑚2

are related by 𝑗 (denoted by𝑚1 ↩→𝑗
𝑚 𝑚2) if 𝑗 is a homomorphism from values in𝑚1 to those in𝑚2.

Nominal Memory Model [Wang et al. 2022] is an extension of the block-based memory model

using nominal techniques [Pitts 2016]. It introduces a nominal interface for the memory model such

that the type of memory blocks block can be further instantiated by other types. This enables

separation of different memory regions (e.g., global memory and stacks for individual threads) by

instantiating block which we shall exploit later.

3.1.2 Open Simulation of Sequential Semantics. Our work is based on the framework for open

simulation in CompCertO [Koenig and Shao 2021]. A language interface𝐴 = ⟨𝐴𝑞, 𝐴𝑟 ⟩ is a pair of sets
where 𝐴𝑞 and 𝐴𝑟 denote the type of queries and replies for an open module. The language interface

for C semantics is defined as C = ⟨val×sig×val∗×mem, val×mem⟩. A query 𝑣 𝑓 [sg] (®𝑣)@𝑚 consists
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Fig. 10. Simulation Diagrams for Open Forward Simulation

of function pointer, signature, arguments and memory. A reply 𝑣 ′@𝑚′ contains a return value

together with the updated memory. The interface for assembly isA = ⟨regset×mem, regset×mem⟩
where its queries and replies have the same form rs@𝑚 where rs maps registers to values.

Open labeled transition systems (LTS) represent semantics of modules that may accept queries

and provide replies at the incoming side and provide queries and accept replies at the outgoing side
(i.e., calling external functions). An open LTS 𝐿 : 𝐴 ↠ 𝐵 is a tuple ⟨𝐷, 𝑆, 𝐼 ,→, 𝐹 , 𝑋,𝑌 ⟩ where 𝐴 and

𝐵 are the language interfaces for outgoing and incoming sides, 𝐷 ⊆ 𝐵𝑞 a set of initial queries, 𝑆 a
set of internal states, 𝐼 ⊆ 𝐷 × 𝑆 and 𝐹 ⊆ 𝑆 ×𝐵𝑟 transition relations for incoming queries and replies,

𝑋 ⊆ 𝑆 ×𝐴𝑞 and 𝑌 ⊆ 𝑆 ×𝐴𝑟 × 𝑆 transitions for outgoing queries and replies, and→⊆ 𝑆 × E∗ × 𝑆
internal transitions emitting events of type E. Note that (𝑠, 𝑞𝑂 ) ∈ 𝑋 iff an outgoing query 𝑞𝑂

happens at 𝑠; (𝑠, 𝑟𝑂 , 𝑠′) ∈ 𝑌 iff 𝑠 receives the reply 𝑟𝑂 and resumes with an updated state 𝑠′.
Kripke relations are used to describe evolution of program states in open simulations. A Kripke

relation 𝑅 :𝑊 → {𝑆 | 𝑆 ⊆ 𝐴×𝐵} is a family of relations indexed by a Kripke world𝑊 ; for simplicity,

we define K𝑊 (𝐴, 𝐵) =𝑊 → {𝑆 | 𝑆 ⊆ 𝐴 × 𝐵}. The simulation convention relating two language

interfaces 𝐴1 and 𝐴2 is defined by R : 𝐴1 ⇔ 𝐴2 = ⟨𝑊,R𝑞 : K𝑊 (𝐴𝑞
1
, 𝐴

𝑞

2
),R𝑟 : K𝑊 (𝐴𝑟1, 𝐴𝑟2)⟩

A open forward simulation (denoted by 𝐿1 ⩽R𝐴↠R𝐵 𝐿2) is defined as [Koenig and Shao 2021]:

Definition 3.1. Given 𝐿1 : 𝐴1 ↠ 𝐵1, 𝐿2 : 𝐴2 ↠ 𝐵2, R𝐴 : 𝐴1 ⇔ 𝐴2 and R𝐵 : 𝐵1 ⇔ 𝐵2,

𝐿1 ⩽R𝐴↠R𝐵 𝐿2 holds if there is some Kripke relation 𝑅 ∈ K𝑊𝐵
(𝑆1, 𝑆2) that satisfies:

(1) ∀ 𝑤𝐵 𝑞1 𝑞2, (𝑞1, 𝑞2) ∈ R𝑞𝐵 (𝑤𝐵) ⇒ (𝑞1 ∈ 𝐷1 ⇔ 𝑞2 ∈ 𝐷2)
(2) ∀ 𝑤𝐵 𝑞1 𝑞2 𝑠1, (𝑞1, 𝑞2) ∈ R𝑞𝐵 (𝑤𝐵) ⇒ (𝑞1, 𝑠1) ∈ 𝐼1 ⇒ ∃ 𝑠2, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵) ∧ (𝑞2, 𝑠2) ∈ 𝐼2.
(3) ∀ 𝑤𝐵 𝑠1 𝑠2 𝑟1, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵) ⇒ (𝑠1, 𝑟1) ∈ 𝐹1 ⇒ ∃ 𝑟2, (𝑟1, 𝑟2) ∈ R𝑟𝐵 (𝑤𝐵) ∧ (𝑠2, 𝑟2) ∈ 𝐹2 .
(4) ∀ 𝑤𝐵 𝑠1 𝑠2 𝑡 𝑠′1, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵) ⇒ 𝑠1

𝑡→ 𝑠′
1
⇒ ∃ 𝑠′

2
, (𝑠′

1
, 𝑠′

2
) ∈ 𝑅(𝑤𝐵) ∧ 𝑠2

𝑡

→∗ 𝑠′
2
.

(5) ∀ 𝑤𝐵 𝑠1 𝑠2 𝑞1, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵) ⇒ (𝑠1, 𝑞1) ∈ 𝑋1 ⇒
∃𝑤𝐴 𝑞2, (𝑞1, 𝑞2) ∈ R𝑞𝐴 (𝑤𝐴) ∧ (𝑠2, 𝑞2) ∈ 𝑋2 ∧
∀ 𝑟1 𝑟2 𝑠′1, (𝑟1, 𝑟2) ∈ R𝑟𝐴 (𝑤𝐴) ⇒ (𝑠1, 𝑟1, 𝑠

′
1
) ∈ 𝑌1 ⇒ ∃ 𝑠′2, (𝑠′1, 𝑠′2) ∈ 𝑅(𝑤𝐵) ∧ (𝑠2, 𝑟2, 𝑠′2) ∈ 𝑌2.

Property (1) requires that 𝐿1 and 𝐿2 accept related queries. The remaining properties are illustrated

in Fig. 10 where dashed arrows represent existentially quantified relations. Property (2) initializes

the simulation invariant 𝑅(𝑤𝐵) from related incoming queries; (3) requires that the final replies are

related by the initial world𝑤𝐵 ; (4) requires internal execution to preserve the invariant 𝑅(𝑤𝐵); (5)
states that if 𝐿1 issues external call 𝑞1, 𝐿2 should issue 𝑞2 related to 𝑞1 by some world𝑤𝐴 derived

from the current program states. When the external calls return, the invariant 𝑅(𝑤𝐵) should be

established again. Note that the rely-guarantee conditions in Fig. 4 is implicitly defined in the Kripke

relation of replies R𝑟 (𝑤) by recording initial memory states in𝑤 [Koenig and Shao 2021].

3.1.3 Kripke Memory Relations and Direct Refinements. For the subsequent formal development,

we describe the most general definition of KMR injp [Zhang et al. 2024], which is for memory

protection in verification of the composition of sequential heterogeneous modules.
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Definition 3.2 (Kripke Memory Relation). A Kripke Memory Relation is a tuple ⟨𝑊, 𝑓 ,{, 𝑅⟩ where
𝑊 is a set of worlds, 𝑓 :𝑊 → meminj a function for extracting injections from worlds,{ ⊆𝑊 ×𝑊
an accessibility relation between worlds, and 𝑅 : K𝑊 (mem, mem) a Kripke relation over memory

states that is compatible with the memory operations. We write𝑤 { 𝑤 ′ for (𝑤,𝑤 ′) ∈ {.

Definition 3.3 (Kripke Relation with Memory Protection). injp = ⟨𝑊injp, 𝑓injp,{injp, 𝑅injp⟩ where
𝑊injp = (meminj × mem × mem), 𝑓injp ( 𝑗, _, _) = 𝑗 , (𝑚1,𝑚2) ∈ 𝑅injp ( 𝑗,𝑚1,𝑚2) ⇔𝑚1 ↩→𝑗

𝑚 𝑚2 and

( 𝑗,𝑚1,𝑚2) {injp ( 𝑗 ′,𝑚′1,𝑚′2) ⇔ 𝑗 ⊆ 𝑗 ′ ∧ unmapped( 𝑗) ⊆ unchanged-on(𝑚1,𝑚
′
1
) ∧

out-of-reach( 𝑗,𝑚1) ⊆ unchanged-on(𝑚2,𝑚
′
2
).

unchanged-on(𝑚,𝑚′) denotes the footprint of memory cells whose permissions and values are

not changed from𝑚 to𝑚′. (𝑏1, 𝑜1) ∈ unmapped( 𝑗) iff 𝑗 (𝑏1) = ∅ (i.e., 𝑏1 is removed from memory

by turning into temporary or register values). (𝑏2, 𝑜2) ∈ out-of-reach( 𝑗,𝑚1) means if 𝑗 (𝑏1) =
⌊(𝑏2, 𝑜2 − 𝑜1)⌋ then (𝑏1, 𝑜1) is not a valid memory location in𝑚1 (i.e., (𝑏2, 𝑜2) cannot be reached
from any value in𝑚1 via injection). unmapped and out-of-reach exactly define the private regions
in source and target memories as depicted in Fig. 5. Therefore, the accessibility{injp ensures that

private regions are unchanged between function calls and returns (i.e., they are protected).

Definition 3.4 (Direct Refinement). A direct refinement is a forward simulation 𝐿c ⩽CAinjp↠CAinjp

𝐿asm which directly relates C and assembly semantics. The simulation convention CAinjp is implicitly

defined using injp as: CAinjp = ⟨𝑊CA,R
𝑞

CA,R
𝑟
CA⟩ where𝑊CA = (𝑊injp, sig, regset). A world 𝑤 =

(( 𝑗,𝑚1,𝑚2), sg, rs) consists of related memories, the signature of incoming function and the initial

register values. (𝑣 𝑓 [sg] (®𝑣)@𝑚1, 𝑟𝑠@𝑚2) ∈ R𝑞CA (𝑤) holds if 1) 𝑤 corresponds to the initial queries,

i.e.𝑤 = (( 𝑗,𝑚1,𝑚2), sg, rs), 2) the memories and arguments are related by 𝑗 , and 3) the private stack
data before the call is indeed in the private memory regions by injp. (𝑟𝑒𝑠@𝑚′

1
, 𝑟𝑠′@𝑚′

2
) ∈ R𝑟CA (𝑤)

holds if the registers are protected according to the calling convention of CompCert and private

memory are protected by injp, i.e., ( 𝑗,𝑚1,𝑚2) {injp ( 𝑗 ′,𝑚′1,𝑚′2) and (𝑚′1,𝑚′2) ∈ 𝑅injp ( 𝑗 ′,𝑚′1,𝑚′2).

3.2 Challenges
Challenges in our formal development of VCC with shared stacks can be summarized at three

levels. First and foremost, we need to extend KMR and forward simulation to the threaded versions

as described in §2.3 and §2.4. As TKMR requires distinguishing thread local stack blocks from other

memory blocks, we need an enriched memory model for its formal definition. Second, with TKMR

as the new rely-guarantee conditions, it is unclear whether horizontal and vertical compositionality

of forward simulations still hold. In particular, context switches between threads are very different

from function calls: the beginning of context switch for one thread is not the beginning of context

switch for the target thread, but its end. Therefore, conflating yield with function calls requires

symmetric simulation conventions which were not presented in CompCertO. This change combined

with the complexity of TKMR incurs major technical challenges in proving the horizontal and

vertical compositionalities. Finally, realizing our ideas in a realistic optimizing compiler such as

CompCert is highly non-trivial. We need to adapt CompCertO with symmetric rely-guarantee

interfaces and to adapt the proofs for CompCert’s compiler passes and optimizations to fit into

threaded open simulations. Below we discuss our formal development to address these challenges.

4 Threaded Kripke Memory Relations and Simulations
To address the first two challenges, we first introduce a multi-threaded memory model. We then

extend injp into threaded Kripke memory relation tinjp with internal and external accessibilities.

Next, we define threaded simulation conventions and forward simulations using TKMR. Their

designs are non-trivial because the internal accessibilities do not fit into the pattern of function

calls. Finally, we discuss how to prove the compositionality of threaded forward simulations.
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4.1 A Multi-Threaded Memory Model
We implement multi-threaded memory model as an instance of the Nominal Memory Model. The

block type block is defined as block = nat × positive. A block name 𝑏 = (𝑡, 𝑝) consists of its
thread id 𝑡 and a block identifier 𝑝 . We write tid(𝑏) for the thread id of 𝑏. A memory state 𝑚

contains a support for recording the history of memory blocks allocated in different regions of

memory. Its type is sup = nat × list (list positive).3 A support (𝑡, 𝑠𝑡𝑎𝑐𝑘𝑠) consists of the
current running thread 𝑡 and lists of blocks 𝑠𝑡𝑎𝑐𝑘𝑠 . A thread id 𝑡 is always non-zero. 𝑠𝑡𝑎𝑐𝑘𝑠 [0]
represents the list of global memory blocks allocated so far, and 𝑠𝑡𝑎𝑐𝑘𝑠 [𝑡] (𝑡 > 0) contains stack
blocks allocated for thread 𝑡 . A block (𝑡, 𝑝) ∈ (𝑡 ′, 𝑠𝑡𝑎𝑐𝑘𝑠) is valid iff 𝑝 ∈ 𝑠𝑡𝑎𝑐𝑘𝑠 [𝑡]. When a

new block is allocated in a memory state with support (𝑡, 𝑠𝑡𝑎𝑐𝑘𝑠), it is given the fresh name

fresh_block((𝑡, 𝑠𝑡𝑎𝑐𝑘𝑠)) = (𝑡,𝑚𝑎𝑥 (𝑠𝑡𝑎𝑐𝑘𝑠 (𝑡)) + 1). We shall write tid(𝑚) for the current thread
id of the support in memory state𝑚.

With the above memory model, it is possible to decide whether 𝑏 is allocated by the current

thread by comparing tid(𝑏) with tid(𝑚), which is essential for defining accessibilities in TKMR.

The semantics of thread_create and yield affect only the support (𝑡, 𝑠𝑡𝑎𝑐𝑘𝑠): yield changes the

current thread id 𝑡 to some 𝑡 ′ where 1 ≤ 𝑡 ′ < length(𝑠𝑡𝑎𝑐𝑘𝑠). thread_create appends an empty

list after 𝑠𝑡𝑎𝑐𝑘𝑠 as the name space for the new thread. Notice that, because we have explicitly

maintained stacks for individual threads, our memory model is more faithful to how OS views the

memory state than previous work. See §7 for more details.

4.2 Threaded Kripke Memory Relations
We define threaded Kripke memory relation by extending Definition 3.2 with two accessibilities as

a tuple ⟨𝑊, 𝑓 ,{𝑖 ,{𝑒 , 𝑅⟩. TKMR with memory protection is defined as follows.

Definition 4.1 (Threaded Kripke Memory Relation with Memory Protection). The threaded version

of injp is defined as tinjp = ⟨𝑊tinjp, 𝑓tinjp,{
tinjp
𝑖

,{tinjp
𝑒 , 𝑅tinjp⟩ where the related memories

have the same thread id, i.e., 𝑅tinjp ( 𝑗,𝑚1,𝑚2) ⇔𝑚1 ↩→𝑗
𝑚 𝑚2 and tid(𝑚1) = tid(𝑚2).𝑊tinjp and

𝑓tinjp are the same as in injp (Definition 3.3). The internal and external accessibilities are defined

as follows:

( 𝑗,𝑚1,𝑚2) {tinjp
𝑖

( 𝑗 ′,𝑚′
1
,𝑚′

2
) ⇔ 𝑗 ⊆ 𝑗 ′ ∧ tid(𝑚1) = tid(𝑚′

1
) ∧

unmapped( 𝑗) ∩ thr-ext(𝑚1) ⊆ unchanged-on(𝑚1,𝑚
′
1
) ∧

out-of-reach( 𝑗,𝑚1) ∩ thr-ext(𝑚2) ⊆ unchanged-on(𝑚2,𝑚
′
2
).

( 𝑗,𝑚1,𝑚2) {tinjp
𝑒 ( 𝑗 ′,𝑚′

1
,𝑚′

2
) ⇔ 𝑗 ⊆ 𝑗 ′ ∧ tid(𝑚1) = tid(𝑚′

1
) ∧

unmapped( 𝑗) ∩ thr-int(𝑚1) ⊆ unchanged-on(𝑚1,𝑚
′
1
) ∧

out-of-reach( 𝑗,𝑚1) ∩ thr-int(𝑚2) ⊆ unchanged-on(𝑚2,𝑚
′
2
).

This is the formal definition of{𝑖 and{𝑒 we presented in §2.3. The private regions in ( 𝑗,𝑚1,𝑚2)
are already defined by unmapped( 𝑗) ⊆ 𝑚1 and out-of-reach( 𝑗,𝑚1) ⊆ 𝑚2 via the injection function

𝑗 in Definition 3.3. thr-ext(𝑚) ⊆ 𝑚 stands for the thread-external blocks, i.e., 𝑏 ∈ thr-ext(𝑚) ⇔
tid(𝑏) ≠ tid(𝑚). Similarly, thread-internal blocks are defined as thr-int(𝑚) ⊆ 𝑚 where 𝑏 ∈
thr-int(𝑚) ⇔ tid(𝑏) = tid(𝑚). Note that both{𝑖 and{𝑒 require the thread id unchanged. The

current thread id tid is changed by context switches. As a result, although we have a static depiction
of private memory (e.g., in Fig. 6b, j is always private as it is in unmapped( 𝑗)), the accessibilities
ensure that private stack memory is allowed to be modified by its owner and protected from the

other threads.

3
The terminology support comes from nominal techniques [Pitts 2016].
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𝑅 (𝑤𝐵 , 𝑤P ) R𝑟 (set(𝑤𝐵 , 𝑤
′
P ) )

get(𝑤𝐵 ) {𝑒 𝑤
′
P

𝑤P {𝑖 𝑤
′
P

(b) Final states

𝑠1

𝑠2

𝑠′
1

𝑠′
2

𝑡

𝑡

𝑅 (𝑤𝐵 , 𝑤P ) 𝑅 (𝑤𝐵 , 𝑤P )
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𝑠1

𝑠2
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𝑋1

𝑋2

𝑅 (𝑤𝐵 , 𝑤P ) R𝑞 (𝑤𝐴 )𝑤P {𝑖 get(𝑤𝐴 )
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′
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1
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𝑌

𝑌

𝑅 (𝑤𝐵 , 𝑤
′
P )

(d) External calls

Fig. 11. Simulation Diagrams for Threaded Forward Simulation

4.3 Threaded Forward Simulations
Definition 4.2 (Threaded Simulation Conventions). A threaded simulation convention RP : 𝐴1 ⇔

𝐴2 = ⟨𝑊,R𝑞 : K𝑊 (𝐴𝑞
1
, 𝐴

𝑞

2
),R𝑟 : K𝑊 (𝐴𝑟1, 𝐴𝑟2), P⟩ is defined using a TKMR P = ⟨𝑊P, 𝑓P,{

P
𝑖 ,{

P
𝑒 , 𝑅P⟩.

where𝑊P is a sub-world of𝑊 equipped with operations get :𝑊 →𝑊P and set :𝑊 →𝑊P →𝑊 .

Compared with the original simulation conventions, there are two differences in the threaded

version. First, the accessibility { is implicitly encoded in R𝑟 with a ^ modality in the former,

while the threaded simulation conventions explicitly contain a TKMR P with internal and external

accessibilities. This exposure is necessary for defining the threaded forward simulations as we shall

discuss shortly. For simplicity, we often drop the superscript P in{P
𝑖 and{

P
𝑒 in our discussions.

Second, threaded simulation conventions provide explicit get and set operators for extracting

Kripke worlds𝑊P for memory states from Kripke worlds𝑊 for program states which may contain

additional information such as registers and function signatures. This is necessary because internal

execution between context switches may relate functions with entirely different arguments and

signatures (e.g., encrypt and yield). To describe these internal guarantees, we need to extract

pure memory states from program states through get and set.

Definition 4.3 (Threaded Forward Simulations). A threaded forward simulation 𝐿1 ⩽RP 𝐿2 is

defined between open semantics with the same language interfaces on both sides, i.e., for 𝐿1 :

𝐴1 ↠ 𝐴1 and 𝐿2 : 𝐴2 ↠ 𝐴2. The internal invariant is defined using a Kripke Relation with two

worlds K𝑊1,𝑊2
(𝐴, 𝐵) :𝑊1 →𝑊2 → {𝑆 | 𝑆 ⊆ 𝐴 × 𝐵}. Given the threaded simulation convention

RP : 𝐴1 ⇔ 𝐴2, 𝐿1 ⩽RP 𝐿2 holds if there exists some Kripke relation 𝑅 ∈ K𝑊,𝑊P (𝑆1, 𝑆2) that satisfies:
(1) ∀ 𝑤𝐵 𝑞1 𝑞2, (𝑞1, 𝑞2) ∈ R𝑞𝐵 (𝑤𝐵) ⇒ (𝑞1 ∈ 𝐷1 ⇔ 𝑞2 ∈ 𝐷2)
(2) ∀ 𝑤𝐵 𝑞1 𝑞2 𝑠1, (𝑞1, 𝑞2) ∈ R𝑞𝐵 (𝑤𝐵) ⇒ (𝑞1, 𝑠1) ∈ 𝐼1 ⇒

∃ 𝑠2, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵, get(𝑤𝐵)) ∧ (𝑞2, 𝑠2) ∈ 𝐼2.
(3) ∀ 𝑤𝐵 𝑤P 𝑠1 𝑠2 𝑟1, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵,𝑤P) ⇒ (𝑠1, 𝑟1) ∈ 𝐹1 ⇒

∃ 𝑤 ′P 𝑟2, (𝑟1, 𝑟2) ∈ R𝑟𝐵 (set(𝑤𝐵,𝑤
′
P)) ∧ (𝑠2, 𝑟2) ∈ 𝐹2 ∧ get(𝑤𝐵) {𝑒 𝑤

′
P ∧𝑤P {𝑖 𝑤

′
P .

(4) ∀ 𝑤𝐵 𝑤P 𝑠1 𝑠2 𝑡 𝑠
′
1
, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵,𝑤P) ⇒ 𝑠1

𝑡→ 𝑠′
1
⇒ ∃ 𝑠′

2
, (𝑠′

1
, 𝑠′

2
) ∈ 𝑅(𝑤𝐵,𝑤P) ∧ 𝑠2

𝑡

→∗ 𝑠′
2
.

(5) ∀ 𝑤𝐵 𝑤P 𝑠1 𝑠2 𝑞1, (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵,𝑤P) ⇒ (𝑠1, 𝑞1) ∈ 𝑋1 ⇒
∃𝑤𝐴 𝑞2, (𝑞1, 𝑞2) ∈ R𝑞𝐴 (𝑤𝐴) ∧ (𝑠2, 𝑞2) ∈ 𝑋2 ∧𝑤P {𝑖 get(𝑤𝐴)∧
∀ 𝑤 ′P 𝑟1 𝑟2 𝑠′1, get(𝑤𝐴) {𝑒 𝑤

′
P ⇒ (𝑟1, 𝑟2) ∈ R𝑟𝐴 (set(𝑤𝐴,𝑤

′
P)) ⇒ (𝑠1, 𝑟1, 𝑠′1) ∈ 𝑌1 ⇒

∃ 𝑠′
2
, (𝑠′

1
, 𝑠′

2
) ∈ 𝑅(𝑤𝐵,𝑤 ′P) ∧ (𝑠2, 𝑟2, 𝑠′2) ∈ 𝑌2 .
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This definition is an enhancement to Definition 3.1. To deal with symmetric behaviors of context

switches as indicated in §3.2, the same simulation convention RP is used for both incoming and

outgoing sides (Symmetric interfaces are not a limitation as any LTS 𝐿 : 𝐴 ↠ 𝐵 can be embedded

into the interface 𝐴 ∪ 𝐵 ↠ 𝐴 ∪ 𝐵). The differences from Definition 3.1 are highlighted in red. The

key to proving threaded forward simulation is to verify that internal and external accessibilities

hold. For this, the simulation invariant 𝑅(𝑤𝐵,𝑤P) should remember the relation between source

and target initial queries (when entering an open module for the first time) in𝑤𝐵 and the relation

between source and target memories when the last time the module is entered in𝑤P (either by an

initial function call or a return from an external function call). When (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵,𝑤P) holds, it
implies that the current Kripke world𝑤𝑠 = ( 𝑗,𝑚1,𝑚2) (where𝑚1 and𝑚2 are the memory states in

𝑠1 and 𝑠2, respectively, and 𝑗 is the current memory injection) satisfies both the external guarantee

from𝑤𝐵 and the internal guarantee from𝑤P, i.e., get(𝑤𝐵) {𝑒 𝑤𝑠 and𝑤P {𝑖 𝑤𝑠 . By maintaining

both guarantees as the execution goes, the threaded forward simulation is proved.

Based on the above observations, we elaborate on the ideas behind properties (2-5) which are

illustrated in Fig. 11 (property (1) is the same as before). Property (2) initializes the simulation

invariant 𝑅 using the memories get(𝑤𝐵) in the initial queries (Fig. 11a). Dually, property (3)

describes returning replies 𝑟1 and 𝑟2 related by the updated world set(𝑤𝐵,𝑤 ′P) from the final

invariant 𝑅 (Fig. 11b). The final memory world 𝑤 ′P should satisfy both the external guarantee
get(𝑤𝐵) {𝑒 𝑤

′
𝑃
for the whole function call and the internal guarantee 𝑤P {𝑖 𝑤

′
P for the internal

execution since last time the module was entered. Using the definition of 𝑅 mentioned above, they

can be satisfied by picking the current memory world𝑤𝑠 for𝑤
′
P.

Property (4) states that, although the current memories are changed by internal steps, the

accessibilities get(𝑤𝐵) {𝑒 𝑤𝑠 and𝑤P {𝑖 𝑤𝑠 still hold for the same𝑤𝐵 and𝑤P (Fig. 11d). For this,

one needs to prove that an internal step cannot change the thread local private memory in𝑤𝐵 , and

it cannot change the thread external private memory in𝑤P. In other words, a function call can only

change the private stack regions both owned by the current thread and allocated after the initial

query. In our running example, the main function can modify the loop invariant i allocated by itself
but can not change j because it is owned by another thread. The encrypt function also cannot

modify j because it is already allocated by the server on its private stack before calling encrypt.
Finally, for property (5) of external calls (Fig. 11d), when the semantics issue queries 𝑞1 and 𝑞2

related by𝑤𝐴, the internal guarantee of recent internal execution is enforced by𝑤P {𝑖 get(𝑤𝐴).
After the external call, we require that the replies are related by set(𝑤𝐴,𝑤 ′P) where𝑤 ′P stands for
the updated memory states. Given the rely condition get(𝑤𝐴) {𝑒 𝑤

′
P, we reestablish the internal

invariant (𝑠′
1
, 𝑠′

2
) ∈ 𝑅(𝑤𝐵,𝑤 ′P) using the memory world 𝑤 ′P from replies. Note that one needs to

ensure thread local private memory is not changed by the environment (i.e.,𝑤𝐵 {𝑒 𝑤
′
P holds). For

the function server in running example, the rely conditions on encrypt and yield ensure that
any thread local blocks are unchanged. Therefore, the private memory from its caller is properly

protected during the whole execution of server. Note also the necessity of get and set here: we
need to relate the memory state𝑤P initially extracted from𝑤𝐵 to a different world𝑤𝐴.

4.4 Compositionality of Threaded Forward Simulations
4.4.1 Vertical Composition. A naive composition theorem for threaded forward simulations holds:

Theorem 4.4. If 𝐿1 : 𝐴1 ↠ 𝐴1, 𝐿2 : 𝐴2 ↠ 𝐴2, 𝐿3 : 𝐴3 ↠ 𝐴3 and R : 𝐴1 ⇔ 𝐴2, S : 𝐴2 ⇔ 𝐴3, then

𝐿1 ⩽R 𝐿2 ⇒ 𝐿2 ⩽S 𝐿3 ⇒ 𝐿1 ⩽R·S 𝐿3 .

Here, (_ · _) is the concatenation of threaded simulation convention s.t. R · S = ⟨𝑊R ×𝑊S,R𝑞 ·
S𝑞,R𝑟 · S𝑟 , PR · PS⟩ where (𝑞1, 𝑞3) ∈ R𝑞 · S𝑞 ⇔ ∃ 𝑞2, (𝑞1, 𝑞2) ∈ R𝑞 (𝑞1, 𝑞2) and (𝑞2, 𝑞3) ∈ S𝑞 (𝑞2, 𝑞3).
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Fig. 12. A Refinement of Threaded Simulation Convention 𝑅 ⊑ 𝑆

(same for R𝑟 · S𝑟 ). The TKMRs are also composed where (𝑤1,𝑤2) {𝑖 (𝑤 ′1,𝑤 ′2) is defined as

𝑤1 {𝑖 𝑤2 ∧𝑤 ′1 {𝑖 𝑤
′
2
(same for{𝑒 ). Since the concatenated simulation convention is defined

as the composition of two relations with an existential quantifier in the middle, one can simply

instantiate the existential quantifier using the states of 𝐿2 to complete the proof.

However, this composed interface exposes the internal compilation and weakens the compiler

correctness. To get a direct refinement between C and assembly semantics, we need to define the

refinement between simulation conventions. Given R, S : 𝐴1 ⇔ 𝐴2, we write R ⊑ S for that R is

refined by S. The following refinement of threaded simulations can be proved:

Theorem 4.5. Given 𝐿1 : 𝐴1 ↠ 𝐴1, 𝐿2 : 𝐴2 ↠ 𝐴2 and R, S : 𝐴1 ⇔ 𝐴2,

R ⊑ S⇒ 𝐿1 ⩽R 𝐿2 ⇒ 𝐿1 ⩽S 𝐿2

The key ideas behind its proof are depicted in Fig. 12. To refine the interface R of the threaded

simulation to S, we need to construct multiple worlds with proper accessibilities (denoted using

dashed boxes in Fig. 12) as rely-guarantee conditions. In Fig. 12a, given the world 𝑤S of initial

queries (𝐼 ), we first construct 𝑤R to relate the queries such that the property (2) of 𝐿1 ⩽R 𝐿2
is satisfied. When the semantics return with replies related by 𝑤 ′R (𝐹 ), we need to construct an

updated 𝑤 ′
S
for these replies such that the external guarantee{S𝑒 is satisfied. Symmetrically, in

Fig. 12b, when the semantics issue external calls related by𝑤R (𝑋 ), we construct𝑤S for external

calls using interface S. After external calls (𝑌 ), we construct𝑤 ′R and prove{
R
𝑒 as the rely condition

for 𝐿1 ⩽R 𝐿2. For threaded simulations, we also need to prove the refinement of internal guarantees,

as depicted in Fig. 12c. Note that the internal guarantee has four variants: an open module can

begin its partial execution by 𝐼 or 𝑌 and end by 𝑋 or 𝐹 . Notice that since internal and external

guarantees may share the same starting world, we need to prove Fig. 12c together with Fig. 12a

and Fig. 12b in one pass.

With the above refinement, vertical composition of threaded forward simulations becomes

possible. For example, a common convention is ctinjp : C ⇔ C for simulations between semantics

with C interfaces using tinjp. We can prove its transitivity as the following refinement theorem:

Theorem 4.6. ctinjp · ctinjp ⊑ ctinjp

Then, given two threaded forward simulations 𝐿1 ⩽ctinjp 𝐿2 and 𝐿2 ⩽ctinjp 𝐿3, we first compose

them into 𝐿1 ⩽ctinjp ·ctinjp 𝐿3 by Theorem 4.4, and then derive 𝐿1 ⩽ctinjp 𝐿3 by applying Theorem 4.5

to Theorem 4.6. As we shall see in §5, other simulation conventions can support vertical composition

in a way similar to ctinjp.

4.4.2 Horizontal Composition. The horizontal composition of threaded forward simulations can be

divided into two steps. We first compose open modules assuming that they run on the same thread.

Then, we compose open semantics into closed semantics running on a multi-threaded abstract

machine. Their closed simulation can be derived from the threaded forward simulations. We call

the first step module linking and the second step thread linking. We discuss their correctness below.
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Theorem 4.7 (Correctness of Module Linking). Let 𝐿1 ⊕ 𝐿2 denote the semantic linking of 𝐿1
and 𝐿2. Given 𝐿1, 𝐿′1 : 𝐴1 ↠ 𝐴1, 𝐿2, 𝐿′2 : 𝐴2 ↠ 𝐴2 and threaded simulation convention R : 𝐴1 ⇔ 𝐴2,
the simulations can be horizontally composed as:

𝐿1 ⩽R 𝐿2 ⇒ 𝐿′
1
⩽R 𝐿

′
2
⇒ 𝐿1 ⊕ 𝐿′1 ⩽R 𝐿2 ⊕ 𝐿′2

We omit the concrete definition of the semantic linking 𝐿1 ⊕ 𝐿2. Its proof is similar to the

horizontal composition in CompCertO [Koenig and Shao 2021]. The main difference is that we also

need to compose internal guarantee conditions, which is achieved with the transitivity of{𝑖 .

The multi-threaded semantics is defined as a closed LTS with a non-deterministic thread-

scheduling strategy. A closed LTS is a tuple ⟨𝑆, 𝐼 , 𝐹 ,→⟩ containing program state 𝑆 , predicates for

initial and final state 𝐼 , 𝐹 and the internal transition→.

We define thread linking function MTC and MTA for transferring C and assembly open semantics

into multi-threaded semantics. We omit the concrete definition for simplicity and present the key

ideas using C semantics; the construction for assembly is similar. Given 𝐿 : C ↠ C, MTC (𝐿) =
⟨𝑆𝑀 , 𝐼𝑀 , 𝐹𝑀 ,→𝑀 ⟩. The program state 𝑆𝑀 includes the current thread id 𝑡 and a list of thread states
which are defined using the program state of 𝐿. The current global memory can be found in the

current thread state. The initial state 𝐼𝑀 and final state 𝐹𝑀 are defined using the query and reply
of main function on the main thread. The main thread applies 𝐼 (from 𝐿) to take a query to main
as initialization and finally issues a reply using 𝐹 to produce the return value. The transition step

→𝑀 has three cases. The internal step is defined as a step of 𝐿 on the current running thread.

The thread creation step happens if the current thread calls pthread_create (as an external call).

Its arguments and the current memory state are used to create a new thread state. Finally, for

context switches, the current thread can switch out by calling yield or thread_join, or ending its
execution. Similarly, the target thread is waiting for a reply of a previous yield, a thread_join, or
thread initialization. The execution simply changes the current thread id, pass it (by constructing a

query or reply) to wake up the target thread, and put the current thread into a waiting state.

The correctness of thread linking is stated as follows.

Theorem 4.8 (Correctness of Thread Linking).

∀ 𝐿1 : C ↠ C, 𝐿2 : A ↠ A, 𝐿1 ⩽C 𝐿2 ⇒ MTC (𝐿1) ⩽closed MTA (𝐿2)
Here, C is the simulation convention derived from CompCertOC which we define in §5.3. The

closed simulation ⩽closed is exactly the final forward simulation in the original CompCert. This

theorem is proved by exploiting the rely-guarantee conditions of threaded forward simulations,

especially the internal guarantees, as depicted in Fig. 7b.

5 CompCert for Open and Concurrent Modules
We now discuss how to verify the compiler passes of CompCert and compose them into the threaded

forward simulation ⩽C as the correctness of CompCertOC. CompCert compiles C programs into

Asm programs through 20 passes, including optimization passes on the RTL intermediate language.

Most of the extensions to CompCert start from the Clight language which is compiled from C

source through the first pass named SimplExpr by extracting side effects from expressions. Our

development is based on the latest CompCertO [Zhang et al. 2024] which also starts from Clight
and hence contains 19 passes of CompCert. However, it is recently discovered that the optimization

pass Unusedglob in CompCertO for removing unused static definitions relies on an incorrect

axiom about the transformation of global symbols made by CompCert. As a result, the axioms

for CompCertO lead to inconsistency. Fortunately, because this axiom is only used for proving

Unusedglob, consistency can be recovered by simply removing Unusedglob from CompCertO.

Therefore, CompCertOC contains 18 passes of CompCert. We believe this omission is orthogonal
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Table 1. Significant Passes of CompCertOC

Languages/Passes Interfaces/Conventions
Clight C ↠ C
Self-Sim ro

SimplLocals ctinjp
Csharpminor C ↠ C
Cminorgen ctinjp
Cminor C ↠ C

Selection wt · cext
CminorSel C ↠ C
RTLgen cext
RTL C ↠ C

Self-Sim ctinjp

Tailcall cext

Languages/Passes Interfaces/Conventions
Inlining ctinjp
Constprop ro · ctinjp

CSE ro · ctinjp
Deadcode ro · ctinjp
Allocation wt · cext · CL

LTL L ↠ L
Tunneling ltlext
Linear L ↠ L
Stacking LMtinjp

Mach M ↠M
Asmgen machext · MA
Asm A ↠ A

to our work as Unusedglob only deals with global memory while CompCertOC deals with shared

stack memory. A solution to add back Unusedglob is left for future work.

In the subsections below, we first discuss the verification of individual passes of CompCertOC in

§5.1. We then discuss properties for refining simulation conventions used in CompCertOC in §5.2.

Finally, we discuss the composition of the correctness of individual passes into a threaded forward

simulation with the simulation convention C that directly relates C and assembly semantics in §5.3.

5.1 Threaded Forward Simulations for Individual Passes
The important compiler passes and their simulation types are listed in Table 1 together with the

intermediate languages and their interfaces (which are in bold fonts). The passes on the right follow

those on the left in the compilation chain. The passes marked in red are optimizations for RTL.
We insert two self-simulations (in blue) for refining the composed simulation convention into a

direct refinement. Passes using the identity simulation do not affect the composition and hence are

omitted in Table 1 (including Cshmgen, Renumber, Linearize, CleanupLabels and Debugvar).

5.1.1 Simulation Conventions and Semantic Invariants. We first discuss the simulation conventions

presented in Table 1. The simulation conventions in the form of IP : X ⇔ X use TKMR P to relate

the source and target semantics with the language interface X for language I. L is the interface

for the LTL intermediate language. ext is a simplified version of tinjp which assumes source and

target memories have the same structure. Therefore no private memory needs to be protected and

the only rely-guarantee condition is the invariance of thread id.

CL : C ⇔ L and MA : M ⇔ A are structural conventions for relating queries and replies in

different intermediate languages. They assume that the source and target memory states are the

same. Another structural convention LMtinjp : L ⇔ M for the Stacking pass is parameterized

by tinjp. This is because the source and target memories are related by an injection as the stack

pointer, return address and outgoing arguments are allocated on the stack after this pass. Therefore,

the private stack in the target memory needs to be protected by tinjp.
ro and wt are semantic invariants relating queries and replies in the same language. They describe

invariants of an open semantics. wt ensures that the arguments and return values are well-typed.

ro ensures that the values of read-only constants are never modified by execution.

5.1.2 Verification of Individual Passes. We revise the correctness proofs for the compiler passes in

CompCertO so that they fit into the framework of threaded forward simulations. The difficulties
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come from two limitations in the original proofs. First, many passes in CompCertO are proved

using different simulation conventions for the incoming and outgoing sides. Second, in the original

proofs, memory protection is only provided at the outgoing side, not at the incoming side. Both

limitations need to be lifted because the symmetry of context switches demands the same simulation

convention and memory protection for both the incoming and outgoing sides. Moreover, according

to the discussion in §4.3 (after Definition 4.3), to establish a threaded forward simulation for a

compiler pass, we need to find a simulation invariant 𝑅 s.t. (𝑠1, 𝑠2) ∈ 𝑅(𝑤𝐵,𝑤P) iff the external

and internal accessibilities get(𝑤𝐵) {𝑒 𝑤𝑠 and 𝑤P {𝑖 𝑤𝑠 hold for the current Kripke world

𝑤𝑠 extracted from 𝑠1 and 𝑠2. The most difficult passes to prove are optimizations involving static

analysis (ConstProp, CSE and DeadCode) and Stacking for concretely laying out the stack frames.

For the former, we need to prove that the blocks whose addresses are never taken (hence may be

optimized away) are always labeled as private in the memory world𝑤P in 𝑅(𝑤𝐵,𝑤P). For the latter,
because the original Stacking pass uses different simulation conventions for the incoming and

outgoing sides, we have to do a substantial rewrite of the proof with the new symmetric structural

convention LMtinjp and prove that the newly added private stack is protected by an invariant 𝑅.

5.2 Properties for Refining Thread Simulation Conventions
We adopt the techniques discussed in §4.4.1 to compose and refine the correctness of individual

passes into that of CompCertOC. For this, we discuss the necessary refinement lemmas for threaded

simulation conventions. First, the following lemmas are for refining C-level simulation conventions:

Lemma 5.1. (1) ctinjp · ctinjp ⊑ ctinjp (2) cext · cext ⊑ cext
(3) ctinjp · cext · ctinjp ⊑ ctinjp (4) ro · ctinjp · ro · ctinjp ⊑ ro · ctinjp.

Property (1) is exactly Theorem 4.6. (2) and (3) are trivial because ext does not protect any

private memory. (4) is an extension of (1) for transitively composing the ro invariant with tinjp.

Lemma 5.2. For 𝐾 ∈ {ext, tinjp}, (1) c𝐾 · CL ≡ CL · ltl𝐾 (2) mach𝐾 · MA ≡ MA · asm𝐾 .

Here, R ≡ S ⇔ R ⊑ S ∧ S ⊑ R. Since the structural conventions CL and MA assume the same

memory for source and target, we can freely move conventions with TKMR through them. The

refinement lemmas for LMtinjp are as follows:

Lemma 5.3. (1) ltltinjp · ltlext · LMtinjp ⊑ LMtinjp (2) CL · LMtinjp · MA ⊑ CAtinjp

Property (1) is based on the same compositionality of TKMR as property (3) in Lemma 5.1.

Property (2) composes the structural relations to hide the intermediate languages.

Finally, the permutation and elimination lemmas for wt can be proved as follows:

Lemma 5.4. (1) ro · wt ≡ wt · ro (2) For 𝐾 ∈ {ext, tinjp}, c𝐾 · wt ⊑ wt · c𝐾
(3) wt · ctinjp · wt ⊑ wt · ctinjp

5.3 Composing the Threaded Forward Simulations
For composing individual correctness proofs, we first insert the self-simulations as presented in

Table 1. The self-simulation for each intermediate language can be easily proved. The trivial vertical

composition of simulation conventions by Theorem 4.4 for all passes results in:

R = ro · ctinjp · ctinjp · wt · cext · cext · ctinjp · cext · ctinjp · ro · ctinjp · ro · ctinjp · ro · ctinjp·
wt · cext · CL · ltlext · LMtinjp · machext · MA

Our goal is to refine R into the simulation convention C for the whole compiler:

C = ro · wt · CAtinjp · asmext
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Note that ro and wt apply to source C programs and asmext applies to the target assembly

program. They are all irrelevant because ro and wt are always satisfied by any well-behaved

C semantics, and any well-behaved assembly semantics is self-simulating. Therefore, the only

important component is CAtinjp which directly relates C and assembly semantics through tinjp.
In particular, CAtinjp : C ⇔ A = ⟨𝑊CA,R

𝑞

CA,R
𝑟
CA, tinjp⟩ where𝑊CA = (𝑊tinjp, sig, regset). The

get and set operations for the sub world𝑊tinjp are simply defined as getting and setting the first

component of𝑤 ∈𝑊CA. R
𝑞

CA and R
𝑟
CA are almost the same as in Definition 3.4. The only difference is

that the accessibilities are explicitly exposed in tinjp.
We prove R ⊑ C by a sequence of refined simulation conventions R ⊑ R1 ⊑ . . . ⊑ R𝑛 ⊑ C:
(1) ro · ctinjp · ctinjp · wt · cext · cext · ctinjp · cext · ctinjp · ro · ctinjp · ro · ctinjp · ro · ctinjp·

wt · cext · CL · ltlext · LMtinjp · machext · MA
(2) ro · ctinjp · wt · cext · ctinjp · ro · ctinjp · wt · cext · CL · ltlext · LMtinjp · machext · MA
(3) ro · wt · ctinjp · wt · cext · ctinjp · ro · ctinjp · cext · CL · ltlext · LMtinjp · machext · MA
(4) wt · ro · ctinjp · cext · ctinjp · ro · ctinjp · cext · CL · ltlext · LMtinjp · machext · MA
(5) wt · ro · ctinjp · cext · CL · ltlext · LMtinjp · machext · MA
(6) ro · wt · CL · ltltinjp · ltlext · LMtinjp · MA · asmext
(7) ro · wt · CAtinjp · asmext

The red letters mark the simulation conventions refined in each step. In step (1), we use all

properties in Lemma 5.1 to compose conventions involving ctinjp. In step (2-3), we use the properties
in Lemma 5.4 to move wt upwards, compose them using ctinjp, and commute the first ro with

wt. In step (4), we do the composition of TKMRs again using Lemma 5.1. In step (5), we transfer

the c simulation conventions to ltl and the machext to asm using Lemma 5.2. The invariants for

the source program are swapped again using property (1) in Lemma 5.4. Finally, we compose the

conventions on ltl and structural conventions CL and MA with LMtinjp using Lemma 5.3 to get C.
The final correctness of CompCertOC is presented below:

Theorem 5.5 (Compiler Correctness of CompCertOC).

∀ (𝑀 : Clight) (𝑀 ′ : Asm), CompCertOC(𝑀) = 𝑀 ′ ⇒ [[𝑀]] ⩽C [[𝑀 ′]] ∧ [[𝑀]] ⩾C [[𝑀 ′]] .

The threaded forward simulation [[𝑀]] ⩽C [[𝑀 ′]] is easily proved by applying Theorem 4.5 to

R ⊑ C. We also get a threaded backward simulation ⩾C between the source and target modules. It

is defined as a generalization of backward simulations in CompCert. We are able to flip threaded

forward simulation into backward simulation by showing the source semantics (i.e., Clight) is
receptive and the target (i.e., Asm) is determinate. The proof is almost the same as in CompCert.

6 Application and Evaluation
In this section, we formally verify the running example as depicted in Fig. 3. We also evaluate our

Coq development of CompCertOC comparing to CompCertO [Zhang et al. 2024].

6.1 Verification of Heterogeneous Multi-threaded Modules
We first define the C-level specification 𝐿E for encrypt.s. Here 𝑋E and 𝑌E are empty sets and

omitted because encrypt does not contain external calls.

Definition 6.1. LTS of 𝐿E is defined as

𝑆E := {Initial𝑚 𝑖 𝑟, Final𝑚};
𝐼E := {(Vptr(𝑏𝑒 , 0) [int→ ptr→ void] ( [𝑖, 𝑟 ])@𝑚, Initial𝑚 𝑖 𝑟 )};
→E := {Initial𝑚 𝑖 𝑟, Final𝑚′) | 𝑚′ =𝑚[∗𝑟 ← (𝑖 XOR 42)]}
𝐹E := {(Final𝑚, Vundef@𝑚)}.
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𝑞C𝐿E : Initial𝑚1 𝑖 𝑟 Final𝑚′
1

𝑟C

𝑞A[[encrypt.s]] : rs@𝑚2
rs′@𝑚′

2
𝑟A

𝐼C 𝐹C

𝐼A 𝐹A

𝑚′
1
=𝑚1 [∗𝑟 ← (𝑖 XOR 42) ]

Complete Execution

( 𝑗,𝑚1,𝑚2 ) {𝑖 ( 𝑗,𝑚′
1
,𝑚′

2
) ∧ ( 𝑗,𝑚1,𝑚2 ) {𝑒 ( 𝑗,𝑚′

1
,𝑚′

2
)

Fig. 13. Simulation Diagram for 𝐿E ⩽CAtinjp [[encrypt.s]]

We then prove the threaded forward simulation of encrypt as:

Lemma 6.2. 𝐿E ⩽C [[encrypt.s]].
Proof Sketch. Observe C = ro ·wt ·CAtinjp ·asmext. The source invariants on 𝐿E hold according

to its definition. The self-simulation using asmext holds for any CompCert assembly. The proof of

𝐿E ⩽CAtinjp [[encrypt]] is depicted in Fig. 13. We need to verify the internal and external guarantee

conditions of the whole execution which is straightforward because encrypt only changes the

public memory pointed by 𝑟 in both source and target semantics. Note that even if encrypt can
yield back to other threads or allocate stack memory, this proof will not be more complicated by

much. This is because yield is treated as a regular call. With public stack memory, we only need

to modify 𝐿𝐸 to allow it be shared and the remaining stack be protected. □

To propagate the simulation to linked assembly code, we also prove the equivalence of syntactic

and semantics linking of assembly modules:

Theorem 6.3. ∀(𝑀 𝑀 ′ : Asm), [[𝑀]] ⊕ [[𝑀 ′]] ⩽id [[𝑀 +𝑀 ′]] .
To get the final correctness result, we first perform module linking by applying Theorem 4.7

to compose Lemma 6.2 and the compiler correctness of client.c and server.c obtained by

applying Theorem 5.5. These results are then vertically extended to the linked target assembly by

using Theorem 6.3 (id is absorbed using C · id ⊑ C). It gets us the following result:

Lemma 6.4 (Threaded Forward Simulation for Composed Modules).

[[client.c]] ⊕ [[server.c]] ⊕ 𝐿E ⩽C [[client.s + server.s + encrypt.s]]
As mentioned in §5.3, we are able to flip threaded forward simulations into backward simulations

by showing the composed C-level semantics is receptive. Moreover, our correctness of thread

linking (Theorem 4.8) remains valid for backward simulation with additional determinacy and

receptiveness requirements on the source semantics, which can be satisfied by the composed C-level

semantics. Therefore, we are able to prove the closed backward simulation for our running example,

which has the same definition as in the original CompCert.

Theorem 6.5 (Backward Simulation for the Complete Program).

MTC ( [[client.c]] ⊕ [[server.c]] ⊕ 𝐿E) ⩾closed MTA ( [[client.s + server.s + encrypt.s]])

6.2 Evaluation
Our Coq development took about 10 person-months and contains 21.4k lines of code (LOC) on top

of the latest CompCertO [Zhang et al. 2024]. We added 1.0k LOC to implement the multi-stack

memory model based on Nominal Memory Model, 2.6k LOC to define the framework of threaded

simulations with module linking. We modified the proof of 13 compilation passes (listed in Table 1

using TKMR) by adding 2.8k LOC on top of 19.3k LOC in CompCertO, which is about 14% increase.

We added 7.6k LOC to verify the refinements of TKMRs and thread simulation conventions. We

defined the multi-threaded semantics based on open semantics and verified the thread linking by

6.3k LOC. Finally, we verified the running example with 1.1k LOC.
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Table 2. Comparison of Work on Verified Compositional Compilation

CCC CCM CCO CCTSO CCX CASCC CCOC
Cooperative Concurrency No No No No Yes Yes Yes
Preemptive Concurrency No No No Yes No Yes No

Stack Sharing No No No Yes No No Yes
Direct Refinement No No Yes Closed No No Yes

Vertical Composition Yes RUSC Yes No CCAL Yes Yes
Horizontal Composition Yes RUSC Yes No CCAL Yes Yes
Heterogeneous Modules Yes Yes Yes No Yes Yes Yes

7 Related Work
We are concerned with VCC of imperative programs with pointers. Compared to languages with-

out pointers, this significantly complicates memory protection on shared stacks. We compare

CompCertOC (CCOC) with other work on VCC not supporting concurrency, including Composi-

tional CompCert (CCC) [Stewart et al. 2015], CompCertM (CCM) [Song et al. 2020], CompCertO

(CCO) [Koenig and Shao 2021; Zhang et al. 2024], and those with concurrency, including Thread-safe

CompCertX (CCX) [Gu et al. 2018], CASCompCert (CASCC) [Jiang et al. 2019a] and CompCertTSO

(CCTSO) [Sevcík et al. 2013]. Table 2 summarizes this comparison where each row displays one

feature the verified compilers support or not (texts in brown indicate that a weaker variant of the

feature is supported). Direct refinement means that the source and target semantics are related at

their native language interfaces and without exposing any intermediate semantics; it is important

for compositionality and usability by third-parties. We elaborate on the comparison below.

Verified Compositional Compilation without Concurrency. Compositional CompCert (CCC) is the

pioneering work on VCC of imperative programs [Stewart et al. 2015]. Its interaction semantics
provide the simulation-based foundation for VCC which is adopted and enhanced by many projects

(including this one). Its main limitation is that every language semantics and simulation must

conform to the C interface, with which direct refinements cannot be supported. CompCertM (CCM)

fixes this problem by introducing Refinement Under Self-related Contexts or RUSC [Song et al.

2020] which is the collection of all intermediate semantics and simulation relations in compilation.

However, a direct refinement is still not possible because the fixed collection exposes intermedi-

ate semantics. Instead, CompCertO (CCO) defines the transitive composition of all intermediate

simulations as compiler correctness [Koenig and Shao 2021]. It is later shown that this transitive

composition is equivalent to a direct refinement by exploiting the memory protection of Kripke

Memory Relation [Zhang et al. 2024]. Therefore, CompCertO for the first time supports all the

important properties for verified compilation of heterogeneous modules (i.e., the last four rows

in Table 2) and provides the basis for developing CompCertOC.

Verified Compositional Compilation with Concurrency. An early work on verified compilation of

concurrent programs is CompCertTSO (CCTSO) [Sevcík et al. 2013] which is a whole-program

compiler for multi-threaded programs. Although CCTSO supports stack sharing, it does not support

open modules or separate compilation due to the closed nature of its compiler correctness.

Thread-safe CompCertX (CCX) [Gu et al. 2018] extends CompCertX [Gu et al. 2015]—an extension

of CompCert supporting mixed C and assembly programs—with the support of open threads. Its

compositionality is related to Concurrent Certified Abstraction Layers (CCAL) [Gu et al. 2016]

which disallows mutual calls between modules (i.e., no callback function). Moreover, because CCX

puts all memory blocks into a single space like CompCert, it cannot support thread-local stacks. To

avoid the complexity brought by this limitation, CCX forbids sharing of stack data.
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CASCompCert (CASCC) is the first extension of CompCert that supports general recursion and

concurrency [Jiang et al. 2019a]. Being built on Compositional CompCert, it inherits its limitations

including forcing languages into a C-like interface, resulting in loss of direct refinements. CASCC

supports thread-local stacks by dividing CompCert’s memory state into stack and global memory

space. However, it is unclear how to enable stack sharing while maintaining compositionality

in CASCC. An appendix of 22 pages in the technical report of CASCC describes a solution on

paper [Jiang et al. 2019b]. However, due to its complexity, this solution has not been formalized.

Therefore, CompCertOC is the first extension of CompCert that supports concurrency with

stack sharing. Its correctness is described as forward simulation between cooperative semantics. The
original CompCert has shown that forward simulations can be flipped into backward simulations if

the source semantics is receptive and the target one is determinate. The source C semantics and the

target assembly semantics in CompCertOC, CASCC and CCX all satisfy those properties. Therefore,

their forward simulations can all be flipped into backward ones.

In both CASCC and CCX, a compiler correctness theorem is first stated against cooperative

semantics where context switches are treated as external function calls. Then, a separate layer of

verification framework on top of this compiler correctness proves that cooperative semantics is

equivalent to preemptive ones. This separation makes the complexity of verified compilers much

more manageable. We follow the same approach in this work. To extend our results to support

preemptive semantics, we could follow CASCC to prove the equivalence between cooperative

and preemptive semantics by exploiting a DRF-SC theorem to shuffle context switch points to

thread primitives. We could also follow CCX to prove this equivalence in a program verification

framework like CCAL. Those extra proofs are about program verification and left for future work.

Like CompCert, all stack blocks in CCX are in the same memory space [Gu et al. 2018]. Therefore,

the stack blocks for different threads interleave with each other, making it difficult to link with a

realistic machine model. CASCC alleviates this problem by creating separate memory space for

stacks in an ad-hoc manner. In CompCertOC, we directly extend CompCert’s memory model with a

multi-stack name space. Because this extension is based on a nominal interface, it does not change

the memory operations or break any existing properties of CompCert’s memory model. Moreover,

this treatment of stacks has already enabled elimination of pseudo instructions in CompCert’s

assembly code and further compilation to real machine code as demonstrated by Wang et al. [2022].

Therefore, our multi-stack memory model is closer to how an OS views the stack (each thread has

its own stack) [Gu et al. 2018] and may enable further compilation to realistic machine models.

Relationship with other Concurrency Models and Separation Logics. Although we only consider

sequential consistency in this work, we believe our ideas also apply to stronger concurrency models

such as linearizability. Linearizable objects can be described as transition systems where methods

take effect non-deterministically and atomically [Herlihy and Wing 1990]. Therefore, our module

and thread linking theorems for closed programs may be extended to support well-encapsulated

objects. A more difficult problem is to support relaxed memory models. Based on existing work [Cho

et al. 2022; Kang et al. 2017; Lee et al. 2020; Zha et al. 2022], we need to develop new rely-guarantee

simulations that allow both stack sharing and out-of-order execution, which is left for future work.

One may wonder if the rely-guarantee reasoning can be avoided by using separation logics.

From our experience, the rely-guarantee reasoning in compiler verification needs to be ignorant of

program structures and contexts, so that the compiler correctness can remain fully composable. By

contrast, the algebras in separation logic are more geared towards reasoning about specific programs
(i.e., program verification). It is not clear how to directly apply them to substitute rely-guarantee

reasoning. Recently, Conditional Contextual Refinement [Song et al. 2023] has combined separation

logics with refinements. Its application to compiler verification needs further investigation.
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For external guarantee, from the memories𝑚1 and𝑚3 related by 𝑗13 from initial queries, we

construct the mid-level memory 𝑚2 as 𝑚1 by picking 𝑗12 (𝑏) = ⌊(𝑏, 0)⌋ if 𝑗13 ≠ ∅ and 𝑗23 = 𝑗13

such that𝑚1 ↩→𝑗12
𝑚 𝑚2 and𝑚2 ↩→𝑗23

𝑚 𝑚3 hold. After the complete execution (denoted by the dashed

arrow) of the modules, we need to construct 𝑗 ′
23

= 𝑗 ′
12
· 𝑗 ′

23
for the replies and prove ( 𝑗13,𝑚1,𝑚3) {𝑒

( 𝑗 ′
13
,𝑚′

1
,𝑚′

3
) by composing ( 𝑗12,𝑚1,𝑚2) {𝑒 ( 𝑗 ′12,𝑚′1,𝑚′2) and ( 𝑗23,𝑚2,𝑚3) {𝑒 ( 𝑗 ′23,𝑚′2,𝑚′3). This

can be trivially derived because the construction of 𝑚2 and 𝑗12 ensure that all external private

memory in𝑚1 and𝑚3 are protected by the executions.

For rely, the construction is in the reversed direction as depicted in Fig. 14b. We first compose the

memories for external queries𝑚1 ↩→𝑗12
𝑚 𝑚2 and𝑚2 ↩→𝑗23

𝑚 𝑚3 into𝑚1 ↩→𝑗13
𝑚 𝑚3. After the external

evolution ( 𝑗13,𝑚1,𝑚3) {𝑒 ( 𝑗 ′13,𝑚′1,𝑚′3), we need to construct an updated mid-level memory

state 𝑚′
2
such that ( 𝑗12,𝑚1,𝑚2) {𝑒 ( 𝑗 ′12,𝑚′1,𝑚′2) and ( 𝑗23,𝑚2,𝑚3) {𝑒 ( 𝑗 ′23,𝑚′2,𝑚′3) hold. The

construction of 𝑚′
2
is similar as the composition of the sequential version of injp introduced

in [Zhang et al. 2024] by copying the values of public regions (in both newly allocated blocks and

old blocks) and leaving the private regions in𝑚2 unchanged.

For threaded tinjp, we also need to compose the internal guarantee of internal executions as

depicted in Fig. 14c. This figure has the same shape with Fig. 14a while changing{𝑒 into{𝑖 for the

thread internal execution from𝑚1 to𝑚2 (denoted by solid arrows). One may note that we represent

the constructed parts by blue symbols because the constructions of memory states here have

different situations and are already defined. For a open simulation, we have two ways of entering

and exiting a module, respectively. The construction of𝑚2 for entering could from initialization

(i.e. the left part of Fig. 14a) or returning from external calls (i.e. the right part of Fig. 14b). Similar

the derivation of ( 𝑗13,𝑚1,𝑚3) {𝑖 ( 𝑗 ′13,𝑚′1,𝑚′3) for exiting comes from either final returns (i.e. the

right part of Fig. 14a) or external calls (i.e. the left part of Fig. 14b). In order to unify different

constructions of𝑚2, we defined the invariant 𝑅𝑊 ⊆ 𝑊tinjp·tinjp ×𝑊tinjp for the constructions

at 𝐼 and 𝑌 as (( 𝑗12,𝑚1,𝑚2), ( 𝑗23,𝑚2,𝑚3)), ( 𝑗13,𝑚1,𝑚3)) ∈ 𝑅𝑊 such that 𝑗13 = 𝑗23 · 𝑗12 and𝑚2 does

not contain any thread external memory region that is private in exactly one of ( 𝑗12,𝑚1,𝑚2) and
( 𝑗13,𝑚2,𝑚3). For example, client.c is compiled through multiple compilation passes while the

variable mask is removed from the memory and becomes private since one specific pass. Therefore,
the block of mask in the memory before this pass is considered private regarding to the target

semantics but public to the source semantics. However, we want to make sure that this is not the

case for size from server.c because this will allow the internal execution of client.c to changed
it as public region. It is possible because the memories for intermediate semantics are constructed

(at 𝐼 and 𝑌 ) while we only add public threaded external blocks which exist in both source and

target semantics to them. Using this invariant as precondition, we are able to prove the composed

internal guarantee in Fig. 12c.

B Verification of Individual Passes
B.0.1 Verification of Stacking Pass.

Lemma B.1 (Correctness of Stacking pass). ∀(𝑀 : Linear) (𝑀 ′ : Mach), Stacking(𝑀) =
𝑀 ′ ⇒ [[𝑀]] ⩽LMtinjp [[𝑀 ′]] .

LMtinjp is similar to CAtinjp where its world type𝑊LM also contains𝑊tinjp for memories, the

function signature sg and the register set rs. LMtinjp also requires that the callee-saved registers are

the same from the target query to reply.

In order to prove this simulation, we need to find an invariant 𝑅 : K𝑊LM,𝑊tinjp for source and

target program states. For presentation, we simplify these states into just memories by ignoring

other parts like control stack or registers. As mentioned in §4.3, (𝑚1,𝑚2) ∈ 𝑅(𝑤𝐵,𝑤P) is defined as

∃ 𝑗,𝑤𝐵 {𝑒 ( 𝑗,𝑚1,𝑚2) ∧𝑤P {𝑖 ( 𝑗,𝑚1,𝑚2) where the internal memory world ( 𝑗,𝑚1,𝑚2) is written
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as𝑤𝑠 . Using this invariant, the proofs for initial states (Fig. 11a), final states (Fig. 11b) and external

calls (Fig. 11d) are straightforward. We illustrate how to prove the internal step (Fig. 11c) by a

snapshot of stack frames in Fig. 15. The shaded regions are private regions at the target level. The
proof goal is to show that the internal execution preserves 𝑅(𝑤𝐵,𝑤P), i.e. it can only modify the

private regions allocated by itself. Here𝑀 and𝑀 ′ are called by 𝑓 to run function 𝑔 on thread 𝐴. ℎ is

another function runs on thread 𝐵. The𝑤𝐵 {𝑒 𝑤𝑠 and𝑤P {𝑖 𝑤𝑠 from internal invariant protect

the private regions in 𝑏′
𝑓
and 𝑏′

ℎ
, respectively. Although 𝑔 can visit the stack frames of 𝑓 and ℎ, the

source program𝑀 can only access the public regions in 𝑏 𝑓 and 𝑏ℎ . Therefore, forward simulation

ensures that𝑀 ′ does not change local private data in 𝑏′
𝑓
and external private data in 𝑏′

ℎ
.

𝑏 𝑓

𝐴 :

𝑏′
𝑓

𝑏𝑔

𝑏′𝑔
𝐵 :

𝑏ℎ

𝑏′
ℎ

Fig. 15. Snapshot for Stacking pass

Assuming that 𝑀 and 𝑀 ′ are called by 𝑓 and run

function𝑔 on thread𝐴. The blocks𝑏 𝑓 and𝑏
′
𝑓
are included

in initial world𝑤𝐵 while 𝑏𝑔 and 𝑏
′
𝑔 are newly allocated

and not in 𝑤𝐵 . During the execution of 𝑀 (and 𝑀 ′),
stack frames of another function ℎ is allocated on thread

𝐵. When thread 𝐵 switches back to 𝐴, 𝑏ℎ and 𝑏′
ℎ
are

included in 𝑤P. In order to preserve the accessibilities

from𝑤𝐵 and𝑤P to currentmemoryworld𝑤𝑠 (𝑤𝐵 {𝑒 𝑤𝑠
and𝑤P {𝑖 𝑤𝑠 ), we need to show that any execution of𝑀 ′ can only access the private region in 𝑏′𝑔
because it is themodule-local private block allocated by𝑀 ′. Although 𝑔 can visit the stack-allocated

data from 𝑓 and ℎ, the source program𝑀 can only access the public regions in 𝑏 𝑓 and 𝑏ℎ . Therefore,

forward simulation ensures that𝑀 ′ does not change local private data in 𝑏′
𝑓
(which preserves{𝑒

from𝑤𝐵) and external private data in 𝑏′
ℎ
(which preserves{𝑖 from𝑤P).

1 void g();

2 int f() {

3 int a = 42;

4 g();

5 return a;

6 }

(a) Source Program

1 void g();

2 int f() {

3 int a = 42;

4 g();

5 return 42;

6 }

(b) Target Program

Fig. 16. An Example of Constant Propagation

B.0.2 Verification of Optimization Passes using Static
Analysis. The optimization passes Constprop, CSE and
Deadcode (for constant propagation, common subex-

pression elimination and dead code elimination) share a

static value analysis algorithm for collecting information

of variables at runtime by abstract interpretation.

A simple example of constant propagation is depicted

in Fig. 16. For the source program, the algorithm finds

out that 𝑎 has value 42 at line 3, the external function 𝑔

does not change 𝑎 at line 4 because 𝑎’s address is never

taken. Therefore it is reasonable to optimize the return

value to 42 in the target program. From the perspective of verifier, we need to define a rely condition

stating that 𝑎 is not changed during 𝑔 in order to establish the simulation. However, since the local

variable 𝑎 is not optimized into a register here, it is a public variable between source and target

programs and not protected by tinjp.
The solution is to remove the block of 𝑎 out of the domain of the injection when 𝑓 calls𝑔, therefore

𝑎 could be protected by the guarantee condition of 𝑔. The invariant ( 𝑗,𝑚1,𝑚2) ∈ 𝑅(𝑤𝐵,𝑤P) is
defined such that the blocks for 𝑎 is public in the internal program states (i.e. 𝑏𝑎 ∈ 𝑚1, 𝑏

′
𝑎 ∈ 𝑚2 and

𝑗 (𝑏𝑎) = ⌊(𝑏′𝑎, 0)⌋). But when 𝑓 calls 𝑔, this mapping is removed from 𝑗 , resulting to the memory

world𝑤𝐴 = ( 𝑗 ′,𝑚1,𝑚2) for queries. However, such construction is valid only if the mapping of 𝑎 is

not included in𝑤P to guarantee the increment of injection defined in𝑤P {𝑖 𝑤𝐴. We extended the

invariant relating abstract interpretation and the dynamic semantics to ensure that if the current

stack block is not leaked (e.g. 𝑏𝑎 at line 4) then it is always private in the incoming memories in𝑤P.
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It is worth noting that the reason we are able to remove the mapping for 𝑎 without breaking

the memory injection (i.e.𝑚1 ↩→𝑗
𝑚 𝑚2 ⇒ 𝑚1 ↩→𝑗 ′

𝑚 𝑚2) is exactly the information 𝑎 is not leaked
provided by the static analysis. In other words, the definition of private and public regions via

injection functions can protect not only the regions introduced by the change of memory structure,

but also the regions introduced by static analysis.
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