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Blockchains operating at the global scale demand high-performance byzantine fault-tolerant (BFT) consensus
protocols. Most classic PBFT-like protocols su�er from an issue known as the leader bottleneck, which severely
limits their throughput and resource utilization. Recently, Directed Acyclic Graph, or DAG-based protocols,
have emerged as a promising approach for eliminating the leader bottleneck and achieving better performance.
They attain higher throughput by separating data dissemination and block ordering. However, their safety
and liveness logic is also signi�cantly more elaborate. So far, most DAG-based protocols have only enjoyed
on-paper security proofs, and it is not clear how to construct formal proofs of these protocols e�ciently.

We introduce LiDO-DAG, a concurrent object model that abstracts the common logic of these protocols.
LiDO-DAG is constructed by combining a DAG abstraction and LiDO, a recently proposed abstraction for
leader-based consensus. To demonstrate that our framework enables rapid validation of new DAG-based
protocol designs, we implemented LiDO-DAG in Coq and applied it to three recent DAG-based protocols,
including Narwhal, Bullshark, and Sail�sh. Our framework readily yields mechanized safety and liveness
proofs for all three protocols, which are also the �rst mechanized liveness proofs of any DAG-based protocol.
Our framework has also revealed an optimization for Sail�sh that improves its worst-case latency.
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1 Introduction

Since their inception in 2008, blockchains such as Bitcoin [Nakamoto 2008] and Ethereum [Buterin
2014] have grown into major alternative �nancial platforms, with billions of dollars traded on them
daily [CoinGecko 2024]. However, a major factor limiting the adoption of blockchains is their low
throughput. As of writing, Ethereum only supports a theoretical maximum of ~600 transactions
per second [Buterin 2024], the actual value being still lower, whereas the Visa payment system
processes more than 8,000 transactions per second on average [Visa Inc. 2023]. Therefore, there is
signi�cant interest in developing blockchains with higher transaction throughput.

At the core of many blockchains is a Byzantine Fault-Tolerant (BFT) consensus protocol. Blocks of
transactions collected by each participating process are submitted to the consensus protocol, which
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produces a single linear transaction log. Most BFT algorithms execute in views, and within each view
a single process is elected as the leader. Only the leader is allowed to propose and commit blocks
within each view. The other processes produce votes which prevent the leader from equivocating.
This architecture of BFT protocols is called leader-based and is by far the most well-understood
kind of consensus protocol. Protocol designs following this pattern include Buchman et al. [2019];
Castro [2001]; Gelashvili et al. [2022]; Lewis-Pye et al. [2024]; Naor et al. [2021]; Yin et al. [2019].
Their formal security properties have also been investigated in many works including Bravo et al.
[2022]; Carr et al. [2022]; Cirisci et al. [2023]; Qiu et al. [2024b]; Rahli et al. [2018]; Vukotic et al.
[2019]. However, they also exhibit several undesirable characteristics, collectively known as the
leader bottleneck [Danezis et al. 2022; Neiheiser et al. 2021]:

• As only leaders may propose blocks, network throughput is limited by that of the leaders;
• The other processes do almost nothing, leading to signi�cant resource under-utilization;
• Moreover, if the leader is faulty then network may not progress for long periods of time.

Recently, there emerged an alternative approach to BFT protocols, based on Directed Acyclic
Graph (DAG) [Arun et al. 2024; Babel et al. 2024; Baird 2016; Danezis et al. 2022; Gągol et al. 2019;
Keidar et al. 2021, 2023; Shrestha et al. 2025; Spiegelman et al. 2023, 2022a]. DAG-based protocols
work around the leader bottleneck by an elegant separation between a data dissemination phase
and a block ordering phase. In the dissemination phase, all processes collaborate to build a DAG of
data blocks, representing a partial order on these blocks (Fig. 1). Data dissemination is leaderless:
all processes can submit blocks to the DAG even when they are not leaders. The ordering phase
then extends this partial order into a total order of blocks, representing the consensus log. This
phase is still leader-based, and can be implemented with any leader-based BFT protocol.

Up to this point DAG-based protocols seem to be just simple compositions of DAG and traditional
BFT algorithms. Indeed, some simple DAGprotocols like Narwhal [Danezis et al. 2022] are structured
exactly this way. The new twist in the story is that many protocols implement the ordering phase
directly upon the DAG structure itself (e.g. Spiegelman et al. [2022a]). From a practical perspective,
this simplifes the implementation by removing the need for a separate BFT component, and reduces
commit latency. However, it comes at the cost of a signi�cantly more complex DAG-building
algorithm. Speci�cally, whenever each process receives a new DAG vertex, it needs to execute an
ordering algorithm that interprets the local view of the DAG and outputs a linear log of committed
blocks. The protocol must carefully arrange the DAG-building process and the ordering algorithm
so that they together satisfy three correctness criteria:

• Safety: the consensus logs from all non-faulty processes are consistent with each other;
• Liveness: every block from non-faulty processes is eventually committed;
• Fairness: every non-faulty process can eventually submit new blocks into the DAG.

It is highly non-trivial to achieve all three goals simultaneously. As we will see in Section 2.2, the
ordering algorithm can exhibit quite subtle and counterintuitive behaviors, which are necessary to
ensure safety. Existing works indicate it is already challenging to verify only the safety property
[Bertrand et al. 2024]. To prove liveness would require further analysis of how the ordering algorithm
interacts with the DAG-building process. To our knowledge there has been no attempt to formally
verify any liveness proof of DAG-based protocols, either using theorem provers or model checkers.
On the other hand, new DAG-based protocols with better theoretical performance are kept being
proposed in the literature, with safety and liveness proven only on paper. These proofs have grown
increasingly intricate, to the point that their correctness has occasionally become controversial (see,
for example, the appendix of Shrestha et al. [2025] criticizing the liveness proof of Mysticeti [Babel
et al. 2024]). To resolve such disputes, we need a clean conceptual framework for understanding
the behavior of these protocols and verifying their correctness proofs.
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Round 1 Round 2 Round 3

Process 1

Process 2

Process 3

Process 4

Fig. 1. DAG-based data dissemination. Each
vertex in the graph represents a block of
data. Vertices are stratified into rounds.
Each process may only create one vertex
per round. Each vertex must embed at least
25 + 1 pointers to vertices of the immedi-
ate previous round. Each column in this fig-
ure represents one round, and each row rep-
resents vertices from a single process. Pro-
cesses may skip rounds to catch up with
network progress, leaving holes in the fig-
ure. The DAG graph represents only a partial
order on the blocks. Additional mechanisms
are required to reach a total order.

In this work, we introduce LiDO-DAG, a concur-
rent object model for DAG-based consensus that enables
re�nement-based safety and liveness proofs for these
protocols. Our starting point is the key observation that
most partially synchronous DAG-based protocols, though
seemingly complex, can still be logically interpreted as
a composition of DAG and a leader-based BFT protocol,
a point we will explain in Section 2.3. This suggests that
approaches for verifying leader-based BFT can also be ap-
plied to DAG-based BFT. In particular, Qiu et al. [2024b]
described a theory called LiDO for verifying leader-based
consensus and applied it to several BFT protocols. How-
ever, as we will see in Section 2.4, liveness of DAG-based
consensus involves a number of subtle issues. In particu-
lar, it is possible that a system satisfying liveness of both
leader-based consensus and DAG-based block dissemi-
nation still does not satisfy liveness as de�ned above. To
patch this gap it is necessary to make LiDO aware of
the DAG layer, and introduce new safety requirements
on how consensus interacts with DAG, resulting in the
LiDO-DAG model.
Our model enables e�cient validation of new DAG-

based protocol designs. To demonstrate this, we imple-
mented in Coq [The Coq Development Team 2024] three
state-of-the-art DAG-based protocols, namely Narwhal
[Danezis et al. 2022], Bullshark [Spiegelman et al. 2022b],
and Sail�sh [Shrestha et al. 2025], and constructed mechanized correctness proofs for all three
protocols by re�nement to LiDO-DAG. Surprisingly, our model has also helped us discover an
optimization for Sail�sh that improves its worst-case latency, also formally veri�ed.
To summarize, our contributions are:

• LiDO-DAG, a concurrent object abstraction for partially synchronous DAG-based protocols
that enables re�nement-based safety, liveness, and fairness proofs for these protocols;
• Coq implementations of three state-of-the-art DAG-based protocols, namely Narwhal
[Danezis et al. 2022], Bullshark [Spiegelman et al. 2022b], and Sail�sh [Shrestha et al. 2025],
including mechanized safety and liveness proofs.
• An optimization for Sail�sh with lower worst-case latency, formalized under LiDO-DAG.

All results claimed in this paper have been mechanized in Coq and available as an artifact [Qiu
et al. 2025a]. More details about our work can be found in the technical report [Qiu et al. 2025b].

2 Overview

2.1 The Landscape of DAG-Based Protocols

To set the stage, we begin with a survey of the current ideas on DAG-based protocol design.
In leader-based consensus, when a non-leader process receives a client request, it either delays

processing the request, or forwards it to the current leader. In contrast, the common theme of all
DAG-based protocols is that each process immediately packages requests it has received into data
blocks that are then disseminated within the network. Clearly if block creation is unconstrained
then the network could be easily �ooded by byzantine processes. To prevent such attacks, the
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blocks are strati�ed into rounds. Each process may only create one block per round, and blocks
within each round (except the �rst round) must contain pointers to at least = − 5 vertices in the
previous round, where = is the total number of processes and 5 is the fault-tolerance threshold.
In the standard setting = = 35 + 1, this ensures at least half of the blocks in the network are from
non-faulty processes, and prevents �ooding attacks.

If we interpret data blocks as graph vertices, and pointers as directed edges, then the valid blocks
always form a directed acyclic graph (Fig. 1), which is why these protocols are called DAG-based.

Authenticated vs. Unauthenticated Protocols. The above description immediately raises the ques-
tion of how to prevent byzantine processes from creating multiple blocks within a single round.
The easy way is to use a reliable broadcast (RBC) protocol to deliver each vertex. Protocols based on
RBC are called authenticated and include DAG-Rider [Keidar et al. 2021], Narwhal [Danezis et al.
2022], etc. Informally, RBC provides each party with an in�nite sequence of message slots. Each
party ?: may call A_120BC: (<, A ) to �ll its slot A with message<. Each slot may only be �lled once,
even if ?: is byzantine. Each party may receive signals A_34;8E4A (<, A, ?: ) which state that ?: has
�lled its slot A with message<. RBC additionally requires that, after one non-faulty party receives
a message, all other non-faulty parties will receive the same message within bounded time, so that
participants do not need to worry about delivery omissions.
In Alg. 1 we provide an formal ideal model of RBC. The �nite map A1_<0? keeps track of the

messages �lled in each slot. Initially, all slots are empty (line 4). Each party ?: may call A_120BC: (<, A )

to �ll one of its slots, unless the slot is already �lled (line 6). A virtual agent known as the adversary
A controls message delivery (line 8-10), subject to liveness constraints (line 12 and 13).

Algorithm 1 Ideal Model of Reliable Broadcast

1: Agents: parties ?1, · · · , ?= , adversary A.
2: State variable: �nite map A1_<0? : {1, · · · , =} × N ↦→

option val.
3: initialize:
4: Assume ∀:, ∀A, A1_<0? (:, A ) = None.

5: upon A_120BC: (<,A ) from party ?: :
6: if A1_<0? (:, A ) = None then

7: A1_<0? (:, A ) ← Some <

8: upon 34;8E4A (:, A, 8 ) from A:
9: if A1_<0? (:, A ) = Some < then

10: Send signal A_34;8E4A (<,A, ?: ) to party ?8

11: Liveness requirements after GST:
12: If ?: is non-faulty, after ?: calls A_120BC: (<,A ) , A calls

34;8E4A (:, A, 8 ) for each non-faulty ?8 within time)'�� .
13: Regardless of whether ?: is non-faulty, after A1_<0? (:, A ) ≠

None and A has called 34;8E4A (:, A, 8 ) for any non-faulty ?8 ,
it calls 34;8E4A (:, A, 8′ ) for every non-faulty ?8′ within Δ.

Another line of work attempts to reduce
block creation latency by avoiding RBC.
These protocols are known as unauthenti-
cated and include Cordial Miners [Keidar
et al. 2023] and Mysticeti [Babel et al. 2024].
They rely instead on failure detection. If a
non-faulty process observes equivocating
blocks from the same process within a sin-
gle round, it forwards the evidence to other
processes and they expel the faulty process
from the system.

Establishing Total Order over the Blocks.

The DAG graph only provides a partial or-
der over the blocks. To extend this partial
order into a linear order, the easiest way is
to use an external BFT algorithm to order
the blocks. A naive implementation would
commit the hash of every single block into the BFT log. A better way is to make each entry in the
log implicitly include its entire closure, the set of all (indirectly) reachable vertices in the DAG.
Thus each BFT leader proposes only the latest blocks it has received, and they will transitively
include all previous blocks.

More recently, people have realized that it is in fact possible to implement BFT directly upon the
DAG structure. Two approaches known as physical DAG and logical DAG have been proposed. In
logical DAG, consensus information such as votes and timeouts are packaged into the data blocks.
In physical DAG, they are encoded onto the topological structure of the DAG.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.
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Table 1. Classification of recent DAG-based protocols. Some protocols such as Bullshark and Cordial Miners
have multiple versions for di�erent se�ings. � indicates authenticated,* indicates unauthenticated protocol.
Bold text indicates protocols we have formally verified in this work.

Asynchronous Partially Synchronous

External BFT NarwhalA [Danezis et al. 2022]

Physical DAG DAG-RiderA [Keidar et al. 2021] BullsharkA [Spiegelman et al. 2022b]
BullsharkA [Spiegelman et al. 2022a] MysticetiU [Babel et al. 2024]
Cordial MinersU [Keidar et al. 2023] Sail�shA [Shrestha et al. 2025]
TuskA [Danezis et al. 2022] Cordial MinersU [Keidar et al. 2023]

ShoalA [Spiegelman et al. 2023]
Shoal++A [Arun et al. 2024]

Logical DAG FinoA [Malkhi and Szalachowski 2023]

As we will see in Section 2.3, physical DAGs like Bullshark must carefully control the timing of
DAG vertex creation to ensure liveness. This makes them more di�cult to implement than logical
DAGs, where vertex creation and consensus progress independently. However, experiments suggest
that logical DAGs do not perform as well as physical DAGs [Spiegelman et al. 2022a]. Therefore,
the majority of DAG-based protocols in the literature are physical DAGs rather than logical DAGs.

Communication Models. Like other consensus protocols, liveness of DAG-based protocols depend
on the communication model. The distributed system literature distinguishes between asynchro-

nous, synchronous, and partially synchronous protocols [Dwork et al. 1988]. In asynchronous
protocols, messages may arrive arbitrarily late. In synchronous protocols, they must arrive within
a known bound Δ. Partial synchrony represents a middleground: messages must arrive within Δ,
but only so after an unknown timepoint known as the Global Synchronization Time (GST).

Most works on DAG-based protocols use either the asynchronous or the partially synchronous
model. It is known that consensus under asynchrony cannot be deterministically solved [Fischer
et al. 1985]. Hence all asynchronous protocols rely on probabilistic primitives such as public coins
which are di�cult to model. Furthermore, asynchronous protocols su�er from a dilemma between
fairness and garbage collection [Spiegelman et al. 2022a]. Therefore most practical deployments of
DAG-based protocols use partially synchronous versions [Arun et al. 2024; Babel et al. 2024]. We
thus exclusively focus on partially synchronous DAG-based protocols in this work.

Summary. In Table 1 we present a classi�cation of recently-proposed DAG-based protocols along
the three aspects we discussed above. The �gure clearly shows that partially synchronous protocols,
especially physical DAGs, have attracted the most attention in current literature.

2.2 The Subtleties of DAG-Based Protocols

In terms of performance, currently the best DAG-based protocols are physical DAGs. We now
analyze what makes this class of protocols di�cult to understand.
The general operation of physical DAG is as follows. First, within the DAG graph a subset

of vertices are designated as the anchors, also known as leader vertices. Second, a commit rule is
de�ned for each anchor. If a process observes that the commit rule is satis�ed, it considers the
corresponding anchor committed. Finally, an ordering algorithm is de�ned upon the local state of
each process. The ordering algorithm inspects the set of received vertices and returns an ordered
list of anchors. This list is guaranteed to contain all committed anchors, and may contain additional
anchors. Each entry in the list is then expanded into its closure. After deduplication, the result is
the currently observed consensus log.

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.
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A1

A2

A3

Process 1

Process 2

Process 3

Process 4

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6

Wave 1 Wave 2 Wave 3

Fig. 2. An example DAG graph under Bullshark.
Rounds are divided into groups of two, called waves.
Anchors are colored red and labeled as�: . Thick purple
arrows indicate edges to anchors. If there exists 5 + 1
purple edges within a single wave, the anchor of that
wave is considered commi�ed. Hence �3 is commi�ed
but �1, �2 are not.

As a concrete example, we consider the Bull-
shark [Spiegelman et al. 2022b] protocol. Fig. 2
shows a possible DAG under Bullshark, run-
ning with= = 35 +1 = 4 processes. In Bullshark,
the DAG is divided into waves, each wave con-
sisting of two rounds. Within each wave, one
of the processes is designated as the leader. The
anchor of each wave is the vertex created by
the leader in the �rst round of that wave. Thus
each wave has at most one anchor. For each
anchor, the commit rule is at least 5 + 1 blocks
in the second round of the same wave embed a
pointer to that anchor. The ordering algorithm
is speci�ed in Alg. 8.
Within this section, let us use �: to denote

the anchor of wave : . In Fig. 2, we observe the
commit rule is satis�ed for �3, so the ordering algorithm is guaranteed to return �3. Although
the commit rule is not satis�ed for �1 and �2, they are both reachable from �3. Unless the reader
is already familiar with Bullshark, it seems natural to conjecture the ordering algorithm should
return these two anchors as well. The reader would then be very surprised to learn the actual list
returned is [�2, �3], which includes �2 but omits �1.
Before discussing why this is the case, we point out this paradoxical behavior shows that in

physical DAG protocols, merely creating an anchor and disseminating it does not guarantee it will
be committed. Thus the protocol must include additional rules that constrain DAG vertex creation,
in order to achieve liveness. In Bullshark, for example, each process is equipped with a local timer
that controls the timing of vertex creation (see line 24 of Alg. 8). The interaction between timers
and DAG-building is a major factor that complicates liveness proofs of physical DAG protocols.

2.3 Understanding DAG-Based Consensus with LiDO

Why is it that in Fig. 2, the ordering logic omits �1, despite it being reachable from �3? One way to
understand the problem is to follow Alg. 8 and the proofs in Spiegelman et al. [2022a,b] line-by-line.
However they are long and di�cult to read. Our key insight is that things can be understood much
more easily, by realizing Bullshark is in fact simulating a leader-based BFT protocol.

Verifying Protocols via Abstract Model Re�nement. From the informal description of Bullshark one
can already see many conceptual analogies between Bullshark and leader-based BFTs like HotStu�
[Yin et al. 2019] and Jolteon [Gelashvili et al. 2022]: 1) all these protocols execute in a succession of
views (waves in Bullshark); 2) there is a single predetermined leader in each view, whose goal is to
commit new data blocks; 3) all these protocols use timers to ensure liveness for non-faulty leaders.
It is tempting to ask how this similarity can be exploited to simplify veri�cation of Bullshark.

Although Bullshark and HotStu� share some similarity, it is not possible to prove that one is
simulating the other, as their network-level details are very di�erent. Recently, Qiu et al. [2024b]
advanced the idea that we can prove all these protocols are simulating an abstract model of
consensus. They introduced a formal model called LiDO for verifying leader-based consensus.

There are several advantages in introducing abstract models for verifying complex protocols like
Bullshark. First, abstract models supply convenient guides in formulating network-level invariants.
The LiDO model postulates three linearization points [Herlihy and Wing 1990] within each view
of consensus, called pull, invoke, and push (explained on the next page). To verify a protocol one
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A1

A2

A3

Root

ECache
wave=1

parent_wave=0

ECache
wave=2

parent_wave=0

MCache
wave=1

anchor=A1

MCache
wave=2

anchor=A2

ECache
wave=3

parent_wave=2

CCache
wave=3

MCache
wave=3

anchor=A3

A1

A2

A3

Fig. 3. The state of consensus in Fig. 2, represented under the LiDO-DAG framework. The closure of anchors
�2, �3 are shown below. The closure of anchor �1 contains only �1 itself. When an anchor is commi�ed, the
entire closure is implicitly commi�ed. See Section 2.3 for explanation.

�rst de�nes what these linearization points correspond to in the network model. The abstract
model de�nes a number of invariants necessary to prove safety of consensus. After de�ning the
re�nement relation for the linearization points, these invariants can be translated to properties of
the network model, simplifying the error-prone task of formulating safety invariants.

Second, abstract models provide reusable decomposition of liveness properties into safety proper-
ties. Most consensus algorithm designs come with liveness claims about the commit latency of the
protocol. Actually formalizing this claim turns out to be tricky. For example, if the commit latency
is 8Δ, it does not mean after GST a new log entry will be committed every 8Δ: it cannot hold if the
current leader of the system is faulty. Thus liveness of the protocol must be stated relative to the
“current leader,” which leads to the question of who the “current leader” is. LiDO resolves the issue
by providing a pacemaker abstraction, which contains two variables current view and remaining

time. Hence the commit latency can be stated as a safety property: if leader of current view is
non-faulty, and remaining time is at least 8Δ, then a new log entry will be committed within 8Δ.
We can then prove on the abstract model that new entries will be committed in�nitely often.

How Bullshark Re�nes LiDO. Under the LiDO framework, the actions of each leader within a
wave can be summarized as three steps:

(1) Pull: the leader updates its local consensus log;
(2) Invoke: the leader proposes new entries to be appended to the log;
(3) Push: the leader commits the proposed entries.

We now look at what these actions correspond to in Bullshark. For the moment, we ignore the
implicitly included closure, and focus only on the anchors. Thus the consensus log corresponds to
the list returned by the ordering algorithm, and in each wave the leader proposes a single anchor.
Fig. 3 shows how we interpret the state of consensus in Fig. 2 under the LiDO framework. The

LiDO model uses a tree of cache nodes to represent the result of each action by the leader. The Root
node represents the empty consensus log at the beginning of execution. The results of each pull,
invoke, and push action are represented by ECache, MCache, and CCache respectively. They
stand for leader Election, Method proposal, and Commit.
When execution begins, process 1 performs pull. Nothing has been proposed yet, so process 1

obtains the empty consensus log. This is represented by an ECache in wave 1 that is attached to

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.
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DAG
Graph

LiDO Cache Tree

Abstract Pacemaker

DAG-based
Dissemination

BFT
Consensus DAG-based

Dissemination

BFT upon DAG

DAG
with Timers

Ordering
Algorithm

refinesrefinesrefines

(a) External BFT (b) Logical DAG (c) Physical DAG

Orders
anchors of

Fig. 4. The LiDO-DAG model, with three implementation strategies. (a) In external BFT implementations,
DAG is solely used to disseminate data blocks, and an external BFT algorithm orders the blocks. (b) In
logical DAG implementations, BFT is implemented by packaging votes and timeouts into data blocks that are
disseminated by DAG. (c) In physical DAG implementations, DAG is modified to cooperate with timers so
that votes and timeouts are encoded into its topological structure.

the Root node. Process 1 then proposes the anchor �1 but fails to commit it (the commit rule is not
satis�ed), so there is an MCache but not CCache in wave 1.

Now wave 2 begins and process 2 performs pull. The result of this operation can be learned from
the pointers embedded in the anchor �2. Here we notice that in Fig. 2, �1 is not reachable from �2.
We thus infer that when process 2 proposed its anchor �2, it was not aware of the anchor �1, and
its local consensus log was still the empty log. We represent this by having the ECache of wave 2
also attached to Root. It then goes on to propose the anchor �2 but again fails to commit.

When process 3 performs pull, it observes both anchors�1 and�2, but they represent con�icting
consensus logs, represented as a fork in Fig. 3. It can infer that �1 is not committed by any process,
because otherwise process 2 must have observed �1. However, it cannot be certain whether any
process has committed �2 or not. Thus it is forced to use the consensus log represented by �2.
This follows from the general pattern that leaders must use the latest consensus log they see, and
ignore all other con�icting logs. Process 3 then proposes the anchor �3 and successfully commits
it, represented by the CCache of wave 3. The �nal consensus log is thus [�2, �3] which omits �1.
In summary, there is a direct correspondence between the behavior of Bullshark and the LiDO

model of leader-based consensus: each anchor corresponds to an MCache; the ECache of each wave
is determined by the latest previous anchor reachable from an anchor; and each anchor that is
observed to be committed corresponds to a CCache.
The key safety invariant of LiDO is that whenever a CCache exists in waveF , and an ECache

exists in waveF ′ > F , the ECache must be attached to an MCache whose wave number is at least
F . By the above correspondence, this means whenever the anchor �F is committed, and an anchor
�F′ (F

′
> F) exists, then�F is reachable from�F′ . This rule was previously described in Shrestha

et al. [2025]; we now see it simply follows from the general safety rule for leader-based BFT.

2.4 Challenges of Adapting LiDO to DAG-Based Protocols

Although network-level descriptions of DAG-based protocols seem complicated, the above analysis
shows there is strong resemblance between the behavior of these protocols and classic leader-based
BFT. Thus it is natural to think that safety and liveness of DAG-based consensus can be veri�ed by
proving a re�nement relation to the LiDO model.
The notion that DAG-based protocols are simulating leader-based consensus is informally

discussed in several papers including Arun et al. [2024] and Shrestha et al. [2025]. In these works,
the simulation relation is used to provide intuition that informs the design of new protocols. In this
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work we aim to show this relation can be made formally precise, and interpreting these protocols
this way substantially simpli�es the correctness veri�cation of these protocols.
However, when we actually attempted to prove re�nement between these protocols and LiDO,

we immediately noticed several gaps between the semantics of LiDO and the correctness criteria of
DAG-based protocols. We show two examples here:

External Validity. All BFT protocols are required to satisfy external validity, meaning every
committed entry in the consensus log must have been submitted by an external client. In most
cases external validity is enforced by checking the signature embedded in the block, which is a
local action. This is also the assumption made in the Jolteon implementation provided by Qiu et al.
[2024b]. However, when a BFT protocol is composed with a data dissemination protocol, as in
Narwhal, then external validity takes on a new de�nition: each BFT log entry must reference an
existing vertex in the DAG. This introduces unexpected complications. For example, if by the time
the leader’s BFT request message arrives, the voter has not yet received the proposed block from
RBC, then it will reject the proposal, which will break liveness. In Section 4.2, we explain how we
worked around this issue by modifying the network model of Jolteon, but it shows the trickiness in
adapting existing veri�ed BFT protocols to a DAG-based setting.

Stagnant Anchors. Liveness of DAG-based consensus requires that all blocks are eventually
committed. This seems easy to prove if we assume that 1) each block is eventually included in the
closure of some anchor; and 2) each leader will always eventually commit new anchors in the BFT
log. However, there is a subtle gap: when a leader proposes a new anchor, it might not be the latest
block created by this leader. If a leader keeps proposing the same anchor in the BFT protocol, then
the newer blocks would not be committed, even though liveness of neither block dissemination nor
consensus is violated. This does not occur in Bullshark, but it is another formal factor to consider
in protocols like Narwhal where leaders can choose which anchor to propose.

Thus merely proving re�nement to LiDO does not yield the expected liveness properties of DAG-
based protocols. To bridge these gaps it is necessary to extend the LiDO theory with abstractions
for DAG, and formalize new requirements necessary for liveness on the extended model. This leads
to the LiDO-DAG model, which we formally de�ne in the next section. As shown in Fig. 4, the
LiDO part of LiDO-DAG is kept largely similar to Qiu et al. [2024b], which is intentional to allow
reusing their proofs, while we added abstractions for DAG-based block dissemination. All three
styles of DAG-based consensus can be re�ned to our model.

3 The LiDO-DAG Model

In this section we formally de�ne the LiDO-DAG model. We �rst de�ne a concurrent object that
represents the DAG of data blocks. Then we combine the DAG object with the LiDO model [Qiu
et al. 2024b] which represents the consensus log of DAG anchors. Finally we explain how to reduce
liveness and fairness of DAG-based protocols into safety properties with our model. Here we
describe LiDO-DAG mostly in pseudocode. For details of Coq formalization see Appendix D.

3.1 The DAG Object

The internal state of a DAG is a set of vertices. The vertex record is de�ned in Fig. 5. Each vertex
contains a piece of client-submitted data, a list of pointers to other vertices, and some other metadata.
We also give each vertex a unique ID. Each pointer is represented by the ID of the target.

The data embedded within each vertex is required to satisfy external validity: the external client
should have ultimate control over what gets recorded in the DAG. To enforce this we follow Qiu
et al. [2024b] and assume the existence of a data pool object (Alg. 3). The data pool interacts with
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Algorithm 2 The DAG Object

1: Agents: DAG-builder threads ?1, ?2, · · · , ?35 +1.
2: State variable: E4ACB : list Vertex.
3: Notation: E4ACB [83 ] = E means E ∈ E4ACB and E.83 = 83 ; E4ACB [83 ] = ⊥ if no vertex with E.83 = 83 exists.
4: Notation: 8B&D>AD< (% ) = CAD4 if % is a set of at least 25 + 1 threads.
5: Notation: cl(E) is the closure of vertex E, de�ned in Section 3.1.
6: initialize: Assume E4ACB = {}.

7: upon ���-%D;; (A ) with A ≥ 1 from ?8 :
8: if A = 1 then

9: return {}

10: if ?8 is honest but has not called ���-�=E>:4 (A − 1, _, _) before then
11: return �=E0;83�0;;

12: upon ���-�=E>:4 (A, E0;, ?A43B ) with A ≥ 1 from ?8 :
13: if �ℎ42:'468BC4A (E0; ) = 5 0;B4 , or E4ACB [83 ] = ⊥ for some 83 ∈ ?A43B then
14: return �=E0;83�0;;

15: if E4ACB [83 ] .A>D=3 ≥ A for some 83 ∈ ?A43B then
16: return �=E0;83�0;;

17: BCA>=6�364B ← filter (83 ↦→ E4ACB [83 ] .A>D=3 = A − 1) ?A43B

18: BCA>=6�364�D8;34AB ← map (83 ↦→ E4ACB [83 ] .1D8;34A ) BCA>=6�364B

19: if A > 1 ∧ 8B&D>AD< (BCA>=6�364�D8;34AB ) = 5 0;B4 then

20: return �=E0;83�0;;

21: if ?8 is honest and there exists vertex E′ ∈ E4ACB with E′ .1D8;34A = ?8 , E′ .A>D=3 ≥ A then

22: return �=E0;83�0;;

23: if ?8 is honest, there exists vertex E′ ∈ E4ACB with E′ .1D8;34A = ?8 but ∀83 ∈ ?A43B, E′ ∉ cl(E4ACB [83 ] ) then

24: return �=E0;83�0;;

25: upon Respond to call ���-%D;; (A ) :
26: Nondeterministically choose set ( ⊆ E4ACB

27: BCA>=6�364B ← filter (83 ↦→ E4ACB [83 ] .A>D=3 = A − 1) ?A43B

28: BCA>=6�364�D8;34AB ← map (83 ↦→ E4ACB [83 ] .1D8;34A ) BCA>=6�364B

29: Check 8B&D>AD< (BCA>=6�364�D8;34AB ) = CAD4 , otherwise go back to line 26 and choose another set ( .
30: If no such set ( exists, respond to the call later.
31: return ( to ?8

32: upon Respond to call ���-�=E>:4 (A, E0;, ?A43B ) with (D224BB :
33: Nondeterministically choose 83 such that E4ACB [83 ] = ⊥.
34: E ← {83 := 83 ; A>D=3 := A ;1D8;34A := ?8 ;30C0 := E0; ;?A43B := ?A43B }

35: E4ACB ← E4ACB ∪ {E}

36: return E to ?8

37: upon Respond to call ���-�=E>:4 (A, E0;, ?A43B ) with)8<4>DC :
38: Precondition: exists set % with 8B&D>AD< (% ) = CAD4 and ∀?8 ∈ %, ∃E ∈ E4ACB, E.1D8;34A = ?8 ∧ E.A>D=3 ≥ A

39: return)8<4>DC to ?8

1 Record Vertex := {

2 (* Unique ID for each vertex *)

3 vertex_id : nat;

4 (* Round number of vertex *)

5 vertex_round : nat;

6 (* Builder thread ID *)

7 vertex_builder : nat;

8 (* Client data *)

9 vertex_data : val;

10 (* Target ID of embedded ptrs *)

11 vertex_preds : list nat;

12 }.

Fig. 5. The vertex record.

both external clients and the DAG object. An external client
may call '468BC4A (E) to add some value E to the pool. The
DAG object may call �ℎ42:'468BC4A (E) to check if some
value has been registered or not. Both operations return
atomically.
The agents interacting with the DAG object are a �xed

set of DAG-builder threads, one from each participating
process. Each process is classi�ed as synchronous, asynchro-
nous, or byzantine. Both synchronous and asynchronous
processes are honest. Their di�erence is that asynchronous
processes may undergo omission failure even after GST. To
simplify presentation, we assume the standard setting with
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25 + 1 synchronous processes, 5 byzantine processes, and no asynchronous processes. A quorum is
any set of 25 + 1 processes, and a weak quorum is any set of 5 + 1 processes. See Appendix A for
how to tolerate omission faults in addition to byzantine faults.

Algorithm 3 Data Pool

1: State variable: �nite set ( of data values.
2: initialize:
3: Assume ( = {}.

4: upon '468BC4A (E) :
5: ( ← ( ∪ {E}

6: upon�ℎ42:'468BC4A (E) :
7: return E ∈ (

The object exposes two operations ���-%D;; (A ) and
���-�=E>:4 (A, E0;, ?A43B). When an agent invokes one of
these operations, the object �rst makes a number of valid-
ity checks. If one of these checks fails, the object returns
�=E0;83�0;; atomically. Otherwise, the operation is valid,
and the object may respond to the call at any later time-
point, or not respond at all (to model network failure). No
change to the object state occurs until the object responds
to the call. After an honest thread invokes a valid operation,
it waits until the object responds to the call. If the thread is byzantine, it may voluntarily withdraw
the operation, with no change in object state. We represent this with the response,8Cℎ3A0F=. The
validity conditions and the possible responses to each operation are speci�ed in Alg. 2.

The purpose of ���-�=E>:4 (A, E0;, ?A43B) is to add a vertex of round A to the DAG, with E0; as
its contained data, and ?A43B as its embedded pointers. Round numbers start from 1. As discussed
in Section 2, to prevent byzantine �ooding, ?A43B must contain at least 25 + 1 vertices of round
A − 1 created by di�erent threads. This in turn implies the thread must know the existence of these
vertices. The process of learning vertices in round A − 1 is abstracted by the operation ���-%D;; (A ),
which each honest thread should perform before invoking ���-�=E>:4 (A, _, _).

The ���-�=E>:4 (A, _, _) operation may either return (D224BB or )8<4>DC . When it returns
(D224BB , a new vertex is added and returned to the caller. Upon )8<4>DC no change to the DAG
occurs. )8<4>DC may occur only when there are already 25 + 1 vertices in some round A ′ ≥ A . The
)8<4>DC outcome is used to model the round-skipping behavior in some protocols, where honest
processes catch up network progress by abandoning proposing vertices in some rounds.
When ���-%D;; (A ) with A > 1 returns, it always returns a set of vertices containing at least

25 + 1 vertices in round A − 1. To prevent the system from getting stuck, when an honest thread
calls ���-%D;; (A ), we must ensure either there already exists 25 + 1 vertices in round A − 1, or
these vertices will eventually be created. We enforce this by requiring that before any honest thread
calls ���-%D;; (A ) with A > 1, it must have already performed ���-�=E>:4 (A − 1, _, _) (line 10 of
Alg. 2). Thus each honest thread is forced to follow the interaction pattern below:

���-%D;; (1) · ���-�=E>:4 (1, _, _) · ���-%D;; (2) · ���-�=E>:4 (2, _, _) · ���-%D;; (3) · · ·

It can be shown that if all honest threads follow this pattern, then it is not possible for ���-%D;;
to get stuck. We will return to this point in Section 3.4, where we discuss liveness of LiDO-DAG.

The Closure of a Vertex. For each vertex E in the DAG object, we de�ne its closure cl(E) by
induction on E .A>D=3 . If E .A>D=3 = 1 then cl(E) = {E}. If E .A>D=3 > 1, then cl(E ′) is already de�ned
for every E ′ ∈ E .?A43B . If E .?A43B = {831, 832, · · · , 83=} then let D8 = E4ACB [838 ] and we de�ne

cl(E) = cl(D1) ∪ cl(D2) ∪ · · · ∪ cl(D=) ∪ {E}.

3.2 Combining DAG and LiDO

The LiDO-DAG object augments the DAG object with two additional concurrent components: a
cache tree and an abstract pacemaker. The agents interacting with these components are 35 + 1
LiDO-proposer threads (one from each participating process), and an adversary A.

The Cache Tree. The internal state of the LiDO cache tree is a set Σ of cache nodes, de�ned in
Fig. 6. Five kinds of cache nodes exist: Root, ECache, MCache, CCache, and TCache. Each cache
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�02ℎ4#>34 ≜'>>C

| ��02ℎ4 (NF0E4 ∗ N?0A4=C_F0E4 )

| "�02ℎ4 (NF0E4 ∗ N0=2ℎ>A_�� )

| ��02ℎ4 (NF0E4 )

| )�02ℎ4 (NF0E4 )

(a) Cache Nodes

?0A4=C (��02ℎ4 (F, ?)) ≡

{

'>>C (? = 0)

Σ[?] .<202ℎ4 (? > 0)

?0A4=C ("�02ℎ4 (F,<)) ≡ Σ[F] .4202ℎ4

?0A4=C (��02ℎ4 (F)) ≡ Σ[F] .<202ℎ4

(b) Cache Node Parent Relation

Fig. 6. Definition of LiDO cache nodes and node parents [Qiu et al. 2024b].

Algorithm 4 The LiDO-DAG Cache Tree

1: Agents: LiDO-proposer threads ?1, ?2, · · · , ?35 +1.
2: State variable: Σ : list CacheNode.
3: initialize: Assume Σ = {'>>C }.

4: upon %D;; (F ) from ?8 :
5: if ?8 ≠ ;4034A_> 5 (F ) , or Σ[F ] .4202ℎ4 ≠ ⊥ then

6: return �=E0;83�0;;

7: upon �=E>:4 (F, 83 ) from ?8 :
8: if ?8 ≠ ;4034A_> 5 (F ) , or E4ACB [83 ] = ⊥, or Σ[F ] .4202ℎ4 = ⊥, or Σ[F ] .<202ℎ4 ≠ ⊥ then

9: return �=E0;83�0;;

10: if ?8 is honest, and E4ACB [83 ] is not the latest vertex built by ?8 when %D;; (F ) was called (or a later vertex) then
11: return �=E0;83�0;;

12: upon %DBℎ (F ) from ?8 :
13: if ?8 ≠ ;4034A_> 5 (F ) or Σ[F ] .<202ℎ4 = ⊥ then

14: return �=E0;83�0;;

15: upon Respond)8<4>DC to %D;; (F ) , �=E>:4 (F, _) , or %DBℎ (F ) :
16: Σ← Σ ∪ {)�02ℎ4 (F ) }

17: return)�02ℎ4 (F ) to ?8

18: upon Respond (D224BB to %D;; (F ) :
19: Choose ? s.t. ? < F ∧ (? = 0 ∨ Σ[? ] .<202ℎ4 ≠ ⊥) ∧ ∀F′, F′ < F ⇒ Σ[F′ ] .2202ℎ4 ≠ ⊥ ⇒ ? ≥ F′ .
20: Such ? always exists.
21: 2 ← {��02ℎ4 (F, ? ) }; Σ← Σ ∪ {2 }

22: return 2 to ?8

23: upon Respond (D224BB to �=E>:4 (F, 83 ) :
24: 2 ← {"�02ℎ4 (F, 83 ) }; Σ← Σ ∪ {2 }

25: return 2 to ?8

26: upon Respond (D224BB to %DBℎ (F, 83 ) :
27: Precondition: ∀F′, F′ > F ⇒ Σ[F′ ] .4202ℎ4 = ⊥ ∨ Σ[F′ ] .4202ℎ4.?0A4=C_F0E4 ≥ F.
28: If precondition is not satis�ed, respond)8<4>DC instead.
29: 2 ← {��02ℎ4 (F ) }; Σ← Σ ∪ {2 }

30: return 2 to ?8

node except Root has a F0E4 argument indicating the wave it belongs to. Wave numbers begin
from 1. The intended meaning of these cache nodes is that: each ECache represents the log that
the leader of waveF received when it entered waveF ; each MCache represents one new anchor
entry appended to the log; each CCache is a mark that a particular branch of the log has been
committed; each TCache is a record that some network failure has occured in wave F . In the
following paragraphs these meanings will be made more precise.

The cache tree maintains that within each wave, there is at most one ECache, one MCache, and
one CCache. We thus use Σ[F] .4202ℎ4 to represent the ECache of waveF if it exists. If it does not
exist, we write Σ[F] .4202ℎ4 = ⊥. The notations Σ[F] .<202ℎ4, Σ[F] .2202ℎ4 are de�ned similarly.
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Algorithm 5 The Abstract Pacemaker

1: Agents:
2: LiDO-proposer threads ?1, ?2, · · · ?35 +1;
3: Adversary A.
4: Constant: C8<4A_A4B4C_E0; : nat.
5: State variables:
6: 2DAA4=C_F0E4 : nat

7: A4<08=8=6_C8<4 : nat

8: 20=_BC0AC_=4GC : bool
9: initialize:
10: Assume 2DAA4=C_F0E4 = 1

11: Assume A4<08=8=6_C8<4 = C8<4A_A4B4C_E0;
12: Assume 20=_BC0AC_=4GC = 5 0;B4

13: upon (C0AC#4GC (F ) from ?8 :
14: if ?8 ≠ ;4034A_> 5 (F ) then
15: return �=E0;83�0;;

16: if 2DAA4=C_F0E4 = F then

17: 20=_BC0AC_=4GC ← CAD4

18: return (D224BB

19: upon �;0?B4 ( ) from A:
20: if A4<08=8=6_C8<4 > 0 then

21: A4<08=8=6_C8<4 ← A4<08=8=6_C8<4 − 1

22: else

23: 20=_BC0AC_=4GC ← CAD4

24: return (D224BB

25: upon)8<4>DC(C0AC#4GC ( ) from A:
26: if 20=_BC0AC_=4GC = CAD4 then

27: 2DAA4=C_F0E4 ← 2DAA4=C_F0E4 + 1

28: A4<08=8=6_C8<4 ← C8<4A_A4B4C_E0;
29: 20=_BC0AC_=4GC ← 5 0;B4

30: return (D224BB

31: else

32: return �=E0;83�0;;

Each cache node in Σ except Root and TCache has a parent cache node, de�ned in Fig. 6. The
cache nodes are chained by this parent relation into a tree (Fig. 3). Each cache node 2 except TCache
is also associated with a consensus log, denoted by log(2). It is de�ned by induction on the tree
structure as follows: log('>>C) = []; if 2 is an ECache or CCache, then log(2) = log(?0A4=C (2));
and if 2 is an MCache, then log(2) = log(?0A4=C (2)) ++ [2.0=2ℎ>A_83].

Three operations are exposed for manipulating the cache tree, which are %D;; (F), �=E>:4 (F, 83),
and %DBℎ(F). The cache tree responds to each operation with either (D224BB or )8<4>DC , adding
one new cache node to Σ. Each %D;; (F), �=E>:4 (F, 83), %DBℎ(F) operation only creates cache nodes
in waveF . Each wave has a unique, predetermined leader, denoted by ;4034A_> 5 (F) and known
to all participants. Only the ;4034A_> 5 (F) may call %D;; (F), �=E>:4 (F, 83), or %DBℎ(F).
The semantics of these operations are de�ned in Alg. 4. When %D;; (F) succeeds, the object

creates an ECache 2 , with log(2) representing the consensus log that ;4034A_> 5 (F) receives. The
wave number of the last entry in the log is recorded in 2.?0A4=C_F0E4 , and the previous entries are
de�ned via the parent relation. When �=E>:4 (F, 83) succeeds, a new anchor entry (represented by
an MCache) is created but not yet committed. It gets committed when %DBℎ(F) succeeds.
The LiDO cache tree maintains a key invariant (line 19 and 27 of Alg. 4): if Σ[F] .2202ℎ4 ≠

⊥, F ′ > F , and Σ[F ′] .4202ℎ4 ≠ ⊥, then Σ[F ′] .?0A4=C_F0E4 ≥ F . Then it is easy to show
that if Σ[F] .2202ℎ4 ≠ ⊥, then the log of every cache node 2 in wave F ′ > F extends from
log(Σ[F] .2202ℎ4). In this sense we say, each CCache marks a committed branch of consensus log.

The Abstract Pacemaker. The LiDO cache tree presents an elegant abstraction for the consensus
log, but is in itself insu�cient to reduce liveness of consensus to safety properties. Qiu et al. [2024b]
points out that this is because we lack information about the local timers running at each process,
without which we cannot infer whether leader actions will succeed before timer expiration. They
introduced an abstract pacemaker that can be simulated by a group of local timers.
The pacemaker is de�ned in Alg. 5. It has two variables 2DAA4=C_F0E4 and A4<08=8=6_C8<4

(2DAA_F0E4 and A4<_C8<4 for short), representing a logical timer. The idea is that 2DAA_F0E4

indicates the current wave for which liveness is guaranteed (until pacemaker intervention), and
A4<_C8<4 is the minimum period of time the pacemaker guarantees not to intervene. A4<_C8<4

should decrease by 1 within each period of Δ. If A4<_C8<4 reaches 0, the pacemaker shall move the
system to the next wave. The pacemaker also allows ;4034A_> 5 (F) to call (C0AC#4GC (F) to start
the next wave before timer expiration, if it completes its tasks early.
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The LiDO-DAG concurrent object is thus de�ned as a transition system speci�ed by Alg. 2, Alg. 4,
and Alg. 5, with each upon clause representing an atomic transition event.

3.3 The Consensus Log

We now de�ne the DAG consensus log, providing a formal safety criterion for DAG-based protocols.

De�nition 3.1. The anchor log is de�ned as log(2) where 2 is the CCache with the highest wave
number in Σ. The anchor log is empty in case no CCache exists in Σ.

The following theorem easily follows from the key invariant of LiDO cache tree:

Theorem 3.2 (Safety of LiDO-DAG). If I, I′ are states of LiDO-DAG and I′ is reachable from I,

then 0=2ℎ>A_;>6(I′) extends from 0=2ℎ>A_;>6(I).

The DAG consensus log is de�ned by expanding each anchor into its closure. To convert the
closure set to a linear list, we assume a parameter X , a deterministic topological sort algorithm.

De�nition 3.3. If the anchor log is [831, · · · , 83=], and E4ACB [838 ] = D8 , then the DAG consensus log

is dedup(X (cl(D1)) ++ · · · ++X (cl(D=))), where dedup is the deduplication function.

De�nition 3.4 (Safety of DAG-based protocols). A DAG-based protocol � is safe, if 1) it is possible
to construct a re�nement-mapping q from a network model of � to the LiDO-DAG model, and 2)
whenever a participating process outputs a log, it is a pre�x of the current DAG consensus log.

3.4 Liveness and Fairness of LiDO-DAG

The abstract pacemaker enables re�nement-based liveness proofs, which has been successfully
applied to BFT protocols like Jolteon [Gelashvili et al. 2022] in Qiu et al. [2024b]. We now apply
their ideas to DAG-based protocols.

Liveness re�nement is based on an abstraction called trace segmentation. Assume that an in�nite
timed-trace g is non-Zeno, i.e. only a �nite number of events occur in every �nite period. Let ) be
any timepoint after GST, and Δ the network latency after GST. The idea is that g can be represented
as the limit of g0, g1, · · · , where g: is the pre�x of g containing only events with C8<4 < ) + :Δ.
Since the trace is non-Zeno, each of g0, g1, · · · is �nite. Each g8 is also a pre�x of g8+1. We will use
(g, g ′] to denote the trace g ′ with pre�x g removed. Liveness assumptions such as partial-synchrony
can be stated as safety properties over �nite and contiguous subsequences of the segmentation.

If q is a re�nement mapping from a protocol � to LiDO-DAG, and g0, g1, · · · is the segmentation
of an in�nite network trace, then q (g0), q (g1), · · · is the segmentation of the corresponding LiDO-
DAG trace. The de�nition of re�nement mapping guarantees that q is pre�x-preserving. A protocol
� is live if all live traces of its network model re�ne live traces of LiDO-DAG (De�nition 3.5).

De�nition 3.5. An in�nite segmented trace g0, g1, · · · of LiDO-DAG is live, if each of its �nite
contiguous subsequence g8 , · · · , g8+: satis�es the following conditions:

(1) (Liveness of ���-�=E>:4) There exists constant � , s.t. if a synchronous thread has called
���-�=E>:4 (A, _, _) before the end of g8 , then it receives response before the end of g8+� ;

(2) (Liveness of ���-%D;;) There exists constant � , s.t. if a synchronous thread has called
���-%D;; (A ) before the end of g8 , then it receives response before the end of g8+� , provided
that either 1) at least one other synchronous thread has called ���-�=E>:4 (A, _, _), or 2) all
synchronous have called ���-�=E>:4 (A − 1, _, _) and received response;

(3) (Liveness of DAG-building)When execution begins, each synchronousDAG-builder thread im-
mediately calls ���-%D;; (1); they immediately call ���-�=E>:4 (A, _, _) after ���-%D;; (A )

returns, and immediately call ���-%D;; (A + 1) after ���-�=E>:4 (A, _, _) returns;
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(4) (Liveness of LiDO) There exists constant � , s.t. if 2DAA_F0E4 (g8 ) < F , 2DAA_F0E4 (g8+1) ≥ F ,
and ;4034A_> 5 (F) is synchronous, then there exists a CCache of waveF at the end of g8+� ;

(5) (Liveness of abstract pacemaker) 1) Within (g8 , g8+1], �;0?B4 () is called at most once, and
it cannot be called after a valid )8<4>DC(C0AC#4GC () call; 2) If A4<_C8<4 (g8 ) > 0, then
within (g8 , g8+1] either �;0?B4 () or)8<4>DC(C0AC#4GC () is called at least once; 3) There exists
constant � , s.t. if A4<_C8<4 (g8 ) = 0 then 2DAA_F0E4 (g8+� ) > 2DAA_F0E4 (g8 ).

Conditions (4) and (5) are consistent with Qiu et al. [2024b] and ensure that every wave started
after GST will eventually have a CCache. Conditions (1)-(3) are new in LiDO-DAG and ensure
every round of DAG will eventually have at least 25 + 1 vertices.

Liveness of Consensus. We proved the following theorem for all live traces of LiDO-DAG:

Theorem 3.6 (Liveness of LiDO-DAG). For each vertex E built by a synchronous process, eventually

there exists an anchor E ′ in the anchor log, s.t. E ∈ cl(E ′).

The outline of the proof is as follows. First, the DAG part enforces that (line 21 and 23 of Alg. 2),
when an honest thread ?8 attempts to create a new vertex E , the closure of E must include all vertices
ever created by ?8 . This means if one of the vertices created by ?8 is committed, then all previous
vertices are also committed.

Second, the LiDO part enforces that (line 10 of Alg. 4), when an honest LiDO-proposer becomes
the leader, it must propose the latest vertex created by the same process as the new anchor. This
requirement avoids the stagnant anchor problem mentioned in Section 2.4. It ensures new vertices
are eventually included in the closures of new anchor proposals.
Finally, requirements (4)-(5) of De�nition 3.5 guarantee the newly proposed anchor will be

committed. Assuming that the leader schedule is fair (all processes become leader in�nitely often),
this ensures all vertices from synchronous threads will eventually be committed.

Progress of DAG-Pull. The rationale of the liveness requirement around���-%D;; (A ) is as follows.
If at least one synchronous thread has called ���-�=E>:4 (A, _, _), then it has already learned
25 + 1 vertices in round A − 1, and it should forward this knowledge to threads still waiting upon
���-%D;; (A ), so they also learn them within Δ.

If all synchronous threads have returned from ���-�=E>:4 (A − 1, _, _), then either all of them
succeeded, or at least one of them received )8<4>DC . In either case, there exists at least 25 + 1
vertices in round A − 1. Since vertices are gossiped among synchronous threads, they should all
learn them within Δ. Based on these considerations, we proved that:

Theorem 3.7 (Progress of DAG). Each DAG round A will eventually contain at least 25 +1 vertices

from di�erent DAG-builder threads.

Fairness of DAG. Theorem 3.7 says nothing about individual DAG-builders. It is possible that
25 + 1 vertices are created in each round, but some synchronous DAG-builder threads are starved.
The simplest way to formalize the fairness requirement is that after GST, all new calls to

���-�=E>:4 (A, _, _) return (D224BB . However this requirement is impractical: even after GST it is
occasionally necessary to skip rounds and catch up with network progress, for example if network
speed is faster for some honest builder than others. Instead we use the following de�nition:

De�nition 3.8 (Fairness of DAG-based protocols). There exists constant � , s.t. each synchronous
DAG-builder creates at least one new vertex within (g8 , g8+� ].

This does not guarantee absolute fairness: some threads can still create vertices more frequently
than others. However it gives a minimum vertex creation frequency for all synchronous threads.
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4 Implementations of LiDO-DAG

4.1 System Model

We produced several di�erent implementations of the LiDO-DAG object, showing good reusability
of our model. In this section, we describe the general structure of our network models. Features of
individual implementations will be described in subsequent sections following this skeleton.

State
Machine

Network
send_msg

deliv_msg

RBC
r_bcast

r_deliver

Local
Timer

Reset

Timeout

Client
Request

Consensus
Log

Fig. 7. Model of each honest process.

We specify each honest process as a state machine that
interacts with three ideal objects (Fig. 7), namely the net-
work object (providing message sending and delivery), the
reliable broadcast object (RBC, speci�ed in Alg. 1), and a
local timer object. Byzantine processes do not have internal
state. Instead, they are allowed to interact with the network
object and the RBC object arbitrarily.

The Network Object. The internal state of the network
object is a set of messages. Each message must come from
a prede�ned setM called the message space. The message space is protocol-speci�c. Each message
is signed by a sender. We assume byzantine processes cannot forge signatures of honest processes.
For example, in consensus protocols, byzantine processes cannot send votes on behalf of other
processes. On the other hand, we follow Dolev and Yao [1983] and allow the adversary to see every
sent message and send any message signed by byzantine processes. Message delivery is UDP-like:
sent messages may be delivered in any possible order. Although each message has a set of intended
recipients, the message may be delivered to any process in the system.

Algorithm 6 Local Timer

1: Constant: C8<4A_A4B4C_E0; : nat
2: State variable: ;>20;_A4<_C8<4 : nat

3: initialize:
4: ;>20;_A4<_C8<4 ← C8<4A_A4B4C_E0;

5: upon '4B4C ( ) from state machine:
6: ;>20;_A4<_C8<4 ← C8<4A_A4B4C_E0;

7: upon �;0?B4 ( ) from A:
8: if ;>20;_A4<_C8<4 > 0 then

9: C ← ;>20;_A4<_C8<4

10: ;>20;_A4<_C8<4 ← C − 1

11: else

12: Send signal C8<4>DC ( )

The Local Timer. Each honest process is equipped with
a local timer object, speci�ed in Alg. 6. It has a sin-
gle variable ;>20;_A4<_C8<4 . The state machine may
call '4B4C () to reset ;>20;_A4<_C8<4 to a �xed value
C8<4A_A4B4C_E0; . The adversary may call �;0?B4 () to
decrease ;>20;_A4<_C8<4 . If �;0?B4 () is called when
;>20;_A4<_C8<4 = 0, a timeout signal is delivered.

Liveness Assumptions. In�nite timed-traces of the net-
work model are segmented by Δ in the same way de-
scribed in Section 3.4. To prove liveness, we consider all
segmented traces that satisfy De�nition 4.1 and show
that, under the re�nement mapping q from the safety
proof, they re�ne live traces of LiDO-DAG.

De�nition 4.1. An in�nite segmented trace g0, g1, · · · of the network model is live, if each of its
�nite contiguous subsequence g8 , · · · , g8+: satis�es:

(1) (Liveness of network) If a synchronous process ?8 has sent a message< before the end of g8 ,
then it is delivered to every synchronous recipient at least once before the end of g8+1;

(2) (Liveness of timer) For each local timer, within (g8 , g8+1], 1) either �;0?B4 () or '4B4C () is called
at least once; 2) �;0?B4 () is called at most once; 3) �;0?B4 () cannot be called after '4B4C ();

(3) (Liveness of RBC) The liveness requirements in Alg. 1 are satis�ed.

Implementing DAG using Reliable Broadcast. The protocols we considered in this work are all
authenticated DAG-based protocols, which are easier to model than unauthenticated ones. Although
they implement consensus di�erently, the way they implement the DAG graph is largely the same.
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Algorithm 7 Building DAG From RBC

1: State variable: ;>20;_E4ACB : list Vertex; 1D55 4A : list (nat * nat * val * list nat).
2: initialize:
3: ;>20;_E4ACB ← {}; 1D55 4A ← {}

4: procedure tryAddVert(A, :, E, ?A43B)
5: 83 ← A (35 + 1) + :

6: if ;>20;_E4ACB [83 ] ≠ ⊥, or�ℎ42:'468BC4A (E) = 5 0;B4 , or ;>20;_E4ACB [?_83 ] = ⊥ for some ?_83 ∈ ?A43B then
7: return

8: if ;>20;_E4ACB [?_83 ] .A>D=3 ≥ A for some ?_83 ∈ ?A43B then
9: return

10: BCA>=6�364B ← filter (?_83 ↦→ E4ACB [?_83 ] .A>D=3 = A − 1) ?A43B

11: BCA>=6�364�D8;34AB ← map (?_83 ↦→ E4ACB [?_83 ] .1D8;34A ) BCA>=6�364B
12: if A > 1 ∧ 8B&D>AD< (BCA>=6�364�D8;34AB ) = 5 0;B4 then

13: return

14: E ← {83 := 83 ; A>D=3 := A ;1D8;34A := ?: ;30C0 := E;?A43B := ?A43B }

15: ;>20;_E4ACB ← ;>20;_E4ACB ∪ {E}

16: upon A_34;8E4A (<,A, ?: ) from RBC:
17: Interpret< as (E, ?A43B ) .
18: 1D55 4A ← 1D55 4A ∪ { (A, :, E, ?A43B ) }

19: Call tryAddVert(A, :, E, ?A43B) for each (A, :, E, ?A43B ) ∈ 1D55 4A until no entry can be added to ;>20;_E4ACB .

Each process is given access to an in�nite number of instances of reliable broadcast (RBC), numbered
from 1. The instance number is specifed with parameter A in Alg. 1.
Each honest process maintains a local view of the DAG graph (Alg. 7). When RBC sends

A_34;8E4A (<, A, ?: ), it builds a vertex record (Fig. 5) with 1D8;34A = ?: and A>D=3 = A . It inter-
prets< as a tuple of 30C0 and ?A43B , and 83 is implicitly de�ned from 1D8;34A and A>D=3 . It then
checks whether the pointers in ?A43B lead to known vertices in the local view. If so, the new vertex
is added to the local view. Otherwise, it bu�ers the record until these pointers can be resolved.
To prove that the procedure outlined above re�nes the DAG object, we can imagine there is a

global observer of all RBC instances. Whenever an honest or byzantine process calls A_120BC (<, A ),
the value is immediately delivered to the observer. The observer runs the same procedure to build
its local view of the graph. The global DAG graph is the local graph built by this observer. It is easy
to see that a vertex must be added to this global graph before it can be added to the local graph of
any honest process. Thus each local view is a subgraph of this global graph.

4.2 Narwhal

Narwhal implements consensus using an external BFT algorithm. The original combination de-
scribed by Danezis et al. [2022] is called Narwhal-HS where HS is the HotStu� [Yin et al. 2019]
protocol. Here we reused the Jolteon [Gelashvili et al. 2022] implementation provided by Qiu et al.
[2024b]. In each wave (view in Jolteon), we make the leader propose a single vertex to be committed
as the new anchor. The main challenge is to ensure all entries proposed by leaders are valid vertices.
Our implementation bu�ers the BFT request messages until the voter has added the proposed

vertex to its local view. This introduces some delay between receiving a BFT request and processing
it. However when a synchronous process proposes a vertex E in Jolteon, it must have already
received E through RBC, and RBC will deliver E to all other synchronous processes within Δ (with
suitably large Δ). Hence the request message is still processed by every synchronous process within
Δ, and the liveness proof still works. Overall, we were able to integrate the Jolteon implementation
into DAG with minimal changes to its safety and liveness proofs.
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Algorithm 8 Summary of Bullshark

1: State variable: ;>20;_2DAA_A>D=3 : nat.
2: Notation: 8B,40:&D>AD< (% ) = CAD4 if % is a set of at least 5 + 1 processes.
3: Notation: 8B�=2ℎ>A (E) = CAD4 if E.A>D=3 = 2F − 1 and E.1D8;34A = ;4034A_> 5 (F ) for some F.
4: Notation: ;>20;_2DAA_F0E4 = ⌊ (;>20;_2DAA_A>D=3 + 1)/2⌋.
5: initialize:
6: ;>20;_2DAA_A>D=3 ← 1

7: Propose vertex in round 1.

8: procedure commitCondition(F)
9: 2><<8C+>C4B ← filter (E ↦→ E.A>D=3 = 2F ∧ (2F − 1, ;4034A_> 5 (F ) ) ∈ E.?A43B ) ;>20;_E4ACB
10: 2><<8C+>C4�D8;34AB ← map (E ↦→ E.1D8;34A ) 2><<8C+>C4B

11: return 8B,40:&D>AD< (2><<8C+>C4�D8;34AB )

12: procedure getAnchorLog(F)
13: E ← anchor of wave F; 0=2ℎ>A!>6← []

14: while E ≠ ⊥ do

15: 0=2ℎ>A!>6← E :: 0=2ℎ>A!>6

16: E ← argmaxE′∈cl(E), E′≠E, 8B�=2ℎ>A (E′ )=CAD4 ⌊ (E
′ .A>D=3 + 1)/2⌋

17: return 0=2ℎ>A!>6

18: procedure advanceRoundCondition(A )
19: ?A4E'>D=3+4ACB ← filter (E ↦→ E.A>D=3 = A − 1) ;>20;_E4ACB
20: ?A4E'>D=3�D8;34AB ← map (E ↦→ E.1D8;34A ) ?A4E'>D=3+4ACB

21: if A ≤ ;>20;_2DAA_A>D=3 , or 8B&D>AD< (?A4E'>D=3�D8;34AB ) = 5 0;B4 then

22: return 5 0;B4

23: if A = 2F for some F then

24: return CAD4 if anchor of wave F received, or ;>20;_2DAA_A>D=3 = 2F − 1 and local timer has expired.
25: return 5 0;B4 otherwise.
26: else

27: return CAD4

28: upon advanceRoundCondition(r) = CAD4 for some A :
29: ;>20;_2DAA_A>D=3 ← A

30: Propose vertex in round A .
31: Reset timer to)'�� + 1 if ;>20;_2DAA_F0E4 has increased.

32: upon commitCondition(w) = CAD4 for some F:
33: Output getAnchorLog(F) as the new anchor log.

4.3 Bullshark

Bullshark [Spiegelman et al. 2022b] implements consensus by utilizing edges in the DAG graph as
commit votes, avoiding the need for a separate BFT protocol. The basic concepts of Bullshark were
introduced in Section 2.2, and Alg. 8 shows a summary of the protocol. In this section, we focus on
showing how Bullshark re�nes the safety and liveness requirements of LiDO-DAG.

Safety. To prove safety, we construct a re�nement mapping q , which de�nes a LiDO cache tree
from the global DAG graph. We show that whenever an honest process outputs an anchor log (line
12-17 of Alg. 8), it is the consensus log of a CCache, which must be a pre�x of the global anchor log.

In Bullshark, each wave F corresponds to two DAG rounds (2F − 1 and 2F ). The anchor of
wave F is the vertex created by ;4034A_> 5 (F) in round 2F − 1. Our re�nement mapping is as
follows. We create an ECache and an MCache of wave F simultaneously, when the anchor E of
waveF is created. To compute 4202ℎ4.?0A4=C_F0E4 , we look at the closure cl(E). If cl(E) contains
no anchors, then 4202ℎ4.?0A4=C_F0E4 = 0. Otherwise, we �nd the anchor in cl(E) with the highest
wave number, and take that wave number as 4202ℎ4.?0A4=C_F0E4 . Thus in Fig. 2, since cl(�2)

contains no anchors, Σ[2] .4202ℎ4 is attached directly to '>>C (Fig. 3).
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CCache of waveF is created when there exists 5 + 1 vertices (a weak quorum) in round 2F that
embed pointers to the anchor of waveF . To see how this de�nition maintains the key invariant
of LiDO, notice that a quorum and a weak quorum must intersect on at least one process. If 5 + 1
vertices in the DAG round 2F contain pointers to the anchor E , and every vertex in round 2F + 1

embeds pointers to 25 + 1 vertices in round 2F , then every vertex in round 2F + 1 must contain E

in its closure. By induction, this applies to every round A ≥ 2F + 1. Hence anchors of every wave
F ′ > F also contain E in their closures, and Σ[F ′] .4202ℎ4.?0A4=C_F0E4 ≥ F .

Now observe that in Alg. 8, if commitCondition(F ) returns CAD4 , then a CCache of roundF
exists. The procedure getAnchorLog(F ) begins from the anchor of waveF , and every iteration of
line 16 corresponds to moving to the previous entry of the consensus log. Hence getAnchorLog(F )
always returns the consensus log of a CCache, which completes the safety proof.

Liveness. An intuitive way to describe liveness of Bullshark is as follows. Each process enters
waveF when it observes 25 + 1 vertices of round 2F − 2. It �rst proposes a vertex in round 2F − 1,
then resets the timer to )'�� + 1 and waits for the anchor of wave F (line 28-31 of Alg. 8). If it
receives the anchor before the timer expires, it will create a vertex in round 2F with a pointer to
the anchor; otherwise it creates a vertex without that pointer. In any case, eventually there will be
25 + 1 vertices in round 2F , and every process will enter waveF + 1.

To formalize this liveness argument, we use the LiDO-DAG model to decompose it into a number
of safety invariants (De�nition 3.5). To begin, we de�ne how the local timers implement the
abstract pacemaker (Alg. 5). Let % be the set of all synchronous processes. For each ? ∈ % , we use
;>20;_2DAA_F0E4 (?) to denote the highest wave ? has ever entered (line 4 of Alg. 8). Then the state
variables of the abstract pacemaker are computed as: 2DAA_F0E4 = max?∈% ;>20;_2DAA_F0E4 (?),
and A4<_C8<4 = min?∈%, ;>20;_2DAA_F0E4 (? )=2DAA_F0E4 ;>20;_A4<_C8<4 (?). That is, 2DAA_F0E4 is the
highest wave any synchronous process has ever entered, and A4<_C8<4 is the least local remaining
time among those synchronous processes currently in 2DAA_F0E4 .
It remains to show that all invariants in De�nition 3.5 are satis�ed. The complete proof is

described in Appendix B. Here we present a key part of it, namely liveness of consensus. It states
if 2DAA_F0E4 (g8 ) < F , 2DAA_F0E4 (g8+1) ≥ F , and ;4034A_> 5 (F) is synchronous, then a CCache of
waveF will be created. We �rst observe that if 2DAA_F0E4 (g8 ) < F , then no process has timed-out
in waveF (since no process has entered that wave), nor will anyone timeout in waveF before the
end of g8+)'��+2. Now if a synchronous process creates a vertex E in round 2F , then either it has
timed-out in waveF , or E contains a pointer to anchor of waveF . Together they imply:

Lemma 4.2. If 2DAA_F0E4 (g8+: ) > F for some 1 ≤ : ≤ )'�� + 2, then a CCache of waveF exists

by the end of g8+: .
The reason being, if 2DAA_F0E4 (g8+: ) > F then at least 25 + 1 vertices exist in round 2F , of

which at least 5 + 1 come from synchronous processes. They must contain pointers to the anchor
of waveF , hence the anchor is committed.

Hence we only consider the case where 2DAA_F0E4 (g8+: ) = F for every 1 ≤ : ≤ )'�� + 2. Since
at least one synchronous process has received 25 + 1 vertices in round 2F − 2 by the end of g8+1,
all synchronous processes including ;4034A_> 5 (F) will enter waveF by the end of g8+2. Thus by
the end of g8+)'��+2, all synchronous processes will have received at least 25 + 1 vertices in round
2F − 1, including the anchor. They will all create vertices in round 2F that contain pointer to the
anchor. Hence the anchor is committed.

4.4 Sailfish

One of the drawbacks of the Bullshark protocol is its long commit latency and low anchor frequency.
This leads to a number of works [Arun et al. 2024; Shrestha et al. 2025; Spiegelman et al. 2023]

Proc. ACM Program. Lang., Vol. 9, No. PLDI, Article 203. Publication date: June 2025.



203:20 Longfei Qiu, Jingqi Xiao, Ji-Yong Shin, and Zhong Shao

proposing ideas for admitting more anchors. We now look at the single-leader Sail�sh protocol
[Shrestha et al. 2025] which is easier to implement.

A1

A2

A3

Fig. 8. A counterexample to
a “naive” version of Sailfish.

Sail�sh optimizes Bullshark in a way analogous to how pipelining
optimizes HotStu� [Yin et al. 2019]. It reduces each wave to just one
DAG round, but each round now simultaneously serves to introduce a
new anchor and commit the anchor in the previous round. Although
this sounds simple, the actual di�erences from Bullshark are complex,
and the proofs very subtle. Fig. 8 shows what could go wrong if we
only reduce the wave length without changing other components of
Bullshark. In this �gure, there are 2 edges from vertices in round 2 to
the anchor �1, so it seems �1 is committed. However the anchor �2 is
also committed, but�1 is not in the closure of�2, so we have committed
two con�icting logs, a safety violation.

To avoid the kind of paradox shown above, the commit rule needs to
be carefully designed, so that if the anchor �A−1 is committed, then the anchor �A (if it exists) must
embed a pointer to it. Sail�sh resolves this issue by introducing �><<8C , )8<4>DC , and #>+>C4

messages. Speci�cally: when a process ?: enters round A + 1, it either sends ⟨�><<8C, A, ?:⟩ to
;4034A_> 5 (A ) if it has received the anchor �A , or it sends ⟨#>+>C4, A + 1, ?:⟩ to ;4034A_> 5 (A + 1), if
it has not seen �A . When ;4034A_> 5 (A + 1) proposes the new anchor �A+1, it must embed either a
pointer to the anchor of round A , or 25 + 1 #>+>C4 messages of round A + 1.
The ⟨�><<8C, _, _⟩ message does not appear in the original presentation of Sail�sh. Instead it

was called “the �rst message of RBC.” In Appendix C, we describe the full details of Sail�sh and its
proofs. Here, we merely notice that correctness of the scheme hinges on that each honest process
? will send out either ⟨�><<8C, A, ?⟩ or ⟨#>+>C4, A + 1, ?⟩, but never both. Thus if we have 25 + 1
Commit messages, it is not possible to collect 25 + 1 NoVote messages, so the anchor of round A + 1
must embed a pointer to the anchor of round A .

Table 2. Statistics of proof e�ort

Component Lines

LiDO-DAG model specs 747
(586 imported)

proofs 1500
(397 imported)

Narwhal specs 2307
(1706 imported)

proofs 9697
(6813 imported)

Bullshark specs 603
proofs 4343

Sail�sh specs 270
(original) proofs 3479

Sail�sh specs 339
(with modi�cation) proofs 3040

The Extra Latency Problem of Sail�sh. Although Sail-
�sh resolves the paradox around consecutive anchors,
it introduces a new latency problem: if ;4034A_> 5 (A )
is byzantine and refuses to create an anchor, then
;4034A_> 5 (A + 1) will have to wait until everyone else
enters round A +1 and sends it#>+>C4 messages, before
it may propose its vertex. The timer duration also has
to be lengthened to accommodate the worst-case extra
latency. Shrestha et al. [2025] summarizes the conse-
quence as follows: when there is a sequence of two or

more faulty leaders in between honest leaders, ... our pro-

tocol would slightly underperform compared to Bullshark

in terms of latency.

It is natural to ask whether this extra latency can be
eliminated. During our attempt to formalize Sail�sh,
we realized this is in fact possible. Note that the purpose of #>+>C4 messages is to ensure that,
whenever we see 25 + 1 vertices of round A + 1 embedding pointers to the anchor �A , we can be
sure the anchor �A+1 (if it exists) must also contain a pointer to �A . Thus if we simply remove
#>+>C4 messages, then we cannot commit �A until we receive �A+1 and check that �A+1 contains a
pointer to �A . This is analogous to the 2-chain rule of Jolteon, and implies we need ;4034A_> 5 (A )
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and ;4034A_> 5 (A + 1) to be both synchronous to ensure �A can be committed. However, with a
simple modi�cation, we were able to remove this consecutive leader requirement.
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Fig. 9. Bullshark latency to advance
rounds with and without failures.

Our modi�cation is to add a �eld in timeout messages that in-
dicates the latest anchor the sender has received.When the local
timer of party ?: expires, ?: now sends ⟨)8<4>DC, A, @2ℎ86ℎ, ?:⟩

where @2ℎ86ℎ is the highest round A ′ ≤ A whose anchor �A ′

has already been received by ?: . We require that if a vertex of
round A embeds 25 + 1 timeouts, then its closure must include
the highest anchor referenced by these timeouts. Hence if there
exists 25 + 1 commit votes of round A , all future vertices must
include the anchor �A in their closures. See Appendix C for
details of liveness.

4.5 Proof E�ort

Table 2 shows the statistics of our Coq proofs. Proofs for Narwhal take up the largest size, but a
signi�cant portion of it is imported from Qiu et al. [2024b]. The additional e�ort to adapt it to the
DAG setting is comparatively small. The proofs were written by two persons over three months.

5 Experimental Evaluation
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Fig. 10. Narwhal latency to advance
rounds with and without failures.
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Fig. 11. Comparison of latencies of
original and modified Sailfish with 1
failed node.

To demonstrate that our veri�ed Coq speci�cation is detailed
enough and realistic, we extracted the lowest layers of Nar-
whal, Bullshark, and Sail�sh into executable OCaml code. The
extracted OCaml code follows the process model of Fig. 7 and
implements RBC with quorum signing, but lacks network and
timer facility. We linked the code to OCaml’s Unix libraries,
but the core logic remains unchanged. The code was tested on
a local cluster with four nodes, each with Intel Xeon Gold 6338
CPU, 128 GB memory, and 10 GigE NIC. We compared our code
against veri�ed Jolteon code from [Qiu et al. 2024a,b].
We ran Bullshark and Narwhal without any failures and

with one crashed node while the timeout is set to 10 ms. We
measured the latency to advance a round and throughput for
committing blocks. Fig. 9 and Fig. 10 measure the latency to ad-
vance the DAG-round from 1 to 100. On average, it takes 688 and
594 `s in the absence of failure and 3,166 and 1,998 `s with one
failed node to advance a round for Bullshark and Narwhal, re-
spectively. The spikes in the �gures capture the cases when it is
the failed node’s turn to act as a leader and the timeout kicks in to advance the round. In contrast,
it took on average 3,861 `s and 5,690 `s to advance a view for Jolteon (not in the �gure) with and
without one failure, respectively. Note that a view of Jolteon contains two phases and corresponds
to roughly two DAG-rounds.

Table 3. Throughput (Commits/s)

Protocols
without
failures

with 1
failure

Bullshark 2,917 1,444
Narwhal 5,857 4,851
Jolteon 267 173

The throughput measurement (Table 3) more clearly shows
the bene�t of DAG-based protocols against leader-based pro-
tocols: the throughput of Bullshark and Narwhal are over 10 to
21 times higher without failures and 8 to 28 times higher with
one node failure than Jolteon. The result clearly shows that
DAG-based protocols which process new blocks in all nodes in
parallel outperform the leader-based protocol which processes new blocks only in the leader node.
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We also measured the latencies of the two versions of Sail�sh we veri�ed. In the original version
of Sail�sh, if the leader of round A is faulty, then everyone except the leader of round A + 1 enters
round A + 1 within 8Δ. However, the leader of round A + 1 needs one extra Δ to collect the #>+>C4

messages. Our modi�ed Sail�sh removes the #>+>C4 messages. As shown in Fig. 11, in rounds
where the leader has crashed, the original Sail�sh consistently requires ~1ms longer failover time
than the modi�ed Sail�sh, which demonstrates the e�ectiveness of our optimization.

6 Related Works and Limitations

The literature on the designs of DAG-based protocols has been surveyed in Section 2. Further
survey can be found in [Raikwar et al. 2024]. Here we focus on works on verifying DAG-based
consensus and consensus in general.

Two existing works [Bertrand et al. 2024; Crary 2021] attempted to verify DAG-based protocols.
Crary [2021] used Coq to model Hashgraph [Baird 2016], an asynchronous protocol based on
random coins. They studied both safety and liveness, but liveness is based on an ad-hoc axiom
with on-paper justi�cation. Their approach is specialized to a single protocol. Bertrand et al. [2024]
provided a generic safety model of DAG-based protocols, and applied it to Bullshark [Spiegelman
et al. 2022a] and Cordial Miners [Keidar et al. 2023], but without liveness proof. Their model is
based on the local views of individual processes and their mutual consistency. By contrast, our
approach is based on introducing a virtual global state of DAG and consensus, and proving every
local view is consistent with this global state. We believe our approach is conceptually cleaner and
scales better with complex protocols, as it enables proving invariants at an abstract level. Thomsen
and Spitters [2021] veri�ed Nakamoto-style proof-of-stake, which is a kind of unstructured DAG.
Similar to Crary [2021], the probabilistic portion of the liveness proof is not veri�ed.
There are extensive studies [Berkovits et al. 2019; Bertrand et al. 2022; Bravo et al. 2022; Carr

et al. 2022; Cirisci et al. 2023; Drăgoi et al. 2016; Hawblitzel et al. 2015; Konnov et al. 2023; Losa and
Dodds 2020; Padon et al. 2017; Qiu et al. 2024b; Rahli et al. 2018; Taube et al. 2018; Vukotic et al. 2019;
Wilcox et al. 2015; Woos et al. 2016; Zhao et al. 2024] on veri�cation of either benign or byzantine
leader-based consensus. They can be classi�ed into model-checking approaches (e.g. Berkovits et al.
[2019]; Bertrand et al. [2022]; Losa and Dodds [2020]) and proof-checking approaches (e.g. Carr et al.
[2022]; Rahli et al. [2018]; Zhao et al. [2024]). While model-checking provides greater automation,
it is challenging to apply it to partially-synchronous liveness, and existing works mostly focus on
safety. The tricky part of liveness reasoning is to keep track of local timers and ordering between
message delivery and timeout events. Sun et al. [2024] veri�ed liveness of a cluster controller, but
their liveness reasoning does not need to deal with local timers. Hawblitzel et al. [2015] veri�ed
liveness of Multi-Paxos. Their reasoning is completely at network level, and one can expect that
they relied on a large number of complex invariants. In our engineering experience, formulating
these invariants is extremely error-prone. It is easier to �rst formulate them on simpler models like
LiDO-DAG, and then translate them down to network-level properties.
The way LiDO and LiDO-DAG currently models external validity is not completely ideal. It

postulates that as soon as a value gets registered, all voters can immediately check its validity.
This notion becomes problematic as we compose consensus with RBC: there is a gap between
broadcasting a value and learning the value. Thus although we were able to adapt the Jolteon
implementation from Qiu et al. [2024b], it was not as e�ortless as we expected. Making consensus
aware of this timing-gap is future work.
Our work is currently limited to partially synchronous protocols. To model liveness of asyn-

chronous protocols would require a theory of probabilistic re�nement. Bertrand et al. [2021] has
introduced a model-checking technique for verifying randomized distributed algorithms. Introduc-
ing their techniques into asynchronous DAG-based protocols is future work.
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