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Abstract—Due to the growing third-party software stack neces-
sary to build modern data-rich robotics and cyber-physical sys-
tems (CPS), it has become important to protect safety-critical
and timing-sensitive programs and their communication—even
against an adversarial rich operating system (OS). Enclaves
and Trusted Execution Environments (TEEs) are often used
to protect code and memory against an untrusted OS, but
they generally do not have good availability protections. To
illustrate, we present three attacks, showing that even with
secure timer access and memory protections, existing TEE
platforms still face challenges in achieving availability.

In response, we present PARTEE, the first design and
implementation of a “partitioning” TEE OS for the diverse,
distributed, and time-sensitive robotics software ecosystem.
PARTEE ensures time-sensitive enclaves cannot be denied ser-
vice by partitioning system resources, providing reliable com-
munication channels and a time-sensitive system call interface.
We analyze the security and performance of PARTEE using an
unmanned aerial vehicle implemented on the Raspberry Pi4B
using the ARM TrustZone, and show that despite the behavior
of an adversarial partition or a rich OS, the drone’s most
safety-critical enclaves remain available and can communicate
to prevent harm or damage.

Index Terms—TrustZone, TEE, Robotics, CPS, Availability

1. Introduction

Next-gen robotics and cyber-physical systems (CPS)
increasingly rely on machine learning and large language
models integrated with frameworks like the Robot Oper-
ating System (ROS) atop multicore system-on-chip (SoC)
devices [1]–[3].1 These systems feature highly distributed
software architectures composed of many third-party pro-
cesses communicating over a publish/subscribe framework
[4], [5]. As robotics and AI-assisted physical systems take
over safety-critical domains—autonomous vehicles, drones,
smart avionics systems, surgical robots, factory robotics,
smart medical implants and devices, etc.—they face growing
security concerns [6]–[13]. With increased complexity and
Internet connectivity, many are at risk of privilege escalation
once an adversary gains a foothold [14]–[20]. Furthermore,
many CPS must be available to respond to sensor input to

1. ROS is not a traditional OS, it is a user-space framework and mid-
dleware built on top of Ubuntu, allowing for rapid development.

avoid danger or economic harm; thus, privileged denial-of-
service (DoS) attacks should be considered.

Trusted Execution Environments (TEEs), often called
enclaves, offer a lightweight solution by isolating software
from an untrusted host operating system (OS) [21], [22], but
these are generally not designed to provide the availability
guarantees needed by CPS [23]. While some TEEs can
provide a basis for CPU availability (access to CPU time,
e.g. using ARM TrustZone [24] with hierarchical schedul-
ing [25]–[27]), achieving stronger availability for critical
applications is tricky on a modern TEE. Of the platforms
that need a TEE OS (like OP-TEE [28]), adapting these
solutions to provide availability is difficult due to numerous
timing and DoS vulnerabilities stemming from their designs.
We propose that they still face at least four fundamental
availability challenges, particularly for CPS:
Problem 1: Over-trusted host OS for essential enclave
services. Because enclave platforms in general are not typ-
ically designed for availability, most delegate scheduling
to the untrusted host OS [29]–[43], and enclaves can be
trivially starved. Many designs rely on the OS to service
page faults, manage page tables, handle system calls, or
manage encrypted swap space [28], [29], [37], [44], and
many allow encrypted access to enclave pages. Thus, an
untrusted host OS can easily stall enclave execution.
Problem 2: No systematic management of TEE resource
availability. The TEE OS itself manages finite resources
which can be exhausted by the untrusted host OS or any
enclave. This includes CPU time, physical memory, and
device I/O; however, subtly, any type of TEE OS kernel
object could be a vector for a DoS attack. For instance, OP-
TEE [28] heavily uses a kernel heap for numerous types of
objects which can be drained by the untrusted OS or a faulty
enclave (demonstrated in §3). Seemingly, a TEE OS must
be structured from the start to prevent over consumption.
Problem 3: No defenses for both inter-enclave communica-
tion integrity and availability. Due to the distributed nature
of modern robotics architectures, inter-process communica-
tion (IPC) can be critically important and time sensitive. For
instance, messages between sensor-processing and actuation
enclaves should have both integrity and availability to ensure
safe and timely control. Yet, for many designs, enclaves’
IPC can be denied or corrupted by an adversary (see §3).
Furthermore, TEE IPC does not integrate well ROS-like
patterns, leaving enclaves isolated.
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Figure 1. PARTEE prevents DoS attacks by dividing TEE resources into
containers called availability partitions which also act as security domains
and hierarchical scheduling partitions; IPC availability is protected and
made practical for distributed ROS architectures via a wait-free broadcast-
ing mechanism.

Problem 4: Non-negligible algorithmic overheads. Some
TEE OS services have scaling runtime overheads which can
be abused to deny availability. For instance, enclaves can be
spawned dynamically, but this requires authenticating the
enclave’s signature; the memory and time needed to perform
this operation can be non-trivial, as they increase with the
binary size (§3). Other operations, such as device I/O, large
memory maps, or swapping could lead to delays waiting for
locks or untrusted OS services.

To show that these four problems are not simply the-
oretical, we provide three concrete example attacks and
discuss more in §3. TEEs should be able to handle the
complex distributed software ecosystem of next-gen CPS;
ideally, they should isolate unrelated subsystems, ensure
reliable fast communication, and allow for secure run-time
flexibility. Unfortunately, these attacks highlight difficulties
with modifying existing TEE OSes to support such needs.

Our proposed solution: PARTEE, a resource-partitioning
TEE OS designed to address these availability problems.
As shown in Fig. 1, PARTEE provides a new type of
resource container [45] called an availability partition (or
just “partition”) which divides up TEE OS services and
objects, physical memory, CPU time, device I/O, and IPC
access into isolated security domains. Critical applications
run in enclaves, and each enclave belongs to one of these
partitions with dedicated resources. Partitioning enables sys-
tem developers to clearly define the security domain for each
potential enclave, ensuring all have essential resources. To
handle the challenge of completeness, we considered how
DoS (and partitioning) will affect every software abstrac-
tion level in its design, from the start, in order to ensure
availability. Thus, when compared with directly running on
Ubuntu/ROS, PARTEE offers a massively reduced trusted
computing base (TCB) for critical tasks.

PARTEE provides ROS-compatible publish-subscribe
IPC for enclaves that balances performance and security,
ensuring that messages between honest enclaves are never
dropped or corrupted with minimal overhead. Non-enclave
(potentially untrusted) ROS processes can also publish data,
but only to communication “topics” accessible by their par-
tition. To support ROS-like design patterns, PARTEE works
like modern TEE architectures, allowing dynamic spawn-

ing of enclaves to handle flexible workloads via process-
level concurrency. Due to the necessity for a (less-tested
or unverified) third-party software ecosystem, we design
partitions to handle exploitable or potentially malicious en-
claves. Enclaves from trusted sources and third parties can
be authenticated on a per-partition basis to ensure separation.

One of the major research challenges for PARTEE is
how to handle IPC DoS at a TEE OS level. PARTEE’s IPC is
by default asynchronous, and tasks are guaranteed periodic
execution time to handle any incoming published messages
(or lack thereof). We use the ARM TrustZone to preempt
and schedule an untrusted OS similar to previous works [25],
[26], [46]. While regular devices are assigned to the host
OS, time-sensitive sensor processing and actuator I/O (e.g.
UART, SPI, or CAN) is provided directly to enclaves by
PARTEE, guaranteeing availability for safety-critical data
and control. As an example, consider a smart automotive
touch dashboard and media center; such a device must
process and display data from a variety of sources. It must
support numerous complex consumer services using unreli-
able, insecure connections like cellular, Wifi, and Bluetooth.
This device also provides real-time visual and auditory alerts
based on collision-avoidance sensor data. However, if such a
system is hacked or malfunctions, all bets are off [14], [19],
[47]. PARTEE paves the way for the protection of this type
of critical use case by partitioning time-sensitive subsystems
into lightweight enclaves with available IPC and I/O.

To examine the efficacy of PARTEE, we use it to build
a highly secure search-and-rescue drone on the Raspberry
Pi4B. Our experiments show that in the presence of a mali-
cious host OS and even a malicious enclave, the remaining
critical systems will function with essential functionality.
For instance, the drone can continue to avoid obstacles and
return to home safely after detecting a DoS attack or a
malicious message. Summarizing, our contributions are:

• A novel availability-partitioning TEE OS: We built
PARTEE to protect enclave availability from the start
by considering DoS attacks at each layer of its design
(§5), ensuring timely access to CPU, critical I/O, IPC,
and dynamic memory.

• A fast enclave interface supporting the reliability needs
of CPS: We developed an optimized enclave IPC sys-
tem that can be seamlessly integrated with ROS-like
publish-subscribe middleware; it ensures IPC availabil-
ity between honest partitions, message integrity, and
fine-grained access controls via partitioning (§6).

• Real-world implementation and attacks: We analyze
the availability challenges for modern TEE OSes using
three example attacks (§3) and test our implementation
of PARTEE on two popular platforms: the NVIDIA
Jetson TX2 and Raspberry Pi4B, using our attack tools.
We further test PARTEE’s security and performance by
constructing a drone implementation on the Pi (§7, 9).

2. Motivating Context

Motivation 1: Why consider a privileged adversary? Mod-
ern robotics, IoT, and CPS generally need a rich OS to
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support features like live video streaming, voice recognition,
or advanced machine-learning and AI features; however,
some of these services may be more safety-critical than
others [48], [49]. For instance, recent security analyses
showed that Tesla’s full self-driving autopilot runs Linux
and is connected to both the Internet (for data collection)
and the vehicle’s controller area network (CAN) bus of
critical vehicle control systems [50], [51]. Many others have
shown the potential for privilege escalation once a foothold
is gained on a CPS [14], [15], [17]–[20].

Our drone implementation (show in Fig. 10 in §7) also
concretely demonstrates the devastating impacts of a privi-
leged adversary. If the critical tasks do not run as enclaves, a
compromised OS can arbitrarily control and crash the drone
by sending manual control or forced motor disarm messages
to the autopilot. More subtly, the OS could block or modify
IPC between the tasks involved in obstacle avoidance. See
§7 for further discussion.
Motivation 2: Why consider more than two security do-
mains? As mentioned above, many CPS involve a complex
integration of subsystems with varied impacts on safety,
mission success, privacy, and quality of service (QoS). Ap-
plying the principle of least privilege [52], if one subsystem
is compromised or has a fault, the other systems ideally
should remain as unaffected as possible [53]; thus, a simple
binary division of security domains will not always provide
strong security. The ARINC 653 standard [54]–[56] and
ongoing research on partitioning hypervisors are based on
this premise [57]. One notable example is the Boss self-
driving architecture [58], which has three subsystems of
various tasks just for mission planning: “Lane Driving,”
“Intersection Handling,” and “Goal Selection.”

The historical assumption is that all software in the
TrustZone is assumed to be correct and “trusted,” due to en-
clave binaries authentication. However, for mobile devices,
recent works found numerous real-world vulnerabilities in
enclaves, especially due to the open app-store ecosystem
[59]–[62]. For CPS and robotics, given the diversity and
complexity of modern software stacks with software from
many sources and vendors, we adopt an open-system adver-
sarial model in this work (see §4.2). This allows us to model
potentially malicious third-party enclaves.

3. Availability Challenges for TEE OSes

How are TEEs constructed which makes it difficult to
modify them to support the problems outlined in §1? To
answer this question, we look at the highly popular OP-
TEE [28] as an example TEE OS. Typical TEE OSes do
not have a scheduler and thus rely on the host OS. For
example, instead of using spin locks in the TEE kernel, OP-
TEE defers to the host OS via remote procedure call (RPC)
and waits for it to return. This is one of nine essential RPCs
part of the TEE protocol for Linux, which cause the TEE to
block until Linux decides to return. Additionally, the host
OS can be used to store swapped pages, which it can deny to
block enclave execution. Interrupts that occur during TEE
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Figure 2. Left: Heap space over time during a heap-drain attack on OP-
TEE OS; black space is allocated memory and the red-line indicates overall
capacity. Right: Measurements of malicious ELF loading time for OP-TEE
by file size, showing linear scaling between size and hash time.

execution will cause the TEE to context switch to Linux
as well, halting enclave execution for an indefinite period.
These functions would be trivial to attack; however, there
are many other lurking DoS exploits which highlight other
major design problems.

Even though many have proposed ways to use the ARM
TrustZone for real-time applications [26], [46], [63]–[66],
only one recent work, RT-TEE [25], has availability mea-
sures for modern TEEs specifically [21]. RT-TEE showed
that, conceptually, a TEE OS should provide CPU avail-
ability and I/O availability. Although it proposes adding
I/O protections and hierarchical scheduling of the host OS
and enclaves, this is not yet sufficient to ensure availability.
To strengthen OP-TEE’s defenses, we also test the RT-TEE
artifact, which extends OP-TEE with a real-time scheduler.
Attack 1: TEE OS heap drain. We found at least 193
places where malloc() or calloc() were directly used in
the OP-TEE kernel. OP-TEE uses a static Secure-world
kernel heap for the majority of TEE OS kernel objects;
allocations occur on nearly all public interfaces for both the
host OS and enclaves. For example, when pages are mapped
to an enclave, an object allocated is to track them. When one
enclave invokes another enclave for IPC, OP-TEE attempts
to malloc() two blocks of memory to share the message.
Without adequate heap space, we found that no IPC sessions
can be opened for any enclave, and no enclaves can be
loaded. Cryptographic operations also require the heap for
large prime math, and they can fail without enough space.

We designed a proof-of-concept tool to exploit one of
these vectors; it allows an adversary to prevent communi-
cation between two enclaves—even without the need for
an open-system or malicious enclave code. For this attack,
the adversary host OS repeatedly registers shared memory
with OP-TEE. Each registration will result in new objects
being allocated on OP-TEE’s kernel heap. By strategically
altering the sizes of registrations, Linux can create objects
with various sizes. With certain patterns of registrations, the
adversary can ensure that the heap is completely consumed
or heavily fragmented, as shown in Fig. 2 with a mapping
of heap memory.

If we tried to patch this attack by limiting the number of
requests, the heap could fill up naturally, making the attack
viable again. The attack could be adjusted to create larger
objects or to create objects using different interfaces, as most
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Figure 3. Task trace of an execution-blocking attack implementation on
RT-TEE [25] where victim eV calls adversary eA, which never returns,
causing eV to miss its deadline. Periodic budget refills simply resume eA.

involve heap memory. Modifying this system would lead to
endless cat-and-mouse games trying to patch each interface.
Attack 2: Execution-blocking IPC attack. The way that
threading and IPC was built for OP-TEE (for the Global
Platform [GP] specification for TEEs [67]–[69]) did not con-
sider the potential impacts of the availability requirements
for CPS—especially for distributed ROS-like architectures.
For ROS-like systems, one task does not have to fully
trust another enclave to benefit from communication with it.
IPC can transfer logging information, high-level objectives,
encrypted network traffic, or video streams asynchronously,
decoupling data availability from scheduling and allowing
validation of message contents. With OP-TEE and any de-
sign that uses the GP spec, all IPC between enclaves is im-
plemented as client-server remote-procedure calls (RPCs),
where the client’s thread context switches to the server’s
enclave process to invoke some function synchronously (and
concurrently with other clients). In this design, every client
(caller) must trust that the server will not DoS it, and if a
server (callee) is compromised, it can block or delay clients.

No other channels of communication or shared memory
could be established (except raw shared memory with the
host OS). Hence, for any TEE OS that implements this
spec (e.g. Alibaba’s Cloud Link TEE, Huawei’s iTrustee,
Qualcomm’s QTEE, Samsung’s TEEgris, Trustkernel’s T6,
or Trustonic’s Kinibi), an enclave’s availability is strictly
dependent on all other enclaves in its call chain. As noted
in Motivation 2, we argue this is not a safe assumption.
In 2024 alone, fourteen new zero-day exploits in enclaves
were found due to the GP specification’s lack of invocation
argument sanitization and type-checking [62]. Moreover, to
simply delay a caller, an adversary does not need to achieve
remote-code-execution; e.g. overwriting a loop counter or
lock variable could cause a DoS.

To demonstrate the impacts of this problem, we im-
plement a victim caller enclave, eV , and an adversary-
controlled server, eA, on top of OP-TEE (using the RT-TEE
artifact with an event-based scheduler [25]). Fig. 3 shows
that once the adversary refuses to return, the client will never
execute again. When the timer event wakes the victim thread
each tick, it is still executing the adversary’s code.

To fix this issue, one could organize all IPC so that
the most trusted enclaves are servers and the least trusted
are clients; however, this leads to troubling design patterns.
For instance, enclaves will then implement a server and a
client interface for each type of IPC to communicate with
lower and higher criticality tasks; yet the system has no

way of enforcing any access control so any enclave can still
call anyone else. Traditional real-time priority inheritance
schemes will not help here either, if the server is mali-
cious. Forced timeouts, if implemented, could help; though
timeouts tend to be very inefficient as one has to grossly
overestimate CPU budgets. On top of everything, this form
of IPC is wildly inefficient for broadcasting: each subscriber
needs a copy and two context switches per message.

Attack 3: Confused-deputy ELF loader. Certain TEE OS
operations can take arbitrarily long amounts of time, con-
trolled by the adversarial host OS. If the TEE OS has any
locks held or resources consumed during this process, then
the adversary can deny services to enclaves. We developed
a tool to demonstrate this problem.

Typically, cryptographically-signed enclave ELF files are
stored in the host OS’s file system. Using one, our tool
can generate maliciously large ELF files, causing the system
to delay during spawning. First, the tool generates a valid,
large unsigned ELF file. Then, the tool signs it with an
arbitrary key, creating a TEE header with a signature of the
new ELF file’s hash. At this point, if loaded, the TEE OS
would immediately reject the ELF because the signature is
not authentic. Finally, the tool copies only the signature and
hash of the authentic ELF binary to the fake one. Now,
when loading the malicious ELF, the system checks the
signed hash, which is authentic, so it begins to hash the ELF
contents. The malicious ELF causes OP-TEE’s ELF loader
to act as a confused deputy [70]: consuming large amounts
of secure memory, heap, and page tables. In addition, the
ELF loader will hold locks over many kernel objects for
a long amount of time.Fig. 2 shows our measurements for
how long this hashing process could take, scaling linearly
with the ELF size. The delay is due to hashing and copying
overheads of data for the new enclave’s address space.
Only once it is fully loaded and hashed does the final hash
comparison fail, finally releasing the consumed resources.

4. PARTEE Goals and Security Models

Using our motivating attacks above, we define sev-
eral goals beyond prior work, which are later analyzed in
§8. Related prior work primarily focused on enclave non-
starvation, I/O availability, and memory protections.
Goal 1. (Guaranteed physical memory reservations) En-
claves should be able to allocate the memory needed to
make progress—in spite of DoS attacks.

Goal 2. (TEE resource and service availability) Shared
TEE OS kernel state and objects should be available for
enclaves to make progress. TEE services must consider how
algorithmic input scaling affects all enclaves.

Goal 3. (Wait-free publish and subscribe IPC) No enclave
should block during the IPC protocol.

Goal 4. (Guaranteed correct message delivery) Two honest
communicating enclaves should not have their messages
corrupted or blocked before the receiver can receive it.
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Goal 5. (Flexible IPC access control) System designers
can specify IPC topic access controls and bandwidths limits
while also supporting runtime changes.

4.1. Hardware Model

We consider a multi-core SoC hardware platform with the
following: (1) Programmable support for making regions
of physical memory read-only or inaccessible from kernel
mode; (2) Programmable interrupt access control, so that
some may not be masked or handled by the host OS; (3) A
secure timer for scheduling, which cannot be accessed by
kernel mode; (4) Support for isolation of system power, core
voltage, core frequency, clock management, reset manage-
ment, and other potentially safety-critical hardware compo-
nents from kernel mode.

This paper primarily looks at ARM TrustZone [71]
platforms as instances of this model. Briefly, the TrustZone
provides a bisection of the CPU into two worlds: “Nor-
mal” and “Secure” which share main memory and other
CPU registers. Privileged programmable firmware is used
to interrupt execution of each world to swap out registers;
additionally, it is used to manage system power. Memory
access control is done on the bus level by a TrustZone
address-space controller [72]. Interrupts can be configured
to be owned by a certain world and can be disabled during
the non-owning world’s execution.

4.2. Adversary Model

Using our informal attacks from §3, we now define a
formal adversary model, A. For this model, we define a
partition P as a set of enclaves in the same logical security
group or domain. Each enclave, e, belongs to some parti-
tion on a system divided into m partitions: P0, ...,Pm−1.
Enclaves in the same partition share “partition-level” per-
missions (akin to Unix group permissions), so we assume
they trust each other accordingly. One partition, P0, includes
a large rich OS kernel (e.g. the TrustZone’s Normal world).
Our adversary has the following properties:
Escalated privilege: A can run arbitrary code in P0’s user
(EL0) and supervisor (EL1) modes. Therefore, it can read
or write to any physical memory which is not protected by
a memory protection mechanism.
Device control: A can configure memory-mapped IO and
interrupts of any devices which are not protected by Trust-
Zone bus hardware. A can start arbitrary DMA transfers,
but they must respect the hardware isolation.
Open system: A can run arbitrary code in an adversarial
enclave eA ∈ Pa, i.e. Pa is an adversarial partition.

A’s goal is to compromise or deny service to any other
enclave eV ∈ Pk where k ̸= a. Concretely, A wants to: (1)
alter or read eV ’s internal state; (2) alter or read eV ’s private
communication with another enclave eB where B ̸= A; (3)
cause eV to stall or block during the IPC protocol with any
enclave; (4) cause a DoS of TEE OS resources necessary
for eV to make progress.

We assume messages from eA to eV can be sent asyn-
chronously; i.e. the logic of eV can make progress in a
meaningful way in the absence of a message. Such progress
could be an emergency backup plan in the worst case, or
normal functionality with a minor loss of quality in the
best case. We also assume messages from eA to eV can
be validated or sanitized using techniques described by
related work (§6). If eA’s message is strictly essential to
both the timing and business logic of eA with no way of
validating or sanitizing it, all bets are off. In our experience
and analysis, these assumptions do not meaningfully weaken
PARTEE’s ability to provide security; practically, they mean
that the critical software we want to protect cannot itself
be adversarial. See §6 for in-depth design discussions on
this issue, and see §7 for how these affected our drone
implementation. We now describe PARTEE’s challenge to
this adversary in the following sections.

5. PARTEE System Design

At the heart of the PARTEE design is a compact, special-
purpose TEE OS, called PARTEE OS, which runs at a higher
privilege level than kernel mode (EL1). In our implemen-
tation, we run this kernel in both ARMv8-A “Monitor”
mode (EL3) in place of the firmware and as the Secure-
world kernel (S-EL1) of the TrustZone. Running in both
modes is primarily used to enforce access control on system
power primitives, and we found that doing this reduces the
TCB (removing the need for a separate Trusted Firmware
binary [71]) and can improve world switch latency (see §A).
Normal hypervisor mode (EL2) is not needed for PARTEE
(as long as the hardware model in §4.1 applies), and secure
hypervisor mode (S-EL2) is not used.

PARTEE partitions prevent one part of the system from
denying service to another, whether through fault or adver-
sary attack. They are resource containers [45], similar to
Linux cgroups, i.e. a lightweight group of processes which
share a subset of the whole system’s resources:

Definition. (Partition)
1) An exclusive set of system resources (e.g. CPU budget,

physical memory, I/O, IPC channels).
2) A set of running enclave processes in the same security

domain and hierarchical scheduling partition.
3) A separate root-of-trust for dynamic enclave spawning.
4) The host OS (Normal world) is treated as one partition.

We define an enclave as a (Secure world) user-space
process running in some partition on PARTEE, which pro-
vides it with essential OS services: page-table management,
scheduling, and time-sensitive I/O. Fig. 4 shows an overview
of the partitioning architecture.
The PARTEE Rules: We envision the system designers
would divide a system up by functionality and criticality
(e.g. DO-178C software levels). Currently, at development
and provisioning time, developers must define the PARTEE
Rules in a specification file. These rules are enforced by
PARTEE at runtime to ensure isolation; they specify the
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Figure 4. PARTEE’s partitioning system design where TEE OS managed
resources and objects are partitioned among running enclaves.

initial sets of partitions and their static properties along
with IPC access control policy. We will briefly discuss
background for the main security techniques, then dive into
how PARTEE manages resources.

Question 1: How is CPU time partitioned?
PARTEE OS uses well-known TrustZone techniques [25],
[26], [46], [64] to preempt Normal world execution via a
secure timer interrupt. The timer drives a budget-enforcing
hierarchical real-time scheduler, which first selects a
partition based on the scheduling parameters defined in the
rules, then selects an enclave from that partition to run (or
Linux).

Question 2: How is memory protected?
PARTEE uses standard TrustZone techniques for memory
access control. Regions of the physical address space are
protected using memory bus security hardware (e.g. a
TZASC [72]), see §A for details.

5.1. Availability Partitioning in the TEE OS

What types of resources must be available for an en-
clave? To answer this question systematically, we use the
TEE OS implementation process as a discovery methodol-
ogy. TEE OSes like regular kernels manage many different
kinds of state for processes and hardware, and not all states
can be efficiently statically allocated due to dynamic work-
loads. We assume that partitions can be dynamically started,
but that there is a statically defined maximum number of
partitions and enclaves. Our approach was to break the TEE
OS into small abstraction layers to encapsulate each piece
of state; below we discuss several key layers, shown in Fig.
5. In general this approach to design could apply to any OS
that should provide availability; however, for a TEE OS,
we have additional challenges related to interactions and
resource sharing with the host OS.
Physical memory allocation: Starting at the lowest abstrac-
tion, physical pages must be assigned to partitions to prevent
memory DoS. This layer tracks page allocations, aliases, and
frees charging against per-partition page quotas.
Page-table management: Enclave page tables are allocated
using the physical page allocator in order to map virtual
memory. PARTEE stores a reference to each root table; we
assume a static maximum number of running processes and
use a process-indexed table.

Partitioned slab allocation: In order to handle dynamic
workloads and prevent DoS attacks, PARTEE’s kernel ob-
jects are allocated in per-partition slabs. Because fragmenta-
tion could lead to availability issues, slabs of discontinuous
physical pages are virtually mapped into PARTEE’s kernel
page table into per-partition virtual regions.
Virtual address space management: Using the partitioned
slab allocator, PARTEE manages a data structure for each
enclave’s virtual address space (including heap, stack, and
anonymous memory mappings). Each page fault, mmap sys-
tem call, etc. that allocates a physical page for an enclave is
subtracted from the partition’s quota in the underlying calls
to the page allocator.
Multicore, kernel threading, and locking: Each thread
requires a kernel stack (allocated from the slab allocator).
Since recursion or large stack frames could lead to over-
flows, we avoid using these. For simplicity, we opt for
a non-preemptable TEE kernel design, where threads are
running to completion. Because some kernel data structures
are inevitably shared between cores, we use per-layer MCS
locks [73], [74] with carefully bounded critical sections to
ensure lock-acquire ordering.
Asynchronous device I/O: PARTEE offers access to time-
sensitive sensors and actuators via a system call interface;
this avoids trusting the host OS for critical I/O. These
devices typically use simple bus interfaces, e.g. UART, SPI,
I2C, or CAN.

Using the rules, partitions are configured with access to
hardware devices; however, for shared devices one partitions
could DoS another by saturating PARTEE’s I/O drivers
with time-consuming operations. To prevent long-running
device I/O operations from blocking a core, we implemented
generic I/O queuing system calls as the primary interface for
critical devices from enclaves. Outgoing I/O is queued up
in each partition for each device (using each partition’s own
memory). For devices shared by multiple partitions, the OS
divides the bandwidth among the partitions.
Partitioned enclave authentication: PARTEE includes the
standard asymmetric key authentication design used to au-
thenticate enclave binaries; however, we improve on the
protocol to protect against DoS attacks, as shown in Fig.
6. First, at boot time the root-of-trust is “branched” to
create unique trust domain for each partition. This provides a
separate authentication key for each partition, allowing new
enclaves to come from various stakeholders with different
privileges. Second, we alter the authentication protocol so
that the prover (who wants to load an enclave) bears the
loading and authentication costs of the enclave binary.

Normally, the enclave binary is hashed, and the hash
is then signed or verified. We already prevent arbitrarily
sized enclave loads by adding an additional signature of
the ELF header, which is checked before the original hash
is calculated. Then PARTEE uses a trusted user-space ELF
loader and verifier which runs in the prover’s partition using
the prover’s memory quota (note: the quota for the untrusted
Host OS partition is a “Secure world memory” quota,
unrelated to its ability to allocate regular memory). Only
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PART (resource partitioning, tracking, and management)
partition objects

PMM (physical memory allocation)
physical pages

MMU (page-table, TLB management)
page tables

MPT (generic virtual memory management)

TRAP (IRQ, syscall, smcall routing, fault handling)
kernel-thread stacks

SIG (signal management)
signal objects

EVENT (periodic, sporadic event management)
event callback contexts

VMA (virtual address-space region allocation)
virtual region objects

SLAB (dynamic per-partition object allocation)
kernel dynamic objects slabs

PROC/ELF (process management and ELF loading)
process control blocks

SCHED (real-time hierarchical scheduler)
ready, wait queues, sched objects

IPC (publish / subscribe management)
topic state objects, rings, firewall

DMA (generic DMA interface)
DMA request objects

DEV (generic device-tree interfaces)
device-tree state, device state

DEVQ (generic scatter-gather device queue interface)
queue objects, queue elements

Figure 5. Breakdown of core PARTEE OS design layers showing what enclave availability-relevant state is managed at each abstraction to prevent DoS
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Figure 6. Resources needed to authenticate and spawn an enclave in a
different partition must be provided by the “prover” partition (or parent)
until the signature check is complete.

after authentication is the enclave charged to the destination
partition.

6. Availability, Integrity, Performance, and Us-
ability for TEE Communication

For communication among enclaves and the rest of the
system, PARTEE mediates asynchronous message passing
over shared memory to provide: strong availability and
integrity properties, seamless integration with ROS [1], and
reliably low latencies. At a high level, PARTEE uses a
DDS-like communication style, where enclaves publish and
subscribe to named topics [75], [76] via a TEE-OS-mediated
IPC protocol which prevents blocking attacks between any
pair of partitions, protects against message corruption, and
minimizes copying for broadcasts. Messages are passed
via ring-buffer queues; thus, no rendezvous is required to
send or receive data, and publishing will succeed with high
probability without any need to busy loop. Our Wait-Free
Broadcasting Ring-Buffer queue design builds upon well-
known implementations; the design is provided in §B.

Question 3: How is lack of data handled?
When IPC arrival timing is critical, the sender and receiver
must trust each other to that extent. Yet, in many cases,
PARTEE allows graceful failure in the absence of data
streams. In other words, it still has guaranteed CPU
time, IPC access, and device access which it can perform
backup operations (landing or pulling to the roadside), or
operate with reduced data. For example, consider an audio
rendering task for an avionics device (like a Garmin GMA
device) which mixes inputs from many sources: co-pilot
microphones, flight-attendant microphones, music, radio,
voice recognition, text-to-speech, and alerts from various
subsystems. If one of the sources denies an audio signal,
the system should play a timely audio notification to alert
the pilot of a system error or just continue rendering

the other sources without halting. The backup or alert
operation logic that are required for graceful failure should
be implemented within enclaves, and any devices required
by these operations must be made accessible via a PARTEE
driver; thus, the backup logic has no timing or resource
dependencies on the untrusted host OS and can execute
gracefully if everything else fails.

Question 4: How are malicious messages handled?
The power of PARTEE is that enclaves will have guaranteed
execution time to sanitize incoming data and validate
messages. We leave handling maliciously-crafted, faulty
message content, and lack-of-messages to ongoing related
work. Solutions to these are application-specific, and
PARTEE is an OS-level design. For data coming from
remove source, a common solution would be appending a
message authentication code (or MAC) to each message
and encrypting the contents—our implementation provides
a library to help with this.

Identifying and mitigating bad data is a difficult problem,
even for fully trusted software stacks [77]. Research is
ongoing to investigate the problem of maliciously spoofed
sensor data or ML model robustness attacks [78], [78]–
[82]. The Simplex approach has been explored to validate
complex controller outputs [83]–[90]. Other approaches use
physics modeling or hypothesis testing to identify anoma-
lous spoofed data [77]. In some cases, data from trusted
devices could be authenticated [91], [92]. For instance, if
LiDAR data is published from an untrusted ROS node,
it is possible to detect tampering via watermarking [93]–
[95]; however, this does not deal with the potential for
the spoofing. Ultimately, PARTEE is focused on the overall
communication mechanism and ensuring that enclaves will
have availability at the OS level—which is necessary to
handle bad or absent incoming data with related work.

Question 5: How is ring corruption handled?
The protocol presented in §B is designed to not trust the
other readers and writers. It is resistant to corruption by
keeping local copies of head and tail pointers, as well as
bounding array indices. In the worst case, an adversary
could corrupt messages from enclaves in the same partition;
however, this is expected by design.
The Topic Firewall: If the adversary gets access to a safety-
critical topic, they could spoof malicious messages. Addi-
tionally, some contexts may have privacy-sensitive data, e.g.
in HIPAA-compliant medical devices; here, the adversary
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should not be able to access privacy-critical topics.
We use the PARTEE Rules to allow developers to specify

which partitions can access which topics with a “Topic
Firewall” specification. The firewall specifies the rate at
which each partition is allowed to publish to some topic
and if the partition can read from some topic.

Question 6: How are rates determined?
Publish rates can be determined in many cases by the
sensors, which produce data often at a fixed rate defined
in a datasheet (or it can be overestimated experimentally).
However, topics can be created at runtime with arbitrary
sizes—as long as the partition’s quota can support the queue
size. If the quota cannot fulfill the queue size, then the
enclave’s request system call (e.g. advertise/subscribe
calls to create queues) returns a failure. Thus, new topics
can be scaled to runtime workloads as needed.
Intra-partition communication: Enclaves within a parti-
tion are safe to trust each other, so PARTEE uses di-
rect shared memory for intra-partition, or local, message
transfers, avoiding copying and system calls. The topic’s
shared memory can only be mapped into enclaves in that
partition, ensuring confidentiality and integrity. The enclaves
use PARTEE OS system calls to “advertise” to a topic (start
publishing) and to “subscribe” (start subscribing). Once
PARTEE validates the access, it maps the rings into the
enclave’s page tables. After this, IPC is entirely in polled
shared memory, except for system calls to allow yielding,
waiting, and signaling. With this optimization, the developer
makes a trade-off: improved performance for less runtime
safety; for example, a faulting enclave could corrupt mes-
sages of others in the same partition. To help this situation,
PARTEE takes a best-effort approach by ensuring that the
shared-memory protocol is non-blocking and wait-free (see
§B) and enclaves do not share address spaces; thus, faulting
enclaves still cannot block each other or corrupt each other’s
code and private data.
Inter-partition communication: Intra-partition communica-
tion assumes honest enclaves; however, inter-partition com-
munication cannot assume this. A naive solution would be to
have PARTEE OS copy messages into each subscriber; how-
ever, this would not scale well, requiring O(partitions ·
ring_size) copies.

Question 7: How is broadcasting performance improved?
PARTEE divides inter-partition communication into two
parts: outgoing and incoming, as illustrated in Fig. 8. All
enclaves in a partition share an outgoing ring per topic, and
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an additional read-only global incoming ring is mapped into
all subscribing enclaves, regardless of partition. PARTEE
OS copies messages from each partition’s outgoing ring into
the incoming ring. The copy allows PARTEE to rate limit
publishes from each partition. Each message only needs
to be copied once for inter-partition broadcasting; on the
other hand, to broadcast on a system like OP-TEE requires
copying the message to each receiver on invocation.

Ring size calculation: Using PARTEE OS to copy messages
lets it enforce the rules of communication, protect message
integrity, and prevent message flooding attacks. It uses the
max rate R of messages per tick per CPU defined for each
partition in the PARTEE rules to rate limit the number of
copies it makes. Thus, the global incoming ring can be sized
to be large enough so that all publishes will be visible to
all partitions. i.e., greater than the total messages that can
be published over the longest_period of any partition:

ncpu ·
∑

(Ri · (longest_period/periodi · budgeti

+ min(longest_period mod periodi, budgeti)))

Because we can calculate the incoming ring’s size based
on the enforced rate limits, no partition will be able to flood
the ring before all other partitions have had a full budget of
execution time. Messages are copied out on each timer tick,
but an enclave can use either a sync or yield system call to
trigger an early copy in latency sensitive contexts. PARTEE
could also support sleeping on a topic, where the enclave
will wake when only a message is copied into the Incoming
Ring, but our implementation did not include this.
Data distribution and topic registration: As shown in Fig.
9, we create a ROS proxy Linux process which interfaces
with an (untrusted) Linux kernel module for PARTEE. The
module creates file system entries to provide an interface
to the TEE. Periodically, this proxy will execute rostopic

list to get the current list of all ROS topics, then use the
ioctl() calls to synchronize topics. The proxy will then
forward all messages between ROS PARTEE topics.
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where control tasks are divided into partitioned enclave processes. En-
claves publish and subscribe to isolated ROS-compatible topics to transfer
data, and they interface with their partition’s devices—thereby protecting
availability, integrity, and confidentiality for enclaves and IPC.

7. Case Study: Secure Partitioned Drone

We tested PARTEE on a drone software architecture
(overviewed in Fig. 10) since it is a common COTS example
of a time-sensitive system. We envision this design will
encourage similar approaches for automotive, medical, or
industrial settings, where a security vulnerability can have
severe safety and economic consequences—especially when
considering a large fleet. These systems should be reliable
and safe; thus, we designed an obstacle-avoidance system
on a search-and-rescue drone, derived from relevant drone
architectures [10], [12], [18], [96], [97]. The drone uses an
off-the-shelf quad-copter frame with a Pixhawk CubePilot
Orange autopilot device and a Raspberry Pi4B companion
computer. The companion computer is the focus of our
experiments where Linux is the host OS. We set up two
scenarios: one with all tasks running on the host OS, and
one where PARTEE runs as the EL3 firmware and S-EL1

TrustZone TEE OS with some tasks as enclaves (see §A).

The ground-control (enclave) task communicates over a
TLS connection to receive high-level mission objectives
and send sensor logs. We classify this enclave as mission
critical because it handles sensitive mission data (suppose
compromise has severe consequences [98]). This enclave
spawns children to handle concurrent network connections.

The MAVLink-gateway (enclave) task interfaces with the
autopilot via MAVLink [99] (via a PARTEE UART driver),
and proxies the packets. This interface directly controls the
drone and provides odometry data. This task is safety critical
since it can arbitrarily control the drone’s movements.

The obstacle-detection (enclave) task reads a LiDAR sensor
to detect obstacles (and publish detections). It uses odometry
to smooth noise from the LiDAR from frame-to-frame and
coalesce detections. It is safety critical because if it fails to
detect obstacles in time the drone will crash.

The path-planner (enclave) task gets objectives and ob-
stacles and intelligently updates an ongoing search task.
We implemented a rapidly-exploring random tree (RRT)
algorithm for the planner, allowing it to traverse around the
obstacles while searching new areas. The planned path is

Undetected avoidance zone

Adversary sets waypoints behind obstacles

Host OS blocks obstacle messages
PARTEE

Figure 11. Comparison of drone flight paths: Insecure version where
the host OS blocks obstacle-avoidance IPC, and a secure version using
PARTEE, which guarantees IPC delivery. The insecure drone does not
detect the obstacle and does not avoid flying too close.

sent to the MAVLINK gateway (over a “mavlink” topic).
This enclave is also safety critical.
The battery-fence (enclave) task reads the battery levels and
publishes a return-to-landing command before the battery
would be exhausted on return.
The computer vision tasks represent an objective identifying
ML model, which reads from a downward-facing camera to
find rescue targets (for our implementation these tasks are
shims) and publish them as objectives. Suppose this model
requires complex third-party libraries and software, so it
must be run directly on Linux.
Obstacle avoidance under adversarial conditions: We cre-
ated three partitions: Normal-World, Mission-Critical, and
Safety-Critical based on the classifications above. The au-
topilot and LiDAR devices are connected to the companion
computer via UART serial. We configured the PARTEE rules
so that only the Safety-critical partition could access them.
Additionally, the PARTEE Topic Firewall (access control
rules) are visually shown in Fig. 10. The adversary, A, has
two modes: In Mode 1, A has root access to Linux. In
Mode 2, A has additionally compromised the ground-control
enclave, eA, and can run any code there. The victim, eV ,
could be any Safety-critical enclave.

Fig. 11 shows two flight traces. In the red trace, we pro-
grammed the host OS to block incoming messages from the
obstacle-avoidance task. The host OS also sends malicious
waypoints to try to cause the drone to hit the obstacle. The
result is that the drone did not detect or avoid obstacles,
flying through the no-fly danger radius around them. The
black trace shows exactly the same source code, recom-
piled to run inside PARTEE enclaves. The path-planner and
obstacle-avoidance enclaves continue to run, regardless of
the actions of Linux.
Protecting against malicious data or DoS: Considerations
around malicious data and DoS are foundational to this
drone’s design. With our Mode 1 Adversary (with just root
access), it can publish arbitrary objectives or to corrupt the
Normal world’s outgoing objectives ring. Additionally, it can
do the same for the network topic. By design, ring corruption
will result in “junk” messages. We easily mitigate the impact
of this attack by validating objective messages. The path-
planner enclave must bounds check coordinates and ensure
that they are within the geofence; thus, the adversary can at-
best make false-positive objectives. Objectives between the
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ground-control enclave and path-planning enclave cannot be
overwritten until the path-planner has executed, due to the
protocol in §6. Published network traffic cannot be read
or forged due to the use of TLS. With Mode 2, again A
can make false-positive objectives. However, because the
obstacle-avoidance system is isolated in another partition,
the adversary still cannot make the drone crash, even with
malicious objectives. If objectives are DoS’ed the drone will
return home after visiting all known search area objectives.

8. Security Analysis

PARTEE aims to reduces the TCB of critical CPS ap-
plications. To assess this, we measured the TEE OS and
firmware source size needed for the Raspberry Pi4B imple-
mentation, for both PARTEE and OP-TEE, shown in Table
1. Our combined firmware/TEE OS design and simplified
TEE interface is able to further reduce the TCB, even over
OP-TEE. To further assess PARTEE, below we perform a
case-by-case analysis based on the goals defined in §4.

TABLE 1. SOURCE LINE COUNTS FOR THE PARTEE AND OP-TEE
TRUSTED COMPUTING BASES.

TCB (SLOC) EL3 S-EL1 S-EL0 Totals
PARTEE <1,000 35,311 6,997 43,308
OP-TEE 46,559 86,500 9,787 142,846

Goal 1. Guaranteed physical memory reservations: Phys-
ical memory can be allocated through several interfaces;
however, due to the encapsulation of PARTEE’s design, all
physical page allocations must occur through the physical-
memory allocator which takes a partition ID argument.
The allocator tracks each partition’s quota, decrementing as
pages are allocated and rejecting once the quota is zero.
Thus, the enclaves cannot over consume memory.
Goal 2. TEE resource and service availability: Through
building PARTEE’s, we constructed a list of all TEE OS
exposed interface points and TEE OS objects, summarized
in Fig. 5. The non-trival system calls available to enclaves
are for memory mapping (mmap, munmap, mremap, brk),
IPC (advertise, subscribe, sync), process control (yield,
sleep, spawn, exit), device I/O (dev_control, dev_open,
dev_push, dev_pop, dev_waitany, dev_waitall), and sys-
tem management (shutdown). The memory mapping sys-
tems calls interface with the virtual-memory layer, which
manages the address space and ultimately calls the physical
memory layer. The number of mappings can increase map
time, but it is bounded by the maximum number of pages
a partition is allowed. advertise and subscribe lookup
and manipulate topic data structures. Because topics can be
looked up by string names, we use a prefix tree to prevent
topic name flooding attacks. Topic objects are allocated by
the partition that creates them. Spawn uses the algorithm
specified in §5.1. A new enclave is only admitted into the
scheduler if it will not exceed the partition’s maximum
budget. Device I/O creates queues using partitioned slab
allocation, and the operations are constant time. Enclaves
can only power off the system if shutdown access is granted

in the PARTEE Rules. The normal world is given a limited
subset of these system calls as monitor calls.
Goal 3. Wait-free publish and subscribe IPC: By in-
spection of the algorithms in §B, we can see that there
is no unbounded loops in the publishing or subscribing
protocol. Loop bounds for reading, which are based on
untrusted values read from shared memory, are bounded
to a maximum of the length of the ring buffer. Even if a
thread is interrupted and context-switched out, other threads
will be able to communicate as the size of the Data Ring
must be greater than the maximum number of publishing
threads. Because of this, simultaneous access to the data
structure will yield unique indices into the Data Ring. Thus,
a publisher will not lose access to the data structure due to
other publishers.
Goal 4. Guaranteed-correct message delivery: Upon pub-
lishing, the kernel will copy this message from the Outgoing
to the Incoming Ring (see §6) at the next timer tick or sync,
which is mapped as read-only to user-space. Because the
kernel will enforce rate limits on how many messages it
will copy per partition, per topic, per tick, the Incoming
Ring will have a maximum number of messages that could
be written over any time period t: M(t). Additionally, the
scheduler will execute each partition for exactly its full
budget each period; thus, there exists a maximum time delta
T between which all subscribing partitions will be scheduled
for a full budget. PARTEE sizes the Incoming Ring is sized
to be larger than M(T ). Therefore, no messages will be
overwritten before all have a chance to read them.
Goal 5. Flexible IPC access control: The kernel validates
access to topics according to the Rules on each advertise

and subscribe call. If the topic exists, it will have a set
of rules that apply; otherwise, it will use catch-all rules. If
the enclave is in a partition without access to the topic, the
system call will correctly fail.

9. Performance Evaluation

We aim to answer the following performance questions
for PARTEE: (Q1) What is the baseline overhead cost of
PARTEE on the host OS? (Q2) What is the performance
overhead of a PARTEE enclave? (Q3) What is the cause
of latency for publishing between enclaves? (Q4) How is
latency affected by PARTEE’s intra-partition optimization?
Q1. Impacts of PARTEE on Host OS: To evaluate the effect
of PARTEE on Normal world performance, we use both
UnixBench [100] and MiBench [101] suites. This experi-
ment measures impacts caused by preempting the Normal
world to run PARTEE. We ran these benchmark on our
baseline system, and on PARTEE with just the Normal-
world partition. We chose this setup so we could assess the
impacts of interrupting Linux on the caches. Fig. 12 shows
the results. Note that the PARTEE rules allow the CPU
budget of the Normal world on to be capped for availability
purposes, but for this we allowed 100% utilization for the
Normal world (when the cap is lowered, we observed that
the benchmark performance would proportionally degrade).
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Figure 12. Host OS performance with PARTEE relative to the baseline
(larger is better): Impacts (measured as throughput) of PARTEE on
UnixBench and MiBench applications executed on Linux
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Figure 13. Enclave application run times normalized against non-
enclave run times (smaller is better): Benchmarks run in enclaves demon-
strate overheads for memory-intensive operations, but communication-
intensive drone functions typically had improved performance over the host
OS due to PARTEE’s IPC.

We find that our prototype implementation incurs an
overhead of 0.5-4%; our analysis is that this can be largely
eliminated with additional engineering work. From our test-
ing, this overhead is due to a speculative execution attack
mitigation that occurs on traps from the Normal world;
in our prototype we are interrupting periodically using the
secure timer. We measured the world switch time at about
5 µs, which is about 0.5% of the timer interval, but each
interrupt resets the branch predictor, so an additional loss in
performance occurs; we confirmed this with a quick test to
remove the predictor reset on timer interrupts which lowered
the maximum overhead to around 1%, with most bench-
marks having non-statistically significant overhead. Thus,
this overhead could be largely eliminated if we upgraded
PARTEE to use a tickless scheduler—eliminating the extra
interrupts and branch predictor resets.

Q2. Impacts of PARTEE on application performance:
We took two approaches to measuring enclave overhead.
First we measured execution times of key enclaves of
our drone implementation: specifically, we looked at the
core functionality of the path planner, object detection, and
ground control enclaves. Second, we took major automotive
benchmarks from MiBench [101] and ported them to each
be PARTEE enclaves. The results are shown in Figure 13.

On the drone, we measured several key macro func-
tions, prefixed by drn in the graph. These include some
3D-spatial calculations, task-planning updates, and com-
munication with other enclaves or processes. Even though
these functions have higher variances, we observed that
PARTEE could improve on native performance, for several
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Figure 14. Single-message latency: Comparison of PARTEE’s end-to-end
latency for inter-partition, intra-partition, and intra-process scenarios; PAR-
TEE’s local-topic optimization lowers copying overhead scaling (n=128).

communication-heavy operations. This is due to PARTEE’s
use of shared memory broadcasting; shared memory in
general is not always available for ROS middleware and
makes a significant impact on performance.

For MiBench, we measured the runtime of the core
routines used for image processing and basic computa-
tion: susan-corners, susan-edges, susan-smoothing, and ba-
sicmath. These stress our LibC implementation, virtual-
memory management, and scheduling overheads. For appli-
cations that use heavy memory allocation, there was room
for improvement, potentially in reducing the number of page
faults due to our lazy memory-mapping strategy.
Q3, Q4. Message latency: Our end-to-end message transfer
time is shown in Fig. 14. This experiment measures time
starting from when the publisher acquires a frame, copies
a message into it, and publishes it to when the subscriber
receives it; thus for realism, all publishes include at least
one copy. When comparing Intra-Process Sync with Local
we observe that the overhead due to the shared-memory
protocol is minimal compared to the overheads of system
calls (the sync call triggers the kernel to copy outgoing
to incoming). Additionally, comparing the Intra- and Inter-
Partition curves, we can see that as the message size in-
creases, our local topic optimization scales better due to
reduced copying.

10. Related Work

Static-partitioning and TrustZone-assisted hypervisors:
Some high-assurance CPS employ temporal and spatial par-
titioning to isolate mixed-criticality workloads [49], [53],
[55], protecting one or more real-time OS (RTOS) from
a rich untrusted OS. Solutions such as static partitioning
hypervisors [54], [57], [102]–[105] or TrustZone-assisted
designs [26], [27], [46], [63]–[66], [106]–[111] offer iso-
lation but come with limitations for modern robotics: (1)
Limited scaling and granularity. Each partition needs its
own instance of a VM; thus, as the number of partitions
increases, performance will degrade due to VM-switch trade
offs [112], [113]. For example, Jailhouse [103] trades the
cost of VM exits for the usage of an entire core, 25% of the
Raspberry Pi4B’s CPU power, and µRTZVisor [64] requires
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a full cache flush on world switches. (2) Over-privileged
tasks. Many RTOSes are not designed for security, and will
run all tasks in a single address space in kernel mode. For the
ARM TrustZone, a faulty or hostile task could then own the
entire system [59]–[62]. (2) Engineering overheads. Tasks in
different partitions must use inter-VM communication [110],
[114], [115]. Hence, for ROS-based systems, ad-hoc proto-
cols are necessary to transport published data across VMs
and real-time OS interfaces. Ultimately, these hypervisors
can provide isolation, but they can also suffer from steep
performance and engineering overheads.
SMACCM and seL4: The SMACCM architecture [116],
[117] for the DARPA HACMS project [118], aims to build
a highly-secure drone with from many layer of formally
verified software. If we focus on SMACCM’s seL4-based
[119] software architecture for the companion computer, it
provides strong isolation of enclave-like seL4 drone control
tasks from Linux guest OS. In our view, PARTEE could
theoretically be implemented on top of seL4, as a service
which manages shared memory, and other resources for
sets of enclaves. The upper PARTEE layers would need to
ported to user-space in order to support partitioned dynamic
memory, dynamic spawning of enclaves, publish-subscribe
IPC and topic creation, asynchronous device I/O, and other
essential features. Without PARTEE, this architecture is
vulnerable to IPC blocking attacks.
Hardware DoS defenses: For hard real-time contexts, the
TEE OS may need to account for memory bandwidth and
cache delay attacks. In these cases, cache-partitioning and
MemGuard-style approaches [120]–[123] could be deployed
in addition to PARTEE, using hardware performance coun-
ters to budget cache and memory bandwidth, preventing
temporary delays due to limited microarchitectural queues.
Future work could explore implementing PARTEE on the
version of seL4 that is hardened against microarchitectural
timing channels [119], [123].
Alternative hardware TEEs: Using a hardware-software co-
design approach, past works have built real-time enclaves
on small embedded devices which have some availability
protections [124]–[126]. Notably, Aion [125] showed how
to run enclaves on top of an untrusted OS (RIOT OS) by
running the scheduler inside an enclave. While Aion protects
shared device resources by also placing them in enclaves;
if an enclave application needs to make any other type of
system call—like IPC managed by the untrusted OS, then
the enclave would be at risk of DoS. Because the problem
of enclave availability can go well beyond scheduling (as
shown in §3), we chose a wholistic approach with PARTEE.
Other works: TyTAN [127], TrustLite [128], ERTOS [129],
and Keystone [130] delegate scheduling to the untrusted
OS; thus, these four cannot provide availability if the OS
is compromised (even though they are providing integrity
protections for real-time tasks).
Trusted I/O: One area for future research for PARTEE is
improving enclave access to dedicated devices. Recent work
on the Linux Device Runtime (LDR) [131], demonstrated a
new approach for supporting more complex devices in the

TrustZone by reusing Linux drivers. PARTEE potentially
pairs well with LDR, and could pave the way for enclaves
with available access to USB cameras and other rich devices.
GPUReplay [132], MyTEE [133], RT-TEE [25], and others
[134], [135] also have potential solutions that complement
PARTEE OS to enable more complex I/O.
Protections against malicious enclaves: Recent works vTZ
[136], TEEV [59], 3rdParTEE [137], ReZone [61] have
aimed at sand boxing insecure enclaves; however, the chal-
lenge still remains how to isolate untrusted enclaves, un-
trusted VMs, and an untrusted host OS with total availability.
To support more complex software architectures, i.e. multi-
ple VMs that each want to launch enclaves, PARTEE would
need to be extended. Potentially, the ARM CCA provides
additional tools that could be used to achieve this [138].

11. Conclusion

Given the complex software and hardware needed to for
robots to work, and the safety implications for their failure,
we argued that critical applications be protected in enclaves.
Unfortunately, past work on real-time enclaves has several
major challenges around blocking IPC and partitioned soft-
ware architectures. We proposed, and implemented, PAR-
TEE a novel design for real-time enclaves which can com-
municate securely across fine-grained partitions.
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[91] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN: Efficient
component authentication and software isolation for automotive
control networks,” in Proceedings of the 33rd Annual Computer
Security Applications Conference, ser. ACSAC ’17. Orlando, FL,
USA: ACM New York, NY, USA, 2017, p. 225–237.

[92] G. Scopelliti, S. Pouyanrad, J. Noorman, F. Alder, C. Baumann,
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Appendix A.
PARTEE’s System Implementation

Memory protection: User-space virtual-memory access con-
trol is sufficient for isolating enclaves from each other
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spatially; however, for ARMv8, after stage 1 and 2 trans-
lations, there are no further MMU mechanisms to prevent
the Normal world from accessing Secure world memory
(until ARMv9). ARM’s optional bus-security mechanism,
the TrustZone Address Space Controller (TZASC), can con-
figure access to physical memory regions [72], but some
SoCs, like the NVIDIA Tegra X2 (TX2), have custom bus
security mechanisms.2

Integrated design of Firmware and Secure OS: Due to
the way EL3 software is not protected in the MMU, there is
no meaningful security difference between EL3 and S-EL1

(until ARMv9), so we combine them for PARTEE. Essen-
tially, world context switches are a special extension on
regular context switches, so much of our trap handling is
simply reused. In addition to EL3 trap handling, the design
needs to handle power state operations that are managed
by the firmware, e.g. sleeping cores, or powering off the
system. The advantage of integrating the designs here allows
PARTEE’s policy to apply to power state, enforcing access
control to these elements. We optimize the trap handling
over observing that traps do not need to restore the state
of the general-purpose registers and do not need to restore
the state of all Secure world kernel registers. Floating-point
registers are swapped lazily only when enclaves use them.
Finally, similar optimizations are made for trap returns; the
end result reduces the number of reads and writes from about
1.9 KB of memory to 0.7 KB.

Appendix B.
PARTEE’s wait-free broadcasting ring buffer

The basic building block of communication in PARTEE
are shared-memory fixed-size ring buffers queues. To the
best of our knowledge, this exact data structure has not been
discussed before, although some variations can be found
in the literature [140]–[142] and in off-the-shelf products
[143]. The primary innovation is how we use this data
structure in a kernel-mediated way in §6; however, there
are some unique aspects to its design as is. In summary,
this protocol has the following properties:

• Publishers can safely clobber the oldest elements of
the ring, even if a subscriber is actively reading it—
triggering a graceful return.

• Publishing is transactional; no partial or corrupted mes-
sages can be written when following the protocol.

• Publishing is unlikely to fail on race conditions, i.e. the
caller does not need to loop until publishing succeeds.

• All loops are either bounded by the ring size or message
size, and hence operations have bounded run times.

• Subscribers do not remove elements from the ring; they
track their own read elements.

• A stalled or malicious publisher can never infinitely
block subscribers with ring corruption.

The wait-free broadcasting publish protocol: The ring
buffer is made up of two arrays as shown in Fig. 15; at

2. Since the Pi4B does not have memory bus security, we instrumented
SeKVM [139] (with no guest) to ensure isolation.

headtail

publish

data ring (stores actual messages)

ready ring (2x ring size)
1

2
3

Figure 15. A diagram of PARTEE’s Broadcasting Ring Buffer and an
overview of the steps to publish; the dark cells of the buffer indicate that
the pointer is NULL.

a high level, this division enables transactional publish-
ing. The Data Ring array stores message content. It is a
ring_size array of slot_size elements (or “slots”),
each with a size up to slot_size bytes. The Ready
Ring array stores timestamped indices into the Data Ring;
notably, the Ready Ring is always twice the size of the data
ring. This data structure must also store the ready_tail
and ready_head, which are the monotonically increasing
indices into the Ready Ring. The timestamped indices and
monotonically increasing indices are what we use to resolve
classic ABA problems [144]. Moreover, we require that the
Data Ring is larger than the number of publishers, ensuring
that simultaneous contention will always be resolved. We
go over the steps of the protocol, shown in Fig. 15.

1 The publisher dequeues the oldest Ready Ring item.
a) The publisher atomically reads and increments the

ready ring tail using an atomic_fetch_add op-
eration. Atomicity ensures concurrent publisher de-
queues will yield a unique element.

b) The publisher atomically exchanges INVALID_-
INDEX into the read tail index of the Ready Ring. If
this exchange reveals that the array already contained
INVALID_INDEX, then we retry 1 up to n_slots
times. Retries only occur if the ready ring wraps
around entirely between the two atomics.

2 The publisher now has exclusive access to the Data
Ring slot previously referenced by ready_tail. The
index is stored as a timestamped index, so the times-
tamp bits must be masked-away to read the index. The
publisher writes the message into the ring.

3 Finally the publisher enqueues a the data slot’s index
+ a fresh timestamp.
a) The publisher reads and atomically increments
ready_head using an atomic_fetch_add op-
eration. Atomicity ensures concurrent publisher en-
queues will yield a unique element.

b) Because the Ready Ring is twice the size of the
Data Ring, if all publishers simultaneously attempt to
enqueue at the same time, each should be overwriting
a INVALID_INDEX slot. To verify this, the pub-
lisher performs an atomic_compare_exchange
operation, which confirms that the slot was indeed
invalid before writing to it. On failure, retry 3 up
to n_slots times, though this will only happen in
the unlikely wrapping case.
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